Sample records for adhesion molecule levels

  1. Circulating vascular cell adhesion molecule-1 in pre-eclampsia, gestational hypertension, and normal pregnancy: evidence of selective dysregulation of vascular cell adhesion molecule-1 homeostasis in pre-eclampsia.

    PubMed

    Higgins, J R; Papayianni, A; Brady, H R; Darling, M R; Walshe, J J

    1998-08-01

    Our purpose was to investigate circulating levels of vascular cell adhesion molecule-1 in the peripheral and uteroplacental circulations during normotensive and hypertensive pregnancies. This prospective observational study involved 2 patient groups. Group 1 consisted of 22 women with pre-eclampsia and 30 normotensive women followed up longitudinally through pregnancy and post partum. There were an additional 13 women with established gestational hypertension. Group 2 consisted of 20 women with established pre-eclampsia and 19 normotensive control subjects undergoing cesarean delivery. Plasma levels of vascular cell adhesion molecule-1 were measured in blood drawn from the antecubital vein (group 1) and from both the antecubital and uterine veins (group 2). Data were analyzed by analysis of variance. In group 1 vascular cell adhesion molecule-1 levels did not change significantly throughout normal pregnancy and post partum. Women with established pre-eclampsia had increased vascular cell adhesion molecule-1 levels compared with the normotensive pregnancy group (P = .01). Vascular cell adhesion molecule-1 levels were not elevated in women with established gestational hypertension. In group 2 significantly higher levels of vascular cell adhesion molecule-1 were detected in the uteroplacental (P < .0001) and peripheral (P < .0001) circulations of pre-eclamptic women by comparison with normotensive women. In the pre-eclamptic group there was a tendency toward higher vascular cell adhesion molecule-1 levels in the peripheral circulation than in the uteroplacental circulation (P = .06). In contrast to vascular cell adhesion molecule-1, circulating levels of E-selectin and intercellular adhesion molecule-1, other major leukocyte adhesion molecules expressed by the endothelium, were not different in pre-eclamptic and normotensive pregnancies. Established pre-eclampsia is characterized by selective dysregulation of vascular cell adhesion molecule-1 homeostasis. This event is not an early preclinical feature of pre-eclampsia, does not persist post partum, is not a feature of nonproteinuric gestational hypertension, and is not observed with other major leukocyte adhesion molecules. Induction of vascular cell adhesion molecule-1 expression in pre-eclampsia may contribute to leukocyte-mediated tissue injury in this condition or may reflect perturbation of other, previously unrecognized, functions of this molecule in pregnancy.

  2. Increased soluble vascular cell adhesion molecule-1 plasma levels and soluble intercellular adhesion molecule-1 during antiretroviral therapy interruption and retention of elevated soluble vascular cellular adhesion molecule-1 levels following resumption of antiretroviral therapy.

    PubMed

    Papasavvas, Emmanouil; Azzoni, Livio; Pistilli, Maxwell; Hancock, Aidan; Reynolds, Griffin; Gallo, Cecile; Ondercin, Joe; Kostman, Jay R; Mounzer, Karam; Shull, Jane; Montaner, Luis J

    2008-06-19

    We investigated the effect of short viremic episodes on soluble markers associated with endothelial stress and cardiovascular disease risk in chronically HIV-1-infected patients followed during continuous antiretroviral therapy, antiretroviral therapy interruption and antiretroviral therapy resumption. We assessed changes in plasma levels of von Willebrand factor, soluble vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 by enzyme-linked immunosorbent assay, as well as T-cell activation (CD8+/CD38+, CD8+/HLA-DR+ and CD3+/CD95+) by flow cytometry, in 36 chronically HIV-1-infected patients participating in a randomized study. Patients were divided into the following three groups: a, on continuous antiretroviral therapy; b, on a 6-week antiretroviral therapy interruption; or c, on antiretroviral therapy interruption extended to the achievement of viral set point. Although all measurements remained stable over a 40-week follow-up on antiretroviral therapy, plasma levels of soluble vascular cell adhesion molecule-1 (P < 0.0001) and soluble intercellular adhesion molecule-1 (P = 0.003) increased during treatment interruption in correlation with viral rebound and T-cell activation. No significant changes in von Willebrand factor were observed in any of the groups. After resuming antiretroviral therapy, soluble vascular cell adhesion molecule-1 levels remained elevated even after achievement of viral suppression to less than 50 copies/ml. The prompt rise in plasma soluble vascular cell adhesion molecule-1 and soluble intercellular adhesion molecule-1 upon viral rebound suggests an acute increase in endothelial stress upon treatment interruption, which may persists after viral resuppression of virus. Thus, viral replication during short-term treatment interruption may increase the overall cardiovascular risk during and beyond treatment interruption.

  3. Cytokine and adhesion molecule expression evolves between the neutrophilic and lymphocytic phases of viral meningitis.

    PubMed

    Makis, Alexandros; Shipway, David; Hatzimichael, Eleftheria; Galanakis, Emmanouil; Pshezhetskiy, Dmitry; Chaliasos, Nikolaos; Stebbing, Justin; Siamopoulou, Antigone

    2010-09-01

    Viral meningitis is characterized by cerebrospinal fluid (CSF) lymphocyte pleocytosis, although neutrophils may predominate in the early phase. The T helper 1 (Th1)/Th2 cytokine balance and expression of adhesion molecules seem to be involved in the CSF chemotaxis. We aimed to determine expression of cytokines and adhesion molecules in enteroviral meningitis. We investigated the serum and CSF levels of adhesion molecules (E-selectin, L-selectin, vascular cell adhesion molecule-1 [VCAM-1], and intracellular adhesion molecule-1 [ICAM-1]) and cytokines (interleukin-12 [IL-12] and IL-4) in 105 children during an outbreak of enteroviral meningitis. Diagnosis was confirmed with positive polymerase chain reaction (PCR) and/or serology for echovirus or Coxsackie virus, and matched with control subjects for clinical features but with negative PCR and/or serology. Apart from VCAM-1, the CSF levels of all investigated inflammatory molecules were significantly increased. In serum, sL-selectin and ICAM-1 levels were significantly higher than control subjects. Serum and CSF L-selectin, serum VCAM-1, and CSF IL-12 were all observed to be expressed in significantly higher levels in the neutrophil-dominant subgroup (72% had duration of symptoms <24 h) than in the lymphocyte-dominant group (87.5% had duration of symptoms >24 h). Serum and CSF ICAM-1 was found at significantly higher levels in the latter group. Evolving expression of adhesion molecules and cytokines indicates a shift from Th1 to Th2 immune responses as infection progresses.

  4. Levels of Soluble Adhesion Molecules PECAM-1 and P-Selectin are Decreased in Children with Autism Spectrum Disorder

    PubMed Central

    Onore, Charity E.; Nordahl, Christine Wu; Young, Gregory S.; Van de Water, Judy A.; Rogers, Sally J.; Ashwood, Paul

    2012-01-01

    Background Although the etiopathology of Autism Spectrum Disorder (ASD) is not clear there is increasing evidence that dysfunction in the immune system affects many children with ASD. Findings of immune dysfunction in ASD include increases in inflammatory cytokines, chemokines and microglial activity in brain tissue and CSF, as well as abnormal peripheral immune cell function. Methods Adhesion molecules, such as platelet endothelial adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), P-Selectin, and L-Selectin, function to facilitate leukocyte transendothelial migration. We assessed concentrations of soluble adhesion molecules, sPECAM-1, sICAM-1, sVCAM-1, sP-Selectin, and sL-Selectin in the plasma of 49 participants with ASD, and 31 typically developing controls of the same age, all of whom were enrolled as part of the Autism Phenome Project (APP). Behavioral assessment, the levels of soluble adhesion molecules, head circumference and MRI measurements of brain volume were compared in the same subjects. Results Levels of sPECAM-1 and sP-Selectin were significantly reduced in the ASD group compared to typically developing controls (p < 0.02). Soluble PECAM-1 levels were negatively associated with repetitive behavior and abnormal brain growth in children with ASD (p=0.03). Conclusions As adhesion molecules modulate the permeability and signaling at the blood brain barrier as well as leukocyte infiltration into the CNS, current data suggests a role for these molecules in the complex pathophysiology of ASD. PMID:22717029

  5. Medical expert system for assessment of coronary heart disease destabilization based on the analysis of the level of soluble vascular adhesion molecules

    NASA Astrophysics Data System (ADS)

    Serkova, Valentina K.; Pavlov, Sergey V.; Romanava, Valentina A.; Monastyrskiy, Yuriy I.; Ziepko, Sergey M.; Kuzminova, Nanaliya V.; Wójcik, Waldemar; DzierŻak, RóŻa; Kalizhanova, Aliya; Kashaganova, Gulzhan

    2017-08-01

    Theoretical and practical substantiation of the possibility of the using the level of soluble vascular adhesion molecules (sVCAM) is performed. Expert system for the assessment of coronary heart disease (CHD) destabilization on the base of the analysis of soluble vascular adhesion molecules level is developed. Correlation between the increase of VCAM level and C-reactive protein (CRP) in patients with different variants of CHD progression is established. Association of chronic nonspecific vascular inflammation activation and CHD destabilization is shown. The expedience of parallel determination of sVCAM and CRP levels for diagnostics of CHD destabilization and forecast elaboration is noted.

  6. Levels of soluble vascular cell adhesion molecule-1 and soluble intercellular adhesion molecule-2 in plasma of patients with hemorrhagic fever with renal syndrome, and significance of the changes in level.

    PubMed

    Qi, Bao-Tai; Wang, Ping; Li, Jie; Ren, Hui-Xun; Xie, Ming

    2006-01-01

    Hemorrhagic fever with renal syndrome (HFRS) is an acute viral disease characterized by endothelial dysfunction. Vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-2 provide costimulatory signals for the activation of T lymphocytes; these adhesion molecules play key roles in leukocyte adherence and propagation of inflammatory responses. They may be involved in the immunologic response that leads to vascular endothelial cell (VEC) and kidney damage of HFRS patients, and increased levels of soluble (s)VCAM-1 and sICAM-2 in plasma may indicate the severity of HFRS. We examined the presence of sVCAM-1 and sICAM-2 in 52 plasma samples collected from 52 patients. We tested these plasma samples for sVCAM-1 and sICAM-2 by double-antibody sandwich ELISA. We found variable, but persistently elevated, levels of sVCAM-1 and sICAM-2 throughout the various phases and types of the disease, which suggested sVCAM-1 may play an important role in the immunopathological lesions of HFRS and is closely correlated to the severity of HFRS and the degree of kidney damage. sICAM-2 may be associated with the hyperfunctioning of the cellular immune response.

  7. A distinct profile of serum levels of soluble intercellular adhesion molecule-1 and intercellular adhesion molecule-3 in mycosis fungoides and Sézary syndrome.

    PubMed

    López-Lerma, Ingrid; Estrach, Maria Teresa

    2009-08-01

    Cell adhesion molecules (CAMs) play a pivotal role in cutaneous localization of T cells. Tissue-selective localization of T lymphocytes to the skin is crucial for immune surveillance and in the pathogenesis of skin disorders. To detect the profile of soluble CAMs in patients with cutaneous T-cell lymphoma (CTCL), we investigated the levels of intercellular adhesion molecule-1 (ICAM-1, soluble ICAM-1 [sICAM-1]); intercellular adhesion molecule-3 (sICAM-3); vascular cell adhesion molecule-1 (sVCAM-1); and E-selectin (sE-selectin) in sera from patients with T-cell-mediated skin diseases. Serum levels of the 4 CAMs were measured by enzyme-linked immunosorbent assay in 42 participants including 11 patients with early stages of CTCL; 7 with advanced stages of CTCL including Sézary syndrome; 12 with inflammatory skin diseases (psoriasis and atopic dermatitis); 8 with skin diseases that may evolve into CTCL; and healthy individuals. Levels were correlated with biological parameters known as prognostic factors in non-Hodgkin lymphomas. In patients with CTCL, significantly increased levels of sICAM-1 and sICAM-3 were found when compared with healthy individuals and patients with inflammatory dermatosis. Soluble E-selectin and sVCAM-1 levels were not increased. There were significant positive correlations between sICAM-1 and sICAM-3 levels and each of them with beta2-microglobulin levels. Limited number of patients was a limitation. There is a distinct profile of soluble CAMs in patients with CTCL. However, future studies with a larger group of patients are needed to confirm these findings. We propose that high sICAM-1 and sICAM-3 levels have important implications in the context of immune response and immune surveillance in these patients.

  8. Unfavorable cytokine and adhesion molecule profiles during and after pregnancy, in women with gestational diabetes mellitus.

    PubMed

    Roca-Rodríguez, María Del Mar; López-Tinoco, Cristina; Fernández-Deudero, Álvaro; Murri, Mora; García-Palacios, María Victoria; García-Valero, María Del Amor; Tinahones, Francisco José; Aguilar-Diosdado, Manuel

    2017-01-01

    Gestational diabetes mellitus is a significant risk factor for metabolic syndrome and cardiovascular disease. To assess the relationships between components of the metabolic syndrome and cytokine and adhesion molecule levels in women with GDM during pregnancy and after delivery. A prospective case-control study on a sample of 126 pregnant women (63 with and 63 without gestational diabetes mellitus). In an intra-subject analysis, 41 women with history of gestational diabetes mellitus and 21 controls were re-assessed in the postpartum period. Clinical data and levels of cytokines and adhesion molecules were recorded during weeks 24-29 of pregnancy and 12 months after delivery. In the postpartum period, there were significantly higher levels of tumor necrosis factor alpha in both cases and controls, and of adiponectin in controls. Cases showed higher leptin levels, with no significant differences during and after pregnancy. No significant differences were seen in adhesion molecules and interleukin-6 between cases and controls during pregnancy and in the postpartum period, but levels of both were higher in cases. During pregnancy and after delivery, adiponectin decreased in cases and increased in controls. Significant positive correlations were seen between adiponectin and fasting blood glucose levels and vascular cell adhesion molecule-1, and also between leptin and tumor necrosis factor alpha levels. The results suggest that increased inflammation and transient hyperglycemia during pregnancy would represent a latent form of metabolic syndrome, with an increased risk for type 2 diabetes mellitus and future cardiovascular disease. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Serological level of ICAM and ELAM adhesion molecules in allergic vascularitis.

    PubMed

    Alecu, M; Coman, G; Gălăţescu, E

    1997-01-01

    A 24-patient lot with hypersensitivity vasculitis was investigated for serological determinations of ICAM and ELAM adhesion molecules. Determinations were made in attack and in remission. Over two thirds of the cases presented elevated serological levels of ICAM and ELAM in attack, with twofold higher values than normal. In remission, in the absence of clinical signs, ICAM and ELAM values were normal in 19 cases (ICAM) and 22 cases (ELAM). Serological level of ICAM and ELAM was concordant with serological level of IL-2, IL-6, circulating immune complexes and clinical status. The increased values of ICAM and ELAM are due to the expression of these molecules both on the surface of endothelial cells and on immune cells. The adherence of leukocytes on the endothelial cells, by adhesion molecules involvement, followed by their extravasation represents an important event in the vascular lesion pathogeny of the hypersensitivity vasculitis.

  10. 6-Mercaptopurine attenuates adhesive molecules in experimental vasospasm.

    PubMed

    Chang, Chih-Zen; Lin, Chih-Lung; Kassel, Neal F; Kwan, Aij-Lie; Howng, Shen-Long

    2010-05-01

    Adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, are important inflammatory mediators which are elevated in the serum of patients following aneurysmal subarachnoid hemorrhage (SAH). The authors previously found that 6-mercaptopurine (6-mp) was effective in preventing and reversing arterial narrowing in a rodent SAH model. The present study was to examine whether levels of adhesion molecules were altered after treatment with 6-mp in this animal model. Animals were each injected with autologous blood into the cisterna magna, and intraperitoneal treatment with 6-mp (2 mg/kg) was initiated 1 h before (prevention) or later (treatment). The compound was subsequently administered at 24 and 48 h post-SAH. Blood samples were collected at 72 h post-SAH to measure ICAM-1, VCAM-1, and E-selectin levels. The basilar arteries were harvested and sliced, and their cross-sectional areas were measured. Morphologically, convolution of the internal elastic lamina, distorted endothelial wall, and myonecrosis of the smooth muscle were prominently observed in the SAH only and vehicle-treated SAH groups, but not in the 6-mp-treated SAH group or in healthy controls. No significant differences were found in the levels of VCAM-1 among all groups. However, the levels of E-selectin were increased in all animals subjected to SAH (SAH only and SAH plus vehicle groups) compared with healthy controls (no SAH), but not in the 6-mp group (SAH plus 6-mp treatment and preventive treatment with 6-mp).Likewise, the levels of ICAM-1 in the SAH only and SAH plus vehicle groups were significantly elevated (p < 0.001), and pretreatment and treatment with 6-mp reduced ICAM-1 to control levels. These results show that ICAM-1 and E-selectin may play a role in mediating SAH-induced vasospasm and that a reduction of both adhesive molecules after SAH may partly contribute to the antispastic effect of 6-mp.

  11. Soluble intercellular adhesion molecule-1 and interleukin-6 levels reflect endothelial dysfunction in patients with primary hypercholesterolaemia treated with atorvastatin.

    PubMed

    Nawawi, H; Osman, N S; Annuar, R; Khalid, B A K; Yusoff, K

    2003-08-01

    Adhesion molecules and cytokines are involved in the pathogenesis of intimal injury in atherosclerosis but their relationship with endothelial function remains unclear. The objectives of this study were to examine the effects of atorvastatin on soluble adhesion molecules, interleukin-6 (IL-6) and brachial artery endothelial-dependent flow mediated dilatation (FMD) in patients with familial (FH) and non-familial hypercholesterolaemia (NFH). A total of 74 patients (27 FH and 47 NFH) were recruited. Fasting lipid profiles, soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular-cellular adhesion molecule-1 (sVCAM-1), E-selectin, IL-6 and FMD were measured at baseline, 2 weeks, 3 and 9 months post-atorvastatin treatment (FH--80 mg/day, NFH--10 mg/day). In both groups, compared to baseline, sICAM-1 levels were significantly reduced at 2 weeks, further reduced at 3 months and maintained at 9 months (P<0.0001). The IL-6 levels were significantly reduced at 3 months and 9 months compared to baseline for FH (P<0.005) and NFH (P<0.0001). In both groups, the FMD at 2 weeks was higher than baseline (P<0.005), with progressive improvement up to 9 months. FMD was negatively correlated with sICAM-1 and IL-6. In conclusion, both low and high doses of atorvastatin lead to early progressive improvement in endothelial function in patients with primary hypercholesterolaemia. sICAM-1 and IL-6 levels reflect endothelial dysfunction in these patients.

  12. The receptor for advanced glycation end-products (RAGE) is only present in mammals, and belongs to a family of cell adhesion molecules (CAMs).

    PubMed

    Sessa, Luca; Gatti, Elena; Zeni, Filippo; Antonelli, Antonella; Catucci, Alessandro; Koch, Michael; Pompilio, Giulio; Fritz, Günter; Raucci, Angela; Bianchi, Marco E

    2014-01-01

    The human receptor for advanced glycation endproducts (RAGE) is a multiligand cell surface protein belonging to the immunoglobulin superfamily, and is involved in inflammatory and immune responses. Most importantly, RAGE is considered a receptor for HMGB1 and several S100 proteins, which are Damage-Associated Molecular Pattern molecules (DAMPs) released during tissue damage. In this study we show that the Ager gene coding for RAGE first appeared in mammals, and is closely related to other genes coding for cell adhesion molecules (CAMs) such as ALCAM, BCAM and MCAM that appeared earlier during metazoan evolution. RAGE is expressed at very low levels in most cells, but when expressed at high levels, it mediates cell adhesion to extracellular matrix components and to other cells through homophilic interactions. Our results suggest that RAGE evolved from a family of CAMs, and might still act as an adhesion molecule, in particular in the lung where it is highly expressed or under pathological conditions characterized by an increase of its protein levels.

  13. Inhibition of tumor necrosis factor-{alpha}-induced expression of adhesion molecules in human endothelial cells by the saponins derived from roots of Platycodon grandiflorum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji Young; Kim, Dong Hee; Kim, Hyung Gyun

    2006-01-15

    Adhesion molecules play an important role in the development of atherogenesis and are produced by endothelial cells after being stimulated with various inflammatory cytokines. This study examined the effect of saponins that were isolated from the roots of Platycodon grandiflorum A. DC (Campanulaceae), Changkil saponins (CKS), on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. CKS significantly inhibited the TNF{alpha}-induced increase in monocyte adhesion to endothelial cells as well as decreased the protein and mRNA expression levels of vascular adhesion molecule-1 and intercellular cell adhesion molecule-1 on endothelial cells. Furthermore, CKS significantly inhibited themore » TNF{alpha}-induced production of intracellular reactive oxygen species (ROS) and activation of NF-{kappa}B by preventing I{kappa}B degradation and inhibiting I{kappa}B kinase activity. Overall, CKS has anti-atherosclerotic and anti-inflammatory activity, which is least in part the result of it reducing the cytokine-induced endothelial adhesion to monocytes by inhibiting intracellular ROS production, NF-{kappa}B activation, and cell adhesion molecule expression in endothelial cells.« less

  14. Erythroid Adhesion Molecules in Sickle Cell Anaemia Infants: Insights Into Early Pathophysiology.

    PubMed

    Brousse, Valentine; Colin, Yves; Pereira, Catia; Arnaud, Cecile; Odièvre, Marie Helene; Boutemy, Anne; Guitton, Corinne; de Montalembert, Mariane; Lapouméroulie, Claudine; Picot, Julien; Le Van Kim, Caroline; El Nemer, Wassim

    2015-01-01

    Sickle cell anaemia (SCA) results from a single mutation in the β globin gene. It is seldom symptomatic in the first semester of life. We analysed the expression pattern of 9 adhesion molecules on red blood cells, in a cohort of 54 SCA and 17 non-SCA very young infants of comparable age (median 144 days, 81-196). Haemoglobin F (HbF) level was unsurprisingly elevated in SCA infants (41.2% ± 11.2) and 2-4 fold higher than in non-SCA infants, yet SCA infants presented significantly decreased Hb level and increased reticulocytosis. Cytometry analysis evidenced a specific expression profile on reticulocytes of SCA infants, with notably an increased expression of the adhesion molecules Lu/BCAM, ICAM-4 and LFA-3, both in percentage of positive cells and in surface density. No significant difference was found on mature red cells. Our findings demonstrate the very early onset of reticulocyte membrane modifications in SCA asymptomatic infants and allow an insight into the first pathological changes with the release of stress reticulocytes expressing a distinctive profile of adhesion molecules.

  15. Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion

    PubMed Central

    Li, Zhenhai; Lee, Hyunjung; Zhu, Cheng

    2016-01-01

    Cell-matrix adhesion complexes are multi-protein structures linking the extracellular matrix (ECM) to the cytoskeleton. They are essential to both cell motility and function by bidirectionally sensing and transmitting mechanical and biochemical stimulations. Several types of cell-matrix adhesions have been identified and they share many key molecular components, such as integrins and actin-integrin linkers. Mechanochemical coupling between ECM molecules and the actin cytoskeleton has been observed from the single cell to the single molecule level and from immune cells to neuronal cells. However, the mechanisms underlying force regulation of integrin-mediated mechanotransduction still need to be elucidated. In this review article, we focus on integrin-mediated adhesions and discuss force regulation of cell-matrix adhesions and key adaptor molecules, three different force-dependent behaviors, and molecular mechanisms for mechanochemical coupling in force regulation. PMID:27720950

  16. Inhibition of TNFα-induced adhesion molecule expression by (Z)-(S)-9-octadecenamide, N-(2-hydroxyethyl,1-methyl).

    PubMed

    Chen, Caixia; Jin, Xin; Meng, Xianglan; Zheng, Chengwei; Shen, Yanhui; Wang, Yiqing

    2011-06-25

    Inflammation is a primary event in atherogenesis. Oleoylethanolamide (OEA), a naturally occurring fatty-acid ethanolamide, lowers lipid levels in liver and blood through activation of the nuclear receptor, peroxisome proliferator-activated receptor-alpha (PPARα). We designed and synthesized (Z)-(S)-9-octadecenamide, N-(2-hydroxyethyl, 1-methyl) (OPA), an OEA analog. The present study investigated the effect of OPA on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVEC). OPA inhibited expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) stimulated by Tumor Necrosis Factor-α (TNF-α) via activation of PPARα. This inhibition of VCAM-1 and ICAM-1 expression decreased adhesion of monocyte-like cells to stimulated endothelial cells. These results demonstrate that OPA may have anti-inflammatory properties. Our results thus provide new insights into possible future therapeutic approaches to the treatment of atherosclerosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Altered Monocyte and Endothelial Cell Adhesion Molecule Expression Is Linked to Vascular Inflammation in Human Immunodeficiency Virus Infection.

    PubMed

    Kulkarni, Manjusha; Bowman, Emily; Gabriel, Janelle; Amburgy, Taylor; Mayne, Elizabeth; Zidar, David A; Maierhofer, Courtney; Turner, Abigail Norris; Bazan, Jose A; Koletar, Susan L; Lederman, Michael M; Sieg, Scott F; Funderburg, Nicholas T

    2016-10-01

    Human immunodeficiency virus (HIV)-infected individuals have increased risk for vascular thrombosis, potentially driven by interactions between activated leukocytes and the endothelium. Monocyte subsets (CD14 + CD16 - , CD14 + CD16 + , CD14 Dim CD16 + ) from HIV negative (HIV - ) and antiretroviral therapy-treated HIV positive (HIV + ) participants (N = 19 and 49) were analyzed by flow cytometry for adhesion molecule expression (lymphocyte function-associated antigen 1 [LFA-1], macrophage-1 antigen [Mac-1], CD11c/CD18, very late antigen [VLA]-4) and the fractalkine receptor (CX3CR1); these receptors recognize ligands (intercellular adhesion molecules [ICAMs], vascular cell adhesion molecule [VCAM]-1, fractalkine) on activated endothelial cells (ECs) and promote vascular migration. Plasma markers of monocyte (soluble [s]CD14, sCD163) and EC (VCAM-1, ICAM-1,2, fractalkine) activation and systemic (tumor necrosis factor receptor [TNFR-I], TNFR-II) and vascular (lipoprotein-associated phospholipase A 2 [Lp-PLA 2 ]) inflammation were measured by enzyme-linked immunosorbent assay. Proportions of CD16 + monocyte subsets were increased in HIV + participants. Among all monocyte subsets, levels of LFA-1 were increased and CX3CR1 levels were decreased in HIV + participants ( P < .01). Levels of sCD163, sCD14, fractalkine, ICAM-1, VCAM-1, TNFR-II, and Lp-PLA 2 were also increased in HIV + participants ( P < .05), and levels of sCD14, TNFR-I, and TNFR-II were directly related to ICAM-1 and VCAM-1 levels in HIV + participants. Expression of CX3CR1 on monocyte subsets was inversely related to plasma Lp-PLA 2 ( P < .05 for all). Increased proportions of CD16 + monocytes, cells with altered adhesion molecule expression, combined with elevated levels of their ligands, may promote vascular inflammation in HIV infection. © The Author 2016. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  18. Activation of cannabinoid CB2 receptor ameliorates atherosclerosis associated with suppression of adhesion molecules.

    PubMed

    Zhao, Yan; Yuan, Zuyi; Liu, Yan; Xue, Jiahong; Tian, Yuling; Liu, Weimin; Zhang, Weiping; Shen, Yan; Xu, Wei; Liang, Xiao; Chen, Tao

    2010-03-01

    Adhesion molecules have been implicated in the development and progression of atherosclerosis. Cannabinoids have been reported to modulate the migration and adhesion molecules expression of various cell types. Here we examined the effects of WIN55212-2, a cannabinoid receptor 1 (CB1-R)/cannabinoid receptor 2 (CB2-R) agonist on the development of atherosclerotic lesions in apolipoprotein E-deficient (ApoE-/-) mice, which are vulnerable because of their high plasma cholesterol and triacylglycerol levels, focusing on the expression of endothelial adhesion molecules. In the aorta of ApoE-/- mice, WIN55212-2 significantly reduced aortic root plaque area. The mechanism for this seemed to be reduced infiltration of macrophages into the atherosclerotic plaque which was also associated with reduced expression of vascular cellular adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and P-selectin in the aorta. In vitro studies revealed reduced cell adhesion of a monocytic cell line (U937) to human umbilical vein endothelial cells after incubation with WIN55212-2. The reduction in macrophage adhesion also correlated with significant reductions in the expression of VCAM-1, ICAM-1, and P-selectin, indicating that reduced infiltration of macrophages in atherosclerotic plaques may occur as a result of the direct effect of WIN55212-2 on adhesion molecules in macrophages and endothelial cells. In conclusion, WIN55212-2 seems to have direct anti-atherosclerotic effects in an animal model of atherosclerosis. These effects were at least partly due to effects on the expression of VCAM-1, ICAM-1, and P-selectin, which led to reduced macrophage adhesion and infiltration. Furthermore, the protective effects completely blocked by the highly selective CB2 receptor antagonist AM630 suggest that these beneficial effects of WIN55212-2 may be mediated through the CB2 receptor.

  19. P-selectin, endocan, and some adhesion molecules in obese children and adolescents with non-alcoholic fatty liver disease.

    PubMed

    Ustyol, Ala; Aycan Ustyol, Esra; Gurdol, Figen; Kokali, Funda; Bekpınar, Seldag

    2017-05-01

    There is increasing evidence for a direct relationship between the vascular system and non-alcoholic fatty liver disease (NAFLD). The aim of this study was to investigate endocan and adhesion molecules such as P-selectin derived from the endothelium and platelets in obese children and adolescents with NAFLD. One hundred obese patients and 40 lean controls were enrolled. The obese subjects were divided into two subgroups based on the presence or absence of fatty liver. Blood samples were assayed for endocan, P-selectin, platelet-derived growth factor (PDGF), intercellular cell adhesion molecule (ICAM)-1, and vascular cell adhesion molecule (VCAM)-1. Obese patients with NAFLD presented higher ALT and insulin levels, as well as more profound dyslipidemia when compared with their counterparts without NAFLD. Serum levels of high-sensitivity C-reactive protein, VCAM-1 and ICAM-1 were found increased in both obese groups, regardless of NAFLD. In obese subjects with NAFLD, decreased P-selectin levels (51.6 ± 4.14 ng/mL) were detected as compared with the obese (72.3 ± 4.23) and control (74.2 ± 6.97) subjects. Furthermore, circulating P-selectin levels were closely associated with endocan levels (r = 0.852, p < 0.001). Childhood obesity leads to vascular inflammation and therefore may cause a predisposition to atherosclerosis at an early age. The possible outcome of decreased P-selectin levels with NAFLD development must be further investigated.

  20. The Anti-Atherosclerotic Effect of Naringin Is Associated with Reduced Expressions of Cell Adhesion Molecules and Chemokines through NF-κB Pathway.

    PubMed

    Hsueh, Tun-Pin; Sheen, Jer-Ming; Pang, Jong-Hwei S; Bi, Kuo-Wei; Huang, Chao-Chun; Wu, Hsiao-Ting; Huang, Sheng-Teng

    2016-02-05

    Naringin has been reported to have an anti-atherosclerosis effect but the underlying mechanism is not fully understood. The aim of this study is to investigate the impact of naringin on the TNF-α-induced expressions of cell adhesion molecules, chemokines and NF-κB signaling pathway in human umbilical vein endothelial cells (HUVECs). The experiments revealed that naringin, at concentrations without cytotoxicity, dose-dependently inhibited the adhesion of THP-1 monocytes to the TNF-α-stimulated HUVECs. The TNF-α-induced expressions of cell adhesion molecules, including VCAM-1, ICAM-1 and E-selectin, at both the mRNA and protein levels, were significantly suppressed by naringin in a dose dependent manner. In addition, the TNF-α-induced mRNA and protein levels of chemokines, including fractalkine/CX3CL1, MCP-1 and RANTES, were also reduced by naringin. Naringin significantly inhibited TNF-α-induced nuclear translocation of NF-κB, which resulted from the inhibited phosphorylation of IKKα/β, IκB-α and NF-κB. Altogether, we proposed that naringin modulated TNF-α-induced expressions of cell adhesion molecules and chemokines through the inhibition of TNF-α-induced activation of IKK/NF-κB signaling pathway to exert the anti-atherosclerotic effect.

  1. Soluble adhesion molecules in human cancers: sources and fates.

    PubMed

    van Kilsdonk, Jeroen W J; van Kempen, Léon C L T; van Muijen, Goos N P; Ruiter, Dirk J; Swart, Guido W M

    2010-06-01

    Adhesion molecules endow tumor cells with the necessary cell-cell contacts and cell-matrix interactions. As such, adhesion molecules are involved in cell signalling, proliferation and tumor growth. Rearrangements in the adhesion repertoire allow tumor cells to migrate, invade and form metastases. Besides these membrane-bound adhesion molecules several soluble adhesion molecules are detected in the supernatant of tumor cell lines and patient body fluids. Truncated soluble adhesion molecules can be generated by several conventional mechanisms, including alternative splicing of mRNA transcripts, chromosomal translocation, and extracellular proteolytic ectodomain shedding. Secretion of vesicles (ectosomes and exosomes) is an alternative mechanism mediating the release of full-length adhesion molecules. Soluble adhesion molecules function as modulators of cell adhesion, induce proteolytic activity and facilitate cell signalling. Additionally, adhesion molecules present on secreted vesicles might be involved in the vesicle-target cell interaction. Based on currently available data, released soluble adhesion molecules contribute to cancer progression and therefore should not be regarded as unrelated and non-functional side products of tumor progression. 2010 Elsevier GmbH. All rights reserved.

  2. Low-level laser irradiation modifies the effect of hyperglycemia on adhesion molecule levels.

    PubMed

    Góralczyk, Krzysztof; Szymańska, Justyna; Gryko, Łukasz; Fisz, Jacek; Rość, Danuta

    2018-05-03

    Endothelium plays a key role in maintaining vascular homeostasis by secreting active factors involved in many biological processes such as hemostasis, angiogenesis, and inflammation. Hyperglycemia in diabetic patients causes dysfunction of endothelial cells. Soluble fractions of adhesion molecules like sE-selectin and vascular cell adhesion molecule (sVCAM) are considered as markers of endothelial damage. The low-level laser therapy (LLLT) effectively supports the conventional treatment of vascular complications in diabetes, for example hard-to-heal wounds in patients with diabetic foot syndrome. The aim of our study was to evaluate the effect of low-energy laser at the wavelength of 635 nm (visible light) and 830 nm (infrared) on the concentration of adhesion molecules: sE-selectin and sVCAM in the supernatant of endothelial cell culture of HUVEC line. Cells were cultured under high-glucose conditions of 30 mM/L. We have found an increase in sE-selectin and sVCAM levels in the supernatant of cells cultured under hyperglycemic conditions. This fact confirms detrimental influence of hyperglycemia on vascular endothelial cell cultures. LLLT can modulate the inflammation process. It leads to a decrease in sE-selectin and sVCAM concentration in the supernatant and an increase in the number of endothelial cells cultured under hyperglycemic conditions. The influence of LLLT is greater at the wavelength of 830 nm.

  3. Soluble fragments of e-cadherin cell-adhesion molecule increase in urinary-excretion of cancer-patients, potentially indicating its shedding from epithelial tumor-cells.

    PubMed

    Katayama, M; Hirai, S; Yasumoto, M; Nishikawa, K; Nagata, S; Otsuka, M; Kamihagi, K; Kato, I

    1994-11-01

    E-cadherin (Ecad) is well known to be a calcium-ion-dependent cell-cell adhesion molecule expressed mostly in epithelial tissues. Previous immunohistochemical studies suggested that this cell adhesion molecule acts as an invasion suppressor and is negligibly detected in cancer metastatic regions. Soluble Ecad fragments derived from the proteolysed membrane-associated form were detected in culture supernatants of two cell lines, COLO 205 and A-431, with normal distribution of cell surface Ecad. Soluble Ecad levels released into culture of COLO 205 exhibiting reduced cell-cell adhesion were apparently elevated above those of A-431 with tight cell-cell adhesion. Furthermore, human circulation and urine continuously contain soluble Ecad which consists mainly of homogeneous 75-85 kDa extracellular domains. Soluble Ecad urinary level per urinary creatinine level was found to be significantly elevated in 53% of patients suffering from various types of cancers including lung, liver, stomach, colon and rectal cancers, as compared with those in the age-matched healthy subjects. These results suggest that dysfunction of cell surface Ecad is responsible for its enhanced proteolytic shedding in tumorigenesis, which may lead to the decrease of cell surface Ecads. Furthermore, excretion of high levels of soluble Ecad fragments potentially indicates the progression of epithelial tumors excessively degrading cell surface Ecad in clinical subjects.

  4. Effect of tributyltin on mammalian endothelial cell integrity.

    PubMed

    Botelho, G; Bernardini, C; Zannoni, A; Ventrella, V; Bacci, M L; Forni, M

    2015-01-01

    Tributyltin (TBT), is a man-made pollutants, known to accumulate along the food chain, acting as an endocrine disruptor in marine organisms, with toxic and adverse effects in many tissues including vascular system. Based on the absence of specific studies of TBT effects on endothelial cells, we aimed to evaluate the toxicity of TBT on primary culture of porcine aortic endothelial cells (pAECs), pig being an excellent model to study human cardiovascular disease. pAECs were exposed for 24h to TBT (100, 250, 500, 750 and 1000nM) showing a dose dependent decrease in cell viability through both apoptosis and necrosis. Moreover the ability of TBT (100 and 500nM) to influence endothelial gene expression was investigated at 1, 7 and 15h of treatment. Gene expression of tight junction molecules, occludin (OCLN) and tight junction protein-1 (ZO-1) was reduced while monocyte adhesion and adhesion molecules ICAM-1 and VCAM-1 (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) levels increased significantly at 1h. IL-6 and estrogen receptors 1 and 2 (ESR-1 and ESR-2) mRNAs, after a transient decrease, reached the maximum levels after 15h of exposure. Finally, we demonstrated that TBT altered endothelial functionality greatly increasing monocyte adhesion. These findings indicate that TBT deeply alters endothelial profile, disrupting their structure and interfering with their ability to interact with molecules and other cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Expression of Inflammation-related Intercellular Adhesion Molecules in Cardiomyocytes In Vitro and Modulation by Pro-inflammatory Agents.

    PubMed

    El-Battrawy, Ibrahim; Tülümen, Erol; Lang, Siegfried; Akin, Ibrahim; Behnes, Michael; Zhou, Xiabo; Mavany, Martin; Bugert, Peter; Bieback, Karen; Borggrefe, Martin; Elmas, Elif

    2016-01-01

    Cell-surface adhesion molecules regulate multiple intercellular and intracellular processes and play important roles in inflammation by facilitating leukocyte endothelial transmigration. Whether cardiomyocytes express surface-adhesion molecules related to inflammation and the effect of pro-inflammatory mediators remain unknown. In the present study, the expression of different cell-adhesion molecules (CD11a, CD11b, CD31, CD62P, CD162, F11 receptor and mucosal vascular addressin cell adhesion molecule 1 (MADCAM1)) and the effect of pro-inflammatory mediators were investigated in an in vitro model of human cardiomyocytes. Cells were supplied as a primary culture of cardiac alpha actin-positive cells from human heart tissue. The cells were incubated for 24 h with 1 U/ml thrombin or 700 ng/ml lipopolysaccharide (LPS) or with a combination of both. The expression of the cell adhesion molecules was measured by flow cytometry. In cultured human cardiomyocytes, 22.8% of cells expressed CD31, 7.1% MADCAM1 and 2.6% F11R. CD11a, CD11b, CD62P and CD162 were expressed by fewer than 2% of the cells at baseline. CD31 expression increased on incubation of cardiomyocytes with thrombin by 26% (p<0.05) and with LPS by 26% (p=0.06). The combination of thrombin and LPS did not result in increased levels of CD31 (p>0.10). The pro-inflammatory agents LPS and thrombin had no effect on the expression of MADCAM1 and F11R. Inflammation-related cell-adhesion molecules CD31, MADCAM1 and F11R were shown to be expressed on the surface of human cardiomyocytes in an in vitro model. Incubation with LPS or thrombin resulted in increased expression of CD31, however, it did not modify the expression of the cell adhesion molecules MADCAM1 and F11R. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Off-pump CABG surgery reduces systemic inflammation compared with on-pump surgery but does not change systemic endothelial responses: a prospective randomized study.

    PubMed

    Jongman, Rianne M; Zijlstra, Jan G; Kok, Wendelinde F; van Harten, Annemarie E; Mariani, Massimo A; Moser, Jill; Struys, Michel M R F; Absalom, Anthony R; Molema, Grietje; Scheeren, Thomas W L; van Meurs, Matijs

    2014-08-01

    Coronary artery bypass graft (CABG) surgery can result in severe postoperative organ failure. During CABG surgery, cardiopulmonary bypass (CPB) with cardiac arrest is often used (on-pump CABG), which often results in a systemic inflammatory response. To reduce this inflammatory response, off-pump CABG was reintroduced, thereby avoiding CPB. There is increasing evidence that the endothelium plays an important role in the pathophysiology of organ failure after CABG surgery. In this study, 60 patients who were scheduled for elective CABG surgery were randomized to have surgery for on-pump or off-pump CABG. Blood was collected at four time points: start, end, 6 h, and 24 h postoperatively. Levels of inflammatory cytokines, soluble adhesion molecules, and angiogenic factors and their receptors were measured in the plasma. No differences were found in preoperative characteristics between the patient groups. The levels of tumor necrosis factor-α, interleukin 10, and myeloperoxidase, but not interleukin 6, were increased to a greater extent in the on-pump CABG compared with off-pump CABG after sternum closure. The soluble endothelial adhesion molecules E-selectin, vascular cell adhesion molecule 1, and intracellular adhesion molecule 1 were not elevated in the plasma during and after CABG surgery in both on-pump and off-pump CABG. Angiopoietin 2 was only increased 24 h after surgery in both on-pump and off-pump CABG. Higher levels of sFlt-1 were found after sternum closure in off-pump CABG compared with on-pump CABG. Avoiding CPB and aortic cross clamping in CABG surgery reduces the systemic inflammatory response. On-pump CABG does not lead to an increased release of soluble endothelial adhesion molecules in the circulation compared with off-pump CABG.

  7. Association of adipokines and adhesion molecules with indicators of obesity in women undergoing mammography screening

    PubMed Central

    2012-01-01

    Background The soluble cell adhesion molecules and adipokines are elevated in patients with obesity, hypertension, type 2 diabetes mellitus, breast cancer and atherosclerosis. Objective To investigate the relationship between anthropometric profile, dietary intake, lipid profile and fasting glycemia with serum levels of adipokines (adiponectin and PAI-1) and adhesion molecules (ICAM-1 and VCAM-1) in women without breast cancer undergoing routine mammographic screening. Design Transversal study. Subjects One hundred and forty-five women over 40-years old participated in this study. Results In 39.3% of cases the BMI was above 30 kg/m2; 46.9% had hypertension, 14.5% had type 2 Diabetes Mellitus, 31.7% had dyslipidemia and 88.3% presented a waist-to-hip ratio ≥ 0.8. A linear correlation was found between serum levels of PAI-1 and triglycerides, between serum levels of PAI-1 and WHR and between serum levels of VCAM-1 and BMI. Conclusion We found a high prevalence of obesity and metabolic syndrome. PAI-1 and VCAM-1 levels were correlated with clinical indicators of obesity and overweight. PMID:23113882

  8. Cryptotanshinone inhibits oxidized LDL-induced adhesion molecule expression via ROS dependent NF-κB pathways

    PubMed Central

    Zhao, Wenwen; Wu, Chuanhong; Chen, Xiuping

    2016-01-01

    ABSTRACT Adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, play important roles in the initial stage of atherosclerosis. Cryptotanshinone (CPT), a natural compound isolated from Salvia miltiorrhiza Bunge, exhibits anti-atherosclerotic activity although the underlying mechanisms remain elusive. In this study, the protective effect of CPT against oxidized low-density lipoprotein (ox-LDL)-induced adhesion molecule expression was investigated in human umbilical vein endothelial cells. Ox-LDL significantly induced ICAM-1, VCAM-1, and E-selectin expression at the mRNA and protein levels but reduced eNOS phosphorylation and NO generation, which were reversed by CPT pretreatment. Sodium nitroprusside, a NO donor, N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger, and BAY117082, a NF-κB inhibitor, inhibited ox-LDL-induced ICAM-1, VCAM-1, and E-selectin expression. Ox-LDL-induced ROS production was significantly inhibited by CPT and NAC. Furthermore, ox-LDL activated the NF-κB signaling pathway by inducing phosphorylation of IKKβ and IκBα, promoting the interaction of IKKβ and IκBα, and increasing p65 nuclear translocation, which were significantly inhibited by CPT. In addition, CPT, NAC, and BAY117082 inhibited ox-LDL-induced membrane expression of ICAM-1, VCAM-1, E-selectin, and endothelial–monocyte adhesion and restored eNOS phosphorylation and NO generation. Results suggested that CPT inhibited ox-LDL-induced adhesion molecule expression by decreasing ROS and inhibiting the NF-κB pathways, which provides new insight into the anti-atherosclerotic mechanism of CPT. PMID:26647279

  9. Decoy receptor 3 promotes cell adhesion and enhances endometriosis development.

    PubMed

    Tsai, Hsiao-Wen; Huang, Ming-Ting; Wang, Peng-Hui; Huang, Ben-Shian; Chen, Yi-Jen; Hsieh, Shie-Liang

    2018-02-01

    Endometriosis is a multifactorial inflammatory disease with persistent activation of the nuclear factor-κB (NF-κB) signalling pathway. Aberrant adhesion of endometrium is the essential step in the progression of endometriosis, but the molecular mechanism of ectopic growth of endometrium is still unclear. Decoy receptor 3 (DcR3)/TNFRSF6B, a pleiotropic immunomodulator regulated by oestrogen, is able to activate focal adhesion kinase to promote cell adhesion. We found that DcR3 is upregulated in human ectopic endometrial cells via activation of the Akt-NF-κB signalling pathway, and its expression level correlates positively with that of the adhesion molecules intercellular adhesion molecule 1 (ICAM-1) and homing cell adhesion molecule (HCAM; CD44). In a multivariate regression model, DcR3 expression level was the most significant parameter associated with endometriosis severity. Knockdown of DcR3 not only downregulated the expression of ICAM-1 and HCAM, but also reduced cell adhesion and migration. In vivo investigation further showed that DcR3 promoted the growth and spread of endometrium, whereas knockdown of DcR3 by lentivirus-delivered short hairpin RNA inhibited ectopic adhesion of endometrium and abrogated endometriosis progression. These observations are in support of DcR3 playing a critical role in the pathogenesis of endometriosis, and the inhibition of DcR3 expression being a promising approach for the treatment of endometriosis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Rui; Yi, Shaoqiong; Zhang, Xuejie

    Highlights: • We evaluated both single molecule binding ability and expression level of 4 ICAM-1 mutations. • AFM was used to measure single-molecule binding ability on living cells. • The SNP of ICAM-1 may induce changes in expressions rather than single-molecule binding ability. - Abstract: Atherosclerosis (As) is characterized by chronic inflammation and is a major cause of human mortality. ICAM-1-mediated adhesion of leukocytes in vessel walls plays an important role in the pathogenesis of atherosclerosis. Two single nucleotide polymorphisms (SNPs) of human intercellular adhesion molecule-1 (ICAM-1), G241R and K469E, are associated with a number of inflammatory diseases. SNP inducedmore » changes in ICAM-1 function rely not only on the expression level but also on the single-molecule binding ability which may be affected by single molecule conformation variations such as protein splicing and folding. Previous studies have shown associations between G241R/K469E polymorphisms and ICAM-1 gene expression. Nevertheless, few studies have been done that focus on the single-molecule forces of the above SNPs and their ligands. In the current study, we evaluated both single molecule binding ability and expression level of 4 ICAM-1 mutations – GK (G241/K469), GE (G241/E469), RK (R241/K469) and RE (R241/E469). No difference in adhesion ability was observed via cell adhesion assay or atomic force microscopy (AFM) measurement when comparing the GK, GE, RK, or RE genotypes of ICAM-1 to each other. On the other hand, flow cytometry suggested that there was significantly higher expression of GE genotype of ICAM-1 on transfected CHO cells. Thus, we concluded that genetic susceptibility to diseases related to ICAM-1 polymorphisms, G241R or K469E, might be due to the different expressions of ICAM-1 variants rather than to the single-molecule binding ability of ICAM-1.« less

  11. [Capillary leak syndrome disclosing Ofuji's papuloerythroderma].

    PubMed

    Carsuzaa, F; Pierre, C; Morand, J J; Farnarier, C; Marrot, F; Kaplanski, G

    1996-01-01

    Capillary leak syndrome is a specific entity among syndromes with capillary hyperpermeability. Endothelial cell activation is related to the higt level of adhesion molecules (sICAM-1, sVCAM-&, sCD62E) possibly due to several cytokines (IL-2, TNF ...). An 84-year-old woman was hospitalized for erythroderma. Ofujui papuloerythroderma was diagnosed and edema was attributed to capillary leak. A kinetic study of several cytokines and adhesion molecules sCD62E, sVCAM-1 and sICAM-1 was done. Outcome was favorable with corticopuvatherapy. The capillary leak syndrome reported here is simlar to that described in other erythrodermas with or without lymphoma. The keratinocyte would be activated by the CD4 T lymphocyte via the gamma-interferon mediator. The T cell secretes cytokines (interleukin-1, tumor necrosis factor ...) which activates the endothelium and increases vascular permeability. The level of adhesion molecules and changes observed during the episode of edema demonstrated the endothelial activation.

  12. TM9/Phg1 and SadA proteins control surface expression and stability of SibA adhesion molecules in Dictyostelium.

    PubMed

    Froquet, Romain; le Coadic, Marion; Perrin, Jackie; Cherix, Nathalie; Cornillon, Sophie; Cosson, Pierre

    2012-02-01

    TM9 proteins form a family of conserved proteins with nine transmembrane domains essential for cellular adhesion in many biological systems, but their exact role in this process remains unknown. In this study, we found that genetic inactivation of the TM9 protein Phg1A dramatically decreases the surface levels of the SibA adhesion molecule in Dictyostelium amoebae. This is due to a decrease in sibA mRNA levels, in SibA protein stability, and in SibA targeting to the cell surface. A similar phenotype was observed in cells devoid of SadA, a protein that does not belong to the TM9 family but also exhibits nine transmembrane domains and is essential for cellular adhesion. A contact site A (csA)-SibA chimeric protein comprising only the transmembrane and cytosolic domains of SibA and the extracellular domain of the Dictyostelium surface protein csA also showed reduced stability and relocalization to endocytic compartments in phg1A knockout cells. These results indicate that TM9 proteins participate in cell adhesion by controlling the levels of adhesion proteins present at the cell surface.

  13. Tropomyosin Tm5NM1 Spatially Restricts Src Kinase Activity through Perturbation of Rab11 Vesicle Trafficking

    PubMed Central

    Bach, Cuc T.; Murray, Rachael Z.; Owen, Dylan; Gaus, Kat

    2014-01-01

    In order for cells to stop moving, they must synchronously stabilize actin filaments and their associated focal adhesions. How these two structures are coordinated in time and space is not known. We show here that the actin association protein Tm5NM1, which induces stable actin filaments, concurrently suppresses the trafficking of focal-adhesion-regulatory molecules. Using combinations of fluorescent biosensors and fluorescence recovery after photobleaching (FRAP), we demonstrate that Tm5NM1 reduces the level of delivery of Src kinase to focal adhesions, resulting in reduced phosphorylation of adhesion-resident Src substrates. Live imaging of Rab11-positive recycling endosomes that carry Src to focal adhesions reveals disruption of this pathway. We propose that tropomyosin synchronizes adhesion dynamics with the cytoskeleton by regulating actin-dependent trafficking of essential focal-adhesion molecules. PMID:25288639

  14. Effect of treatment with the antioxidant alpha-lipoic (thioctic) acid on heart and kidney microvasculature in spontaneously hypertensive rats.

    PubMed

    Tayebati, Seyed Khosrow; Tomassoni, Daniele; Di Cesare Mannelli, Lorenzo; Amenta, Francesco

    2016-01-01

    Endothelial cells represent an important vascular site of signaling and development of damage during ischemia, inflammation and other pathological conditions. Excessive reactive oxygen species production causes pathological activation of endothelium including exposure of cell to adhesion molecules. Intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1) are members of the immunoglobulin super-family which are present on the surface of endothelial cells. These molecules represent important markers of endothelial inflammation. The present study was designed to investigate, with immunochemical and immunohistochemical techniques, the effect of treatment with (+/-)-alpha lipoic (thioctic) acid and its enantiomers on heart and kidney endothelium in spontaneously hypertensive rats (SHR). Arterial hypertension is accompanied by an increased oxidative stress status in the heart characterized by thiobarbituric acid reactive substances (TBARS) and nucleic acid oxidation increase. The higher oxidative stress also modifies adhesion molecules expression. In the heart VCAM-1, which was higher than ICAM-1 and PECAM-1, was increased in SHR. ICAM-1, VCAM-1 and PECAM-1 expression was significantly greater in the renal endothelium of SHR. (+/-)-Alpha lipoic acid and (+)-alpha lipoic acid treatment significantly decreased TBARS levels, the nucleic acid oxidation and prevented adhesion molecules expression in cardiac and renal vascular endothelium. These data suggest that endothelial molecules may be used for studying the mechanisms of vascular injury on target organs of hypertension. The effects observed after treatment with (+)-alpha lipoic acid could open new perspectives for countering heart and kidney microvascular injury which represent a common feature in hypertensive end-organs damage.

  15. Antiatherosclerotic effects of Artemisia princeps Pampanini cv. Sajabal in LDL receptor deficient mice.

    PubMed

    Han, Jong-Min; Kim, Min-Jung; Baek, Seung-Hwa; An, Sojin; Jin, Yue-Yan; Chung, Hae-Gon; Baek, Nam-In; Choi, Myung-Sook; Lee, Kyung-Tae; Jeong, Tae-Sook

    2009-02-25

    Antiatherosclerotic effects of ethanolic extracts of Artemisia princeps Pampanini cv. Sajabal (ESJ) were investigated in low-density lipoprotein receptor deficient (LDLR(-/-)) mice. The Western diet-induced high levels of total cholesterol and triglyceride were similar in the ESJ and control groups. However, circulating oxidized LDL was significantly decreased in the ESJ group (p < 0.05). ESJ also markedly decreased aortic expression levels of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1 beta (IL-1 beta), and reduced the aortic lesion formation and macrophage accumulation by 36.7% (p < 0.05) and 43% (p < 0.01) in the control group, respectively. Additionally, ESJ inhibited atherogenic properties with cytokine-induced surface expression of cell adhesion molecules, chemokines, and monocyte adhesion to the human umbilical vein endothelial cells (HUVECs), and simultaneously suppressed nuclear factor-kappaB (NF-kappaB) activation. These results suggest that ethanolic extracts of Artemisia princeps Pampanini cv. Sajabal contributes to the antiatherosclerotic and anti-inflammatory activities in LDLR(-/-) mice.

  16. Butter feeding enhances TNF-alpha production from macrophages and lymphocyte adherence in murine small intestinal microvessels.

    PubMed

    Fujiyama, Yoichi; Hokari, Ryota; Miura, Soichiro; Watanabe, Chikako; Komoto, Shunsuke; Oyama, Tokushige; Kurihara, Chie; Nagata, Hiroshi; Hibi, Toshifumi

    2007-11-01

    Dietary fat is known to modulate immune functions. Intake of an animal fat-rich diet has been linked to increased risk of inflammation; however, little is known about how animal fat ingestion directly affects intestinal immune function. The objective of this study was to assess the effect of butter feeding on lymphocyte migration in intestinal mucosa and the changes in adhesion molecules and cytokines involved in this effect. T-lymphocytes isolated from the spleen were fluorescence-labeled and injected into recipient mice. Butter was administered into the duodenum, and villus microvessels of the small intestinal mucosa were observed under an intravital microscope. mRNA expression of adhesion molecules and cytokines in the intestinal mucosa were determined by quantitative PCR. The effect of butter feeding on tumor necrosis factor (TNF)-alpha mRNA expression of intestinal macrophages was also determined. Intraluminal butter administration significantly increased lymphocyte adherence to intestinal microvessels accompanied by increases in expression levels of adhesion molecules ICAM-1, MAdCAM-1 and VCAM-1. This accumulation was significantly attenuated by anti-MAdCAM-1 and anti-ICAM-1 antibodies. Butter administration significantly increased TNF-alpha in the lamina proprial macrophages but not interleukin-6. Anti-TNF-alpha treatment attenuated the enhanced expression of adhesion molecules induced by butter administration. T-lymphocyte adherence to microvessels of the small intestinal mucosa was significantly enhanced after butter ingestion. This enhancement is due to increase in expression levels of adhesion molecules of the intestinal mucosa, which is mediated by TNF-alpha from macrophages in the intestinal lamina propria.

  17. Natalizumab in the treatment of Crohn’s disease

    PubMed Central

    Guagnozzi, Danila; Caprilli, Renzo

    2008-01-01

    The pathogenesis of Crohn’s disease (CD) is multifactorial and the activation of specific pathways of immunological system is important. In particular, the adhesion molecules (integrins) mediate the selective binding between the leukocytes and the endothelial cells regulating the migration of leukocytes into the normal and inflamed intestine. Selective adhesion molecule inhibitors interfere with the migration of leukocytes to the sites of inflammation by targeting adhesion molecules (α4-integrin or α4β7-integrin). Natalizumab is a humanized IgG4 anti-α4-integrin monoclonal antibody that inhibits both α4β7-integrin/mucosal addressin-cell adhesion molecule-1 (MadCAM-1) interaction and α4β1/vascular-cell adhesion molecule-1 (VCAM-1) binding. Pooled data from the four studies, analyzed in a Cochrane review, suggest that natalizumab is effective for induction of clinical response and remission in patients with moderately to severely active CD. In particular, natalizumab may be beneficial for patients with active inflammation or chronically active disease despite the use of conventional therapies with high level of C-reactive protein values at baseline time. Nevertheless, many problems about the utilization of natalizumab in CD remain unsolved (such as the high placebo response, the final definition of dosage and timing schedule, the definition of outcomes and the development of adverse events). PMID:19707360

  18. Cell Adhesion Molecule and Lymphocyte Activation Marker Expression during Experimental Vaginal Candidiasis

    PubMed Central

    Wormley, Floyd L.; Chaiban, Joseph; Fidel, Paul L.

    2001-01-01

    Cell-mediated immunity by Th1-type CD4+ T cells is the predominant host defense mechanism against mucosal candidiasis. However, studies using an estrogen-dependent murine model of vaginal candidiasis have demonstrated little to no change in resident vaginal T cells during infection and no systemic T-cell infiltration despite the presence of Candida-specific systemic Th1-type responses in infected mice. The present study was designed to further investigate these observations by characterizing T-cell activation and cell adhesion molecule expression during primary and secondary C. albicans vaginal infections. While flow cytometry analysis of activation markers showed some evidence for activation of CD3+ draining lymph node and/or vaginal lymphocytes during both primary and secondary vaginal Candida infection, CD3+ cells expressing the homing receptors and integrins α4β7, αM290β7, and α4β1 in draining lymph nodes of mice with primary and secondary infections were reduced compared to results for uninfected mice. At the local level, few vaginal lymphocytes expressed integrins, with only minor changes observed during both primary and secondary infections. On the other hand, immunohistochemical analysis of vaginal cell adhesion molecule expression showed increases in mucosal addressin cell adhesion molecule 1 and vascular cell adhesion molecule 1 expression during both primary and secondary infections. Altogether, these data suggest that although the vaginal tissue is permissive to cellular infiltration during a vaginal Candida infection, the reduced numbers of systemic cells expressing the reciprocal cellular adhesion molecules may preempt cellular infiltration, thereby limiting Candida-specific T-cell responses against infection. PMID:11447188

  19. Highly sensitivity adhesion molecules detection in hereditary haemochromatosis patients reveals altered expression.

    PubMed

    Norris, S; White, M; Mankan, A K; Lawless, M W

    2010-04-01

    Several abnormalities in the immune status of patients with hereditary haemochromatosis (HH) have been reported, suggesting an imbalance in their immune function. This may include persistent production of, or exposure to, altered immune signalling contributing to the pathogenesis of this disorder. Adhesion molecules L-, E- and P-Selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) are some of the major regulators of the immune processes and altered levels of these proteins have been found in pathological states including cardiovascular diseases, arthritis and liver cancer. The aim of this study was to assess L-, E- and P-Selectin, ICAM-1 and VCAM-1 expression in patients with HH and correlate these results with HFE mutation status and iron indexes. A total of 139 subjects were diagnosed with HH (C282Y homozygotes = 87, C282Y/H63D = 26 heterozygotes, H63D homozygotes = 26), 27 healthy control subjects with no HFE mutation (N/N), 18 normal subjects heterozygous for the H63D mutation served as age-sex-matched controls. We observed a significant decrease in L-selectin (P = 0.0002) and increased E-selectin and ICAM-1 (P = 0.0006 and P = 0.0059) expression in HH patients compared with healthy controls. This study observes for the first time that an altered adhesion molecules profile occurs in patients with HH that is associated with specific HFE genetic component for iron overload, suggesting that differential expression of adhesion molecules may play a role in the pathogenesis of HH.

  20. The roles of cell adhesion molecules in tumor suppression and cell migration: a new paradox.

    PubMed

    Moh, Mei Chung; Shen, Shali

    2009-01-01

    In addition to mediating cell adhesion, many cell adhesion molecules act as tumor suppressors. These proteins are capable of restricting cell growth mainly through contact inhibition. Alterations of these cell adhesion molecules are a common event in cancer. The resulting loss of cell-cell and/or cell-extracellular matrix adhesion promotes cell growth as well as tumor dissemination. Therefore, it is conventionally accepted that cell adhesion molecules that function as tumor suppressors are also involved in limiting tumor cell migration. Paradoxically, in 2005, we identified an immunoglobulin superfamily cell adhesion molecule hepaCAM that is able to suppress cancer cell growth and yet induce migration. Almost concurrently, CEACAM1 was verified to co-function as a tumor suppressor and invasion promoter. To date, the reason and mechanism responsible for this exceptional phenomenon remain unclear. Nevertheless, the emergence of these intriguing cell adhesion molecules with conflicting roles may open a new chapter to the biological significance of cell adhesion molecules.

  1. Effect of 10-Week Supervised Moderate-Intensity Intermittent vs. Continuous Aerobic Exercise Programs on Vascular Adhesion Molecules in Patients with Heart Failure.

    PubMed

    Aksoy, Sibel; Findikoglu, Gulin; Ardic, Fusun; Rota, Simin; Dursunoglu, Dursun

    2015-10-01

    Abnormal expression of cellular adhesion molecules may be related to endothelial dysfunction, a key feature in chronic heart failure. This study compares the effects of 10-wk supervised moderate-intensity continuous aerobic exercise (CAE) and intermittent aerobic exercise (IAE) programs on markers of endothelial damage, disease severity, functional and metabolic status, and quality-of-life in chronic heart failure patients. Fifty-seven patients between 41 and 81 yrs with New York Heart Association class II-III chronic heart failure and with a left ventricular ejection fraction of 35%-55% were randomized into three groups: nonexercising control, CAE, and IAE, which exercised three times a week for 10 wks. Endothelial damage was assessed by serum markers of vascular cell adhesion molecule-1, serum intercellular adhesion molecule-1, and nitric oxide; disease severity was measured by left ventricular ejection fraction and N-terminal probrain natriuretic peptide; metabolic status was evaluated by body composition analysis and lipid profile levels; functional status was evaluated by cardiorespiratory exercise stress test and 6-min walking distance; quality-of-life was assessed with Left Ventricular Dysfunction-36 and Short-Form 36 questionnaires at the baseline and at the end of the 10th week. Significant decreases in serum vascular cell adhesion molecule-1 or serum intercellular adhesion molecule-1 in IAE and CAE groups after training were found, respectively. Resting systolic and diastolic blood pressure, peak systolic and diastolic blood pressure, 6-min walking distance, and the mental health and vitality components of Short-Form 36 improved in the CAE group, whereas left ventricular ejection fraction and 6-min walking distance improved in the IAE group compared with the control group. Both moderate-intensity CAE and IAE programs significantly reduced serum markers of adhesion molecules and prevented the change in VO2 in patients with chronic heart failure.

  2. Dynamic pattern of endothelial cell adhesion molecule expression in muscle and perineural vessels from patients with classic polyarteritis nodosa.

    PubMed

    Coll-Vinent, B; Cebrián, M; Cid, M C; Font, C; Esparza, J; Juan, M; Yagüe, J; Urbano-Márquez, A; Grau, J M

    1998-03-01

    To investigate endothelial cell adhesion molecule expression in vessels from patients with classic polyarteritis nodosa (PAN). Frozen sections of 21 muscle and 16 nerve samples from 30 patients with biopsy-proven PAN and 12 histologically normal muscle and 2 histologically normal nerve samples from 12 controls were studied immunohistochemically, using specific monoclonal antibodies (MAb) that recognize adhesion molecules. Adhesion molecules identified were intercellular adhesion molecule 1 (ICAM-1), ICAM-2, ICAM-3, vascular cell adhesion molecule 1 (VCAM-1), platelet endothelial cell adhesion molecule 1 (PECAM-1), E-selectin, P-selectin, L-selectin, lymphocyte function-associated antigen 1 (LFA-1), and very late activation antigen 4 (VLA-4). Neutrophils were identified with a MAb recognizing neutrophil elastase. Endothelial cells were identified with the lectin ulex europaeus. In early lesions, expression of PECAM-1, ICAM-1, ICAM-2, and P-selectin was similar to that in control samples, and VCAM-1 and E-selectin were induced in vascular endothelium. In advanced lesions, immunostaining for adhesion molecules diminished or disappeared in luminal endothelium, whereas these molecules were clearly expressed in microvessels within and surrounding inflamed vessels. Staining in endothelia from vessels in a healing stage tended to be negative. A high proportion of infiltrating leukocytes expressed LFA-1 and VLA-4, and only a minority expressed L-selectin. No relationship between the expression pattern of adhesion molecules and clinical features, disease duration, or previous corticosteroid treatment was observed. Endothelial adhesion molecule expression in PAN is a dynamic process that varies according to the histopathologic stage of the vascular lesions. The preferential expression of constitutive and inducible adhesion molecules in microvessels suggests that angiogenesis contributes to the persistence of inflammatory infiltration in PAN.

  3. Differential patterns of endothelial and leucocyte activation in ‘typhus-like’ illnesses in Laos and Thailand

    PubMed Central

    Paris, D H; Jenjaroen, K; Blacksell, S D; Phetsouvanh, R; Wuthiekanun, V; Newton, P N; Day, N P J; Turner, G D H

    2008-01-01

    Scrub typhus is responsible for a large proportion of undifferentiated fevers in south-east Asia. The cellular tropism and pathophysiology of the causative agent, Orientia tsutsugamushi, remain poorly understood. We measured endothelial and leucocyte activation by soluble cell adhesion molecule enzyme-linked immunosorbent assays in 242 Lao and Thai patients with scrub or murine typhus, leptospirosis, dengue, typhoid and uncomplicated falciparum malaria on admission to hospital. Soluble E-selectin (sE-selectin) levels were lowest in dengue, sL-selectin highest in scrub typhus with a high sE-selectin to sL-selectin ratio in leptospirosis patients. In scrub typhus patients elevated sL-selectin levels correlated with the duration of skin rash (P = 0·03) and the presence of eschar (P = 0·03), elevated white blood cell (WBC) count (P = 0·007), elevated lymphocyte (P = 0·007) and neutrophil counts (P = 0·015) and elevated levels of sE-selectin correlated with the duration of illness before admission (P = 0·03), the presence of lymphadenopathy (P = 0·033) and eschar (P = 0·03), elevated WBC (P = 0·005) and neutrophil counts (P = 0·0003). In comparison, soluble selectin levels in murine typhus patients correlated only with elevated WBC counts (P = 0·03 for sE-selectin and sL-selectin). Soluble intercellular adhesion molecule-1 and soluble vascular adhesion molecule-1 levels were not associated significantly with any clinical parameters in scrub or murine typhus patients. The data presented suggest mononuclear cell activation in scrub typhus. As adhesion molecules direct leucocyte migration and induce inflammatory and immune responses, this may represent O. tsutsugamushi tropism during early dissemination, or local immune activation within the eschar. PMID:18505434

  4. Differential patterns of endothelial and leucocyte activation in 'typhus-like' illnesses in Laos and Thailand.

    PubMed

    Paris, D H; Jenjaroen, K; Blacksell, S D; Phetsouvanh, R; Wuthiekanun, V; Newton, P N; Day, N P J; Turner, G D H

    2008-07-01

    Scrub typhus is responsible for a large proportion of undifferentiated fevers in south-east Asia. The cellular tropism and pathophysiology of the causative agent, Orientia tsutsugamushi, remain poorly understood. We measured endothelial and leucocyte activation by soluble cell adhesion molecule enzyme-linked immunosorbent assays in 242 Lao and Thai patients with scrub or murine typhus, leptospirosis, dengue, typhoid and uncomplicated falciparum malaria on admission to hospital. Soluble E-selectin (sE-selectin) levels were lowest in dengue, sL-selectin highest in scrub typhus with a high sE-selectin to sL-selectin ratio in leptospirosis patients. In scrub typhus patients elevated sL-selectin levels correlated with the duration of skin rash (P = 0.03) and the presence of eschar (P = 0.03), elevated white blood cell (WBC) count (P = 0.007), elevated lymphocyte (P = 0.007) and neutrophil counts (P = 0.015) and elevated levels of sE-selectin correlated with the duration of illness before admission (P = 0.03), the presence of lymphadenopathy (P = 0.033) and eschar (P = 0.03), elevated WBC (P = 0.005) and neutrophil counts (P = 0.0003). In comparison, soluble selectin levels in murine typhus patients correlated only with elevated WBC counts (P = 0.03 for sE-selectin and sL-selectin). Soluble intercellular adhesion molecule-1 and soluble vascular adhesion molecule-1 levels were not associated significantly with any clinical parameters in scrub or murine typhus patients. The data presented suggest mononuclear cell activation in scrub typhus. As adhesion molecules direct leucocyte migration and induce inflammatory and immune responses, this may represent O. tsutsugamushi tropism during early dissemination, or local immune activation within the eschar.

  5. Renoprotective effects of berberine and its potential effect on the expression of β-arrestins and intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in streptozocin-diabetic nephropathy rats.

    PubMed

    Tang, Li-Qin; Ni, Wei-Jian; Cai, Ming; Ding, Hai-Hua; Liu, Sheng; Zhang, Shan-Tang

    2016-09-01

    Berberine has been shown to exert protective effects against diabetic nephropathy (DN), but the mechanisms involved have not been fully characterized. The aim of the present study was to explore the effects of berberine on the expression of β-arrestins, intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in DN rat kidneys and investigate the underlying molecular mechanisms. To create the DN model, rats fed a high-fat and high-glucose diet were injected with a single dose of streptozotocin (35 mg/kg, i.p.). Then, DN rats were either treated or not with berberine (50, 100, 200 mg/kg per day, i.g., 8 weeks). Periodic acid-Schiff staining was used to evaluate renal histopathological changes. Renal tissue levels of β-arrestin 1 and β-arrestin 2 were determined by Western blot analysis, whereas immunohistochemistry was used to determine renal ICAM-1 and VCAM-1 levels. Berberine (100, 200 mg/kg) ameliorated the histopathological changes in the diabetic kidney. Western blot analysis revealed significant increases in ICAM-1 and VCAM-1 levels in the kidneys of DN rats, which were reversed by treatment with 100 and 200 mg/kg berberine. In addition, berberine treatment (50, 100, 200 mg/kg) increased diabetic-induced decreases in β-arrestin 1 and β-arrestin 2. Berberine exhibited renoprotective effects in DN rats. The underlying molecular mechanisms may be associated with changes in the levels and regulation of β-arrestin expression, as well as ICAM-1 and VCAM-1 levels in the rat kidney. © 2015 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  6. Circulating sICAM-1 and sE-Selectin as biomarker of infection and prognosis in patients with systemic inflammatory response syndrome.

    PubMed

    de Pablo, Raúl; Monserrat, Jorge; Reyes, Eduardo; Díaz, David; Rodríguez-Zapata, Manuel; de la Hera, Antonio; Prieto, Alfredo; Álvarez-Mon, Melchor

    2013-03-01

    Vascular endothelium activation is a key pathogenic step in systemic inflammatory response syndrome (SIRS) that can be triggered by both microbial and sterile proinflammatory stimuli. The relevance of soluble adhesion molecules as clinical biomarkers to discriminate between infectious and non-infectious SIRS, and the individual patient prognosis, has not been established. We prospectively measured by sandwich ELISA, serum levels of soluble E-Selectin (sE-Selectin), soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble intercellular adhesion molecule-1 (sICAM-1) and soluble intercellular adhesion molecule-2 (sICAM-2) at ICU admission and at days 3, 7, 14 and 28 in patients with sepsis and at days 3 and 7 in patients with non-infectious SIRS. At ICU admission, sE-Selectin, sVCAM-1 and sICAM-1 in patients with infectious SIRS were significantly higher than those found in patients with non-infectious SIRS. ROC analysis revealed that the AUC for infection identification was best for sICAM-1 (0.900±0.041; 95% CI 0.819-0.981; p<0.0001). Moreover, multivariate analysis showed that 4 variables were significantly and independently associated with mortality at 28 days: male gender (OR 15.90; 95% CI, 2.54-99.32), MODS score (OR 5.60; 95% CI, 1.67-18.74), circulating sE-Selectin levels (OR 4.81; 95% CI, 1.34-17.19) and sVCAM-1 concentrations (OR 4.80; 95% CI, 1.34-17.14). Patients with SIRS secondary to infectious or non-infectious etiology show distinctive patterns of disturbance in serum soluble adhesion molecules. Serum ICAM-1 is a reliable biomarker for classifying patients with infectious SIRS from those with non-infectious SIRS. In addition, soluble E-Selectin is a prognostic biomarker with higher levels in patients with SIRS and fatal outcome. Copyright © 2012 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  7. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haimou; Qin, Gangjian; Liang, Gang

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanismmore » of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.« less

  8. Sulforaphane suppresses vascular adhesion molecule-1 expression in TNF-α-stimulated mouse vascular smooth muscle cells: involvement of the MAPK, NF-κB and AP-1 signaling pathways.

    PubMed

    Kim, Ji-Yun; Park, Hye-Jin; Um, Sung Hee; Sohn, Eun-Hwa; Kim, Byung-Oh; Moon, Eun-Yi; Rhee, Dong-Kwon; Pyo, Suhkneung

    2012-01-01

    Atherosclerosis is a long-term inflammatory disease of the arterial wall. Increased expression of the cell adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) is associated with increased proliferation of vascular smooth muscle cells (VSMCs), leading to increased neointima or atherosclerotic lesion formation. Therefore, the functional inhibition of adhesion molecules could be a critical therapeutic target of inflammatory disease. In the present study, we investigate the effect of sulforaphane on the expression of VCAM-1 induced by TNF-α in cultured mouse vascular smooth muscle cell lines. Pretreatment of VSMCs for 2h with sulforaphane (1-5μg/ml) dose-dependently inhibited TNF-α-induced adhesion of THP-1 monocytic cells and protein expression of VCAM-1. Sulforaphane also suppressed TNF-α-induced production of intracellular reactive oxygen species (ROS) and activation of p38, ERK and JNK. Furthermore, sulforaphane inhibited NK-κB and AP-1 activation induced by TNF-α. Sulforaphane inhibited TNF-α-induced ΙκΒ kinase activation, subsequent degradation of ΙκΒα and nuclear translocation of p65 NF-κB and decreased c-Jun and c-Fos protein level. This study suggests that sulforaphane inhibits the adhesive capacity of VSMC and downregulates the TNF-α-mediated induction of VCAM-1 in VSMC by inhibiting the MAPK, NF-κB and AP-1 signaling pathways and intracellular ROS production. Thus, sulforaphane may have beneficial effects to suppress inflammation within the atherosclerotic lesion. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Glutamine supplementation attenuates expressions of adhesion molecules and chemokine receptors on T cells in a murine model of acute colitis.

    PubMed

    Hou, Yu-Chen; Wu, Jin-Ming; Wang, Ming-Yang; Wu, Ming-Hsun; Chen, Kuen-Yuan; Yeh, Sung-Ling; Lin, Ming-Tsan

    2014-01-01

    Migration of T cells into the colon plays a major role in the pathogenesis in inflammatory bowel disease. This study investigated the effects of glutamine (Gln) supplementation on chemokine receptors and adhesion molecules expressed by T cells in mice with dextran sulfate sodium- (DSS-) induced colitis. C57BL/6 mice were fed either a standard diet or a Gln diet replacing 25% of the total nitrogen. After being fed the diets for 5 days, half of the mice from both groups were given 1.5% DSS in drinking water to induce colitis. Mice were killed after 5 days of DSS exposure. DSS colitis resulted in higher expression levels of P-selectin glycoprotein ligand- (PSGL-) 1, leukocyte function-associated antigen- (LFA-) 1, and C-C chemokine receptor type 9 (CCR9) by T helper (Th) and cytotoxic T (Tc) cells, and mRNA levels of endothelial adhesion molecules in colons were upregulated. Gln supplementation decreased expressions of PSGL-1, LFA-1, and CCR9 by Th cells. Colonic gene expressions of endothelial adhesion molecules were also lower in Gln-colitis mice. Histological finding showed that colon infiltrating Th cells were less in the DSS group with Gln administration. Gln supplementation may ameliorate the inflammation of colitis possibly via suppression of T cell migration.

  10. Cinnamaldehyde inhibits the tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-{kappa}B activation: Effects upon I{kappa}B and Nrf2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, B.-C.; Hsieh, C.-W.; Liu, Y.-C.

    The production of adhesion molecules and subsequent attachment of leukocytes to endothelial cells (ECs) are critical early events in atherogenesis. These adhesion molecules thus play an important role in the development of this disease. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of cinnamaldehyde, a Cinnamomum cassia Presl-specific diterpene. In our current study, we have examined the effects of both cinnamaldehyde and extracts of C. cassia on cytokine-induced monocyte/human endothelial cell interactions. We find that these compounds inhibit the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppress the expression of the cell adhesion molecules, VCAM-1 and ICAM-1, atmore » the transcriptional level. Moreover, in TNF{alpha}-treated ECs, the principal downstream signal of VCAM-1 and ICAM-1, NF-{kappa}B, was also found to be abolished in a time-dependent manner. Interestingly, cinnamaldehyde exerts its anti-inflammatory effects by blocking the degradation of the inhibitory protein I{kappa}B-{alpha}, but only in short term pretreatments, whereas it does so via the induction of Nrf2-related genes, including heme-oxygenase-1 (HO-1), over long term pretreatments. Treating ECs with zinc protoporphyrin, a HO-1 inhibitor, partially blocks the anti-inflammatory effects of cinnamaldehyde. Elevated HO-1 protein levels were associated with the inhibition of TNF{alpha}-induced ICAM-1 expression. In addition to HO-1, we also found that cinnamaldehyde can upregulate Nrf2 in nuclear extracts, and can increase ARE-luciferase activity and upregulate thioredoxin reductase-1, another Nrf2-related gene. Moreover, cinnamaldehyde exposure rapidly reduces the cellular GSH levels in ECs over short term treatments but increases these levels after 9 h exposure. Hence, our present findings indicate that cinnamaldehyde suppresses TNF-induced singling pathways via two distinct mechanisms that are activated by different pretreatment periods.« less

  11. Increased plasma soluble adhesion molecules; ICAM-1, VCAM-1, and E-selectin levels in patients with slow coronary flow.

    PubMed

    Turhan, Hasan; Saydam, Gul Sevim; Erbay, Ali Riza; Ayaz, Selime; Yasar, Ayse Saatci; Aksoy, Yuksel; Basar, Nurcan; Yetkin, Ertan

    2006-04-04

    Inflammation has been reported to be a major contributing factor to many cardiovascular events. In the present study, we aimed to evaluate plasma soluble adhesion molecules; intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin as possible indicators of endothelial activation or inflammation in patients with slow coronary flow. Study population included 17 patients with angiographically proven normal coronary arteries and slow coronary flow in all three coronary vessels (group I, 11 male, 6 female, mean age=48+/-9 years), and 20 subjects with angiographically proven normal coronary arteries without associated slow coronary flow (group II, 11 male, 9 female, mean age=50+/-8 years). Coronary flow rates of all patients and control subjects were documented by Thrombolysis In Myocardial Infarction frame count (TIMI frame count). All patients in group I had TIMI frame counts greater than two standard deviation above those of control subjects (group II) and, therefore, were accepted as exhibiting slow coronary flow. Serum levels of ICAM-1, VCAM-1, and E-selectin were measured in all patients and control subjects using commercially available ELISA kits. Serum ICAM-1, VCAM-1, and E-selectin levels of patients with slow coronary flow were found to be significantly higher than those of control subjects with normal coronary flow (ICAM-1: 545+/-198 ng/ml vs. 242+/-113 ng/ml respectively, p<0.001, VCAM-1: 2040+/-634 ng/ml vs. 918+/-336 ng/ml respectively, p<0.001, E-selectin: 67+/-9 ng/ml vs. 52+/-8 ng/ml respectively, p<0.001). Average TIMI frame count was detected to be significantly correlated with plasma soluble ICAM-1 (r=0.550, p<0.001), VCAM-1 (r=0.569, p<0.001) and E-selectin (r=0.443, p=0.006). Increased levels of soluble adhesion molecules in patients with slow coronary flow may be an indicator of endothelial activation and inflammation and are likely to be in the causal pathway leading to slow coronary flow.

  12. Cytokines, chemokines and soluble adhesion molecules in aqueous humor of children with uveitis.

    PubMed

    Sijssens, Karen M; Rijkers, Ger T; Rothova, Aniki; Stilma, Jan S; Schellekens, Peter A W J F; de Boer, Joke H

    2007-10-01

    Uveitis in childhood is a visual threatening disease with a complication rate of more than 75%. Despite extensive research, the etiology of uveitis is still unclear although the general opinion is now that uveitis is a T-cell mediated disease. The purpose of this study was to investigate the profile of cytokines, chemotactic cytokines (chemokines) and soluble adhesion molecules in the aqueous humor (AqH) of children with uveitis in order to identify the factors that control the immune response in the eye. In this clinical laboratory investigation we analyzed, with a multiplex immunoassay, 16 immune mediators in the AqH of 25 children with uveitis and 6 children without uveitis. Increased levels of interleukin-2 (IL-2), IL-6, IL-10, IL-13, IL-18, interferon-gamma, tumor necrosis factor-alpha, soluble intercellular adhesion molecule-1, RANTES, IL-8 and interferon-inducible 10-kDa protein were found in the AqH of children with uveitis compared with controls. No significant differences were found for IL-1 beta, IL-4, IL-12 p-70, soluble vascular cell adhesion molecule 1 and Eotaxin. Lower levels of IL-10 and IL-8 were found in quiet stage uveitis (surgical) samples compared with active uveitis (diagnostic) samples and in samples of patients treated with methotrexate (MTX) compared with samples of patients not treated with MTX. Lower levels of IL-10 were as well found in samples taken during the first 3 months after the diagnosis of uveitis than samples taken later during the disease process. No significant differences were found between patients treated with or without topical or systemic (perioperative and long term) corticosteroids. In conclusion, in children with uveitis, multiple intraocular cytokines, chemokines and soluble adhesion molecules are increased in the AqH regardless of active or inactive inflammation. Whether the IL-8 and IL-10 levels in AqH of children with uveitis are correlated with uveitis activity, early or late phase of the course of the disease and systemic treatment with MTX needs further investigation in a bigger study population.

  13. Polystyrene-Divinylbenzene-Based Adsorbents Reduce Endothelial Activation and Monocyte Adhesion Under Septic Conditions in a Pore Size-Dependent Manner.

    PubMed

    Eichhorn, Tanja; Rauscher, Sabine; Hammer, Caroline; Gröger, Marion; Fischer, Michael B; Weber, Viktoria

    2016-10-01

    Endothelial activation with excessive recruitment and adhesion of immune cells plays a central role in the progression of sepsis. We established a microfluidic system to study the activation of human umbilical vein endothelial cells by conditioned medium containing plasma from lipopolysaccharide-stimulated whole blood or from septic blood and to investigate the effect of adsorption of inflammatory mediators on endothelial activation. Treatment of stimulated whole blood with polystyrene-divinylbenzene-based cytokine adsorbents (average pore sizes 15 or 30 nm) prior to passage over the endothelial layer resulted in significantly reduced endothelial cytokine and chemokine release, plasminogen activator inhibitor-1 secretion, adhesion molecule expression, and in diminished monocyte adhesion. Plasma samples from sepsis patients differed substantially in their potential to induce endothelial activation and monocyte adhesion despite their almost identical interleukin-6 and tumor necrosis factor-alpha levels. Pre-incubation of the plasma samples with a polystyrene-divinylbenzene-based adsorbent (30 nm average pore size) reduced endothelial intercellular adhesion molecule-1 expression to baseline levels, resulting in significantly diminished monocyte adhesion. Our data support the potential of porous polystyrene-divinylbenzene-based adsorbents to reduce endothelial activation under septic conditions by depletion of a broad range of inflammatory mediators.

  14. Chronic Restraint Stress Induces an Isoform-Specific Regulation on the Neural Cell Adhesion Molecule in the Hippocampus

    PubMed Central

    Touyarot, K.; Sandi, C.

    2002-01-01

    Existing evidence indicates that 21-days exposure of rats to restraint stress induces dendritic atrophy in pyramidal cells of the hippocampus. This phenomenon has been related to altered performance in hippocampal-dependent learning tasks. Prior studies have shown that hippocampal expression of cell adhesion molecules is modified by such stress treatment, with the neural cell adhesion molecule (NCAM) decreasing and L1 increasing, their expression, at both the mRNA and protein levels. Given that NCAM comprises several isoforms, we investigated here whether chronic stress might differentially affect the expression of the three major isoforms (NCAM-120, NCAM-140, NCAM-180) in the hippocampus. In addition, as glucocorticoids have been implicated in the deleterious effects induced by chronic stress, we also evaluated plasma corticosterone levels and the hippocampal expression of the corticosteroid mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The results showed that the protein concentration of the NCAM-140 isoform decreased in the hippoampus of stressed rats. This effect was isoform-specific, because NCAM-120 and NCAM-180 levels were not significantly modified. In addition, whereas basal levels of plasma corticosterone tended to be increased, MR and GR concentrations were not significantly altered. Although possible changes in NCAM-120, NCAM-180 and corticosteroid receptors at earlier time points of the stress period cannot be ignored; this study suggests that a down-regulation of NCAM-140 might be implicated in the structural alterations consistently shown to be induced in the hippocampus by chronic stress exposure. As NCAM-140 is involved in cell-cell adhesion and neurite outgrowth, these findings suggest that this molecule might be one of the molecular mechanisms involved in the complex interactions among neurodegeneration-related events. PMID:12757368

  15. Quantitative genetic analysis of cellular adhesion molecules: the Fels Longitudinal Study.

    PubMed

    Lee, Miryoung; Czerwinski, Stefan A; Choh, Audrey C; Demerath, Ellen W; Sun, Shumei S; Chumlea, Wm C; Towne, Bradford; Siervogel, Roger M

    2006-03-01

    Circulating concentrations of inflammatory markers predict cardiovascular disease (CVD) risk and are closely associated with obesity. However, little is known concerning genetic influences on serum levels of inflammatory markers. In this study, we estimated the heritability (h2) of soluble cellular adhesion molecule (sCAM) concentrations and examined the correlational architecture between different sCAMs. The study population included 234 men and 270 women aged 18-76 years, belonging to 121 families participating in the Fels Longitudinal Study. Serum levels of soluble intercellular adhesion molecule-1 (sICAM-1), vascular cell adhesion molecule-1 (sVCAM-1), E-selectin (sESEL-1) and P-selectin (sPSEL-1) were assayed using commercially available kits. A variance components-based maximum likelihood method was used to estimate the h2 of the different serum inflammatory markers while simultaneously adjusting for the effects of known CVD risk factors, such as age and smoking. Additionally, we used bivariate extensions of these methods to estimate genetic and random environmental correlations among sCAMs. Levels of sCAMs were significantly heritable: h2=0.24+/-0.10 for sICAM-1, h2=0.22+/-0.10 for sVCAM-1, h2=0.50+/-0.11 for sESEL-1, and h2=0.46+/-0.10 for sPSEL-1. In addition, a significant genetic correlation (rho(G)=0.63) was found between sICAM-1 and sVCAM-1 indicating some degree of shared genetic control. In the Fels Longitudinal Study, the levels of four sCAMs are significantly influenced by genetic effects, and sICAM-1 shares a common genetic background with sVCAM-1.

  16. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1

    NASA Astrophysics Data System (ADS)

    Koch, Alisa E.; Halloran, Margaret M.; Haskell, Catherine J.; Shah, Manisha R.; Polverini, Peter J.

    1995-08-01

    ENDOTHELIAL adhesion molecules facilitate the entry of leukocytes into inflamed tissues. This in turn promotes neovascularization, a process central to the progression of rheumatoid arthritis, tumour growth and wound repair1. Here we test the hypothesis that soluble endothelial adhesion molecules promote angiogenesis2á¤-4. Human recombinant soluble E-selectin and soluble vascular cell adhesion molecule-1 induced chemotaxis of human endothelial cells in vitro and were angiogenic in rat cornea. Soluble E-selectin acted on endothelial cells in part through a sialyl Lewis-X-dependent mechanism, while soluble vascular cell adhesion molecule-1 acted on endothelial cells in part through a very late antigen (VLA)-4 dependent mechanism. The chemotactic activity of rheumatoid synovial fluid for endothelial cells, and also its angiogenic activity, were blocked by antibodies to either soluble E-selectin or soluble vascular cell adhesion molecule-1. These results suggest a novel function for soluble endothelial adhesion molecules as mediators of angiogenesis.

  17. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy.

    PubMed

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis.

  18. Epidermal Expression of Intercellular Adhesion Molecule 1 is Not a Primary Inducer of Cutaneous Inflammation in Transgenic Mice

    NASA Astrophysics Data System (ADS)

    Williams, Ifor R.; Kupper, Thomas S.

    1994-10-01

    Keratinocytes at sites of cutaneous inflammation have increased expression of intercellular adhesion molecule 1 (ICAM-1), a cytokine-inducible adhesion molecule which binds the leukocyte integrins LFA-1 and Mac-1. Transgenic mice were prepared in which the expression of mouse ICAM-1 was targeted to basal keratinocytes by using the human K14 keratin promoter. The level of constitutive expression attained in the transgenic mice exceeded the peak level of ICAM-1 expression induced on nontransgenic mouse keratinocytes in vitro by optimal combinations of interferon γ and tumor necrosis factor α or in vivo by proinflammatory stimuli such as phorbol 12-myristate 13-acetate. In vitro adhesion assays demonstrated that cultured transgenic keratinocytes were superior to normal keratinocytes as a substrate for the LFA-1-dependent binding of mouse T cells, confirming that the transgene-encoded ICAM-1 was expressed in a functional form. However, the high level of constitutive ICAM-1 expression achieved on keratinocytes in vivo in these transgenic mice did not result in additional recruitment of CD45^+ leukocytes into transgenic epidermis, nor did it elicit dermal inflammation. Keratinocyte ICAM-1 expression also did not potentiate contact-hypersensitivity reactions to epicutaneous application of haptens. The absence of a spontaneous phenotype in these transgenic mice was not the result of increased levels of soluble ICAM-1, since serum levels of soluble ICAM-1 were equal in transgenic mice and controls. We conclude that elevated ICAM-1 expression on keratinocytes cannot act independently to influence leukocyte trafficking and elicit cutaneous inflammation.

  19. The RhoA/ROCK Pathway Ameliorates Adhesion and Inflammatory Infiltration Induced by AGEs in Glomerular Endothelial Cells.

    PubMed

    Rao, Jialing; Ye, Zengchun; Tang, Hua; Wang, Cheng; Peng, Hui; Lai, Weiyan; Li, Yin; Huang, Wanbing; Lou, Tanqi

    2017-01-05

    A recent study demonstrated that advanced glycation end products (AGEs) play a role in monocyte infiltration in mesangial areas in diabetic nephropathy. The Ras homolog gene family, member A Rho kinase (RhoA/ROCK) pathway plays a role in regulating cell migration. We hypothesized that the RhoA/ROCK pathway affects adhesion and inflammation in endothelial cells induced by AGEs. Rat glomerular endothelial cells (rGECs) were cultured with AGEs (80 μg/ml) in vitro. The ROCK inhibitor Y27632 (10 nmol/l) and ROCK1-siRNA were used to inhibit ROCK. We investigated levels of the intercellular adhesion molecule 1 (ICAM-1) and monocyte chemoattractant protein1 (MCP-1) in rGECs. Db/db mice were used as a diabetes model and received Fasudil (10 mg/kg/d, n = 6) via intraperitoneal injection for 12 weeks. We found that AGEs increased the expression of ICAM-1 and MCP-1 in rGECs, and the RhoA/ROCK pathway inhibitor Y27632 depressed the release of adhesion molecules. Moreover, blocking the RhoA/ROCK pathway ameliorated macrophage transfer to the endothelium. Reduced expression of adhesion molecules and amelioration of inflammatory cell infiltration in the glomerulus were observed in db/db mice treated with Fasudil. The RhoA/ROCK pathway plays a role in adhesion molecule expression and inflammatory cell infiltration in glomerular endothelial cells induced by AGEs.

  20. [Expression of cell adhesion molecules in acute leukemia cell].

    PubMed

    Ju, Xiaoping; Peng, Min; Xu, Xiaoping; Lu, Shuqing; Li, Yao; Ying, Kang; Xie, Yi; Mao, Yumin; Xia, Fang

    2002-11-01

    To investigate the role of cell adhesion molecule in the development and extramedullary infiltration (EI) of acute leukemia. The expressions of neural cell adhesion molecule (NCAM) gene, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1) genes in 25 acute leukemia patients bone marrow cells were detected by microarray and reverse transcriptase-polymerase chain reaction (RT-PCR). The expressions of NCAM, ICAM-1 and VCAM-1 gene were significantly higher in acute leukemia cells and leukemia cells with EI than in normal tissues and leukemia cells without EI, respectively, both by cDNA microarray and by RT-PCR. The cDNA microarray is a powerful technique in analysis of acute leukemia cells associated genes. High expressions of cell adhesion molecule genes might be correlated with leukemia pathogenesis and infiltration of acute leukemia cell.

  1. Effects of Lycium barbarum Polysaccharides on Apoptosis, Cellular Adhesion, and Oxidative Damage in Bone Marrow Mononuclear Cells of Mice Exposed to Ionizing Radiation Injury

    PubMed Central

    Zhou, Jing; Pang, Hua; Li, Wenbo; Liu, Qiong; Xu, Lu; Liu, Qian; Liu, Ying

    2016-01-01

    Lycium barbarum has been used for more than 2500 years as a traditional herb and food in China. We investigated the effects of Lycium barbarum polysaccharides (LBP) on apoptosis, oxidative damage, and expression of adhesion molecules in bone marrow mononuclear cells (BMNC) of mice injured by ionizing radiation. Kunming mice were exposed to X-rays; then mice in the LBP groups were continuously injected with various concentrations of LBP intraperitoneally for 14 days. Mice in the control group were continuously injected with normal saline (NS) by the same route for 14 days. A normal group was set up. After 1, 7, and 14 days of treatment, mice were killed and BMNC were extracted. Cell cycle, apoptosis, and the expression of adhesion molecules CD44 and CD49d were detected by flow cytometry. The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were identified by colorimetric analyses. LBP significantly decreased the percentage of G0/G1 phase, apoptosis, MDA level, and expression of CD44 and CD49d and distinctly increased the activity of SOD. LBP showed a protective effect on BMNC against ionizing radiation-induced apoptosis and oxidative damage and altered the expression of adhesion molecule. PMID:27314019

  2. Direct Force Measurements of Receptor-Ligand Interactions on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the level of single receptor-ligand bonds is an experimental challenge. This chapter describes how the extremely sensitive method of atomic force microscopy (AFM) based force spectroscopy can be applied to living cells in order to probe for cell-to-cell or cell-to-substrate interactions mediated by single pairs of adhesion receptors. In addition, it is outlined how single-molecule AFM force spectroscopy can be used to detect physiologic changes of an adhesion receptor in a living cell. This force spectroscopy allows us to detect in living cells rapidly changing, chemokine SDF-1 triggered activation states of single VLA-4 receptors. This recently developed AFM application will allow for the detailed investigation of the integrin-chemokine crosstalk of integrin activation mechanisms and on how other adhesion receptors are modulated in health and disease. As adhesion molecules, living cells and even bacteria can be studied by single-molecule AFM force spectroscopy, this method is set to become a powerful tool that can not only be used in biophysics, but in cell biology as well as in immunology and cancer research.

  3. Does infection with Chlamydia pneumoniae and/or Helicobacter pylori increase the expression of endothelial cell adhesion molecules in humans?

    PubMed

    Schumacher, A; Seljeflot, I; Lerkerød, A B; Sommervoll, L; Otterstad, J E; Arnesen, H

    2002-10-01

    To investigate if Chlamydia pneumoniae and/or Helicobacter pylori seropositivity is associated with elevated levels of soluble endothelial cell adhesion molecules (sCAMs) as markers of atherosclerotic activity. Immunoglobulin A (IgA) and IgG antibodies to the two bacteria, soluble intercellular cell adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1) and E-selectin were measured in coronary heart disease (CHD) patients (n = 193) and age- and sex-matched controls (n = 193). Two different serological methods were used for the detection of Chlamydia antibodies: Labsystems microimmunofluorescence to detect species-specific C. pneumoniae antibodies and Medac's recombinant enzyme-linked immunosorbent assay to detect genus-specific lipopolysaccharide antibodies. The concentrations of sICAM-1 and E-selectin were higher in CHD patients with positive vs. negative Chlamydia lipopolysaccharide IgA (P = 0.044 for both). H. pylori antibodies alone did not predict raised levels of sCAMs, but in CHD patients sICAM-1 was increased with IgA seropositivity to both bacteria compared to double seronegativity (P = 0.034). Concentrations of sVCAM-1 were elevated in CHD patients with double IgA seropositivity compared to those with Chlamydia lipopolysaccharide IgA seropositivity alone (P = 0.018). Our results may indicate that C. pneumoniae contributes to increased inflammation in CHD, and that this contribution is even more pronounced when present in combination with H. pylori IgA antibodies.

  4. Matrix MetalloProteinases (MMPs) andTissue Inhibitors of MetalloProteinases (TIMPs): positive and negative regulators intumor cell adhesion

    PubMed Central

    Bourboulia, Dimitra; Stetler-Stevenson, William G.

    2010-01-01

    Cells adhere to one another and/or to matrices that surround them. Regulation of cell-cell (intercellular) and cell-matrix adhesion is tightly controlled in normal cells, however, defects in cell adhesion are common in the majority of humancancers. Multilateral communication among tumor cells with the extracellular matrix (ECM) and neighbor cells is accomplished through adhesion molecules, ECM components, proteolytic enzymes and their endogenous inhibitors. There is sufficient evidence to suggest that reduced adherence is a tumor cell propertyengaged during tumor progression. Tumor cells acquire the ability to change shape, detach and easily move through spaces disorganizing the normal tissue architecture. This property is due to changes in expression levels of adhesion molecules and/or due to elevated levels of secreted proteolytic enzymes, including matrix metalloproteinases (MMPs). Among other roles, MMPsdegrade the ECMand, therefore, prepare the path for tumor cells to migrate, invade and spread to distant secondary areas, where they form metastasis. Tissue Inhibitors of Metalloproteinases or TIMPs control MMP activities and, therefore, minimize matrix degradation. Both MMPs and TIMPs are involved in tissue remodeling and decisively regulate tumor cell progression including tumor angiogenesis. In this review, we describe and discuss data that support the important role of MMPs and TIMPs in cancer cell adhesion and tumor progression. PMID:20470890

  5. Intercellular adhesion molecule-1 augments myoblast adhesion and fusion through homophilic trans-interactions.

    PubMed

    Pizza, Francis X; Martin, Ryan A; Springer, Evan M; Leffler, Maxwell S; Woelmer, Bryce R; Recker, Isaac J; Leaman, Douglas W

    2017-07-11

    The overall objective of the study was to identify mechanisms through which intercellular adhesion molecule-1 (ICAM-1) augments the adhesive and fusogenic properties of myogenic cells. Hypotheses were tested using cultured myoblasts and fibroblasts, which do not constitutively express ICAM-1, and myoblasts and fibroblasts forced to express full length ICAM-1 or a truncated form lacking the cytoplasmic domain of ICAM-1. ICAM-1 mediated myoblast adhesion and fusion were quantified using novel assays and cell mixing experiments. We report that ICAM-1 augments myoblast adhesion to myoblasts and myotubes through homophilic trans-interactions. Such adhesive interactions enhanced levels of active Rac in adherent and fusing myoblasts, as well as triggered lamellipodia, spreading, and fusion of myoblasts through the signaling function of the cytoplasmic domain of ICAM-1. Rac inhibition negated ICAM-1 mediated lamellipodia, spreading, and fusion of myoblasts. The fusogenic property of ICAM-1-ICAM-1 interactions was restricted to myogenic cells, as forced expression of ICAM-1 by fibroblasts did not augment their fusion to ICAM-1+ myoblasts/myotubes. We conclude that ICAM-1 augments myoblast adhesion and fusion through its ability to self-associate and initiate Rac-mediated remodeling of the actin cytoskeleton.

  6. Nanostructures to modulate vascular inflammation: Multifunctional nanoparticles for quantifiable siRNA delivery and molecular imaging

    NASA Astrophysics Data System (ADS)

    Kaneda, Megan Marie

    Early steps in the progression of inflammatory diseases such as atherosclerosis involve the recruitment of leukocytes to the vascular endothelium through the expression or up-regulation of adhesion molecules. These adhesion molecules are critical mediators of leukocyte attachment and subsequent extravasation through transendothelial migration. One of these adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) is particularly attractive as a marker of early atherosclerotic activity due to its low expression level on normal endothelium and up-regulation prior to and during the development of early lesions. With this in mind, the purpose of this thesis was to develop nanostructures for the detection and down-regulation of adhesion molecules by the vascular endothelium. To detect early inflammation we designed a perfluorocarbon nanoparticle (PFC-NP) probe, which was used for in vivo targeting of VCAM-1. Nanoparticles were detected ex vivo by the magnetic resonance (MR) signature from the fluorine core of the particle. Nanoparticles accumulated in tissues characterized by early inflammatory processes. To down-regulate VCAM-1 expression by vascular endothelial cells, cationic PFC-NP were produced through the addition of the cationic lipid 1,2-Dioleoyl-3-Trimethylammonium-Propane. Cationic PFC-NP were able to deliver anti-VCAM-1 siRNA to endothelial cells through a non-standard lipid raft mediated endocytic pathway. VCAM-1 levels were significantly reduced in treated cells indicating that this delivery mechanism may be advantageous for delivery of cargo into the cytoplasm. Using the fluorine signature from the core of the cationic PFC-NP, we were able to quantify and localize this siRNA delivery agent both in vitro and in vivo. The ability to quantify the local concentrations of these particles could be of great benefit for estimating local drug concentrations and developing new pharmacokinetic and pharmacodynamic paradigms to describe this new class of nucleotide agents.

  7. CD44 in cancer progression: adhesion, migration and growth regulation.

    PubMed

    Marhaba, R; Zöller, M

    2004-03-01

    It is well established that the large array of functions that a tumour cell has to fulfil to settle as a metastasis in a distant organ requires cooperative activities between the tumour and the surrounding tissue and that several classes of molecules are involved, such as cell-cell and cell-matrix adhesion molecules and matrix degrading enzymes, to name only a few. Furthermore, metastasis formation requires concerted activities between tumour cells and surrounding cells as well as matrix elements and possibly concerted activities between individual molecules of the tumour cell itself. Adhesion molecules have originally been thought to be essential for the formation of multicellular organisms and to tether cells to the extracellular matrix or to neighbouring cells. CD44 transmembrane glycoproteins belong to the families of adhesion molecules and have originally been described to mediate lymphocyte homing to peripheral lymphoid tissues. It was soon recognized that the molecules, under selective conditions, may suffice to initiate metastatic spread of tumour cells. The question remained as to how a single adhesion molecule can fulfil that task. This review outlines that adhesion is by no means a passive task. Rather, ligand binding, as exemplified for CD44 and other similar adhesion molecules, initiates a cascade of events that can be started by adherence to the extracellular matrix. This leads to activation of the molecule itself, binding to additional ligands, such as growth factors and matrix degrading enzymes, complex formation with additional transmembrane molecules and association with cytoskeletal elements and signal transducing molecules. Thus, through the interplay of CD44 with its ligands and associating molecules CD44 modulates adhesiveness, motility, matrix degradation, proliferation and cell survival, features that together may well allow a tumour cell to proceed through all steps of the metastatic cascade.

  8. Markers of subclinical atherosclerosis in schoolchildren with obesity and metabolic syndrome.

    PubMed

    Al-Shorman, Alaa; Al-Domi, Hayder; Faqih, Ahmad

    2017-06-21

    Although increased carotid intima-media thickness (cIMT), soluble adhesion molecules and proinflammatory biomarkers are strongly implicated in the development of atherosclerotic lesions, the role of obesity and metabolic syndrome (MetS) in atherogenicity and inflammation among schoolchildren is not well investigated. To determine the levels of cIMT, endothelial dysfunction and inflammatory biomarkers in a group of schoolchildren with obesity and MetS. Eighty-seven schoolchildren (age 10-15 years) were categorised into three groups: normal bodyweight group, obese group and severely obese with MetS group (17 boys and 12 girls in each group). Levels of cIMT were measured with high-resolution B-mode ultrasound. Serum proinflammatory cytokines interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), and soluble adhesion molecules E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1(ICAM-1) were measured. Mean cIMT levels were significantly higher (p 0.05) among severely obese schoolchildren with MetS (0.49 ± 0.02 mm) compared with both the obese (0.43 ± 0.03 mm) and the normal bodyweight counterparts (0.36 ± 0.03 mm). Serum levels of IL-6, TNF-α, IL-1β, E-selectin, VCAM-1 and ICAM-1 were significantly higher (p 0.05) in severely obese with MetS and obese children compared with the normal bodyweight group. However, no significant differences (p >0.05) were found between the severely obese schoolchildren with MetS and the obese without MetS. Severely obese schoolchildren having MetS exhibited higher cIMT levels than obese and normal bodyweight counterparts. Biomarkers of inflammation and endothelial dysfunction were higher in obese schoolchildren, but biomarkers were not increased any further by the degree of obesity nor the MetS cluster.

  9. Soluble endothelium-associated adhesion molecules in patients with Graves' disease.

    PubMed Central

    Wenisch, C; Myskiw, D; Parschalk, B; Hartmann, T; Dam, K; Graninger, W

    1994-01-01

    The targeting and recruitment of inflammatory cells to vascular endothelium in Graves' disease (GD) is mediated by intercellular adhesion molecule-1 (ICAM-1), endothelial leucocyte adhesion molecule-1 (ELAM-1), and vascular cell adhesion molecule-1 (VCAM-1). We have studied serum levels of soluble ICAM-1 (sICAM-1), soluble ELAM-1 (sELAM-1), and soluble VCAM-1 (sVCAM-1) in patients with GD (n = 21) and in patients with iodine-deficient goitre (IDG) (n = 23). The serum levels of sICAM-1 were markedly elevated in patients with GD before treatment with thiamazole (median 560 ng/ml versus 185 ng/ml in patients with IDG). In addition, elevated serum concentrations of sELAM-1 (median 85 ng/ml versus 33 ng/ml, respectively) and sVCAM-1 (median 42 ng/ml versus 15 ng/ml, respectively) were observed in patients with GD (P < 0.01 for all). The serum levels of sELAM-1 and sVCAM-1 dropped significantly after initiation of therapy and were within the normal range after 4, and 8 weeks of therapy, respectively. Serum levels of sICAM-1 were elevated even after 8 weeks of therapy. Serum levels of sVACM-1 and sICAM-1 correlated with the serum concentrations of anti-thyroid-stimulating hormone (TSH)-receptor antibodies (TSHR-R) (n = 21; r = 0.929 and r = 0.810, respectively) and anti-thyroid peroxidase antibodies (TPO-Ab) (n = 21; r = 0.673 and r = 0.750, respectively). However, no correlation between sELAM-1 and TPO-Ab, TSHR-R, and anti-thyroglobulin antibodies (Tg-Ab), respectively, could be found. In addition to thyroid hormones and autoantibodies, serum concentrations of sELAM-1 and sVCAM-1, but not sICAM-1, could be useful as clinical markers for disease activity. PMID:7525128

  10. Enhanced platelet/endothelial activation in depressed patients with acute coronary syndromes: evidence from recent clinical trials.

    PubMed

    Serebruany, Victor L; Glassman, Alexander H; Malinin, Alex I; Sane, David C; Finkel, Mitchell S; Krishnan, Ranga R; Atar, Dan; Lekht, Vladimir; O'Connor, Christopher M

    2003-09-01

    Platelets play a key role in the progression of acute coronary syndromes (ACS). Clinical depression alone is also associated with enhanced platelet activation. The purpose of this study was to compare concentrations of established biomarkers of enhanced platelet/endothelial activation in clinically depressed versus non-depressed patients enrolled in recent clinical trials for ACS. Two hundred and eighty-one baseline plasma samples from patients with acute myocardial infarction (ASSENT-2; n = 41), with ACS (PRONTO; n = 126) and with clinical depression plus previous acute coronary syndrome within 6 months (SADHART; n = 64), and from normal healthy controls (n = 50) were analyzed. Blood was drawn before applying any therapeutic strategies including interventions, thrombolytics, infusions, and selective serotonin re-uptake inhibitors. Platelet factor 4, beta-thromboglobulin, platelet/endothelial cell adhesion molecule-1, P-selectin, thromboxane, prostacyclin, vascular cell adhesion molecule-1, and E-selectin were measured by enzyme-linked immunosorbent assay by a single core laboratory. Patients with ACS exhibited a higher degree of platelet activation than controls independently of the presence of depression. Plasma levels of P-selectin, thromboxane, prostacyclin, and vascular cell adhesion molecule-1 were the highest in the acute myocardial infarction group when compared with ACS despite the presence or absence of clinical depression. Surprisingly, patients with ACS and depression exhibited the highest levels of platelet factor 4, beta-thromboglobulin, and platelet/endothelial cell adhesion molecule-1 when compared with myocardial infarction or angina patients without clinical depression. E-selectin plasma level was constantly elevated compared with controls but did not differ among the groups dependent on the incidence of depression. The depressed plus ACS group had higher plasma levels of all biomarkers compared with the non-depressed patients. Retrospective analysis of the data from several clinical trials reveals that clinical depression is associated with enhanced activation of platelet/endothelial biomarkers even above the level expected in ACS. These findings may contribute to the unfavorable outcome associated with clinical depression in patients with ACS.

  11. Interaction of tumor and host cells with adhesion and extracellular matrix molecules in the development of multiple myeloma.

    PubMed

    Teoh, G; Anderson, K C

    1997-02-01

    Adhesion molecules play an important role in the growth regulation and migration of multiple myeloma (MM) cells. They mediate homing of MM cells to the bone marrow and MM cell to bone marrow stromal cell adhesion, with resultant interleukin-6 related autocrine and paracine growth and antiapoptotic affects. Their pattern of expression on tumor cells correlates with the development of plasma cell leukemia or extramedullary disease. Clinically, expression of adhesion molecules on tumor cells or in the serum has already shown prognostic utility. Finally, since adhesion molecules are involved at multiple steps in the pathogenesis of MM, therapeutic studies may target these molecules.

  12. Human mesenchymal stem cells target adhesion molecules and receptors involved in T cell extravasation.

    PubMed

    Benvenuto, Federica; Voci, Adriana; Carminati, Enrico; Gualandi, Francesca; Mancardi, Gianluigi; Uccelli, Antonio; Vergani, Laura

    2015-12-10

    Systemic delivery of bone marrow-derived mesenchymal stem cells (MSC) seems to be of benefit in the treatment of multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS) sustained by migration of T cells across the brain blood barrier (BBB) and subsequent induction of inflammatory lesions into CNS. MSC have been found to modulate several effector functions of T cells. In this study, we investigated the effects of MSC on adhesion molecules and receptors on T cell surface that sustain their transendothelial migration. We used different co-culture methods combined with real-time PCR and flow cytometry to evaluate the expression both at the mRNA and at the plasma-membrane level of α4 integrin, β2 integrin, ICAM-1 and CXCR3. In parallel, we assessed if MSC are able to modulate expression of adhesion molecules on the endothelial cells that interact with T cells during their transendothelial migration. Our in vitro analyses revealed that MSC: (i) inhibit proliferation and activation of both peripheral blood mononuclear cells (PBMC) and CD3(+)-selected lymphocytes through the release of soluble factors; (ii) exert suppressive effects on those surface molecules highly expressed by activated lymphocytes and involved in transendothelial migration; (iii) inhibit CXCL10-driven chemotaxis of CD3(+) cells; (iv) down-regulated expression of adhesion molecules on endothelial cells. Taken together, these data demonstrate that the immunosuppressive effect of MSC does not exclusively depends on their anti-proliferative activity on T cells, but also on the impairment of leukocyte migratory potential through the inhibition of the adhesion molecules and receptors that are responsible for T cell trafficking across BBB. This could suggest a new mechanism through which MSC modulate T cell responses.

  13. The importance of sample collection when using single cytokine levels and systemic cytokine profiles as biomarkers--a comparative study of serum versus plasma samples.

    PubMed

    Tvedt, Tor Henrik Anderson; Rye, Kristin Paulsen; Reikvam, Håkon; Brenner, Annette K; Bruserud, Øystein

    2015-03-01

    Cytokines, soluble adhesion molecules and metalloproteinases can be detected in human serum or plasma samples. Such systemic levels are widely used as biomarkers in epidemiological and clinical studies. We prepared serum samples and three types of plasma samples (EDTA, heparin, citric acid) from 20 healthy individuals. The levels of 31 cytokines, four soluble adhesion molecules and eight matrix metalloproteinases were analyzed by Luminex technology. Most mediators showed detectable levels in both plasma and serum. Several mediators that can be released by platelets showed increased serum levels, especially CCL5 and CD40L, but for the other mediators the serum levels did not correlate with peripheral blood platelet counts and for these last mediators serum and plasma levels often showed strong correlations. The use of bivalirudin for anticoagulation significantly increased and citric acid combined with platelet inhibitors (ticagrelor, acetylsalicylic acid plus prostaglandin E2) did not alter plasma levels of platelet-store mediators compared with citric acid alone. The impact of sample preparation differed between mediators; for many mediators strong correlations were seen between serum and plasma levels even when absolute levels differed. Soluble adhesion molecule levels showed only minor differences between samples. Unsupervised hierarchical clustering suggested that the effect of sampling/preparation was strongest for serum and heparin plasma samples. Careful standardization of sample preparation is usually necessary when analyzing systemic mediator levels, and differences caused by sample preparation should be considered as a possible explanation if studies show conflicting results. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Adhesion of Epstein–Barr virus-positive natural killer cell lines to cultured endothelial cells stimulated with inflammatory cytokines

    PubMed Central

    Kanno, H; Watabe, D; Shimizu, N; Sawai, T

    2008-01-01

    Chronic active Epstein–Barr virus (EBV) infection (CAEBV) is characterized by chronic recurrent infectious mononucleosis-like symptoms. Approximately one-fourth of CAEBV patients develop vascular lesions with infiltration of EBV-positive lymphoid cells. Furthermore, EBV-positive natural killer (NK)/T cell lymphomas often exhibit angiocentric or angiodestructive lesions. These suggest an affinity of EBV-positive NK/T cells to vascular components. In this study, we evaluated the expression of adhesion molecules and cytokines in EBV-positive NK lymphoma cell lines, SNK1 and SNK6, and examined the role of cytokines in the interaction between NK cell lines and endothelial cells. SNKs expressed intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) at much higher levels than those in EBV-negative T cell lines. SNKs produced the larger amount of tumour necrosis factor (TNF)-α, which caused increased expression of ICAM-1 and VCAM-1 in cultured human endothelial cells, than that from EBV-negative T cell lines. Furthermore, SNKs exhibited increased adhesion to cultured endothelial cells stimulated with TNF-α or interleukin (IL)-1β, and the pretreatment of cytokine-stimulated endothelial cells with anti-VCAM-1-antibodies reduced cell adhesion. These indicate that the up-regulated expression of VCAM-1 on cytokine-stimulated endothelial cells would be important for the adhesion of EBV-positive NK cells and might initiate the vascular lesions. PMID:18190605

  15. The evaluation of p,p'-DDT exposure on cell adhesion of hepatocellular carcinoma.

    PubMed

    Jin, Xiaoting; Chen, Meilan; Song, Li; Li, Hanqing; Li, Zhuoyu

    2014-08-01

    Many studies have found a positive association between the progression of hepatocellular carcinoma and DDT exposure. These studies mainly focus on the effect of DDT exposure on cell proliferation and epithelial to mesenchymal transition (EMT) promotion. However, the influence of DDT on cell adhesion of hepatocellular carcinoma remains to be unclear. The aim of our study was to determine the effect of p,p'-DDT on cell adhesion of hepatocellular carcinoma in vitro and in vivo. The data showed that p,p'-DDT, exposing HepG2 cells for 6 days, decreased cell-cell adhesion and elevated cell-matrix adhesion. Strikingly, p,p'-DDT increased reactive oxygen species (ROS) content, and this was accompanied by the activation of JAK/STAT3 pathway. Moreover, ROS inhibitor supplement reversed these effects significantly. However, the addition of ER inhibitor, ICI, had no effect on the p,p'-DDT-induced effects. p,p'-DDT altered the mRNA levels of related adhesion molecules, including inhibition of E-cadherin and promotion of N-cadherin along with CD29. Interestingly, the p,p'-DDT-altered adhesion molecules could be reversed with JAK inhibitor or STAT3 inhibitor. Likewise, p,p'-DDT stimulated the JAK/STAT3 pathway in nude mice, as well as altered the mRNA levels of E-cadherin, N-cadherin, and CD29. Taken together, these results indicate that p,p'-DDT profoundly promotes the adhesion process by decreasing cell-cell adhesion and inducing cell-matrix adhesion via the ROS-mediated JAK/STAT3 pathway. All these events account for the carcinogenic potential of p,p'-DDT in liver. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Bioadhesion of mussels and geckos: Molecular mechanics, surface chemistry, and nanoadhesives

    NASA Astrophysics Data System (ADS)

    Lee, Haeshin

    The adhesive strategies of living creatures are diverse, ranging from temporary to permanent adhesions with various functions such as locomotion, self-defense, communication, colony formation, and so on. The classic example of temporary adhesion is the gecko, which is known for its ability to walk along vertical and even inverted surfaces; this remarkable adhesion arises from the interfacial weak interactions of van der Waals and capillary forces. In contrast, a celerbrated example of permanent adhesion is found in marine mussels which secrete protein adhesives that function in aqueous environments without mechanical failure against turbulent conditions on the seashore. In addition, mussel adhesives stick to virtually all inorganic and organic surfaces. However, most commonly used man-made adhesives lack such unique adhesion properties compared to their natural counterparts. For example, many commercial adhesives quickly lose their adhesive strength when exposed to solvents, particularly water. The first part of this thesis focused on adhesion mechanics of mussels at a single-molecule level, in which the adhesive molecule showed surprisingly strong yet reversible adhesion on inorganic surfaces but exhibited irreversible covalent bond formation on organic surfaces. Strong and reversible adhesion on mucin surfaces was found, indicating potential application for drug delivery via mucus layers. Next, inspired by the mussel's versatile adhesion on a wide variety of material surfaces, a material-independent surface modification chemistry called 'polydopamine coating' is described. This concept was subsequently adapted to develop a surface-independent polymeric primer for layer-by-layer assembly of multifunctional coatings. Finally, a new bio-hybrid adhesive 'geckel' was developed by the functional combination of adhesion strategies of geckos and mussels. The new bio-inspired adhesive and material-independent surface chemistry can revolutionize the research areas such as medical devices, adhesives, and diagnostics, nanotechnology, biointerface, and catalysis.

  17. Early life adversity and inflammation in African Americans and whites in the midlife in the United States survey.

    PubMed

    Slopen, Natalie; Lewis, Tené T; Gruenewald, Tara L; Mujahid, Mahasin S; Ryff, Carol D; Albert, Michelle A; Williams, David R

    2010-09-01

    To determine whether early life adversity (ELA) was predictive of inflammatory markers and to determine the consistency of these associations across racial groups. We analyzed data from 177 African Americans and 822 whites aged 35 to 86 years from two preliminary subsamples of the Midlife in the United States biomarker study. ELA was measured via retrospective self-report. We used multivariate linear regression models to examine the associations between ELA and C-reactive protein, interleukin-6, fibrinogen, endothelial leukocyte adhesion molecule-1, and soluble intercellular adhesion molecule-1, independent of age, gender, and medications. We extended race-stratified models to test three potential mechanisms for the observed associations. Significant interactions between ELA and race were observed for all five biomarkers. Models stratified by race revealed that ELA predicted higher levels of log interleukin-6, fibrinogen, endothelial leukocyte adhesion molecule-1, and soluble intercellular adhesion molecule-1 among African Americans (p < .05), but not among whites. Some, but not all, of these associations were attenuated after adjustment for health behaviors and body mass index, adult stressors, and depressive symptoms. ELA was predictive of high concentrations of inflammatory markers at midlife for African Americans, but not whites. This pattern may be explained by an accelerated course of age-related disease development for African Americans.

  18. Cyclosporin A inhibits CD11a/CD18 adhesion molecules due to inhibition of TNFα and IL-1β levels in the mouse model of pleurisy induced by carrageenan

    PubMed Central

    Dalmarco, Eduardo Monguilhott; Medeiros, Yara Santos

    2008-01-01

    The mouse model of pleurisy induced by carrageenan is characterized by a significant enhancement of cell migration due to neutrophils 4 h after pleurisy induction. Forty-eight hours after pleurisy induction, a significant increase in cell migration due to mononuclear cells occurs. Recently, studies in our laboratory have demonstrated that cyclosporine A (CsA) inhibits leukocyte migration in the pleural cavity and lungs in the mouse model of pleurisy induced by carrageenan. In the present work we evaluated whether CsA was able to downregulate CD11a/CD18 adhesion molecule in the lungs, as well as TNFα and IL-1β levels in the fluid leakage of the pleural cavity in this model. Our results showed that CsA significantly decreased CD11a/CD18 in the lungs, as well as TNFα and IL-1β levels in the fluid leakage of the pleural cavity 4 h and 48 h after pleurisy induction. It is our hypothesis that the inhibitory effect elicited by CsA upon these adhesion molecules may be also be attributed to the downregulation of TNFα and IL-1β cytokines. PMID:19262158

  19. Intercellular adhesion molecule, plasma adiponectin and albuminuria in type 2 diabetic patients.

    PubMed

    Lenghel, Alina Ramona; Kacso, Ina Maria; Bondor, Cosmina Ioana; Rusu, Crina; Rahaian, Rodica; Gherman Caprioara, Mirela

    2012-01-01

    Our study addressed the influence of early inflammatory stages of diabetic kidney disease: leukocyte adhesion and monocyte activation (as assessed by intercellular leukocyte adhesion molecule-ICAM-1 and monocyte chemoatractant protein-MCP-1) on the degree of albuminuria. Plasma levels of adiponectin, a possible anti-inflammatory counteracting mechanism, were also studied in correlation to the above-mentioned cytokines. 79 consecutive type 2 diabetic outpatients and 46 controls were included. Routine laboratory analysis, urinary albumin to creatinine ratio (uACR), plasma adiponectin, plasma ICAM-1 and urinary MPC-1 were assessed. In multiple regression ICAM-1 (p=0.004) and adiponectin (p=0.04) were the main determinants of uACR. Plasma adiponectin positively correlated to ICAM-1 (p=0.03, r=0.24). In albuminuric patients (uACR ≥30 mg/g) plasma adiponectin was significantly higher compared to normoalbuminuric ones (uACR <30 mg/g). In albuminuric patients the main determinants of uACR were plasma ICAM-1 and adiponectin. In multiple regression ICAM-1 is the only one that retains statistical significance (p=0.02). Urinary MCP-1 did not correlate to uACR. In our type 2 diabetic patients, plasma levels of ICAM-1 and adiponectin are predictive for albuminuria. Urinary MCP-1 does not correlated to uACR. Plasma adiponectin positively correlates to adhesion molecule ICAM-1 in our cohort. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Endocan--the new endothelial activation marker independently associated with soluble endothelial adhesion molecules in uraemic patients with cardiovascular disease.

    PubMed

    Pawlak, Krystyna; Mysliwiec, Michal; Pawlak, Dariusz

    2015-04-01

    Endocan is a new marker of endothelial cell activation that mediates adhesion of leukocytes into endothelium. Soluble intercellular (sICAM-1) and vascular cellular (sVCAM-1) adhesion molecules play an important role in the prevalence of cardiovascular disease (CVD) in chronic kidney disease (CKD) patients. The aim of this study is to investigate whether endocan could affect the concentrations of sICAM-1 and sVCAM-1 in CKD patients, particularly in those with CVD. We evaluated plasma endocan, sICAM-1, sVCAM-1 and the markers of inflammation: high sensitivity C-reactive protein (hs CRP), interleukin-6, tumor necrosis factor-α (TNF-α) and their interrelationships in 53 CKD patients (both with and without CVD) and 29 healthy controls. Endocan, sICAM-1, sVCAM-1 and inflammatory markers were significantly higher in CKD patients than in controls, and patients with CVD had levels significantly higher (except interleukin-6 and TNF-α) than those without CVD. The presence of CVD, ferritin, TNF-α and SBP were the independent predictors of endocan levels in the whole CKD group. In this group, the weak relationship was between endocan and sICAM-1 and sVCAM-1, but age was the only independent predictor of these adhesion molecules. The strong association between endocan and sICAM-1 and sVCAM-1 was exclusively observed in subgroup with CVD, and the low % of lymphocytes followed by increased endocan was identified as the independent variables significantly associated with these soluble molecule levels. This study shows that plasma endocan is significantly increased and independently associated with sICAM-1 and sVCAM-1 levels in CKD patients with cardiovascular complications. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  1. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion.

    PubMed

    Bourboulia, Dimitra; Stetler-Stevenson, William G

    2010-06-01

    Cells adhere to one another and/or to matrices that surround them. Regulation of cell-cell (intercellular) and cell-matrix adhesion is tightly controlled in normal cells, however, defects in cell adhesion are common in the majority of human cancers. Multilateral communication among tumor cells with the extracellular matrix (ECM) and neighbor cells is accomplished through adhesion molecules, ECM components, proteolytic enzymes and their endogenous inhibitors. There is sufficient evidence to suggest that reduced adherence is a tumor cell property engaged during tumor progression. Tumor cells acquire the ability to change shape, detach and easily move through spaces disorganizing the normal tissue architecture. This property is due to changes in expression levels of adhesion molecules and/or due to elevated levels of secreted proteolytic enzymes, including matrix metalloproteinases (MMPs). Among other roles, MMPs degrade the ECM and, therefore, prepare the path for tumor cells to migrate, invade and spread to distant secondary areas, where they form metastasis. Tissue inhibitors of metalloproteinases or TIMPs control MMP activities and, therefore, minimize matrix degradation. Both MMPs and TIMPs are involved in tissue remodeling and decisively regulate tumor cell progression including tumor angiogenesis. In this review, we describe and discuss data that support the important role of MMPs and TIMPs in cancer cell adhesion and tumor progression. Published by Elsevier Ltd.

  2. Withaferin A inhibits tumor necrosis factor-alpha-induced expression of cell adhesion molecules by inactivation of Akt and NF-kappaB in human pulmonary epithelial cells.

    PubMed

    Oh, Jung Hwa; Kwon, Taeg Kyu

    2009-05-01

    We here investigated the functional effect of withaferin A on airway inflammation and its action mechanism. Withaferin A inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in human lung epithelial A549 cells stimulated with tumor necrosis factor-alpha (TNF-alpha), resulting in the suppression of leukocyte adhesion to lung epithelial A549 cells. In addition, withaferin A inhibited TNF-alpha-induced expression of adhesion molecules (ICAM-1 and VCAM-1) protein and mRNA in a dose-dependent manner. Withaferin A prevented DNA binding activity of nuclear factor-kappaB (NF-kappaB) and nuclear translocation of NF-kappaB. It also inhibited phosphorylation of Akt and extracellular signal-regulated kinase (ERK), which are upstream in the regulation of adhesion molecules by TNF-alpha. Furthermore, withaferin A inhibited U937 monocyte adhesion to A549 cells stimulated by TNF-alpha, suggesting that it may inhibit the binding of these cells by regulating the expression of critical adhesion molecules by TNF-alpha. Taken together, these results suggest that withaferin A inhibits cell adhesion through inhibition of ICAM-1 and VCAM-1 expression, at least in part, by blocking Akt and down-regulating NF-kappaB activity.

  3. Protective effects of sulphonated formononetin in a rat model of cerebral ischemia and reperfusion injury.

    PubMed

    Zhu, Haibo; Zou, Libo; Tian, Jingwei; Lin, Fei; He, Jie; Hou, Jian

    2014-03-01

    Sodium formononetin-3'-sulphonate is a derivative of the plant isoflavone formononetin. The present study aimed to investigate the neuroprotective and angiogenesis effects of sodium formononetin-3'-sulphonate in vivo and in vitro. Treatment with sodium formononetin-3'-sulphonate (3, 7.5, 15, and 30 mg/kg, intravenous injection) could protect the brain from ischemia and reperfusion injury by improving neurological function, suppressing cell apoptosis, and increasing expression levels of vascular endothelial growth factor and platelet endothelial cell adhesion molecule 1 by middle cerebral artery occlusion. Treatment with sodium formononetin-3'-sulphonate (10 and 20 µg/mL) significantly increased cell migration, tube formation, and vascular endothelial growth factor and platelet endothelial cell adhesion molecule levels in human umbilical vein endothelial cells. Our results suggest that sodium formononetin-3'-sulphonate provides significant neuroprotective effects against cerebral ischemia and reperfusion injury in rats, and improves cerebrovascular angiogenesis in human umbilical vein endothelial cells. The protective mechanisms of sodium formononetin-3'-sulphonate may be attributed to the suppression of cell apoptosis and improved cerebrovascular angiogenesis by promoting vascular endothelial growth factor and platelet endothelial cell adhesion molecule expression. Georg Thieme Verlag KG Stuttgart · New York.

  4. Increased ICAM-1 Expression in Transformed Human Oral Epithelial Cells: Molecular Mechanism and Functional Role in Peripheral Blood Mononuclear Cell Adhesion and Lymphokine-Activated-Killer Cell Cytotoxicity

    PubMed Central

    Huang, George T.-J.; Zhang, Xinli; Park, No-Hee

    2012-01-01

    The intercellular adhesion molecule-1 (ICAM-1, CD54) serves as a counter-receptor for the β2-integrins, LFA-1 and Mac-1, which are expressed on leukocytes. Although expression of ICAM-1 on tumor cells has a role in tumor progression and development, information on ICAM-1 expression and its role in oral cancer has not been established. Normal human oral keratinocytes (NHOK), human papilloma virus (HPV)-immortalized human oral keratinocyte lines (HOK-16B, HOK-18A, and HOK-18C), and six human oral neoplastic cell lines (HOK-16B-BaP-T1, SCC-4, SCC-9, HEp-2, Tu-177 and 1483) were used to study ICAM-1 expression and its functional role in vitro. Our results demonstrated that NHOK express negligible levels of ICAM-1, whereas immortalized human oral keratinocytes and cancer cells express significantly higher levels of ICAM-1, except for HOK-16B-BaP-T1 and HEp-2. Altered mRNA half-lives did not fully account for the increased accumulation of ICAM-1 mRNA. Adhesion of peripheral blood mononuclear cells (PBMC) to epithelial cells correlated with cell surface ICAM-1 expression levels. This adhesion was inhibited by antibodies specific for either ICAM-1 or LFA-1/Mac-1, suggesting a role for these molecules in adhesion. In contrast, lymphokine-activated-killer (LAK) cell cytotoxic killing of epithelial cells did not correlate with ICAM-1 levels or with adhesion. Nonetheless, within each cell line, blocking of ICAM-1 or LFA-1/Mac-1 reduced LAK cells killing, suggesting that ICAM-1 is involved in mediating this killing. PMID:10938387

  5. Effect of relative humidity on onset of capillary forces for rough surfaces.

    PubMed

    Zarate, Nyah V; Harrison, Aaron J; Litster, James D; Beaudoin, Stephen P

    2013-12-01

    Atomic force microscopy (AFM) was used to investigate the effect of relative humidity (RH) on the adhesion forces between silicon nitride AFM probes, hydrophilic stainless steel, and hydrophobic Perspex® (polymethylmethacrylate, PMMA). In addition, AFM-based phase contrast imaging was used to quantify the amount and location of adsorbed water present on these substrates at RH levels ranging from 15% to 65% at 22°C. Both the adhesion forces and the quantities of adsorbed moisture were seen to vary with RH, and the nature of this variation depended on the hydrophobicity of the substrate. For the Perspex®, both the adhesion force and the amount of adsorbed moisture were essentially independent of RH. For the stainless steel substrate, adsorbed moisture increased continuously with increasing RH, while the adhesion force rose from a minimum at 15% RH to a broad maximum between 25% and 35% RH. From 35% to 55% RH, the adhesion force dropped continuously to an intermediate level before rising again as 65% RH was approached. The changes in adhesion force with increasing relative humidity in the case of the stainless steel substrate were attributed to a balance of effects associated with adsorbed, sub-continuum water on the cantilever and steel. Hydrogen bonding interactions between these adsorbed water molecules were thought to increase the adhesion force. However, when significant quantities of molecular water adsorbed, these molecules were expect to decrease adhesion by screening the van der Waals interactions between the steel and the cantilever tip, and by increasing the separation distance between these solid surfaces when they were 'in contact'. Finally, the slight increase in adhesion between 55% and 65% RH was attributed to true capillary forces exerted by continuum water on the two solid surfaces. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. KSA Antigen Ep-CAM Mediates Cell–Cell Adhesion of Pancreatic Epithelial Cells: Morphoregulatory Roles in Pancreatic Islet Development

    PubMed Central

    Cirulli, V.; Crisa, L.; Beattie, G.M.; Mally, M.I.; Lopez, A.D.; Fannon, A.; Ptasznik, A.; Inverardi, L.; Ricordi, C.; Deerinck, T.; Ellisman, M.; Reisfeld, R.A.; Hayek, A.

    1998-01-01

    Cell adhesion molecules (CAMs) are important mediators of cell–cell interactions and regulate cell fate determination by influencing growth, differentiation, and organization within tissues. The human pancarcinoma antigen KSA is a glycoprotein of 40 kD originally identified as a marker of rapidly proliferating tumors of epithelial origin. Interestingly, most normal epithelia also express this antigen, although at lower levels, suggesting that a dynamic regulation of KSA may occur during cell growth and differentiation. Recently, evidence has been provided that this glycoprotein may function as an epithelial cell adhesion molecule (Ep-CAM). Here, we report that Ep-CAM exhibits the features of a morphoregulatory molecule involved in the development of human pancreatic islets. We demonstrate that Ep-CAM expression is targeted to the lateral domain of epithelial cells of the human fetal pancreas, and that it mediates calcium-independent cell–cell adhesion. Quantitative confocal immunofluorescence in fetal pancreata identified the highest levels of Ep-CAM expression in developing islet-like cell clusters budding from the ductal epithelium, a cell compartment thought to comprise endocrine progenitors. A surprisingly reversed pattern was observed in the human adult pancreas, displaying low levels of Ep-CAM in islet cells and high levels in ducts. We further demonstrate that culture conditions promoting epithelial cell growth induce upregulation of Ep-CAM, whereas endocrine differentiation of fetal pancreatic epithelial cells, transplanted in nude mice, is associated with a downregulation of Ep-CAM expression. In addition, a blockade of Ep-CAM function by KS1/4 mAb induced insulin and glucagon gene transcription and translation in fetal pancreatic cell clusters. These results indicate that developmentally regulated expression and function of Ep-CAM play a morphoregulatory role in pancreatic islet ontogeny. PMID:9508783

  7. Increased levels of markers of vascular inflammation in patients with coronary heart disease.

    PubMed

    Schumacher, A; Seljeflot, I; Sommervoll, L; Christensen, B; Otterstad, J E; Arnesen, H

    2002-01-01

    Elevated levels of soluble cell adhesion molecules (sCAMs), inflammatory cytokines and C-reactive protein (CRP) have been associated with atherosclerotic disease states. The aim of the present study was to evaluate whether circulating levels of vascular cell adhesion molecule-1 (sVCAM-1), intercellular adhesion molecule-1 (sICAM-1), E- and P-selectin were significantly elevated in patients with coronary heart disease (CHD) compared with healthy controls, and to study possible associations between these sCAMs, tumour necrosis factor alpha (TNFalpha). interleukin-6 (IL-6), CRP and major CHD risk factors. The study included 193 patients in various stages of CHD and 193 matched controls. To evaluate any possible influence of acute phase reaction, reinvestigation was performed after 6 months. After adjustment for major CHD risk factors, sVCAM-1, sICAM-1, P-selectin, IL-6 and CRP remained significantly elevated in the CHD patients (p for all <0.001). In multivariate analysis sVCAM-1 was predicted by age (p=0.015), sICAM-1 by smoking (p<0.001) and total cholesterol (p=0.026), E-selectin by body mass index (BMI) (p=0.004) and P-selectin by male gender (p=0.015). TNFalpha significantly predicted sICAM-1 and E-selectin levels, while IL-6 predicted CRP but none of the sCAMs measured. This might indicate that TNFalpha, but not IL-6, plays a major role in the regulation of sCAM levels in vivo.

  8. Indomethacin induced gastropathy in CD18, intercellular adhesion molecule 1, or P-selectin deficient mice

    PubMed Central

    Morise, Z; Granger, D; Fuseler, J; Anderson, D; Grisham, M

    1999-01-01

    BACKGROUND—Neutrophil-endothelial cell interactions are thought to play a critical role in the pathophysiology of non-steroidal anti-inflammatory drug (NSAID) induced gastropathy.
AIMS—To optimise a mouse model of NSAID induced gastropathy and to evaluate the importance of adhesion molecules using adhesion molecule deficient mice.
METHODS—Gastropathy was induced in C57BL/6 mice or their adhesion molecule deficient counterparts via oral administration of indomethacin (20 mg/kg). Lesion scores, mucosal permeability, and histopathology were used to assess gastric mucosal injury.
RESULTS—Intragastric administration of indomethacin induced linear haemorrhagic mucosal lesions, primarily in the corpus of the stomach that were first observed at six hours. These lesions continued to develop over the next six hours with maximal lesion scores and mucosal permeabilities at 12 hours. When indomethacin was administered to mice deficient in CD18, intercellular adhesion molecule 1 (ICAM-1), or P-selectin, there were significant decreases in lesion scores compared with their C57BL/6 controls. In addition, mucosal permeabilities were found to be significantly lower in CD18 or ICAM-1 deficient mice observed at 12 hours.
CONCLUSION—Certain leucocyte and endothelial cell adhesion molecules are important determinants for full expression of indomethacin induced gastropathy. It is proposed that this modification of the mouse model may be useful for the investigation of other pathophysiological mechanisms of NSAID induced gastropathy.


Keywords: indomethacin; gastropathy; cyclooxygenase; intercellular adhesion molecule; VCAM; vascular cell adhesion molecule; P-selectin PMID:10486359

  9. Efficacy of an inhibitor of adhesion molecule expression (GI270384X) in the treatment of experimental colitis.

    PubMed

    Panés, Julián; Aceituno, Montserrat; Gil, Fèlix; Miquel, Rosa; Piqué, Josep M; Salas, Azucena; McLean, Peter

    2007-10-01

    Modulation of adhesion molecule expression or function is regarded as a promising therapy for inflammatory conditions. This study evaluates the effects of an inhibitor of adhesion molecule expression (GI270384X) in two experimental models of colitis. Colitis of different severity was induced in C57BL/6J mice by administering 1, 2, or 3% dextran sulfate sodium (DSS). GI270384X (3, 10, or 25 mg.kg(-1).day(-1)) was administered as pretreatment or started 3 days after colitis induction. In IL-10-deficient mice, the highest dose was given for 2 wk. The clinical course of colitis, pathological changes, serum inflammatory biomarkers, expression of adhesion molecules, and leukocyte-endothelial cell interactions in colonic venules were measured in mice treated with vehicle or with active drug. In the most severe forms of colitis (2% and 3% DSS and IL-10-deficient mice), the magnitude of colonic inflammation was not modified by treatment with GI270384X. In a less severe form of colitis (1% DSS), GI270384X treatment dose dependently ameliorated the clinical signs of colitis, colonic pathological changes, and serum levels of biomarkers (IL-6 and serum amyloid A). Administration of 25 mg.kg(-1).day(-1) GI270384X abrogated upregulation of ICAM-1 in the inflamed colon but had no effect on VCAM-1 or E-selectin expression. This was associated with a significant reduction in number of rolling and firmly adherent leukocytes in colonic venules. These results indicate that GI270384X is effective in the treatment of experimental colitis of moderate severity. Reduced adhesion molecule expression and leukocyte recruitment to the inflamed intestine contribute to this beneficial effect.

  10. Chlorella 11-Peptide Inhibits the Production of Macrophage-Induced Adhesion Molecules and Reduces Endothelin-1 Expression and Endothelial Permeability

    PubMed Central

    Shih, Mei Fen; Chen, Lih Chi; Cherng, Jong Yuh

    2013-01-01

    The inflammation process in large vessels involves the up-regulation of vascular adhesion molecules such as endothelial cell selectin (E-selectin), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) which are also known as the markers of atherosclerosis. We have reported that Chlorella 11-peptide exhibited effective anti-inflammatory effects. This peptide with an amino sequence Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Gln-Phe was further examined for its potential in preventing atherosclerosis in this study. In particular, the roles of Chlorella 11-peptide in lowering the production of vascular adhesion molecules, monocyte chemoattractant protein (MCP-1) and expression of endothelin-1 (ET-1) from endothelia (SVEC4-10 cells) were studied. The production of E-selectin, ICAM-1, VCAM-1 and MCP-1 in SVEC4-10 cells was measured with ELISA. The mRNA expression of ET-1 was analyzed by RT-PCR and agarose gel. Results showed that Chlorella 11-peptide significantly suppressed the levels of E-selectin, ICAM, VCAM, MCP-1 as well as ET-1 gene expression. The inhibition of ICAM-1 and VCAM-1 production by Chlorella 11-peptide was reversed in the presence of protein kinase A inhibitor (H89) which suggests that the cAMP pathway was involved in the inhibitory cause of the peptide. In addition, this peptide was shown to reduce the extent of increased intercellular permeability induced by combination of 50% of lipopolysaccharide (LPS)-activated RAW 264.7 cells medium and 50% normal SEVC cell culture medium (referred to as 50% RAW-conditioned medium). These data demonstrate that Chlorella 11-peptide is a promising biomolecule in preventing chronic inflammatory-related vascular diseases. PMID:24129228

  11. Cytotoxicity, oxidative stress and expression of adhesion molecules in human umbilical vein endothelial cells exposed to dust from paints with or without nanoparticles.

    PubMed

    Mikkelsen, Lone; Jensen, Keld A; Koponen, Ismo K; Saber, Anne T; Wallin, Håkan; Loft, Steffen; Vogel, Ulla; Møller, Peter

    2013-03-01

    Nanoparticles in primary form and nanoproducts might elicit different toxicological responses. We compared paint-related nanoparticles with respect to effects on endothelial oxidative stress, cytotoxicity and cell adhesion molecule expression. Primary human umbilical vein endothelial cells were exposed to primary nanoparticles (fine, photocatalytic or nanosized TiO(2), aluminium silicate, carbon black, nano-silicasol or axilate) and dust from sanding reference- or nanoparticle-containing paints. Most of the samples increased cell surface expressions of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), but paint sanding dust samples generally generated less response than primary particles of TiO(2) and carbon black. We found no relationship between the expression of adhesion molecules, cytotoxicity and production of reactive oxygen species. In conclusion, sanding dust from nanoparticle-containing paint did not generate more oxidative stress or expression of cell adhesion molecules than sanding dust from paint without nanoparticles, whereas the primary particles had the largest effect on mass basis.

  12. Mycophenolate mofetil increases adhesion capacity of tumor cells in vitro.

    PubMed

    Blaheta, Roman A; Bogossian, Harilaos; Beecken, Wolf-Dietrich; Jonas, Dietger; Hasenberg, Christoph; Makarevic, Jasmina; Ogbomo, Henry; Bechstein, Wolf O; Oppermann, Elsie; Leckel, Kerstin; Cinatl, Jindrich

    2003-12-27

    The immunosuppressive drug mycophenolate mofetil (MMF) reduces expression of the heterophilic binding elements intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 and thereby prevents attachment of alloactivated leukocytes to donor endothelium. The authors speculated that MMF might further diminish receptors of the immunoglobulin superfamily which, however, act as homophilic binding elements. Because decrease of homophilic adhesion receptors correlates with tumor dissemination and metastasis, MMF could trigger development or recurrence of neoplastic tumors. The authors analyzed the influence of MMF on homotypic adhesion receptors and its consequence for tumor cell attachment to an endothelial cell monolayer. Neuroblastoma (NB) cells, which self-aggregate by means of the homophilic-binding element neural cell adhesion molecule (NCAM), were used. Effects of MMF on the 140- and 180-kDa NCAM isoforms were investigated quantitatively by flow cytometry, Western blot, and reverse-transcriptase (RT) polymerase chain reaction (PCR). The relevance of NCAM for tumor cell binding was proven by treating NB with NCAM antisense oligonucleotides. MMF profoundly increased the number of adherent NB cells, with a maximum effect at 0.1 microM, compared with controls. Decrease of NCAM on the cell surface was detected by flow cytometry. Western blot and RT-PCR demonstrated reduced protein and RNA levels of the 140- and 180-kDa isoforms. Treatment of NB cells with NCAM antisense oligonucleotides showed that reduced NCAM expression leads to enhanced tumor cell adhesion. MMF decreases NCAM receptors, which is associated with enhanced tumor cell invasiveness. The authors conclude that an MMF-based immunosuppressive regimen might increase the risk of tumor metastasis if this process is predominantly conveyed by means of homophilic adhesion proteins.

  13. The coffee diterpene kahweol inhibits tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in human endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil

    2006-12-15

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppressed the TNF{alpha}-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNF{alpha}-induced JAK2-PI3K/Akt-NF-{kappa}B activation pathway in these cells. Overall, kahweol hasmore » anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells.« less

  14. Plasma levels of soluble intercellular adhesion molecule-1 as a biomarker for disease severity of patients with community-acquired pneumonia.

    PubMed

    Chang, Pin-Yu; Tsao, Shih-Ming; Chang, Jer-Hwa; Chien, Ming-Hsien; Hung, Wen-Yueh; Huang, Yi-Wen; Yang, Shun-Fa

    2016-12-01

    Community-acquired pneumonia (CAP) is characterized as an acute inflammation of the lung associated with the activation of macrophages and neutrophils. Intercellular adhesion molecule-1 (ICAM-1) is an essential adhesion molecule involved in immune cell recruitment in lung inflammation. We investigated whether ICAM-1 is a useful biomarker for assessing the disease severity of hospitalized adult patients with CAP. Plasma soluble ICAM-1 (sICAM-1) levels were measured in 78 patients with CAP and 69 healthy controls by using a commercial enzyme-linked immunosorbent assay. The pneumonia severity index scores were used to determine CAP severity in patients upon initial hospitalization. The sICAM-1 and C-reactive protein (CRP) levels decreased significantly in patients with CAP after antibiotic treatment. The plasma concentration of sICAM-1 alone, but not CRP, was correlated with CAP severity according to the pneumonia severity index scores (r=0.431, p<0.001). The sICAM-1 levels in patients with CAP with high mortality risk were significantly higher than those in patients with CAP with medium or low mortality risk. Moreover, the sICAM-1 level showed a significant correlation with the length of hospital stay (r=0.488, p<0.001). Mechanistic investigations found that bacterial lipopolysaccharide induced upregulation of ICAM-1 expression through the c-Jun N-terminal kinase pathway in RAW264.7 macrophages. Plasma sICAM-1 levels may play a role in the diagnosis and clinical assessment of CAP severity. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Changes in the vascular cell adhesion molecule-1, intercellular adhesion molecule-1 and c-reactive protein following administration of aqueous extract of piper sarmentosum on experimental rabbits fed with cholesterol diet

    PubMed Central

    2011-01-01

    Background Inflammation process plays an important role in the development of atherosclerosis. Hypercholesterolemia is one of the major risk factors for atherosclerosis. The present study aimed to evaluate the effect of aqueous extract of Piper sarmentosum (P.s) on inflammatory markers like vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and C-reactive protein (CRP). Methods Forty two male New Zealand white rabbits were divided equally into seven groups; (i) C- control group fed normal rabbit chow (ii) CH- cholesterol diet (1%cholesterol) (iii) X1- 1% cholesterol with water extract of P.s (62.5 mg/kg) (iv) X2- 1% cholesterol with water extract of P.s (125 mg/kg (v) X3- 1% cholesterol with water extract of P.s (250 mg/kg) (vi) X4- 1% cholesterol with water extract of P.s (500 mg/kg) and (vii) SMV group fed with 1% cholesterol supplemented with simvistatin drug (1.2 mg/kg). All animals were treated for 10 weeks. Blood serum was taken for observing the inflammatory markers at the beginning and end of the experiment. Results Rabbits fed with 1% cholesterol diet (CH) showed significant increase in the level of VCAM-1, ICAM-1 and CRP compared to the C group. The levels of VCAM-1, ICAM-1 and CRP in the 1% cholesterol group and supplemented with P.s (500 mg/kg) were significantly reduced compared to the cholesterol group. Similar results were also reported with simvistatin group. Conclusion These results suggest that the supplementation of Piper sarmentosum extract could inhibit inflammatory markers which in turn could prevent atherosclerosis. PMID:21214952

  16. αMβ2-integrin-intercellular adhesion molecule-1 interactions drive the flow-dependent trafficking of Guillain-Barré syndrome patient derived mononuclear leukocytes at the blood-nerve barrier in vitro

    PubMed Central

    Yosef, Nejla; Ubogu, Eroboghene E.

    2012-01-01

    The mechanisms of hematogenous leukocyte trafficking at the human blood-nerve barrier (BNB) are largely unknown. Intercellular adhesion molecule-1 (ICAM-1) has been implicated in the pathogenesis of Guillain-Barré syndrome (GBS). We developed a cytokine-activated human in vitro BNB model using primary endoneurial endothelial cells. Endothelial treatment with 10 U/mL tissue necrosis factor-α and 20 U/mL interferon-γ resulted in de novo expression of proinflammatory chemokines CCL2, CXCL9, CXCL11 and CCL20, with increased expression of CXCL2-3, CXCL8 and CXCL10 relative to basal levels. Cytokine treatment induced/ enhanced ICAM-1, E- and P-selectin, vascular cell adhesion molecule-1 and the alternatively spliced pro-adhesive fibronectin variant, fibronectin connecting segment-1 expression in a time-dependent manner, without alterations in junctional adhesion molecule-A expression. Lymphocytes and monocytes from untreated GBS patients express ICAM-1 counterligands, αM- and αL-integrin, with differential regulation of αM-integrin expression compared to healthy controls. Under flow conditions that mimic capillary hemodynamics in vivo, there was a >3-fold increase in total GBS patient and healthy control mononuclear leukocyte adhesion/ migration at the BNB following cytokine treatment relative to the untreated state. Function neutralizing monoclonal antibodies against human αM-integrin (CD11b) and ICAM-1 reduced untreated GBS patient mononuclear leukocyte trafficking at the BNB by 59% and 64.2% respectively. Monoclonal antibodies against αL-integrin (CD11a) and human intravenous immunoglobulin reduced total leukocyte adhesion/migration by 22.8% and 17.6% respectively. This study demonstrates differential regulation of αM-integrin on circulating mononuclear cells in GBS, as well as an important role for αM-integrin-ICAM-1 interactions in pathogenic GBS patient leukocyte trafficking at the human BNB in vitro. PMID:22552879

  17. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    PubMed

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  18. Therapeutic effects of full spectrum light on the development of atopic dermatitis-like lesions in NC/Nga mice.

    PubMed

    Kwon, Tae-Rin; Mun, Seog Kyun; Oh, Chang Taek; Hong, Hyuckki; Choi, Yeon Shik; Kim, Bong-Jun; Kim, Beom Joon

    2014-01-01

    Full spectrum light (FSL) includes UVA, visible light and infrared light. Many studies have investigated the application of FSL in severe cases of atopic dermatitis (AD) in humans; however, FSL has not yet been studied in an animal model. The purpose of this study was to evaluate the therapeutic effects of FSL on AD-like skin lesions using NC/Nga mice, with the aim of mitigating itching and attenuating the expression of adhesion molecules. We examined the effects of FSL on mite allergen-treated NC/Nga mice by assessing skin symptom severity, ear thickness, serum IgE levels, and the cytokine expression. We examined the histology of lesions using hematoxylin-eosin, toluidine blue and immunohistochemical staining. Our findings suggest that FSL phototherapy exerts positive therapeutic effects on Dermatophagoides farinae (Df)-induced AD-like skin lesions in NC/Nga mice by reducing IgE levels, thus promoting recovery of the skin barrier. The mechanisms by which FSL phototherapy exerts its effects may also involve the inhibition of scratching behavior, reduction of IL-6 levels and reductions in adhesion molecule expression. The present study indicates that FSL phototherapy inhibits the development of AD in NC/Nga mice by suppressing cytokine, chemokine and adhesion molecule expression, and thus, could potentially be useful in treating AD. © 2014 The American Society of Photobiology.

  19. Impaired Circulating Angiogenic Cells Mobilization and Metalloproteinase-9 Activity after Dynamic Exercise in Early Metabolic Syndrome

    PubMed Central

    Rocha, Natalia G.; Sales, Allan R. K.; Penedo, Leticia A.; Pereira, Felipe S.; Silva, Mayra S.; Miranda, Renan L.; Silva, Jemima F. R.; Silva, Bruno M.; Santos, Aline A.; Nobrega, Antonio C. L.

    2015-01-01

    Increased levels of adhesion molecules or metalloproteinases (MMPs) may indicate endothelial dysfunction. Exercise mobilizes circulating angiogenic cells (CACs) from bone marrow in healthy subjects, improving vascular function. However, it is unclear whether this mechanism is preserved in the early stages of metabolic syndrome (early MetS). We aimed to evaluate the acute effects of exercise on adhesion molecules, angiogenic factors, MMPs, and CACs in early MetS. Fifteen subjects with early MetS and nine healthy controls underwent an exercise session and a nonexercise session, randomly. Adhesion molecules, angiogenic factors, CACs, and MMPs were evaluated before and after exercise or nonexercise sessions. At baseline, levels of sE-selectin, sICAM-1, and MMP-9 were higher in early MetS than in controls (P ≤ 0.03). After exercise, sE-selectin, sICAM-1, and MMP-9 levels were still higher in early MetS (P < 0.05). Subjects with early MetS presented less CACs (P = 0.02) and higher MMP-9 activity (P ≤ 0.04), while healthy controls presented higher MMP-2 activity after exercise. There was no difference between moments in nonexercise session (P > 0.05). In conclusion, subjects with early MetS already presented impaired endothelial function at rest along with a decrease in CACs and an increase in MMP-9 activity in response to exercise. PMID:26557715

  20. Impaired Circulating Angiogenic Cells Mobilization and Metalloproteinase-9 Activity after Dynamic Exercise in Early Metabolic Syndrome.

    PubMed

    Rocha, Natalia G; Sales, Allan R K; Penedo, Leticia A; Pereira, Felipe S; Silva, Mayra S; Miranda, Renan L; Silva, Jemima F R; Silva, Bruno M; Santos, Aline A; Nobrega, Antonio C L

    2015-01-01

    Increased levels of adhesion molecules or metalloproteinases (MMPs) may indicate endothelial dysfunction. Exercise mobilizes circulating angiogenic cells (CACs) from bone marrow in healthy subjects, improving vascular function. However, it is unclear whether this mechanism is preserved in the early stages of metabolic syndrome (early MetS). We aimed to evaluate the acute effects of exercise on adhesion molecules, angiogenic factors, MMPs, and CACs in early MetS. Fifteen subjects with early MetS and nine healthy controls underwent an exercise session and a nonexercise session, randomly. Adhesion molecules, angiogenic factors, CACs, and MMPs were evaluated before and after exercise or nonexercise sessions. At baseline, levels of sE-selectin, sICAM-1, and MMP-9 were higher in early MetS than in controls (P ≤ 0.03). After exercise, sE-selectin, sICAM-1, and MMP-9 levels were still higher in early MetS (P < 0.05). Subjects with early MetS presented less CACs (P = 0.02) and higher MMP-9 activity (P ≤ 0.04), while healthy controls presented higher MMP-2 activity after exercise. There was no difference between moments in nonexercise session (P > 0.05). In conclusion, subjects with early MetS already presented impaired endothelial function at rest along with a decrease in CACs and an increase in MMP-9 activity in response to exercise.

  1. Loss of the endothelial glycocalyx is associated with increased E-selectin mediated adhesion of lung tumour cells to the brain microvascular endothelium.

    PubMed

    Rai, Srijana; Nejadhamzeeigilani, Zaynab; Gutowski, Nicholas J; Whatmore, Jacqueline L

    2015-09-25

    Arrest of metastasising lung cancer cells to the brain microvasculature maybe mediated by interactions between ligands on circulating tumour cells and endothelial E-selectin adhesion molecules; a process likely to be regulated by the endothelial glycocalyx. Using human cerebral microvascular endothelial cells and non-small cell lung cancer (NSCLC) cell lines, we describe how factors secreted by NSCLC cells i.e. cystatin C, cathepsin L, insulin-like growth factor-binding protein 7 (IGFBP7), vascular endothelial growth factor (VEGF) and tumour necrosis factor-alpha (TNF-α), damage the glycocalyx and enhance initial contacts between lung tumour and cerebral endothelial cells. Endothelial cells were treated with tumour secreted-proteins or lung tumour conditioned medium (CM). Surface levels of E-selectin were quantified by ELISA. Adhesion of A549 and SK-MES-1 cells was examined under flow conditions (1 dyne/cm(2)). Alterations in the endothelial glycocalyx were quantified by binding of fluorescein isothiocyanate-linked wheat germ agglutinin (WGA-FITC). A549 and SK-MES-1 CM and secreted-proteins significantly enhanced endothelial surface E-selectin levels after 30 min and 4 h and tumour cell adhesion after 30 min, 4 and 24 h. Both coincided with significant glycocalyx degradation; A549 and SK-MES-1 CM removing 55 ± 12 % and 58 ± 18.7 % of WGA-FITC binding, respectively. Inhibition of E-selectin binding by monoclonal anti-E-selectin antibody completely attenuated tumour cell adhesion. These data suggest that metastasising lung cancer cells facilitate their own adhesion to the brain endothelium by secreting factors that damage the endothelial glycocalyx, resulting in exposure of the previously shielded adhesion molecules and engagement of the E-selectin-mediated adhesion axis.

  2. [Study of serum levels of interlukin-2 and its receptor, interlukin-6, sICAM-1, sVCAM-1 in patients with recurrent genital herpes].

    PubMed

    Zhang, Min; Zhang, Yizhi

    2003-01-01

    To study cellular immunity status and serum levels of adhesion molecules of patients with recurrent genital herpes. Serum levels of interlukin-2 and its soluble receptor, interlukin-6, sICAM-1, sVCAM-1 were measured by ELISA in 34 patients with recurrent genital herpes. The serum levels of IL-2 and IL-6 were significantly lower in patients than in healthy controls (P < 0.01). The levels of sIL-2R, sICAM-1 and sVCAM-1 were significantly higher in patients than in controls (P < 0.05). No significant differences were seen in all variables of patients in relapse phase and remission phase (P > 0.05). There are cellular immunity deficiency and high serum levels of adhesion molecules in patients with recurrent genital herpes, and these changes may be related to therecurrence of genital herpes and the development of inflammatory reaction.

  3. Impact of adiposity on cellular adhesion: The Multi-Ethnic Study of atherosclerosis (MESA).

    PubMed

    Christoph, Mary J; Allison, Matthew A; Pankow, James S; Decker, Paul A; Kirsch, Phillip S; Tsai, Michael Y; Sale, Michele M; de Andrade, Mariza; Sicotte, Hugues; Tang, Weihong; Hanson, Naomi Q; Berardi, Cecilia; Wassel, Christina L; Larson, Nicholas B; Bielinski, Suzette J

    2016-01-01

    At the cellular level, how excess adiposity promotes atherogenesis is not fully understood. One pathway involves secretion of adipokines that stimulate endothelial dysfunction through increased expression of adhesion molecules. However, the relationship of adiposity to adhesion molecules that promote atherosclerosis is largely unknown. Linear regression models were used to assess the sex-specific associations of soluble cellular adhesion molecules (sP- and sL-selectin, sICAM-1, sVCAM-1, and sHGF) and adiposity in 5,974 adults examined as part of the Multi-Ethnic Study of Atherosclerosis (MESA). Adiposity measures included body mass index (BMI), waist-to-hip-ratio (WHR), and computed tomography measures of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). The mean age was 64 years and 52% were female. In multivariable models adjusting for traditional cardiovascular risk factors, sHGF was positively associated with BMI, WHR, and VAT in both males and females, and sP-selectin with WHR and VAT in males. sVCAM-1 was inversely associated with VAT in females only. Our results showed the relation of adiposity to soluble cellular adhesion proteins was similar across adiposity measures and for both sexes. However, the relationship between adiposity and sVCAM-1 and P-selectin may be modified by sex and the measure used to assess adiposity. © 2015 The Obesity Society.

  4. Cell adhesion molecules, the extracellular matrix and oral squamous carcinoma.

    PubMed

    Lyons, A J; Jones, J

    2007-08-01

    Carcinomas are characterized by invasion of malignant cells into the underlying connective tissue and migration of malignant cells to form metastases at distant sites. These processes require alterations in cell-cell and cell-extracellular matrix interactions. As cell adhesion molecules play a role in cell-cell and cell-extracellular matrix adhesion and interactions they are involved in the process of tumour invasion and metastases. In epithelial tissues, receptors of the integrin family mediate adhesion to the adjacent matrix whereas cadherins largely mediate intercellular adhesion. These and other cell adhesion molecules such as intercellular adhesion molecule-1, CD44, dystroglycans and selectins, are involved and undergo changes in carcinomas, which provide possible targets for anti-cancer drug treatments. In the extracellular matrix that is associated with tumours, laminin 5, oncofetal fibronectin and tenascin C appear. The degree of expression of some of these moieties indicates prognosis in oral cancer and offer targets for antibody-directed radiotherapy. Metalloproteases which degrade the extracellular matrix are increased in carcinomas, and their activity is necessary for tumour angiogenesis and consequent invasion and metastases. Metalloprotease inhibitors have begun to produce decreases in mortality in clinical trials. This report provides a brief overview of our current understanding of cell adhesion molecules, the extracellular matrix, tumour invasion and metastasis.

  5. [Value of adhesion molecules for evaluating the efficiency of therapy for ulcerative colitis and Crohn's disease].

    PubMed

    Parfenov, A I; Boldyreva, O N; Ruchkina, I N; Knyazev, O V; Sagynbaeva, V E; Shcherbakov, P L; Khomeriki, S G; Lazebnik, L B; Konoplyannikov, A G

    2014-01-01

    To define the value of adhesion molecules (sVCAM-1 integrin, P-selectin, E-selectin, and L-selectin) for the prediction and evaluation of the efficiency of treatment in patients with ulcerative colitis (UC) and Crohn's disease. Twenty-six patients with UC and 14 patients with CD were examined. Of them, 16 patients took infliximab (INF) in a dose of 5 mg/kg of body weight according to the standard scheme; 14 patients received cultured mesenchymal stem stromal cells (MSSCs) in a quantity of 150 x 10(8) cells, and 10 had azathioprine (AZA) 2 mg/kg and glucocorticosteroids (GCS) 1 mg/kg of body weight. Enzyme immunoassay was used to determine the serum concentration of the adhesion molecules (L-selectin, E-selectin, P-selectin, and sVCAM-1 integrin) before and 2 months after treatment. The signs of bowel inflammatory disease activity and the elevated levels of adhesion molecules whose synthesis did not occur under normal conditions remained in the patients receiving GCS and AZA. INF treatment caused a decrease in P-selectin, E-selectin, and sVCAM-1 levels to 8.9 +/- 1.0, 5.5 +/- 1.7, and 9.5 +/- 4.4 ng/ml, respectively (p < 0.001). Incorporation of MSSCs was followed by a reduction of the concentrations of P-selectin and E-selectin to 6.9 +/- 1.1 and 5.7 +/- 1.3 ng/ml, respectively (p < 0.001). The level of integrin (cVCAM-1) fell to 12.2 +/- 2.2 ng/ml (p > 0.1); that of L-selectin did not drop after MSSC administration and INF induction therapy. P-selectin, E-selectin, L-selectin, and sVCAM-1 integrin are current inflammatory markers and may be used to evaluate the efficiency of standard and biological therapies for inflammatory bowel diseases and to predict disease course.

  6. Davallia bilabiata inhibits TNF-α-induced adhesion molecules and chemokines by suppressing IKK/NF-kappa B pathway in vascular endothelial cells.

    PubMed

    Yang, Rong-Chi; Chang, Cheng-Chieh; Sheen, Jer-Ming; Wu, Hsiao-Ting; Pang, Jong-Hwei S; Huang, Sheng-Teng

    2014-01-01

    Davallia bilabiata (D. bilabiata) is also called GuSuiBu in Taiwan and is used as a substitute for Drynaria fortunei J. Sm. It is often used for trauma and bone repair. The inhibitory effect of D. bilabiata on inflammatory activity has not been reported. In the present study, we aimed to study the mechanism of anti-inflammation of D. bilabiata on the adhesion of leukocytes to vascular endothelial cells. The results showed that D. bilabiata, at concentrations without cytotoxic effect, inhibited the adhesion of monocytes (THP-1) to the TNF-α-stimulated human umbilical vascular endothelial cells (HUVECs). D. bilabiata suppressed the expression of the adhesion molecules ICAM, VCAM, and E-selectin at both the mRNA and protein level. In addition, both of the TNF-α-induced mRNA and protein expression of chemokines including fractalkine/CX3CL1, MCP-1 and RANTES as well as the level of secreted soluble fractalkine were decreased by D. bilabiata. We also verified that D. bilabiata inhibited the TNF-α-induced nuclear translocation of NF-κB through the inhibitory process on the TNF-α-activated phosphorylation of IKKα, IKKβ, IκB and NF-κB. All together, we concluded that the D. bilabiata affected the canonical pathway of TNF-α-induced NF-κB activation and down-regulated cell adhesion molecules and chemokine expression through inhibition of the NF-κB/IκBα/IKK signaling pathway. These findings strongly indicated that D. bilabiata might be a promising alternative/adjunct treatment for inflammatory diseases, such as rheumatoid arthritis and osteoarthritis.

  7. Inhibitory effect of indigo naturalis on tumor necrosis factor-α-induced vascular cell adhesion molecule-1 expression in human umbilical vein endothelial cells.

    PubMed

    Chang, Hsin-Ning; Pang, Jong-Hwei Su; Yang, Sien-Hung; Hung, Chi-Feng; Chiang, Chi-Hsin; Lin, Tung-Yi; Lin, Yin-Ku

    2010-09-14

    The use of indigo naturalis to treat psoriasis has proved effective in our previous clinical studies. The present study was designed to examine the anti-inflammatory effect of indigo naturalis in primary cultured human umbilical vein endothelial cells (HUVECs). Pretreatment of cells with indigo naturalis extract attenuated TNF-α-induced increase in Jurkat T cell adhesion to HUVECs as well as decreased the protein and messenger (m)RNA expression levels of vascular cell adhesion molecule-1 (VCAM-1) on HUVECs. Indigo naturalis extract also inhibited the protein expression of activator protein-1 (AP-1)/c-Jun, a critical transcription factor for the activation of VCAM-1 gene expression. Since the reduction of lymphocyte adhesion to vascular cells by indigo naturalis extract could subsequently reduce the inflammatory reactions caused by lymphocyte infiltration in the epidermal layer and help to improve psoriasis, this study provides a potential mechanism for the anti-inflammatory therapeutic effect of indigo naturalis extract in psoriasis.

  8. Gastrin-releasing peptide induces monocyte adhesion to vascular endothelium by upregulating endothelial adhesion molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Mi-Kyoung; Park, Hyun-Joo; Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 626-870

    Gastrin-releasing peptide (GRP) is a neuropeptide that plays roles in various pathophysiological conditions including inflammatory diseases in peripheral tissues; however, little is known about whether GRP can directly regulate endothelial inflammatory processes. In this study, we showed that GRP promotes the adhesion of leukocytes to human umbilical vein endothelial cells (HUVECs) and the aortic endothelium. GRP increased the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by activating nuclear factor-κB (NF-κB) in endothelial cells. In addition, GRP activated extracellular signal-regulated kinase 1/2 (ERK1/2), p38MAPK, and AKT, and the inhibition of these signaling pathways significantly reduced GRP-inducedmore » monocyte adhesion to the endothelium. Overall, our results suggested that GRP may cause endothelial dysfunction, which could be of particular relevance in the development of vascular inflammatory disorders. - Highlights: • GRP induces adhesion of monocytes to vascular endothelium. • GRP increases the expression of endothelial adhesion molecules through the activation of NF-κB. • ERK1/2, p38MAPK, and Akt pathways are involved in the GRP-induced leukocyte adhesiveness to endothelium.« less

  9. Increase in the adhesion molecule P-selectin in endothelium overlying atherosclerotic plaques. Coexpression with intercellular adhesion molecule-1.

    PubMed Central

    Johnson-Tidey, R. R.; McGregor, J. L.; Taylor, P. R.; Poston, R. N.

    1994-01-01

    P-selectin (GMP-140) is an adhesion molecule present within endothelial cells that is rapidly translocated to the cell membrane upon activation, where it mediates endothelial-leukocyte interactions. Immunohistochemical analysis of human atherosclerotic plaques has shown strong expression of P-selectin by the endothelium overlying active atherosclerotic plaques. P-selectin is not, however, detected in normal arterial endothelium or in endothelium overlying inactive fibrous plaques. Color image analysis was used to quantitate the degree of P-selectin expression in the endothelium and demonstrates a statistically significant increase in P-selectin expression by atherosclerotic endothelial cells. Double immunofluorescence shows that some of this P-selectin is expressed on the luminal surface of the endothelial cells. Previous work has demonstrated a significant up-regulation in the expression of the intercellular adhesion molecule-1 in atherosclerotic endothelium and a study on the expression of intercellular adhesion molecule-1 and P-selectin in atherosclerosis shows a highly positive correlation. These results suggest that the selective and cooperative expression of P-selectin and intercellular adhesion molecule-1 may be involved in the recruitment of monocytes into sites of atherosclerosis. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:7513951

  10. Inhibitory effects of clotrimazole on TNF-alpha-induced adhesion molecule expression and angiogenesis.

    PubMed

    Thapa, Dinesh; Lee, Jong Suk; Park, Min-A; Cho, Mi-Yeon; Park, Young-Joon; Choi, Han Gon; Jeong, Tae Cheon; Kim, Jung-Ae

    2009-04-01

    Cell adhesion molecules play a pivotal role in chronic inflammation and pathological angiogenesis. In the present study, we investigated the inhibitory effects of clotrimazole (CLT) on tumor necrosis factor (TNF)-alpha-induced changes in adhesion molecule expression. CLT dose-dependently inhibited monocyte chemoattractant protein-1 (MCP-1), intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) expressions in TNF-alpha-stimulated HT29 colonic epithelial cells. This inhibitory action of CLT correlated with a significant reduction in TNF-alpha-induced adhesion of monocytes to HT29 cells, which was comparable to the inhibitory effects of anti-ICAM-1 and VCAM-1 monoclonal antibodies on monocyte-epithelial adhesion. These inhibitory actions of CLT were, at least in part, attributable to the inhibition of redox sensitive NF-kappaB activation, as CLT inhibited TNF-alpha-induced ROS generation as well as NF-kappaB nuclear translocation and activation in HT29 cells. Furthermore, the inhibition of TNF-alpha-induced monocyte adhesion was also mimicked by the specific NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC). Inflammatory mediators including TNF-alpha have known to promote angiogenesis, which in turn further contributes to inflammatory pathology. Therefore, we additionally evaluated whether CLT modulates TNF-alpha-induced angiogenesis using in vivo chick chorioallantoic membrane (CAM) assay. The CAM assay showed that CLT dose-dependently attenuated TNF-alpha-induced angiogenesis, and the effect was correlated with decreased inflammation of the CAM tissue. In conclusion, our results suggest that CLT can inhibit TNF-alpha-triggered expression of adhesion molecules, ICAM-1 and VCAM-1, and angiogenesis during inflammation.

  11. Targeting of adhesion molecules as a therapeutic strategy in multiple myeloma.

    PubMed

    Neri, Paola; Bahlis, Nizar J

    2012-09-01

    Multiple myeloma (MM) is a clonal disorder of plasma cells that remains, for the most part, incurable despite the advent of several novel therapeutic agents. Tumor cells in this disease are cradled within the bone marrow (BM) microenvironment by an array of adhesive interactions between the BM cellular residents, the surrounding extracellular matrix (ECM) components such as fibronectin (FN), laminin, vascular cell adhesion molecule-1 (VCAM-1), proteoglycans, collagens and hyaluronan, and a variety of adhesion molecules on the surface of MM cells including integrins, hyaluronan receptors (CD44 and RHAMM) and heparan sulfate proteoglycans. Several signaling responses are activated by these interactions, affecting the survival, proliferation and migration of MM cells. An important consequence of these direct adhesive interactions between the BM/ECM and MM cells is the development of drug resistance. This phenomenon is termed "cell adhesion-mediated drug resistance" (CAM-DR) and it is thought to be one of the major mechanisms by which MM cells escape the cytotoxic effects of therapeutic agents. This review will focus on the adhesion molecules involved in the cross-talk between MM cells and components of the BM microenvironment. The complex signaling networks downstream of these adhesive molecules mediated by direct ligand binding or inside-out soluble factors signaling will also be reviewed. Finally, novel therapeutic strategies targeting these molecules will be discussed. Identification of the mediators of MM-BM interaction is essential to understand MM biology and to elucidate novel therapeutic targets for this disease.

  12. Hydrodynamic shear shows distinct roles for LFA-1 and Mac-1 in neutrophil adhesion to intercellular adhesion molecule-1.

    PubMed

    Neelamegham, S; Taylor, A D; Burns, A R; Smith, C W; Simon, S I

    1998-09-01

    The binding of neutrophil beta2 integrin to intercellular adhesion molecule-1 (ICAM-1) expressed on the inflamed endothelium is critical for neutrophil arrest at sites of tissue inflammation. To quantify the strength and kinetics of this interaction, we measured the adhesion between chemotactically stimulated neutrophils and ICAM-1-transfected mouse cells (E3-ICAM) in suspension in a cone-plate viscometer at shear rates typical of venular blood flow (100 s-1 to 500 s-1). The kinetics of aggregation were fit with a mathematical model based on two-body collision theory. This enabled estimation of adhesion efficiency, defined as the probability with which collisions between cells resulted in firm adhesion. The efficiency of beta2-integrin-dependent adhesion was highest ( approximately 0.2) at 100 s-1 and it decreased to approximately zero at 400 s-1. Both LFA-1 and Mac-1 contributed equally to adhesion efficiency over the initial 30 seconds of stimulation, but adhesion was entirely Mac-1-dependent by 120 seconds. Two hydrodynamic parameters were observed to influence integrin-dependent adhesion efficiency: the level of shear stress and the intercellular contact duration. Below a critical shear stress (<2 dyn/cm2), contact duration predominantly limited adhesion efficiency. The estimated minimum contact duration for beta2-integrin binding was approximately 6.5 ms. Above the critical shear stress (>2 dyn/cm2), the efficiency of neutrophil adhesion to E3-ICAM was limited by both the contact duration and the tensile stress. We conclude that at low shear, neutrophil adhesion is modulated independently through either LFA-1 or Mac-1, which initially contribute with equal efficiency, but differ over the duration of chemotactic stimulation. Copyright 1998 by The American Society of Hematology.

  13. Overexpression of adhesion molecules and barrier molecules is associated with differential infiltration of immune cells in non-small cell lung cancer.

    PubMed

    Chae, Young Kwang; Choi, Wooyoung M; Bae, William H; Anker, Jonathan; Davis, Andrew A; Agte, Sarita; Iams, Wade T; Cruz, Marcelo; Matsangou, Maria; Giles, Francis J

    2018-01-18

    Immunotherapy is emerging as a promising option for lung cancer treatment. Various endothelial adhesion molecules, such as integrin and selectin, as well as various cellular barrier molecules such as desmosome and tight junctions, regulate T-cell infiltration in the tumor microenvironment. However, little is known regarding how these molecules affect immune cells in patients with lung cancer. We demonstrated for the first time that overexpression of endothelial adhesion molecules and cellular barrier molecule genes was linked to differential infiltration of particular immune cells in non-small cell lung cancer. Overexpression of endothelial adhesion molecule genes is associated with significantly lower infiltration of activated CD4 and CD8 T-cells, but higher infiltration of activated B-cells and regulatory T-cells. In contrast, overexpression of desmosome genes was correlated with significantly higher infiltration of activated CD4 and CD8 T-cells, but lower infiltration of activated B-cells and regulatory T-cells in lung adenocarcinoma. This inverse relation of immune cells aligns with previous studies of tumor-infiltrating B-cells inhibiting T-cell activation. Although overexpression of endothelial adhesion molecule or cellular barrier molecule genes alone was not predictive of overall survival in our sample, these genetic signatures may serve as biomarkers of immune exclusion, or resistance to T-cell mediated immunotherapy.

  14. Curcumin inhibits activation induced by urban particulate material or titanium dioxide nanoparticles in primary human endothelial cells

    PubMed Central

    Montiel-Dávalos, Angélica; Silva Sánchez, Guadalupe Jazmin; Huerta-García, Elizabeth; Rueda-Romero, Cristhiam; Soca Chafre, Giovanny; Mitre-Aguilar, Irma B.; Alfaro-Moreno, Ernesto; Pedraza-Chaverri, José

    2017-01-01

    Curcumin has protective effects against toxic agents and shows preventive properties for various diseases. Particulate material with an aerodynamic diameter of ≤10 μm (PM10) and titanium dioxide nanoparticles (TiO2-NPs) induce endothelial dysfunction and activation. We explored whether curcumin is able to attenuate different events related to endothelial activation. This includes adhesion, expression of adhesion molecules and oxidative stress induced by PM10 and TiO2-NPs. Human umbilical vein endothelial cells (HUVEC) were treated with 1, 10 and 100 μM curcumin for 1 h and then exposed to PM10 at 3 μg/cm2 or TiO2-NPs at 10 μg/cm2. Cell adhesion was evaluated by co-culture with U937 human myelomonocytic cells. Adhesion molecules expression was measured by flow cytometry after 3 or 24 h of exposure. Oxidative stress was determined by 2,7-dichlorodihydrofluorescein (H2DCF) oxidation. PM10 and TiO2-NPs induced the adhesion of U937 cells and the expression of E- and P-selectins, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1). The expression of E- and P-selectins matched the adhesion of monocytes to HUVEC after 3 h. In HUVEC treated with 1 or 10 μM curcumin, the expression of adhesion molecules and monocytes adhesion was significantly diminished. Curcumin also partially reduced the H2DCF oxidation induced by PM10 and TiO2-NPs. Our results suggest an anti-inflammatory and antioxidant role by curcumin attenuating the activation caused on endothelial cells by exposure to particles. Therefore, curcumin could be useful in the treatment of diseases where an inflammatory process and endothelial activation are involved. PMID:29244817

  15. Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepithelial migration

    PubMed Central

    Sumagin, Ronen; Parkos, Charles A

    2014-01-01

    Epithelial adhesion molecules play essential roles in regulating cellular function and maintaining mucosal tissue homeostasis. Some form epithelial junctional complexes to provide structural support for epithelial monolayers and act as a selectively permeable barrier separating luminal contents from the surrounding tissue. Others serve as docking structures for invading viruses and bacteria, while also regulating the immune response. They can either obstruct or serve as footholds for the immune cells recruited to mucosal surfaces. Currently, it is well appreciated that adhesion molecules collectively serve as environmental cue sensors and trigger signaling events to regulate epithelial function through their association with the cell cytoskeleton and various intracellular adapter proteins. Immune cells, particularly neutrophils (PMN) during transepithelial migration (TEM), can modulate adhesion molecule expression, conformation, and distribution, significantly impacting epithelial function and tissue homeostasis. This review discusses the roles of key intestinal epithelial adhesion molecules in regulating PMN trafficking and outlines the potential consequences on epithelial function. PMID:25838976

  16. A novel leukocyte adhesion deficiency caused by expressed but nonfunctional β2 integrins Mac-1 and LFA-1

    PubMed Central

    Hogg, Nancy; Stewart, Mairi P.; Scarth, Sarah L.; Newton, Rebecca; Shaw, Jacqueline M.; Law, S.K. Alex; Klein, Nigel

    1999-01-01

    In the leukocyte adhesion deficiency (LAD)-1 syndrome, there is diminished expression of β2(CD18) integrins. This is caused by lesions in the β2-subunit gene and gives rise to recurrent bacterial infections, impaired pus formation, and poor wound healing. We describe a patient with clinical features compatible with a moderately severe phenotype of LAD-1 but who expresses the β2 integrins lymphocyte function– associated molecule (LFA)-1 and Mac-1 at 40%–60% of normal levels. This level of expression should be adequate for normal integrin function, but both the patient's Mac-1 on neutrophils and LFA-1 on T cells failed to bind ligands such as fibrinogen and intercellular adhesion molecule (ICAM)-1, respectively, or to display a β2-integrin activation epitope after adhesion-inducing stimuli. Unexpectedly, divalent cation treatment induced the patient's T cells to bind to ICAM-2 and ICAM-3. Sequencing of the patient's two CD18 alleles revealed the mutations S138P and G273R. Both mutations are in the β2-subunit conserved domain, with S138P a putative divalent cation coordinating residue in the metal ion–dependent adhesion site (MIDAS) motif. After K562 cell transfection with α subunits, the mutated S138P β subunit was coexpressed but did not support function, whereas the G273R mutant was not expressed. In summary, the patient described here exhibits failure of the β2 integrins to function despite adequate levels of cell-surface expression. PMID:9884339

  17. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri.

    PubMed

    Matsuo, Yosuke; Miyoshi, Yukihiro; Okada, Sanae; Satoh, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion.

  18. Adhesion molecules and receptors

    USDA-ARS?s Scientific Manuscript database

    Adhesion molecules are necessary for leukocyte trafficking and differentiation. They serve to initiate cell-cell interactions under conditions of shear, and they sustain the cell-cell and cell-matrix interactions needed for cellular locomotion. They also can serve directly as signaling molecules act...

  19. Antioxidative pyranonigrins in rice mold starters and their suppressive effect on the expression of blood adhesion molecules.

    PubMed

    Miyake, Yoshiaki; Mochizuki, Mika; Ito, Chihiro; Itoigawa, Masataka; Osawa, Toshihiko

    2008-06-01

    Antioxidants having a 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity in rice mold starters, which are used for the preparation of various Japanese fermented foods, and their effectiveness against the expression of blood adhesion molecules were examined. An antioxidant was isolated from the rice mold starters used for shochu and identified as pyranonigrin-S (PG-S) by (1)H-NMR, (13)C-NMR, and FAB-MS analyses. It was a derivative of pyranonigrin-A (PG-A), which has been isolated as an antioxidant from the rice mold starters. Pyranonigrins PG-A and PG-S were found to exist in spores on rice mold starters which had been prepared by Aspergillus awamori, A. kawachii, and A. saitoi. PG-S exhibited a higher level of DPPH radical scavenging activity than PG-A. PG-A was found to have a significant suppressive effect on the expression of vascular cell adhesion molecule-1 (VCAM-1) in human umbilical vein endothelial cells (HUVECs) induced by tumor necrosis factor-alpha (TNF-alpha) (P<0.05).

  20. Cellular Components, Including Stem-Like Cells, of Preterm Mother's Mature Milk as Compared with Those in Her Colostrum: A Pilot Study.

    PubMed

    Kaingade, Pankaj; Somasundaram, Indumathi; Sharma, Akshita; Patel, Darshan; Marappagounder, Dhanasekaran

    2017-09-01

    Whether the preterm mothers' mature milk retains the same cellular components as those in colostrum including stem-like cell, cell adhesion molecules, and immune cells. A total of five preterm mothers were recruited for the study having an average age of 30.2 years and gestational age of 29.8 weeks from the Pristine Women's Hospital, Kolhapur. Colostrum milk was collected within 2-5 days and matured milk was collected 20-30 days after delivery from the same mothers. Integral cellular components of 22 markers including stem cells, immune cells, and cell adhesion molecules were measured using flowcytometry. Preterm mature milk was found to possess higher expressions of hematopoietic stem cells, mesenchymal stem-like cells, immune cells, few cell adhesion molecules, and side population cells than colostrum. The increased level of these different cell components in mature milk may be important in the long-term preterm baby's health growth. Further similar research in a larger population of various gestational ages and lactation stages of preterm mothers is warranted to support these pilot findings.

  1. A nonpolio enterovirus with respiratory tropism causes poliomyelitis in intercellular adhesion molecule 1 transgenic mice.

    PubMed

    Dufresne, Andrew T; Gromeier, Matthias

    2004-09-14

    Coxsackievirus A21 (CAV21) is classified within the species Human enterovirus C (HEV-C) of the Enterovirus genus of picornaviruses. HEV-C share striking homology with the polioviruses (PV), their closest kin among the enteroviruses. Despite a high level of sequence identity, CAV21 and PV cause distinct clinical disease typically attributed to their differential use of host receptors. PV cause poliomyelitis, whereas CAV21 shares a receptor and a propensity to cause upper respiratory tract infections with the major group rhinoviruses. As a model for CAV21 infection, we have developed transgenic mice that express human intercellular adhesion molecule 1, the cell-surface receptor for CAV21. Surprisingly, CAV21 administered to these mice via the intramuscular route causes a paralytic condition consistent with poliomyelitis. The virus appears to invade the CNS by retrograde axonal transport, as has been demonstrated to occur in analogous PV infections. We detected human intercellular adhesion molecule 1 expression on both transgenic mouse and human spinal cord anterior horn motor neurons, indicating that members of HEV-C may share PV's potential to elicit poliomyelitis in humans.

  2. Relationship between adhesion molecules with hs-CRP and changes therein after ARB (Valsartan) administration in patients with obstructive sleep apnea syndrome.

    PubMed

    Kageyama, Norihito; Nomura, Masahiro; Nakaya, Yutaka; Watanabe, Tomonori; Ito, Susumu

    2006-02-01

    It has been reported that a relationship exists between obstructive sleep apnea syndrome (OSAS) and cardiovascular and cerebrovascular diseases. To address this issue, we evaluated whether OSAS is associated with adhesion molecules and inflammatory signs, important indicators of atherosclerosis. Levels of high-sensitivity CRP (hs-CRP) and intercellular adhesion molecule-1 (ICAM-1) were measured in 30 patients with ischemic heart disease, confirmed by coronary arteriography (IHD group). Twenty healthy volunteers without sleep apnea were used as controls (Group N). Sleeping respiratory information was collected using a portable sleep polygraph, together on information about oronasal flow, tracheal sound, chest respiration, and percutaneous oxygen saturation (SpO2) to obtain the apnea-hypopnea index (AHI). In the IHD group, 9 (30%) of the 30 patients showed evidence of OSAS [IHD(AHI> or = 40) group] and 21 did not [IHD(AHI<40) group]. The levels of hs-CRP and ICAM-1 were significantly higher in the IHD group than in the N group (p<0.01). Moreover, the levels of hs-CRP and ICAM-1 were significantly higher in the IHD(AHI > or = 40) group than in the IHD(AHI<40) group (p<0.01). However, after the administration of valsartan, angiotensin II receptor antagonists (ARB) to both IHD groups, the levels of hs-CRP and ICAM-1 decreased significantly in both groups. Moreover, a multivariate analysis revealed that the levels of hs-CRP and ICAM-1 were associated with the severity of sleep apnea. These findings suggest that, in OSAS the levels of hs-CRP and ICAM-1 are decreased and that the administration of ARB decreases the risk of atherosclerosis.

  3. The Differential Expression of Adhesion Molecule and Extracellular Matrix Genes in Mesenchymal Stromal Cells after Interaction with Cord Blood Hematopoietic Progenitors.

    PubMed

    Buravkova, L B; Andreeva, E R; Lobanova, M V; Cotnezova, E V; Grigoriev, A I

    2018-03-01

    The dynamics of the expression of genes encoding adhesion molecules, molecules of the connective tissue matrix, and its remodeling enzymes was studied in multipotent mesenchymal stromal cells (MSCs) from human adipose tissue after interaction with cord blood hematopoietic progenitors (HSPCs). An upregulation of ICAM1 and VCAM1, directly proportional to the coculture time (24-72 h), was found. After 72 h of culturing, a downregulation of the genes encoding the majority of matrix molecules (SPP1; COL6A2,7A1; MMP1,3; TIMP1,3; and HAS1) and cell-matrix adhesion molecules (ITGs) was revealed. The detected changes may ensure the realization of the stromal MSC function due to improvement of adhesion and transmigration of HSPCs into the subcellular space.

  4. Myosin 1g Contributes to CD44 Adhesion Protein and Lipid Rafts Recycling and Controls CD44 Capping and Cell Migration in B Lymphocytes

    PubMed Central

    López-Ortega, Orestes; Santos-Argumedo, Leopoldo

    2017-01-01

    Cell migration and adhesion are critical for immune system function and involve many proteins, which must be continuously transported and recycled in the cell. Recycling of adhesion molecules requires the participation of several proteins, including actin, tubulin, and GTPases, and of membrane components such as sphingolipids and cholesterol. However, roles of actin motor proteins in adhesion molecule recycling are poorly understood. In this study, we identified myosin 1g as one of the important motor proteins that drives recycling of the adhesion protein CD44 in B lymphocytes. We demonstrate that the lack of Myo1g decreases the cell-surface levels of CD44 and of the lipid raft surrogate GM1. In cells depleted of Myo1g, the recycling of CD44 was delayed, the delay seems to be caused at the level of formation of recycling complex and entry into recycling endosomes. Moreover, a defective lipid raft recycling in Myo1g-deficient cells had an impact both on the capping of CD44 and on cell migration. Both processes required the transportation of lipid rafts to the cell surface to deliver signaling components. Furthermore, the extramembrane was essential for cell expansion and remodeling of the plasma membrane topology. Therefore, Myo1g is important during the recycling of lipid rafts to the membrane and to the accompanied proteins that regulate plasma membrane plasticity. Thus, Myosin 1g contributes to cell adhesion and cell migration through CD44 recycling in B lymphocytes. PMID:29321775

  5. The low molecular weight Dextran 40 inhibits the adhesion of T lymphocytes to endothelial cells

    PubMed Central

    TERMEER, C C; WEISS, J M; SCHÖPF, E; VANSCHEIDT, W; SIMON, J C

    1998-01-01

    Dextrans are complex colloidal macromolecules widely used as haemorrheologic substances and anti-thrombotic agents. Here we describe a novel function of Dextran 40 by demonstrating an inhibition of T lymphocyte adhesion to endothelial cells (EC). We applied an established microassay in which constitutive and tumour necrosis factor-alpha (TNF-α)-induced binding of mouse T lymphoma cells (TK-1) to mouse endothelioma (eEND.2) cells is mediated by the interaction of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) on EC with their counter-receptors the LFA-1 heterodimer (CD11a/CD18) and VLA-4 on T cells. Dextran 40 in therapeutically achievable levels (2–32 mg/ml) reduced both constitutive and TNF-α-stimulated TK-1 adhesion to eEND.2. Selective preincubation of eEND.2 or TK-1 revealed that Dextran 40 acted exclusively on the T cells. To explore further the mechanisms by which Dextran 40 interfered with TK-1 adhesion, their LFA-1 and VLA-4 expression was analysed by FACS. The surface expression levels of neither receptor were affected by Dextran 40. However, confocal microscopy revealed that Dextran 40 interfered with the activation-dependent capping and clustering of LFA-1 and VLA-4 on the surface of TK-1. We conclude that Dextran 40 inhibits the capacity of TK-1 T cells to adhere to eEND.2 endothelial cells and thus may be useful for therapeutic intervention in diseases associated with enhanced T lymphocyte binding to microvascular endothelium. PMID:9844053

  6. Induction of oxidative stress and human leukocyte/endothelial cell interactions in polycystic ovary syndrome patients with insulin resistance.

    PubMed

    Victor, Victor M; Rocha, Milagros; Bañuls, Celia; Alvarez, Angeles; de Pablo, Carmen; Sanchez-Serrano, Maria; Gomez, Marcelino; Hernandez-Mijares, Antonio

    2011-10-01

    Insulin resistance is a feature of polycystic ovary syndrome (PCOS) and is related to mitochondrial and endothelial function. We tested whether hyperandrogenic insulin-resistant women with PCOS, who have an increased risk of vascular disease, display impaired leukocyte-endothelium interactions, and mitochondrial dysfunction. This was a prospective controlled study conducted in an academic medical center. The study population consisted of 43 lean reproductive-age women with PCOS and 39 controls subjects. We evaluated anthropometric and metabolic parameters, adhesion molecules, and interactions between leukocytes and human umbilical vein endothelial cells. Mitochondrial function was studied by assessing mitochondrial oxygen consumption, membrane potential, reactive oxygen species production, glutathione levels (GSH), and the oxidized glutathione (GSSG)/GSH ratio in polymorphonuclear cells. Impairment of mitochondrial function was observed in the PCOS patients, evident in a decrease in oxygen consumption, an increase in reactive oxygen species production, a decrease in the GSH/GSSG ratio and GSH levels, and an undermining of the membrane potential. PCOS was related to a decrease in polymorphonuclear cell rolling velocity and an increase in rolling flux and adhesion. Increases in IL-6 and TNFα and adhesion molecules (vascular cell adhesion molecule-1 and E-selectin) were also observed. This study supports the hypothesis of an association between insulin resistance and an impaired endothelial and mitochondrial oxidative metabolism. The evidence obtained shows that the inflammatory state related to insulin resistance in PCOS induces a leukocyte-endothelium interaction. These findings may explain the increased risk of vascular disease in women with PCOS.

  7. Lycopene inhibits NF-κB activation and adhesion molecule expression through Nrf2-mediated heme oxygenase-1 in endothelial cells.

    PubMed

    Yang, Po-Min; Chen, Huang-Zhi; Huang, Yu-Ting; Hsieh, Chia-Wen; Wung, Being-Sun

    2017-06-01

    The endothelial expression of cell adhesion molecules plays a leading role in atherosclerosis. Lycopene, a carotenoid with 11 conjugated double bonds, has been shown to have anti-inflammatory properties. In the present study, we demonstrate a putative mechanism for the anti-inflammatory effects of lycopene. We demonstrate that lycopene inhibits the adhesion of tumor necrosis factor α (TNFα)-stimulated monocytes to endothelial cells and suppresses the expression of intercellular cell adhesion molecule-1 (ICAM-1) at the transcriptional level. Moreover, lycopene was found to exert its inhibitory effects by blocking the degradation of the inhibitory protein, IκBα, following 6 h of pre-treatment. In TNFα-stimulated endothelial cells, nuclear factor-κB (NF-κB) nuclear translocation and transcriptional activity were abolished by up to 12 h of lycopene pre-treatment. We also found that lycopene increased the intracellular glutathione (GSH) level and glutamate-cysteine ligase expression. Subsequently, lycopene induced nuclear factor-erythroid 2 related factor 2 (Nrf2) activation, leading to the increased expression of downstream of heme oxygenase-1 (HO-1). The use of siRNA targeting HO-1 blocked the inhibitory effects of lycopene on IκB degradation and ICAM-1 expression. The inhibitory effects of lycopene thus appear to be mediated through its induction of Nrf2-mediated HO-1 expression. Therefore, the findings of the present study indicate that lycopene suppresses the activation of TNFα-induced signaling pathways through the upregulation of Nrf2-mediated HO-1 expression.

  8. Social defeat promotes a reactive endothelium in a brain region-dependent manner with increased expression of key adhesion molecules, selectins and chemokines associated with the recruitment of myeloid cells to the brain.

    PubMed

    Sawicki, C M; McKim, D B; Wohleb, E S; Jarrett, B L; Reader, B F; Norden, D M; Godbout, J P; Sheridan, J F

    2015-08-27

    Repeated social defeat (RSD) in mice causes myeloid cell trafficking to the brain that contributes to the development of prolonged anxiety-like behavior. Myeloid cell recruitment following RSD occurs in regions where neuronal and microglia activation is observed. Thus, we hypothesized that crosstalk between neurons, microglia, and endothelial cells contributes to brain myeloid cell trafficking via chemokine signaling and vascular adhesion molecules. Here we show that social defeat caused an exposure- and brain region-dependent increase in several key adhesion molecules and chemokines involved in the recruitment of myeloid cells. For example, RSD induced distinct patterns of adhesion molecule expression that may explain brain region-dependent myeloid cell trafficking. VCAM-1 and ICAM-1 mRNA expression were increased in an exposure-dependent manner. Furthermore, RSD-induced VCAM-1 and ICAM-1 protein expression were localized to the vasculature of brain regions implicated in fear and anxiety responses, which spatially corresponded to previously reported patterns of myeloid cell trafficking. Next, mRNA expression of additional adhesion molecules (E- and P-selectin, PECAM-1) and chemokines (CXCL1, CXCL2, CXCL12, CCL2) were determined in the brain. Social defeat induced an exposure-dependent increase in mRNA levels of E-selectin, CXCL1, and CXCL2 that increased with additional days of social defeat. While CXCL12 was unaffected by RSD, CCL2 expression was increased by six days of social defeat. Last, comparison between enriched CD11b(+) cells (microglia/macrophages) and enriched GLAST-1(+)/CD11b(-) cells (astrocytes) revealed RSD increased mRNA expression of IL-1β, CCL2, and CXCL2 in microglia/macrophages but not in astrocytes. Collectively, these data indicate that key mediators of leukocyte recruitment were increased in the brain vasculature following RSD in an exposure- and brain region-dependent manner. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Social defeat promotes a reactive endothelium in a brain region-dependent manner with increased expression of key adhesion molecules, selectins and chemokines associated with the recruitment of myeloid cells to the brain

    PubMed Central

    Sawicki, Caroline M.; McKim, Daniel B.; Wohleb, Eric S.; Jarrett, Brant L.; Reader, Brenda F.; Norden, Diana M.; Godbout, Jonathan P.; Sheridan, John F.

    2014-01-01

    Repeated social defeat (RSD) in mice causes myeloid cell trafficking to the brain that contributes to the development of prolonged anxiety-like behavior. Myeloid cell recruitment following RSD occurs in regions where neuronal and microglia activation is observed. Thus, we hypothesized that crosstalk between neurons, microglia, and endothelial cells contributes to brain-myeloid cell trafficking via chemokine signaling and vascular adhesion molecules. Here we show that social defeat caused an exposure- and brain region-dependent increase in several key adhesion molecules and chemokines involved in the recruitment of myeloid cells. For example, RSD induced distinct patterns of adhesion molecule expression that may explain brain region-dependent myeloid cell trafficking. VCAM-1 and ICAM-1 mRNA expression were increased in an exposure-dependent manner. Furthermore, RSD-induced VCAM-1 and ICAM-1 protein expression were localized to the vasculature of brain regions implicated in fear and anxiety responses, which spatially corresponded to previously reported patterns of myeloid cell trafficking. Next, mRNA expression of additional adhesion molecules (E- and P-selectin, PECAM-1) and chemokines (CXCL1, CXCL2, CXCL12, CCL2) were determined in the brain. Social defeat induced an exposure-dependent increase in mRNA levels of E-selectin, CXCL1, and CXCL2 that increased with additional days of social defeat. While CXCL12 was unaffected by RSD, CCL2 expression was increased by six days of social defeat. Last, comparison between enriched CD11b+ cells (microglia/macrophages) and enriched GLAST-1+/CD11b− cells (astrocytes) revealed RSD increased mRNA expression of IL-1β, CCL2, and CXCL2 in microglia/macrophages but not in astrocytes. Collectively, these data indicate that key mediators of leukocyte recruitment were increased in the brain vasculature following RSD in an exposure- and brain-region dependent manner. PMID:25445193

  10. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    PubMed

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  11. Glucocorticoid-induced tumor necrosis factor receptor family-related ligand triggering upregulates vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 and promotes leukocyte adhesion.

    PubMed

    Lacal, Pedro Miguel; Petrillo, Maria Grazia; Ruffini, Federica; Muzi, Alessia; Bianchini, Rodolfo; Ronchetti, Simona; Migliorati, Graziella; Riccardi, Carlo; Graziani, Grazia; Nocentini, Giuseppe

    2013-10-01

    The interaction of glucocorticoid-induced tumor necrosis factor receptor-family related (GITR) protein with its ligand (GITRL) modulates different functions, including immune/inflammatory response. These effects are consequent to intracellular signals activated by both GITR and GITRL. Previous results have suggested that lack of GITR expression in GITR(-/-) mice decreases the number of leukocytes within inflamed tissues. We performed experiments to analyze whether the GITRL/GITR system modulates leukocyte adhesion and extravasation. For that purpose, we first evaluated the capability of murine splenocytes to adhere to endothelial cells (EC). Our results indicated that adhesion of GITR(-/-) splenocytes to EC was reduced as compared with wild-type cells, suggesting that GITR plays a role in adhesion and that this effect may be due to GITRL-GITR interaction. Moreover, adhesion was increased when EC were pretreated with an agonist GITR-Fc fusion protein, thus indicating that triggering of GITRL plays a role in adhesion by EC regulation. In a human in vitro model, the adhesion to human EC of HL-60 cells differentiated toward the monocytic lineage was increased by EC pretreatment with agonist GITR-Fc. Conversely, antagonistic anti-GITR and anti-GITRL Ab decreased adhesion, thus further indicating that GITRL triggering increases the EC capability to support leukocyte adhesion. EC treatment with GITR-Fc favored extravasation, as demonstrated by a transmigration assay. Notably, GITRL triggering increased intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression and anti-ICAM-1 and anti-VCAM-1 Abs reversed GITR-Fc effects. Our study demonstrates that GITRL triggering in EC increases leukocyte adhesion and transmigration, suggesting new anti-inflammatory therapeutic approaches based on inhibition of GITRL-GITR interaction.

  12. Serum Markers of Endothelial Dysfunction and Inflammation Increase in Hypertension with Prediabetes Mellitus.

    PubMed

    Huang, Zhouqing; Chen, Chen; Li, Sheng; Kong, Fanqi; Shan, Peiren; Huang, Weijian

    2016-06-01

    The aim of this study was to examine endothelial dysfunction and inflammation in hypertension and prediabetes by studying adhesion molecules and inflammatory factors. This study included 133 outpatients. Participants were categorized into three groups based on the presence or absence of hypertension and prediabetes: control subjects without prediabetes and hypertension (N group, n = 39); patients with hypertension only (H group, n = 34); and patients with hypertension and prediabetes (HD group, n = 60). Hypertension was diagnosed according to JNC7 criteria. Prediabetes was defined according to 2010 American Diabetes Association criteria. Plasma was isolated from overnight fasting blood samples for enzyme-linked immunosorbent assay (ELISA) analysis of concentrations of intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), P-selectin, and interleukin-6 (IL-6) as indicators of endothelial function and inflammation. We found that the H and HD groups showed significantly higher levels of all four biomarkers compared with the N group (all p < 0.01). The HD group also showed significantly higher levels of ICAM-1 (p = 0.042) and TNF-α (p < 0.01) compared with the H group; no significant differences in P-selectin (p = 0.59) and IL-6 (p = 0.70) levels were observed among these groups. Prediabetes and hypertension induce endothelial dysfunction and inflammation by elevating levels of soluble adhesion molecules and inflammatory cytokines. The comorbidity of these diseases may exacerbate inflammation and endothelial dysfunction by enhancing the expression of ICAM-1 and TNF-α.

  13. The effects of ethanol on the size-exclusion characteristics of type I dentin collagen to adhesive resin monomers.

    PubMed

    Chiba, A; Zhou, J; Nakajima, M; Tan, J; Tagami, J; Scheffel, D L S; Hebling, J; Agee, K A; Breschi, L; Grégoire, G; Jang, S S; Tay, F R; Pashley, D H

    2016-03-01

    During dentin bonding with etch-and-rinse adhesive systems, phosphoric acid etching of mineralized dentin solubilizes the mineral crystallites and replaces them with bound and unbound water. During the infiltration phase of dentin bonding, solvated adhesive resin comonomers are supposed to replace all of the unbound collagen water and polymerize into copolymers. A recently published review suggested that dental monomers are too large to enter and displace water from tightly-packed collagen molecules. Conversely, recent work from the authors' laboratory demonstrated that HEMA and TEGDMA freely equilibrate with water-saturated dentin matrices. However, because adhesive blends are solvated in organic solvents, those solvents may remove enough free water to allow collagen molecules to come close enough to exclude adhesive monomer permeation. The present study analyzed the size-exclusion characteristics of dentin collagen, using a gel permeation-like column chromatography technique, filled with dentin powder instead of Sephadex beads as the stationary phase. The elution volumes of different sized test molecules, including adhesive resin monomers, studied in both water-saturated dentin, and again in ethanol-dehydrated dentin powder, showed that adhesive resin monomers can freely diffuse into both hydrated and dehydrated collagen molecules. Under these in vitro conditions, all free and some of the loosely-bound water seems to have been removed by ethanol. These results validate the concept that adhesive resin monomers can permeate tightly-bound water in ethanol-saturated collagen molecules during infiltration by etch-and-rinse adhesives. It has been reported that collagen molecules in dentin matrices are packed too close together to allow permeation of adhesive monomers between them. Resin infiltration, in this view, would be limited to extrafibrillar spaces. Our work suggests that monomers equilibrate with collagen water in both water and ethanol-saturated dentin matrices. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Hydrophobic fluorescent probes introduce artifacts into single molecule tracking experiments due to non-specific binding.

    PubMed

    Zanetti-Domingues, Laura C; Tynan, Christopher J; Rolfe, Daniel J; Clarke, David T; Martin-Fernandez, Marisa

    2013-01-01

    Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion.

  15. Hydrophobic Fluorescent Probes Introduce Artifacts into Single Molecule Tracking Experiments Due to Non-Specific Binding

    PubMed Central

    Rolfe, Daniel J.; Clarke, David T.; Martin-Fernandez, Marisa

    2013-01-01

    Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion. PMID:24066121

  16. Identification of a Monocyte Receptor on Herpesvirus-Infected Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Etingin, Orli R.; Silverstein, Roy L.; Hajjar, David P.

    1991-08-01

    The adhesion of circulating blood cells to vascular endothelium may be an initial step in atherosclerosis, inflammation, and wound healing. One mechanism for promoting cell-cell adhesion involves the expression of adhesion molecules on the surface of the target cell. Herpes simplex virus infection of endothelium induces arterial injury and has been implicated in the development of human atherosclerosis. We now demonstrate that HSV-infected endothelial cells express the adhesion molecule GMP140 and that this requires cell surface expression of HSV glycoprotein C and local thrombin generation. Monocyte adhesion to HSV-infected endothelial cells was completely inhibited by anti-GMP140 antibodies but not by antibodies to other adhesion molecules such as VCAM and ELAM-1. The induction of GMP140 expression on HSV-infected endothelium may be an important pathophysiological mechanism in virus-induced cell injury and inflammation.

  17. Anti-inflammatory effects of Chinese medicinal herbs on cerebral ischemia.

    PubMed

    Su, Shan-Yu; Hsieh, Ching-Liang

    2011-07-09

    Recent studies have demonstrated the importance of anti-inflammation, including cellular immunity, inflammatory mediators, reactive oxygen species, nitric oxide and several transcriptional factors, in the treatment of cerebral ischemia. This article reviews the roles of Chinese medicinal herbs as well as their ingredients in the inflammatory cascade induced by cerebral ischemia. Chinese medicinal herbs exert neuroprotective effects on cerebral ischemia. The effects include inhibiting the activation of microglia, decreasing levels of adhesion molecules such as intracellular adhesion molecule-1, attenuating expression of pro-inflammatory cytokines such as interleukin-1β and tumor necrosis factor-α, reducing inducible nitric oxide synthase and reactive oxygen species, and regulating transcription factors such as nuclear factor-κB.

  18. Leukocyte-inspired biodegradable particles that selectively and avidly adhere to inflamed endothelium in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Sakhalkar, Harshad S.; Dalal, Milind K.; Salem, Aliasger K.; Ansari, Ramin; Fu, Jie; Kiani, Mohammad F.; Kurjiaka, David T.; Hanes, Justin; Shakesheff, Kevin M.; Goetz, Douglas J.

    2003-12-01

    We exploited leukocyte-endothelial cell adhesion chemistry to generate biodegradable particles that exhibit highly selective accumulation on inflamed endothelium in vitro and in vivo. Leukocyte-endothelial cell adhesive particles exhibit up to 15-fold higher adhesion to inflamed endothelium, relative to noninflamed endothelium, under in vitro flow conditions similar to that present in blood vessels, a 6-fold higher adhesion to cytokine inflamed endothelium relative to non-cytokine-treated endothelium in vivo, and a 10-fold enhancement in adhesion to trauma-induced inflamed endothelium in vivo due to the addition of a targeting ligand. The leukocyte-inspired particles have adhesion efficiencies similar to that of leukocytes and were shown to target each of the major inducible endothelial cell adhesion molecules (E-selectin, P-selectin, vascular cell adhesion molecule 1, and intercellular adhesion molecule 1) that are up-regulated at sites of pathological inflammation. The potential for targeted drug delivery to inflamed endothelium has significant implications for the improved treatment of an array of pathologies, including cardiovascular disease, arthritis, inflammatory bowel disease, and cancer.

  19. In vivo imaging of endothelial cell adhesion molecule expression after radiosurgery in an animal model of arteriovenous malformation.

    PubMed

    Raoufi-Rad, Newsha; McRobb, Lucinda S; Lee, Vivienne S; Bervini, David; Grace, Michael; Ukath, Jaysree; Mchattan, Joshua; Sreenivasan, Varun K A; Duong, T T Hong; Zhao, Zhenjun; Stoodley, Marcus A

    2017-01-01

    Focussed radiosurgery may provide a means of inducing molecular changes on the luminal surface of diseased endothelium to allow targeted delivery of novel therapeutic compounds. We investigated the potential of ionizing radiation to induce surface expression of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) on endothelial cells (EC) in vitro and in vivo, to assess their suitability as vascular targets in irradiated arteriovenous malformations (AVMs). Cultured brain microvascular EC were irradiated by linear accelerator at single doses of 0, 5, 15 or 25 Gy and expression of ICAM-1 and VCAM-1 measured by qRT-PCR, Western, ELISA and immunocytochemistry. In vivo, near-infrared (NIR) fluorescence optical imaging using Xenolight 750-conjugated ICAM-1 or VCAM-1 antibodies examined luminal biodistribution over 84 days in a rat AVM model after Gamma Knife surgery at a single 15 Gy dose. ICAM-1 and VCAM-1 were minimally expressed on untreated EC in vitro. Doses of 15 and 25 Gy stimulated expression equally; 5 Gy was not different from the unirradiated. In vivo, normal vessels did not bind or retain the fluorescent probes, however binding was significant in AVM vessels. No additive increases in probe binding were found in response to radiosurgery at a dose of 15 Gy. In summary, radiation induces adhesion molecule expression in vitro but elevated baseline levels in AVM vessels precludes further induction in vivo. These molecules may be suitable targets in irradiated vessels without hemodynamic derangement, but not AVMs. These findings demonstrate the importance of using flow-modulated, pre-clinical animal models for validating candidate proteins for vascular targeting in irradiated AVMs.

  20. Correlating single-molecule and ensemble-average measurements of peptide adsorption onto different inorganic materials.

    PubMed

    Kim, Seong-Oh; Jackman, Joshua A; Mochizuki, Masahito; Yoon, Bo Kyeong; Hayashi, Tomohiro; Cho, Nam-Joon

    2016-06-07

    The coating of solid-binding peptides (SBPs) on inorganic material surfaces holds significant potential for improved surface functionalization at nano-bio interfaces. In most related studies, the goal has been to engineer peptides with selective and high binding affinity for a target material. The role of the material substrate itself in modulating the adsorption behavior of a peptide molecule remains less explored and there are few studies that compare the interaction of one peptide with different inorganic substrates. Herein, using a combination of two experimental techniques, we investigated the adsorption of a 16 amino acid-long random coil peptide to various inorganic substrates - gold, silicon oxide, titanium oxide and aluminum oxide. Quartz crystal microbalance-dissipation (QCM-D) experiments were performed in order to measure the peptide binding affinity for inorganic solid supports at the ensemble average level, and atomic force microscopy (AFM) experiments were conducted in order to determine the adhesion force of a single peptide molecule. A positive trend was observed between the total mass uptake of attached peptide and the single-molecule adhesion force on each substrate. Peptide affinity for gold was appreciably greater than for the oxide substrates. Collectively, the results obtained in this study offer insight into the ways in which inorganic materials can differentially influence and modulate the adhesion of SBPs.

  1. Serum Amyloid A Promotes E-Selectin Expression via Toll-Like Receptor 2 in Human Aortic Endothelial Cells.

    PubMed

    Nishida, Eisaku; Aino, Makoto; Kobayashi, Shu-Ichiro; Okada, Kosuke; Ohno, Tasuku; Kikuchi, Takeshi; Hayashi, Jun-Ichiro; Yamamoto, Genta; Hasegawa, Yoshiaki; Mitani, Akio

    2016-01-01

    Periodontitis is a chronic inflammatory disease that affects the periodontium. Recent studies suggest an association between periodontal and cardiovascular diseases. However, the detailed molecular mechanism is unknown. A previous study has demonstrated that experimental periodontitis induces serum amyloid A (SAA) in the liver and peripheral blood of ApoE-deficient mice as an atherosclerosis model. SAA is an acute-phase protein that affects systemic inflammation. The aim of this study is to investigate the atherosclerosis-onset mechanism using human aortic endothelial cells (HAECs) stimulated by SAA in vitro . Atherosclerosis PCR array and qPCR analyses showed upregulation of adhesion molecules such as intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin in HAECs upon SAA stimulation. In addition, the results demonstrated that Toll-like receptor, TLR2, could serve as an important receptor of SAA in HAECs. Furthermore, small interfering RNA (siRNA) against TLR2 inhibited the upregulation of adhesion molecules in HAECs stimulated by SAA. Our results suggest that SAA stimulates the expression of adhesion molecules via TLR2. SAA could be an important molecule for atherosclerosis induced by periodontal disease.

  2. Serum Amyloid A Promotes E-Selectin Expression via Toll-Like Receptor 2 in Human Aortic Endothelial Cells

    PubMed Central

    2016-01-01

    Periodontitis is a chronic inflammatory disease that affects the periodontium. Recent studies suggest an association between periodontal and cardiovascular diseases. However, the detailed molecular mechanism is unknown. A previous study has demonstrated that experimental periodontitis induces serum amyloid A (SAA) in the liver and peripheral blood of ApoE-deficient mice as an atherosclerosis model. SAA is an acute-phase protein that affects systemic inflammation. The aim of this study is to investigate the atherosclerosis-onset mechanism using human aortic endothelial cells (HAECs) stimulated by SAA in vitro. Atherosclerosis PCR array and qPCR analyses showed upregulation of adhesion molecules such as intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin in HAECs upon SAA stimulation. In addition, the results demonstrated that Toll-like receptor, TLR2, could serve as an important receptor of SAA in HAECs. Furthermore, small interfering RNA (siRNA) against TLR2 inhibited the upregulation of adhesion molecules in HAECs stimulated by SAA. Our results suggest that SAA stimulates the expression of adhesion molecules via TLR2. SAA could be an important molecule for atherosclerosis induced by periodontal disease. PMID:27799725

  3. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    NASA Astrophysics Data System (ADS)

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-03-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.

  4. Effects of gonadotropin-releasing hormone agonist/recombinant follicle-stimulating hormone versus gonadotropin-releasing hormone antagonist/recombinant follicle-stimulating hormone on follicular fluid levels of adhesion molecules during in vitro fertilization.

    PubMed

    Fornaro, Felice; Cobellis, Luigi; Mele, Daniela; Tassou, Argyrò; Badolati, Barbara; Sorrentino, Simona; De Lucia, Domenico; Colacurci, Nicola

    2007-01-01

    To compare the effects of GnRH-agonist/recombinant rFSH versus GnRH-antagonist/recombinant FSH stimulation on follicular fluid levels of soluble intercellular adhesion molecule (sICAM)-1 and vascular cell adhesion molecule-1 (sVCAM-1) during in vitro fertilization (IVF). Prospective, randomized study. University hospital. Seventy-three women underwent IVF. GnRH-agonist/rFSH or GnRH-antagonist/rFSH administration and collection of follicular fluid from 3 small (11-14 mm in diameter) and 3 large (18-21 mm in diameter) follicles on the day of oocyte retrieval. Follicular fluid levels of sICAM-1 and sVCAM-1 and intrafollicular estradiol and progesterone were also measured. Women who underwent GnRH-agonist/rFSH showed higher concentrations of sICAM-1 in both small and large follicles were compared with patients who received GnRH-antagonist/rFSH treatment; follicular fluid levels of sVCAM-1 were similar between the 2 stimulation protocols. Content of sICAM-1 in small and large follicles positively correlated with the number of follicles of > or =15 mm and the number of oocytes that were retrieved in both study groups. Concentrations of follicular fluid sVCAM-1 and progesterone were higher in large than in small follicles and were correlated positively to each other in both follicular classes. In IVF, GnRH-agonist/rFSH is associated with higher follicular fluid levels of sICAM-1 compared with GnRH-antagonist/rFSH regimen. Intrafollicular sICAM-1 content may predict ovarian response, and sVCAM-1 appears as an indicator of the degree of follicular luteinization.

  5. Clinical significance of circulating vascular cell adhesion molecule-1 to white matter disintegrity in Alzheimer's dementia.

    PubMed

    Huang, Chi-Wei; Tsai, Meng-Han; Chen, Nai-Ching; Chen, Wei-Hsi; Lu, Yan-Ting; Lui, Chun-Chung; Chang, Ya-Ting; Chang, Wen-Neng; Chang, Alice Y W; Chang, Chiung-Chih

    2015-11-25

    Endothelial dysfunction leads to worse cognitive performance in Alzheimer's dementia (AD). While both cerebrovascular risk factors and endothelial dysfunction lead to activation of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin, it is not known whether these biomarkers extend the diagnostic repertoire in reflecting intracerebral structural damage or cognitive performance. A total of 110 AD patients and 50 age-matched controls were enrolled. Plasma levels of VCAM-1, ICAM-1 and E-selectin were measured and correlated with the cognitive performance, white matter macro-structural changes, and major tract-specific fractional anisotropy quantification. The AD patients were further stratified by clinical dementia rating score (mild dementia, n=60; moderate-to-severe dementia, n=50). Compared with the controls, plasma levels of VCAM-1 (p< 0.001), ICAM-1 (p=0.028) and E-selectin (p=0.016) were significantly higher in the patients, but only VCAM-1 levels significantly reflected the severity of dementia (p< 0.001). In addition, only VCAM-1 levels showed an association with macro- and micro- white matter changes especially in the superior longitudinal fasciculus (p< 0.001), posterior thalamic radiation (p=0.002), stria terminalis (p=0.002) and corpus callosum (p=0.009), and were independent of, age and cortical volume. These tracts show significant association with MMSE, short term memory and visuospatial function. Meanwhile, while VCAM-1 level correlated significantly with short-term memory (p=0.026) and drawing (p=0.025) scores in the AD patients after adjusting for age and education, the significance disappeared after adjusting for global FA. Endothelial activation, especially VCAM-1, was of clinical significance in AD that reflects macro- and micro-structural changes and poor short term memory and visuospatial function.

  6. Bone morphogenetic protein 9 (BMP9) and BMP10 enhance tumor necrosis factor-α-induced monocyte recruitment to the vascular endothelium mainly via activin receptor-like kinase 2.

    PubMed

    Mitrofan, Claudia-Gabriela; Appleby, Sarah L; Nash, Gerard B; Mallat, Ziad; Chilvers, Edwin R; Upton, Paul D; Morrell, Nicholas W

    2017-08-18

    Bone morphogenetic proteins 9 and 10 (BMP9/BMP10) are circulating cytokines with important roles in endothelial homeostasis. The aim of this study was to investigate the roles of BMP9 and BMP10 in mediating monocyte-endothelial interactions using an in vitro flow adhesion assay. Herein, we report that whereas BMP9/BMP10 alone had no effect on monocyte recruitment, at higher concentrations both cytokines synergized with tumor necrosis factor-α (TNFα) to increase recruitment to the vascular endothelium. The BMP9/BMP10-mediated increase in monocyte recruitment in the presence of TNFα was associated with up-regulated expression levels of E-selectin, vascular cell adhesion molecule (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Using siRNAs to type I and II BMP receptors and the signaling intermediaries (Smads), we demonstrated a key role for ALK2 in the BMP9/BMP10-induced surface expression of E-selectin, and both ALK1 and ALK2 in the up-regulation of VCAM-1 and ICAM-1. The type II receptors, BMPR-II and ACTR-IIA were both required for this response, as was Smad1/5. The up-regulation of cell surface adhesion molecules by BMP9/10 in the presence of TNFα was inhibited by LDN193189, which inhibits ALK2 but not ALK1. Furthermore, LDN193189 inhibited monocyte recruitment induced by TNFα and BMP9/10. BMP9/10 increased basal IκBα protein expression, but did not alter p65/RelA levels. Our findings suggest that higher concentrations of BMP9/BMP10 synergize with TNFα to induce the up-regulation of endothelial selectins and adhesion molecules, ultimately resulting in increased monocyte recruitment to the vascular endothelium. This process is mediated mainly via the ALK2 type I receptor, BMPR-II/ACTR-IIA type II receptors, and downstream Smad1/5 signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Cell Adhesion Molecules and Ubiquitination—Functions and Significance

    PubMed Central

    Homrich, Mirka; Gotthard, Ingo; Wobst, Hilke; Diestel, Simone

    2015-01-01

    Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system. PMID:26703751

  8. Expression of adhesion molecules, chemokines and matrix metallo- proteinases (MMPs) in viable and degenerating stage of Taenia solium metacestode in swine neurocysticercosis.

    PubMed

    Singh, Satyendra K; Singh, Aloukick K; Prasad, Kashi N; Singh, Amrita; Singh, Avinash; Rai, Ravi P; Tripathi, Mukesh; Gupta, Rakesh K; Husain, Nuzhat

    2015-11-30

    Neurocysticercosis (NCC) is a parasitic infection of central nervous system (CNS). Expression of adhesion molecules, chemokines and matrix metalloproteinases (MMPs) were investigated on brain tissues surrounding viable (n=15) and degenerating cysticerci (n=15) of Taenia solium in swine by real-time RT-PCR and ELISA. Gelatin gel zymography was performed for MMPs activity. ICAM-1 (intercellular adhesion molecule-1), E-selectin, MIP-1α (macrophage inflammatory protein-1α), Eotaxin-1 and RANTES (regulated on activation, normal T cell expressed and secreted) were associated with degenerating cysticerci (cysts). However, VCAM-1 (vascular cell adhesion molecule-1), MCP-1 (monocyte chemotactic protein-1), MMP-2 and MMP-9 were associated with both viable and degenerating cysts. In conclusion, viable and degenerating cysticerci have different immune molecule profiles and role of these molecules in disease pathogenesis needs to be investigated. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri

    PubMed Central

    MATSUO, Yosuke; MIYOSHI, Yukihiro; OKADA, Sanae; SATOH, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion. PMID:24936355

  10. Structural Requirements for Outside-In and Inside-Out Signaling by Drosophila Neuroglian, a Member of the L1 Family of Cell Adhesion Molecules

    PubMed Central

    Hortsch, Michael; Homer, Diahann; Malhotra, Jyoti Dhar; Chang, Sherry; Frankel, Jason; Jefford, Gregory; Dubreuil, Ronald R.

    1998-01-01

    Expression of the Drosophila cell adhesion molecule neuroglian in S2 cells leads to cell aggregation and the intracellular recruitment of ankyrin to cell contact sites. We localized the region of neuroglian that interacts with ankyrin and investigated the mechanism that limits this interaction to cell contact sites. Yeast two-hybrid analysis and expression of neuroglian deletion constructs in S2 cells identified a conserved 36-amino acid sequence that is required for ankyrin binding. Mutation of a conserved tyrosine residue within this region reduced ankyrin binding and extracellular adhesion. However, residual recruitment of ankyrin by this mutant neuroglian molecule was still limited to cell contacts, indicating that the lack of ankyrin binding at noncontact sites is not caused by tyrosine phosphorylation. A chimeric molecule, in which the extracellular domain of neuroglian was replaced with the corresponding domain from the adhesion molecule fasciclin II, also selectively recruited ankyrin to cell contacts. Thus, outside-in signaling by neuroglian in S2 cells depends on extracellular adhesion, but does not depend on any unique property of its extracellular domain. We propose that the recruitment of ankyrin to cell contact sites depends on a physical rearrangement of neuroglian in response to cell adhesion, and that ankyrin binding plays a reciprocal role in stabilizing the adhesive interaction. PMID:9660878

  11. Structural requirements for outside-in and inside-out signaling by Drosophila neuroglian, a member of the L1 family of cell adhesion molecules.

    PubMed

    Hortsch, M; Homer, D; Malhotra, J D; Chang, S; Frankel, J; Jefford, G; Dubreuil, R R

    1998-07-13

    Expression of the Drosophila cell adhesion molecule neuroglian in S2 cells leads to cell aggregation and the intracellular recruitment of ankyrin to cell contact sites. We localized the region of neuroglian that interacts with ankyrin and investigated the mechanism that limits this interaction to cell contact sites. Yeast two-hybrid analysis and expression of neuroglian deletion constructs in S2 cells identified a conserved 36-amino acid sequence that is required for ankyrin binding. Mutation of a conserved tyrosine residue within this region reduced ankyrin binding and extracellular adhesion. However, residual recruitment of ankyrin by this mutant neuroglian molecule was still limited to cell contacts, indicating that the lack of ankyrin binding at noncontact sites is not caused by tyrosine phosphorylation. A chimeric molecule, in which the extracellular domain of neuroglian was replaced with the corresponding domain from the adhesion molecule fasciclin II, also selectively recruited ankyrin to cell contacts. Thus, outside-in signaling by neuroglian in S2 cells depends on extracellular adhesion, but does not depend on any unique property of its extracellular domain. We propose that the recruitment of ankyrin to cell contact sites depends on a physical rearrangement of neuroglian in response to cell adhesion, and that ankyrin binding plays a reciprocal role in stabilizing the adhesive interaction.

  12. Neural cell adhesion molecule-deficient beta-cell tumorigenesis results in diminished extracellular matrix molecule expression and tumour cell-matrix adhesion.

    PubMed

    Håkansson, Joakim; Xian, Xiaojie; He, Liqun; Ståhlberg, Anders; Nelander, Sven; Samuelsson, Tore; Kubista, Mikael; Semb, Henrik

    2005-01-01

    To understand by which mechanism neural cell adhesion molecule (N-CAM) limits beta tumour cell disaggregation and dissemination, we searched for potential downstream genes of N-CAM during beta tumour cell progression by gene expression profiling. Here, we show that N-CAM-deficient beta-cell tumorigenesis is associated with changes in the expression of genes involved in cell-matrix adhesion and cytoskeletal dynamics, biological processes known to affect the invasive and metastatic behaviour of tumour cells. The extracellular matrix (ECM) molecules emerged as the primary target, i.e. N-CAM deficiency resulted in down-regulated mRNA expression of a broad range of ECM molecules. Consistent with this result, deficient deposition of major ECM stromal components, such as fibronectin, laminin 1 and collagen IV, was observed. Moreover, N-CAM-deficient tumour cells displayed defective matrix adhesion. These results offer a potential mechanism for tumour cell disaggregation during N-CAM-deficient beta tumour cell progression. Prospective consequences of these findings for the role of N-CAM in beta tumour cell dissemination are discussed.

  13. Therapeutic Targeting of Eosinophil Adhesion and Accumulation in Allergic Conjunctivitis

    PubMed Central

    Baiula, Monica; Bedini, Andrea; Carbonari, Gioia; Dattoli, Samantha Deianira; Spampinato, Santi

    2012-01-01

    Considerable evidence indicates that eosinophils are important effectors of ocular allergy. Increased worldwide prevalence of allergic eye pathologies has stimulated the identification of novel drug targets, including eosinophils and adhesion molecules. Accumulation of eosinophils in the eye is a key event in the onset and maintenance of allergic inflammation and is mediated by different adhesion molecules. Antihistamines with multiple mechanisms of action can be effective during the early and late phases of allergic conjunctivitis by blocking the interaction between β1 integrins and vascular cell adhesion molecule (VCAM)-1. Small molecule antagonists that target key elements in the process of eosinophil recruitment have been identified and reinforce the validity of α4β1 integrin as a therapeutic target. Glucocorticoids are among the most effective drugs for ocular allergy, but their use is limited by adverse effects. Novel dissociated glucocorticoids can prevent eosinophil accumulation and induce apoptosis of eosinophils, making them promising candidates for ophthalmic drugs. This article reviews recent understanding of the role of adhesion molecules in eosinophil recruitment in the inflamed conjunctiva along with effective treatments for allergic conjunctivitis. PMID:23271999

  14. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mobasseri, Rezvan; Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576; Tian, Lingling

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on differentmore » substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation. - Highlights: • Bioactive molecules modified surface is a strategy to design biomimicry scaffold. • Bi-functional Tat-derived peptide (R-pept) enhanced MSCs adhesion and proliferation. • R-pept showed similar influences to fibronectin on FA formation and attachment.« less

  15. [Regulative effects of hydrogen-rich medium on monocytic adhesion and vascular endothelial permeability].

    PubMed

    Wang, Wei-na; Xie, Ke-liang; Chen, Hong-guang; Han, Huan-zhi; Wang, Guo-lin; Yu, Yong-hao

    2013-11-19

    To explore the regulative effects of hydrogen-rich medium on lipopolysaccharide (LPS)-induced monocytes adhesion to human umbilical vein endothelial cells (HUVEC) and vascular endothelial permeability in vitro. Endothelial cells were seeded in 6-well plates and randomly divided into 4 groups (n = 42 each):control (A), hydrogen-rich medium (B), LPS (C) and LPS+hydrogen-rich medium (D). Cells were cultured in plain culture medium in groups A and C or in hydrogen-saturated culture medium in groups B and D.LPS 1 µg/ml was added into groups C and D.When forming a monolayer, monocytes were added into each group after 6, 12 and 24 h respectively. After a 90-minute co-culturing, adhesion status was detected by Wright-Giemsa stain.Supernatants were collected to detect the concentrations of vascular cell adhesion molecule-1 (VCAM-1) and E-selectin by enzyme-linked immunosorbent assay (ELISA). The expression of VE-cadherin was measured by Western blot. Cells were stained with immunofluorescence to show the distribution of VE-cadherin after a 24-hour incubation. Compared with group A, the adhesion of monocytes to endothelial cells increased (P < 0.05) in group C, the levels of E-selectin and VCAM-1 became elevated (P < 0.05) while the expression of VE-cadherin decreased significantly (P < 0.05). Compared with group C, adhesion decreased in group D (P < 0.05), the levels of E-selectin and VCAM-1 decreased (P < 0.05) while there was an increased expression of VE-cadherin (P < 0.05). Three timepoints showed the same tendency. The results of 24 h fluorescence indicated that, compared with group A, VE-cadherin was incomplete in cell-cell connections in group C.However it was complete and well-distributed in group D versus group C. Hydrogen-rich medium may reduce the LPS-induced release of adhesion molecules, lessen monocytic adhesion to HUVEC and regulate the expression of VE-cadherin to protect vascular permeability.

  16. Endothelial cell regulation of leukocyte infiltration in inflammatory tissues

    PubMed Central

    Mantovani, A.; Introna, M.; Dejana, E.

    1995-01-01

    Endothelial cells play an important, active role in the onset and regulation of inflammatory and immune reactions. Through the production of chemokines they attract leukocytes and activate their adhesive receptors. This leads to the anchorage of leukocytes to the adhesive molecules expressed on the endothelial surface. Leukocyte adhesion to endothelial cells is frequently followed by their extravasation. The mechanisms which regulate the passage of leukocytes through endothelial clefts remain to be clarified. Many indirect data suggest that leukocytes might transfer signals to endothelial cells both through the release of active agents and adhesion to the endothelial cell surface. Adhesive molecules (such as PECAM) on the endothelial cell surface might also ‘direct’ leukocytes through the intercellular junction by haptotaxis. The information available on the molecular structure and functional properties of endothelial chemokines, adhesive molecules or junction organization is still fragmentary. Further work is needed to clarify how they interplay in regulating leukocyte infiltration into tissues. PMID:18475659

  17. N-cadherin prodomain processing regulates synaptogenesis.

    PubMed

    Reinés, Analía; Bernier, Louis-Philippe; McAdam, Robyn; Belkaid, Wiam; Shan, Weisong; Koch, Alexander W; Séguéla, Philippe; Colman, David R; Dhaunchak, Ajit S

    2012-05-02

    Classical cadherins, which are adhesion molecules functioning at the CNS synapse, are synthesized as adhesively inactive precursor proteins in the endoplasmic reticulum (ER). Signal sequence and prodomain cleavage in the ER and Golgi apparatus, respectively, activates their adhesive properties. Here, we provide the first evidence for sorting of nonadhesive precursor N-cadherin (ProN) to the neuronal surface, where it coexists with adhesively competent mature N-cadherin (N-cad), generating a spectrum of adhesive strengths. In cultured hippocampal neurons, a high ProN/N-cad ratio downregulates synapse formation. Neurons expressing genetically engineered uncleavable ProN make markedly fewer synapses. The synapse number can be rescued to normality by depleting surface ProN levels through prodomain cleavage by an exogenous protease. Finally, prodomain processing is developmentally regulated in the rat hippocampus. We conclude that it is the ProN/N-cad ratio and not mature N-cad alone that is critical for regulation of adhesion during synaptogenesis.

  18. Long term exposure to L-arginine accelerates endothelial cell senescence through arginase-II and S6K1 signaling

    PubMed Central

    Xiong, Yuyani; Fru, Michael Forbiteh; Yu, Yi; Montani, Jean-Pierre; Ming, Xiu-Fen; Yang, Zhihong

    2014-01-01

    L-arginine supplementation is proposed to improve health status or as adjunct therapy for diseases including cardiovascular diseases. However, controversial results and even detrimental effects of L-arginine supplementation are reported. We investigate potential mechanisms of L-arginine-induced detrimental effects on vascular endothelial cells. Human endothelial cells were exposed to a physiological (0.1 mmol/L) or pharmacological (0.5 mmol/L) concentration of L-arginine for 30 minutes (acute) or 7 days (chronic). The effects of L-arginine supplementation on endothelial senescence phenotype, i.e., levels of senescence-associated beta-galactosidase, expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, eNOS-uncoupling, arginase-II expression/activity, and mTORC1-S6K1 activity were analyzed. While acute L-arginine treatment enhances endothelial NO production accompanied with superoxide production and activation of S6K1 but no up-regulation of arginase-II, chronic L-arginine supplementation causes endothelial senescence, up-regulation of the adhesion molecule expression, and eNOS-uncoupling (decreased NO and enhanced superoxide production), which are associated with S6K1 activation and up-regulation of arginase-II. Silencing either S6K1 or arginase-II inhibits up-regulation/activation of each other, prevents endothelial dysfunction, adhesion molecule expression, and senescence under the chronic L-arginine supplementation condition. These results demonstrate that S6K1 and arginase-II form a positive circuit mediating the detrimental effects of chronic L-arginine supplementation on endothelial cells. PMID:24860943

  19. [Behavior of soluble L-selectin in HIV infected children].

    PubMed

    Gaddi, E; Balbaryski, J; Cantisano, C; Barboni, G; Candi, M; Quiroz, H; Giraudi, V

    2001-01-01

    L-selectin is an adhesion molecule that is responsible for the initial attachment of leukocytes to endothelium. After leukocyte activation L-selectin is endoproteolytically released from the cell surface. In order to analyze the relationship between soluble L-selectin (sL-selectin) and parameters of immune activation and disease progression, 51 HIV infected children and 15 healthy controls were studied. Serum L-selectin concentrations were significantly higher in HIV infected children than in the control group. Levels of sL-selectin were higher in HIV infected patients with severe immunologic suppression than in those with moderate or no evidence of suppression. A positive correlation between sL-selectin levels and LTCD8 counts, sL-selectin and soluble intercellular adhesion molecule-1 (sICAM-1) and immunogobulin A (IgA) levels was detected. On the contrary sL-selectin concentration did not correlate with plasmatic viral load. The correlation with parameters of immune activation may implicate involvement of sL-selectin in the immunopathogenesis of HIV infection.

  20. Impact of diabetic serum on endothelial cells: An in-vitro-analysis of endothelial dysfunction in diabetes mellitus type 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muenzel, Daniela; Lehle, Karla; Haubner, Frank

    2007-10-19

    Diabetic endothelial dysfunction was characterized by altered levels of adhesion molecules and cytokines. Aim of our study was to evaluate the effects of diabetic serum on cell-growth and proinflammatory markers in human saphenous vein endothelial cells (HSVEC) from diabetic and non-diabetic patients. Diabetic serum showed (1) complementary proliferative activity for non-diabetic and diabetic HSVEC, (2) unchanged surface expression of adhesion molecules, and (3) elevated levels of sICAM-1 in HSVEC of all donors. The concentration of sVCAM-1 was increased only in diabetic cells. The proinflammatory state of diabetic HSVEC characterized by increased levels of cytokines was compensated. We concluded that evenmore » under normoglycemic conditions the serum itself contains critical factors leading to abnormal regulation of inflammation in diabetics. We introduced an in vitro model of diabetes representing the endothelial situation at the beginning of diabetes (non-diabetic cells/diabetic serum) as well as the diabetic chronic state (diabetic cells/diabetic serum)« less

  1. Soluble VCAM-1/soluble ICAM-1 ratio is a promising biomarker for diagnosing endometriosis.

    PubMed

    Kuessel, L; Wenzl, R; Proestling, K; Balendran, S; Pateisky, P; Yotova; Yerlikaya, G; Streubel, B; Husslein, H

    2017-04-01

    Do cell adhesion molecules play a role in endometriosis, and can they be used as a biomarker for diagnosing endometriosis? Altered expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in the endometrium and peritoneum may play a key role in endometriosis and the soluble VCAM-1/soluble ICAM-1 ratio is a promising biomarker. Cell adhesion molecules are cell surface proteins that mediate cellular adherence, inflammatory and immune responses, and cancer-related biological processes. Altered expression of VCAM-1 and ICAM-1 in women with endometriosis has been investigated previously; however, gene expression levels in tissues and protein levels in the serum have not been investigated in the same patients. We performed a prospective, longitudinal study (the Endometriosis Marker Austria) in patients who underwent a laparoscopy for benign gynecological pathology in a university-based tertiary referral center for endometriosis. From a total of 138 women who were included in the study from July 2013 through September 2014, 97 had not received hormonal treatment for at least 3 months prior to recruitment and were included in the analysis; 49 (50.5%) of these women had endometriosis, and the 48 (49.5%) who did not have endometriosis served as a control group. During laparoscopy, tissue samples were obtained from ectopic and eutopic endometrium, and from normal pelvic peritoneum. In addition, serum samples were collected immediately before and 6-10 weeks after surgery. The mRNA levels of VCAM-1, ICAM-1 and epithelial cell adhesion molecule (EpCAM) were measured using quantitative real-time PCR, and serum protein levels of soluble VCAM-1 (sVCAM-1), ICAM-1 (sICAM-1) and EpCAM (sEpCAM) were measured using ELISA and correlated with endometriosis status. The mRNA levels of both VCAM-1 and ICAM-1 were higher in ectopic endometriotic lesions than in eutopic endometrium (P < 0.001). Moreover, the mRNA levels of both VCAM-1 and ICAM-1 were higher in normal peritoneum samples obtained from women with endometriosis compared to those from controls (P = 0.038 and P = 0.009). The mRNA levels of VCAM-1 were also higher in the eutopic endometrium samples obtained from women with endometriosis compared to controls (P = 0.018). With respect to serum protein levels, compared to controls, the women with endometriosis had lower serum levels of sICAM-1 (P = 0.042) and higher levels of sVCAM-1 (P < 0.001). Our analysis revealed that the serum levels of sVCAM-1 were not affected by lesion entity, menstrual cycle phase or disease severity. An receiver operating characteristics curve, calculated to determine whether preoperative serum sVCAM-1 concentration can be used to predict endometriosis, found an AUC of 0.868 with 80% specificity and 84% sensitivity at a cutoff value of 370 pg/ml. This predictive performance can be further improved by calculation of the sVCAM-1/sICAM-1 ratio, leading to an AUC of 0.929 with 86.7% specificity and 90.3% sensitivity at a cutoff ratio value of 1.55. Not applicable. The relatively small sample size in the expression analyses is a possible limitation of this study. Our findings could contribute to an improved understanding of the pathogenesis of endometriosis and the role of cell adhesion molecules. In addition, the results may lead to the development of new, non-invasive tools for diagnosing endometriosis. The ability to diagnose patients by measuring serum sVCAM-1 levels or the sVCAM-1/sICAM-1 ratio would have considerable clinical value. The Ingrid Flick Foundation (Grant no. FA751C0801), which played no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors declare no competing interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  2. Cellular and molecular mechanisms of pomegranate juice-induced anti-metastatic effect on prostate cancer cells.

    PubMed

    Wang, Lei; Alcon, Andre; Yuan, Hongwei; Ho, Jeffrey; Li, Qi-Jing; Martins-Green, M

    2011-07-01

    Prostate cancer is the second leading cause of cancer-related deaths among US males. Pomegranate juice (PJ), a natural product, was shown in a clinical trial to inhibit progression of this disease. However, the underlying mechanisms involved in the anti-progression effects of PJ on prostate cancer remain unclear. Here we show that, in addition to causing cell death of hormone-refractory prostate cancer cells, PJ also increases cell adhesion and decreases cell migration of the cells that do not die. We hypothesized that PJ does so by stimulating the expression and/or activation of molecules that alter the cytoskeleton and the adhesion machinery of prostate cancer cells, resulting in enhanced cell adhesion and reduced cell migration. We took an integrative approach to these studies by using Affimetrix gene arrays to study gene expression, microRNA arrays to study the non-coding RNAs, molecules known to be disregulated in cancer cells, and Luminex Multiplex array assays to study the level of secreted pro-inflammatory cytokines/chemokines. PJ up-regulates genes involved in cell adhesion such as E-cadherin, intercellular adhesion molecule 1 (ICAM-1) and down-regulates genes involved in cell migration such as hyaluranan-mediated motility receptor (HMMR) and type I collagen. In addition, anti-invasive microRNAs such as miR-335, miR-205, miR-200, and miR-126, were up-regulated, whereas pro-invasive microRNA such as miR-21 and miR-373, were down-regulated. Moreover, PJ significantly reduced the level of secreted pro-inflammatory cytokines/chemokines such as IL-6, IL-12p40, IL-1β and RANTES, thereby having the potential to decrease inflammation and its impact on cancer progression. PJ also inhibits the ability of the chemokine SDF1α to chemoattract these cancer cells. SDF1α and its receptor CXCR4 are important in metastasis of cancer cells to the bone. Discovery of the mechanisms by which this enhanced adhesion and reduced migration are accomplished can lead to sophisticated and effective prevention of metastasis in prostate and potentially other cancers. This journal is © The Royal Society of Chemistry 2011

  3. μ2-Dependent endocytosis of N-cadherin is regulated by β-catenin to facilitate neurite outgrowth.

    PubMed

    Chen, Yi-Ting; Tai, Chin-Yin

    2017-05-01

    Circuit formation in the brain requires neurite outgrowth throughout development to establish synaptic contacts with target cells. Active endocytosis of several adhesion molecules facilitates the dynamic exchange of these molecules at the surface and promotes neurite outgrowth in developing neurons. The endocytosis of N-cadherin, a calcium-dependent adhesion molecule, has been implicated in the regulation of neurite outgrowth, but the mechanism remains unclear. Here, we identified that a fraction of N-cadherin internalizes through clathrin-mediated endocytosis (CME). Two tyrosine-based motifs in the cytoplasmic domain of N-cadherin recognized by the μ2 subunit of the AP-2 adaptor complex are responsible for CME of N-cadherin. Moreover, β-catenin, a core component of the N-cadherin adhesion complex, inhibits N-cadherin endocytosis by masking the 2 tyrosine-based motifs. Removal of β-catenin facilitates μ2 binding to N-cadherin, thereby increasing clathrin-mediated N-cadherin endocytosis and neurite outgrowth without affecting the steady-state level of surface N-cadherin. These results identify and characterize the mechanism controlling N-cadherin endocytosis through β-catenin-regulated μ2 binding to modulate neurite outgrowth. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Change in platelet endothelial cell adhesion molecule-1 immunoreactivity in the dentate gyrus in gerbils fed a folate-deficient diet.

    PubMed

    Yoo, Ki-Yeon; Hwang, In Koo; Kim, Young Sup; Kwon, Dae Young; Won, Moo Ho

    2008-02-01

    Folate deficiency increases stroke risk. We examined whether folate deficiency affects platelet endothelial cell adhesion molecule-1 (PECAM-1), which is an immunoglobulin-associated cell adhesion molecule and mediates the final common pathway of neutrophil transendothelial migration, in blood vessels in the gerbil dentate gyrus after transient forebrain ischemia. Gerbils were exposed to a folic acid-deficient diet (FAD) for 3 months and then subjected to common carotid artery occlusion for 5 min. In the control diet (CD)- and FAD-treated sham-operated groups, weak PECAM-1 immunoreactivity was detected in the blood vessels located in the dentate gyrus. PECAM-1 immunoreactivity in both groups was increased by 4 days after ischemic insult. PECAM-1 immunoreactivity in the FAD-treated group was twice as high that in the CD-treated-sham-operated group 4 days after ischemic insult. Western blot analyses showed that the change patterns in PECAM-1 protein levels in the dentate gyrus in both groups after ischemic insult were similar to changes in PECAM-1 immunohistochemistry in the ischemic dentate gyrus. Our results suggest that folate deficiency enhances PECAM-1 in the dentate gyrus induced by transient ischemia.

  5. Reduced levels of TNF alpha in hypercholesterolemic individuals after treatment with pravastatin for 8 weeks.

    PubMed

    Solheim, S; Seljeflot, I; Arnesen, H; Eritsland, J; Eikvar, L

    2001-08-01

    cellular adhesion molecules (CAMs) expressed on the endothelial surface play a key role in the inflammatory process of atherosclerosis, and increased expression of CAMs has been shown in hypercholesterolemic individuals. The expression of CAMs is mediated by several cytokines including tumor necrosis factor alpha (TNF alpha) and interleukin 6 (IL-6). The aim of the present study was to assess the influence of pravastatin 40 mg per day on selected soluble CAMs; intercellular adhesion molecule 1 (ICAM-1), vascular cellular adhesion molecule 1 (VCAM-1), E-selectin, P-selectin and some circulating markers of inflammation; C-reactive protein (CRP) and the cytokines TNF alpha and IL-6. 40 non-diabetic men, age below 70 years, with serum total cholesterol 6--10 mmol/l combined with HDL-cholesterol < or =1.2 mmol/l were included. The study was randomized, double blinded, placebo controlled, cross over designed with 8 weeks intervention periods. Fasting blood samples were drawn after 8 and 16 weeks. significant reduction of total cholesterol was achieved after treatment with pravastatin (7.8 on placebo vs. 5.7 mmol/l on pravastatin). TNF alpha was significantly reduced after treatment with pravastatin (1.33 on placebo vs. 1.10 pg/ml on pravastatin, P=0.032), whereas no differences in the levels of the measured sCAMs, CRP and IL-6 were found. Subgroup analysis among smokers versus non-smokers showed a significant reduction in the level of TNF alpha only among the smokers. hypercholesterolemic individuals treated with pravastatin 40 mg per day for 8 weeks showed a statistically significant reduction in the levels of TNF alpha as compared with placebo.

  6. Oxidative stress and inflammatory markers in relation to circulating levels of adiponectin.

    PubMed

    Gustafsson, Stefan; Lind, Lars; Söderberg, Stefan; Zilmer, Mihkel; Hulthe, Johannes; Ingelsson, Erik

    2013-07-01

    Previous epidemiological studies together with animal studies have suggested an association between adiponectin and oxidative stress and inflammation, but community-based studies are lacking. Our objective was to investigate the relative importance of oxidative stress and inflammatory markers, representing different pathways in relation to adiponectin. In a cross-sectional sample of 929 70-year-old individuals (50% women) of the Prospective Investigation of the Vasculature in Uppsala Seniors study, relations between serum adiponectin and oxidative stress [conjugated dienes (CD), homocysteine, total antioxidant capacity, oxidized low-density lipoprotein (OxLDL), OxLDL antibodies, baseline CD of LDL, glutathione (GSH), total glutathione (TGSH), glutathione disulfide], circulation interleukins (IL-6, IL-8), other cytokines [tumor necrosis factor α, monocyte chemotactic protein-1 (MCP-1), epidermal growth factor (EGF), vascular endothelial growth factor], cell adhesion molecules (vascular cell adhesion molecule-1, intercellular adhesion molecule-1, E-selectin, P-selectin, L-selectin), and systemic inflammatory markers [C-reactive protein (CRP), leukocyte count] in separate models were investigated. In age- and sex-adjusted, as well as multivariable-adjusted models, adiponectin was significantly and positively associated with GSH, log TGSH, whereas an inverse association was observed for CD and log EGF. An inverse association between adiponectin and MCP-1, log E-selectin, and log CRP was significant in age- and sex-adjusted models, but not in multivariable-adjusted models. Our results imply that higher levels of adiponectin are associated with a more beneficial oxidative stress profile, with higher levels of principal anti-oxidative GSH and total GSH together with lower levels of lipid peroxidation, possibly through shared pathways. Further studies are needed to investigate whether changes in the oxidative stress profile may be a mechanism linking adiponectin with type 2 diabetes and/or cardiovascular disease. Copyright © 2012 The Obesity Society.

  7. Endothelial activation biomarkers increase after HIV-1 acquisition: plasma vascular cell adhesion molecule-1 predicts disease progression.

    PubMed

    Graham, Susan M; Rajwans, Nimerta; Jaoko, Walter; Estambale, Benson B A; McClelland, R Scott; Overbaugh, Julie; Liles, W Conrad

    2013-07-17

    We aimed to determine whether endothelial activation biomarkers increase after HIV-1 acquisition, and whether biomarker levels measured in chronic infection would predict disease progression and death in HIV-1 seroconverters. HIV-1-seronegative Kenyan women were monitored monthly for seroconversion, and followed prospectively after HIV-1 acquisition. Plasma levels of angiopoietin-1 and angiopoietin-2 (ANG-1, ANG-2) and soluble vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin were tested in stored samples from pre-infection, acute infection, and two chronic infection time points. We used nonparametric tests to compare biomarkers before and after HIV-1 acquisition, and Cox proportional-hazards regression to analyze associations with disease progression (CD4 < 200 cells/μl, stage IV disease, or antiretroviral therapy initiation) or death. Soluble ICAM-1 and VCAM-1 were elevated relative to baseline in all postinfection periods assessed (P < 0.0001). Soluble E-selectin and the ANG-2:ANG-1 ratio increased in acute infection (P = 0.0001), and ANG-1 decreased in chronic infection (P = 0.0004). Among 228 participants followed over 1028 person-years, 115 experienced disease progression or death. Plasma VCAM-1 levels measured during chronic infection were independently associated with time to HIV progression or death (adjusted hazard ratio 5.36, 95% confidence interval 1.99-14.44 per log10 increase), after adjustment for set point plasma viral load, age at infection, and soluble ICAM-1 levels. HIV-1 acquisition was associated with endothelial activation, with sustained elevations of soluble ICAM-1 and VCAM-1 postinfection. Soluble VCAM-1 may be an informative biomarker for predicting the risk of HIV-1 disease progression, morbidity, and mortality.

  8. Molecular cloning of NILE glycoprotein and evidence for its continued expression in mature rat CNS.

    PubMed

    Prince, J T; Alberti, L; Healy, P A; Nauman, S J; Stallcup, W B

    1991-11-01

    The NILE glycoprotein is a rat neuronal cell adhesion molecule which has been reported to be very similar in structure, function, and distribution to the mouse L1 glycoprotein. Here we report the complete nucleotide sequence of the NILE message (5,208 nucleotides) and the deduced amino acid sequence of the NILE polypeptide (1,257 amino acids). The predicted NILE protein is 96% identical to L1 at the amino acid level, confirming that the two molecules are homologues. The sequence information shows that NILE is a transmembrane molecule with an extensive ectodomain and a much smaller cytoplasmic domain. The extracellular portion of the molecule contains six immunoglobulin C-2 type domains followed by five fibronectin type III repeats. These two structural motifs are characteristic of several other cell adhesion molecules. The cytoplasmic tails of NILE and L1 are identical to each other and distinct from the cytoplasmic regions of all other cell adhesion molecules except Ng-CAM and neuroglian. Several possible sites for phosphorylation are present in the cytoplasmic tail of NILE. Antisera were produced against two NILE-beta-galactosidase fusion proteins containing distinct segments of the NILE polypeptide: the cytoplasmic domain and the segment containing fibronectin type III repeats. Immunoblots with these antisera and Northern blots with a NILE cDNA probe indicate that NILE continues to be expressed in most areas of the mature rat brain. This contradicts previous immunofluorescence data, which suggested that NILE was substantially down-regulated in maturing nerve fiber tracts. This raises the possibility that NILE could be masked in situ by interactions with other cell surface molecules.

  9. Embedding of polyaniline molecules on adhesive tape using successive ionic layer adsorption and reaction (SILAR) technique

    NASA Astrophysics Data System (ADS)

    Pamatmat, J. K.; Gillado, A. V.; Herrera, M. U.

    2017-05-01

    Polyaniline molecules are embedded on adhesive tape using successive ionic layer adsorption and reaction (SILAR) technique. The infrared spectrum shows the existence of molecular vibrational modes associated with the presence of polyaniline molecules on the sample. With the addition of polyaniline molecules, the conductivity of adhesive tape increases. Surface conductivity increases with number of dipping cycle until it reaches a certain value. Beyond this value, surface conductivity begins to decrease. The surface conductivity of the sample is associated with the connectivity of the embedded polyaniline molecules. The connectivity increases as the number of dipping cycle progresses. Meanwhile, the decrease in surface conductivity is attributed to the eroding of existing embedded structure at higher number of dipping cycle.

  10. Investigating single molecule adhesion by atomic force spectroscopy.

    PubMed

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  11. Investigating Single Molecule Adhesion by Atomic Force Spectroscopy

    PubMed Central

    Stetter, Frank W. S.; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-01-01

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment. PMID:25867282

  12. Using engineered single-chain antibodies to correlate molecular binding properties and nanoparticle adhesion dynamics.

    PubMed

    Haun, Jered B; Pepper, Lauren R; Boder, Eric T; Hammer, Daniel A

    2011-11-15

    Elucidation of the relationship between targeting molecule binding properties and the adhesive behavior of therapeutic or diagnostic nanocarriers would aid in the design of optimized vectors and lead to improved efficacy. We measured the adhesion of 200-nm-diameter particles under fluid flow that was mediated by a diverse array of molecular interactions, including recombinant single-chain antibodies (scFvs), full antibodies, and the avidin/biotin interaction. Within the panel of scFvs, we used a family of mutants that display a spectrum of binding kinetics, allowing us to compare nanoparticle adhesion to bond chemistry. In addition, we explored the effect of molecular size by inserting a protein linker into the scFv fusion construct and by employing scFvs that are specific for targets with vastly different sizes. Using computational models, we extracted multivalent kinetic rate constants for particle attachment and detachment from the adhesion data and correlated the results to molecular binding properties. Our results indicate that the factors that increase encounter probability, such as adhesion molecule valency and size, directly enhance the rate of nanoparticle attachment. Bond kinetics had no influence on scFv-mediated nanoparticle attachment within the kinetic range tested, however, but did appear to affect antibody/antigen and avidin/biotin mediated adhesion. We attribute this finding to a combination of multivalent binding and differences in bond mechanical strength between recombinant scFvs and the other adhesion molecules. Nanoparticle detachment probability correlated directly with adhesion molecule valency and size, as well as the logarithm of the affinity for all molecules tested. On the basis of this work, scFvs can serve as viable targeting receptors for nanoparticles, but improvements to their bond mechanical strength would likely be required to fully exploit their tunable kinetic properties and maximize the adhesion efficiency of nanoparticles that bear them.

  13. [Correlation analysis between biochemical and biophysical markers of endothelium damage in children with diabetes type 1].

    PubMed

    Głowińska-Olszewska, Barbara; Urban, Mirosława; Tołwińska, Joanna; Peczyńska, Jadwiga; Florys, Bozena

    2005-01-01

    Endothelial damage is one of the earliest stages in the atherosclerosis process. Adhesion molecules, secreted from dysfunctional endothelial cells are considered as early markers of atherosclerotic disease. Ultrasonographic evaluation of brachial arteries serves to detect biophysical changes in endothelial function, and evaluation of carotid arteries intima-media thickness allows to evaluate the earliest structural changes in the vessels. The aim of the study was to the evaluate levels of selected adhesion molecules (sICAM-1, sVCAM-1, sE-selectin, sP-selectin) and endothelial function with use of brachial artery dilatation study (flow mediated dilation--FMD, nitroglycerine mediated dilation--NTGMD) and IMT in carotid arteries in children and adolescents with diabetes type 1, as well as the correlation analysis between biochemical and biophysical markers of endothelial dysfunction. We studied 76 children and adolescents, with mean age--15.6+/-2.5 years, suffering from diabetes mean 7.8+/-2.8 years, mean HbA1c--8.4+/-1.5%. Control group consisted of 33 healthy children age and gender matched. Adhesion molecules levels were estimated with the use of immunoenzymatic methods (R&D Systems). Endothelial function was evaluated by study of brachial arteries dilation--FMD, NTGMD, with ultrasonographic evaluation (Hewlett Packard Sonos 4500) after Celermajer method, and IMT after Pignoli method. In the study group we found elevated levels of sICAM-1: 309.54+/-64 vs. 277.85+/-52 ng/ml in the control group (p<00.05) and elevated level of sE-selectin: 87.81+/-35 vs. 66.21+/-22 ng/ml (p<00.05). We found significantly impaired FMD in brachial arteries in the study group--7.51+/-4.52 vs. 12.61+/-4.65% (p<00.05) and significantly higher IMT value: 0.51+/-0.07 vs. 0.42+/-0.05 mm (p<00.001). Correlation analysis revealed a significant negative correlation between sE-selectin and FMD - r=-0.33 (p=0.004), and a positive correlation between E-selectin and IMT: r=0.32 (p=0.005). 1. In children and adolescents with diabetes type 1 we found elevated levels of adhesion molecules sICAM-1 and sE-selectin, what can confirm an endothelial dysfunction in these patients. 2. Significant negative correlation between sE-selectin level and FMD, and positive correlation between sE-selectin and IMT were found. 3. Biophysical proof of this damage is impaired brachial artery dilatation--FMD, and increased IMT values provide information about structural changes in the vessels.

  14. Early Detection of Junctional Adhesion Molecule-1 (JAM-1) in the Circulation after Experimental and Clinical Polytrauma

    PubMed Central

    Denk, Stephanie; Wiegner, Rebecca; Hönes, Felix M.; Messerer, David A. C.; Radermacher, Peter; Kalbitz, Miriam; Braumüller, Sonja; McCook, Oscar; Gebhard, Florian; Weckbach, Sebastian; Huber-Lang, Markus

    2015-01-01

    Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of the barrier molecule junctional adhesion molecule-1 (JAM-1) was investigated in plasma of C57BL/6 mice 2 h after experimental mono- and polytrauma as well as in polytrauma patients (ISS ≥ 18) during a 10-day period. Correlation analyses were performed to indicate a linkage between JAM-1 plasma concentrations and organ failure. JAM-1 was systemically detected after experimental trauma in mice with blunt chest trauma as a driving force. Accordingly, JAM-1 was reduced in lung tissue after pulmonary contusion and JAM-1 plasma levels significantly correlated with increased protein levels in the bronchoalveolar lavage as a sign for alveolocapillary barrier dysfunction. Furthermore, JAM-1 was markedly released into the plasma of polytrauma patients as early as 4 h after the trauma insult and significantly correlated with severity of disease and organ dysfunction (APACHE II and SOFA score). The data support an early injury- and time-dependent appearance of the barrier molecule JAM-1 in the circulation indicative of a commencing trauma-induced barrier dysfunction. PMID:26556956

  15. Endothelial cell expression of adhesion molecules is induced by fetal plasma from pregnancies with umbilical placental vascular disease.

    PubMed

    Wang, Xin; Athayde, Neil; Trudinger, Brian

    2002-07-01

    To test the hypothesis that local production with spill into the fetal circulation of factor(s) injurious to endothelium is responsible for the vascular pathology present when the umbilical artery Doppler study is abnormal. Expression of adhesion molecules is a feature of endothelial cell activation. Case-control study. University teaching hospital. Fetal plasma was collected from 27 normal pregnancies, 39 pregnancies with umbilical placental vascular disease defined by abnormal umbilical artery Doppler and 11 pregnancies with pre-eclampsia and normal umbilical artery Doppler. Isolated and cultured human umbilical vein endothelial cells from normal pregnancies were incubated with fetal plasma from three study groups. mRNA expression of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1) were assessed by reverse transcription-polymerase chain reaction. To confirm the occurrence of this in vivo, we measured the levels of soluble fractions of sICAM-1, sVCAM-1 and sPECAM-1 in the fetal circulation in the fetal plasma used for endothelial cell incubation. The mRNA expression of ICAM-1 [median 1.1 (interquartile range 0.5-1.9) vs 0.7 (0.3-1.2), P < 0.05] and PECAM-1 [2.1 (1.2-3.0) vs 1.5 (0.7-2.1), P < 0.05] was significantly higher following incubation with fetal plasma from umbilical placental vascular disease compared with the normal group. There was no difference in the expression of VCAM-1 [1.2 (0.9-1.8) vs 1.1 (0.8-1.6), ns]. The group with maternal pre-eclampsia and normal umbilical artery Doppler did not differ from the normal group. In the umbilical placental vascular disease group, the results were similar in the presence or absence of pre-eclampsia. For soluble fractions of the adhesion molecules released into the fetal circulation, we found the levels (ng/mL) of sICAM- I [median 248.5 (interquartile range 197.3-315.7) vs 174.2 (144.5-212.9), P < 0.05] and sPECAM-1 [9.3 (6.2-11.1) vs 6.1 (5.4-7.7), P < 0.05] in fetal plasma to be significantly increased in the presence of umbilical placental vascular disease compared with the normal. Vascular disease in the fetal umbilical placental circulation is associated with an elevation in mRNA expression by endothelial cells of ICAM-1 and PECAM-1. Our study provides evidence for endothelial cell activation and dysfunction in umbilical placental vascular disease. We speculate that the plasma factor(s) affecting the vessels of the umbilical villous tree is locally released by the trophoblast. The occurrence of the maternal syndrome of pre-eclampsia appears to be independent of this.

  16. Involvement of leucocyte/endothelial cell interactions in anorexia nervosa.

    PubMed

    Víctor, Víctor M; Rovira-Llopis, Susana; Saiz-Alarcón, Vanessa; Sangüesa, Maria C; Rojo-Bofill, Luis; Bañuls, Celia; de Pablo, Carmen; Álvarez, Ángeles; Rojo, Luis; Rocha, Milagros; Hernández-Mijares, Antonio

    2015-07-01

    Anorexia nervosa is a common psychiatric disorder in adolescence and is related to cardiovascular complications. Our aim was to study the effect of anorexia nervosa on metabolic parameters, leucocyte-endothelium interactions, adhesion molecules and proinflammatory cytokines. This multicentre, cross-sectional, case-control study employed a population of 24 anorexic female patients and 36 controls. We evaluated anthropometric and metabolic parameters, interactions between leucocytes polymorphonuclear neutrophils (PMN) and human umbilical vein endothelial cells (HUVEC), proinflammatory cytokines such as tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) and soluble cellular adhesion molecules (CAMs) including E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Anorexia nervosa was related to a decrease in weight, body mass index, waist circumference, systolic blood pressure, glucose, insulin and HOMA-IR, and an increase in HDL cholesterol. These effects disappeared after adjusting for BMI. Anorexia nervosa induced a decrease in PMN rolling velocity and an increase in PMN rolling flux and PMN adhesion. Increases in IL-6 and TNF-α and adhesion molecule VCAM-1 were also observed. This study supports the hypothesis of an association between anorexia nervosa, inflammation and the induction of leucocyte-endothelium interactions. These findings may explain, in part at least, the increased risk of vascular disease among patients with anorexia nervosa. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  17. Controlling direct contact force for wet adhesion with different wedged film stabilities

    NASA Astrophysics Data System (ADS)

    Li, Meng; Xie, Jun; Shi, Liping; Huang, Wei; Wang, Xiaolei

    2018-04-01

    In solid–liquid–solid adhesive systems, wedged films often feature instability at microscopic thicknesses, which can easily disrupt the adhesive strength of their remarkable direct contact force. Here, sodium dodecyl sulfate (SDS) was employed to tune the instability of adhesion in wedged glass–water–rubber films, achieving controllable direct contact. Experimental results showed that the supplement of SDS molecules significantly weakened the direct contact force for wet adhesion and eliminated it at high concentrations. The underlying reason was suggested to be the repulsive double-layer force caused by SDS molecules, which lowers the instability of the wedged film and balances the preload, disrupting the direct contact in wet adhesion.

  18. Piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine as orally-active adhesion molecule inhibitors.

    PubMed

    Kaneko, Toshihiko; Clark, Richard S J; Ohi, Norihito; Ozaki, Fumihiro; Kawahara, Tetsuya; Kamada, Atsushi; Okano, Kazuo; Yokohama, Hiromitsu; Ohkuro, Masayoshi; Muramoto, Kenzo; Takenaka, Osamu; Kobayashi, Seiichi

    2004-06-01

    Novel piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine were prepared and evaluated for their inhibitory activity on the upregulation of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1). Replacement of the methanesulfonyl group on the piperidine ring of previously prepared derivatives with a carboxylic acid-containing moiety resulted in a number of potent adhesion molecule inhibitors. Of these, (anti) [3-(10H-pyrazino[2,3-b][1,4]benzothiazin-8-yl)methyl-3-azabicyclo[3.3.1]non-9-yl]acetic acid 2q (ER-49890), showed the most potent oral inhibitory activities against neutrophil migration in an interleukin-1 (IL-1) induced paw inflammation model using mice, and leukocyte accumulation in a carrageenan pleurisy model in the rat, and therapeutic effect on collagen-induced arthritis in rats.

  19. Adhesion mechanisms in embryogenesis and in cancer invasion and metastasis.

    PubMed

    Thiery, J P; Boyer, B; Tucker, G; Gavrilovic, J; Valles, A M

    1988-01-01

    Cell-substratum and cell-cell adhesion mechanisms contribute to the development of animal form. The adhesive status of embryonic cells has been analysed during epithelial-mesenchymal cell interconversion and in cell migrations. Clear-cut examples of the modulation of cell adhesion molecules (CAMs) have been described at critical periods of morphogenesis. In chick embryos the three primary CAMs (N-CAM. L-CAM and N-cadherin) present early in embryogenesis are expressed later in a defined pattern during morphogenesis and histogenesis. The axial mesoderm derived from gastrulating cells expresses increasing amounts of N-cadherin and N-CAM. During metamerization these two adhesion molecules become abundant at somitic cell surfaces. Both CAMs are functional in an in vitro aggregation assay; however, the calcium-dependent adhesion molecule N-cadherin is more sensitive to perturbation by specific antibodies. Neural crest cells which separate from the neural epithelium lose their primary CAMs in a defined time-sequence. Adhesion to fibronectins via specific surface receptors becomes a predominant interaction during the migratory process, while some primary and secondary CAMs are expressed de novo during the ontogeny of the peripheral nervous system. In vitro, different fibronectin functional domains have been identified in the attachment, spreading and migration of neural crest cells. The fibronectin receptors which transduce the adhesive signals play a key role in the control of cell movement. All these results have prompted us to examine whether similar mechanisms operate in carcinoma cell invasion and metastasis. In vitro, rat bladder transitional carcinoma cells convert reversibly into invasive mesenchymal cells. A rapid modulation of adhesive properties is found during the epithelial-mesenchymal carcinoma cell interconversion. The different model systems analysed demonstrate that a limited repertoire of adhesion molecules, expressed in a well-defined spatiotemporal pattern, is involved in tissue formation and in key processes of tumour spread.

  20. Marathon Race Affects Neutrophil Surface Molecules: Role of Inflammatory Mediators

    PubMed Central

    2016-01-01

    The fatigue induced by marathon races was observed in terms of inflammatory and immunological outcomes. Neutrophil survival and activation are essential for inflammation resolution and contributes directly to the pathogenesis of many infectious and inflammatory conditions. The aim of this study was to investigate the effect of marathon races on surface molecules related to neutrophil adhesion and extrinsic apoptosis pathway and its association with inflammatory markers. We evaluated 23 trained male runners at the São Paulo International Marathon 2013. The following components were measured: hematological and inflammatory mediators, muscle damage markers, and neutrophil function. The marathon race induced an increased leukocyte and neutrophil counts; creatine kinase (CK), lactate dehydrogenase (LDH), CK-MB, interleukin (IL)-6, IL-10, and IL-8 levels. C-reactive protein (CRP), IL-12, and tumor necrosis factor (TNF)-α plasma concentrations were significantly higher 24 h and 72 h after the marathon race. Hemoglobin and hematocrit levels decreased 72 h after the marathon race. We also observed an increased intercellular adhesion molecule-1 (ICAM-1) expression and decreasedTNF receptor-1 (TNFR1) expression immediately after and 24 h after the marathon race. We observed an increased DNA fragmentation and L-selectin and Fas receptor expressions in the recovery period, indicating a possible slow rolling phase and delayed neutrophil activation and apoptosis. Marathon racing affects neutrophils adhesion and survival in the course of inflammation, supporting the “open-window” post-exercise hypothesis. PMID:27911915

  1. Elevation of soluble intercellular adhesion molecule-1 levels, but not angiopoietin 2, in the plasma of human immunodeficiency virus-infected African women with clinical Kaposi sarcoma.

    PubMed

    Graham, Susan M; Rajwans, Nimerta; Richardson, Barbra A; Jaoko, Walter; McClelland, R Scott; Overbaugh, Julie; Liles, W Conrad

    2014-10-01

    Circulating levels of endothelial activation biomarkers are elevated in during infection with human immunodeficiency virus 1 (HIV-1) and may also be increased in Kaposi sarcoma (KS). We compared 23 HIV-1-seropositive women with clinically diagnosed KS with 46 randomly selected controls matched for visit year, CD4 count, and antiretroviral therapy status. Conditional logistic regression was used to identify differences between cases and controls. The odds of clinical KS increased with increasing plasma viral load and with intercellular adhesion molecule 1 (ICAM-1) levels above or equal to the median. There was a borderline association between increasing plasma angiopoietin 2 levels and KS. In multivariable modeling including plasma viral load, angiopoietin 2, and ICAM-1, plasma ICAM-1 levels above or equal to the median remained associated with clinical KS (odds ratio = 14.2, 95% confidence interval = 2.3-87.7). Circulating ICAM-1 levels should be evaluated as a potential biomarker for disease progression and treatment response among HIV-infected KS patients. © The American Society of Tropical Medicine and Hygiene.

  2. Elevated Levels of Adhesion Proteins Are Associated With Low Ankle-Brachial Index.

    PubMed

    Berardi, Cecilia; Wassel, Christine L; Decker, Paul A; Larson, Nicholas B; Kirsch, Phillip S; Andrade, Mariza de; Tsai, Michael Y; Pankow, James S; Sale, Michele M; Sicotte, Hugues; Tang, Weihong; Hanson, Naomi Q; McDermott, Mary M; Criqui, Michael H; Allison, Michael A; Bielinski, Suzette J

    2017-04-01

    Inflammation plays a pivotal role in peripheral artery disease (PAD). Cellular adhesion proteins mediate the interaction of leukocytes with endothelial cells during inflammation. To determine the association of cellular adhesion molecules with ankle-brachial index (ABI) and ABI category (≤1.0 vs >1.0) in a diverse population, 15 adhesion proteins were measured in the Multi-Ethnic Study of Atherosclerosis (MESA). To assess multivariable associations of each protein with ABI and ABI category, linear and logistic regression was used, respectively. Among 2364 participants, 23 presented with poorly compressible arteries (ABI > 1.4) and were excluded and 261 had ABI ≤ 1.0. Adjusting for traditional risk factors, elevated levels of soluble P-selectin, hepatocyte growth factor, and secretory leukocyte protease inhibitor were associated with lower ABI ( P = .0004, .001, and .002, respectively). Per each standard deviation of protein, we found 26%, 20%, and 19% greater odds of lower ABI category ( P = .001, .01, and .02, respectively). Further investigation into the adhesion pathway may shed new light on biological mechanisms implicated in PAD.

  3. Cell-contact-dependent activation of CD4+ T cells by adhesion molecules on synovial fibroblasts.

    PubMed

    Mori, Masato; Hashimoto, Motomu; Matsuo, Takashi; Fujii, Takao; Furu, Moritoshi; Ito, Hiromu; Yoshitomi, Hiroyuki; Hirose, Jun; Ito, Yoshinaga; Akizuki, Shuji; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Ohmura, Koichiro; Mimori, Tsuneyo

    2017-05-01

    To determine how cell-cell contact with synovial fibroblasts (SF) influence on the proliferation and cytokine production of CD4 +  T cells. Naïve CD4 +  T cells were cultured with SF from rheumatoid arthritis patients, stimulated by anti-CD3/28 antibody, and CD4 +  T cell proliferation and IFN-γ/IL-17 production were analyzed. To study the role of adhesion molecules, cell contact was blocked by transwell plate or anti-intracellular adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1(VCAM-1) antibody. To study the direct role of adhesion molecules for CD4 +  T cells, CD161 +  or CD161 - naïve CD4 +  T cells were stimulated on plastic plates coated by recombinant ICAM-1 or VCAM-1, and the source of IFN-γ/IL-17 were analyzed. SF enhanced naïve CD4 +  T cell proliferation and IFN-γ/IL-17 production in cell-contact and in part ICAM-1-/VCAM-1-dependent manner. Plate-coated ICAM-1 and VCAM-1 enhanced naïve CD4 +  T cell proliferation and IFN-γ production, while VCAM-1 efficiently promoting IL-17 production. CD161 +  naïve T cells upregulating LFA-1 and VLA-4 were the major source of IFN-γ/IL-17 upon interaction with ICAM-1/VCAM-1. CD4 +  T cells rapidly expand and secrete IFN-γ/IL-17 upon cell-contact with SF via adhesion molecules. Interfering with ICAM-1-/VCAM-1 may be beneficial for inhibiting RA synovitis.

  4. Vascular Cell Adhesion Molecule-1 Expression and Signaling During Disease: Regulation by Reactive Oxygen Species and Antioxidants

    PubMed Central

    Marchese, Michelle E.; Abdala-Valencia, Hiam

    2011-01-01

    Abstract The endothelium is immunoregulatory in that inhibiting the function of vascular adhesion molecules blocks leukocyte recruitment and thus tissue inflammation. The function of endothelial cells during leukocyte recruitment is regulated by reactive oxygen species (ROS) and antioxidants. In inflammatory sites and lymph nodes, the endothelium is stimulated to express adhesion molecules that mediate leukocyte binding. Upon leukocyte binding, these adhesion molecules activate endothelial cell signal transduction that then alters endothelial cell shape for the opening of passageways through which leukocytes can migrate. If the stimulation of this opening is blocked, inflammation is blocked. In this review, we focus on the endothelial cell adhesion molecule, vascular cell adhesion molecule-1 (VCAM-1). Expression of VCAM-1 is induced on endothelial cells during inflammatory diseases by several mediators, including ROS. Then, VCAM-1 on the endothelium functions as both a scaffold for leukocyte migration and a trigger of endothelial signaling through NADPH oxidase-generated ROS. These ROS induce signals for the opening of intercellular passageways through which leukocytes migrate. In several inflammatory diseases, inflammation is blocked by inhibition of leukocyte binding to VCAM-1 or by inhibition of VCAM-1 signal transduction. VCAM-1 signal transduction and VCAM-1-dependent inflammation are blocked by antioxidants. Thus, VCAM-1 signaling is a target for intervention by pharmacological agents and by antioxidants during inflammatory diseases. This review discusses ROS and antioxidant functions during activation of VCAM-1 expression and VCAM-1 signaling in inflammatory diseases. Antioxid. Redox Signal. 15, 1607–1638. PMID:21050132

  5. Self-assembled monolayer of designed and synthesized triazinedithiolsilane molecule as interfacial adhesion enhancer for integrated circuit

    PubMed Central

    2011-01-01

    Self-assembled monolayer (SAM) with tunable surface chemistry and smooth surface provides an approach to adhesion improvement and suppressing deleterious chemical interactions. Here, we demonstrate the SAM comprising of designed and synthesized 6-(3-triethoxysilylpropyl)amino-1,3,5-triazine-2,4-dithiol molecule, which can enhance interfacial adhesion to inhibit copper diffusion used in device metallization. The formation of the triazinedithiolsilane SAM is confirmed by X-ray photoelectron spectroscopy. The adhesion strength between SAM-coated substrate and electroless deposition copper film was up to 13.8 MPa. The design strategy of triazinedithiolsilane molecule is expected to open up the possibilities for replacing traditional organosilane to be applied in microelectronic industry. PMID:21812994

  6. Expression of cell adhesion molecules in the normal and T3 blocked development of the tadpole's kidney of Bufo arenarum (Amphibian, Anuran, Bufonidae).

    PubMed

    Izaguirre, M F; García-Sancho, M N; Miranda, L A; Tomas, J; Casco, V H

    2008-08-01

    Cell adhesion molecules act as signal transducers from the extracellular environment to the cytoskeleton and the nucleus and consequently induce changes in the expression pattern of structural proteins. In this study, we showed the effect of thyroid hormone (TH) inhibition and arrest of metamorphosis on the expression of E-cadherin, beta-and alpha-catenin in the developing kidney of Bufo arenarum. Cell adhesion molecules have selective temporal and spatial expression during development suggesting a specific role in nephrogenesis. In order to study mechanisms controlling the expression of adhesion molecules during renal development, we blocked the B. arenarum metamorphosis with a goitrogenic substance that blocks TH synthesis. E-cadherin expression in the proximal tubules is independent of thyroid control. However, the blockage of TH synthesis causes up-regulation of E-cadherin in the collecting ducts, the distal tubules and the glomeruli. The expression of beta-and alpha-catenin in the collecting ducts, the distal tubules, the glomeruli and the mesonephric mesenchyme is independent of TH. TH blockage causes up-regulation of beta-and alpha-catenin in the proximal tubules. In contrast to E-cadherin, the expression of the desmosomal cadherin desmoglein 1 (Dsg-1) is absent in the control of the larvae kidney during metamorphosis and is expressed in some interstitial cells in the KClO4 treated larvae. According to this work, the Dsg-1 expression is down-regulated by TH. We demonstrated that the expression of E-cadherin, Dsg-1, beta-catenin and alpha-catenin are differentially affected by TH levels, suggesting a hormone-dependent role of these proteins in the B. arenarum renal metamorphosis.

  7. Candida biofilms: is adhesion sexy?

    PubMed

    Soll, David R

    2008-08-26

    The development of Candida albicans biofilms requires two types of adhesion molecule - the Als proteins and Hwp1. Mutational analyses have recently revealed that these molecules play complementary roles, and their characteristics suggest that they may have evolved from primitive mating agglutinins.

  8. Mechanisms and regulation of polymorphonuclear leukocyte and eosinophil adherence to human airway epithelial cells.

    PubMed

    Jagels, M A; Daffern, P J; Zuraw, B L; Hugli, T E

    1999-09-01

    Polymorphonuclear leukocytes (PMN) and eosinophils (Eos) are important cellular participants in a variety of acute and chronic inflammatory reactions in the airway. Histologic evidence has implicated direct interactions between these two subsets of leukocytes and airway epithelial cells during inflammation. A comprehensive characterization and comparison of physiologic stimuli and adhesion molecule involvement in granulocyte-epithelial-cell interactions done with nontransformed human airway epithelial cells has not been reported. We therefore examined the regulation and biochemical mechanisms governing granulocyte-epithelial-cell adhesion, using either purified PMN or Eos and primary cultures of human bronchial epithelial cells (HBECs). We investigated the involvement of a number of proinflammatory signals associated with allergic and nonallergic airway inflammation, as well as the contribution of several epithelial and leukocyte adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and members of the beta(1), beta(2), and beta(7) integrin families. ICAM-1 was expressed at low levels on cultured HBECs and was markedly upregulated after stimulation with interferon (IFN)-gamma or, to a lesser extent, with tumor necrosis factor (TNF)-alpha or interleukin (IL)-1. VCAM-1 was not present on resting HBECs, and was not upregulated after stimulation with IFN-gamma, IL-1, IL-4, or TNF-alpha. PMN adhesion to HBECs could be induced either through activation of PMN with IL-8, granulocyte-macrophage colony-stimulating factor (GM-CSF), or C5a, but not with IL-5 or by preactivation of HBECs with TNF-alpha or IFN-gamma. Blocking antibody studies indicated that PMN-HBEC adherence depended on beta(2) integrins, primarily alpha(M)beta(2) (Mac-1). Adherence of Eos to HBECs could be induced through activation of Eos with IL-5, GM-CSF, or C5a, but not with IL-8 or by prior activation of HBECs with TNF-alpha of IFN-gamma. Maximal adhesion of Eos and PMN required pretreatment of HBECs with either TNF-alpha or IFN-gamma in addition to leukocyte activation. Adherence of Eos to unstimulated HBECs was mediated through both beta(1) and beta(2) integrins, whereas adhesion of Eos to activated HBECs was dominated by beta(2) integrins. Adhesion of both Eos and PMN was inhibited by treatment of HBECs with blocking antibodies to ICAM-1. Differential utilization of beta(1) and beta(2) integrins by Eos, depending on the activation state of the epithelium, is a novel finding and may affect activation and/or recruitment of Eos in airway tissue. Mechanisms of adhesion of HBECs to Eos and PMN, as evidenced by the different responsiveness of the two latter types of cells to IL-8 and IL-5, may account for a prevalence of Eos over PMN in certain airway diseases.

  9. Adhesion of protein residues to substituted (111) diamond surfaces: an insight from density functional theory and classical molecular dynamics simulations.

    PubMed

    Borisenko, Konstantin B; Reavy, Helen J; Zhao, Qi; Abel, Eric W

    2008-09-15

    Protein-repellent diamond coatings have great potential value for surface coatings on implants and surgical instruments. The design of these coatings relies on a fundamental understanding of the intermolecular interactions involved in the adhesion of proteins to surfaces. To get insight into these interactions, adhesion energies of glycine to pure and Si and N-doped (111) diamond surfaces represented as clusters were calculated in the gas phase, using density functional theory (DFT) at the B3LYP/6-31G* level. The computed adhesion energies indicated that adhesion of glycine to diamond surface may be modified by introducing additional elements into the surface. The adhesion was also found to induce considerable change in the conformation of glycine when compared with the lowest-energy conformer of the free molecule. In the Si and N-substituted diamond clusters, notable changes in the structures involving the substituents atoms when compared with smaller parent molecules, such as 1-methyl-1-silaadamantane and 1-azaadamantane, were detected. Adhesion free energy differences were estimated for a series of representative peptides (hydrophobic Phe-Gly-Phe, amphiphilic Arg-Gly-Phe, and hydrophilic Arg-Gly-Arg) to a (111) diamond surface substituted with different amounts of N, Si, or F, using molecular dynamics simulations in an explicit water environment employing a Dreiding force field. The calculations were in agreement with the DFT results in that adsorption of the studied peptides to diamond surface is influenced by introducing additional elements to the surface. It has been shown that, in general, substitution will enhance electrostatic interactions between a surface and surrounding water, leading to a weaker adhesion of the studied peptides.

  10. Downregulation of endothelial adhesion molecules by dimethylfumarate, but not monomethylfumarate, and impairment of dynamic lymphocyte-endothelial cell interactions.

    PubMed

    Wallbrecht, Katrin; Drick, Nora; Hund, Anna-Carina; Schön, Michael P

    2011-12-01

    Although fumaric acid esters (FAE) have a decade-long firm place in the therapeutic armamentarium for psoriasis, their pleiotropic mode of action is not yet fully understood. While most previous studies have focused on the effects of FAE on leucocytes, we have addressed their activity on macro- and microvascular endothelial cells. As detected both on mRNA and protein levels, dimethylfumarate effected a profound reduction of TNFα-induced expression of E-selectin (CD62E), ICAM-1 (CD54) and VCAM-1 (CD106) on two different endothelial cell populations in a concentration-dependent manner. This reduction of several endothelial adhesion molecules was accompanied by a dramatic diminution of both rolling and firm adhesive interactions between endothelial cells and lymphocytes in a dynamic flow chamber system. Dimethylfumarate, at a concentration of 50 μm, reduced lymphocyte rolling on endothelial cells by 85.9% (P<0.001 compared to untreated controls), and it diminished the number of adherent cells by 88% (P<0.001). In contrast, monomethylfumarate (MMF) influenced neither surface expression of adhesion molecules nor interactions between endothelial cells and lymphocytes. These observations demonstrate that endothelial cells, in addition to the known effects on leucocytes, undergo profound functional changes in response to dimethylfumarate. These changes are accompanied by severely impaired dynamic interactions with lymphocytes, which constitute the critical initial step of leucocyte recruitment to inflamed tissues in psoriasis and other TNF-related inflammatory disorders. © 2011 John Wiley & Sons A/S.

  11. In vitro effects of ATG-Fresenius on immune cell adhesion.

    PubMed

    Kanzler, I; Seitz-Merwald, I; Schleger, S; Kaczmarek, I; Kur, F; Beiras-Fernandez, A

    2013-06-01

    ATG-Fresenius, a purified rabbit polyclonal anti-human T-lymphocyte immunoglobulin is used for induction immunosuppression as well as prevention and treatment of acute rejection episodes among patients receiving solid organ transplants. The aim of this study was to investigate the in vitro activity of ATG-Fresenius upon immune cell adhesion, which may explain its activity to mitigate ischemia-reperfusion injury. Human vascular endothelial cells (HUVEC) and peripheral blood mononuclear cells (PBMCs) isolated from umbilical vein or peripheral blood were incubated 20 to 24 hours before analysis. HUVEC were incubated with 10 and 100 μg/mL ATG-Fresenius or reference polyclonal rabbit immunoglobulin G. Analysis of immune cell adhesion to endothelial cells was studied in cocultures of PBMCs and adherent HUVEC. Endothelial cell expression of adhesion molecules CD62E and CD54 was determined by flow cytometry. The numbers of T-, B- and natural killer cells attached to HUVEC were also determined by flow cytometry. Groups were compared using one-way analysis of variance. We showed that ATG-Fresenius binds to endothelial cells particularly activated ones expressing increased levels of E-selectin and ICAM-1. The increased binding of ATG-Fresenius to activated endothelial cells was consistent with its known binding to Intercellular Adhesion Molecule 1 (ICAM-1) and selectins. We also showed that ATG-Fresenius inhibited adhesion of prestimulated immune cells to activated endothelium. We demonstrated dose-dependent binding of ATG-Fresenius to activated endothelial cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Organization, regulatory sequences, and alternatively spliced transcripts of the mucosal addressin cell adhesion molecule-1 (MAdCAM-1) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampaio, S.O.; Mei, C.; Butcher, E.C.

    The mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is expressed selectively at venular sites of lymphocyte extravasation into mucosal lymphoid tissues and lamina propria, where it directs local lymphocyte trafficking. MAdCAM-1 is a multifunctional type I transmembrane adhesion molecule comprising two distal Ig domains involved in {alpha}4{beta}7 integrin binding, a mucin-like region able to display L-selectin-binding carbohydrates, and a membrane-proximal Ig domain homologous to IgA. We show in this work that the MAdCAM-1 gene is located on chromosome 10 and contains five exons. The signal peptide and each one of the three Ig domains are encoded by a distinct exon, whereasmore » the transmembrane, cytoplasmic tail, and 3{prime}-untranslated region of MAdCAM-1 are combined on a single exon. The mucin-like region and the third Ig domain are encoded together on exon 4. An alternatively spliced MAdCAM-1 mRNA is identified that lacks the mucin/IgA-homologous exon 4-encoded sequences. This short variant of MAdCAM-1 may be specialized to support {alpha}4{beta}7-dependent adhesion strengthening, independent of carbohydrate-presenting function. Sequences 5{prime} of the transcription start site include tandem nuclear factor-KB sites; AP-1, AP-2, and signal peptide-1 binding sites; and an estrogen response element. Our findings reinforce the correspondence between the multidomain structure and versatile functions of this vascular addressin, and suggest an additional level of regulation of carbohydrate-presenting capability, and thus of its importance in lectin-mediated vs. {alpha}4{beta}7-dependent adhesive events in lymphocyte trafficking. 46 refs., 6 figs., 1 tab.« less

  13. Short-term fenofibrate treatment reduces elevated plasma Lp-PLA2 mass and sVCAM-1 levels in a subcohort of hypertriglyceridemic GOLDN participants

    USDA-ARS?s Scientific Manuscript database

    High levels of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) are associated with inflammation, atherosclerosis, and coronary heart disease events. In addition, Lp-PLA(2) has been linked to classical markers of endothelial activation, including soluble vascular cell adhesion molecule-1 (sVCAM...

  14. An epigenetic signature of adhesion molecules predicts poor prognosis of ovarian cancer patients

    PubMed Central

    Chang, Ping-Ying; Liao, Yu-Ping; Wang, Hui-Chen; Chen, Yu-Chih; Huang, Rui-Lan; Wang, Yu-Chi; Yuan, Chiou-Chung; Lai, Hung-Cheng

    2017-01-01

    DNA methylation is a promising biomarker for cancer. The epigenetic effects of cell adhesion molecules may affect the therapeutic outcome and the present study examined their effects on survival in ovarian cancer. We integrated methylomics and genomics datasets in The Cancer Genome Atlas (n = 391) and identified 106 highly methylated adhesion-related genes in ovarian cancer tissues. Univariate analysis revealed the methylation status of eight genes related to progression-free survival. In multivariate Cox regression analysis, four highly methylated genes (CD97, CTNNA1, DLC1, HAPLN2) and three genes (LAMA4, LPP, MFAP4) with low methylation were significantly associated with poor progression-free survival. Low methylation of VTN was an independent poor prognostic factor for overall survival after adjustment for age and stage. Patients who carried any two of CTNNA1, DLC1 or MFAP4 were significantly associated with poor progression-free survival (hazard ratio: 1.59; 95% confidence interval: 1.23, 2.05). This prognostic methylation signature was validated in a methylomics dataset generated in our lab (n = 37, hazard ratio: 16.64; 95% confidence interval: 2.68, 103.14) and in another from the Australian Ovarian Cancer Study (n = 91, hazard ratio: 2.43; 95% confidence interval: 1.11, 5.36). Epigenetics of cell adhesion molecules is related to ovarian cancer prognosis. A more comprehensive methylomics of cell adhesion molecules is needed and may advance personalized treatment with adhesion molecule-related drugs. PMID:28881822

  15. Glycemic control and high-density lipoprotein characteristics in adolescents with type 1 diabetes.

    PubMed

    Medina-Bravo, Patricia; Medina-Urrutia, Aída; Juárez-Rojas, Juan Gabriel; Cardoso-Saldaña, Guillermo; Jorge-Galarza, Esteban; Posadas-Sánchez, Rosalinda; Coyote-Estrada, Ninel; Nishimura-Meguro, Elisa; Posadas-Romero, Carlos

    2013-09-01

    Recent evidence suggests that high-density lipoprotein (HDL) physicochemical characteristics and functional capacity may be more important that HDL-C levels in predicting coronary heart disease. There is little data regarding HDL subclasses distribution in youth with type 1 diabetes. To assess the relationships between glycemic control and HDL subclasses distribution, composition, and function in adolescents with type 1 diabetes. This cross-sectional study included 52 adolescents with type 1 diabetes aged 12-16 years and 43 age-matched non-diabetic controls. Patients were divided into two groups: one in fair control [hemoglobin A1c (HbA1c) < 9.6%] and the second group with poor glycemic control (HbA1c ≥ 9.6%). In all participants, we determined HDL subclasses distribution, composition, and the ability of plasma and of isolated HDL to promote cellular cholesterol efflux. Levels of soluble adhesion molecules were also measured. Although both groups of patients and the control group had similar HDL-C levels, linear regression analyses showed that compared with non-diabetic subjects, the poor control group had a lower proportion of HDL2b subclass (p = 0.029), triglyceride enriched (p = 0.045), and cholesteryl ester depleted (p = 0.028) HDL particles. Despite these HDL changes, cholesterol efflux was comparable among the three groups. The poor control group also had significantly higher intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 plasma concentrations. In adolescents with type 1 diabetes, poor glycemic control is associated with abnormalities in HDL subclasses distribution and HDL lipid composition, however, in spite of these HDL changes, the ability of HDL to promote cholesterol efflux remains comparable to that of healthy subjects. © 2012 John Wiley & Sons A/S.

  16. Ankyrin binding activity shared by the neurofascin/L1/NrCAM family of nervous system cell adhesion molecules.

    PubMed

    Davis, J Q; Bennett, V

    1994-11-04

    Neurofascin, L1, NrCAM, NgCAM, and neuroglian are membrane-spanning cell adhesion molecules with conserved cytoplasmic domains that are believed to play important roles in development of the nervous system. This report presents biochemical evidence that the cytoplasmic domains of these molecules associate directly with ankyrins, a family of spectrin-binding proteins located on the cytoplasmic surface of specialized plasma membrane domains. Rat neurofascin and NrCAM together comprise over 0.5% of the membrane protein in adult brain tissue. Linkage of these ankyrin-binding cell adhesion molecules to spectrin-based structures may provide a major class of membrane-cytoskeletal connections in adult brain as well as earlier stages of development.

  17. Tumor necrosis factor alpha (TNF-alpha)-induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55

    PubMed Central

    1993-01-01

    Tumor necrosis factor alpha (TNF-alpha) is a pleiotropic cytokine triggering cell responses through two distinct membrane receptors. Stimulation of leukocyte adhesion to the endothelium is one of the many TNF-alpha activities and is explained by the upregulation of adhesion molecules on the endothelial cell surface. Human umbilical vein endothelial cells (HUVEC) were isolated, cultured, and demonstrated to express both TNF receptor types, TNF-R55 and TNF-R75. Cell adhesion to HUVEC was studied using the HL60, U937, and MOLT-4 cell lines. HUVEC were activated by either TNF-alpha, binding to both TNF-R55 and TNF- R75, and by receptor type-specific agonists, binding exclusively to TNF- R55 or to TNF-R75. The TNF-alpha-induced cell adhesion to HUVEC was found to be controlled almost exclusively by TNF-R55. This finding correlated with the exclusive activity of TNF-R55 in the TNF-alpha- dependent regulation of the expression of the intercellular adhesion molecule type 1 (ICAM-1), E-selectin, and vascular cell adhesion molecule type 1 (VCAM-1). The CD44 adhesion molecule in HUVEC was also found to be upregulated through TNF-R55. However, both TNF-R55 and TNF- R75 upregulate alpha 2 integrin expression in HUVEC. The predominant role of TNF-R55 in TNF-alpha-induced adhesion in HUVEC may correlate with its specific control of NF-kappa B activation, since kappa B elements are known to be present in ICAM-1, E-selectin, and VCAM-1 gene regulatory sequences. PMID:8386742

  18. Inflammatory Mediator Profiles Differ in Sepsis Patients With and Without Bacteremia.

    PubMed

    Mosevoll, Knut Anders; Skrede, Steinar; Markussen, Dagfinn Lunde; Fanebust, Hans Rune; Flaatten, Hans Kristian; Aßmus, Jörg; Reikvam, Håkon; Bruserud, Øystein

    2018-01-01

    Systemic levels of cytokines are altered during infection and sepsis. This prospective observational study aimed to investigate whether plasma levels of multiple inflammatory mediators differed between sepsis patients with and those without bacteremia during the initial phase of hospitalization. A total of 80 sepsis patients with proven bacterial infection and no immunosuppression were included in the study. Plasma samples were collected within 24 h of hospitalization, and Luminex ® analysis was performed on 35 mediators: 16 cytokines, six growth factors, four adhesion molecules, and nine matrix metalloproteases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs). Forty-two patients (52.5%) and 38 (47.5%) patients showed positive and negative blood cultures, respectively. There were significant differences in plasma levels of six soluble mediators between the two "bacteremia" and "non-bacteremia" groups, using Mann-Whitney U test ( p  < 0.0014): tumor necrosis factor alpha (TNFα), CCL4, E-selectin, vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), and TIMP-1. Ten soluble mediators also significantly differed in plasma levels between the two groups, with p -values ranging between 0.05 and 0.0014: interleukin (IL)-1ra, IL-10, CCL2, CCL5, CXCL8, CXCL11, hepatocyte growth factor, MMP-8, TIMP-2, and TIMP-4. VCAM-1 showed the most robust results using univariate and multivariate logistic regression. Using unsupervised hierarchical clustering, we found that TNFα, CCL4, E-selectin, VCAM-1, ICAM-1, and TIMP-1 could be used to discriminate between patients with and those without bacteremia. Patients with bacteremia were mainly clustered in two separate groups (two upper clusters, 41/42, 98%), with higher levels of the mediators. One (2%) patient with bacteremia was clustered in the lower cluster, which compromised most of the patients without bacteremia (23/38, 61%) (χ 2 test, p  < 0.0001). Our study showed that analysis of the plasma inflammatory mediator profile could represent a potential strategy for early identification of patients with bacteremia.

  19. Mechanical properties, microstructure, and specific adhesion of phospholipid monolayer-coated microbubbles

    NASA Astrophysics Data System (ADS)

    Kim, Dennis Heejong

    1999-10-01

    The objective of this study was to characterize properties of phospholipid monolayer shells formed on gas microbubbles, specifically (1)yield shear and shear viscosity as a function of the shell composition, (2)yield shear, shear viscosity, and microstructural domain density as a function of the quenching rate of the microbubbles following production, and (3)the adhesion of a lipid-coated microbubble to a colloidal substrate via receptor-ligand mediated specific interaction, either enhanced or inhibited by the presence of surface-grafted polymeric structures. The primary experimental technique employed was the micromanipulation method, wherein tapered fluid-filled pipets with bores on the order of 4-10 microns were used to (1)capture and maneuver individual micron scale bubbles in aqueous medium, and (2)apply suction pressures over the range of 1 dyn cm-2 to 10 5 dyn cm-2 (10-6 to 10 -1 atm) and track the corresponding deformation of the microbubble under applied pressure. The yield shear and shear viscosity increase with increasing acyl chain length of the lipid; an equivalent statement is that the yield shear and shear viscosity increase with reduced temperature of the shell material. Crystalline lipid domain sizes are dictated by the rate at which the system is (temperature) quenched in a manner predicted by classic materials science and metallurgy: rapidly cooled samples form the smallest grains and exhibit the lowest levels of yield shear and shear viscosity. Slowly cooled samples produce large grains and exhibit high levels of yield and viscosity. The success and strength of adhesion of a microbubble to a substrate is dictated by the identity of the adhesive molecules participating in the adhesion, as well as the surface architecture of the interfaces participating in adhesion. The term surface architecture is used to describe the physical arrangement of the full complement of steric stabilizers, spacers, and binding molecules present at the surface of a typical coated microbubble shell. Adhesion is successful for systems where the binding ligand is not impeded by the presence of surface-grafted poly(ethylene glycol) (PEG) moieties. Like the shell composition itself, the surface construct can be engineered to produce optimal performance in adhesion.

  20. Soy-Leaf Extract Exerts Atheroprotective Effects via Modulation of Krüppel-Like Factor 2 and Adhesion Molecules

    PubMed Central

    Han, Jong-Min; Li, Hua; Cho, Moon-Hee; Baek, Seung-Hwa; Lee, Chul-Ho; Park, Ho-Yong; Jeong, Tae-Sook

    2017-01-01

    Soy-leaf extracts exert their cardioprotective effects by inducing endothelium-dependent vasodilation in the arteries, and they favorably modulate the serum lipid profile. In this study, we investigated the atheroprotective effects of an ethanol extract of soy leaf (ESL) in human umbilical vein endothelial cells (HUVECs) and high-cholesterol diet (HCD)-fed low-density lipoprotein receptor deficient (LDLR−/−) mice. ESL induced the expression of Krüppel-like factor 2 (KLF2), an endothelial transcription factor, and endothelial nitric oxide synthase (eNOS), and suppressed the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) through moderate inflammatory signal activation, not only in tumor necrosis factor-α (TNF-α)-stimulated HUVECs but also in 7-ketocholesterol (7-KC)-stimulated HUVECs. ESL supplementation reduced aortic lesion formation in Western diet-fed LDLR−/− mice by 46% (p < 0.01) compared to the HCD group. ESL also markedly decreased the aortic expression levels of VCAM-1, ICAM-1, monocyte chemotactic protein-1 (MCP-1), TNF-α, IL-6, IL-1β, matrix metallopeptidase 9 (MMP-9), and fractalkine, while the expression of KLF2 was significantly increased. These results suggest that ESL supplementation has potential for preventing HCD-induced atherosclerosis effectively. PMID:28208647

  1. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudenko, Gabby

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affectmore » their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.« less

  2. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    PubMed Central

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, forming trans-complexes spanning the synaptic cleft or cis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics. PMID:28255461

  3. Molecules mediating adhesion of T and B cells, monocytes and granulocytes to vascular endothelial cells.

    PubMed Central

    Prieto, J; Beatty, P G; Clark, E A; Patarroyo, M

    1988-01-01

    Leucocytes interact with vascular endothelial cells (EC), and adhesion between these two cell types in vitro is modulated by phorbol ester. Monocytes were found to display the highest basal adhesion to EC, followed by Epstein-Barr virus-immortalized normal B cells (EBV-B), T cells and granulocytes. Phorbol ester treatment increased the adhesion of all types of leucocytes, except monocytes. In the presence of this compound, monoclonal antibody 60.3 to GP90 (CD18, a leucocyte-adhesion protein which is non-covalently associated to either GP160, GP155, or GP130) was found to inhibit the adhesion of the four types of leucocytes to a considerable extent, while anti-lymphocyte function-associated antigen-1 (LFA-1) antibody to GP160 (CD11a) inhibited the adhesion of T and B cells only. Antibody 60.1 to GP155 (CD11b) had a major inhibitory activity exclusively on granulocytes, while antibody LB-2, which recognizes a distinct adhesion molecule (GP84) and, in contrast to the previous antibodies, reacts with EC, mainly inhibited adhesion of EBV-B and did not increase the inhibition obtained with antibody 60.3 alone. Fab fragments of antibody 60.3 inhibited leucocyte adhesion more efficiently, in either the absence or presence of phorbol ester, than the intact antibody molecule. It is concluded the GP90, either alone or associated to the larger glycoproteins, mediates the adhesion in all types of leucocytes, while GP84 mediates the adhesion of the activated B cells. Images Figure 2 PMID:3259203

  4. ADHESION AND DE-ADHESION MECHANISMS AT POLYMER/METAL INTERFACES: Mechanistic Understanding Based on In Situ Studies of Buried Interfaces

    NASA Astrophysics Data System (ADS)

    Grundmeier, G.; Stratmann, M.

    2005-08-01

    The review highlights the state-of-the-art research regarding the application of modern in situ spectroscopic, microscopic, and electrochemical techniques to improve the understanding of the interaction of organic molecules with metal surfaces. We also consider the chemical and electrochemical processes that lead to a de-adhesion of polymers from metal surfaces. Spectroscopic techniques such as surface-enhanced infrared or Raman spectroscopy provide molecular understanding of organic molecules and water at buried metal surfaces. This information is complementary to adhesion studies by means of atomic force microscopy and de-adhesion studies of polymer layers from metals by means of a scanning Kelvin probe. Adhesion and de-adhesion mechanisms are discussed, especially those involving humid and corrosive environments, which are the predominant and most important for metal/polymer composites in engineering applications.

  5. JAM related proteins in mucosal homeostasis and inflammation

    PubMed Central

    Luissint, Anny-Claude; Nusrat, Asma; Parkos, Charles A.

    2014-01-01

    Mucosal surfaces are lined by epithelial cells that form a physical barrier protecting the body against external noxious substances and pathogens. At a molecular level, the mucosal barrier is regulated by tight junctions (TJs) that seal the paracellular space between adjacent epithelial cells. Transmembrane proteins within TJs include Junctional Adhesion Molecules (JAMs) that belong to the CTX (Cortical Thymocyte marker for Xenopus) family of proteins. JAM family encompasses three classical members (JAM-A, -B and –C) and related molecules including JAM4, JAM-Like protein (JAM-L), Coxsackie and Adenovirus Receptor (CAR), CAR-Like Membrane Protein (CLMP) and Endothelial cell-Selective Adhesion Molecule (ESAM). JAMs have multiple functions that include regulation of endothelial and epithelial paracellular permeability, leukocyte recruitment during inflammation, angiogenesis, cell migration and proliferation. In this review, we summarize the current knowledge regarding the roles of the JAM family members in the regulation of mucosal homeostasis and leukocyte trafficking with a particular emphasis on barrier function and its perturbation during pathological inflammation. PMID:24667924

  6. Lateral assembly of the immunoglobulin protein SynCAM 1 controls its adhesive function and instructs synapse formation.

    PubMed

    Fogel, Adam I; Stagi, Massimiliano; Perez de Arce, Karen; Biederer, Thomas

    2011-09-16

    Synapses are specialized adhesion sites between neurons that are connected by protein complexes spanning the synaptic cleft. These trans-synaptic interactions can organize synapse formation, but their macromolecular properties and effects on synaptic morphology remain incompletely understood. Here, we demonstrate that the synaptic cell adhesion molecule SynCAM 1 self-assembles laterally via its extracellular, membrane-proximal immunoglobulin (Ig) domains 2 and 3. This cis oligomerization generates SynCAM oligomers with increased adhesive capacity and instructs the interactions of this molecule across the nascent and mature synaptic cleft. In immature neurons, cis assembly promotes the adhesive clustering of SynCAM 1 at new axo-dendritic contacts. Interfering with the lateral self-assembly of SynCAM 1 in differentiating neurons strongly impairs its synaptogenic activity. At later stages, the lateral oligomerization of SynCAM 1 restricts synaptic size, indicating that this adhesion molecule contributes to the structural organization of synapses. These results support that lateral interactions assemble SynCAM complexes within the synaptic cleft to promote synapse induction and modulate their structure. These findings provide novel insights into synapse development and the adhesive mechanisms of Ig superfamily members.

  7. Neural cell adhesion molecule mediates initial interactions between spinal cord neurons and muscle cells in culture

    PubMed Central

    1983-01-01

    Previous studies in this laboratory have described a cell surface glycoprotein, called neural cell adhesion molecule or N-CAM, that appears to be a ligand in the adhesion between neural membranes. N-CAM antigenic determinants were also shown to be present on embryonic muscle and an N-CAM-dependent adhesion was demonstrated between retinal cell membranes and muscle cells in short-term assays. The present studies indicate that these antigenic determinants are associated with the N-CAM polypeptide, and that rapid adhesion mediated by this molecule occurs between spinal cord membranes and muscle cells. Detailed examination of the effects of anti-(N-CAM) Fab' fragments in cultures of spinal cord with skeletal muscle showed that the Fab' fragments specifically block adhesion of spinal cord neurites and cells to myotubes. The Fab' did not affect binding of neurites to fibroblasts and collagen substrate, and did not alter myotube morphology. These results indicate that N-CAM adhesion is essential for the in vitro establishment of physical associations between nerve and muscle, and suggest that binding involving N-CAM may be an important early step in synaptogenesis. PMID:6863388

  8. The effects of nitric oxide in settlement and adhesion of zoospores of the green alga Ulva.

    PubMed

    Thompson, Stephanie E M; Callow, Maureen E; Callow, James A

    2010-01-01

    Previous studies have shown that elevated nitric oxide (NO) reduces adhesion in diatom, bacterial and animal cells. This article reports experiments designed to investigate whether elevated NO reduces the adhesion of zoospores of the green alga Ulva, an important fouling species. Surface-normalised values of NO were measured using the fluorescent indicator DAF-FM DA and parallel hydrodynamic measurements of adhesion strength were made. Elevated levels of NO caused by the addition of the exogenous NO donor SNAP reduced spore settlement by 20% and resulted in lower adhesion strength. Addition of the NO scavenger cPTIO abolished the effects of SNAP on adhesion. The strength of attachment and NO production by spores in response to four coatings (Silastic T2; Intersleek 700; Intersleek 900 and polyurethane) shows that reduced adhesion is correlated with an increase in NO production. It is proposed that in spores of Ulva, NO is used as an intracellular signalling molecule to detect how conducive a surface is for settlement and adhesion. The effect of NO on the adhesion of a range of organisms suggests that NO-releasing coatings could have the potential to control fouling.

  9. Glutathione regulation of redox-sensitive signals in tumor necrosis factor-{alpha}-induced vascular endothelial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsou, T.-C.; Yeh, S.C.; Tsai, F.-Y.

    2007-06-01

    We investigated the regulatory role of glutathione in tumor necrosis factor-alpha (TNF-{alpha})-induced vascular endothelial dysfunction as evaluated by using vascular endothelial adhesion molecule expression and monocyte-endothelial monolayer binding. Since TNF-{alpha} induces various biological effects on vascular cells, TNF-{alpha} dosage could be a determinant factor directing vascular cells into different biological fates. Based on the adhesion molecule expression patterns responding to different TNF-{alpha} concentrations, we adopted the lower TNF-{alpha} (0.2 ng/ml) to rule out the possible involvement of other TNF-{alpha}-induced biological effects. Inhibition of glutathione synthesis by L-buthionine-(S,R)-sulfoximine (BSO) resulted in down-regulations of the TNF-{alpha}-induced adhesion molecule expression and monocyte-endothelial monolayermore » binding. BSO attenuated the TNF-{alpha}-induced nuclear factor-kappaB (NF-{kappa}B) activation, however, with no detectable effect on AP-1 and its related mitogen-activated protein kinases (MAPKs). Deletion of an AP-1 binding site in intercellular adhesion molecule-1 (ICAM-1) promoter totally abolished its constitutive promoter activity and its responsiveness to TNF-{alpha}. Inhibition of ERK, JNK, or NF-{kappa}B attenuates TNF-{alpha}-induced ICAM-1 promoter activation and monocyte-endothelial monolayer binding. Our study indicates that TNF-{alpha} induces adhesion molecule expression and monocyte-endothelial monolayer binding mainly via activation of NF-{kappa}B in a glutathione-sensitive manner. We also demonstrated that intracellular glutathione does not modulate the activation of MAPKs and/or their downstream AP-1 induced by lower TNF-{alpha}. Although AP-1 activation by the lower TNF-{alpha} was not detected in our systems, we could not rule out the possible involvement of transiently activated MAPKs/AP-1 in the regulation of TNF-{alpha}-induced adhesion molecule expression.« less

  10. Immunologic changes in TNF-alpha, sE-selectin, sP-selectin, sICAM-1, and IL-8 in pediatric patients treated for psoriasis with the Goeckerman regimen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borska, L.; Fiala, Z.; Krejsek, J.

    2007-11-15

    Psoriasis is a chronic inflammatory skin disease which is often manifested during childhood. The present study investigated changes in the serum levels of proinflammatory cytokines and soluble forms of adhesion molecules in children with psoriasis. The observed patient group of 26 children was treated with the Goeckerman regimen. This therapy combines dermal application of crude coal tar with ultraviolet radiation. The Psoriasis Area Severity Index decreased significantly after treatment by with the Goeckerman regimen (p < 0.001). Serum levels of the proinflammatory cytokine TNF-alpha and adhesion molecules sICAM-1, sP-selectin and sE-selectin decreased after the Goeckerman regimen. The TNF-alpha and sICAM-1more » decreased significantly (p < 0.05). Our findings support the complex role of these immune parameters in the immunopathogenesis of psoriasis in children. The serum level of IL-8 increased after the Goeckerman regimen. This fact indicates that the chemokine pathway of IL-8 activity could be modulated by this treatment, most likely by polycyclic aromatic hydrocarbons.« less

  11. Serum lipid profile and inflammatory markers in the aorta of cholesterol-fed rats supplemented with extra virgin olive oil, sunflower oils and oil-products.

    PubMed

    Katsarou, Ageliki I; Kaliora, Andriana C; Papalois, Apostolos; Chiou, Antonia; Kalogeropoulos, Nick; Agrogiannis, George; Andrikopoulos, Nikolaos K

    2015-01-01

    Extra virgin olive oil (EVOO) major and minor component anti-inflammatory effect on aorta was evaluated; Wistar rats were fed (9 weeks) on either a high-cholesterol diet (HCD) or a HCD supplemented with oils, i.e. EVOO, sunflower oil (SO), high-oleic sunflower oil (HOSO), or oil-products modified to their phenolic content, i.e. phenolics deprived-EVOO [EVOO(-)], SO enriched with the EVOO phenolics [SO(+)], HOSO enriched with the EVOO phenolics [HOSO(+)]. HCD induced dyslipidemia and resulted in higher aorta adhesion molecules levels at euthanasia. Groups receiving EVOO, EVOO(-), HOSO, HOSO(+) presented higher serum TC and LDL-c levels compared to cholesterol-fed rats; attenuation of aorta E-selectin levels was also observed. In EVOO/EVOO(-) groups, aorta vascular endothelial adhesion molecule-1 (VCAM-1) was lower compared to HCD animals. SO/SO(+) diets had no effect on endothelial dysfunction amelioration. Overall, our results suggest that major and/or minor EVOO constituents improve aorta E-selectin and VCAM-1, while serum lipids do not benefit.

  12. Increased plasma and endothelial cell expression of chemokines and adhesion molecules in chronic kidney disease.

    PubMed

    Stinghen, A E M; Gonçalves, S M; Martines, E G; Nakao, L S; Riella, M C; Aita, C A; Pecoits-Filho, R

    2009-01-01

    Chemokines and adhesion molecules are involved in early events of atherogenesis. In the present study, we investigated the effects of the uremic milieu on the expression of monocyte chemoattractant protein-1 (MCP-1), interleukin-8 (IL-8), soluble vascular adhesion molecule-1 (sVCAM-1) and soluble intercellular adhesion molecule-1 (sICAM-1) and their relationship to cardiovascular status. Plasma samples were obtained from patients in different stages of chronic kidney disease (CKD). Cardiovascular status was evaluated by intima-media thickness and endothelial dysfunction by flow mediation dilatation and proteinuria. In vitro studies were performed using human umbilical endothelial cells exposed to uremic plasma or plasma from healthy subjects. MCP-1, IL-8, sVCAM-1 and sICAM-1 levels in plasma and in supernatant were analyzed by enzyme-linked immunosorbent assay. The population consisted of 73 (mean age 57 years; 48% males) CKD patients with glomerular filtration rate (GFR) of 37 +/- 2 ml/min. MCP-1 and sVCAM-1 plasma levels were negatively correlated with GFR (rho = -0.40, p < 0.0005 and rho = -0.42, p < 0.0005, respectively). Fibrinogen was positively correlated with MCP-1, sICAM-1 and sVCAM-1 (rho = 0.33, p < 0.005, rho = 0.32, p < 0.05 and rho = 0.25, p < 0.05, respectively) and ultra-high-sensitivity C-reactive protein was positively correlated with sICAM-1 (rho = 0.25, p < 0.0005). Plasma IL-8 had a significant positive correlation with proteinuria (rho = 0.31, p < 0.01). There was a time- and CKD-stage-dependent MCP-1, IL-8 and sVCAM-1 endothelial expression (p < 0.05). In summary, plasma levels of markers of endothelial cell activation (MCP-1 and sVCAM-1) are increased in more advanced CKD. Exposure of endothelial cells to uremic plasma results in a time- and CKD-stage-dependent increased expression of MCP-1, IL-8 and sVCAM-1, suggesting a link between vascular activation, systemic inflammation and uremic toxicity. Future studies are necessary to investigate whether these biomarkers add predictive value in comparison to the previously described ones. Also, endothelial response to uremic toxicity should be viewed as a potential target for intervention in order to reduce morbidity and mortality in CKD-related cardiovascular disease. Copyright 2009 S. Karger AG, Basel.

  13. DSCAM-mediated control of dendritic and axonal arbor outgrowth enforces tiling and inhibits synaptic plasticity

    PubMed Central

    Simmons, Aaron B.; Bloomsburg, Samuel J.; Sukeena, Joshua M.; Miller, Calvin J.; Ortega-Burgos, Yohaniz; Borghuis, Bart G.

    2017-01-01

    Mature mammalian neurons have a limited ability to extend neurites and make new synaptic connections, but the mechanisms that inhibit such plasticity remain poorly understood. Here, we report that OFF-type retinal bipolar cells in mice are an exception to this rule, as they form new anatomical connections within their tiled dendritic fields well after retinal maturity. The Down syndrome cell-adhesion molecule (Dscam) confines these anatomical rearrangements within the normal tiled fields, as conditional deletion of the gene permits extension of dendrite and axon arbors beyond these borders. Dscam deletion in the mature retina results in expanded dendritic fields and increased cone photoreceptor contacts, demonstrating that DSCAM actively inhibits circuit-level plasticity. Electrophysiological recordings from Dscam−/− OFF bipolar cells showed enlarged visual receptive fields, demonstrating that expanded dendritic territories comprise functional synapses. Our results identify cell-adhesion molecule-mediated inhibition as a regulator of circuit-level neuronal plasticity in the adult retina. PMID:29114051

  14. Suppression of lysyl-tRNA synthetase, KRS, causes incomplete epithelial-mesenchymal transition and ineffective cell‑extracellular matrix adhesion for migration.

    PubMed

    Nam, Seo Hee; Kang, Minkyung; Ryu, Jihye; Kim, Hye-Jin; Kim, Doyeun; Kim, Dae Gyu; Kwon, Nam Hoon; Kim, Sunghoon; Lee, Jung Weon

    2016-04-01

    The cell-adhesion properties of cancer cells can be targeted to block cancer metastasis. Although cytosolic lysyl-tRNA synthetase (KRS) functions in protein synthesis, KRS on the plasma membrane is involved in cancer metastasis. We hypothesized that KRS is involved in cell adhesion-related signal transduction for cellular migration. To test this hypothesis, colon cancer cells with modulated KRS protein levels were analyzed for cell-cell contact and cell-substrate adhesion properties and cellular behavior. Although KRS suppression decreased expression of cell-cell adhesion molecules, cells still formed colonies without being scattered, supporting an incomplete epithelial mesenchymal transition. Noteworthy, KRS-suppressed cells still exhibited focal adhesions on laminin, with Tyr397-phopshorylated focal adhesion kinase (FAK), but they lacked laminin-adhesion-mediated extracellular signal-regulated kinase (ERK) and paxillin activation. KRS, p67LR and integrin α6β1 were found to interact, presumably to activate ERK for paxillin expression and Tyr118 phosphorylation even without involvement of FAK, so that specific inhibition of ERK or KRS in parental HCT116 cells blocked cell-cell adhesion and cell-substrate properties for focal adhesion formation and signaling activity. Together, these results indicate that KRS can promote cell-cell and cell-ECM adhesion for migration.

  15. Intraplatelet reactive oxygen species (ROS) correlate with the shedding of adhesive receptors, microvesiculation and platelet adhesion to collagen during storage: Does endogenous ROS generation downregulate platelet adhesive function?

    PubMed

    Ghasemzadeh, Mehran; Hosseini, Ehteramolsadat; Roudsari, Zahra Oushyani; Zadkhak, Parvin

    2018-03-01

    Platelets storage lesion is mainly orchestrated by platelet activating signals during storage. Reactive oxygen species (ROS) are being considered as important signaling molecules modulating platelet function while their production has also been shown to be augmented by platelet activation. This study investigated to what extent endogenous ROS generation during platelet storage could be correlated with platelet receptor shedding, microvesiculation and adhesive function. 10 PRP-platelet concentrates were subjected to flow cytometry analysis to examine the generation of intraplatelet ROS on days 1, 5 and 7 after storage. In 5 day-stored platelets considering 40% of ROS generation as a cutoff point, samples were divided into two groups of those with higher or lower levels of ROS. The expression of adhesion receptors (GPVI, GPIbα), the amount of microparticles and phosphatidylserine exposure in each group were then examined by flow cytometry. Platelet receptor shedding and adhesion to collagen matrix were respectively measured by western blotting and microscopic assays. Our data showed lowered expression of GPIbα (p < 0.05) and GPVI in samples with ROS > 40% than those with ROS ≤ 40%, whereas receptors shedding and microvesiculation were (p < 0.05) elevated in platelets with higher levels of ROS. Functionally, we observed significantly (p < 0.05) lower levels of platelet adhesion to collagen matrix in samples with ROS generation more than 40%. Taken together, we showed correlations between intraplatelet ROS generation and either platelet receptors or microparticle shedding as well as platelet adhesive capacity to collagen. These findings suggest that augmented ROS generation during storage might be relevant to down-regulation of platelet adhesive function. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. ILK mediates LPS-induced vascular adhesion receptor expression and subsequent leucocyte trans-endothelial migration.

    PubMed

    Hortelano, Sonsoles; López-Fontal, Raquel; Través, Paqui G; Villa, Natividad; Grashoff, Carsten; Boscá, Lisardo; Luque, Alfonso

    2010-05-01

    The inflammatory response to injurious agents is tightly regulated to avoid adverse consequences of inappropriate leucocyte accumulation or failed resolution. Lipopolysaccharide (LPS)-activated endothelium recruits leucocytes to the inflamed tissue through controlled expression of membrane-associated adhesion molecules. LPS responses in macrophages are known to be regulated by integrin-linked kinase (ILK); in this study, we investigated the role of ILK in the regulation of the LPS-elicited inflammatory response in endothelium. This study was performed on immortalized mouse endothelial cells (EC) isolated from lung and coronary vasculature. Cells were thoroughly characterized and the role of ILK in the regulation of the LPS response was investigated by suppressing ILK expression using siRNA and shRNA technologies. Phenotypic and functional analyses confirmed that the immortalized cells behaved as true EC. LPS induced the expression of the inflammatory genes E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). ILK knockdown impaired LPS-mediated endothelial activation by preventing the induction of ICAM-1 and VCAM-1. Blockade of the LPS-induced response inhibited the inflammatory-related processes of firm adhesion and trans-endothelial migration of leucocytes. ILK is involved in the expression of cell adhesion molecules by EC activated with the inflammatory stimulus LPS. This reduced expression modulates leucocyte adhesion to the endothelium and the extravasation process. This finding suggests ILK as a potential anti-inflammatory target for the development of vascular-specific treatments for inflammation-related diseases.

  17. Small Molecule Inhibitors Target the Tissue Transglutaminase and Fibronectin Interaction

    PubMed Central

    Yakubov, Bakhtiyor; Chen, Lan; Belkin, Alexey M.; Zhang, Sheng; Chelladurai, Bhadrani; Zhang, Zhong-Yin; Matei, Daniela

    2014-01-01

    Tissue transglutaminase (TG2) mediates protein crosslinking through generation of ε−(γ-glutamyl) lysine isopeptide bonds and promotes cell adhesion through interaction with fibronectin (FN) and integrins. Cell adhesion to the peritoneal matrix regulated by TG2 facilitates ovarian cancer dissemination. Therefore, disruption of the TG2-FN complex by small molecules may inhibit cell adhesion and metastasis. A novel high throughput screening (HTS) assay based on AlphaLISA™ technology was developed to measure the formation of a complex between His-TG2 and the biotinylated FN fragment that binds TG2 and to discover small molecules that inhibit this protein-protein interaction. Several hits were identified from 10,000 compounds screened. The top candidates selected based on >70% inhibition of the TG2/FN complex formation were confirmed by using ELISA and bioassays measuring cell adhesion, migration, invasion, and proliferation. In conclusion, the AlphaLISA bead format assay measuring the TG2-FN interaction is robust and suitable for HTS of small molecules. One compound identified from the screen (TG53) potently inhibited ovarian cancer cell adhesion to FN, cell migration, and invasion and could be further developed as a potential inhibitor for ovarian cancer dissemination. PMID:24586660

  18. The Drosophila cell adhesion molecule Neuroglian regulates Lissencephaly-1 localisation in circulating immunosurveillance cells.

    PubMed

    Williams, Michael J

    2009-03-25

    When the parasitoid wasp Leptopilina boulardi lays its eggs in Drosophila larvae phagocytic cells called plasmatocytes and specialized cells known as lamellocytes encapsulate the egg. This requires these circulating immunosurveillance cells (haemocytes) to change from a non-adhesive to an adhesive state enabling them to bind to the invader. Interestingly, attachment of leukocytes, platelets, and insect haemocytes requires the same adhesion complexes as epithelial and neuronal cells. Here evidence is presented showing that the Drosophila L1-type cell adhesion molecule Neuroglian (Nrg) is required for haemocytes to encapsulate L. boulardi wasp eggs. The amino acid sequence FIGQY containing a conserved phosphorylated tyrosine is found in the intracellular domain of all L1-type cell adhesion molecules. This conserved tyrosine is phosphorylated at the cell periphery of plasmatocytes and lamellocytes prior to parasitisation, but dephosphorylated after immune activation. Intriguingly, another pool of Nrg located near the nucleus of plasmatocytes remains phosphorylated after parasitisation. In mammalian neuronal cells phosphorylated neurofascin, another L1-type cell adhesion molecule interacts with a nucleokinesis complex containing the microtubule binding protein lissencephaly-1 (Lis1) 1. Interestingly in plasmatocytes from Nrg mutants the nucleokinesis regulating protein Lissencephaly-1 (Lis1) fails to localise properly around the nucleus and is instead found diffuse throughout the cytoplasm and at unidentified perinuclear structures. After attaching to the wasp egg control plasmatocytes extend filopodia laterally from their cell periphery; as well as extending lateral filopodia plasmatocytes from Nrg mutants also extend many filopodia from their apical surface. The Drosophila cellular adhesion molecule Neuroglian is expressed in haemocytes and its activity is required for the encapsulation of L. boularli eggs. At the cell periphery of haemocytes Neuroglian may be involved in cell-cell interactions, while at the cell centre Neuroglian regulates the localisation of the nucleokinesis complex protein lissencephaly-1.

  19. The Drosophila cell adhesion molecule Neuroglian regulates Lissencephaly-1 localisation in circulating immunosurveillance cells

    PubMed Central

    Williams, Michael J

    2009-01-01

    Background When the parasitoid wasp Leptopilina boulardi lays its eggs in Drosophila larvae phagocytic cells called plasmatocytes and specialized cells known as lamellocytes encapsulate the egg. This requires these circulating immunosurveillance cells (haemocytes) to change from a non-adhesive to an adhesive state enabling them to bind to the invader. Interestingly, attachment of leukocytes, platelets, and insect haemocytes requires the same adhesion complexes as epithelial and neuronal cells. Results Here evidence is presented showing that the Drosophila L1-type cell adhesion molecule Neuroglian (Nrg) is required for haemocytes to encapsulate L. boulardi wasp eggs. The amino acid sequence FIGQY containing a conserved phosphorylated tyrosine is found in the intracellular domain of all L1-type cell adhesion molecules. This conserved tyrosine is phosphorylated at the cell periphery of plasmatocytes and lamellocytes prior to parasitisation, but dephosphorylated after immune activation. Intriguingly, another pool of Nrg located near the nucleus of plasmatocytes remains phosphorylated after parasitisation. In mammalian neuronal cells phosphorylated neurofascin, another L1-type cell adhesion molecule interacts with a nucleokinesis complex containing the microtubule binding protein lissencephaly-1 (Lis1) [1]. Interestingly in plasmatocytes from Nrg mutants the nucleokinesis regulating protein Lissencephaly-1 (Lis1) fails to localise properly around the nucleus and is instead found diffuse throughout the cytoplasm and at unidentified perinuclear structures. After attaching to the wasp egg control plasmatocytes extend filopodia laterally from their cell periphery; as well as extending lateral filopodia plasmatocytes from Nrg mutants also extend many filopodia from their apical surface. Conclusion The Drosophila cellular adhesion molecule Neuroglian is expressed in haemocytes and its activity is required for the encapsulation of L. boularli eggs. At the cell periphery of haemocytes Neuroglian may be involved in cell-cell interactions, while at the cell centre Neuroglian regulates the localisation of the nucleokinesis complex protein lissencephaly-1. PMID:19320973

  20. Levels of adhesion molecules in peripheral blood correlat with stages of diabetic retinopathy and may serve as bio markers for microvascular complications.

    PubMed

    Blum, Arnon; Pastukh, Nina; Socea, Dorina; Jabaly, Hanin

    2018-06-01

    Proliferative diabetic retinopathy is a devastating complication of diabetes mellitus, developing within 15 years in 50% of patients with type 1 diabetes mellitus (DM) and in 10% of patients with type 2 DM. The correlation between levels of inflammatory markers in the peripheral blood and retinopathy staging has not been studied yet, and the purpose of this prospective study was to find a possible association between inflammation and staging of diabetic retinopathy. A prospective (pilot) study that measured level of adhesion molecules in the peripheral blood of 10 healthy subjects and 30 patients with type 2 diabetes mellitus. Patients were grouped by the degree of retinopathy: 10 without retinopathy, 10 with non-proliferative retinopathy [NPDR] and 10 with proliferative retinopathy [PDR]. After signing the consent form, an ophthalmologic examination was performed, and 10 mL of blood was drawn. In order to assess adhesion molecules' level serum samples were collected, frozen, and stored at a temperature of -80 °C until analysis was performed as one batch. 10 healthy volunteers and 30 patients were enrolled. Healthy volunteers were younger (36.6 ± 7.9 years) compared to patients (no retinopathy 64.5 ± 10.8 years, NPDR 71.4 ± 8.9 years, and PDR 63.3 ± 11.6 years) (p = .0003 for all groups of patients in comparison with the healthy subjects). VCAM-1 levels were increased by retinopathy staging - starting from 81.86 ± 3.80 ng/ml (healthy), 105.55 ± 1.37 ng/ml (no retinopathy), 111.78 ± 4.14 ng/ml (NPDR), and 123.45 ± 3.99 ng/ml (PDR), with a significant difference between healthy and patients without retinopathy (p = .03), between no retinopathy and NPDR (p = .001), and between NPDR and PDR (p < .0001). E selectin was increased in correlation with severity of the retinopathy, with a significant difference between groups of patients (p = .03 between healthy subjects and T2DM patients without retinopathy, p = .001 between patients with T2DM no retinopathy and NPDR, p < .0001 between NPDR and PDR). We found a significant increase in levels of adhesion molecules (VCAM-1) and selectins (E-selectin) in parallel with increased severity of diabetic retinopathy, with a significant difference of inflammatory markers between stages of retinopathy. Copyright © 2017. Published by Elsevier Ltd.

  1. Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level

    PubMed Central

    Schvartzman, Mark; Palma, Matteo; Sable, Julia; Abramson, Justin; Hu, Xian; Sheetz, Michael P.; Wind, Shalom J.

    2011-01-01

    The ability to control the placement of individual molecules promises to enable a wide range of applications and is a key challenge in nanoscience and nanotechnology. Many biological interactions, in particular, are sensitive to the precise geometric arrangement of proteins. We have developed a technique which combines molecular-scale nanolithography with site-selective biochemistry to create biomimetic arrays of individual protein binding sites. The binding sites can be arranged in heterogeneous patterns of virtually any possible geometry with a nearly unlimited number of degrees of freedom. We have used these arrays to explore how the geometric organization of the extracellular matrix (ECM) binding ligand RGD (Arg-Gly-Asp) affects cell adhesion and spreading. Systematic variation of spacing, density and cluster size of individual integrin binding sites was used to elicit different cell behavior. Cell spreading assays on arrays of different geometric arrangements revealed a dramatic increase in spreading efficiency when at least 4 liganded sites were spaced within 60 nm or less, with no dependence on global density. This points to the existence of a minimal matrix adhesion unit for fibronectin defined in space and stoichiometry. Developing an understanding of the ECM geometries that activate specific cellular functional complexes is a critical step toward controlling cell behavior. Potential practical applications range from new therapeutic treatments to the rational design of tissue scaffolds that can optimize healing without scarring. More broadly, spatial control at the single-molecule level can elucidate factors controlling individual molecular interactions and can enable synthesis of new systems based on molecular-scale architectures. PMID:21319842

  2. First report on the association of drinking water hardness and endothelial function in children and adolescents.

    PubMed

    Poursafa, Parinaz; Kelishadi, Roya; Amin, Mohammad Mehdi; Hashemi, Mohammad; Amin, Maryam

    2014-08-29

    This study aims to investigate the relationship of water hardness and its calcium and magnesium content with endothelial function in a population-based sample of healthy children and adolescents. This case-control study was conducted in 2012 among 90 individuals living in two areas with moderate and high water hardness in Isfahan County, Iran. The flow-mediated dilatation (FMD) of the brachial artery and the serum levels of soluble adhesion molecules (sICAM-1, sVCAM-1) were measured as surrogate markers of endothelial function, and high-sensitivity C-reactive protein (hs-CRP), as a marker of inflammation. Data of 89 participants (51% boys, mean age 14.75 (2.9) years) were complete. Those participants living in the area with high water hardness had higher FMD, hs-CRP, and soluble adhesion molecules (sICAM-1, sVCAM-1) than their counterparts living in the area with moderate water hardness. Multiple linear regression analysis showed that after adjustment for confounding factors of age, gender, body mass index, healthy eating index and physical activity level, total water hardness, as well as water content of calcium and magnesium, had a significant positive relationship with FMD. The corresponding associations were inverse and significant with soluble adhesion molecules (p < 0.05). This study, which to the best of our knowledge is the first of its kind in the pediatric age group, suggests that water hardness, as well as its calcium and magnesium content, may have a protective role against early stages of atherosclerosis in children and adolescents.

  3. Modulation of focal adhesion constituents and their down-stream events by EGF: On the cross-talk of integrins and growth factor receptors.

    PubMed

    Eberwein, Philipp; Laird, Dougal; Schulz, Simon; Reinhard, Thomas; Steinberg, Thorsten; Tomakidi, Pascal

    2015-10-01

    Within the concept of integrin growth factor receptor (GFR) cross-talk, little is known about the effects of GFRs on focal adhesions (FAs). Therefore, we tested the hypothesis whether EGF can modulate constituents of FAs and subsequent down-stream events. To this end, EGF-treated keratinocytes were subjected to combined fluorescence imaging and western blotting, to quantify expression and/or activation of molecules, involved in integrin GFR cross-talk, and receptor proximal and distal signaling events. Generally, EGF response revealed an amplified redistribution or activation of molecules under study, which will be explained in detail from the plasma membrane to the cell interior. In addition to significant activation of EGF receptor (EGFR) at tyrosine Tyr845, a remarkable redistribution was detectable for the focal adhesion constituents, integrin ß1 and ß3, and zyxin. Increased activation also applied to focal adhesion kinase (FAK) by phosphorylation at Tyr397, Tyr576, and Src at Tyr418, while total FAK remained unchanged. Risen activity was seen as well for the analyzed distal down-stream events, p190RhoGAP and MAP kinases p42/44. Intriguingly, Src-specific inhibitor Herbimycin A abrogated the entire EGF response except FAK Tyr397 phosphorylation, independent of EGF presence. Mechanistically, our results show that EGF modulates adhesion in a dual fashion, by firstly redistributing focal adhesion constituents to adhesion sites, but also by amplifying levels of activated RhoA antagonist p190RhoGAP, important for cell motility. Further, the findings suggest that the observed EGF response underlies an EGFR integrin cross-talk under recruitment of receptor proximal FAK and Src, and MAP kinase and p190RhoGAP as receptor distal events. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model.

    PubMed

    Roe, Kelsey; Orillo, Beverly; Verma, Saguna

    2014-01-01

    Characterizing the mechanisms by which West Nile virus (WNV) causes blood-brain barrier (BBB) disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs) in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE). Infection with WNV (NY99 strain) significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1) did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101) strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.

  5. The role of interleukin-1β as a predictive biomarker and potential therapeutic target during clinical ex vivo lung perfusion.

    PubMed

    Andreasson, Anders S I; Borthwick, Lee A; Gillespie, Colin; Jiwa, Kasim; Scott, Jonathan; Henderson, Paul; Mayes, Jonny; Romano, Rosalba; Roman, Marius; Ali, Simi; Fildes, James E; Marczin, Nandor; Dark, John H; Fisher, Andrew J

    2017-09-01

    Extended criteria donor lungs deemed unsuitable for immediate transplantation can be reconditioned using ex vivo lung perfusion (EVLP). Objective identification of which donor lungs can be successfully reconditioned and will function well post-operatively has not been established. This study assessed the predictive value of markers of inflammation and tissue injury in donor lungs undergoing EVLP as part of the DEVELOP-UK study. Longitudinal samples of perfusate, bronchoalveolar lavage, and tissue from 42 human donor lungs undergoing clinical EVLP assessments were analyzed for markers of inflammation and tissue injury. Levels were compared according to EVLP success and post-transplant outcomes. Neutrophil adhesion to human pulmonary microvascular endothelial cells (HPMECs) conditioned with perfusates from EVLP assessments was investigated on a microfluidic platform. The most effective markers to differentiate between in-hospital survival and non-survival post-transplant were perfusate interleukin (IL)-1β (area under the curve = 1.00, p = 0.002) and tumor necrosis factor-α (area under the curve = 0.95, p = 0.006) after 30 minutes of EVLP. IL-1β levels in perfusate correlated with upregulation of intracellular adhesion molecule-1 in donor lung vasculature (R 2 = 0.68, p < 0.001) and to a lesser degree upregulation of intracellular adhesion molecule-1 (R 2 = 0.30, p = 0.001) and E-selectin (R 2 = 0.29, p = 0.001) in conditioned HPMECs and neutrophil adhesion to conditioned HPMECs (R 2 = 0.33, p < 0.001). Neutralization of IL-1β in perfusate effectively inhibited neutrophil adhesion to conditioned HPMECs (91% reduction, p = 0.002). Donor lungs develop a detectable and discriminatory pro-inflammatory signature in perfusate during EVLP. Blocking the IL-1β pathway during EVLP may reduce endothelial activation and subsequent neutrophil adhesion on reperfusion; this requires further investigation in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Low-calorie cranberry juice supplementation reduces plasma oxidized LDL and cell adhesion molecule concentrations in men.

    PubMed

    Ruel, Guillaume; Pomerleau, Sonia; Couture, Patrick; Lemieux, Simone; Lamarche, Benoît; Couillard, Charles

    2008-02-01

    Elevated circulating concentrations of oxidized LDL (OxLDL) and cell adhesion molecules are considered to be relevant markers of oxidative stress and endothelial activation which are implicated in the development of CVD. On the other hand, it has been suggested that dietary flavonoid consumption may be cardioprotective through possible favourable impacts on LDL particle oxidation and endothelial activation. The present study was undertaken to determine the effect of the daily consumption of low-calorie cranberry juice cocktail on plasma OxLDL, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin concentrations in men. Thirty men (mean age 51 (sd 10) years) were recruited and asked to consume increasing daily doses of cranberry juice cocktail (125, 250 and 500 ml/d) over three successive periods of 4 weeks. Plasma OxLDL and adhesion molecule concentrations were measured by ELISA before and after each phase. We noted a significant decrease in plasma OxLDL concentrations following the intervention (P < 0.0001). We also found that plasma ICAM-1 (P < 0.0001) and VCAM-1 (P < 0.05) concentrations decreased significantly during the course of the study. In summary, the present results show that daily cranberry juice cocktail consumption is associated with decreases in plasma OxLDL, ICAM-1 and VCAM-1 concentrations in men.

  7. Hydrogen-Rich Medium Attenuated Lipopolysaccharide-Induced Monocyte-Endothelial Cell Adhesion and Vascular Endothelial Permeability via Rho-Associated Coiled-Coil Protein Kinase.

    PubMed

    Xie, Keliang; Wang, Weina; Chen, Hongguang; Han, Huanzhi; Liu, Daquan; Wang, Guolin; Yu, Yonghao

    2015-07-01

    Sepsis is the leading cause of death in critically ill patients. In recent years, molecular hydrogen, as an effective free radical scavenger, has been shown a selective antioxidant and anti-inflammatory effect, and it is beneficial in the treatment of sepsis. Rho-associated coiled-coil protein kinase (ROCK) participates in junction between normal cells, and regulates vascular endothelial permeability. In this study, we used lipopolysaccharide to stimulate vascular endothelial cells and explored the effects of hydrogen-rich medium on the regulation of adhesion of monocytes to endothelial cells and vascular endothelial permeability. We found that hydrogen-rich medium could inhibit adhesion of monocytes to endothelial cells and decrease levels of adhesion molecules, whereas the levels of transepithelial/endothelial electrical resistance values and the expression of vascular endothelial cadherin were increased after hydrogen-rich medium treatment. Moreover, hydrogen-rich medium could lessen the expression of ROCK, as a similar effect of its inhibitor Y-27632. In addition, hydrogen-rich medium could also inhibit adhesion of polymorphonuclear neutrophils to endothelial cells. In conclusion, hydrogen-rich medium could regulate adhesion of monocytes/polymorphonuclear neutrophils to endothelial cells and vascular endothelial permeability, and this effect might be related to the decreased expression of ROCK protein.

  8. Plasma concentration of soluble intercellular adhesion molecule-1 (sICAM-1) is elevated in type 2 diabetic patients, and sICAM-1 synthesis is associated with leptin-induced activation of the mitogen-activated protein kinase (MAPK) pathway.

    PubMed

    Cha, Jin Joo; Hyun, Young Youl; Jee, Yi Hwa; Lee, Mi Jin; Han, Kum Hyun; Kang, Young Sun; Han, Sang Youb; Cha, Dae Ryong

    2013-08-01

    The intercellular adhesion molecule-1 (ICAM-1) and leptin are important inflammatory biomarkers. We investigated whether plasma-soluble ICAM-1 levels were related to the diabetic nephropathy and systemic inflammation. One hundred forty-seven type 2 diabetic patients and 46 healthy control subjects were studied. Plasma sICAM-1 concentrations were significantly higher in the diabetic groups than controls and increased significantly as diabetic nephropathy advanced. Plasma sICAM-1 levels were positively correlated with body mass index, fasting and postprandial blood glucose, urinary albumin excretion, and negatively correlated with creatinine clearance. Multiple regression analysis showed that plasma leptin levels were associated with a significant increase in plasma sICAM-1 levels. In cultured HUVECs, leptin increased ICAM-1 production in a dose-dependent manner, and this stimulating effect of leptin on ICAM-1 expression was reversed by MEK inhibitor, PD98059. Overall, these findings suggest that activation of leptin synthesis in a diabetic environment promotes ICAM-1 activation via mitogen-activated protein kinase pathway in type 2 diabetic patients.

  9. The endometrial cell surface and implantation. Expression of the polymorphic mucin MUC-1 and adhesion molecules during the endometrial cycle.

    PubMed

    Aplin, J D; Seif, M W; Graham, R A; Hey, N A; Behzad, F; Campbell, S

    1994-09-30

    The cell surface mucin MUC-1 is present in endometrial epithelial cells and their associated apical glycocalyx and is also released into gland lumens as a secretory product. MUC-1 mRNA and core protein are found at low levels in the proliferative phase of the cycle, but their abundance increases after ovulation. Endometrial MUC-1 has been found to carry sialokeratan sulphate chains and these show a dramatically increased abundance in cells and secretions in the post-ovulatory phase of the cycle, reaching a maximum in secretions 6-7 days after the LH peak. The apical epithelium also contains adhesion receptor molecules of the integrin and CD44 families. MUC-1 is large and highly glycosylated and probably extends farther from the cell surface than these 'conventional' glycoprotein receptors. It has the potential to inhibit sterically receptor-mediated cell-cell adhesion. However, it is also possible that MUC-1 displays specific (e.g., glycan) recognition structures for the initial attachment of the blastocyst or that the embryo may create a specialised microenvironment in which to implant.

  10. Regulation of Hematopoietic Stem Cell Behavior by the Nanostructured Presentation of Extracellular Matrix Components

    PubMed Central

    Muth, Christine Anna; Steinl, Carolin; Klein, Gerd; Lee-Thedieck, Cornelia

    2013-01-01

    Hematopoietic stem cells (HSCs) are maintained in stem cell niches, which regulate stem cell fate. Extracellular matrix (ECM) molecules, which are an essential part of these niches, can actively modulate cell functions. However, only little is known on the impact of ECM ligands on HSCs in a biomimetic environment defined on the nanometer-scale level. Here, we show that human hematopoietic stem and progenitor cell (HSPC) adhesion depends on the type of ligand, i.e., the type of ECM molecule, and the lateral, nanometer-scaled distance between the ligands (while the ligand type influenced the dependency on the latter). For small fibronectin (FN)–derived peptide ligands such as RGD and LDV the critical adhesive interligand distance for HSPCs was below 45 nm. FN-derived (FN type III 7–10) and osteopontin-derived protein domains also supported cell adhesion at greater distances. We found that the expression of the ECM protein thrombospondin-2 (THBS2) in HSPCs depends on the presence of the ligand type and its nanostructured presentation. Functionally, THBS2 proved to mediate adhesion of HSPCs. In conclusion, the present study shows that HSPCs are sensitive to the nanostructure of their microenvironment and that they are able to actively modulate their environment by secreting ECM factors. PMID:23405094

  11. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice.

    PubMed

    Peled, A; Kollet, O; Ponomaryov, T; Petit, I; Franitza, S; Grabovsky, V; Slav, M M; Nagler, A; Lider, O; Alon, R; Zipori, D; Lapidot, T

    2000-06-01

    Hematopoietic stem cell homing and engraftment require several adhesion interactions, which are not fully understood. Engraftment of nonobese/severe combined immunodeficiency (NOD/SCID) mice by human stem cells is dependent on the major integrins very late activation antigen-4 (VLA-4); VLA-5; and to a lesser degree, lymphocyte function associated antigen-1 (LFA-1). Treatment of human CD34(+) cells with antibodies to either VLA-4 or VLA-5 prevented engraftment, and treatment with anti-LFA-1 antibodies significantly reduced the levels of engraftment. Activation of CD34(+) cells, which bear the chemokine receptor CXCR4, with stromal derived factor 1 (SDF-1) led to firm adhesion and transendothelial migration, which was dependent on LFA-1/ICAM-1 (intracellular adhesion molecule-1) and VLA-4/VCAM-1 (vascular adhesion molecule-1). Furthermore, SDF-1-induced polarization and extravasation of CD34(+)/CXCR4(+) cells through the extracellular matrix underlining the endothelium was dependent on both VLA-4 and VLA-5. Our results demonstrate that repopulating human stem cells functionally express LFA-1, VLA-4, and VLA-5. Furthermore, this study implies a novel approach to further advance clinical transplantation.

  12. Effects of ß-TCP scaffolds on neurogenic and osteogenic differentiation of human embryonic stem cells.

    PubMed

    Arpornmaeklong, Premjit; Pressler, Michael J

    2018-01-01

    Extracellular matrix (ECM) and adhesion molecules play crucial roles in regulating growth and differentiation of stem cells. The current study aimed to investigate the effects of beta-tricalcium phosphate (ß-TCP) scaffolds on differentiation and expression of ECM and adhesion molecules of human embryonic stem cells (hESCs). Undifferentiated hESCs were seeded on ß-TCP scaffolds and cell culture plates and cultured in growth and osteogenic medium for 21 days. Scanning electron microscopy (SEM) displayed adhesion and growth of hESCs on the porous ß-TCP scaffolds. Histological analysis, immunohistochemical staining and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) demonstrated that the scaffolds supported growth and differentiation of hESCs. Expression levels of neural crest related genes (AP2a, FoxD3, HNK1, P75, Sox1, Sox10) and osteoblast-related genes (Runx2, SPP1 and BGLA) on the scaffolds in osteogenic medium were significantly higher than on the scaffolds in growth and cell culture plates in osteogenic medium, respectively (p<0.05). Polymerase chain reaction array experiments demonstrated increased expression of ECM and adhesion molecule-related genes on the scaffolds. In conclusion, osteoconductive scaffolds such as ß-TCP scaffolds promoted differentiation of hESCs, particularly expression of genes related to neural crest stem cell and osteoblastic differentiations. Beta-TCP scaffolds could be an alternative cell culture substrate for neural crest and osteogenic differentiation of hESCs. Optimization of culture medium may be necessary to enhance lineage restriction of hESCs on the ß-TCP scaffolds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Effects of low-level organic selenium on lead-induced alterations in neural cell adhesion molecules.

    PubMed

    Wang, Mao; Fu, Hongjun; Xiao, Yongmei; Ai, Baomin; Wei, Qing; Wang, Shuyu; Liu, Tao; Ye, Liuqing; Hu, Qiansheng

    2013-09-12

    Low-level lead (Pb) exposure has been reported to impair the formation and consolidation of learning and memory by inhibiting the expression of neural cell adhesion molecules (NCAMs) and altering the temporal profile of its polysialylation state. In this study, we investigated whether administration of low-level organic selenium (selenomethionine, Se) at different time points could affect Pb-induced changes of NCAMs in female Wistar rats. Here we reported that the exposure of Se (60μg/kg body weight/day) at different time points significantly alleviated Pb-induced reductions in the mRNA and protein levels of NCAMs, and increases in the mRNA levels of two polysialyltransferases (St8sia II, Stx; St8sia IV, Pst) as well as the sialyltransferase activity (p<0.05). The concentrations of Pb in blood and hippocampi of Wistar rats treated with the combination of Se and Pb were significantly lower than those treated with Pb alone (p<0.05). Our results suggest that low-level organic Se can not only prevent but also reverse Pb-induced alterations in the expression and polysialylated state of NCAMs as well as the concentration of Pb in rat blood and hippocampus. © 2013 Elsevier B.V. All rights reserved.

  14. Interplay between Rolling and Firm Adhesion Elucidated with a Cell-Free System Engineered with Two Distinct Receptor-Ligand Pairs

    PubMed Central

    Eniola, A. Omolola; Willcox, P. Jeanene; Hammer, Daniel A.

    2003-01-01

    The firm arrest of leukocytes to the endothelium during inflammation is known to be mediated by endothelial intercellular adhesion molecules (ICAMs) binding to activated integrins displayed on leukocyte surface. Selectin-ligand interactions, which mediate rolling, are believed to be important for facilitating firm adhesion, either by activating integrins or by facilitating the transition to firm adhesion by making it easier for integrins to bind. Although leukocytes employ two distinct adhesion molecules that mediate different states of adhesion, the fundamental biophysical mechanisms by which two pairs of adhesion molecules facilitate cell adhesion is not well understood. In this work, we attempt to understand the interaction between two molecular systems using a cell-free system in which polystyrene microspheres functionalized with the selectin ligand, sialyl LewisX (sLeX), and an antibody against ICAM-1, aICAM-1, are perfused over P-selectin/ICAM-1 coated surfaces in a parallel plate flow chamber. Separately, sLeX/P-selectin interactions support rolling and aICAM-1/ICAM-1 interactions mediate firm adhesion. Our results show that sLeX/aICAM-1 microspheres will firmly adhere to P-selectin/ICAM-1 coated surfaces, and that the extent of firm adhesion of microspheres is dependent on wall shear stress within the flow chamber, sLeX/aICAM-1 microsphere site density, and P-selectin/ICAM-1 surface density ratio. We show that P-selectin's interaction with sLeX mechanistically facilitates firm adhesion mediated by antibody binding to ICAM-1: the extent of firm adhesion for the same concentration of aICAM-1/ICAM-1 interaction is greater when sLeX/P-selectin interactions are present. aICAM-1/ICAM-1 interactions also stabilize rolling by increasing pause times and decreasing average rolling velocities. Although aICAM-1 is a surrogate for β2-integrin, the kinetics of association between aICAM-1 and ICAM-1 is within a factor of 1.5 of activated integrin binding ICAM-1, suggesting the findings from this model system may be insightful to the mechanism of leukocyte firm adhesion. In particular, these experimental results show how two molecule systems can interact to produce an effect not achievable by either system alone, a fundamental mechanism that may pervade leukocyte adhesion biology. PMID:14507735

  15. A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells.

    PubMed

    Miyoshi, Yukihiro; Okada, Sanae; Uchimura, Tai; Satoh, Eiichi

    2006-07-01

    Lactobacillus reuteri is one of the dominant lactobacilli found in the gastrointestinal tract of various animals. A surface protein of L. reuteri 104R, mucus adhesion promoting protein (MapA), is considered to be an adhesion factor of this strain. We investigated the relation between MapA and adhesion of L. reuteri to human intestinal (Caco-2) cells. Quantitative analysis of the adhesion of L. reuteri strains to Caco-2 cells showed that various L. reuteri strains bind not only to mucus but also to intestinal epithelial cells. In addition, purified MapA bound to Caco-2 cells, and this binding inhibited the adhesion of L. reuteri in a concentration-dependent manner. Based on these observations, the adhesion of L. reuteri appears due to the binding of MapA to receptor-like molecules on Caco-2 cells. Further, far-western analysis indicated the existence of multiple receptor-like molecules in Caco-2 cells.

  16. Impact of a Low-Glucose Peritoneal Dialysis Regimen on Fibrosis and Inflammation Biomarkers

    PubMed Central

    Yung, Susan; Lui, Sing Leung; Ng, Chris K.F.; Yim, Andrew; Ma, Maggie K.M.; Lo, Kin Yee; Chow, Chik Cheung; Chu, Kwok Hong; Chak, Wai Leung; Lam, Man Fai; Yung, Chun Yu; Yip, Terence P.S.; Wong, Sunny; Tang, Colin S.O.; Ng, Flora S.K.; Chan, Tak Mao

    2015-01-01

    ♦ Background: The impact of a low-glucose peritoneal dialysis (PD) regimen on biomarkers of peritoneal inflammation, fibrosis and membrane integrity remains to be investigated. ♦ Methods: In a randomized, prospective study, 80 incident PD patients received either a low-glucose regimen comprising Physioneal (P), Extraneal (E) and Nutrineal (N) (Baxter Healthcare Corporation, Deerfield, IL, USA) (PEN group), or Dianeal (control group) for 12 months, after which both groups continued with Dianeal dialysis for 6 months. Serum and dialysate levels of vascular endothelial growth factor (VEGF), decorin, hepatocyte growth factor (HGF), interleukin-6 (IL-6), macrophage migration inhibitory factor (MIF), hyaluronan (HA), adiponectin, soluble-intracellular adhesion molecule (s-ICAM), vascular cell adhesion molecule-1 (VCAM-1) and P-selectin, and dialysate cancer antigen 125 (CA125), were measured after 12 and 18 months. This paper focuses on results after 12 months, when patients in the PEN group changed to glucose-based PD fluid (PDF). ♦ Results: At the end of 12 months, effluent dialysate levels of CA125, decorin, HGF, IL-6, adiponectin and adhesion molecules were significantly higher in the PEN group compared to controls, but all decreased after patients switched to glucose-based PDF. Macrophage migration inhibitory factor level was lower in the PEN group but increased after changing to glucose-based PDF and was similar to controls at 18 months. Serum adiponectin level was higher in the PEN group at 12 months, but was similar in the 2 groups at 18 months. Body weight, residual renal function, ultrafiltration volume and total Kt/V did not differ between both groups. Dialysate-to-plasma creatinine ratio at 4 h was higher in the PEN group at 12 months and remained so after switching to glucose-based PDF. ♦ Conclusion: Changes in the biomarkers suggest that the PEN PD regimen may be associated with better preservation of peritoneal membrane integrity and reduced systemic vascular endothelial injury. PMID:25904773

  17. Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.

    1994-01-01

    Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to Carcinoembryonic Antigen (CEA), an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.

  18. N-glycosylation at the SynCAM (synaptic cell adhesion molecule) immunoglobulin interface modulates synaptic adhesion.

    PubMed

    Fogel, Adam I; Li, Yue; Giza, Joanna; Wang, Qing; Lam, Tukiet T; Modis, Yorgo; Biederer, Thomas

    2010-11-05

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.

  19. N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion*

    PubMed Central

    Fogel, Adam I.; Li, Yue; Giza, Joanna; Wang, Qing; Lam, TuKiet T.; Modis, Yorgo; Biederer, Thomas

    2010-01-01

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn60. Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn70/Asn104 flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn60 reduces adhesion, N-glycans at Asn70/Asn104 of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion. PMID:20739279

  20. Flaxseed and cardiovascular health.

    PubMed

    Prasad, Kailash

    2009-11-01

    Flaxseed and its components may improve cardiovascular health because of their numerous attributes. Flaxseed contains 35% of its mass as oil, of which 55% is alpha-linolenic acid (ALA). Flax meal, which is devoid of oil, contains the lignan secoisolariciresinol diglucoside (SDG). Flaxseed, flaxseed with very low ALA, flaxseed oil, flax lignan complex (FLC), and SDG reduce the development of hypercholesterolemic atherosclerosis by 46%, 69%, 0%, 73%, and 34%, respectively, in the rabbit model. FLC and SDG slow the progression of atherosclerosis but have no effect in regression of atherosclerosis. Suppression of atherosclerosis by flaxseed is the result of its lignan content and not the result of ALA content. Suppression of atherosclerosis is associated with lowering of serum lipids and antioxidant activity. Effects of flaxseed on serum lipids in experimental animals are variable from no change to slight reduction. Flaxseed oil does not affect serum lipids, except for a slight reduction in serum triglycerides. Lignan in general reduces serum total cholesterol and low-density lipoprotein cholesterol and raises serum high-density lipoprotein cholesterol. SDG and its metabolites have antioxidant activity. Flaxseed and flaxseed oil do not have antioxidant activity except they suppress oxygen radical production by white blood cells. Flaxseed oil/ALA has variable effects on inflammatory mediators/markers (interleukin [IL]-1beta, IL-2, IL-4, IL-6, IL-10, tumor necrosis factor-alpha, interferon-gamma, C-reactive protein, and serum amyloid A). Doses of ALA less than 14 g/d do not affect inflammatory mediators/markers, but 14 g/d or greater reduce inflammatory mediators/markers. Flaxseed oil decreases soluble vascular cell adhesion molecule-1 but has no effect on soluble intracellular adhesion molecule-1, soluble E-selectin, and monocyte colony-stimulating factor. Flaxseed has variable effects on IL-6, high-sensitivity C-reactive protein, and soluble vascular cell adhesion molecule-1. FLC reduces plasma levels of C-reactive protein but has no effects on IL-6, tumor necrosis factor-alpha, soluble intracellular adhesion molecule-1, soluble vascular cell adhesion molecule-1, or monocyte chemoattractant protein. Flaxseed has a very small hypotensive effect, but flaxseed oil does not lower blood pressure. However, SDG is a very potent hypotensive agent. Flaxseed oil decreases platelet aggregation and increases platelet activating inhibitor-1 and bleeding time. Flaxseed and FLC have no effect on the hemopoietic system. SDG is a potent angiogenic and antiapoptotic agent that may have a role in cardioprotection in ischemic heart disease. In conclusion, flaxseed, FLC, and SDG, but not flaxseed oil, suppress atherosclerosis, and FLC and SDG slow progression of atherosclerosis but have no effect on regression. Flaxseed oil suppresses oxygen radical production by white blood cells, prolongs bleeding time, and in higher doses suppresses serum levels of inflammatory mediators and does not lower serum lipids.

  1. Tumor necrosis factor α (TNF-α) receptor-II is required for TNF-α–induced leukocyte-endothelial interaction in vivo

    PubMed Central

    Chandrasekharan, Unni M.; Siemionow, Maria; Unsal, Murat; Yang, Lin; Poptic, Earl; Bohn, Justin; Ozer, Kagan; Zhou, Zhongmin; Howe, Philip H.; Penn, Marc

    2007-01-01

    Tumor necrosis factor-α (TNF-α) binds to 2 distinct cell-surface receptors: TNF-α receptor-I (TNFR-I: p55) and TNF-α receptor-II (TNFR-II: p75). TNF-α induces leukocyte adhesion molecules on endothelial cells (ECs), which mediate 3 defined steps of the inflammatory response; namely, leukocyte rolling, firm adhesion, and transmigration. In this study, we have investigated the role of p75 in TNF-α–induced leukocyte adhesion molecules using cultured ECs derived from wild-type (WT), p75-null (p75−/−), or p55-null (p55−/−) mice. We observed that p75 was essential for TNF-α–induced E-selectin, vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) expression. We also investigated the putative role of p75 in inflammation in vivo using an intravital microscopic approach with a mouse cremaster muscle model. TNF-α–stimulated leukocyte rolling, firm adhesion to ECs, and transmigration were dramatically reduced in p75−/− mice. Transplanted WT cremaster in p75−/− mice showed a robust leukocyte rolling and firm adhesion upon TNF-α activation, suggesting that the impairment in EC-leukocyte interaction in p75−/− mice is due to EC dysfunction. These results demonstrate, for the first time, that endothelial p75 is essential for TNF-α–induced leukocyte–endothelial-cell interaction. Our findings may contribute to the identification of novel p75-targeted therapeutic approaches for inflammatory diseases. PMID:17068152

  2. Streptococcus pyogenes Phospholipase A2 Induces the Expression of Adhesion Molecules on Human Umbilical Vein Endothelial Cells and Aorta of Mice.

    PubMed

    Oda, Masataka; Domon, Hisanori; Kurosawa, Mie; Isono, Toshihito; Maekawa, Tomoki; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka

    2017-01-01

    The Streptococcus pyogenes phospholipase A 2 (SlaA) gene is highly conserved in the M3 serotype of group A S. pyogenes , which often involves hypervirulent clones. However, the role of SlaA in S. pyogenes pathogenesis is unclear. Herein, we report that SlaA induces the expression of intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) via the arachidonic acid signaling cascade. Notably, recombinant SlaA induced ICAM1 and VCAM1 expression in human umbilical vein endothelial cells (HUVECs), resulting in enhanced adhesion of human monocytic leukemia (THP-1) cells. However, C134A, a variant enzyme with no enzymatic activity, did not induce such events. In addition, culture supernatants from S. pyogenes SSI-1 enhanced the adhesion of THP-1 cells to HUVECs, but culture supernatants from the Δ slaA isogenic mutant strain had limited effects. Aspirin, a cyclooxygenase 2 inhibitor, prevented the adhesion of THP-1 cells to HUVECs and did not induce ICAM1 and VCAM1 expression in HUVECs treated with SlaA. However, zileuton, a 5-lipoxygenase inhibitor, did not exhibit such effects. Furthermore, pre-administration of aspirin in mice intravenously injected with SlaA attenuated the transcriptional abundance of ICAM1 and VCAM1 in the aorta. These results suggested that SlaA from S. pyogenes stimulates the expression of adhesion molecules in vascular endothelial cells. Thus, SlaA contributes to the inflammation of vascular endothelial cells upon S. pyogenes infection.

  3. Simple rules for a "simple" nervous system? Molecular and biomathematical approaches to enteric nervous system formation and malformation.

    PubMed

    Newgreen, Donald F; Dufour, Sylvie; Howard, Marthe J; Landman, Kerry A

    2013-10-01

    We review morphogenesis of the enteric nervous system from migratory neural crest cells, and defects of this process such as Hirschsprung disease, centering on cell motility and assembly, and cell adhesion and extracellular matrix molecules, along with cell proliferation and growth factors. We then review continuum and agent-based (cellular automata) models with rules of cell movement and logistical proliferation. Both movement and proliferation at the individual cell level are modeled with stochastic components from which stereotyped outcomes emerge at the population level. These models reproduced the wave-like colonization of the intestine by enteric neural crest cells, and several new properties emerged, such as colonization by frontal expansion, which were later confirmed biologically. These models predict a surprising level of clonal heterogeneity both in terms of number and distribution of daughter cells. Biologically, migrating cells form stable chains made up of unstable cells, but this is not seen in the initial model. We outline additional rules for cell differentiation into neurons, axon extension, cell-axon and cell-cell adhesions, chemotaxis and repulsion which can reproduce chain migration. After the migration stage, the cells re-arrange as a network of ganglia. Changes in cell adhesion molecules parallel this, and we describe additional rules based on Steinberg's Differential Adhesion Hypothesis, reflecting changing levels of adhesion in neural crest cells and neurons. This was able to reproduce enteric ganglionation in a model. Mouse mutants with disturbances of enteric nervous system morphogenesis are discussed, and these suggest future refinement of the models. The modeling suggests a relatively simple set of cell behavioral rules could account for complex patterns of morphogenesis. The model has allowed the proposal that Hirschsprung disease is mostly an enteric neural crest cell proliferation defect, not a defect of cell migration. In addition, the model suggests an explanations for zonal and skip segment variants of Hirschsprung disease, and also gives a novel stochastic explanation for the observed discordancy of Hirschsprung disease in identical twins. © 2013 Elsevier Inc. All rights reserved.

  4. Inhibitors of adhesion molecules expression; the synthesis and pharmacological properties of 10H-pyrazino[2,3-b][1,4]benzothiazine derivatives.

    PubMed

    Kaneko, Toshihiko; Clark, Richard S J; Ohi, Norihito; Kawahara, Tetsuya; Akamatsu, Hiroshi; Ozaki, Fumihiro; Kamada, Atsushi; Okano, Kazuo; Yokohama, Hiromitsu; Muramoto, Kenzo; Ohkuro, Masayoshi; Takenaka, Osamu; Kobayashi, Seiichi

    2002-07-01

    During a search for novel, orally-active inhibitors of upregulation of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), we found a new series of 10H-pyrazino[2,3-b][1,4]benzothiazine derivatives to be potent ICAM-1 inhibitors. Of these compounds, N-[1-(10H-Pyrazino[2,3-b][1,4]benzothiazin-8-ylmethyl)piperidin-4-yl]-N',N'-dimethylsulfamide 7p showed the potent oral inhibitory activities against neutrophil migration in a murine interleukin-1 (IL-1) induced paw inflammation model. The synthesis and structure-activity relationships of these amide derivatives are described.

  5. Single-Molecule Manipulation Studies of a Mechanically Activated Protein

    NASA Astrophysics Data System (ADS)

    Botello, Eric; Harris, Nolan; Choi, Huiwan; Bergeron, Angela; Dong, Jing-Fei; Kiang, Ching-Hwa

    2009-10-01

    Plasma von Willebrand factor (pVWF) is the largest multimeric adhesion ligand found in human blood and must be adhesively activated by exposure to shear stress, like at sites of vascular injury, to initiate blood clotting. Sheared pVWF (sVWF) will undergo a conformational change from a loose tangled coil to elongated strings forming adhesive fibers by binding with other sVWF. VWF's adhesion activity is also related to its length, with the ultra-large form of VWF (ULVWF) being hyper-actively adhesive without exposure to shear stress; it has also been shown to spontaneously form fibers. We used single molecule manipulation techniques with the AFM to stretch pVWF, sVWF and ULVWF and monitor the forces as a function of molecular extension. We showed a similar increase in resistance to unfolding for sVWF and ULVWF when compared to pVWF. This mechanical resistance to forced unfolding is reduced when other molecules known to disrupt their fibril formation are present. Our results show that sVWF and ULVWF domains unfold at higher forces than pVWF, which is consistent with the hypothesis that shear stress induces lateral association that alters adhesion activity of pVWF.

  6. In vitro Flow Adhesion Assay for Analyzing Shear-resistant Adhesion of Metastatic Cancer Cells to Endothelial Cells.

    PubMed

    Kang, Shin-Ae; Bajana, Sandra; Tanaka, Takemi

    2016-02-20

    Hematogenous metastasis is a primary cause of mortality from metastatic cancer. The shear-resistant adhesion of circulating tumor cells to the vascular endothelial cell surface under blood flow is an essential step in cell extravasation and further tissue invasion. This is similar to a process exploited by leukocytes for adhesion to inflamed blood vessels (leukocyte mimicry). The shear resistant adhesion is mediated by high affinity interactions between endothelial adhesion molecules and their counter receptor ligand expressed on circulating cells. Thus, weak interaction results in a rapid detachment of circulating cells from endothelium. Despite the critical role of vascular adhesion of cancer cells in hematogenous metastasis, our knowledge regarding this process has been limited due to the difficulty of mimicking dynamic flow conditions in vitro . In order to gain better insight into the shear-resistant adhesion of cancer cells to the endothelium, we developed a protocol for measuring the shear resistant adhesion of circulating tumor cells to endothelial cells under physiologic flow conditions by adapting a well established flow adhesion assay for inflammatory cells. This technique is useful to evaluate 1) the shear resistant adhesion competency of cancer cells and 2) the endothelial adhesion molecules necessary to support cancer cell adhesion (Kang et al. , 2015).

  7. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness.

    PubMed

    Kong, Hyun Joon; Polte, Thomas R; Alsberg, Eben; Mooney, David J

    2005-03-22

    The mechanical properties of cell adhesion substrates regulate cell phenotype, but the mechanism of this relation is currently unclear. It may involve the magnitude of traction force applied by the cell, and/or the ability of the cells to rearrange the cell adhesion molecules presented from the material. In this study, we describe a FRET technique that can be used to evaluate the mechanics of cell-material interactions at the molecular level and simultaneously quantify the cell-based nanoscale rearrangement of the material itself. We found that these events depended on the mechanical rigidity of the adhesion substrate. Furthermore, both the proliferation and differentiation of preosteoblasts (MC3T3-E1) correlated to the magnitude of force that cells generate to cluster the cell adhesion ligands, but not the extent of ligand clustering. Together, these data demonstrate the utility of FRET in analyzing cell-material interactions, and suggest that regulation of phenotype with substrate stiffness is related to alterations in cellular traction forces.

  8. Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion.

    PubMed

    Ma, GuoHua; Pan, Bing; Chen, Yue; Guo, CaiXia; Zhao, MingMing; Zheng, LeMin; Chen, BuXing

    2017-04-30

    Several studies have reported a strong association between high plasma level of trimethylamine N-oxide (TMAO) and atherosclerosis development. However, the exact mechanism underlying this correlation is unknown. In the present study, we try to explore the impact of TMAO on endothelial dysfunction. After TMAO treatment, human umbilical vein endothelial cells (HUVECs) showed significant impairment in cellular proliferation and HUVECs-extracellular matrix (ECM) adhesion compared with control. Likewise, TMAO markedly suppressed HUVECs migration in transwell migration assay and wound healing assay. In addition, we found TMAO up-regulated vascular cell adhesion molecule-1 (VCAM-1) expression, promoted monocyte adherence, activated protein kinase C (PKC) and p-NF-κB. Interestingly, TMAO-stimulated VCAM-1 expression and monocyte adherence were diminished by PKC inhibitor. These results demonstrate that TMAO promotes early pathological process of atherosclerosis by accelerating endothelial dysfunction, including decreasing endothelial self-repair and increasing monocyte adhesion. Furthermore, TMAO-induced monocyte adhesion is partly attributable to activation of PKC/NF-κB/VCAM-1. © 2017 The Author(s).

  9. Adhesive Dimerization of Human P-Cadherin Catalyzed by a Chaperone-like Mechanism.

    PubMed

    Kudo, Shota; Caaveiro, Jose M M; Tsumoto, Kouhei

    2016-09-06

    Orderly assembly of classical cadherins governs cell adhesion and tissue maintenance. A key event is the strand-swap dimerization of the extracellular ectodomains of two cadherin molecules from apposing cells. Here we have determined crystal structures of P-cadherin in six different conformational states to elaborate a motion picture of its adhesive dimerization at the atomic level. The snapshots revealed that cell-adhesive dimerization is facilitated by several intermediate states collectively termed X-dimer in analogy to other classical cadherins. Based on previous studies and on the combined structural, kinetic, thermodynamic, biochemical, and cellular data reported herein, we propose that the adhesive dimerization of human P-cadherin is achieved by a stepwise mechanism analogous to that of assembly chaperones. This mechanism, applicable to type I classical cadherins, confers high specificity and fast association rates. We expect these findings to guide innovative therapeutic approaches targeting P-cadherin in cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Forced neuronal interactions cause poor communication.

    PubMed

    Krzisch, Marine; Toni, Nicolas

    2017-01-01

    Post-natal hippocampal neurogenesis plays a role in hippocampal function, and neurons born post-natally participate to spatial memory and mood control. However, a great proportion of granule neurons generated in the post-natal hippocampus are eliminated during the first 3 weeks of their maturation, a mechanism that depends on their synaptic integration. In a recent study, we examined the possibility of enhancing the synaptic integration of neurons born post-natally, by specifically overexpressing synaptic cell adhesion molecules in these cells. Synaptic cell adhesion molecules are transmembrane proteins mediating the physical connection between pre- and post-synaptic neurons at the synapse, and their overexpression enhances synapse formation. Accordingly, we found that overexpressing synaptic adhesion molecules increased the synaptic integration and survival of newborn neurons. Surprisingly, the synaptic adhesion molecule with the strongest effect on new neurons' survival, Neuroligin-2A, decreased memory performances in a water maze task. We present here hypotheses explaining these surprising results, in the light of the current knowledge of the mechanisms of synaptic integration of new neurons in the post-natal hippocampus.

  11. Drospirenone and levonorgestrel in combination with either 30 or 20 mcg ethinylestradiol reduce soluble adhesion molecules in Brazilian women; cross-sectional study.

    PubMed

    Stocco, Bianca; Fumagalli, Helen Figueiredo; Franceschini, Silvio Antônio; Martinez, Edson Zangiacomi; Marzocchi-Machado, Cleni Mara; Toloi, Maria Regina Torqueti

    2012-11-01

    The objective of this study was to evaluate the effect of three contraceptive pills containing ethinylestradiol (EE) (20 or 30 mcg) in combination with drospirenone (DRSP) and levonorgestrel (LNG) on plasma concentration of adhesion molecules vascular cell adhesion molecule -1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin. A cross-sectional study was conducted with 72 participants (18-30 years old) distributed into three groups that used oral contraceptives containing EE 20 or 30 mcg combined with DRSP 3 mg or EE 30 mcg/LNG 150 mcg for at least 6 months. The control group was comprised of nonusers of contraceptives. Soluble VCAM-1, soluble ICAM-1 and soluble E-selectin were evaluated by enzyme-linked immunosorbent assay. Compared to the control group, a significant decrease was found in VCAM-1 and ICAM-1 concentrations with use of DRSP/20 EE and LNG/30 EE. DRSP/20 EE and LNG/30 EE induce favorable changes in endothelial function. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Discrete microfluidics for the isolation of circulating tumor cell subpopulations targeting fibroblast activation protein alpha and epithelial cell adhesion molecule.

    PubMed

    Witek, Małgorzata A; Aufforth, Rachel D; Wang, Hong; Kamande, Joyce W; Jackson, Joshua M; Pullagurla, Swathi R; Hupert, Mateusz L; Usary, Jerry; Wysham, Weiya Z; Hilliard, Dawud; Montgomery, Stephanie; Bae-Jump, Victoria; Carey, Lisa A; Gehrig, Paola A; Milowsky, Matthew I; Perou, Charles M; Soper, John T; Whang, Young E; Yeh, Jen Jen; Martin, George; Soper, Steven A

    2017-01-01

    Circulating tumor cells consist of phenotypically distinct subpopulations that originate from the tumor microenvironment. We report a circulating tumor cell dual selection assay that uses discrete microfluidics to select circulating tumor cell subpopulations from a single blood sample; circulating tumor cells expressing the established marker epithelial cell adhesion molecule and a new marker, fibroblast activation protein alpha, were evaluated. Both circulating tumor cell subpopulations were detected in metastatic ovarian, colorectal, prostate, breast, and pancreatic cancer patients and 90% of the isolated circulating tumor cells did not co-express both antigens. Clinical sensitivities of 100% showed substantial improvement compared to epithelial cell adhesion molecule selection alone. Owing to high purity (>80%) of the selected circulating tumor cells, molecular analysis of both circulating tumor cell subpopulations was carried out in bulk, including next generation sequencing, mutation analysis, and gene expression. Results suggested fibroblast activation protein alpha and epithelial cell adhesion molecule circulating tumor cells are distinct subpopulations and the use of these in concert can provide information needed to navigate through cancer disease management challenges.

  13. Differential splicing generates a nervous system-specific form of Drosophila neuroglian.

    PubMed

    Hortsch, M; Bieber, A J; Patel, N H; Goodman, C S

    1990-05-01

    We recently described the characterization and cloning of Drosophila neuroglian, a member of the immunoglobulin superfamily. Neuroglian contains six immunoglobulin-like domains and five fibronectin type III domains and shows strong sequence homology to the mouse neural cell adhesion molecule L1. Here we show that the neuroglian gene generates at least two different protein products by tissue-specific alternative splicing. The two protein forms differ in their cytoplasmic domains. The long form is restricted to the surface of neurons in the CNS and neurons and some support cells in the PNS; in contrast, the short form is expressed on a wide range of other cells and tissues. Thus, whereas the mouse L1 gene appears to encode only one protein that functions largely as a neural cell adhesion molecule, its Drosophila homolog, the neuroglian gene, encodes at least two protein forms that may play two different roles, one as a neural cell adhesion molecule and the other as a more general cell adhesion molecule involved in other tissues and imaginal disc morphogenesis.

  14. Inhibitory Effects of North American Wild Rice on Monocyte Adhesion and Inflammatory Modulators in Low-Density Lipoprotein Receptor-Knockout Mice.

    PubMed

    Moghadasian, Mohammed H; Zhao, Ruozhi; Ghazawwi, Nora; Le, Khuong; Apea-Bah, Franklin B; Beta, Trust; Shen, Garry X

    2017-10-18

    The present study examined the effects of wild rice on monocyte adhesion, inflammatory and fibrinolytic mediators in low-density lipoprotein receptor-knockout (LDLr-KO) mice. Male LDLr-KO mice received a cholesterol (0.06%, w/w)-supplemented diet with or without white or wild rice (60%, w/w) for 20 weeks. White rice significantly increased monocyte adhesion and abundances of monocyte chemoattractant protein-1, tissue necrosis factor-α, intracellular cell adhesion molecule-1, plasminogen activator inhibitor-1, urokinase plasminogen activator (uPA), and uPA receptor in aortae and hearts of LDLr-KO mice compared to the control diet. Wild rice inhibited monocyte adhesion to the aorta, atherosclerosis, and abundances of the inflammatory and fibrinolytic regulators in the cardiovascular tissue of LDLr-KO mice compared to white rice. White or wild rice did not significantly alter the levels of cholesterol, triglycerides, or antioxidant enzymes in plasma. The anti-atherosclerotic effect of wild rice may result from its inhibition on monocyte adhesion and inflammatory modulators in LDLr-KO mice.

  15. Reduced Hepatic Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Level in Obesity.

    PubMed

    Heinrich, Garrett; Muturi, Harrison T; Rezaei, Khadijeh; Al-Share, Qusai Y; DeAngelis, Anthony M; Bowman, Thomas A; Ghadieh, Hilda E; Ghanem, Simona S; Zhang, Deqiang; Garofalo, Robert S; Yin, Lei; Najjar, Sonia M

    2017-01-01

    Impairment of insulin clearance is being increasingly recognized as a critical step in the development of insulin resistance and metabolic disease. The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes insulin clearance. Null deletion or liver-specific inactivation of Ceacam1 in mice causes a defect in insulin clearance, insulin resistance, steatohepatitis, and visceral obesity. Immunohistological analysis revealed reduction of hepatic CEACAM1 in obese subjects with fatty liver disease. Thus, we aimed to determine whether this occurs at the hepatocyte level in response to systemic extrahepatic factors and whether this holds across species. Northern and Western blot analyses demonstrate that CEACAM1 mRNA and protein levels are reduced in liver tissues of obese individuals compared to their lean age-matched counterparts. Furthermore, Western analysis reveals a comparable reduction of CEACAM1 protein in primary hepatocytes derived from the same obese subjects. Similar to humans, Ceacam1 mRNA level, assessed by quantitative RT-PCR analysis, is significantly reduced in the livers of obese Zucker ( fa/fa , ZDF) and Koletsky ( f/f ) rats relative to their age-matched lean counterparts. These studies demonstrate that the reduction of hepatic CEACAM1 in obesity occurs at the level of hepatocytes and identify the reduction of hepatic CEACAM1 as a common denominator of obesity across multiple species.

  16. Thalidomide inhibits inflammatory and angiogenic activation of human intestinal microvascular endothelial cells (HIMEC).

    PubMed

    Rafiee, Parvaneh; Stein, Daniel J; Nelson, Victoria M; Otterson, Mary F; Shaker, Reza; Binion, David G

    2010-02-01

    The glutamic acid derivative thalidomide is a transcriptional inhibitor of TNF-alpha but is also known to affect human blood vessels, which may underlie its teratogenicity. Thalidomide has been used in the treatment of refractory Crohn's disease (CD), but the therapeutic mechanism is not defined. We examined the effect of thalidomide on primary cultures of human intestinal microvascular endothelial cells (HIMEC), the relevant endothelial cell population in inflammatory bowel disease (IBD), to determine its effect on endothelial activation, leukocyte interaction, and VEGF-induced angiogenesis. HIMEC cultures were pretreated with thalidomide before activation with either TNF-alpha/LPS or VEGF. A low-shear-stress flow adhesion assay with either U-937 or whole blood was used to assess HIMEC activation following TNF-alpha/LPS, and a Wright's stain identified adherent leukocytes. Expression of cell adhesion molecules (E-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule-1) was assessed using radioimmunoassay. Effects of thalidomide on NF-kappaB activation, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) expression in TNF-alpha/LPS-activated HIMEC were determined by RT-PCR and Western blotting. Thalidomide blocked adhesion of both U-937 and whole blood leukocytes by 50% in HIMEC, inhibiting binding of all classes of leukocytes. Thalidomide also blocked NF-kappaB and cell adhesion molecule expression in HIMEC. In marked contrast, thalidomide did not affect either iNOS or COX-2 expression, two key molecules that play a role in the downregulation of HIMEC activation. VEGF-induced HIMEC transmigration, growth, proliferation, tube formation, and Akt phosphorylation were significantly inhibited by thalidomide. In summary, thalidomide exerted a potent effect on HIMEC growth and activation, suggesting that it may also function via an endothelial mechanism in the treatment of CD.

  17. Thalidomide inhibits inflammatory and angiogenic activation of human intestinal microvascular endothelial cells (HIMEC)

    PubMed Central

    Stein, Daniel J.; Nelson, Victoria M.; Otterson, Mary F.; Shaker, Reza; Binion, David G.

    2010-01-01

    The glutamic acid derivative thalidomide is a transcriptional inhibitor of TNF-α but is also known to affect human blood vessels, which may underlie its teratogenicity. Thalidomide has been used in the treatment of refractory Crohn's disease (CD), but the therapeutic mechanism is not defined. We examined the effect of thalidomide on primary cultures of human intestinal microvascular endothelial cells (HIMEC), the relevant endothelial cell population in inflammatory bowel disease (IBD), to determine its effect on endothelial activation, leukocyte interaction, and VEGF-induced angiogenesis. HIMEC cultures were pretreated with thalidomide before activation with either TNF-α/LPS or VEGF. A low-shear-stress flow adhesion assay with either U-937 or whole blood was used to assess HIMEC activation following TNF-α/LPS, and a Wright's stain identified adherent leukocytes. Expression of cell adhesion molecules (E-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule-1) was assessed using radioimmunoassay. Effects of thalidomide on NF-κB activation, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) expression in TNF-α/LPS-activated HIMEC were determined by RT-PCR and Western blotting. Thalidomide blocked adhesion of both U-937 and whole blood leukocytes by 50% in HIMEC, inhibiting binding of all classes of leukocytes. Thalidomide also blocked NF-κB and cell adhesion molecule expression in HIMEC. In marked contrast, thalidomide did not affect either iNOS or COX-2 expression, two key molecules that play a role in the downregulation of HIMEC activation. VEGF-induced HIMEC transmigration, growth, proliferation, tube formation, and Akt phosphorylation were significantly inhibited by thalidomide. In summary, thalidomide exerted a potent effect on HIMEC growth and activation, suggesting that it may also function via an endothelial mechanism in the treatment of CD. PMID:19926820

  18. Cobra CRISP functions as an inflammatory modulator via a novel Zn2+- and heparan sulfate-dependent transcriptional regulation of endothelial cell adhesion molecules.

    PubMed

    Wang, Yu-Ling; Kuo, Je-Hung; Lee, Shao-Chen; Liu, Jai-Shin; Hsieh, Yin-Cheng; Shih, Yu-Tsung; Chen, Chun-Jung; Chiu, Jeng-Jiann; Wu, Wen-Guey

    2010-11-26

    Cysteine-rich secretory proteins (CRISPs) have been identified as a toxin family in most animal venoms with biological functions mainly associated with the ion channel activity of cysteine-rich domain (CRD). CRISPs also bind to Zn(2+) at their N-terminal pathogenesis-related (PR-1) domain, but their function remains unknown. Interestingly, similar the Zn(2+)-binding site exists in all CRISP family, including those identified in a wide range of organisms. Here, we report that the CRISP from Naja atra (natrin) could induce expression of vascular endothelial cell adhesion molecules, i.e. intercellular adhesion molecule-1, vascular adhesion molecule-1, and E-selectin, to promote monocytic cell adhesion in a heparan sulfate (HS)- and Zn(2+)-dependent manner. Using specific inhibitors and small interfering RNAs, the activation mechanisms are shown to involve both mitogen-activated protein kinases and nuclear factor-κB. Biophysical characterization of natrin by using fluorescence, circular dichroism, and x-ray crystallographic methods further reveals the presence of two Zn(2+)-binding sites for natrin. The strong binding site is located near the putative Ser-His-Glu catalytic triad of the N-terminal domain. The weak binding site remains to be characterized, but it may modulate HS binding by enhancing its interaction with long chain HS. Our results strongly suggest that natrin may serve as an inflammatory modulator that could perturb the wound-healing process of the bitten victim by regulating adhesion molecule expression in endothelial cells. Our finding uncovers a new aspect of the biological role of CRISP family in immune response and is expected to facilitate future development of new therapeutic strategy for the envenomed victims.

  19. Correlation of serum intercellular adhesion molecule 1 and vascular endothelial growth factor with tumor grading and staging in breast cancer patients.

    PubMed

    Haghi, Alireza Rastgoo; Vahedi, Amir; Shekarchi, Ali Akbar; Kamran, Aziz

    2017-01-01

    Breast cancer is the most common cancer among women. There are several prognostic factors for this disease. The aim of this article is to explore the correlation of serum level of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule 1 (ICAM1) with tumor, node, metastasis staging and grading of breast cancer. Serum samples of 51 patients with breast cancer were assessed with enzyme-linked immunosorbent assay for the level of VEGF and ICAM1 preoperatively. After the operation, histopathologic specimens stained with hematoxylin and eosin were evaluated for tumor size, histopathologic subtype, grade, lymph node, vascular and lymphatic involvement. Then, the correlation of tumor stage and grade and serum level of markers was analyzed. There was no significant correlation between serum level of markers with vascular invasions, lymph node involvement, and menstruation. There was a weak correlation between tumor size and serum level of ICAM1 with Pearson score correlation, but there was no significant correlation with VEGF. There was no significant correlation between tumor grading and staging with the level of markers. There was a significant correlation between the level of VEGF and ICAM1 and histologic type of tumors in invasive through in situ tumors. Levels of VEGF and ICAM1 can be used as a predictor of tumor invasion and also for target therapy.

  20. Ankyrin-binding activity of nervous system cell adhesion molecules expressed in adult brain.

    PubMed

    Davis, J Q; Bennett, V

    1993-01-01

    A family of ankyrin-binding glycoproteins have been identified in adult rat brain that include alternatively spliced products of the same pre-mRNA. A composite sequence of ankyrin-binding glycoprotein (ABGP) shares 72% amino acid sequence identity with chicken neurofascin, a membrane-spanning neural cell adhesion molecule in the Ig super-family expressed in embryonic brain. ABGP polypeptides and ankyrin associate as pure proteins in a 1:1 molar stoichiometry at a site located in the predicted cytoplasmic domain. ABGP polypeptides are expressed late in postnatal development to approximately the same levels as ankyrin, and comprise a significant fraction of brain membrane proteins. Immunofluorescence studies have shown that ABGP polypeptides are co-localized with ankyrinB. Major differences in developmental expression have been reported for neurofascin in embryos compared with the late postnatal expression of ABGP, suggesting that ABGP and neurofascin represent products of gene duplication events that have subsequently evolved in parallel with distinct roles. Predicted cytoplasmic domains of rat ABGP and chicken neurofascin are nearly identical to each other and closely related to a group of nervous system cell adhesion molecules with variable extracellular domains, including L1, Nr-CAM and Ng-CAM of vertebrates, and neuroglian of Drosophila. A hypothesis to be evaluated is that ankyrin-binding activity is shared by all of these proteins.

  1. Effects of spaceflight in the adductor longus muscle of rats flown in the Soviet Biosatellite COSMOS 2044. A study employing neural cell adhesion molecule (N-CAM) immunocytochemistry and conventional morphological techniques (light and electron microscopy)

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Daunton, N. G.

    1992-01-01

    The effects of spaceflight upon the "slow" muscle adductor longus were examined in rats flown in the Soviet Biosatellite COSMOS 2044. The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leukocytes and mononuclear cells. Neural cell adhesion molecule immunoreactivity (N-CAM-IR) was seen on the myofiber surface and in regenerating myofibers. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with apparent preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments. The principal electron microscopic changes of the neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles replaced by microtubules and neurofilaments, degeneration of axon terminals, vacant axonal spaces and changes suggestive of axonal sprouting. The present observations suggest that alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  2. Porcine endothelium induces DNA-histone complex formation in human whole blood: a harmful effect of histone on coagulation and endothelial activation.

    PubMed

    Yoo, Hyun Ju; Kim, Ji-Eun; Gu, Ja Yoon; Lee, Sae Bom; Lee, Hyun Joo; Hwang, Ho Young; Hwang, Yoohwa; Kim, Young Tae; Kim, Hyun Kyung

    2016-11-01

    Neutrophils play a role in xenograft rejection. When neutrophils are stimulated, they eject the DNA-histone complex into the extracellular space, called neutrophil extracellular traps (NET). We investigated whether NET formation actively occurs in the xenograft and contributes to coagulation and endothelial activation. Human whole blood was incubated with porcine aortic endothelial cells (pEC) from wild-type or α1,3-galactosyltransferase gene-knockout (GTKO) pigs. In the supernatant plasma from human blood, the level of the DNA-histone complex was measured by ELISA, and thrombin generation was measured using a calibrated automated thrombogram. Histone-induced tissue factor and adhesion molecule expression were measured by flow cytometry. pEC from both wild-type and GTKO pigs significantly induced DNA-histone complex formation in human whole blood. The DNA-histone complex produced shortened the thrombin generation time and clotting time. Histone alone dose-dependently induced tissue factor and adhesion molecule expression in pEC. Aurintricarboxylic acid pretreatment partially inhibited pEC-induced DNA-histone complex formation. DNA-histone complex actively generated upon xenotransplantation is a novel target to inhibit coagulation and endothelial activation. To prevent tissue factor and adhesion molecule expression, a strategy to block soluble histone may be required in xenotransplantation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Impact of simulated microgravity on the secretory and adhesive activity of cultured human vascular endothelial cells.

    NASA Astrophysics Data System (ADS)

    Rudimov, Evgeny; Buravkova, Ludmila; Pogodina, Margarita; Andrianova, Irina

    The layer of vascular endothelial cells (ECs) is a dynamic,disseminated organ that perform the function of an interface between the blood and vascular wall. The endothelial monolayer is able to quickly respond to changes in the microenvironment due to its synthesis of vasoactive substances, chemokines, adhesion molecules expression, etc. ECs are highly sensitive to gravitational changes and capable of short-term and long-term responses (Sangha et al., 2001; Buravkova et al., 2005; Infanger et al., 2006, 2007. However, the question remains how to reflect the impact of microgravity on endothelium under the inflammatory process. Therefore, the aim of this study was to investigate secretory and adhesive activity of human umbilical vein endothelial cells (HUVECs) during simulated microgravity and TNF-a activation. HUVECs were isolated according to Gimbrone et al. (1978) in modification A. Antonov (1981) and used for experiments at 2-4 passages. HUVECs were activated by low level of TNF-a (2 ng/ml). Microgravity was generated by Random Positioning Machine (RPM, Dutch Space, Leiden) placed into the thermostat at 37°C. After 24 hours of clinorotation we measured adhesion molecules expression on the cell surface (ICAM-1, VCAM-1, PECAM-1, E-selectin, CD144, endoglin (CD105)) and cell viability using a flow cytometry. To evaluate the level of target gene expression was used the real time RT-PCR. IL-6 and IL-8 concentration was measured in the conditioned medium of HUVECs by using the ELISA test. We found that simulated microgravity within 24 hours caused a decrease of ICAM-1, CD144, and E-selectin expression, at the same time not affect the cell viability, endoglin and PECAM-1 expression on the surface HUVEC. Furthermore, there were no changes of the level of IL-6 and IL-8 gene expression and their products in the culture medium. TNF-activated HUVECs showed an increase in gene expression of interleukins and molecules involved in the adhesion process, which also was confirmed by the higher level of cytokines in the medium and elevated share of CD144, ICAM-1 and VCAM-1-positive cells. Comparative analysis of the level TNF-induced secretion of IL-6 and IL-8, as well as the share of cells bearing ICAM-1 and VCAM-1, showed significant variability depending on the donors. Simultaneous exposure to simulated microgravity and proinflammatory activation did not potentiate and did not cancel the effect caused by TNF-a. In summary, our findings indicate that the simulated microgravity is not activating and additional pro-inflammatory stimulus to HUVEC in vitro model. This work was supported in part by Grant from RFBR No.12-04-31763 and Grant No.NSh-371.2014.4

  4. Reduced endothelial activation after exercise is associated with improved HbA1c in patients with type 2 diabetes and coronary artery disease.

    PubMed

    Byrkjeland, Rune; Njerve, Ida U; Arnesen, Harald; Seljeflot, Ingebjørg; Solheim, Svein

    2017-03-01

    We have previously reported insignificant changes in HbA 1c after exercise in patients with both type 2 diabetes and coronary artery disease. In this study, we investigated the effect of exercise on endothelial function and possible associations between changes in endothelial function and HbA 1c . Patients with type 2 diabetes and coronary artery disease ( n = 137) were randomised to 12 months exercise or standard follow-up. Endothelial function was assessed by circulating biomarkers (E-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, von Willebrand factor, tissue plasminogen activator antigen, asymmetric dimethylarginine and L-arginine/asymmetric dimethylarginine ratio). Differences between the randomised groups were analysed by analysis of covariance and correlations by Spearman's rho or Pearson's correlation. No effect of exercise on endothelial function was demonstrated. The changes in HbA 1c in the exercise group correlated with changes in E-selectin ( r = 0.56, p < 0.001), intercellular adhesion molecule-1 ( r = 0.27, p = 0.052), vascular cell adhesion molecule-1 ( r = 0.32, p = 0.022) and tissue plasminogen activator antigen ( r = 0.35, p =  0.011). HbA 1c decreased significantly more in patients with versus without a concomitant reduction in E-selectin ( p =  0.002), intercellular adhesion molecule-1 ( p =  0.011), vascular cell adhesion molecule-1 ( p =  0.028) and tissue plasminogen activator antigen ( p =  0.009). Exercise did not affect biomarkers of endothelial function in patients with both type 2 diabetes and coronary artery disease. However, changes in biomarkers of endothelial activation correlated with changes in HbA 1c , and reduced endothelial activation was associated with improved HbA 1c after exercise.

  5. The effect of soy protein beverages on serum cell adhesion molecule concentrations in prehypertensive/stage 1 hypertensive individuals.

    PubMed

    Dettmer, Michelle; Alekel, D Lee; Lasrado, Joanne A; Messina, Mark; Carriquiry, Alicia; Heiberger, Kevin; Stewart, Jeanne W; Franke, Warren

    2012-04-01

    Prehypertensive and hypertensive individuals are at increased risk of atherosclerotic cardiovascular disease (CVD), in part because hypertension contributes to endothelial dysfunction and increased cell adhesion molecule expression. Soy protein and isoflavones may favorably alter CVD risk factors, and hence the aim of this study was to determine whether intake of cow's milk compared with soy beverage prepared from whole soy bean (WSB) or soy protein isolate (SPI) would lower soluble cell adhesion molecule concentrations as a means of decreasing CVD risk. We enrolled healthy prehypertensive/stage 1 hypertensive men (n = 60; 18-63 years) and premenopausal women (n = 8; 20-48 years). Participants were randomized to 1 of 3 groups for 8 weeks: cow's milk (600 mL/d), SPI beverage (840 mL/d; 30.1 mg total isoflavones/d), or WSB beverage (840 mL/d; 91.4 mg total isoflavones/d). We measured soluble vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), and endothelial-leukocyte adhesion molecule-1 (E-selectin) concentrations at baseline and week 8. Soluble CAM concentrations were not altered by treatment and did not differ between prehypertensive and hypertensive participants. However, analysis of variance indicated a treatment × gender interaction (gender effect) for ICAM-1 (p = 0.0037) but not for E-selectin (p = 0.067) or VCAM-1 (p = 0.16). Men had higher concentrations of ICAM-1 and E-selectin, respectively, at baseline (p = 0.0071, p = 0.049) and week 8 (p = 0.0054, p = 0.038) than women did. Neither intake of cow's milk nor soy beverage for 8 weeks altered soluble CAM concentrations in prehypertensive/stage 1 hypertensive individuals, suggesting that neither type of beverage diminished atherosclerotic CVD risk in mildly hypertensive individuals by way of improving circulating CAM concentrations.

  6. Scaling from single molecule to macroscopic adhesion at polymer/metal interfaces.

    PubMed

    Utzig, Thomas; Raman, Sangeetha; Valtiner, Markus

    2015-03-10

    Understanding the evolution of macroscopic adhesion based on fundamental molecular interactions is crucial to designing strong and smart polymer/metal interfaces that play an important role in many industrial and biomedical applications. Here we show how macroscopic adhesion can be predicted on the basis of single molecular interactions. In particular, we carry out dynamic single molecule-force spectroscopy (SM-AFM) in the framework of Bell-Evans' theory to gain information about the energy barrier between the bound and unbound states of an amine/gold junction. Furthermore, we use Jarzynski's equality to obtain the equilibrium ground-state energy difference of the amine/gold bond from these nonequilibrium force measurements. In addition, we perform surface forces apparatus (SFA) experiments to measure macroscopic adhesion forces at contacts where approximately 10(7) amine/gold bonds are formed simultaneously. The SFA approach provides an amine/gold interaction energy (normalized by the number of interacting molecules) of (36 ± 1)k(B)T, which is in excellent agreement with the interaction free energy of (35 ± 3)k(B)T calculated using Jarzynski's equality and single-molecule AFM experiments. Our results validate Jarzynski's equality for the field of polymer/metal interactions by measuring both sides of the equation. Furthermore, the comparison of SFA and AFM shows how macroscopic interaction energies can be predicted on the basis of single molecular interactions, providing a new strategy to potentially predict adhesive properties of novel glues or coatings as well as bio- and wet adhesion.

  7. Ethanol does not inhibit the adhesive activity of Drosophila neuroglian or human L1 in Drosophila S2 tissue culture cells.

    PubMed

    Vallejo, Y; Hortsch, M; Dubreuil, R R

    1997-05-02

    Members of the L1 family of homophilic neural cell adhesion molecules are thought to play an important role in nervous system development and function. It is also suggested that L1 is a direct target of ethanol in fetal alcohol syndrome, since ethanol inhibits the aggregation of cultured cells expressing L1 (Ramanathan, R., Wilkemeyer, M. F., Mittel, B., Perides, G., and Charness, M. E. (1996) J. Cell Biol. 133, 381-390). If ethanol acts directly on the homophilic adhesive function of the L1 molecule, then inhibition of aggregation by ethanol should be observed in any cell type that expresses L1. Here we examined the effect of physiologically relevant concentrations of ethanol on the aggregation of Drosophila S2 cells that expressed either neuroglian (the Drosophila homolog of L1) or human L1. The aggregation of these S2 cells is known to be solely dependent on the homophilic interactions between L1 or neuroglian molecules. Neither cell adhesion molecule was affected when cell aggregation assays were carried out in the presence of >/=38 mM ethanol. The recruitment of membrane skeleton assembly at sites of cell-cell contact (a transmembrane signaling function of human L1) was also unaffected by the presence of ethanol. Thus the previously described inhibition of cell adhesion by ethanol in L1-expressing cells cannot be explained by a simple direct effect on the adhesive activity of L1 family members.

  8. Ankyrin-binding proteins related to nervous system cell adhesion molecules: candidates to provide transmembrane and intercellular connections in adult brain.

    PubMed

    Davis, J Q; McLaughlin, T; Bennett, V

    1993-04-01

    A major class of ankyrin-binding glycoproteins have been identified in adult rat brain of 186, 155, and 140 kD that are alternatively spliced products of the same pre-mRNA. Characterization of cDNAs demonstrated that ankyrin-binding glycoproteins (ABGPs) share 72% amino acid sequence identity with chicken neurofascin, a membrane-spanning neural cell adhesion molecule in the Ig super-family expressed in embryonic brain. ABGP polypeptides have the following features consistent with a role as ankyrin-binding proteins in vitro and in vivo: (a) ABGPs and ankyrin associate as pure proteins in a 1:1 molar stoichiometry; (b) the ankyrin-binding site is located in the COOH-terminal 21 kD of ABGP186 which contains the predicted cytoplasmic domain; (c) ABGP186 is expressed at approximately the same levels as ankyrin (15 pmoles/milligram of membrane protein); and (d) ABGP polypeptides are co-expressed with the adult form of ankyrinB late in postnatal development and are colocalized with ankyrinB by immunofluorescence. Similarity in amino acid sequence and conservation of sites of alternative splicing indicate that genes encoding ABGPs and neurofascin share a common ancestor. However, the major differences in developmental expression reported for neurofascin in embryos versus the late postnatal expression of ABGPs suggest that ABGPs and neurofascin represent products of gene duplication events that have subsequently evolved in parallel with distinct roles. The predicted cytoplasmic domains of rat ABGPs and chicken neurofascin are nearly identical to each other and closely related to a group of nervous system cell adhesion molecules with variable extracellular domains, which includes L1, Nr-CAM, and Ng-CAM of vertebrates, and neuroglian of Drosophila. The ankyrin-binding site of rat ABGPs is localized to the C-terminal 200 residues which encompass the cytoplasmic domain, suggesting the hypothesis that ability to associate with ankyrin may be a shared feature of neurofascin and related nervous system cell adhesion molecules.

  9. Application of encoded library technology (ELT) to a protein-protein interaction target: discovery of a potent class of integrin lymphocyte function-associated antigen 1 (LFA-1) antagonists.

    PubMed

    Kollmann, Christopher S; Bai, Xiaopeng; Tsai, Ching-Hsuan; Yang, Hongfang; Lind, Kenneth E; Skinner, Steven R; Zhu, Zhengrong; Israel, David I; Cuozzo, John W; Morgan, Barry A; Yuki, Koichi; Xie, Can; Springer, Timothy A; Shimaoka, Motomu; Evindar, Ghotas

    2014-04-01

    The inhibition of protein-protein interactions remains a challenge for traditional small molecule drug discovery. Here we describe the use of DNA-encoded library technology for the discovery of small molecules that are potent inhibitors of the interaction between lymphocyte function-associated antigen 1 and its ligand intercellular adhesion molecule 1. A DNA-encoded library with a potential complexity of 4.1 billion compounds was exposed to the I-domain of the target protein and the bound ligands were affinity selected, yielding an enriched small-molecule hit family. Compounds representing this family were synthesized without their DNA encoding moiety and found to inhibit the lymphocyte function-associated antigen 1/intercellular adhesion molecule-1 interaction with submicromolar potency in both ELISA and cell adhesion assays. Re-synthesized compounds conjugated to DNA or a fluorophore were demonstrated to bind to cells expressing the target protein. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Sickle red cell-endothelium interactions.

    PubMed

    Kaul, Dhananjay K; Finnegan, Eileen; Barabino, Gilda A

    2009-01-01

    Periodic recurrence of painful vaso-occlusive crisis is the defining feature of sickle cell disease. Among multiple pathologies associated with this disease, sickle red cell-endothelium interaction has been implicated as a potential initiating mechanism in vaso-occlusive events. This review focuses on various interrelated mechanisms involved in human sickle red cell adhesion. We discuss in vitro and microcirculatory findings on sickle red cell adhesion, its potential role in vaso-occlusion, and the current understanding of receptor-ligand interactions involved in this pathological phenomenon. In addition, we discuss the contribution of other cellular interactions (leukocytes recruitment and leukocyte-red cell interaction) to vaso-occlusion, as observed in transgenic sickle mouse models. Emphasis is given to recently discovered adhesion molecules that play a predominant role in mediating human sickle red cell adhesion. Finally, we analyze various therapeutic approaches for inhibiting sickle red cell adhesion by targeting adhesion molecules and also consider therapeutic strategies that target stimuli involved in endothelial activation and initiation of adhesion.

  11. Dynamic effects in friction and adhesion through cooperative rupture and formation of supramolecular bonds.

    PubMed

    Blass, Johanna; Albrecht, Marcel; Bozna, Bianca L; Wenz, Gerhard; Bennewitz, Roland

    2015-05-07

    We introduce a molecular toolkit for studying the dynamics in friction and adhesion from the single molecule level to effects of multivalency. As experimental model system we use supramolecular bonds established by the inclusion of ditopic adamantane connector molecules into two surface-bound cyclodextrin molecules, attached to a tip of an atomic force microscope (AFM) and to a flat silicon surface. The rupture force of a single bond does not depend on the pulling rate, indicating that the fast complexation kinetics of adamantane and cyclodextrin are probed in thermal equilibrium. In contrast, the pull-off force for a group of supramolecular bonds depends on the unloading rate revealing a non-equilibrium situation, an effect discussed as the combined action of multivalency and cantilever inertia effects. Friction forces exhibit a stick-slip characteristic which is explained by the cooperative rupture of groups of host-guest bonds and their rebinding. No dependence of friction on the sliding velocity has been observed in the accessible range of velocities due to fast rebinding and the negligible delay of cantilever response in AFM lateral force measurements.

  12. Failure of physiologic transformation of spiral arteries, endothelial and trophoblast cell activation, and acute atherosis in the basal plate of the placenta.

    PubMed

    Labarrere, Carlos A; DiCarlo, Hector L; Bammerlin, Elaine; Hardin, James W; Kim, Yeon M; Chaemsaithong, Piya; Haas, David M; Kassab, Ghassan S; Romero, Roberto

    2017-03-01

    Failure of physiologic transformation of spiral arteries has been reported in preeclampsia, fetal growth restriction, fetal death, and spontaneous preterm labor with intact or ruptured membranes. Spiral arteries with failure of physiologic transformation are prone to develop atherosclerotic-like lesions of atherosis. There are striking parallels between preeclampsia and atherosclerotic disease, and between lesions of atherosis and atherosclerosis. Endothelial activation, identified by intercellular adhesion molecule-1 expression, is present in atherosclerotic-like lesions of heart transplantation, and is considered a manifestation of rejection. Similarly, endothelial activation/dysfunction has been implicated in the pathophysiology of atherosclerosis and preeclampsia. Intercellular adhesion molecule-1-overexpressing-activated endothelial cells are more resistant to trophoblast displacement than nonactivated endothelium, and may contribute to shallow spiral artery trophoblastic invasion in obstetrical syndromes having failure of physiologic transformation. We sought to determine whether failure of spiral artery physiologic transformation was associated with activation of interstitial extravillous trophoblasts and/or spiral artery endothelium and presence of acute atherosis in the placental basal plate. A cross-sectional study of 123 placentas (19-42 weeks' gestation) obtained from normal pregnancies (n = 22), preterm prelabor rupture of membranes (n = 26), preterm labor (n = 23), preeclampsia (n = 27), intrauterine fetal death (n = 15), and small for gestational age (n = 10) was performed. Failure of spiral artery physiologic transformation and presence of cell activation was determined using immunohistochemistry of placental basal plates containing a median of 4 (minimum: 1; maximum: 9) vessels per placenta. Endothelial/trophoblast cell activation was defined by the expression of intercellular adhesion molecule-1. Investigators examining microscopic sections were blinded to clinical diagnosis. Pairwise comparisons among placenta groups were performed with Fisher exact test and Wilcoxon rank sum test using a Bonferroni-adjusted level of significance (.025). We found that 87% (94/108) of placentas having spiral arteries with failure of physiologic transformation (actin-positive and cytokeratin-negative) in the basal plate, and 0% (0/15) of placentas having only spiral arteries with complete physiologic transformation (cytokeratin-positive and actin-negative), had arterial endothelial and/or interstitial extravillous trophoblasts reactive with the intercellular adhesion molecule-1 activation marker (P < .001). A significant correlation (R 2  = 0.84) was found between expression of spiral artery endothelial and interstitial extravillous trophoblast intercellular adhesion molecule-1 (P < .001) in activated placentas. Lesions of atherosis were found in 31.9% (30/94) of placentas with complete and/or partial failure of physiologic transformation of spiral arteries that were intercellular adhesion molecule-1-positive, in none of the 14 placentas with failure of physiologic transformation that were intercellular adhesion molecule-1-negative, and in none of the 15 placentas with complete spiral artery physiologic transformation without failure (P = .001). All placentas (30/30, 100%) with atherosis were identified in placentas having concomitant spiral artery endothelial and interstitial extravillous trophoblast activation. Failure of spiral artery physiologic transformation in the placental basal plate is associated with interstitial extravillous trophoblast and arterial endothelial activation along with increased frequency of spiral artery atherosis. These findings may be used to improve the characterization of different disorders of the placental bed such as in refining the existing tools for the early prediction of risk for preterm, preeclamptic, and other abnormal pregnancies. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Associations Between Air Quality Changes and Biomarkers of Systemic Inflammation During the 2014 Nanjing Youth Olympics: A Quasi-Experimental Study.

    PubMed

    Li, Huichu; Zhou, Lian; Wang, Cuicui; Chen, Renjie; Ma, Xiaoying; Xu, Bin; Xiong, Lilin; Ding, Zhen; Chen, Xiaodong; Zhou, Yun; Xu, Yan; Kan, Haidong

    2017-06-15

    There is increasing interest in quasi-experimental research to evaluate whether actions taken to improve air quality will benefit public health. We conducted a quasi-experimental study to evaluate inflammatory response to changes in air quality during the 2014 Nanjing Youth Olympics in China. We repeatedly measured 8 biomarkers of systemic inflammation in 31 healthy adults and obtained hourly air pollutant concentrations from a nearby fixed-site monitoring station. We used linear mixed-effect models to examine the associations between air quality changes and blood biomarkers. Air pollutant concentrations decreased apparently during the Youth Olympics. Concomitantly, we observed significant decreases in levels of soluble cluster of differentiation 40 (CD40) ligand and interleukin 1β (geometric means ratios were 0.45 and 0.24, respectively) from the pre-Olympic period to the intra-Olympic period. Afterwards, levels of C-reactive protein and vascular cell adhesion molecule 1 increased significantly (geometric means ratios were 2.22 and 1.29, respectively) in the post-Olympic period. Fine particulate matter and ozone were significantly associated with soluble CD40 ligand, P-selectin, interleukin 1β, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1. Other pollutants showed positive but nonsignificant associations. Our study indicated that reduced air pollution, especially fine particulate matter and ozone, during the 2014 Nanjing Youth Olympics was associated with alleviated systemic inflammation in healthy adults. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Systemic inflammation, endothelial dysfunction, and activation in clinically healthy children exposed to air pollutants.

    PubMed

    Calderón-Garcidueñas, L; Villarreal-Calderon, R; Valencia-Salazar, G; Henríquez-Roldán, C; Gutiérrez-Castrellón, P; Torres-Jardón, R; Osnaya-Brizuela, N; Romero, L; Torres-Jardón, R; Solt, A; Reed, W

    2008-03-01

    Mexico City children are chronically exposed to significant concentrations of air pollutants and exhibit chronic respiratory-tract inflammation. Epidemiological, controlled human exposures, laboratory-based animal models, and in vitro/in vivo studies have shown that inflammatory, endothelial dysfunction, and endothelial damage mediators are upregulated upon exposure to particulate matter (PM). Endothelial dysfunction is a critical event in cardiovascular disease. The focus of this work was to investigate whether exposure to ambient air pollution including PM(2.5) produces systemic inflammation and endothelial injury in healthy children. We measured markers of endothelial activation, and inflammatory mediators in 52 children age 8.6+/-0.1 yr, residents of Mexico City (n: 28) or of Polotitlán (n: 24), a city with low levels of pollutants. Mexico City children had significant increases in inflammatory mediators and vasoconstrictors, including tumor necrosis factor (TNF)alpha, prostaglandin (PG) E2, C-reactive protein, interleukin-1beta, and endothelin-1. There was a significant anti-inflammatory response, and a downregulation of vascular adhesion molecule-1, intercellular adhesion molecule-1 and -2, and selectins sE and sL. Results from linear regression found TNF a positively associated with 24- and 48-h cumulative levels of PM(2.5), while the 7-d PM(2.5) value was negatively associated with the numbers of white blood cells in peripheral blood in highly exposed children. Systemic subclinical inflammation, increased endothelin- 1, and significant downregulation of soluble adhesion molecules are seen in Mexico City children. Children chronically exposed to fine PM above the standard could be at risk of developing cardiovascular diseases, atherosclerosis, stroke, and other systemic effects later in life.

  15. Multifunctional effect of epigallocatechin-3-gallate (EGCG) in downregulation of gelatinase-A (MMP-2) in human breast cancer cell line MCF-7.

    PubMed

    Sen, Triparna; Moulik, Shuvojit; Dutta, Anindita; Choudhury, Paromita Roy; Banerji, Aniruddha; Das, Shamik; Roy, Madhumita; Chatterjee, Amitava

    2009-02-13

    The tumor inhibiting property of green tea polyphenol epigallocatechin-3-gallate (EGCG) is well documented. Studies reveal that matrix-metalloproteinases (MMPs) play pivotal roles in tumor invasion through degradation of basement membranes and extracellular matrix (ECM). We studied the effect of EGCG on matrixmetalloproteinases-2 (MMP-2), the factors involved in activation, secretion and signaling molecules that might be involved in the regulation of MMP-2 in human breast cancer cell line, MCF-7. MCF-7 was treated with EGCG (20 muM, 24 h), the effect of EGCG on MMP-2 expression, activity and its regulatory molecules were studied by gelatin zymography, Western blot, quantitative and semi-quantitative real time RT-PCR, immunoflourescence and cell adhesion assay. EGCG treatment reduced the activity, protein expression and mRNA expression level of MMP-2. EGCG treatment reduced the expression of focal adhesion kinase (FAK), membrane type-1-matrix metalloproteinase (MT1-MMP), nuclear factor-kappa B (NF-kB), vascular endothelial growth factor (VEGF) and reduced the adhesion of MCF-7 cells to ECM, fibronectin and vitronectin. Real time RT-PCR revealed a reduced expression of integrin receptors alpha5, beta1, alphav and beta3 due to EGCG treatment. Down regulation of expression of MT1-MMP, NF-kB, VEGF and disruption of functional status of integrin receptors may indicate decreased MMP-2 activation; low levels of FAK expression might indicate disruption in FAK-induced MMP-2 secretion and decrease in activation of phosphatidyl-inositol-3-kinase (PI-3K), extracellular regulated kinase (ERK) indicates probable hindrance in MMP-2 regulation and induction. We propose EGCG as potential inhibitor of expression and activity of pro-MMP-2 by a process involving multiple regulatory molecules in MCF-7.

  16. Comparison of oxidative stress & leukocyte activation in patients with severe sepsis & burn injury

    PubMed Central

    Mühl, Diana; Woth, Gábor; Drenkovics, Livia; Varga, Adrienn; Ghosh, Subhamay; Csontos, Csaba; Bogár, Lajos; Wéber, György; Lantos, János

    2011-01-01

    Background & objectives: We evaluated pro- and anti-oxidant disturbances in sepsis and non-sepsis burn patients with systemic inflammatory response syndrome (SIRS). Adhesion molecules and inflammation markers on leukocytes were also analyzed. We hypothesized that oxidative stress and leukocyte activation markers can lead to the severity of sepsis. Methods: In 28 severe sepsis and 27 acute burn injury patients blood samples were collected at admission and 4 days consecutively. Oxidative stress markers: production of reactive oxygen species (ROS), myeloperoxidase, malondialdehyde and endogenous antioxidants: plasma protein sulphydryl groups, reduced glutathione, superoxide dismutase and catalase were measured. Flow cytometry was used to determine CD11a, CD14, CD18, CD49d and CD97 adhesion molecules on leukocytes. Procalcitonin, C-reactive protein, fibrinogen, platelet count and lactate were also analyzed. Results: Pro-oxidant parameters were significantly elevated in sepsis patients at admission, ROS intensity increased in burn patients until the 5th day. Endogenous antioxidant levels except catalase showed increased levels after burn trauma compared to sepsis. Elevated granulocyte activation and suppressed lymphocyte function were found at admission and early activation of granulocytes caused by increasing activation/migration markers in sepsis. Leukocyte adhesion molecule expression confirmed the suppressed lymphocyte and monocyte function in sepsis. Interpretation & conclusions: Severe sepsis is accompanied by oxidative stress and pathological leukocyte endothelial cell interactions. The laboratory parameters used for the evaluation of sepsis and several markers of pro- and antioxidant status were different between sepsis and non-sepsis burn patients. The tendency of changes in these parameters may refer to major oxidative stress in sepsis and developing SIRS in burns. PMID:21808137

  17. Increased lymphocyte trafficking to colonic microvessels is dependent on MAdCAM-1 and C-C chemokine mLARC/CCL20 in DSS-induced mice colitis.

    PubMed

    Teramoto, K; Miura, S; Tsuzuki, Y; Hokari, R; Watanabe, C; Inamura, T; Ogawa, T; Hosoe, N; Nagata, H; Ishii, H; Hibi, T

    2005-03-01

    Although enhanced lymphocyte trafficking is associated with colitis formation, little information about its regulation is available. The aim of this study was to examine how the murine liver and activation-regulated chemokine (mLARC/CCL20) contributes to lymphocyte recruitment in concert with vascular adhesion molecules in murine chronic experimental colitis. T and B lymphocytes isolated from the spleen were fluorescence-labelled and administered to recipient mice. Lymphocyte adhesion to microvessels of the colonic mucosa and submucosa was observed with an intravital microscope. To induce colitis, the mice received two cycles of treatment with 2% dextran sodium sulphate (DSS). In some of the experiments antibodies against the adhesion molecules or anti-mLARC/CCL20 were administered, or CC chemokine receptor 6 (CCR6) of the lymphocytes was desensitized with excess amounts of mLARC/CCL20. Significant increases in T and B cell adhesion to the microvessels of the DSS-treated mucosa and submucosa were observed. In chronic colitis, the accumulation of lymphocytes was significantly inhibited by anti-mucosal addressin cell adhesion molecule (MAdCAM)-1 mAb, but not by anti-vascular cell adhesion molecule-1. In DSS-treated colonic tissue, the expression of mLARC/CCL20 was significantly increased, the blocking of mLARC/CCL20 by monoclonal antibody or the desensitization of CCR6 with mLARC/CCL20 significantly attenuated the DSS-induced T and B cell accumulation. However, the combination of blocking CCR6 with MAdCAM-1 did not further inhibit these accumulations. These results suggest that in chronic DSS-induced colitis, both MAdCAM-1 and mLARC/CCL20 may play important roles in T and B lymphocyte adhesion in the inflamed colon under flow conditions.

  18. Adhesive interactions of human multiple myeloma cell lines with different extracellular matrix molecules.

    PubMed

    Kibler, C; Schermutzki, F; Waller, H D; Timpl, R; Müller, C A; Klein, G

    1998-06-01

    Multiple myeloma represents a human B cell malignancy which is characterized by a predominant localization of the malignant cell clone within the bone marrow. With the exception of the terminal stage of the disease the myeloma tumor cells do not circulate in the peripheral blood. The bone marrow microenvironment is believed to play an important role in homing, proliferation and terminal differentiation of myeloma cells. Here we have studied the expression of several extracellular matrix (ECM) molecules in the bone marrow of multiple myeloma patients and analyzed their adhesive capacities with four different human myeloma-derived cell lines. All ECM molecules analyzed (tenascin, laminin, fibronectin, collagen types I, III, V and VI) could be detected in bone marrow cryostat sections of multiple myeloma patients. Adhesion assays showed that only laminin, the microfibrillar collagen type VI and fibronectin were strong adhesive components for the myeloma cell lines U266, IM-9, OPM-2 and NCI-H929. Tenascin and collagen type I were only weak adhesive substrates for these myeloma cells. Adhesion to laminin and fibronectin was beta 1-integrin-mediated since addition of anti-beta 1-integrin antibodies could inhibit the binding of the four different cell types to both matrix molecules. In contrast, integrins do not seem to be involved in binding of the myeloma cells to collagen type VI. Instead, inhibition of binding by heparin suggested that membrane-bound heparan sulfate proteoglycans are responsible ligands for binding to collagen type VI. Adhesion assays with several B-cell lines resembling earlier differentiation stages revealed only weak interactions with tenascin and no interactions with collagen type VI, laminin or fibronectin. In summary, the interactions of human myeloma cells with the extracellular matrix may explain the specific retention of the plasma cells within the bone marrow.

  19. Age-Related Cognitive Impairments in Mice with a Conditional Ablation of the Neural Cell Adhesion Molecule

    ERIC Educational Resources Information Center

    Bisaz, Reto; Boadas-Vaello, Pere; Genoux, David; Sandi, Carmen

    2013-01-01

    Most of the mechanisms involved in neural plasticity support cognition, and aging has a considerable effect on some of these processes. The neural cell adhesion molecule (NCAM) of the immunoglobulin superfamily plays a pivotal role in structural and functional plasticity and is required to modulate cognitive and emotional behaviors. However,…

  20. Engrailed negatively regulates the expression of cell adhesion molecules connectin and neuroglian in embryonic Drosophila nervous system.

    PubMed

    Siegler, M V; Jia, X X

    1999-02-01

    Engrailed is expressed in subsets of interneurons that do not express Connectin or appreciable Neuroglian, whereas other neurons that are Engrailed negative strongly express these adhesion molecules. Connectin and Neuroglian expression are virtually eliminated in interneurons when engrailed expression is driven ubiquitously in neurons, and greatly increased when engrailed genes are lacking in mutant embryos. The data suggest that Engrailed is normally a negative regulator of Connectin and neuroglian. These are the first two "effector" genes identified in the nervous system of Drosophila as regulatory targets for Engrailed. We argue that differential Engrailed expression is crucial in determining the pattern of expression of cell adhesion molecules and thus constitutes an important determinant of neuronal shape and perhaps connectivity.

  1. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells

    PubMed Central

    Tabet, Fatiha; Vickers, Kasey C.; Cuesta Torres, Luisa F.; Wiese, Carrie B.; Shoucri, Bassem M.; Lambert, Gilles; Catherinet, Claire; Prado-Lourenco, Leonel; Levin, Michael G.; Thacker, Seth; Sethupathy, Praveen; Barter, Philip J.; Remaley, Alan T.; Rye, Kerry-Anne

    2014-01-01

    High-density lipoproteins (HDL) have many biological functions, including reducing endothelial activation and adhesion molecule expression. We recently reported that HDL transport and deliver functional microRNAs (miRNA). Here we show that HDL suppresses expression of intercellular adhesion molecule 1 (ICAM-1) through the transfer of miR-223 to endothelial cells. After incubation of endothelial cells with HDL, mature miR-223 levels are significantly increased in endothelial cells and decreased on HDL. However, miR-223 is not transcribed in endothelial cells and is not increased in cells treated with HDL from miR-223−/− mice. HDL inhibit ICAM-1 protein levels, but not in cells pretreated with miR-223 inhibitors. ICAM-1 is a direct target of HDL-transferred miR-223 and this is the first example of an extracellular miRNA regulating gene expression in cells where it is not transcribed. Collectively, we demonstrate that HDL’s anti-inflammatory properties are conferred, in part, through HDL-miR-223 delivery and translational repression of ICAM-1 in endothelial cells. PMID:24576947

  2. Protein expression and purification of integrin I domains and IgSF ligands for crystallography.

    PubMed

    Zhang, Hongmin; Wang, Jia-Huai

    2012-01-01

    Cell adhesion depends on combinational expression and interactions of a large number of adhesion molecules at cell-to-cell or cell-to-matrix contact sites. Integrins and their immunoglobulin superfamily (IgSF) ligands represent foremost classes of cell adhesion molecules in immune system. Structural study is critical for a better understanding of the interactions between integrins and their IgSF ligands. Here we describe protocols for protein expression of integrin αL I domain and its IgSF ligand ICAM-5 D1D2 fragment for crystallography.

  3. Cell-to-cell interactions in changed gravity: Ground-based and flight experiments

    NASA Astrophysics Data System (ADS)

    Buravkova, L.; Romanov, Yu.; Rykova, M.; Grigorieva, O.; Merzlikina, N.

    2005-07-01

    Cell-to-cell interactions play an important role in all physiological processes and are mediated by humoral and mechanical factors. Mechanosensitive cells (e.g., osteocytes, chondrocytes, and fibroblasts) can be studied ex vivo to understand the effects of an altered gravity environment. In particular, cultured endothelial cells (EC) are very sensitive to a broad spectrum of mechanical and biochemical stimuli. Earlier, we demonstrated that clinorotation leads to cytoskeletal remodeling in cultured ECs. Long-term gravity vector changes also modulate the expression of surface adhesion molecules (ICAM-1, E-selectin, VCAM-1) on cultured ECs. To study the interactions of geterological cells, we cocultured endothelial monolayers and human lymphocytes, immune cells and myeloleucemic (K-560) cells. It was found that, although clinorotation did not alter the basal adhesion level of non-activated immune cells on endothelial monolayers, the adhesion of PMA-activated lymphocytes was increased. During flight experiments onboard the Russian segment of the International Space Station, we measured the cytotoxic activity of natural killer (NK) cells incubated with labeled target cells. It was found that immune cells in microgravity retained their ability to contact, recognize, and destroy oncogenic cells in vitro. Together, our data concerning the effects of simulated and real microgravity suggest that, despite changes in the cytoskeleton, cell motility, and expression of adhesion molecules, cell-cell interactions are not compromised, thus preserving the critical physiological functions of immune and endothelial cells.

  4. Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, Sound-absorption and thermal Insulation

    PubMed Central

    Wang, Chao; Xiong, Ye; Fan, Bitao; Yao, Qiufang; Wang, Hanwei; Jin, Chunde; Sun, Qingfeng

    2016-01-01

    The lignin aerogels that are both high porosity and compressibility would have promising implications for bioengineering field to sound-adsorption and damping materials; however, creating this aerogel had a challenge to adhesive lignin. Here we reported cellulose as green adhesion agent to synthesize the aerogels with strong mechanical performance. Our approach—straightforwardly dissolved in ionic liquids and simply regenerated in the deionized water—causes assembly of micro-and nanoscale and even molecule level of cellulose and lignin. The resulting lignin aerogels exhibit Young’s modulus up to 25.1 MPa, high-efficiency sound-adsorption and excellent thermal insulativity. The successful synthesis of this aerogels developed a path for lignin to an advanced utilization. PMID:27562532

  5. Markers of endothelial dysfunction and leucocyte activation in Saudi and non-Saudi haplotypes of sickle cell disease.

    PubMed

    Al Najjar, Salwa; Adam, Soheir; Ahmed, Nessar; Qari, Mohamed

    2017-01-01

    Sickle cell disease (SCD) is an autosomal recessive inherited hemoglobinopathy, characterized by chronic hemolysis and recurrent vaso-occlusive crisis (VOC). This study investigates changes in leucocyte subsets and the relationship between cell adhesion molecule expression and disease manifestations in patients during steady state and acute VOC. We compared soluble E-selectin and P-selectin levels in 84 SCD patients, in steady state and during VOC to 84 healthy controls. Using immunophenotyping, we also compared lymphocyte subsets in these three groups. Further, we compared E-selectin and P-selectin levels in patients of Saudi ethnicity to non-Saudi patients, in all three groups. Lymphocyte subsets showed high percentages of total T lymphocytes, T helper and suppressor lymphocytes, B lymphocytes as well as NK cells in patients with SCD during steady state, while B lymphocytes and NK cells were significantly higher during acute VOC crisis. High levels of both soluble E-selectin (sE-selectin) and soluble P-selectin (sP-selectin) markers were demonstrated in the serum of patients with SCD during both steady state and acute VOC. Levels of selectins were significantly higher in acute VOC. The immunophenotypic expression of L-selectin, on leucocytes, was high in SCD both during steady state and during acute VOC in comparison to normal control subjects. There was no significant difference in all three study groups between Saudi and non-Saudi patients. These findings suggest that patients with SCD have increased expression of adhesion molecules: E-selectin and P-selectin, which play an important role in the pathogenesis of VOC. Despite the distinct phenotype of Saudi patients with SCD, there was no significant difference in levels of soluble E-selectin and soluble P-selectin between Saudi and non-Saudi patients in all three groups. While sickle cell disease is a well-recognized state of chronic inflammation, the role of specific adhesion molecules is steadily unraveling. Studies are underway to investigate the potential role of selectin antagonists, for prevention and reversal of acute vascular occlusions in SCD patients.

  6. Iron ion irradiation increases promotes adhesion of monocytic cells to arterial vascular endothelium

    NASA Astrophysics Data System (ADS)

    Kucik, Dennis; Khaled, Saman; Gupta, Kiran; Wu, Xing; Yu, Tao; Chang, Polly; Kabarowski, Janusz

    Radiation causes inflammation, and chronic, low-level vascular inflammation is a risk factor for atherosclerosis. Consistent with this, exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. Part of the inflammatory response to radiation is a change in the adhesiveness of the endothelial cells that line the blood vessels, triggering inappropriate accumulation of leukocytes, leading to later, damaging effects of inflammation. Although some studies have been done on the effects of gamma irradiation on vascular endothelium, the response of endothelium to heavy ion radiation likely to be encountered in prolonged space flight has not been determined. We investigated how irradiation of aortic endothelial cells with iron ions affects adhesiveness of cultured aortic endothelial cells for monocytic cells and the consequences of this for development of atherosclerosis. Aortic endothelial cells were irradiated with 600 MeV iron ions at Brookhaven National Laboratory and adhesion-related changes were measured. Cells remained viable for at least 72 hours, and were even able to repair acute damage to cell junctions. We found that iron ion irradiation altered expression levels of specific endothelial cell adhesion molecules. Further, these changes had functional consequences. Using a flow chamber adhesion assay to measure adhesion of monocytic cells to endothelial cells under physiological shear stress, we found that adhesivity of vascular endothelium was enhanced in as little as 24 hours after irradiation. Further, the radiation dose dependence was not monotonic, suggesting that it was not simply the result of endothelial cell damage. We also irradiated aortic arches and carotid arteries of Apolipoprotein-E-deficient mice. Histologic analysis of these mice will be conducted to determine whether effects of radiation on endothelial adhesiveness result in consequences for development of atherosclerosis. (Supported by NSBRI: NCC-9-58-162)

  7. The Clinical Development of Thalildomide as an Angiogenesis Inhibitor Therapy for Prostate Cancer

    DTIC Science & Technology

    2005-10-01

    regulation of cell adhesion molecules LFA-1 and ICAM-1 after in vitro treatment with the anti- TNF - alpha agent thalidomide . Settles B, Stevenson A...Plasma levels of circulating TNF -α and VEGF measured in 16 thalidomide treated patients seemed to increase after treatment (Table 2). Serum levels of...Logothetis, Christopher J. Page 6 Table 2. Levels of circulating VEGF, bFGF, TNF -α and IL-6 before and after thalidomide treatment. Comparison of

  8. The Prognostic Value of Soluble Intercellular Adhesion Molecule 1 Plasma Level in Children With Acute Lung Injury.

    PubMed

    Al-Biltagi, Mohammed A; Abo-Elezz, Ahmed Ahmed Abd ElBasset; Abu-Ela, Khaled Talaat; Suliman, Ghada Abudelmomen; Sultan, Tamer Gomaa Hassan

    2017-06-01

    The objective of this study was to evaluate the prognostic significance of soluble intercellular adhesion molecule 1 (sICAM-1) measurement in plasma for the prediction of outcome of acute lung injury (ALI) in children that may allow early recognition of critical cases. The study was performed as a prospective, controlled cohort study involving 40 children with ALI and 30 healthy children. The plasma level of sICAM-1 was measured at days 1 and 3 of development of ALI for the patient group and measured only once for the control group. C-Reactive protein was measured in both groups on day 1 only. There was significant increase in sICAM-1 in the patient group than in the control group ( P = .001*). The mortality rate reached 55% in children with ALI. The ceased group had significantly higher plasma sICAM-1 levels both at days 1 and 3 than the survived group ( P < .001*), and there was positive correlation between plasma sICAM-1 level and both duration of mechanical ventilation and the death rate, but more significant correlation was observed with plasma sICAM-1 levels at day 3 than day 1. Plasma sICAM-1 level served as a good predictor biomarker for both mechanical ventilation duration and the mortality risk in children with ALI.

  9. Exendin-4 induces cell adhesion and differentiation and counteracts the invasive potential of human neuroblastoma cells.

    PubMed

    Luciani, Paola; Deledda, Cristiana; Benvenuti, Susanna; Squecco, Roberta; Cellai, Ilaria; Fibbi, Benedetta; Marone, Ilaria Maddalena; Giuliani, Corinna; Modi, Giulia; Francini, Fabio; Vannelli, Gabriella Barbara; Peri, Alessandro

    2013-01-01

    Exendin-4 is a molecule currently used, in its synthetic form exenatide, for the treatment of type 2 diabetes mellitus. Exendin-4 binds and activates the Glucagon-Like Peptide-1 Receptor (GLP-1R), thus inducing insulin release. More recently, additional biological properties have been associated to molecules that belong to the GLP-1 family. For instance, Peptide YY and Vasoactive Intestinal Peptide have been found to affect cell adhesion and migration and our previous data have shown a considerable actin cytoskeleton rearrangement after exendin-4 treatment. However, no data are currently available on the effects of exendin-4 on tumor cell motility. The aim of this study was to investigate the effects of this molecule on cell adhesion, differentiation and migration in two neuroblastoma cell lines, SH-SY5Y and SK-N-AS. We first demonstrated, by Extra Cellular Matrix cell adhesion arrays, that exendin-4 increased cell adhesion, in particular on a vitronectin substrate. Subsequently, we found that this molecule induced a more differentiated phenotype, as assessed by i) the evaluation of neurite-like protrusions in 3D cell cultures, ii) the analysis of the expression of neuronal markers and iii) electrophysiological studies. Furthermore, we demonstrated that exendin-4 reduced cell migration and counteracted anchorage-independent growth in neuroblastoma cells. Overall, these data indicate for the first time that exendin-4 may have anti-tumoral properties.

  10. Sarcoptes scabiei (Acari: Sarcoptidae) Mite Extract Modulates Expression of Cytokines and Adhesion Molecules by Human Dermal Microvascular Endothelial Cells.

    PubMed Central

    Elder, B. Laurel; Arlian, Larry G.; Morgan, Marjorie S.

    2007-01-01

    The inflammatory and immune responses seen with the worldwide disease scabies (caused by the mite Sarcoptes scabiei) are complex. Clinical symptoms are delayed for weeks in patients when they are infested with scabies for the first time. This study was undertaken to elucidate the role of the human dermal microvascular endothelial cell (HMVEC-D) in modulating the inflammatory and immune responses in the skin to S. scabiei. Extracts of S. scabiei were incubated with HMVEC-D and the expression of adhesion molecules and chemokine receptors on the cells and the secretion of selected cytokines were determined by ELISA. S. scabiei extract was found to inhibit HMVEC-D expression of E-selectin and vascular cell adhesion molecule-1 (VCAM-1) although not intercellular adhesion molecule-1 (ICAM-1). The secretion of interleukin-8 (IL-8) was also inhibited by S. scabiei extract. S. scabiei extract increased expression of the chemokine receptor CXCR-1, and both down-regulated and up-regulated expression of CXCR-2 depending on the concentration tested. These findings help explain the delayed inflammatory reaction to infestation with S. scabiei. PMID:17017228

  11. Pirfenidone induces intercellular adhesion molecule-1 (ICAM-1) down-regulation on cultured human synovial fibroblasts

    PubMed Central

    Kaneko, M; Inoue, H; Nakazawa, R; Azuma, N; Suzuki, M; Yamauchi, S; Margolin, S B; Tsubota, K; Saito, I

    1998-01-01

    Pirfenidone has been shown to modify some cytokine regulatory actions and inhibit fibroblast biochemical reactions resulting in inhibition of proliferation and collagen matrix synthesis by fibroblast. We have investigated the effect of pirfenidone on the expression of cell adhesion molecules. The synovial fibroblasts were treated with IL-1α in the presence or absence of pirfenidone (range 0–1000 μm), and assayed for the expression of adhesion molecules such as ICAM-1 and endothelial-leucocyte adhesion molecule-1 (E-selectin) by cell ELISA. Pirfenidone significantly down-regulated the expression of ICAM-1 on cultured synovial fibroblasts in a dose-dependent manner. In contrast, expression of E-selectin was not affected. Furthermore, we examined whether pirfenidone affects the cellular binding between cultured lymphocytes and IL-1α-stimulated synovial fibroblasts by in vitro binding assay and found their mutual binding was significantly suppressed in a dose-dependent manner by pirfenidone. It is speculated that down-regulation of ICAM-1 might be one of the novel mechanisms of action of pirfenidone. These data indicate a novel mechanism of action for pirfenidone to reduce the activation of synovial fibroblasts. PMID:9697986

  12. The shed ectodomain of Nr-CAM stimulates cell proliferation and motility, and confers cell transformation.

    PubMed

    Conacci-Sorrell, Maralice; Kaplan, Anna; Raveh, Shani; Gavert, Nancy; Sakurai, Takeshi; Ben-Ze'ev, Avri

    2005-12-15

    Nr-CAM, a cell-cell adhesion molecule of the immunoglobulin-like cell adhesion molecule family, known for its function in neuronal outgrowth and guidance, was recently identified as a target gene of beta-catenin signaling in human melanoma and colon carcinoma cells and tissue. Retrovirally mediated transduction of Nr-CAM into fibroblasts induces cell motility and tumorigenesis. We investigated the mechanisms by which Nr-CAM can confer properties related to tumor cell behavior and found that Nr-CAM expression in NIH3T3 cells protects cells from apoptosis in the absence of serum by constitutively activating the extracellular signal-regulated kinase and AKT signaling pathways. We detected a metalloprotease-mediated shedding of Nr-CAM into the culture medium of cells transfected with Nr-CAM, and of endogenous Nr-CAM in B16 melanoma cells. Conditioned medium and purified Nr-CAM-Fc fusion protein both enhanced cell motility, proliferation, and extracellular signal-regulated kinase and AKT activation. Moreover, Nr-CAM was found in complex with alpha4beta1 integrins in melanoma cells, indicating that it can mediate, in addition to homophilic cell-cell adhesion, heterophilic adhesion with extracellular matrix receptors. Suppression of Nr-CAM levels by small interfering RNA in B16 melanoma inhibited the adhesive and tumorigenic capacities of these cells. Stable expression of the Nr-CAM ectodomain in NIH3T3 cells conferred cell transformation and tumorigenesis in mice, suggesting that the metalloprotease-mediated shedding of Nr-CAM is a principal route for promoting oncogenesis by Nr-CAM.

  13. Non-viral gene delivery regulated by stiffness of cell adhesion substrates.

    PubMed

    Kong, Hyun Joon; Liu, Jodi; Riddle, Kathryn; Matsumoto, Takuya; Leach, Kent; Mooney, David J

    2005-06-01

    Non-viral gene vectors are commonly used for gene therapy owing to safety concerns with viral vectors. However, non-viral vectors are plagued by low levels of gene transfection and cellular expression. Current efforts to improve the efficiency of non-viral gene delivery are focused on manipulations of the delivery vector, whereas the influence of the cellular environment in DNA uptake is often ignored. The mechanical properties (for example, rigidity) of the substrate to which a cell adheres have been found to mediate many aspects of cell function including proliferation, migration and differentiation, and this suggests that the mechanics of the adhesion substrate may regulate a cell's ability to uptake exogeneous signalling molecules. In this report, we present a critical role for the rigidity of the cell adhesion substrate on the level of gene transfer and expression. The mechanism relates to material control over cell proliferation, and was investigated using a fluorescent resonance energy transfer (FRET) technique. This study provides a new material-based control point for non-viral gene therapy.

  14. The cell adhesion molecules Echinoid and Friend of Echinoid coordinate cell adhesion and cell signaling to regulate the fidelity of ommatidial rotation in the Drosophila eye.

    PubMed

    Fetting, Jennifer L; Spencer, Susan A; Wolff, Tanya

    2009-10-01

    Directed cellular movements are a universal feature of morphogenesis in multicellular organisms. Differential adhesion between the stationary and motile cells promotes these cellular movements to effect spatial patterning of cells. A prominent feature of Drosophila eye development is the 90 degrees rotational movement of the multicellular ommatidial precursors within a matrix of stationary cells. We demonstrate that the cell adhesion molecules Echinoid (Ed) and Friend of Echinoid (Fred) act throughout ommatidial rotation to modulate the degree of ommatidial precursor movement. We propose that differential levels of Ed and Fred between stationary and rotating cells at the initiation of rotation create a permissive environment for cell movement, and that uniform levels in these two populations later contribute to stopping the movement. Based on genetic data, we propose that ed and fred impart a second, independent, ;brake-like' contribution to this process via Egfr signaling. Ed and Fred are localized in largely distinct and dynamic patterns throughout rotation. However, ed and fred are required in only a subset of cells - photoreceptors R1, R7 and R6 - for normal rotation, cells that have only recently been linked to a role in planar cell polarity (PCP). This work also provides the first demonstration of a requirement for cone cells in the ommatidial rotation aspect of PCP. ed and fred also genetically interact with the PCP genes, but affect only the degree-of-rotation aspect of the PCP phenotype. Significantly, we demonstrate that at least one PCP protein, Stbm, is required in R7 to control the degree of ommatidial rotation.

  15. Coordination of self-renewal in glioblastoma by integration of adhesion and microRNA signaling.

    PubMed

    Alvarado, Alvaro G; Turaga, Soumya M; Sathyan, Pratheesh; Mulkearns-Hubert, Erin E; Otvos, Balint; Silver, Daniel J; Hale, James S; Flavahan, William A; Zinn, Pascal O; Sinyuk, Maksim; Li, Meizhang; Guda, Maheedhara R; Velpula, Kiran K; Tsung, Andrew J; Nakano, Ichiro; Vogelbaum, Michael A; Majumder, Sadhan; Rich, Jeremy N; Lathia, Justin D

    2016-05-01

    Cancer stem cells (CSCs) provide an additional layer of complexity for tumor models and targets for therapeutic development. The balance between CSC self-renewal and differentiation is driven by niche components including adhesion, which is a hallmark of stemness. While studies have demonstrated that the reduction of adhesion molecules, such as integrins and junctional adhesion molecule-A (JAM-A), decreases CSC maintenance. The molecular circuitry underlying these interactions has yet to be resolved. MicroRNA screening predicted that microRNA-145 (miR-145) would bind to JAM-A. JAM-A overexpression in CSCs was evaluated both in vitro (proliferation and self-renewal) and in vivo (intracranial tumor initiation). miR-145 introduction into CSCs was similarly assessed in vitro. Additionally, The Cancer Genome Atlas dataset was evaluated for expression levels of miR-145 and overall survival of the different molecular groups. Using patient-derived glioblastoma CSCs, we confirmed that JAM-A is suppressed by miR-145. CSCs expressed low levels of miR-145, and its introduction decreased self-renewal through reductions in AKT signaling and stem cell marker (SOX2, OCT4, and NANOG) expression; JAM-A overexpression rescued these effects. These findings were predictive of patient survival, with a JAM-A/miR-145 signature robustly predicting poor patient prognosis. Our results link CSC-specific niche signaling to a microRNA regulatory network that is altered in glioblastoma and can be targeted to attenuate CSC self-renewal. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Progression of symptomatic intracranial large artery atherosclerosis is associated with a proinflammatory state and impaired fibrinolysis.

    PubMed

    Arenillas, Juan F; Alvarez-Sabín, José; Molina, Carlos A; Chacón, Pilar; Fernández-Cadenas, Israel; Ribó, Marc; Delgado, Pilar; Rubiera, Marta; Penalba, Anna; Rovira, Alex; Montaner, Joan

    2008-05-01

    The molecular pathways involved in the progression of intracranial large artery atherosclerosis (ILA) are largely unknown. Our objective was to prospectively study the relationship between circulating levels of inflammatory markers and fibrinolysis inhibitors, and the risk of progression of symptomatic ILA. Seventy-five consecutive patients with first-ever symptomatic intracranial atherostenosis were studied. Blood levels of C-reactive protein (CRP), E-selectin, monocyte chemoattractant protein-1, intercellular adhesion molecule-1, matrix metalloproteinases 1, 2, 3, 8, 9, 10, and 13, plasminogen activator inhibitor-1 (PAI-1), and lipoprotein(a) were measured 3 months after the qualifying stroke or transient ischemic attack. Thereafter, patients underwent long-term transcranial Doppler follow-up to detect progression of ILA. During a median follow-up time of 23 months, 25 (33%) patients showed ILA progression. Multivariable adjusted Cox regression models and Kaplan-Meier curves showed that high baseline level of CRP, E-selectin, intercellular adhesion molecule-1, matrix metalloproteinase 9, PAI-1, and lipoprotein(a) predicted ILA progression independently of vascular risk factors. Of them, only CRP (CRP>5.5 mg/L; HR, 5.4 [2.3 to 12.7]; P=0.0001) and PAI-1 (PAI-1>23.1 ng/mL; HR, 2.4 [1.0 to 5.8]; P=0.05) predicted ILA progression also independently of the other studied molecules. Progression of symptomatic ILA is associated with a proinflammatory state, as reflected by high levels of inflammatory markers, and with defective fibrinolysis, as indicated by raised concentrations of endogenous fibrinolysis inhibitors.

  17. Correlation of leukocyte adhesiveness, adhesion molecule expression and leukocyte-induced contraction following balloon angioplasty

    PubMed Central

    Kennedy, Simon; McPhaden, Allan R; Wadsworth, Roger M; Wainwright, Cherry L

    2000-01-01

    The aim of this study was to examine the changes in leukocyte adhesion and leukocyte-induced contraction in balloon-injured rabbit subclavian artery and to correlate these changes with vessel morphology and expression of adhesion molecules on the injured arteries.Rabbits were anaesthetized and their left subclavian arteries were injured by balloon inflation and withdrawal followed by sacrifice at 2, 24, 48 h or 8 days after injury. The left and right subclavian arteries were removed and leukocytes were isolated from autologous rabbit blood. Leukocyte-induced contraction was measured in 5-HT precontracted artery rings and leukocyte adhesion was measured using 51Cr-labelled leukocytes. Immunocytochemistry using paraffin-embedded tissue was employed to detect changes in the expression of adhesion molecules on injured arteries.Autologous leukocytes caused a contraction of rabbit subclavian artery rings, which was prevented by L-NAME (10−3 M). Balloon-induced injury abolished the contractile response to leukocytes, which correlated with loss of carbachol-induced relaxationBalloon injury markedly enhanced the adhesiveness of the subclavian artery for leukocytes, most notably at 24 and 48 h after injury (1.7 and 1.8 fold respectively). Increased leukocyte adhesion at these two time points correlated with an upregulation of E-selectin, P-selectin and VCAM-1 expression on the remaining endothelium of the injured artery.Vessel morphology revealed that balloon inflation had induced an infiltration of inflammatory cells into the vessel wall, the greatest increase being seen at 24 h after injury.It is concluded that an increase in the expression of E-selectin, P-selectin and VCAM-1 following balloon-induced injury leads to enhanced leukocyte adhesion and migration into the injured vessel. PMID:10781003

  18. Effects of simvastatin, ezetimibe and simvastatin/ezetimibe on mitochondrial function and leukocyte/endothelial cell interactions in patients with hypercholesterolemia.

    PubMed

    Hernandez-Mijares, Antonio; Bañuls, Celia; Rovira-Llopis, Susana; Diaz-Morales, Noelia; Escribano-Lopez, Irene; de Pablo, Carmen; Alvarez, Angeles; Veses, Silvia; Rocha, Milagros; Victor, Victor M

    2016-04-01

    Cholesterol-lowering therapy has been related with several beneficial effects; however, its influence on oxidative stress and endothelial function is not fully elucidated. To investigate the effect of simvastatin and ezetimibe on mitochondrial function and leukocyte-endothelium interactions in polymorphonuclear cells of hyperlipidemic patients. Thirty-nine hyperlipidemic patients were randomly assigned to one of two groups: one received simvastatin (40 mg/day) and the other received ezetimibe (10 mg/day) for 4 weeks, after which both groups were administered combined therapy for an additional 4-week period. Lipid profile, mitochondrial parameters (oxygen consumption, reactive oxygen species (ROS) and membrane potential), glutathione levels, superoxide dismutase activity, catalase activity and leukocyte/endothelial cell interactions and adhesion molecules -VCAM-1, ICAM-1, E-selectin, were evaluated. An improvement in lipid profile was observed after administration of simvastatin or ezetimibe alone (LDLc: -40.2 vs -19.6%, respectively), though this effect was stronger with the former (p < 0.001), and a further reduction was registered when the two were combined (LDLc: -50.7% vs -56.8%, respectively). In addition to this, simvastatin, ezetimibe and simvastatin + ezetimibe significantly increased oxygen consumption, membrane potential and glutathione content, and decreased levels of ROS, thereby improving mitochondrial function. Furthermore, simvastatin + ezetimibe increased catalase activity. In addition, simvastatin and simvastatin/ezetimibe improved leukocyte/endothelium interactions by decreasing leukocyte rolling and adhesion and increasing leukocyte rolling velocity. Finally, simvastatin, ezetimibe and simvastatin + ezetimibe reduced levels of the adhesion molecule ICAM-1, and ezetimibe + simvastatin significantly decreased levels of E-selectin. Co-administration of simvastatin and ezetimibe has an additive cholesterol-lowering effect and beneficial consequences for mitochondrial function and leukocyte/endothelium interactions in leukocytes of hypercholesterolemic patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion.

    PubMed

    Chang, K C; Tees, D F; Hammer, D A

    2000-10-10

    Leukocyte adhesion under flow in the microvasculature is mediated by binding between cell surface receptors and complementary ligands expressed on the surface of the endothelium. Leukocytes adhere to endothelium in a two-step mechanism: rolling (primarily mediated by selectins) followed by firm adhesion (primarily mediated by integrins). Using a computational method called "Adhesive Dynamics," we have simulated the adhesion of a cell to a surface in flow, and elucidated the relationship between receptor-ligand functional properties and the dynamics of adhesion. We express this relationship in a state diagram, a one-to-one map between the biophysical properties of adhesion molecules and various adhesive behaviors. Behaviors that are observed in simulations include firm adhesion, transient adhesion (rolling), and no adhesion. We varied the dissociative properties, association rate, bond elasticity, and shear rate and found that the unstressed dissociation rate, k(r)(o), and the bond interaction length, gamma, are the most important molecular properties controlling the dynamics of adhesion. Experimental k(r)(o) and gamma values from the literature for molecules that are known to mediate rolling adhesion fall within the rolling region of the state diagram. We explain why L-selectin-mediated rolling, which has faster k(r)(o) than other selectins, is accompanied by a smaller value for gamma. We also show how changes in association rate, shear rate, and bond elasticity alter the dynamics of adhesion. The state diagram (which must be mapped for each receptor-ligand system) presents a concise and comprehensive means of understanding the relationship between bond functional properties and the dynamics of adhesion mediated by receptor-ligand bonds.

  20. Elevated expression in situ of selectin and immunoglobulin superfamily type adhesion molecules in retroocular connective tissues from patients with Graves' ophthalmopathy.

    PubMed Central

    Heufelder, A E; Bahn, R S

    1993-01-01

    Activation of certain adhesion molecules within vascular endothelium and the surrounding extravascular space is a critical event in the recruitment and targeting of an inflammatory response or autoimmune attack to a particular tissue site. We have recently demonstrated that the adhesion of lymphocytes to cultured retroocular fibroblasts obtained from patients with Graves' ophthalmopathy (GO) is mediated predominantly by the interaction of lymphocyte function-associated antigen-1 (LFA-1), expressed on lymphocytes, with intercellular adhesion molecule-1 (ICAM-1), expressed by these cells following exposure to interferon-gamma (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha), IL-1 alpha or purified thyroid-stimulating immunoglobulins. We now report the expression and localization in situ of several adhesion molecules, ICAM-1, endothelial leucocyte adhesion molecule-1 (ELAM-1), vascular cell adhesion molecule-1 (VCAM-1), and LFA-3 in retroocular tissues derived from patients with severe GO (n = 4) and normal individuals (n = 3). Serial cryostat sections of tissue specimens were processed for immunoperoxidase staining using various MoAbs against ICAM-1, ELAM-1, VCAM-1 and LFA-3. In addition, consecutive sections were stained with MoAbs against LFA-1, CD45RO (UCHL-1)DR-human leucocyte antigen (HLA-DR), CD11b/CD18 (Mac-1), and CD11c/CD18 (p150,95). In GO-retroocular tissues, strong immunoreactivity for ICAM-1 and LFA-3 was detected in blood vessels (> 90%), in perimysial fibroblasts surrounding extraocular muscle fibres, and in connective tissue distinct from extraocular muscle. No ICAM-1 or LFA-3 immunoreactivity was present in extraocular muscle cells themselves. ICAM-1 and LFA-3 immunoreactivity in normal tissues was minimal or absent both in connective and muscle tissues. Vascular endothelium was strongly positive for ELAM-1 and VCAM-1 in GO-retroocular tissues, while VCAM-1 immunoreactivity was minimal (< 5% of blood vessels) and ELAM-1 immunoreactivity was generally absent in normal retroocular tissue. LFA-1-expressing, activated mononuclear cells and memory T lymphocytes (CD3+/CD45RO+) were only detected in GO-retrocular tissues, and were mainly localized around blood vessels and in areas of ICAM-1-expressing connective and perimysial tissue. HLA-DR expression was restricted to GO-tissue specimens, with strong immunoreactivity detected in blood vessels, macrophages and connective tissue and perimysial fibroblasts. No HLA-DR was detectable in extraocular muscle cells. In conclusion, infiltration of the orbit in GO by mononuclear cells, and their targeting within the orbit, may depend upon the coordinate expression of certain adhesion and MHC molecules.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:7680294

  1. The Synaptic Cell Adhesion Molecule, SynCAM1, Mediates Astrocyte-to-Astrocyte and Astrocyte-to-GnRH Neuron Adhesiveness in the Mouse Hypothalamus

    PubMed Central

    Sandau, Ursula S.; Mungenast, Alison E.; McCarthy, Jack; Biederer, Thomas; Corfas, Gabriel

    2011-01-01

    We previously identified synaptic cell adhesion molecule 1 (SynCAM1) as a component of a genetic network involved in the hypothalamic control of female puberty. Although it is well established that SynCAM1 is a synaptic adhesion molecule, its contribution to hypothalamic function is unknown. Here we show that, in addition to the expected neuronal localization illustrated by its presence in GnRH neurons, SynCAM1 is expressed in hypothalamic astrocytes. Cell adhesion assays indicated that SynCAM is recognized by both GnRH neurons and astrocytes as an adhesive partner and promotes cell-cell adhesiveness via homophilic, extracellular domain-mediated interactions. Alternative splicing of the SynCAM1 primary mRNA transcript yields four mRNAs encoding membrane-spanning SynCAM1 isoforms. Variants 1 and 4 are predicted to be both N and O glycosylated. Hypothalamic astrocytes and GnRH-producing GT1-7 cells express mainly isoform 4 mRNA, and sequential N- and O-deglycosylation of proteins extracted from these cells yields progressively smaller SynCAM1 species, indicating that isoform 4 is the predominant SynCAM1 variant expressed in astrocytes and GT1-7 cells. Neither cell type expresses the products of two other SynCAM genes (SynCAM2 and SynCAM3), suggesting that SynCAM-mediated astrocyte-astrocyte and astrocyte-GnRH neuron adhesiveness is mostly mediated by SynCAM1 homophilic interactions. When erbB4 receptor function is disrupted in astrocytes, via transgenic expression of a dominant-negative erbB4 receptor form, SynCAM1-mediated adhesiveness is severely compromised. Conversely, SynCAM1 adhesive behavior is rapidly, but transiently, enhanced in astrocytes by ligand-dependent activation of erbB4 receptors, suggesting that erbB4-mediated events affecting SynCAM1 function contribute to regulate astrocyte adhesive communication. PMID:21486931

  2. Incorporation of functionalized gold nanoparticles into nanofibers for enhanced attachment and differentiation of mammalian cells

    PubMed Central

    2012-01-01

    Background Electrospun nanofibers have been widely used as substrata for mammalian cell culture owing to their structural similarity to natural extracellular matrices. Structurally consistent electrospun nanofibers can be produced with synthetic polymers but require chemical modification to graft cell-adhesive molecules to make the nanofibers functional. Development of a facile method of grafting functional molecules on the nanofibers will contribute to the production of diverse cell type-specific nanofiber substrata. Results Small molecules, peptides, and functionalized gold nanoparticles were successfully incorporated with polymethylglutarimide (PMGI) nanofibers through electrospinning. The PMGI nanofibers functionalized by the grafted AuNPs, which were labeled with cell-adhesive peptides, enhanced HeLa cell attachment and potentiated cardiomyocyte differentiation of human pluripotent stem cells. Conclusions PMGI nanofibers can be functionalized simply by co-electrospinning with the grafting materials. In addition, grafting functionalized AuNPs enable high-density localization of the cell-adhesive peptides on the nanofiber. The results of the present study suggest that more cell type-specific synthetic substrata can be fabricated with molecule-doped nanofibers, in which diverse functional molecules are grafted alone or in combination with other molecules at different concentrations. PMID:22686683

  3. Nephrin phosphorylation regulates podocyte adhesion through the PINCH-1-ILK-α-parvin complex

    PubMed Central

    Zha, Dongqing; Chen, Cheng; Liang, Wei; Chen, Xinghua; Ma, Tean; Yang, Hongxia; van Goor, Harry; Ding, Guohua

    2013-01-01

    Nephrin, a structural molecule, is also a signaling molecule after phosphorylation. Inhibition of nephrin phosphorylation is correlated with podocyte injury. The PINCH-1-ILK-α-parvin (PIP) complex plays a crucial role in cell adhesion and cytoskeleton formation. We hypothesized that nephrin phosphorylation influenced cytoskeleton and cell adhesion in podocytes by regulating the PIP complex. The nephrin phosphorylation, PIP complex formation, and F-actin in Wistar rats intraperitoneally injected with puromycin aminonucleoside were gradually decreased but increased with time, coinciding with the recovery from glomerular/podocyte injury and proteinuria. In cultured podocytes, PIP complex knockdown resulted in cytoskeleton reorganization and decreased cell adhesion and spreading. Nephrin and its phosphorylation were unaffected after PIP complex knockdown. Furthermore, inhibition of nephrin phosphorylation suppressed PIP complex expression, disorganized podocyte cytoskeleton, and decreased cell adhesion and spreading. These findings indicate that alterations in nephrin phosphorylation disorganize podocyte cytoskeleton and decrease cell adhesion through a PIP complex-dependent mechanism. [BMB Reports 2013; 46(4): 230-235] PMID:23615266

  4. Cell adhesion molecules in context

    PubMed Central

    2011-01-01

    Cell adhesion molecules (CAMs) are now known to mediate much more than adhesion between cells and between cells and the extracellular matrix. Work by many researchers has illuminated their roles in modulating activation of molecules such as receptor tyrosine kinases, with subsequent effects on cell survival, migration and process extension. CAMs are also known to serve as substrates for proteases that can create diffusible fragments capable of signaling independently from the CAM. The diversity of interactions is further modulated by membrane rafts, which can co-localize or separate potential signaling partners to affect the likelihood of a given signaling pathway being activated. Given the ever-growing number of known CAMs and the fact that their heterophilic binding in cis or in trans can affect their interactions with other molecules, including membrane-bound receptors, one would predict a wide range of effects attributable to a particular CAM in a particular cell at a particular stage of development. The function(s) of a given CAM must therefore be considered in the context of the history of the cell expressing it and the repertoire of molecules expressed both by that cell and its neighbors. PMID:20948304

  5. Low-expression of E-cadherin in leukaemia cells causes loss of homophilic adhesion and promotes cell growth.

    PubMed

    Rao, Qing; Wang, Ji-Ying; Meng, Jihong; Tang, Kejing; Wang, Yanzhong; Wang, Min; Xing, Haiyan; Tian, Zheng; Wang, Jianxiang

    2011-09-01

    E-cadherin (epithelial cadherin) belongs to the calcium-dependent adhesion molecule superfamily and is implicated in the interactions of haematopoietic progenitors and bone marrow stromal cells. Adhesion capacity to bone marrow stroma was impaired for leukaemia cells, suggesting that a breakdown of adhesive mechanisms governed by an adhesion molecule may exist in leukaemic microenvironment. We previously found that E-cadherin was low expressed in primary acute leukaemia cells compared with normal bone marrow mononuclear cells. In this study, we investigate the functional importance of low E-cadherin expression in leukaemia cell behaviours and investigate its effects in the abnormal interaction of leukaemic cells with stromal cells. After expression of E-cadherin was restored by a demethylating agent in leukaemia cells, E-cadherin-specific adhesion was enhanced. Additionally, siRNA (small interfering RNA)-mediated silencing of E-cadherin in Raji cells resulted in a reduction of cell homophilic adhesion and enhancement of cell proliferation and colony formation. These results suggest that low expression of E-cadherin contributes to the vigorous growth and transforming ability of leukaemic cells.

  6. Levels of sVCAM-1 and sICAM-1 in patients with lyme disease.

    PubMed

    Biesiada, Grazyna; Czepiel, Jacek; Sobczyk-Krupiarz, Iwona; Salamon, Dominika; Garlicki, Aleksander; Mach, Tomasz

    2009-04-01

    Lyme disease is a multi-organ animal-borne disease caused by the spirochete Borrelia burgdorferi (Bb). As the pathogenesis of Lyme borreliosis is not fully understood, the study has been designed to examine levels of soluble vascular cell adhesion molecule-1 (sVCAM-1) and soluble intercellular adhesion molecule-1 (sICAM-1) in serum and the cerebrospinal fluid (CSF) of patients with Lyme borreliosis and their associations with clinical signs and symptoms and anti-Borrelia burgdorferi (anti-Bb) antibody titers. Sixty-four patients were enrolled in the study, including 39 patients treated for Lyme borreliosis and 25 without the disease (control group). In both groups sVCAM-1 and sICAM-1 levels were determined in serum and the CSF. Mean serum sICAM-1 and sVCAM-1 levels were higher in patients with Lyme borreliosis than in the control group. Serum sICAM-1 levels were significantly lower among patients with results positive for immunoglobulin M seroreactivity with Bb than among those with negative antibody responses. In patients with Bb-specific serum immunoglobulin G (IgG) antibodies, significantly higher serum sICAM-1 levels were found. Higher sVCAM-1 and sICAM-1 levels in the CSF were observed in patients positive for anti-Bb IgG antibody titers in the CSF. In patients with Lyme borreliosis, endothelial cell activation results in elevated levels of sICAM-1 and sVCAM-1 in serum and the CSF.

  7. Tanshinone II A stabilizes vulnerable plaques by suppressing RAGE signaling and NF-κB activation in apolipoprotein-E-deficient mice

    PubMed Central

    Zhao, Dong; Tong, Lufang; Zhang, Lixin; Li, Hong; Wan, Yingxin; Zhang, Tiezhong

    2016-01-01

    Tanshinone II A (TSIIA) is a diterpene quinone extracted from the roots of Salvia miltiorrhiza with anti-inflammatory and anti-oxidant properties that is used to treat atherosclerosis. In the current study, morphological analyses were conducted to evaluate the effects of TSIIA on atherosclerotic vulnerable plaque stability. Additionally, receptor of advanced glycation end products (RAGE), adhesion molecule, and matrix-metalloproteinases (MMPs) expression, and nuclear factor-κB (NF-κB) activation were examined in apolipoprotein E (apoE)-deficient mice treated with TSIIA. Eight-week-old apoE−/− mice were administered TSIIA and fed an atherogenic diet for 8 weeks. TSIIA exhibited no effects on plaque size. Analysis of the vulnerable plaque composition demonstrated decreased numbers of macrophages and smooth muscle cells, and increased collagen content in apoE-deficient mice treated with TSIIA compared with untreated mice. Western blotting revealed that TSIIA downregulated the expression levels of vascular cellular adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and MMP-2, −3, and −9, suppressed RAGE, and inhibited NF-κB, JNK and p38 activation. The present study demonstrated that the underlying mechanism of TSIIA stabilization of vulnerable plaques involves interfering with RAGE and NF-κB activation, and downregulation of downstream inflammatory factors, including ICAM-1, VCAM-1, and MMP-2, −3 and −9 in apoE−/− mice. PMID:27840935

  8. Insulin Resistance in PCOS Patients Enhances Oxidative Stress and Leukocyte Adhesion: Role of Myeloperoxidase

    PubMed Central

    Victor, Victor M.; Rovira-Llopis, Susana; Bañuls, Celia; Diaz-Morales, Noelia; Martinez de Marañon, Arantxa; Rios-Navarro, Cesar; Alvarez, Angeles; Gomez, Marcelino; Rocha, Milagros; Hernández-Mijares, Antonio

    2016-01-01

    Cardiovascular diseases and oxidative stress are related to polycystic ovary syndrome (PCOS) and insulin resistance (IR). We have evaluated the relationship between myeloperoxidase (MPO) and leukocyte activation in PCOS patients according to homeostatic model assessment of IR (HOMA-IR), and have explored a possible correlation between these factors and endocrine and inflammatory parameters. This was a prospective controlled study conducted in an academic medical center. The study population consisted of 101 PCOS subjects and 105 control subjects. We divided PCOS subjects into PCOS non-IR (HOMA-IR<2.5) and PCOS IR (HOMA-IR>2.5). Metabolic and anthropometric parameters, total and mitochondrial reactive oxygen species (ROS) production, MPO levels, interactions between human umbilical vein endothelial cells and leukocytes, adhesion molecules (E-selectin, ICAM-1 and VCAM-1) and proinflammatory cytokines (IL-6 and TNF-α) were evaluated. Oxidative stress was observed in PCOS patients, in whom there was an increase in total and mitochondrial ROS production and MPO levels. Enhanced rolling flux and adhesion, and a decrease in polymorphonuclear cell rolling velocity were also detected in PCOS subjects. Increases in IL-6 and TNF-α and adhesion molecules (E-selectin, ICAM-1 and VCAM-1) were also observed, particularly in the PCOS IR group, providing evidence that inflammation and oxidative stress are related in PCOS patients. HOMA-IR was positively correlated with hsCRP (p<0.001, r = 0.304), ROS production (p<0.01, r = 0.593), leukocyte rolling flux (p<0.05, r = 0.446), E-selectin (p<0.01, r = 0.436) and IL-6 (p<0.001, r = 0.443). The results show an increase in the rate of ROS and MPO levels in PCOS patients in general, and particularly in those with IR. Inflammation in PCOS induces leukocyte-endothelium interactions and a simultaneous increase in IL-6, TNF-α, E-selectin, ICAM-1 and VCAM-1. These conditions are aggravated by the presence of IR. PMID:27007571

  9. Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli.

    PubMed

    Pesavento, Christina; Becker, Gisela; Sommerfeldt, Nicole; Possling, Alexandra; Tschowri, Natalia; Mehlis, Anika; Hengge, Regine

    2008-09-01

    During the transition from post-exponential to stationary phase, Escherichia coli changes from the motile-planktonic to the adhesive-sedentary "lifestyle." We demonstrate this transition to be controlled by mutual inhibition of the FlhDC/motility and sigma(S)/adhesion control cascades at two distinct hierarchical levels. At the top level, motility gene expression and the general stress response are inversely coordinated by sigma(70)/sigma(FliA)/sigma(S) competition for core RNA polymerase and the FlhDC-controlled FliZ protein acting as a sigma(S) inhibitor. At a lower level, the signaling molecule bis-(3'-5')-cyclic-diguanosine monophosphate (c-di-GMP) reduces flagellar activity and stimulates transcription of csgD, which encodes an essential activator of adhesive curli fimbriae expression. This c-di-GMP is antagonistically controlled by sigma(S)-regulated GGDEF proteins (mainly YegE) and YhjH, an EAL protein and c-di-GMP phosphodiesterase under FlhDC/FliA control. The switch from motility-based foraging to the general stress response and curli expression requires sigma(S)-modulated down-regulation of expression of the flagellar regulatory cascade as well as proteolysis of the flagellar master regulator FlhDC. Control of YhjH by FlhDC and of YegE by sigma(S) produces a fine-tuned checkpoint system that "unlocks" curli expression only after down-regulation of flagellar gene expression. In summary, these data reveal the logic and sequence of molecular events underlying the motile-to-adhesive "lifestyle" switch in E. coli.

  10. Suppression of endothelial cell adhesion by XJP-1, a new phenolic compound derived from banana peel.

    PubMed

    Fu, Rong; Yan, Tianhua; Wang, Qiujuan; Guo, Qinglong; Yao, Hequan; Wu, Xiaoming; Li, Yang

    2012-01-01

    The adhesion of monocytes to activated vascular endothelial cells is a critical event in the initiation of atherosclerosis. Adhesion is mediated by oxidized low-density lipoprotein (ox-LDL) which up-regulates inflammatory markers on endothelial cells. Here we report that (±) 7, 8-dihydroxy-3-methyl-isochromanone-4 (XJP-1), an inhibitor of ox-LDL-induced adhesion of monocytes to endothelial cells blocks cellular functions which are associated with adhesion. We show that XJP-1 down-regulates ox-LDL-induced over-expression of adhesion molecules (ICAM-1 and VCAM-1) in a dose-dependent manner in human umbilical vein endothelial cells (HUVECs), attenuates ox-LDL-induced up-regulation of low-density lipoprotein receptor (LOX)-1, decreases generation of reactive oxygen species (ROS), blocks translocation of nuclear factor-kappa B (NF-κB) activity, and prevents activation of c-Jun N-terminal kinase (JNK)/p38 pathways in endothelial cells. These findings suggest that XJP-1 may attenuate ox-LDL-induced endothelial adhesion of monocytes by blocking expression of adhesion molecules through suppressing ROS/NF-κB, JNK and p38 pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Borrelia burgdorferi upregulates the adhesion molecules E-selectin, P-selectin, ICAM-1 and VCAM-1 on mouse endothelioma cells in vitro.

    PubMed

    Böggemeyer, E; Stehle, T; Schaible, U E; Hahne, M; Vestweber, D; Simon, M M

    1994-06-01

    In order to obtain more information on processes leading to Borrelia burgdorferi-induced inflammation in the host, we have developed an in vitro model to study the upregulation of cell surface expression of adhesion molecules on endothelial cells by spirochetes. A mouse endothelioma cell line, derived from brain capillaries, bEnd3, was used as indicator population. bEnd3 cells were incubated with preparations of viable, inactivated or sonicated spirochetes and the expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 was monitored by immunocytochemistry and quantified by cell surface ELISA. We show that all three spirochetal preparations are able to upregulate cell surface expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 on bEnd 3 cells in a dose-dependent manner. The kinetics of cell surface expression of the individual adhesion molecules in the presence of Borrelia burgdorferi showed maxima at about 50 h of incubation or later; this was distinct from results obtained with sonicated-preparations of Escherichia coli bacteria or with enterobacterial LPS where peak expression was observed between 4 h and 16 h. The fact that Borrelia burgdorferi does not contain conventional LPS suggests that the mode of induction of adhesion molecules on endothelial cells is influenced by the phenotype of bacteria. At the peak of spirochete-induced cell surface expression of adhesion molecules (approximately 50 h), bEnd3 cells were found to bind cells of a VLA-4+ B lymphoma line (L1-2) much more efficiently than untreated control cells. The binding of L1-2 cells to presensitized bEnd3 cells was significantly inhibited (more than 75%) in the presence of monoclonal antibodies to both VLA-4 and its endothelial counterreceptor VCAM-1. These findings demonstrate that Borrelia burgdorferi organisms are able to induce functionally active adhesion molecules on endothelial cells in vitro and suggest that E-selectin, P-selectin, ICAM-1 and VCAM-1 play an important role in the pathogenesis of spirochetal infection.

  12. Circulating soluble adhesion molecules in patients with giant cell arteritis. Correlation between soluble intercellular adhesion molecule-1 (sICAM-1) concentrations and disease activity

    PubMed Central

    Coll-Vinent, B.; Vilardell, C.; Font, C.; Oristrell, J.; Hernandez-Rodrigu..., J.; Yague, J.; Urbano-Marquez, A.; Grau, J.; Cid, M.

    1999-01-01

    OBJECTIVE—To evaluate whether changes in concentrations of circulating adhesion molecules are related to disease activity in patients with giant cell arteritis (GCA).
METHODS—A sandwich ELISA was used to measure soluble intercellular adhesion molecule-1 (sICAM-1), sICAM-3, vascular cell adhesion molecule-1 (sVCAM-1), E-selectin (sE-selectin), and L-selectin (sL-selectin) in serum and plasma samples from patients with GCA. A cross sectional study was performed on 64 GCA patients at different activity stages and on 35 age and sex matched healthy donors. Thirteen of these patients were evaluated at the time of diagnosis and serially during follow up.
RESULTS—At the time of diagnosis, sICAM-1 concentrations were significantly higher in active GCA patients than in controls (mean (SD) 360.55 (129.78) ng/ml versus 243.25 (47.43) ng/ml, p<0.001). In contrast, sICAM-3, sVCAM-1, sE-selectin, and sL-selectin values did not differ from those obtained in normal donors. With corticosteroid administration, a decrease in sICAM-1 concentrations was observed, reaching normal values when clinical remission was achieved (263.18 (92.7) ng/ml globally, 293.59 (108.39) ng/ml in the group of patients in recent remission, and 236.83 (70.02) ng/ml in those in long term remission). In the 13 patients followed up longitudinally, sICAM-1 values also normalised with clinical remission (225.87 (64.25) ng/ml in patients in recent remission, and 256.29 (75.15) ng/ml in those in long term remission).
CONCLUSIONS—Circulating sICAM-1 concentrations clearly correlate with clinically apparent disease activity in GCA patients. Differences with results previously found in patients with other vasculitides may indicate that different pathogenic mechanisms contribute to vascular inflammation in different disorders.

 Keywords: adhesion molecules; giant cell arteritis; inflammation PMID:10364919

  13. Different cytokeratin and neuronal cell adhesion molecule staining patterns in focal nodular hyperplasia and hepatic adenoma and their significance

    PubMed Central

    Iyer, Anita; Robert, Marie E.; Bifulco, Carlo B.; Salem, Ronald R.; Jain, Dhanpat

    2013-01-01

    Summary Differentiating focal nodular hyperplasia from hepatic adenoma can be challenging. Cytokeratin 7, neuronal cell adhesion molecule, and cytokeratin 19 are differentially expressed in hepatocytes, biliary epithelium, and possibly hepatic progenitor/stem cells. CD34 is known to have altered expression patterns in the hepatic endothelium in conditions associated with abnormal perfusion and in hepatocellular carcinoma. The purpose of this study was to examine the expression pattern of these markers in focal nodular hyperplasia and hepatic adenoma and assess their diagnostic use. Ten resection specimens each of hepatic adenoma and focal nodular hyperplasia (including a case of telangiectatic focal nodular hyperplasia) were selected for the study. Immunohistochemical analysis was performed using antibodies against cytokeratin 7, cytokeratin 19, neuronal cell adhesion molecule, and CD34 on formalin-fixed, paraffin-embedded sections from each case. The staining patterns and intensity for each marker were analyzed. In hepatic adenoma, the cytokeratin 7 stain revealed strong positivity in hepatocytes in patches, with a gradual decrease in the staining intensity as the cells differentiated towards mature hepatocytes. Although bile ducts were typically absent in hepatic adenoma, occasional ductules could be identified with cytokeratin 7 stain. In focal nodular hyperplasia, cytokeratin 7 showed strong staining of the biliary epithelium within the fibrous septa and staining of the peripheral hepatocytes of most lobules that was focal and weaker than hepatic adenoma. Cytokeratin 19 and neuronal cell adhesion molecule showed patchy and moderate staining in the biliary epithelium of the ductules in focal nodular hyperplasia. While in the hepatic adenoma, cytokeratin 19 showed only rare positivity in occasional cells within ductules, and neuronal cell adhesion molecule marked occasional isolated cells in the lesion. CD34 showed staining of sinusoids in the inflow areas (periportal areas) in both focal nodular hyperplasia and hepatic adenoma. One case of telangiectatic focal nodular hyperplasia revealed both hepatic adenoma–like and focal nodular hyperplasia–like staining patterns. Distinct cytokeratin 7, cytokeratin 19, and neuronal cell adhesion molecule staining patterns are seen in hepatic adenoma and focal nodular hyperplasia possibly suggest activation of different subsets of hepatic progenitor/stem cell and can be diagnostically useful. PMID:18602664

  14. Mathematical modeling of cell adhesion in shear flow: application to targeted drug delivery in inflammation and cancer metastasis.

    PubMed

    Jadhav, Sameer; Eggleton, Charles D; Konstantopoulos, Konstantinos

    2007-01-01

    Cell adhesion plays a pivotal role in diverse biological processes that occur in the dynamic setting of the vasculature, including inflammation and cancer metastasis. Although complex, the naturally occurring processes that have evolved to allow for cell adhesion in the vasculature can be exploited to direct drug carriers to targeted cells and tissues. Fluid (blood) flow influences cell adhesion at the mesoscale by affecting the mechanical response of cell membrane, the intercellular contact area and collisional frequency, and at the nanoscale level by modulating the kinetics and mechanics of receptor-ligand interactions. Consequently, elucidating the molecular and biophysical nature of cell adhesion requires a multidisciplinary approach involving the synthesis of fundamentals from hydrodynamic flow, molecular kinetics and cell mechanics with biochemistry/molecular cell biology. To date, significant advances have been made in the identification and characterization of the critical cell adhesion molecules involved in inflammatory disorders, and, to a lesser degree, in cancer metastasis. Experimental work at the nanoscale level to determine the lifetime, interaction distance and strain responses of adhesion receptor-ligand bonds has been spurred by the advent of atomic force microscopy and biomolecular force probes, although our current knowledge in this area is far from complete. Micropipette aspiration assays along with theoretical frameworks have provided vital information on cell mechanics. Progress in each of the aforementioned research areas is key to the development of mathematical models of cell adhesion that incorporate the appropriate biological, kinetic and mechanical parameters that would lead to reliable qualitative and quantitative predictions. These multiscale mathematical models can be employed to predict optimal drug carrier-cell binding through isolated parameter studies and engineering optimization schemes, which will be essential for developing effective drug carriers for delivery of therapeutic agents to afflicted sites of the host.

  15. Use of a Novel Cell Adhesion Method and Digital Measurement to Show Stimulus-dependent Variation in Somatic and Oral Ciliary Beat Frequency in Paramecium

    PubMed Central

    Bell, Wade E.; Hallworth, Richard; Wyatt, Todd A.; Sisson, Joseph H.

    2015-01-01

    When Paramecium encounters positive stimuli, the membrane hyperpolarizes and ciliary beat frequency increases. We adapted an established immobilization protocol using a biological adhesive and a novel digital analysis system to quantify beat frequency in immobilized Paramecium. Cells showed low mortality and demonstrated beat frequencies consistent with previous studies. Chemoattractant molecules, reduction in external potassium, and posterior stimulation all increased somatic beat frequency. In all cases, the oral groove cilia maintained a higher beat frequency than mid-body cilia, but only oral cilia from cells stimulated with chemoattactants showed an increase from basal levels. PMID:25066640

  16. A transcription factor network coordinates attraction, repulsion, and adhesion combinatorially to control motor axon pathway selection.

    PubMed

    Zarin, Aref Arzan; Asadzadeh, Jamshid; Hokamp, Karsten; McCartney, Daniel; Yang, Long; Bashaw, Greg J; Labrador, Juan-Pablo

    2014-03-19

    Combinations of transcription factors (TFs) instruct precise wiring patterns in the developing nervous system; however, how these factors impinge on surface molecules that control guidance decisions is poorly understood. Using mRNA profiling, we identified the complement of membrane molecules regulated by the homeobox TF Even-skipped (Eve), the major determinant of dorsal motor neuron (dMN) identity in Drosophila. Combinatorial loss- and gain-of-function genetic analyses of Eve target genes indicate that the integrated actions of attractive, repulsive, and adhesive molecules direct eve-dependent dMN axon guidance. Furthermore, combined misexpression of Eve target genes is sufficient to partially restore CNS exit and can convert the guidance behavior of interneurons to that of dMNs. Finally, we show that a network of TFs, comprised of eve, zfh1, and grain, induces the expression of the Unc5 and Beaten-path guidance receptors and the Fasciclin 2 and Neuroglian adhesion molecules to guide individual dMN axons. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. A Transcription Factor Network Coordinates Attraction, Repulsion, and Adhesion Combinatorially to Control Motor Axon Pathway Selection

    PubMed Central

    Zarin, Aref Arzan; Asadzadeh, Jamshid; Hokamp, Karsten; McCartney, Daniel; Yang, Long; Bashaw, Greg J.; Labrador, Juan-Pablo

    2014-01-01

    SUMMARY Combinations of transcription factors (TFs) instruct precise wiring patterns in the developing nervous system; however, how these factors impinge on surface molecules that control guidance decisions is poorly understood. Using mRNA profiling, we identified the complement of membrane molecules regulated by the homeobox TF Even-skipped (Eve), the major determinant of dorsal motor neuron (dMN) identity in Drosophila. Combinatorial loss- and gain-of-function genetic analyses of Eve target genes indicate that the integrated actions of attractive, repulsive, and adhesive molecules direct eve-dependent dMN axon guidance. Furthermore, combined misexpression of Eve target genes is sufficient to partially restore CNS exit and can convert the guidance behavior of interneurons to that of dMNs. Finally, we show that a network of TFs, comprised of eve, zfh1, and grain, induces the expression of the Unc5 and Beaten-path guidance receptors and the Fasciclin 2 and Neuroglian adhesion molecules to guide individual dMN axons. PMID:24560702

  18. Role of platelet adhesion in homeostasis and immunopathology.

    PubMed Central

    Männel, D N; Grau, G E

    1997-01-01

    Various molecules expressed on the surface of platelets have been shown to mediate the protective or deleterious role of these cells in immuno-inflammatory mechanisms. Increasing evidence points to the involvement of the cell adhesion molecules, gpIIb-IIIa, P-selectin, CD31, LFA-1, and CD36 in the interaction between platelets and endothelial cells as well as other cell types. The possible role of these molecules in the ability of platelets to support endothelium and to protect against tumour necrosis factor mediated cytolysis or parasitic invasion are reviewed. The involvement of platelets as effectors of tissue damage in cerebral malaria, lipopolysaccharide induced pathology, and pulmonary fibrosis is also discussed. This has then been extended to include the intercellular mechanisms underpinning their pathogenic role in metastasis, transplant rejection, stroke, brain hypoxia, and related conditions. A better understanding of the complex regulation and hierarchical organisation of these various platelet adhesion molecules may prove useful in the development of new approaches to the treatment of such diseases. Images PMID:9350300

  19. Requirement of the actin cytoskeleton for the association of nectins with other cell adhesion molecules at adherens and tight junctions in MDCK cells.

    PubMed

    Yamada, Akio; Irie, Kenji; Fukuhara, Atsunori; Ooshio, Takako; Takai, Yoshimi

    2004-09-01

    Nectins, Ca(2+)-independent immunoglobulin-like cell adhesion molecules (CAMs), first form cell-cell adhesion where cadherins are recruited, forming adherens junctions (AJs) in epithelial cells and fibroblasts. In addition, nectins recruit claudins, occludin, and junctional adhesion molecules (JAMs) to the apical side of AJs, forming tight junctions (TJs) in epithelial cells. Nectins are associated with these CAMs through peripheral membrane proteins (PMPs), many of which are actin filament-binding proteins. We examined here the roles of the actin cytoskeleton in the association of nectins with other CAMs in MDCK cells stably expressing exogenous nectin-1. The nectin-1-based cell-cell adhesion was formed and maintained irrespective of the presence and absence of the actin filament-disrupting agents, such as cytochalasin D and latrunculin A. In the presence of these agents, only afadin remained at the nectin-1-based cell-cell adhesion sites, whereas E-cadherin and other PMPs at AJs, alpha-catenin, beta-catenin, vinculin, alpha-actinin, ADIP, and LMO7, were not concentrated there. The CAMs at TJs, claudin-1, occludin and JAM-1, or the PMPs at TJs, ZO-1 and MAGI-1, were not concentrated there, either. These results indicate that the actin cytoskeleton is required for the association of the nectin-afadin unit with other CAMs and PMPs at AJs and TJs.

  20. Virgin olive oil, palm olein and coconut oil diets do not raise cell adhesion molecules and thrombogenicity indices in healthy Malaysian adults.

    PubMed

    Voon, P T; Ng, T K W; Lee, V K M; Nesaretnam, K

    2015-06-01

    Effects of high-protein diets that are rich in saturated fats on cell adhesion molecules, thrombogenicity and other nonlipid markers of atherosclerosis in humans have not been firmly established. We aim to investigate the effects of high-protein Malaysian diets prepared separately with virgin olive oil (OO), palm olein (PO) and coconut oil (CO) on cell adhesion molecules, lipid inflammatory mediators and thromobogenicity indices in healthy adults. A randomized cross-over intervention with three dietary sequences, using virgin OO, PO and CO as test fats, was carried out for 5 weeks on each group consisting of 45 men and women. These test fats were incorporated separately at two-thirds of 30% fat calories into high-protein Malaysian diets. For fasting and nonfasting blood samples, no significant differences were observed on the effects of the three test-fat diets on thrombaxane B2 (TXB2), TXB2/PGF1α ratios and soluble intracellular and vascular cell adhesion molecules. The OO diet induced significantly lower (P<0.05) plasma leukotriene B4 (LTB4) compared with the other two test diets, whereas PGF1α concentrations were significantly higher (P<0.05) at the end of the PO diet compared with the OO diet. Diets rich in saturated fatty acids from either PO or CO and high in monounsaturated oleic acid from virgin OO do not alter the thrombogenicity indices-cellular adhesion molecules, thromboxane B2 (TXB2) and TXB2/prostacyclin (PGF1α) ratios. However, the OO diet lowered plasma proinflammatory LTB4, whereas the PO diet raised the antiaggregatory plasma PGF1α in healthy Malaysian adults. This trial was registered at clinicaltrials.gov as NCT 00941837.

  1. Migration of Toxoplasma gondii–Infected Dendritic Cells across Human Retinal Vascular Endothelium

    PubMed Central

    Furtado, João M.; Bharadwaj, Arpita S.; Ashander, Liam M.; Olivas, Antoinette; Smith, Justine R.

    2012-01-01

    Purpose. Toxoplasma gondii, the parasite responsible for ocular toxoplasmosis, accesses the retina from the bloodstream. We investigated the dendritic cell as a potential taxi for T. gondii tachyzoites moving across the human retinal endothelium, and examined the participation of adhesion molecules and chemokines in this process. Methods. CD14-positive monocytes were isolated from human peripheral blood by antibody-mediated cell enrichment, and cultured in granulocyte-macrophage colony-stimulating factor and interleukin-4 to generate dendritic cells. Transmigration assays were performed over 18 hours in transwells seeded with human retinal endothelial cells and using dendritic cells exposed to laboratory or natural strains of T. gondii tachyzoites. Parasites were tagged with yellow fluorescent protein to verify infection. In some experiments, endothelial monolayers were preincubated with antibody directed against adhesion molecules, or chemokine was added to lower chambers of transwells. Results. Human monocyte–derived dendritic cell preparations infected with laboratory or natural strain T. gondii tachyzoites transmigrated in larger numbers across simulated human retinal endothelium than uninfected dendritic cells (P ≤ 0.0004 in 5 of 6 experiments). Antibody blockade of intercellular adhesion molecule (ICAM)–1, vascular cell adhesion molecule (VCAM)–1, and activated leukocyte cell adhesion molecule (ALCAM) inhibited transmigration (P ≤ 0.007), and CCL21 or CXCL10 increased transmigration (P ≤ 0.031). Conclusions. Transmigration of human dendritic cells across retinal endothelium is increased following infection with T. gondii. Movement may be impacted by locally produced chemokines and is mediated in part by ICAM-1, VCAM-1, and ALCAM. These findings have implications for development of novel therapeutics aimed at preventing retinal infection by T. gondii. PMID:22952125

  2. Expression of adhesion molecules is specific and time-dependent in cytokine-stimulated endothelial cells in culture.

    PubMed

    Scholz, D; Devaux, B; Hirche, A; Pötzsch, B; Kropp, B; Schaper, W; Schaper, J

    1996-06-01

    The time course of expression of the adhesion molecules E-selectin, VCAM-1, ICAM-1 and PECAM-1 was studied in interleukin-1 beta-stimulated human umbilical vein cells (HUVEC) and the subcellular sites of synthesis were determined by means of fluorescence immunohistochemistry. The maximal number of cells labelled for E-selectin was observed at 2-4 h, for VCAM-1 at 4-8 h and ICAM-1 at 6-72 h. At 8 h, E-selectin and VCAM-1 started to disappear, but ICAM-1-positive cells persisted. PECAM-1 was constitutively expressed. De novo synthesis for E-selectin started at 1 h and for both, VCAM-1 and ICAM-1 at 1.5-2 h. Maximal synthetic activity was observed at 2.5-4 h for E-selectin and at 4-6 h for VCAM-1 and ICAM-1; thereafter, synthesis slowly decreased. Transport granules occurred at 1.5 h for E-selectin and 4 h for VCAM-1; they were absent for ICAM-1. Diffuse cellular and membrane labelling indicative of the functional activity of the adhesion molecules began at 2-4 h for E-selectin, and 4 h for VCAM, but was constitutively present for ICAM-1. In conclusion, each adhesion molecule shows a specific time-dependent course of appearance and disappearance in interleukin-1 beta-stimulated HUVECs in accordance with their physiological role in vivo. These morphological results confirm data obtained by flow cytometry and Western blotting, but they provide new information about the behaviour of individual cells with regard to the sites of synthesis and cellular localization of the adhesion molecules.

  3. Homing of human B cells to lymphoid organs and B-cell lymphoma engraftment are controlled by cell adhesion molecule JAM-C.

    PubMed

    Doñate, Carmen; Ody, Christiane; McKee, Thomas; Ruault-Jungblut, Sylvie; Fischer, Nicolas; Ropraz, Patricia; Imhof, Beat A; Matthes, Thomas

    2013-01-15

    Junctional adhesion molecule C (JAM-C) is expressed by vascular endothelium and human but not mouse B lymphocytes. The level of JAM-C expression defines B-cell differentiation stages and allows the classification of marginal zone-derived (JAM-C-positive) and germinal center-derived (JAM-C-negative) B-cell lymphomas. In the present study, we investigated the role of JAM-C in homing of human B cells, using a xenogeneic nonobese diabetic/severe combined immunodeficient mouse model. Treatment with anti-JAM-C antibodies in short-term experiments reduced migration of normal and malignant JAM-C-expressing B cells to bone marrow, lymph nodes, and spleen. Blocking homing to the spleen is remarkable, as most other antiadhesion antibodies reduce homing of B cells only to bone marrow and lymph nodes. Long-term administration of anti-JAM-C antibodies prevented engraftment of JAM-Cpos lymphoma cells in bone marrow, spleen, and lymph nodes of mice. Plasmon resonance studies identified JAM-B as the major ligand for JAM-C, whereas homotypic JAM-C interactions remained at background levels. Accordingly, anti-JAM-C antibodies blocked adhesion of JAM-C-expressing B cells to their ligand JAM-B, and immunofluorescence analysis showed the expression of JAM-B on murine and human lymphatic endothelial cells. Targeting JAM-C could thus constitute a new therapeutic strategy to prevent lymphoma cells from reaching supportive microenvironments not only in the bone marrow and lymph nodes but also in the spleen.

  4. Inflammatory reactions in placental blood of Plasmodium falciparum-infected women and high concentrations of soluble E-selectin and a circulating P. falciparum protein in the cord sera.

    PubMed Central

    Jakobsen, P H; Rasheed, F N; Bulmer, J N; Theisen, M; Ridley, R G; Greenwood, B M

    1998-01-01

    To better understand reasons for increased susceptibility to malaria in pregnancy; and the interrelationships between maternal malaria, local immune reactions and the development of the fetus, concentrations of soluble interleukin-10 (IL-10), cytokine receptors, adhesion molecules, a Plasmodium falciparum protein, glutamate-rich protein (GLURP) and antibodies to P. falciparum rhoptry-associated protein-1 were measured among 105 Gambian women and their neonates. Peripheral blood concentrations of IL-10, soluble cytokine receptors and soluble adhesion molecules were found to be different from those concentrations measured in the placenta. Markers of inflammatory reactions: IL-10, sIL-2R, sIL-4R, and soluble tumour necrosis factor receptor I (sTNF-RI) were found in high concentrations in the placenta, indicating that inflammatory reactions take place in the placenta which has been regarded as an immunoprivileged site. Concentrations of soluble vascular cell adhesion molecule-1 (sVCAM-1) and soluble intracellular adhesion molecule-1 (sICAM-1), potential adhesion receptors for malaria parasites, were associated with an active P. falciparum infection in the placenta although the associations did not reach significance. P. falciparum exoantigen, GLURP, was detected in cord blood indicating transplacental passage of malarial antigens. Concentrations of E-selectin were higher in cord blood samples compared with peripheral blood samples. This appeared to be associated with development of cord endothelial cells and not with P. falciparum infection. PMID:9616377

  5. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Xia, E-mail: zhongxia1977@126.com; Li, Xiaonan; Liu, Fuli

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibitedmore » TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.« less

  6. L1CAM in human cancer.

    PubMed

    Altevogt, Peter; Doberstein, Kai; Fogel, Mina

    2016-04-01

    L1 cell adhesion molecule (L1CAM) is one of the first neural adhesion molecules described with important functions in the development of the nervous system. Subsequent work discovered that L1CAM is expressed in many human cancers and is often associated with bad prognosis. This is most likely due to the motility and invasion promoting function of L1CAM. Here, we describe the path L1CAM has taken from a neural adhesion molecule to a recognized tumor antigen. We summarize the literature on L1CAM expression in cancers and pre-cancerous lesions. We focus on the genetic elements required for its re-expression and highlight preclinical studies for targeted therapy. The data suggest that L1CAM is a valuable diagnostic/prognostic marker and an attractive target for the therapy of several human cancers. © 2015 UICC.

  7. Effects of thalidomide on the expression of adhesion molecules in rat liver cirrhosis.

    PubMed

    Lv, Peng; Paul, Shelley Chireyath; Xiao, Yanjv; Liu, Shiquan; Luo, Hesheng

    2006-01-01

    This study was to evaluate the effects of thalidomide on expression of adhesion molecules in liver cirrhosis. The cirrhosis was induced in Wistar rats by intraperitoneal injection of CCl(4), and thalidomide (10 mg/kg/day or 100 mg/kg/day) was given by intragastric administration for 8 weeks. Liver histopathology and immunohistochemistry were significantly improved and the expressions of ICAM-1, VCAM-1, E-selectin, and TNF-alpha mRNA and protein were decreased significantly in rats treated with a high dose of thalidomide. Close positive correlation was observed in the expression of the TNF-alpha mRNA and that of ICAM-1, VCAM-1, and E-selectin mRNA, respectively. These results indicate that thalidomide exerts its effect on the downregulation of adhesion molecules via TNF-alpha signaling pathway to inhibit liver fibrosis.

  8. Effects of Thalidomide on the Expression of Adhesion Molecules in Rat Liver Cirrhosis

    PubMed Central

    Lv, Peng; Paul, Shelley Chireyath; Xiao, Yanjv; Liu, Shiquan; Luo, Hesheng

    2006-01-01

    This study was to evaluate the effects of thalidomide on expression of adhesion molecules in liver cirrhosis. The cirrhosis was induced in Wistar rats by intraperitoneal injection of CCl4, and thalidomide (10 mg/kg/day or 100 mg/kg/day) was given by intragastric administration for 8 weeks. Liver histopathology and immunohistochemistry were significantly improved and the expressions of ICAM-1, VCAM-1, E-selectin, and TNF-α mRNA and protein were decreased significantly in rats treated with a high dose of thalidomide. Close positive correlation was observed in the expression of the TNF-α mRNA and that of ICAM-1, VCAM-1, and E-selectin mRNA, respectively. These results indicate that thalidomide exerts its effect on the downregulation of adhesion molecules via TNF-α signaling pathway to inhibit liver fibrosis. PMID:17047296

  9. Human Dermal Mast Cells Contain and Release Tumor Necrosis Factor α, which Induces Endothelial Leukocyte Adhesion Molecule 1

    NASA Astrophysics Data System (ADS)

    Walsh, Laurence J.; Trinchieri, Giorgio; Waldorf, Heidi A.; Whitaker, Diana; Murphy, George F.

    1991-05-01

    Tumor necrosis factor α (TNF-α) is a proinflammatory cytokine that mediates endothelial leukocyte interactions by inducing expression of adhesion molecules. In this report, we demonstrate that human dermal mast cells contain sizeable stores of immunoreactive and biologically active TNF-α within granules, which can be released rapidly into the extracellular space upon degranulation. Among normal human dermal cells, mast cells are the predominant cell type that expresses both TNF-α protein and TNF-α mRNA. Moreover, induction of endothelial leukocyte adhesion molecule 1 expression is a direct consequence of release of mast cell-derived TNF-α. These findings establish a role for human mast cells as "gatekeepers" of the dermal microvasculature and indicate that mast cell products other than vasoactive amines influence endothelium in a proinflammatory fashion.

  10. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review

    PubMed Central

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-01-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

  11. Co-immobilization of active antibiotics and cell adhesion peptides on calcium based biomaterials.

    PubMed

    Palchesko, Rachelle N; Buckholtz, Gavin A; Romeo, Jared D; Gawalt, Ellen S

    2014-07-01

    Two bioactive molecules with unrelated functions, vancomycin and a cell adhesion peptide, were immobilized on the surface of a potential bone scaffold material, calcium aluminum oxide. In order to accomplish immobilization and retain bioactivity three sequential surface functionalization strategies were compared: 1.) vancomycin was chemically immobilized before a cell adhesion peptide (KRSR), 2.) vancomycin was chemically immobilized after KRSR and 3.) vancomycin was adsorbed after binding the cell adhesion peptide. Both molecules remained on the surface and active using all three reaction sequences and after autoclave sterilization based on osteoblast attachment, bacterial turbidity and bacterial zone inhibition test results. However, the second strategy was superior at enhancing osteoblast attachment and significantly decreasing bacterial growth when compared to the other sequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Intercellular Adhesion Molecule-5 Induces Dendritic Outgrowth by Homophilic Adhesion

    PubMed Central

    Tian, Li; Nyman, Henrietta; Kilgannon, Patrick; Yoshihara, Yoshihiro; Mori, Kensaku; Andersson, Leif C.; Kaukinen, Sami; Rauvala, Heikki; Gallatin, W. Michael; Gahmberg, Carl G.

    2000-01-01

    Intercellular adhesion molecule-5 (ICAM-5) is a dendritically polarized membrane glycoprotein in telencephalic neurons, which shows heterophilic binding to leukocyte β2-integrins. Here, we show that the human ICAM-5 protein interacts in a homophilic manner through the binding of the immunoglobulin domain 1 to domains 4–5. Surface coated ICAM-5-Fc promoted dendritic outgrowth and arborization of ICAM- 5–expressing hippocampal neurons. During dendritogenesis in developing rat brain, ICAM-5 was in monomer form, whereas in mature neurons it migrated as a high molecular weight complex. The findings indicate that its homophilic binding activity was regulated by nonmonomer/monomer transition. Thus, ICAM-5 displays two types of adhesion activity, homophilic binding between neurons and heterophilic binding between neurons and leukocytes. PMID:10893271

  13. Adiponectin improves coronary no-reflow injury by protecting the endothelium in rats with type 2 diabetes mellitus.

    PubMed

    Han, Xue; Wu, Ye; Liu, Xin; Ma, Lu; Lv, Tingting; Sun, Qi; Xu, Wenli; Zhang, Suli; Wang, Ke; Wang, Wen; Ma, Xinliang; Liu, Huirong

    2017-08-31

    To determine the effect of adiponectin (APN) on the coronary no-reflow (NR) injury in rats with Type 2 diabetes mellitus (T2DM), 80 male Sprague-Dawley rats were fed with a high-sugar-high-fat diet to build a T2DM model. Rats received vehicle or APN in the last week and then were subjected to myocardial ischemia reperfusion (MI/R) injury. Endothelium-dependent vasorelaxation of the thoracic aorta was significantly decreased and serum levels of endothelin-1 (ET-1), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were noticably increased in T2DM rats compared with rats without T2DM. Serum APN was positively correlated with the endothelium-dependent vasorelaxation, but negatively correlated with the serum level of ET-1. Treatment with APN improved T2DM-induced endothelium-dependent vasorelaxation, recovered cardiac function, and decreased both NR size and the levels of ET-1, ICAM-1 and VCAM-1. Hypoadiponectinemia was associated with the aggravation of coronary NR in T2DM rats. APN could alleviate coronary NR injury in T2DM rats by protecting the endothelium and improving microcirculation. © 2017 The Author(s).

  14. Single molecule force spectroscopy reveals the adhesion mechanism of hydrophobins

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Li, Bing; Qin, Meng; Wang, Wei

    Hydrophobins are a special class of amphiphilic proteins produced by filamentous fungi. They show outstanding interfacial self-assembly and adhesion properties, which are critical to their biological function. Such feature also inspires their broad applications in bio-engineering, surface modification, and nanotechnology. However, the biophysical properties of hydrophobins are not well understood. We combined atomic force microscopy based single molecule force spectroscopy and protein engineering to directly quantify the adhesion strength of a hydorphobin (HFB1) to various surfaces in both the monomer and oligomer states to reveal the molecular determinant of the adhesion strength of hydrophobins. We found that the monomer HFB1 showed distinct adhesion properties towards hydrophobic and hydrophilic surfaces. The adhesion to hydrophobic surfaces (i.e. graphite and gold) was significantly higher than that to the hydrophilic ones (e.g. mica and silicon). However, when self-assembled monolayers were formed, the adhesion strengths to various surfaces were similar and were ubiquitously stronger than the monomer cases. We hypothesized that the interactions among hydrophobins in the monolayer played significant roles for the enhance adhesion strengths. Extracting any single hydrophobin monomers from the surface required the break of interactions not only with the surface but also with the neighboring units. We proposed that such a mechanism may be widely explored in nature for many biofilms for surface adhesion. May also inspire the design of novel adhesives.

  15. Sulforaphane reduces vascular inflammation in mice and prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway.

    PubMed

    Nallasamy, Palanisamy; Si, Hongwei; Babu, Pon Velayutham Anandh; Pan, Dengke; Fu, Yu; Brooke, Elizabeth A S; Shah, Halley; Zhen, Wei; Zhu, Hong; Liu, Dongmin; Li, Yunbo; Jia, Zhenquan

    2014-08-01

    Sulforaphane, a naturally occurring isothiocyanate present in cruciferous vegetables, has received wide attention for its potential to improve vascular function in vitro. However, its effect in vivo and the molecular mechanism of sulforaphane at physiological concentrations remain unclear. Here, we report that a sulforaphane concentration as low as 0.5 μM significantly inhibited tumor necrosis factor-α (TNF-α)-induced adhesion of monocytes to human umbilical vein endothelial cells, a key event in the pathogenesis of atherosclerosis both in static and under flow conditions. Such physiological concentrations of sulforaphane also significantly suppressed TNF-α-induced production of monocyte chemotactic protein-1 and adhesion molecules including soluble vascular adhesion molecule-1 and soluble E-selectin, key mediators in the regulation of enhanced endothelial cell-monocyte interaction. Furthermore, sulforaphane inhibited TNF-α-induced nuclear factor (NF)-κB transcriptional activity, Inhibitor of NF-κB alpha (IκBα) degradation and subsequent NF-κB p65 nuclear translocation in endothelial cells, suggesting that sulforaphane can inhibit inflammation by suppressing NF-κB signaling. In an animal study, sulforaphane (300 ppm) in a mouse diet significantly abolished TNF-α-increased ex vivo monocyte adhesion and circulating adhesion molecules and chemokines in C57BL/6 mice. Histology showed that sulforaphane treatment significantly prevented the eruption of endothelial lining in the intima layer of the aorta and preserved elastin fibers' delicate organization, as shown by Verhoeff-van Gieson staining. Immunohistochemistry studies showed that sulforaphane treatment also reduced vascular adhesion molecule-1 and monocyte-derived F4/80-positive macrophages in the aorta of TNF-α-treated mice. In conclusion, sulforaphane at physiological concentrations protects against TNF-α-induced vascular endothelial inflammation, in both in vitro and in vivo models. This anti-inflammatory effect of sulforaphane may be, at least in part, associated with interfering with the NF-κB pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Analysis of Adhesive Characteristics of Asphalt Based on Atomic Force Microscopy and Molecular Dynamics Simulation.

    PubMed

    Xu, Meng; Yi, Junyan; Feng, Decheng; Huang, Yudong; Wang, Dongsheng

    2016-05-18

    Asphalt binder is a very important building material in infrastructure construction; it is commonly mixed with mineral aggregate and used to produce asphalt concrete. Owing to the large differences in physical and chemical properties between asphalt and aggregate, adhesive bonds play an important role in determining the performance of asphalt concrete. Although many types of adhesive bonding mechanisms have been proposed to explain the interaction forces between asphalt binder and mineral aggregate, few have been confirmed and characterized. In comparison with chemical interactions, physical adsorption has been considered to play a more important role in adhesive bonding between asphalt and mineral aggregate. In this study, the silicon tip of an atomic force microscope was used to represent silicate minerals in aggregate, and a nanoscale analysis of the characteristics of adhesive bonding between asphalt binder and the silicon tip was conducted via an atomic force microscopy (AFM) test and molecular dynamics (MD) simulations. The results of the measurements and simulations could help in better understanding of the bonding and debonding procedures in asphalt-aggregate mixtures during hot mixing and under traffic loading. MD simulations on a single molecule of a component of asphalt and monocrystalline silicon demonstrate that molecules with a higher atomic density and planar structure, such as three types of asphaltene molecules, can provide greater adhesive strength. However, regarding the real components of asphalt binder, both the MD simulations and AFM test indicate that the colloidal structural behavior of asphalt also has a large influence on the adhesion behavior between asphalt and silicon. A schematic model of the interaction between asphalt and silicon is presented, which can explain the effect of aging on the adhesion behavior of asphalt.

  17. The Neural Cell Adhesion Molecule-Derived Peptide FGL Facilitates Long-Term Plasticity in the Dentate Gyrus in Vivo

    ERIC Educational Resources Information Center

    Dallerac, Glenn; Zerwas, Meike; Novikova, Tatiana; Callu, Delphine; Leblanc-Veyrac, Pascale; Bock, Elisabeth; Berezin, Vladimir; Rampon, Claire; Doyere, Valerie

    2011-01-01

    The neural cell adhesion molecule (NCAM) is known to play a role in developmental and structural processes but also in synaptic plasticity and memory of the adult animal. Recently, FGL, a NCAM mimetic peptide that binds to the Fibroblast Growth Factor Receptor 1 (FGFR-1), has been shown to have a beneficial impact on normal memory functioning, as…

  18. Bronchial biopsy evidence for leukocyte infiltration and upregulation of leukocyte-endothelial cell adhesion molecules 6 hours after local allergen challenge of sensitized asthmatic airways.

    PubMed Central

    Montefort, S; Gratziou, C; Goulding, D; Polosa, R; Haskard, D O; Howarth, P H; Holgate, S T; Carroll, M P

    1994-01-01

    We have examined the mucosal changes occurring in bronchial biopsies from six atopic asthmatics 5-6 h after local endobronchial allergen challenge and compared them with biopsies from saline-challenged segments from the same subjects at the same time point. All the subjects developed localized bronchoconstriction in the allergen-challenged segment and had a decrease in forced expiratory volume in 1 s (FEV1) (P < 0.01) and a decrease in their methacholine provocative concentration of agonist required to reduce FEV1 from baseline by 20% (P < 0.05) 24 h postchallenge. At 6 h we observed an increase in neutrophils (P = 0.03), eosinophils (P = 0.025), mast cells (P = 0.03), and CD3+ lymphocytes (P = 0.025), but not in CD4+ or CD8+ lymphocyte counts. We also detected an increase in endothelial intercellular adhesion molecule type 1 (P < 0.05) and E-selectin (P < 0.005), but not vascular cell adhesion molecule type 1 expression with a correlative increase in submucosal and epithelial LFA+ leucocytes (P < 0.01). Thus, in sensitized asthmatics, local endobronchial allergen instillation leads to an increased inflammatory cell infiltrate of the airway mucosa that involves upregulation of specific adhesion molecules expressed on the microvasculature. Images PMID:7512980

  19. Single-cell force spectroscopy as a technique to quantify human red blood cell adhesion to subendothelial laminin.

    PubMed

    Maciaszek, Jamie L; Partola, Kostyantyn; Zhang, Jing; Andemariam, Biree; Lykotrafitis, George

    2014-12-18

    Single-cell force spectroscopy (SCFS), an atomic force microscopy (AFM)-based assay, enables quantitative study of cell adhesion while maintaining the native state of surface receptors in physiological conditions. Human healthy and pathological red blood cells (RBCs) express a large number of surface proteins which mediate cell-cell interactions, or cell adhesion to the extracellular matrix. In particular, RBCs adhere with high affinity to subendothelial matrix laminin via the basal cell adhesion molecule and Lutheran protein (BCAM/Lu). Here, we established SCFS as an in vitro technique to study human RBC adhesion at baseline and following biochemical treatment. Using blood obtained from healthy human subjects, we recorded adhesion forces from single RBCs attached to AFM cantilevers as the cell was pulled-off of substrates coated with laminin protein. We found that an increase in the overall cell adhesion measured via SCFS is correlated with an increase in the resultant total force measured on 1 µm(2) areas of the RBC membrane. Further, we showed that SCFS can detect significant changes in the adhesive response of RBCs to modulation of the cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) pathway. Lastly, we identified variability in the RBC adhesion force to laminin amongst the human subjects, suggesting that RBCs maintain diverse levels of active BCAM/Lu adhesion receptors. By using single-cell measurements, we established a powerful new method for the quantitative measurement of single RBC adhesion with specific receptor-mediated binding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Measurement of leukocyte rheology in vascular disease: clinical rationale and methodology. International Society of Clinical Hemorheology.

    PubMed

    Wautier, J L; Schmid-Schönbein, G W; Nash, G B

    1999-01-01

    The measurement of leukocyte rheology in vascular disease is a recent development with a wide range of new opportunities. The International Society of Clinical Hemorheology has asked an expert panel to propose guidelines for the investigation of leukocyte rheology in clinical situations. This article first discusses the mechanical, adhesive and related functional properties of leukocytes (especially neutrophils) which influence their circulation, and establishes the rationale for clinically-related measurements of parameters which describe them. It is concluded that quantitation of leukocyte adhesion molecules, and of their endothelial receptors may assist understanding of leukocyte behaviour in vascular disease, along with measurements of flow resistance of leukocytes, free radical production, degranulation and gene expression. For instance, vascular cell adhesion molecule (VCAM-1) is abnormally present on endothelial cells in atherosclerosis, diabetes mellitus and inflammatory conditions. Soluble forms of intercellular adhesion molecule (ICAM-1) or VCAM can be found elevated in the blood of patients with rheumatoid arthritis or infections disease. In the second part of the article, possible technical approaches are presented and possible avenues for leukocyte rheological investigations are discussed.

  1. Peptides based on alphaV-binding domains of erythrocyte ICAM-4 inhibit sickle red cell-endothelial interactions and vaso-occlusion in the microcirculation.

    PubMed

    Kaul, Dhananjay K; Liu, Xiao-du; Zhang, Xiaoqin; Mankelow, Tosti; Parsons, Stephen; Spring, Frances; An, Xiuli; Mohandas, Narla; Anstee, David; Chasis, Joel Anne

    2006-11-01

    Growing evidence shows that adhesion molecules on sickle erythrocytes interact with vascular endothelium leading to vaso-occlusion. Erythrocyte intercellular adhesion molecule-4 (ICAM-4) binds alphaV-integrins, including alphaVbeta3 on endothelial cells. To explore the contribution of ICAM-4 to vascular pathology of sickle cell disease, we tested the effects of synthetic peptides, V(16)PFWVRMS (FWV) and T(91)RWATSRI (ATSR), based on alphaV-binding domains of ICAM-4 and capable of inhibiting ICAM-4 and alphaV-binding in vitro. For these studies, we utilized an established ex vivo microvascular model system that enables intravital microscopy and quantitation of adhesion under shear flow. In this model, the use of platelet-activating factor, which causes endothelial oxidant generation and endothelial activation, mimicked physiological states known to occur in sickle cell disease. Infusion of sickle erythrocytes into platelet-activating factor-treated ex vivo rat mesocecum vasculature produced pronounced adhesion of erythrocytes; small-diameter venules were sites of maximal adhesion and frequent blockage. Both FWV and ATSR peptides markedly decreased adhesion, and no vessel blockage was observed with either of the peptides, resulting in improved hemodynamics. ATSR also inhibited adhesion in unactivated microvasculature. Although infused fluoresceinated ATSR colocalized with vascular endothelium, pretreatment with function-blocking antibody to alphaVbeta3-integrin markedly inhibited this interaction. Our data strengthen the thesis that ICAM-4 on sickle erythrocytes binds endothelium via alphaVbeta3 and that this interaction contributes to vaso-occlusion. Thus peptides or small molecule mimetics of ICAM-4 may have therapeutic potential.

  2. Endothelium dysfunction markers in patients with diabetic retinopathy.

    PubMed

    Siemianowicz, Krzysztof; Francuz, Tomasz; Gminski, Jan; Telega, Alicja; Syzdól, Marcin

    2005-03-01

    Diabetes mellitus leads to endothelium dysfunction and an accelerated progression of atherosclerosis. Vascular complications of diabetes mellitus can affect not only large and medium arteries resulting in coronary heart disease and peripheral arteries diseases, but also small vessels leading to retinopathy and nephropathy. Intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), E-selectin and von Willebrand factor (vWF) are considered as markers of endothelium dysfunction. The aim of our study was to evaluate plasma levels of ICAM-1, VCAM-1, E-selectin and vWF in patients with type 2 diabetes mellitus receiving insulin therapy and who had diabetic non-proliferative retinopathy, proliferative retinopathy, or did not develop diabetic retinopathy. There were no statistically significant differences between studied groups in any of evaluated endothelium dysfunction markers. There was no statistically significant correlation between measured parameters and a period of diabetic history. None of the studied markers presented a significant correlation with a period of insulin treatment.

  3. The histone deacetylase inhibitor butyrate inhibits melanoma cell invasion of Matrigel.

    PubMed

    Kuwajima, Akiko; Iwashita, Jun; Murata, Jun; Abe, Tatsuya

    2007-01-01

    Histone deacetylase (HDAC) inhibitors have anticancer effects. Their effects on expression of cell adhesion molecules might be related to their effects on tumor cell invasion. Murine B16-BL6 cells were treated with the HDAC inhibitors, butyrate or trichostatin A. Melanoma cell invasion of the artificial basement membrane, Matrigel, was examined by Transwell chamber assay. Butyrate as well as trichostatin A inhibited the cell growth mainly by arresting the cell cycle. The cell invasion of Matrigel was inhibited by butyrate and trichostatin A. The butyrate treatment increased the cell-cell aggregation, although neither E-cadherin nor N-cadherin mRNA were up-regulated. Both mRNA expression and protein levels of the immunoglobulin superfamily cell adhesion molecules, Mel-CAM and L1-CAM, were increased in the butyrate-treated cells. The HDAC inhibitor butyrate blocked the B16-BL6 melanoma cell invasion of Matrigel, although it increased the expression of Mel-CAM and L1-CAM which are important to the metastatic potential.

  4. Role of tumour necrosis factor receptor-1 and nuclear factor-κB in production of TNF-α-induced pro-inflammatory microparticles in endothelial cells.

    PubMed

    Lee, S K; Yang, S-H; Kwon, I; Lee, O-H; Heo, J H

    2014-09-02

    Tumour necrosis factor-α (TNF-α) is upregulated in many inflammatory diseases and is also a potent agent for microparticle (MP) generation. Here, we describe an essential role of TNF-α in the production of endothelial cell-derived microparticles (EMPs) in vivo and the function of TNF-α-induced EMPs in endothelial cells. We found that TNF-α rapidly increased blood levels of EMPs in mice. Treatment of human umbilical vein endothelial cells (HUVECs) with TNF-α also induced EMP formation in a time-dependent manner. Silencing of TNF receptor (TNFR)-1 or inhibition of the nuclear factor-κB (NF-κB) in HUVECs impaired the production of TNF-α-induced EMP. Incubation of HUVECs with PKH-67-stained EMPs showed that endothelial cells readily engulfed EMPs, and the engulfed TNF-α-induced EMPs promoted the expression of pro-apoptotic molecules and upregulated intercellular adhesion molecule-1 level on the cell surface, which led to monocyte adhesion. Collectively, our findings indicate that the generation of TNF-α-induced EMPs was mediated by TNFR1 or NF-κB and that EMPs can contribute to apoptosis and inflammation of endothelial cells.

  5. MK2 inhibitor reduces alkali burn-induced inflammation in rat cornea

    PubMed Central

    Chen, Yanfeng; Yang, Wenzhao; Zhang, Xiaobo; Yang, Shu; Peng, Gao; Wu, Ting; Zhou, Yueping; Huang, Caihong; Reinach, Peter S.; Li, Wei; Liu, Zuguo

    2016-01-01

    MK2 activation by p38 MAPK selectively induces inflammation in various diseases. We determined if a MK2 inhibitor (MK2i), improves cornea wound healing by inhibiting inflammation caused by burning rat corneas with alkali. Our study, for the first time, demonstrated that MK2i inhibited alkali burn-induced MK2 activation as well as rises in inflammation based on: a) blunting rises in inflammatory index, inflammatory cell infiltration, ED1+ macrophage and PMN+ neutrophil infiltration; b) suppressing IL-6 and IL-1β gene expression along with those of macrophage inflammatory protein-1α (MIP-1α), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1); c) reducing angiogenic gene expression levels and neovascularization (NV) whereas anti-angiogenic PEDF levels increased. In addition, this study found that MK2i did not affect human corneal epithelial cell (HCEC) proliferation and migration and had no detectable side effects on ocular surface integrity. Taken together, MK2i selectively inhibited alkali burn-induced corneal inflammation by blocking MK2 activation, these effects have clinical relevance in the treatment of inflammation related ocular surface diseases. PMID:27329698

  6. Association Between Arsenic Exposure From Drinking Water and Plasma Levels of Cardiovascular Markers

    PubMed Central

    Wu, Fen; Jasmine, Farzana; Kibriya, Muhammad G.; Liu, Mengling; Wójcik, Oktawia; Parvez, Faruque; Rahaman, Ronald; Roy, Shantanu; Paul-Brutus, Rachelle; Segers, Stephanie; Slavkovich, Vesna; Islam, Tariqul; Levy, Diane; Mey, Jacob L.; van Geen, Alexander; Graziano, Joseph H.; Ahsan, Habibul; Chen, Yu

    2012-01-01

    The authors conducted a cross-sectional study to assess the relation between arsenic exposure from drinking water and plasma levels of markers of systemic inflammation and endothelial dysfunction (matrix metalloproteinase-9, myeloperoxidase, plasminogen activator inhibitor-1, soluble E-selectin, soluble intercellular adhesion molecule-1 (ICAM-1), and soluble vascular adhesion molecule-1 (VCAM-1)) using baseline data from 668 participants (age, >30 years) in the Health Effects of Arsenic Longitudinal Study in Bangladesh (2007–2008). Both well water arsenic and urinary arsenic were positively associated with plasma levels of soluble VCAM-1. For every 1-unit increase in log-transformed well water arsenic (ln μg/L) and urinary arsenic (ln μg/g creatinine), plasma soluble VCAM-1 was 1.02 (95% confidence interval: 1.01, 1.03) and 1.04 (95% confidence interval: 1.01, 1.07) times greater, respectively. There was a significant interaction between arsenic exposure and higher body mass index, such that the increased levels of plasminogen activator inhibitor-1 and soluble VCAM-1 associated with arsenic exposure were stronger among people with higher body mass index. The findings indicate an effect of chronic arsenic exposure from drinking water on vascular inflammation and endothelial dysfunction that could be modified by body mass index and also suggest a potential mechanism underlying the association between arsenic exposure and cardiovascular disease. PMID:22534204

  7. Association between arsenic exposure from drinking water and plasma levels of cardiovascular markers.

    PubMed

    Wu, Fen; Jasmine, Farzana; Kibriya, Muhammad G; Liu, Mengling; Wójcik, Oktawia; Parvez, Faruque; Rahaman, Ronald; Roy, Shantanu; Paul-Brutus, Rachelle; Segers, Stephanie; Slavkovich, Vesna; Islam, Tariqul; Levy, Diane; Mey, Jacob L; van Geen, Alexander; Graziano, Joseph H; Ahsan, Habibul; Chen, Yu

    2012-06-15

    The authors conducted a cross-sectional study to assess the relation between arsenic exposure from drinking water and plasma levels of markers of systemic inflammation and endothelial dysfunction (matrix metalloproteinase-9, myeloperoxidase, plasminogen activator inhibitor-1, soluble E-selectin, soluble intercellular adhesion molecule-1 (ICAM-1), and soluble vascular adhesion molecule-1 (VCAM-1)) using baseline data from 668 participants (age, >30 years) in the Health Effects of Arsenic Longitudinal Study in Bangladesh (2007-2008). Both well water arsenic and urinary arsenic were positively associated with plasma levels of soluble VCAM-1. For every 1-unit increase in log-transformed well water arsenic (ln μg/L) and urinary arsenic (ln μg/g creatinine), plasma soluble VCAM-1 was 1.02 (95% confidence interval: 1.01, 1.03) and 1.04 (95% confidence interval: 1.01, 1.07) times greater, respectively. There was a significant interaction between arsenic exposure and higher body mass index, such that the increased levels of plasminogen activator inhibitor-1 and soluble VCAM-1 associated with arsenic exposure were stronger among people with higher body mass index. The findings indicate an effect of chronic arsenic exposure from drinking water on vascular inflammation and endothelial dysfunction that could be modified by body mass index and also suggest a potential mechanism underlying the association between arsenic exposure and cardiovascular disease.

  8. Tumor necrosis factor -α, interleukin-10, intercellular and vascular adhesion molecules are possible biomarkers of disease severity in complicated Plasmodium vivax isolates from Pakistan.

    PubMed

    Raza, Afsheen; Ghanchi, Najia K; Sarwar Zubairi, Ali bin; Raheem, Ahmed; Nizami, Sobia; Beg, Mohammad Asim

    2013-01-01

    Cytokine-mediated endothelial activation pathway is a known mechanism of pathogenesis employed by Plasmodium falciparum to induce severe disease symptoms in human host. Though considered benign, complicated cases of Plasmodium vivax are being reported worldwide and from Pakistan. It has been hypothesized that P.vivax utilizes similar mechanism of pathogenesis, as that of P.falciparum for manifestations of severe malaria. Therefore, the main objective of this study was to characterize the role of cytokines and endothelial activation markers in complicated Plasmodium vivax isolates from Pakistan. A case control study using plasma samples from well-characterized groups suffering from P.vivax infection including uncomplicated cases (n=100), complicated cases (n=82) and healthy controls (n=100) were investigated. Base line levels of Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-10 (IL-10), Intercellular adhesion molecule-1 (ICAM-1), Vascular adhesion molecule-1(VCAM-1) and E-selectin were measured by ELISA. Correlation of cytokines and endothelial activation markers was done using Spearman's correlation analysis. Furthermore, significance of these biomarkers as indicators of disease severity was also analyzed. The results showed that TNF-α, IL-10, ICAM-1and VCAM-1 were 3-fold, 3.7 fold and 2 fold increased between uncomplicated and complicated cases. Comparison of healthy controls with uncomplicated cases showed no significant difference in TNF-α concentrations while IL-6, IL-10, ICAM-1, VCAM-1 and E-selectin were found to be elevated respectively. In addition, significant positive correlation was observed between TNF-α and IL-10/ ICAM-1, IL-6 and IL-10, ICAM-1 and VCAM-1.A Receiver operating curve (ROC) was generated which showed that TNF-α, IL-10, ICAM-1 and VCAM-1 were the best individual predictors of complicated P.vivax malaria. The results suggest that though endothelial adhesion molecules are inducible by pro-inflammatory cytokine TNF-α, however, cytokine-mediated endothelial activation pathway is not clearly demonstrated as a mechanism of pathogenesis in complicated P.vivax malaria cases from Pakistan.

  9. Forces in yeast flocculation

    NASA Astrophysics Data System (ADS)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2015-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  10. Neuritogenic and neuroprotective properties of peptide agonists of the fibroblast growth factor receptor.

    PubMed

    Li, Shizhong; Bock, Elisabeth; Berezin, Vladimir

    2010-05-26

    Fibroblast growth factor receptors (FGFRs) interact with their cognate ligands, FGFs, and with a number of cell adhesion molecules (CAMs), such as the neural cell adhesion molecule (NCAM), mediating a wide range of events during the development and maintenance of the nervous system. Determination of protein structure, in silico modeling and biological studies have recently resulted in the identification of FGFR binding peptides derived from various FGFs and NCAM mimicking the effects of these molecules with regard to their neuritogenic and neuroprotective properties. This review focuses on recently developed functional peptide agonists of FGFR with possible therapeutic potential.

  11. Activated leucocyte cell adhesion molecule (ALCAM/CD166) regulates T cell responses in a murine model of food allergy.

    PubMed

    Kim, Y S; Kim, M N; Lee, K E; Hong, J Y; Oh, M S; Kim, S Y; Kim, K W; Sohn, M H

    2018-05-01

    Food allergy is a major public health problem. Studies have shown that long-term interactions between activated leucocyte cell adhesion molecule (ALCAM/CD166) on the surface of antigen-presenting cells, and CD6, a co-stimulatory molecule, influence immune responses. However, there are currently no studies on the functions of ALCAM in food allergy. Therefore, we aimed to identify the functions of ALCAM in ovalbumin (OVA)-induced food allergy using ALCAM-deficient mice. Wild-type (WT) and ALCAM-deficient (ALCAM -/- ) mice were sensitized intraperitoneally and with orally fed OVA. The mice were killed, and parameters related to food allergy and T helper type 2 (Th2) immune responses were analysed. ALCAM serum levels increased and mRNA expression decreased in OVA-challenged WT mice. Serum immunoglobulin (Ig)E levels, Th2 cytokine mRNA and histological injuries were higher in OVA-challenged WT mice than in control mice, and these were attenuated in ALCAM -/- mice. T cell proliferation of total cells, CD3 + CD4 + T cells and activated T cells in immune tissues were diminished in OVA-challenged ALCAM -/- mice. Proliferation of co-cultured T cells and dendritic cells (DCs) was decreased by the anti-CD6 antibody. In addition, WT mice sensitized by adoptive transfer of OVA-pulsed ALCAM -/- BM-derived DCs showed reduced immune responses. Lastly, serum ALCAM levels were higher in children with food allergy than in control subjects. In this study, serum levels of ALCAM were elevated in food allergy-induced WT mice and children with food allergy. Moreover, immune responses and T cell activation were attenuated in OVA-challenged ALCAM -/- mice. These results indicate that ALCAM regulates food allergy by affecting T cell activation. © 2018 British Society for Immunology.

  12. Extract of corn silk (stigma of Zea mays) inhibits the tumour necrosis factor-alpha- and bacterial lipopolysaccharide-induced cell adhesion and ICAM-1 expression.

    PubMed

    Habtemariam, S

    1998-05-01

    Treatment of human endothelial cells with cytokines such as tumour necrosis factor-alpha (TNF) or E. coli lipopolysaccharide (LPS) induces the expression of several adhesion molecules and enhances leukocyte adhesion to endothelial cell surface. Interfering with this leukocyte adhesion or adhesion molecules upregulation is an important therapeutic target for the treatment of bacterial sepsis and various inflammatory diseases. In the course of screening marketed European anti-inflammatory herbal drugs for TNF antagonistic activity, a crude ethanolic extract of corn silk (stigma of Zea mays) exhibited significant activity. The extract at concentrations of 9-250 micrograms/ml effectively inhibited the TNF- and LPS-induced adhesiveness of EAhy 926 endothelial cells to monocytic U937 cells. Similar concentration ranges of corn silk extract did also block the TNF and LPS but not the phorbol 12-myristate 13-acetate-induced ICAM-1 expression on EAhy 926 endothelial cell surface. The extract did not alter the production of TNF by LPS-activated macrophages and failed to inhibit the cytotoxic activity of TNF. It is concluded that corn silk possesses important therapeutic potential for TNF- and LPS-mediated leukocyte adhesion and trafficking.

  13. Clonorchis sinensis excretory-secretory products promote the migration and invasion of cholangiocarcinoma cells by activating the integrin β4-FAK/Src signaling pathway.

    PubMed

    Pak, Jhang Ho; Bashir, Qudsia; Kim, In Ki; Hong, Sung-Jong; Maeng, Sejung; Bahk, Young Yil; Kim, Tong-Soo

    2017-06-01

    Cholangiocarcinoma (CCA) is a slow-growing but highly metastatic cancer. Its metastatic potential largely explains its high mortality rate. A recognized risk factor for CCA development is infection with the liver flukes Opisthorchis viverrini and Clonorchis sinensis. We previously reported that the excretory-secretory products (ESPs) of C. sinensis promoted the three-dimensional aggregation and invasion of CCA cells. In the present study, a quantitative real-time PCR array of extracellular matrix (ECM) and adhesion molecules was used to examine the regulatory mechanism of ESP-mediated CCA cell migration and invasion. In particular, the expression levels of integrin α isoforms and β4 were upregulated in response to ESPs. Increased expression of integrin β4 was probably correlated with activation of focal adhesion kinase (FAK) and the steroid receptor coactivator (Src) family kinase and the subsequent activation of two downstream focal adhesion molecules, paxillin and vinculin. Moreover, inhibition of FAK/Src activation reduced paxillin and vinculin phosphorylation and attenuated ESP-induced CCA cell migration and invasion. These findings suggest that the integrin β4-FAK/Src signaling axis may play a crucial role in clonorchiasis-associated CCA metastasis during tumor progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Real-time digital imaging of leukocyte-endothelial interaction in ischemia-reperfusion injury (IRI) of the rat cremaster muscle.

    PubMed

    Thiele, Jan R; Goerendt, Kurt; Stark, G Bjoern; Eisenhardt, Steffen U

    2012-08-05

    Ischemia-reperfusion injury (IRI) has been implicated in a large array of pathological conditions such as cerebral stroke, myocardial infarction, intestinal ischemia as well as following transplant and cardiovascular surgery. Reperfusion of previously ischemic tissue, while essential for the prevention of irreversible tissue injury, elicits excessive inflammation of the affected tissue. Adjacent to the production of reactive oxygen species, activation of the complement system and increased microvascular permeability, the activation of leukocytes is one of the principle actors in the pathological cascade of inflammatory tissue damage during reperfusion. Leukocyte activation is a multistep process consisting of rolling, firm adhesion and transmigration and is mediated by a complex interaction between adhesion molecules in response to chemoattractants such as complement factors, chemokines, or platelet-activating factor. While leukocyte rolling in postcapillary venules is predominantly mediated by the interaction of selectins with their counter ligands, firm adhesion of leukocytes to the endothelium is selectin-controlled via binding to intercellular adhesion molecules (ICAM) and vascular cellular adhesion molecules (VCAM). Gold standard for the in vivo observation of leukocyte-endothelial interaction is the technique of intravital microscopy, first described in 1968. Though various models of IRI (ischemia-reperfusion injury) have been described for various organs, only few are suitable for direct visualization of leukocyte recruitment in the microvascular bed on a high level of image quality. We here promote the digital intravital epifluorescence microscopy of the postcapillary venule in the cremasteric microcirculation of the rat as a convenient method to qualitatively and quantitatively analyze leukocyte recruitment for IRI-research in striated muscle tissue and provide a detailed manual for accomplishing the technique. We further illustrate common pitfalls and provide useful tips which should enable the reader to truly appreciate, and safely perform the method. In a step by step protocol we depict how to get started with respiration controlled anesthesia under sufficient monitoring to keep the animal firmly anesthetized for longer periods of time. We then describe the cremasteric preparation as a thin flat sheet for outstanding optical resolution and provide a protocol for leukocyte imaging in IRI that has been well established in our laboratories.

  15. Flagellin based biomimetic coatings: From cell-repellent surfaces to highly adhesive coatings.

    PubMed

    Kovacs, Boglarka; Patko, Daniel; Szekacs, Inna; Orgovan, Norbert; Kurunczi, Sandor; Sulyok, Attila; Khanh, Nguyen Quoc; Toth, Balazs; Vonderviszt, Ferenc; Horvath, Robert

    2016-09-15

    Biomimetic coatings with cell-adhesion-regulating functionalities are intensively researched today. For example, cell-based biosensing for drug development, biomedical implants, and tissue engineering require that the surface adhesion of living cells is well controlled. Recently, we have shown that the bacterial flagellar protein, flagellin, adsorbs through its terminal segments to hydrophobic surfaces, forming an oriented monolayer and exposing its variable D3 domain to the solution. Here, we hypothesized that this nanostructured layer is highly cell-repellent since it mimics the surface of the flagellar filaments. Moreover, we proposed flagellin as a carrier molecule to display the cell-adhesive RGD (Arg-Gly-Asp) peptide sequence and induce cell adhesion on the coated surface. The D3 domain of flagellin was replaced with one or more RGD motifs linked by various oligopeptides modulating flexibility and accessibility of the inserted segment. The obtained flagellin variants were applied to create surface coatings inducing cell adhesion and spreading to different levels, while wild-type flagellin was shown to form a surface layer with strong anti-adhesive properties. As reference surfaces synthetic polymers were applied which have anti-adhesive (PLL-g-PEG poly(l-lysine)-graft-poly(ethylene glycol)) or adhesion inducing properties (RGD-functionalized PLL-g-PEG). Quantitative adhesion data was obtained by employing optical biochips and microscopy. Cell-adhesion-regulating coatings can be simply formed on hydrophobic surfaces by using the developed flagellin-based constructs. The developed novel RGD-displaying flagellin variants can be easily obtained by bacterial production and can serve as alternatives to create cell-adhesion-regulating biomimetic coatings. In the present work, we show for the first time that. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Con-nectin axons and dendrites.

    PubMed

    Beaudoin, Gerard M J

    2006-07-03

    Unlike adherens junctions, synapses are asymmetric connections, usually between axons and dendrites, that rely on various cell adhesion molecules for structural stability and function. Two cell types of adhesion molecules found at adherens junctions, cadherins and nectins, are thought to mediate homophilic interaction between neighboring cells. In this issue, Togashi et al. (see p. 141) demonstrate that the differential localization of two heterophilic interacting nectins mediates the selective attraction of axons and dendrites in cooperation with cadherins.

  17. Molecular Magnetic Resonance Imaging of Endothelial Activation in the Central Nervous System

    PubMed Central

    Gauberti, Maxime; Fournier, Antoine P.; Docagne, Fabian; Vivien, Denis; Martinez de Lizarrondo, Sara

    2018-01-01

    Endothelial cells of the central nervous system over-express surface proteins during neurological disorders, either as a cause, or a consequence, of the disease. Since the cerebral vasculature is easily accessible by large contrast-carrying particles, it constitutes a target of choice for molecular magnetic resonance imaging (MRI). In this review, we highlight the most recent advances in molecular MRI of brain endothelial activation and focus on the development of micro-sized particles of iron oxide (MPIO) targeting adhesion molecules including intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), P-Selectin and E-Selectin. We also discuss the perspectives and challenges for the clinical application of this technology in neurovascular disorders (ischemic stroke, intracranial hemorrhage, subarachnoid hemorrhage, diabetes mellitus), neuroinflammatory disorders (multiple sclerosis, brain infectious diseases, sepsis), neurodegenerative disorders (Alzheimer's disease, vascular dementia, aging) and brain cancers (primitive neoplasms, metastasis). PMID:29507614

  18. The structure of cell adhesion molecule uvomorulin. Insights into the molecular mechanism of Ca2+-dependent cell adhesion.

    PubMed Central

    Ringwald, M; Schuh, R; Vestweber, D; Eistetter, H; Lottspeich, F; Engel, J; Dölz, R; Jähnig, F; Epplen, J; Mayer, S

    1987-01-01

    We have determined the amino acid sequence of the Ca2+-dependent cell adhesion molecule uvomorulin as it appears on the cell surface. The extracellular part of the molecule exhibits three internally repeated domains of 112 residues which are most likely generated by gene duplication. Each of the repeated domains contains two highly conserved units which could represent putative Ca2+-binding sites. Secondary structure predictions suggest that the putative Ca2+-binding units are located in external loops at the surface of the protein. The protein sequence exhibits a single membrane-spanning region and a cytoplasmic domain. Sequence comparison reveals extensive homology to the chicken L-CAM. Both uvomorulin and L-CAM are identical in 65% of their entire amino acid sequence suggesting a common origin for both CAMs. Images Fig. 1. Fig. 4. Fig. 7. PMID:3501370

  19. Transglutaminase 2 expression in acute myeloid leukemia: Association with adhesion molecule expression and leukemic blast motility

    PubMed Central

    Meyer, Stefan; Ravandi-Kashani, Farhad; Borthakur, Gautam; Coombes, Kevin R.; Zhang, Nianxiang; Kornblau, Steven

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogenous disease with differential oncogene association, outcome and treatment regimens. Treatment strategies for AML have improved outcome but despite increased molecular biological information AML is still associated with poor prognosis. Proteomic analysis on the effects of a range of leukemogenic oncogenes showed that the protein transglutaminase 2 (TG2) is expressed at greater levels as a consequence of oncogenic transformation. Further analysis of this observation was performed with 511 AML samples using reverse phase proteomic arrays, demonstrating that TG2 expression was higher at relapse than diagnosis in many cases. In addition elevated TG2 expression correlated with increased expression of numerous adhesion proteins and many apoptosis regulating proteins, two processes related to leukemogenesis. TG2 has previously been linked to drug resistance in cancer and given the negative correlation between TG2 levels and peripheral blasts observed increased TG2 levels may lead to the protection of the leukemic stem cell due to increased adhesion/reduced motility. TG2 may therefore form part of a network of proteins that define poor outcome in AML patients and potentially offer a target to sensitize AML stem cells to drug treatment. PMID:23576428

  20. Interleukin-8 is associated with adhesion, migration and invasion in human gastric cancer SCG-7901 cells.

    PubMed

    Ju, Dawei; Sun, Dazhi; Xiu, Lijuan; Meng, Xianze; Zhang, Cian; Wei, Pinkang

    2012-03-01

    Interleukin-8 is known as an important chemokine involved in tumor angiogenesis and progression. Overexpression of interleukin-8 has been detected in a variety of human tumors, including gastric cancer, and is negatively correlated with prognosis. The aim of our study is to determine the effects of interleukin-8 on proliferation, adhesion, migration and invasion abilities and correlated molecular mechanisms in gastric cancer. We made recombinant interleukin-8 ranged from 0 ng/ml to 100 ng/ml interferes in human gastric cancer SCG-7901 cells in vitro. The results shown that interleukin-8 did not change cell proliferation, but promoted cell adhesion to endothelial cell and extracellular matrix components (collagen, laminin and fibronectin) as detected by Cell Counting Kit-8. And it induced migration and invasion ability based on scratch and transwell-chamber assays. Also, interleukin-8 regulated the protein and mRNA expression of matrix metalloproteinase-9, intercellular adhesion molecule-1 and E-cad and there was obviously a dose-dependent relationship, but the protein or mRNA expression of matrix metalloproteinase-2 was not obviously changed under the tested conditions. Our findings indicate that interleukin-8 is associated with adhesion, migration and invasion in gastric cancer and the regulation of matrix metalloproteinase-9, intercellular adhesion molecule-1 and E-cad expression is one of the potential molecule mechanisms. The studies imply interleukin-8 may be an alternative treatment strategy against gastric cancer.

  1. Towards atomic-level mechanics: Adhesive forces between aromatic molecules and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lechner, Christoph; Sax, Alexander F.

    2017-10-01

    The adhesive forces for desorption of the four aromatic compounds benzene, anthracene, pyrene, and tetracene from a (8,0) carbon nanotube (CNT) are investigated and compared to the desorption from graphene. The desorption energies are found to be proportional to the size of the contact zone in the adsorbent/adsorbate complex while maximum adhesive forces are proportional to the part of the contact zone where attractive interactions are reduced when external forces pull on the adsorbate. To assess the influence of the curvature, type of CNT, and the adsorbate's orientation, the desorption processes from six zigzag CNT and four armchair CNT are studied for pyrene and tetracene. For some properties, the results are independent of the curvature of the adsorbent, whereas for others we find marked differences. Aspects of elasticity are considered as well as the influence of the Pauli exclusion principle on the equilibrium geometries in adsorbent/adsorbate complexes.

  2. Effect of high-glucose conditions on human periodontal ligament endothelial cells: in vitro analysis.

    PubMed

    Maruyama, Kosuke; Sato, Soh

    2017-01-01

    Endothelial cells participate in key aspects of vascular biology, such as maintenance of capillary permeability and regulation of inflammation. According to previous reports, endothelial cells have revealed highly specific characteristics depending on the organs and tissues. In particular, periodontal endothelial cells have a higher permeability than vascular endothelial cells of other types of tissue. Periodontal disease is not only a chronic disease in oral, but also affect the entire body. Diabetes and periodontal disease are closely related, with periodontal disease even been referred to as the sixth complication of disease. However, no reports have investigated the pathophysiology of microvascular in periodontal tissue once diabetes has developed. Therefore, the aim of the present study is to investigate changes in the properties of human periodontal endothelial cells (HPDLECs) that were cultured under high-glucose conditions. We isolated HPDLECs from human periodontal ligament cells. HPDLECs were cultured under high-glucose (5.5, 11.0, 22.0 mM) and investigated proliferation, apoptosis, tube formation and the expression of cell adhesion molecules. A 5.5 mM (100 mg/dl) control was used in this study. HPDLECs stimulated with high glucose concentration exhibited suppression of cell proliferation and an increased percentage of apoptosis-positive cells. This results suggested that apoptosis was caused by TNF-α expression. The expression levels cell adhesion molecules increased. These results suggest that when HPDLECs are stimulated with a high glucose concentrations, PKC in the intracellular cell substrate is activated, increasing the expression of intercellular and vascular adhesion molecules. Thus, the results of this study demonstrate that diabetes exacerbates periodontal disease.

  3. CD15s/CD62E Interaction Mediates the Adhesion of Non-Small Cell Lung Cancer Cells on Brain Endothelial Cells: Implications for Cerebral Metastasis

    PubMed Central

    Jassam, Samah A.; Maherally, Zaynah; Ashkan, Keyoumars; Roncaroli, Federico; Fillmore, Helen L.; Pilkington, Geoffrey J.

    2017-01-01

    Expression of the cell adhesion molecule (CAM), Sialyl Lewis X (CD15s) correlates with cancer metastasis, while expression of E-selectin (CD62E) is stimulated by TNF-α. CD15s/CD62E interaction plays a key role in the homing process of circulating leukocytes. We investigated the heterophilic interaction of CD15s and CD62E in brain metastasis-related cancer cell adhesion. CD15s and CD62E were characterised in human brain endothelium (hCMEC/D3), primary non-small cell lung cancer (NSCLC) (COR-L105 and A549) and metastatic NSCLC (SEBTA-001 and NCI-H1299) using immunocytochemistry, Western blotting, flow cytometry and immunohistochemistry in human brain tissue sections. TNF-α (25 pg/mL) stimulated extracellular expression of CD62E while adhesion assays, under both static and physiological flow live-cell conditions, explored the effect of CD15s-mAb immunoblocking on adhesion of cancer cell–brain endothelium. CD15s was faintly expressed on hCMEC/D3, while high levels were observed on primary NSCLC cells with expression highest on metastatic NSCLC cells (p < 0.001). CD62E was highly expressed on hCMEC/D3 cells activated with TNF-α, with lower levels on primary and metastatic NSCLC cells. CD15s and CD62E were expressed on lung metastatic brain biopsies. CD15s/CD62E interaction was localised at adhesion sites of cancer cell–brain endothelium. CD15s immunoblocking significantly decreased cancer cell adhesion to brain endothelium under static and shear stress conditions (p < 0.001), highlighting the role of CD15s–CD62E interaction in brain metastasis. PMID:28698503

  4. CD15s/CD62E Interaction Mediates the Adhesion of Non-Small Cell Lung Cancer Cells on Brain Endothelial Cells: Implications for Cerebral Metastasis.

    PubMed

    Jassam, Samah A; Maherally, Zaynah; Smith, James R; Ashkan, Keyoumars; Roncaroli, Federico; Fillmore, Helen L; Pilkington, Geoffrey J

    2017-07-10

    Expression of the cell adhesion molecule (CAM), Sialyl Lewis X (CD15s) correlates with cancer metastasis, while expression of E-selectin (CD62E) is stimulated by TNF-α. CD15s/CD62E interaction plays a key role in the homing process of circulating leukocytes. We investigated the heterophilic interaction of CD15s and CD62E in brain metastasis-related cancer cell adhesion. CD15s and CD62E were characterised in human brain endothelium (hCMEC/D3), primary non-small cell lung cancer (NSCLC) (COR-L105 and A549) and metastatic NSCLC (SEBTA-001 and NCI-H1299) using immunocytochemistry, Western blotting, flow cytometry and immunohistochemistry in human brain tissue sections. TNF-α (25 pg/mL) stimulated extracellular expression of CD62E while adhesion assays, under both static and physiological flow live-cell conditions, explored the effect of CD15s-mAb immunoblocking on adhesion of cancer cell-brain endothelium. CD15s was faintly expressed on hCMEC/D3, while high levels were observed on primary NSCLC cells with expression highest on metastatic NSCLC cells ( p < 0.001). CD62E was highly expressed on hCMEC/D3 cells activated with TNF-α, with lower levels on primary and metastatic NSCLC cells. CD15s and CD62E were expressed on lung metastatic brain biopsies. CD15s/CD62E interaction was localised at adhesion sites of cancer cell-brain endothelium. CD15s immunoblocking significantly decreased cancer cell adhesion to brain endothelium under static and shear stress conditions ( p < 0.001), highlighting the role of CD15s-CD62E interaction in brain metastasis.

  5. Adhesion to the extracellular matrix is positively regulated by retinoic acid in HepG2 cells.

    PubMed

    Massimi, Mara; Devirgiliis, Laura Conti

    2007-02-01

    In this work, we aimed to investigate the possible modulation of cell-matrix interactions by retinoic acid (RA), in view of the well-known role of the extracellular matrix (ECM) and integrins in hepatocyte differentiation and proliferation. For this purpose, we analysed the adhesion ability of HepG2 cells on different substrates in the presence and absence of RA evaluating both the expression and cellular localisation of major proteins involved in focal contacts, using Western blot and confocal microscopy. A positive and substrate-dependent effect of RA on cell-matrix adhesion was observed after long-term culture. The increased adhesiveness in the treated cells was accompanied by an enhanced expression of beta1 and alpha3 integrin subunits, together with a redistribution of beta1 receptors clustered at the basal surface. In contrast, the levels of focal adhesion kinase (FAK), paxillin and alpha-actinin were unchanged, as was the phosphorylation state of FAK. Nonetheless, a stronger association between beta1 integrin and intracytoplasmatic proteins of focal contacts was observed in coimmunoprecipitation experiments after RA treatment, suggesting improved connection with the actin cytoskeleton. These results are consistent with previously described antiproliferative and differentiative effects of RA on transformed hepatocytes, and confirm the hypothesis of a direct influence of RA on specific adhesion molecules.

  6. [Effect of Golgi α-mannosidase 2 (GM2) gene knockdown on adhesion abilities of human gastric carcinoma cell line BGC-823 and its mechanism].

    PubMed

    Zeng, Bo; Zeng, Zhen; Liu, Chang; Yang, Yaying

    2017-06-01

    Objective To investigate the effect of Golgi α-mannosidase II (GM2) gene knockdown on adhesion abilities of BGC-823 human gastric carcinoma cells. Methods Three plasmid vectors expressing GM2 shRNAs and a negative control plasmid vector were designed, constructed and then transfected into BGC-823 cells by Lipofectamine TM 2000. After transfection, the mRNA and protein levels of GM2 in BGC-823 cells were detected by real-time quantitative PCR (qRT-PCR) and Western blotting to evaluate the transfection efficacy. The best plasmid for GM2 gene knockdown was selected and stably transfected into BGC-823 cells. Adhesion abilities of BGC-823 cells after GM2 gene silencing were observed by cell-cell, cell-matrix and cell-endothelial cell adhesion assays. At the same time, the expressions of E-cadherin, P-selectin, CD44v6 and intercellular adhesion molecule-1 (ICAM-1) proteins were detected by Western blotting after GM2 gene knockdown. Results The expression of GM2 was effectively knockdown in GM2-shRNA-2-transfected BGC-823 cells. Compared with the blank control group and the negative control group, the intercellular adhesion ability of the GM2-shRNA-2-transfected cells increased significantly, while their cell-matrix and cell-endothelium adhesion abilities markedly decreased. In GM2-shRNA-2 transfection group, E-cadherin expression was significantly elevated and the P-selectin expression was significantly reduced, while the expression levels of CD44v6 and ICAM-1 were not obviously changed. Conclusion After GM2 gene knockdown, the intercellular adhesion ability of gastric carcinoma BGC-823 cells is enhanced, while the adhesion abilities with the extracellular matrix and endothelial cells are weakened. The changes might be related to the up-regulated expression of E-cadherin and the down-regulation of P-selectin.

  7. The Lack of Utility of Circulating Biomarkers of Inflammation and Endothelial Dysfunction for Type 2 Diabetes Risk Prediction Among Postmenopausal Women

    PubMed Central

    Chao, Chun; Song, Yiqing; Cook, Nancy; Tseng, Chi-Hong; Manson, JoAnn E.; Eaton, Charles; Margolis, Karen L.; Rodriguez, Beatriz; Phillips, Lawrence S.; Tinker, Lesley F.; Liu, Simin

    2011-01-01

    Background Recent studies have linked plasma markers of inflammation and endothelial dysfunction to type 2 diabetes mellitus (DM) development. However, the utility of these novel biomarkers for type 2 DM risk prediction remains uncertain. Methods The Women’s Health Initiative Observational Study (WHIOS), a prospective cohort, and a nested case-control study within the WHIOS of 1584 incident type 2 DM cases and 2198 matched controls were used to evaluate the utility of plasma markers of inflammation and endothelial dysfunction for type 2 DM risk prediction. Between September 1994 and December 1998, 93 676 women aged 50 to 79 years were enrolled in the WHIOS. Fasting plasma levels of glucose, insulin, white blood cells, tumor necrosis factor receptor 2, interleukin 6, high-sensitivity C-reactive protein, E-selectin, soluble intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 were measured using blood samples collected at baseline. A series of prediction models including traditional risk factors and novel plasma markers were evaluated on the basis of global model fit, model discrimination, net reclassification improvement, and positive and negative predictive values. Results Although white blood cell count and levels of interleukin 6, high-sensitivity C-reactive protein, and soluble intercellular adhesion molecule 1 significantly enhanced model fit, none of the inflammatory and endothelial dysfunction markers improved the ability of model discrimination (area under the receiver operating characteristic curve, 0.93 vs 0.93), net reclassification, or predictive values (positive, 0.22 vs 0.24; negative, 0.99 vs 0.99 [using 15% 6-year type 2 DM risk as the cutoff]) compared with traditional risk factors. Similar results were obtained in ethnic-specific analyses. Conclusion Beyond traditional risk factors, measurement of plasma markers of systemic inflammation and endothelial dysfunction contribute relatively little additional value in clinical type 2 DM risk prediction in a multiethnic cohort of postmenopausal women. PMID:20876407

  8. BT-11 improves stress-induced memory impairments through increment of glucose utilization and total neural cell adhesion molecule levels in rat brains.

    PubMed

    Shin, Ki Young; Won, Beom Young; Heo, Chaejeong; Kim, Hee Jin; Jang, Dong-Pyo; Park, Cheol Hyoung; Kim, Seonghan; Kim, Hye-Sun; Kim, Young-Bo; Lee, Hyung Gun; Lee, Sang Hyung; Cho, Zang-Hee; Suh, Yoo-Hun

    2009-01-01

    In Oriental medicine, roots of Polygala tenuifolia Willdenow have been known to be an important herb that exhibits sedative effects in insomnia, palpitation with anxiety, restlessness, and disorientation in humans. We previously reported that BT-11, extracted from those roots, improved scopolamine-induced amnesia in rats and inhibited acetylcholinesterase activities in vitro. Therefore, we proposed that BT-11 could remedy stress-induced memory deficits in rats. In this study, the stress-induced memory impairments in rats were significantly reversed almost to the control level by BT-11 treatment. To seek an active component of BT-11 that plays an important role in antipsychotic effects, we compared BT-11 with 3,4,5-trimethoxycinnamic acid (TMCA), which is a constituent of those root extracts. However, the effects of TMCA were less or were not consistent with those of BT-11 in some of tests. In particular, BT-11 reversed the stress-induced reduction of glucose utilization by [(18)fluorodeoxyglucose]FDG-PET and the levels of neural cell adhesion molecule (NCAM) in rat brains to the control levels, whereas TMCA did not. Therefore, BT-11 improved stress-induced memory impairments through increment of glucose utilization and total NCAM levels in rat brains. In conclusion, BT-11 may be strongly effective against stress-induced amnesia in rats, through the combined effects of TMCA and other active components of BT-11. 2008 Wiley-Liss, Inc.

  9. Self-recognition and Ca2+-dependent carbohydrate-carbohydrate cell adhesion provide clues to the cambrian explosion.

    PubMed

    Fernàndez-Busquets, Xavier; Körnig, André; Bucior, Iwona; Burger, Max M; Anselmetti, Dario

    2009-11-01

    The Cambrian explosion of life was a relatively short period approximately 540 Ma that marked a generalized acceleration in the evolution of most animal phyla, but the trigger of this key biological event remains elusive. Sponges are the oldest extant Precambrian metazoan phylum and thus a valid model to study factors that could have unleashed the rise of multicellular animals. One such factor is the advent of self-/non-self-recognition systems, which would be evolutionarily beneficial to organisms to prevent germ-cell parasitism or the introduction of deleterious mutations resulting from fusion with genetically different individuals. However, the molecules responsible for allorecognition probably evolved gradually before the Cambrian period, and some other (external) factor remains to be identified as the missing triggering event. Sponge cells associate through calcium-dependent, multivalent carbohydrate-carbohydrate interactions of the g200 glycan found on extracellular proteoglycans. Single molecule force spectroscopy analysis of g200-g200 binding indicates that calcium affects the lifetime (+Ca/-Ca: 680 s/3 s) and bond reaction length (+Ca/-Ca: 3.47 A/2.27 A). Calculation of mean g200 dissociation times in low and high calcium within the theoretical framework of a cooperative binding model indicates the nonlinear and divergent characteristics leading to either disaggregated cells or stable multicellular assemblies, respectively. This fundamental phenomenon can explain a switch from weak to strong adhesion between primitive metazoan cells caused by the well-documented rise in ocean calcium levels at the end of Precambrian time. We propose that stronger cell adhesion allowed the integrity of genetically uniform animals composed only of "self" cells, facilitating genetic constitutions to remain within the metazoan individual and be passed down inheritance lines. The Cambrian explosion might have been triggered by the coincidence in time of primitive animals endowed with self-/non-self-recognition and of a surge in seawater calcium that increased the binding forces between their calcium-dependent cell adhesion molecules.

  10. Characterization of a Distinct Population of Circulating Human Non-Adherent Endothelial Forming Cells and Their Recruitment via Intercellular Adhesion Molecule-3

    PubMed Central

    Thompson, Emma J.; Barrett, Jeffrey M.; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F.; Bonder, Claudine S.

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis. PMID:23144795

  11. Activation of GPR4 by Acidosis Increases Endothelial Cell Adhesion through the cAMP/Epac Pathway

    PubMed Central

    Leffler, Nancy R.; Asch, Adam S.; Witte, Owen N.; Yang, Li V.

    2011-01-01

    Endothelium-leukocyte interaction is critical for inflammatory responses. Whereas the tissue microenvironments are often acidic at inflammatory sites, the mechanisms by which cells respond to acidosis are not well understood. Using molecular, cellular and biochemical approaches, we demonstrate that activation of GPR4, a proton-sensing G protein-coupled receptor, by isocapnic acidosis increases the adhesiveness of human umbilical vein endothelial cells (HUVECs) that express GPR4 endogenously. Acidosis in combination with GPR4 overexpression further augments HUVEC adhesion with U937 monocytes. In contrast, overexpression of a G protein signaling-defective DRY motif mutant (R115A) of GPR4 does not elicit any increase of HUVEC adhesion, indicating the requirement of G protein signaling. Downregulation of GPR4 expression by RNA interference reduces the acidosis-induced HUVEC adhesion. To delineate downstream pathways, we show that inhibition of adenylate cyclase by inhibitors, 2′,5′-dideoxyadenosine (DDA) or SQ 22536, attenuates acidosis/GPR4-induced HUVEC adhesion. Consistently, treatment with a cAMP analog or a Gi signaling inhibitor increases HUVEC adhesiveness, suggesting a role of the Gs/cAMP signaling in this process. We further show that the cAMP downstream effector Epac is important for acidosis/GPR4-induced cell adhesion. Moreover, activation of GPR4 by acidosis increases the expression of vascular adhesion molecules E-selectin, VCAM-1 and ICAM-1, which are functionally involved in acidosis/GPR4-mediated HUVEC adhesion. Similarly, hypercapnic acidosis can also activate GPR4 to stimulate HUVEC adhesion molecule expression and adhesiveness. These results suggest that acidosis/GPR4 signaling regulates endothelial cell adhesion mainly through the Gs/cAMP/Epac pathway and may play a role in the inflammatory response of vascular endothelial cells. PMID:22110680

  12. Multi-scale modelling of the dynamics of cell colonies: insights into cell-adhesion forces and cancer invasion from in silico simulations.

    PubMed

    Schlüter, Daniela K; Ramis-Conde, Ignacio; Chaplain, Mark A J

    2015-02-06

    Studying the biophysical interactions between cells is crucial to understanding how normal tissue develops, how it is structured and also when malfunctions occur. Traditional experiments try to infer events at the tissue level after observing the behaviour of and interactions between individual cells. This approach assumes that cells behave in the same biophysical manner in isolated experiments as they do within colonies and tissues. In this paper, we develop a multi-scale multi-compartment mathematical model that accounts for the principal biophysical interactions and adhesion pathways not only at a cell-cell level but also at the level of cell colonies (in contrast to the traditional approach). Our results suggest that adhesion/separation forces between cells may be lower in cell colonies than traditional isolated single-cell experiments infer. As a consequence, isolated single-cell experiments may be insufficient to deduce important biological processes such as single-cell invasion after detachment from a solid tumour. The simulations further show that kinetic rates and cell biophysical characteristics such as pressure-related cell-cycle arrest have a major influence on cell colony patterns and can allow for the development of protrusive cellular structures as seen in invasive cancer cell lines independent of expression levels of pro-invasion molecules.

  13. Multi-scale modelling of the dynamics of cell colonies: insights into cell-adhesion forces and cancer invasion from in silico simulations

    PubMed Central

    Schlüter, Daniela K.; Ramis-Conde, Ignacio; Chaplain, Mark A. J.

    2015-01-01

    Studying the biophysical interactions between cells is crucial to understanding how normal tissue develops, how it is structured and also when malfunctions occur. Traditional experiments try to infer events at the tissue level after observing the behaviour of and interactions between individual cells. This approach assumes that cells behave in the same biophysical manner in isolated experiments as they do within colonies and tissues. In this paper, we develop a multi-scale multi-compartment mathematical model that accounts for the principal biophysical interactions and adhesion pathways not only at a cell–cell level but also at the level of cell colonies (in contrast to the traditional approach). Our results suggest that adhesion/separation forces between cells may be lower in cell colonies than traditional isolated single-cell experiments infer. As a consequence, isolated single-cell experiments may be insufficient to deduce important biological processes such as single-cell invasion after detachment from a solid tumour. The simulations further show that kinetic rates and cell biophysical characteristics such as pressure-related cell-cycle arrest have a major influence on cell colony patterns and can allow for the development of protrusive cellular structures as seen in invasive cancer cell lines independent of expression levels of pro-invasion molecules. PMID:25519994

  14. Minimizing antibody surface density on liposomes while sustaining cytokine-activated EC targeting.

    PubMed

    Almeda, Dariela; Wang, Biran; Auguste, Debra T

    2015-02-01

    Liposomes may be engineered to target inflamed endothelium by mimicking ligand-receptor interactions between leukocytes and cytokine-activated endothelial cells (ECs). The upregulation and assembly of vascular cell adhesion molecule-1 (VCAM1) and E-selectin on the cell membrane upon exposure to cytokines have shown potential for drug delivery vehicles to target sites of chronic endothelial inflammation, such as atherosclerosis and cancer. Herein, we characterized EC surfaces by measuring the E-selectin and VCAM1 surface densities and adhesion forces of aVCAM1 and aE-selectin to ECs. We quantified the antibody density, ratio, and diffusivity of liposomes to achieve significant binding and internalization. At 1 h, the 1:1 ratio of VCAM1:E-selectin antibodies was significantly higher than 1:0 and 0:1. Significant binding and uptake was achieved at aE-selectin densities as low as 400 molecules/μm(2). The highest levels of binding and uptake were achieved when using a 1:1 ratio of VCAM1:E-selectin antibodies at a density of 1000 molecules/μm(2); this density is 85% lower than previous reports. The binding and uptake of functionalized liposomes were reduced to levels comparable to IgG functionalized liposomes upon a 10-fold reduction in liposome membrane diffusivity. We conclude with a liposomal design that discriminates between healthy and inflamed endothelium while reducing antibody surface presentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The L1-type cell adhesion molecule Neuroglian is necessary for maintenance of sensory axon advance in the Drosophila embryo.

    PubMed

    Martin, Veronica; Mrkusich, Eli; Steinel, Martin C; Rice, Jason; Merritt, David J; Whitington, Paul M

    2008-04-08

    Cell adhesion molecules have long been implicated in the regulation of axon growth, but the precise cellular roles played by individual cell adhesion molecules and the molecular basis for their action are still not well understood. We have used the sensory system of the Drosophila embryo to shed light on the mechanism by which the L1-type cell adhesion molecule Neuroglian regulates axon growth. We have found a highly penetrant sensory axon stalling phenotype in neuroglian mutant embryos. Axons stalled at a variety of positions along their normal trajectory, but most commonly in the periphery some distance along the peripheral nerve. All lateral and dorsal cluster sensory neurons examined, except for the dorsal cluster neuron dbd, showed stalling. Sensory axons were never seen to project along inappropriate pathways in neuroglian mutants and stalled axons showed normal patterns of fasciculation within nerves. The growth cones of stalled axons possessed a simple morphology, similar to their appearance in wild-type embryos when advancing along nerves. Driving expression of the wild-type form of Neuroglian in sensory neurons alone rescued the neuroglian mutant phenotype of both pioneering and follower neurons. A partial rescue was achieved by expressing the Neuroglian extracellular domain. Over/mis-expression of Neuroglian in all neurons, oenocytes or trachea had no apparent effect on sensory axon growth. We conclude that Neuroglian is necessary to maintain axon advance along axonal substrates, but is not required for initiation of axon outgrowth, axon fasciculation or recognition of correct growth substrates. Expression of Neuroglian in sensory neurons alone is sufficient to promote axon advance and the intracellular region of the molecule is largely dispensable for this function. It is unlikely, therefore, that Nrg acts as a molecular 'clutch' to couple adhesion of F-actin within the growth cone to the extracellular substrate. Rather, we suggest that Neuroglian mediates sensory axon advance by promoting adhesion of the surface of the growth cone to its substrate. Our finding that stalling of a pioneer sensory neuron is rescued by driving Neuroglian in sensory neurons alone may suggest that Neuroglian can act in a heterophilic fashion.

  16. The L1-type cell adhesion molecule Neuroglian is necessary for maintenance of sensory axon advance in the Drosophila embryo

    PubMed Central

    Martin, Veronica; Mrkusich, Eli; Steinel, Martin C; Rice, Jason; Merritt, David J; Whitington, Paul M

    2008-01-01

    Background Cell adhesion molecules have long been implicated in the regulation of axon growth, but the precise cellular roles played by individual cell adhesion molecules and the molecular basis for their action are still not well understood. We have used the sensory system of the Drosophila embryo to shed light on the mechanism by which the L1-type cell adhesion molecule Neuroglian regulates axon growth. Results We have found a highly penetrant sensory axon stalling phenotype in neuroglian mutant embryos. Axons stalled at a variety of positions along their normal trajectory, but most commonly in the periphery some distance along the peripheral nerve. All lateral and dorsal cluster sensory neurons examined, except for the dorsal cluster neuron dbd, showed stalling. Sensory axons were never seen to project along inappropriate pathways in neuroglian mutants and stalled axons showed normal patterns of fasciculation within nerves. The growth cones of stalled axons possessed a simple morphology, similar to their appearance in wild-type embryos when advancing along nerves. Driving expression of the wild-type form of Neuroglian in sensory neurons alone rescued the neuroglian mutant phenotype of both pioneering and follower neurons. A partial rescue was achieved by expressing the Neuroglian extracellular domain. Over/mis-expression of Neuroglian in all neurons, oenocytes or trachea had no apparent effect on sensory axon growth. Conclusion We conclude that Neuroglian is necessary to maintain axon advance along axonal substrates, but is not required for initiation of axon outgrowth, axon fasciculation or recognition of correct growth substrates. Expression of Neuroglian in sensory neurons alone is sufficient to promote axon advance and the intracellular region of the molecule is largely dispensable for this function. It is unlikely, therefore, that Nrg acts as a molecular 'clutch' to couple adhesion of F-actin within the growth cone to the extracellular substrate. Rather, we suggest that Neuroglian mediates sensory axon advance by promoting adhesion of the surface of the growth cone to its substrate. Our finding that stalling of a pioneer sensory neuron is rescued by driving Neuroglian in sensory neurons alone may suggest that Neuroglian can act in a heterophilic fashion. PMID:18397531

  17. Post-Training Intrahippocampal Injection of Synthetic Poly-Alpha-2,8-Sialic Acid-Neural Cell Adhesion Molecule Mimetic Peptide Improves Spatial Long-Term Performance in Mice

    ERIC Educational Resources Information Center

    Florian, Cedrick; Foltz, Jane; Norreel, Jean-Chretien; Rougon, Genevieve; Roullet, Pascal

    2006-01-01

    Several data have shown that the neural cell adhesion molecule (NCAM) is necessary for long-term memory formation and might play a role in the structural reorganization of synapses. The NCAM, encoded by a single gene, is represented by several isoforms that differ with regard to their content of alpha-2,8-linked sialic acid residues (PSA) on their…

  18. Prognostic implications of adhesion molecule expression in colorectal cancer.

    PubMed

    Seo, Kyung-Jin; Kim, Maru; Kim, Jeana

    2015-01-01

    Research on the expression of adhesion molecules, E-cadherin (ECAD), CD24, CD44 and osteopontin (OPN) in colorectal cancer (CRC) has been limited, even though CRC is one of the leading causes of cancer-related deaths. This study was conducted to evaluate the expression of adhesion molecules in CRC and to determine their relationships with clinicopathologic variables, and the prognostic significance. The expression of ECAD, CD24, CD44 and OPN was examined in 174 stage II and III CRC specimens by immunohistochemistry of TMA. Negative ECAD expression was significantly correlated with advanced nodal stage and poor tumor differentiation. Multivariate analysis showed that both negative expression of ECAD and positive expression of CD24 were independent prognostic factors for disease-free survival (DFS) in CRC patients (P<0.001, relative risk [RR] = 5.596, 95% CI = 2.712-11.549; P = 0.038, RR = 3.768, 95% CI = 1.077-13.185, respectively). However, for overall survival (OS), only ECAD negativity showed statistically significant results in multivariate analysis (P<0.001, RR = 4.819, 95% CI = 2.515-9.234). Positive expression of CD24 was associated with poor OS in univariate analysis but was of no prognostic value in multivariate analysis. In conclusion, our study suggests that among these four adhesion molecules, ECAD and CD24 expression can be considered independent prognostic factors. The role of CD44 and OPN may need further evaluation.

  19. Prognostic implications of adhesion molecule expression in colorectal cancer

    PubMed Central

    Seo, Kyung-Jin; Kim, Maru; Kim, Jeana

    2015-01-01

    Research on the expression of adhesion molecules, E-cadherin (ECAD), CD24, CD44 and osteopontin (OPN) in colorectal cancer (CRC) has been limited, even though CRC is one of the leading causes of cancer-related deaths. This study was conducted to evaluate the expression of adhesion molecules in CRC and to determine their relationships with clinicopathologic variables, and the prognostic significance. The expression of ECAD, CD24, CD44 and OPN was examined in 174 stage II and III CRC specimens by immunohistochemistry of TMA. Negative ECAD expression was significantly correlated with advanced nodal stage and poor tumor differentiation. Multivariate analysis showed that both negative expression of ECAD and positive expression of CD24 were independent prognostic factors for disease-free survival (DFS) in CRC patients (P<0.001, relative risk [RR] = 5.596, 95% CI = 2.712-11.549; P = 0.038, RR = 3.768, 95% CI = 1.077-13.185, respectively). However, for overall survival (OS), only ECAD negativity showed statistically significant results in multivariate analysis (P<0.001, RR = 4.819, 95% CI = 2.515-9.234). Positive expression of CD24 was associated with poor OS in univariate analysis but was of no prognostic value in multivariate analysis. In conclusion, our study suggests that among these four adhesion molecules, ECAD and CD24 expression can be considered independent prognostic factors. The role of CD44 and OPN may need further evaluation. PMID:26097606

  20. Peptidoglycan and lipoteichoic acid, components of the streptococcal cell wall, have marked and differential effects on adhesion molecule expression and the production of reactive oxygen species in human whole blood leukocytes.

    PubMed

    Saetre, T; Kähler, H; Foster, S J; Lyberg, T

    2000-07-01

    To elucidate the pathophysiology of infections with Streptococcus pyogenes we applied flow cytometric techniques to study dose-response and time-related effects of the streptococcal cell-wall-derived components lipoteichoic acid (LTA 0.005 to 50 microg/ml) and peptidoglycan (10 and 100 microg/ml) on the expression of leukocyte adhesion molecules, the CD14 receptor, and the production of leukocyte reactive oxygen species (ROS). LTA (50 microg/ml, 1-2 h) markedly increased the expression of CD11b (approximately 5-fold), CD11c (approximately 2-fold) and CD11a. Concomitantly, CD62L was downregulated (60%). Peptidoglycan alone or in combination with LTA had little effect on adhesion molecules, except for an amplification of the downregulation of CD62L to 90%. Monocyte CD14 expression was doubled by LTA. Leukocyte ROS production was 10-fold and 5-fold increased by peptidoglycan in granulocytes and monocytes, respectively. LTA alone had no effect, while the combination of peptidoglycan with LTA doubled the increase in ROS caused by peptidoglycan. LTA and peptidoglycan had marked and differential effects: LTA caused mainly adhesion molecule modulation, whereas peptidoglycan mainly increased ROS production. These changes are important in inflammatory cell activation and recruitment, intracellular microbial killing and adverse tissue injury.

  1. Targeting Tumor Necrosis Factor-α with Adalimumab: Effects on Endothelial Activation and Monocyte Adhesion

    PubMed Central

    Oberoi, Raghav; Schuett, Jutta; Schuett, Harald; Koch, Ann-Kathrin; Luchtefeld, Maren

    2016-01-01

    Objective It is well known that atherosclerotic inflammatory vascular disease is critically driven by oxidized lipids and cytokines. In this regard, tumor necrosis factor (TNF)-α is known as a crucial mediator of early pro-atherosclerotic events. Epidemiologic data suggest that blockade of TNF-α has beneficial effects on vascular outcomes in patients with rheumatoid arthritis, however, detailed mechanistic studies are still lacking. This study aims to elucidate effects of TNF-α blockade by adalimumab–which is approved for several inflammatory disorders–on endothelial activation and monocyte adhesion under pro-atherosclerotic conditions. Methods and Results Phorbol myristate acetate (PMA) differentiated THP-1 macrophages were stimulated with oxidized low density lipoprotein and subsequent analysis of this conditioned media (oxLDL CM) revealed a strong release of TNF-α. The TNF-α rich supernatant led to activation of human umbilical vein endothelial cells (HUVEC) as shown by enhanced expression of major adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin which was suppressed by the TNF-α inhibitor adalimumab. Accordingly, adalimumab effectively prevented THP-1 monocyte adhesion to endothelial cells under static as well as under flow conditions. Furthermore, adalimumab suppressed endothelial leakage as shown by Evan's blue diffusion across a confluent endothelial monolayer. Of note, after intraperitoneal injection we detected abundant deposition of fluorophore-labelled adalimumab in atherosclerotic plaques of hypercholesterolemic mice. Conclusion Our results show that adalimumab prevents major inflammatory effects of TNF-α on endothelial activation, endothelial monocyte adhesion, endothelial leakage and therefore extends the therapeutic options of adalimumab to limit vascular inflammation. PMID:27467817

  2. Could both vitamin D and geomagnetic activity impact serum levels of soluble cell adhesion molecules in young men?

    NASA Astrophysics Data System (ADS)

    Bleizgys, Andrius; Šapoka, Virginijus

    2016-07-01

    Vitamin D might have a role in diminishing endothelial dysfunction (ED). The initial aim was to test the hypothesis of reciprocity between levels of 25-hydroxyvitamin D (25(OH)D) and levels of soluble endothelial cell adhesion molecules (CAMs) that could serve as biomarkers of ED. Randomly selected men of age 20-39 were examined at February or March (cold season) and reexamined at August or September (warm season). Some lifestyle and anthropometrical data were recorded. Laboratory measurements, including those for serum levels of soluble CAMs—sICAM-1, sVCAM-1, sE-selectin and sP-selectin—were also performed. As some of the results were rather unexpected, indices of geomagnetic activity (GMA), obtained from the online database, were included in further analysis as a confounder. In 2012-2013, 130 men were examined in cold season, and 125 of them were reexamined in warm season. 25(OH)D levels were found to be significantly negatively associated with sVCAM-1 levels ( β = -0.15, p = 0.043 in warm season; β = -0.19, p = 0.007 for changes). Levels of sVCAM-1 and sICAM-1 from the same seasons were notably different between years and have changed in an opposite manner. Soluble P-selectin levels were higher at warm season in both years. GMA was positively associated with sVCAM-1 ( β = 0.17, p = 0.039 in cold season; β = 0.22, p = 0.002 for changes) and negatively with sICAM-1 ( β = -0.30. p < 0.001 in cold season) levels. Vitamin D might play a role in diminishing sVCAM-1 levels. Levels of sVCAM-1 and sICAM-1 were associated with the GMA; this implies a need for further research.

  3. Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase-CD26 interaction.

    PubMed Central

    Ginés, Silvia; Mariño, Marta; Mallol, Josefa; Canela, Enric I; Morimoto, Chikao; Callebaut, Christian; Hovanessian, Ara; Casadó, Vicent; Lluis, Carmen; Franco, Rafael

    2002-01-01

    The extra-enzymic function of cell-surface adenosine deaminase (ADA), an enzyme mainly localized in the cytosol but also found on the cell surface of monocytes, B cells and T cells, has lately been the subject of numerous studies. Cell-surface ADA is able to transduce co-stimulatory signals in T cells via its interaction with CD26, an integral membrane protein that acts as ADA-binding protein. The aim of the present study was to explore whether ADA-CD26 interaction plays a role in the adhesion of lymphocyte cells to human epithelial cells. To meet this aim, different lymphocyte cell lines (Jurkat and CEM T) expressing endogenous, or overexpressing human, CD26 protein were tested in adhesion assays to monolayers of colon adenocarcinoma human epithelial cells, Caco-2, which express high levels of cell-surface ADA. Interestingly, the adhesion of Jurkat and CEM T cells to a monolayer of Caco-2 cells was greatly dependent on CD26. An increase by 50% in the cell-to-cell adhesion was found in cells containing higher levels of CD26. Incubation with an anti-CD26 antibody raised against the ADA-binding site or with exogenous ADA resulted in a significant reduction (50-70%) of T-cell adhesion to monolayers of epithelial cells. The role of ADA-CD26 interaction in the lymphocyte-epithelial cell adhesion appears to be mediated by CD26 molecules that are not interacting with endogenous ADA (ADA-free CD26), since SKW6.4 (B cells) that express more cell-surface ADA showed lower adhesion than T cells. Adhesion stimulated by CD26 and ADA is mediated by T cell lymphocyte function-associated antigen. A role for ADA-CD26 interaction in cell-to-cell adhesion was confirmed further in integrin activation assays. FACS analysis revealed a higher expression of activated integrins on T cell lines in the presence of increasing amounts of exogenous ADA. Taken together, these results suggest that the ADA-CD26 interaction on the cell surface has a role in lymphocyte-epithelial cell adhesion. PMID:11772392

  4. A prospective study of endothelial activation biomarkers, including plasma angiopoietin-1 and angiopoietin-2, in Kenyan women initiating antiretroviral therapy.

    PubMed

    Graham, Susan M; Rajwans, Nimerta; Tapia, Kenneth A; Jaoko, Walter; Estambale, Benson B A; McClelland, R Scott; Overbaugh, Julie; Liles, W Conrad

    2013-06-04

    HIV-1-related inflammation is associated with increased levels of biomarkers of vascular adhesion and endothelial activation, and may increase production of the inflammatory protein angiopoietin-2 (ANG-2), an adverse prognostic biomarker in severe systemic infection. We hypothesized that antiretroviral therapy (ART) initiation would decrease endothelial activation, reducing plasma levels of ANG-2. Antiretroviral-naïve Kenyan women with advanced HIV infection were followed prospectively. Endothelial activation biomarkers including soluble intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), and E-selectin, and plasma ANG-2 and angiopoietin-1 (ANG-1) were tested in stored plasma samples from 0, 6, and 12 months after ART initiation. We used Wilcoxon matched-pairs signed rank tests to compare endothelial activation biomarkers across time-points, generalized estimating equations to analyze associations with change in log10-transformed biomarkers after ART initiation, and Cox proportional-hazards regression to analyze associations with mortality. The 102 HIV-1-seropositive women studied had advanced infection (median CD4 count, 124 cells/μL). Soluble ICAM-1 and plasma ANG-2 levels decreased at both time-points after ART initiation, with concomitant increases in the beneficial protein ANG-1. Higher ANG-2 levels after ART initiation were associated with higher plasma HIV-1 RNA, oral contraceptive pill use, pregnancy, severe malnutrition, and tuberculosis. Baseline ANG-2 levels were higher among five women who died after ART initiation than among women who did not (median 2.85 ng/mL [inter-quartile range (IQR) 2.47-5.74 ng/mL] versus median 1.32 ng/mL [IQR 0.35-2.18 ng/mL], p = 0.01). Both soluble ICAM-1 and plasma ANG-2 levels predicted mortality after ART initiation. Biomarkers of endothelial activation decreased after ART initiation in women with advanced HIV-1 infection. Changes in plasma ANG-2 were associated with HIV-1 RNA levels over 12 months of follow-up. Soluble ICAM-1 and plasma ANG-2 levels represent potential biomarkers for adverse outcomes in advanced HIV-1 infection.

  5. Brain endothelial dysfunction in cerebral adrenoleukodystrophy.

    PubMed

    Musolino, Patricia L; Gong, Yi; Snyder, Juliet M T; Jimenez, Sandra; Lok, Josephine; Lo, Eng H; Moser, Ann B; Grabowski, Eric F; Frosch, Matthew P; Eichler, Florian S

    2015-11-01

    See Aubourg (doi:10.1093/awv271) for a scientific commentary on this article.X-linked adrenoleukodystrophy is caused by mutations in the ABCD1 gene leading to accumulation of very long chain fatty acids. Its most severe neurological manifestation is cerebral adrenoleukodystrophy. Here we demonstrate that progressive inflammatory demyelination in cerebral adrenoleukodystrophy coincides with blood-brain barrier dysfunction, increased MMP9 expression, and changes in endothelial tight junction proteins as well as adhesion molecules. ABCD1, but not its closest homologue ABCD2, is highly expressed in human brain microvascular endothelial cells, far exceeding its expression in the systemic vasculature. Silencing of ABCD1 in human brain microvascular endothelial cells causes accumulation of very long chain fatty acids, but much later than the immediate upregulation of adhesion molecules and decrease in tight junction proteins. This results in greater adhesion and transmigration of monocytes across the endothelium. PCR-array screening of human brain microvascular endothelial cells after ABCD1 silencing revealed downregulation of both mRNA and protein levels of the transcription factor c-MYC (encoded by MYC). Interestingly, MYC silencing mimicked the effects of ABCD1 silencing on CLDN5 and ICAM1 without decreasing the levels of ABCD1 protein itself. Together, these data demonstrate that ABCD1 deficiency induces significant alterations in brain endothelium via c-MYC and may thereby contribute to the increased trafficking of leucocytes across the blood-brain barrier as seen in cerebral adrenouleukodystrophy. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Anti-inflammatory evaluation of the methanolic extract of Taraxacum officinale in LPS-stimulated human umbilical vein endothelial cells.

    PubMed

    Jeon, Daun; Kim, Seok Joong; Kim, Hong Seok

    2017-11-29

    Atherosclerosis is a chronic vascular inflammatory disease. Since even low-level endotoxemia constitutes a powerful and independent risk factor for the development of atherosclerosis, it is important to find therapies directed against the vascular effects of endotoxin to prevent atherosclerosis. Taraxacum officinale (TO) is used for medicinal purposes because of its choleretic, diuretic, antioxidative, anti-inflammatory, and anti-carcinogenic properties, but its anti-inflammatory effect on endothelial cells has not been established. We evaluated the anti-inflammatory activity of TO filtered methanol extracts in LPS-stimulated human umbilical vein endothelial cells (HUVECs) by monocyte adhesion and western blot assays. HUVECs were pretreated with 100 μg/ml TO for 1 h and then incubated with 1 μg/ml LPS for 24 h. The mRNA and protein expression levels of the targets (pro-inflammatory cytokines and adhesion molecules) were analyzed by real-time PCR and western blot assays. We also preformed HPLC analysis to identify the components of the TO methanol extract. The TO filtered methanol extracts dramatically inhibited LPS-induced endothelial cell-monocyte interactions by reducing vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, and pro-inflammatory cytokine expression. TO suppressed the LPS-induced nuclear translocation of NF-κB, whereas it did not affect MAPK activation. Our findings demonstrated that methanol extracts of TO could attenuate LPS-induced endothelial cell activation by inhibiting the NF-κB pathway. These results indicate the potential clinical benefits and applications of TO for the prevention of vascular inflammation and atherosclerosis.

  7. Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis.

    PubMed

    Fazly, Ahmed; Jain, Charu; Dehner, Amie C; Issi, Luca; Lilly, Elizabeth A; Ali, Akbar; Cao, Hong; Fidel, Paul L; Rao, Reeta P; Kaufman, Paul D

    2013-08-13

    Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis.

  8. Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis

    PubMed Central

    Fazly, Ahmed; Jain, Charu; Dehner, Amie C.; Issi, Luca; Lilly, Elizabeth A.; Ali, Akbar; Cao, Hong; Fidel, Paul L.; P. Rao, Reeta; Kaufman, Paul D.

    2013-01-01

    Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis. PMID:23904484

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Huayan; Yu Junping; Fu Guo

    The interaction between integrin macrophage differentiation antigen associated with complement three receptor function (Mac-1) and intercellular adhesion molecule-1 (ICAM-1), which is controlled tightly by the ligand-binding activity of Mac-1, is central to the regulation of neutrophil adhesion in host defense. Several 'inside-out' signals and extracellular metal ions or antibodies have been found to activate Mac-1, resulting in an increased adhesiveness of Mac-1 to its ligands. However, the molecular basis for Mac-1 activation is not well understood yet. In this work, we have carried out a single-molecule study of Mac-1/ICAM-1 interaction force in living cells by atomic force microscopy (AFM). Ourmore » results showed that the binding probability and adhesion force of Mac-1 with ICAM-1 increased upon Mac-1 activation. Moreover, by comparing the dynamic force spectra of different Mac-1 mutants, we expected that Mac-1 activation is governed by the downward movement of its {alpha}7 helix.« less

  10. The importance of size-exclusion characteristics of type I collagen in bonding to dentin matrices

    PubMed Central

    M, Takahashi; M, Nakajima; J, Tagami; DLS, Scheffel; RM, Carvalho; A, Mazzoni; M, Carrilho; A, Tezvergil-Mutluay; L, Breschi; L, Tjäderhane; SS, Jang; FR, Tay; KA, Agee; DH, Pashley

    2013-01-01

    The mineral phase of dentin is located primarily within collagen fibrils. During development, bone or dentin collagen fibrils are formed first and then water within the fibril is replaced with apatite crystallites. Mineralized collagen contains very little water. During dentin bonding, acid-etching of mineralized dentin solubilizes the mineral crystallites and replaces them with water. During the infiltration phase of dentin bonding, adhesive comonomers are supposed to replace all of the collagen water with adhesive monomers that are then polymerized into copolymers. The authors of a recently published review suggested that dental monomers were too large to enter and displace water from collagen fibrils. If that were true, the endogenous proteases bound to dentin collagen could be responsible for unimpeded collagen degradation that is responsible for the poor durability of resin-dentin bonds. The current work studied the size-exclusion characteristics of dentin collagen, using a gel-filtration-like column chromatography technique, using dentin powder instead of Sephadex. The elution volumes of test molecules, including adhesive monomers, revealed that adhesive monomers smaller than about 1000 Da can freely diffuse into collagen water, while molecules of 10,000 Da begin to be excluded, and bovine serum albumin (66,000 Da) was fully excluded. These results validate the concept that dental monomers can permeate between collagen molecules during infiltration by etch-and-rinse adhesives. PMID:23928333

  11. Structure and function of primitive immunoglobulin superfamily neural cell adhesion molecules: a lesson from studies on planarian.

    PubMed

    Fusaoka, Eri; Inoue, Takeshi; Mineta, Katsuhiko; Agata, Kiyokazu; Takeuchi, Kosei

    2006-05-01

    Precise wiring and proper remodeling of the neural network are essential for its normal function. The freshwater planarian is an attractive animal in which to study the formation and maintenance of the neural network due to its high regenerative capability and developmental plasticity. Although a recent study revealed that homologs of netrin and its receptors are required for regeneration and maintenance of the planarian central nervous system (CNS), the roles of cell adhesion in the formation and maintenance of the planarian neural network remain poorly understood. In the present study, we found primitive immunoglobulin superfamily cell adhesion molecules (IgCAMs) in a planarian that are homologous to vertebrate neural IgCAMs. We identified planarian orthologs of NCAM, L1CAM, contactin and DSCAM, and designated them DjCAM, DjLCAM, DjCTCAM and DjDSCAM, respectively. We further confirmed that they function as cell adhesion molecules using cell aggregation assays. DjCAM and DjDSCAM were found to be differentially expressed in the CNS. Functional analyses using RNA interference revealed that DjCAM is partly involved in axon formation, and that DjDSCAM plays crucial roles in neuronal cell migration, axon outgrowth, fasciculation and projection.

  12. Analysis of surface properties of fixed and live cells using derivatized agarose beads.

    PubMed

    Navarro, Vanessa M; Walker, Sherri L; Badali, Oliver; Abundis, Maria I; Ngo, Lylla L; Weerasinghe, Gayani; Barajas, Marcela; Zem, Gregory; Oppenheimer, Steven B

    2002-01-01

    A novel assay has been developed for the histochemical characterization of surface properties of cells based on their adhesion to agarose beads derivatized with more than 100 types of molecules, including sugars, lectins and other proteins, and amino acids. The assay simply involves mixing small quantities of washed cells and beads in droplets on glass microscope slides and determining to which beads various cell types adhere. Distilled water was found to be the best medium for this assay because added ions or molecules in other media inhibit adhesion in some cases. Many cells, however, cannot tolerate distilled water. Here we show that cells fixed with either of two fixatives (1% formaldehyde or Prefer fixative) displayed similar bead-binding properties as did live cells. Specificity of cell-bead binding was tested by including specific free molecules in the test suspensions in hapten-type inhibition experiments. If a hapten compound inhibited live-cell adhesion to a specific bead, it also inhibited fixed-cell adhesion to a specific bead. The results of these experiments suggest that fixed cells display authentic surface properties, opening the door for the use of this assay with many cell types that cannot tolerate distilled water.

  13. Changes in E-cadherin rigidity sensing regulate cell adhesion.

    PubMed

    Collins, Caitlin; Denisin, Aleksandra K; Pruitt, Beth L; Nelson, W James

    2017-07-18

    Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin-dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell-cell adhesion assay and live cell imaging of cell-cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell-cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell-cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell-cell adhesion.

  14. Changes in E-cadherin rigidity sensing regulate cell adhesion

    PubMed Central

    Collins, Caitlin; Pruitt, Beth L.; Nelson, W. James

    2017-01-01

    Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin–dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell–cell adhesion assay and live cell imaging of cell–cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell–cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell–cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell–cell adhesion. PMID:28674019

  15. Cerebrospinal fluid neural cell adhesion molecule levels and their correlation with clinical variables in patients with schizophrenia, bipolar disorder, and major depressive disorder.

    PubMed

    Hidese, Shinsuke; Hattori, Kotaro; Sasayama, Daimei; Miyakawa, Tomoko; Matsumura, Ryo; Yokota, Yuuki; Ishida, Ikki; Matsuo, Junko; Noda, Takamasa; Yoshida, Sumiko; Teraishi, Toshiya; Hori, Hiroaki; Ota, Miho; Kunugi, Hiroshi

    2017-06-02

    Neural cell adhesion molecule (NCAM) plays an important role in neural plasticity, and its altered function has been implicated in psychiatric disorders. However, previous studies have yielded inconsistent results on cerebrospinal fluid (CSF) NCAM levels in psychiatric disorders. The aim of our study was to examine CSF NCAM levels in patients with schizophrenia, bipolar disorder (BD), and major depressive disorder (MDD), and their possible relationship with clinical variables. The participants comprised 85 patients with schizophrenia, 57 patients with BD, 83 patients with MDD and 111 healthy controls, all matched for age, sex, and Japanese ethnicity. The CSF samples were drawn using a lumbar puncture and NCAM levels were quantified by an enzyme-linked immunosorbent assay. Analysis of covariance controlling for age and sex revealed that CSF NCAM levels were lower in all patients (p=0.033), and in those with BD (p=0.039), than in the controls. NCAM levels positively correlated with age in patients with BD (p<0.01), MDD (p<0.01), and the controls (p<0.01). NCAM levels negatively correlated with depressive symptom scores in patients with BD (p=0.040). In patients with schizophrenia, NCAM levels correlated negatively with negative symptom scores (p=0.029), and correlated positively with scores for cognitive functions such as category fluency (p=0.011) and letter fluency (p=0.023) scores. We showed that CSF NCAM levels were lower in psychiatric patients, particularly bipolar patients than in the controls. Furthermore, we found correlations of NCAM levels with clinical symptoms in patients with BD and in those with schizophrenia, suggesting the involvement of central NCAM in the symptom formation of severe psychiatric disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Local adherent technique for transplanting mesenchymal stem cells as a potential treatment of cartilage defect.

    PubMed

    Koga, Hideyuki; Shimaya, Masayuki; Muneta, Takeshi; Nimura, Akimoto; Morito, Toshiyuki; Hayashi, Masaya; Suzuki, Shiro; Ju, Young-Jin; Mochizuki, Tomoyuki; Sekiya, Ichiro

    2008-01-01

    Current cell therapy for cartilage regeneration requires invasive procedures, periosteal coverage and scaffold use. We have developed a novel transplantation method with synovial mesenchymal stem cells (MSCs) to adhere to the cartilage defect. For ex vivo analysis in rabbits, the cartilage defect was faced upward, filled with synovial MSC suspension, and held stationary for 2.5 to 15 minutes. The number of attached cells was examined. For in vivo analysis in rabbits, an autologous synovial MSC suspension was placed on the cartilage defect, and the position was maintained for 10 minutes to adhere the cells to the defect. For the control, either the same cell suspension was injected intra-articularly or the defects were left empty. The three groups were compared macroscopically and histologically. For ex vivo analysis in humans, in addition to the similar experiment in rabbits, the expression and effects of neutralizing antibodies for adhesion molecules were examined. Ex vivo analysis in rabbits demonstrated that the number of attached cells increased in a time-dependent manner, and more than 60% of cells attached within 10 minutes. The in vivo study showed that a large number of transplanted synovial MSCs attached to the defect at 1 day, and the cartilage defect improved at 24 weeks. The histological score was consistently better than the scores of the two control groups (same cell suspension injected intra-articularly or defects left empty) at 4, 12, and 24 weeks. Ex vivo analysis in humans provided similar results to those in rabbits. Intercellular adhesion molecule 1-positive cells increased between 1 minute and 10 minutes, and neutralizing antibodies for intercellular adhesion molecule 1, vascular cell adhesion molecule 1 and activated leukocyte-cell adhesion molecule inhibited the attachment. Placing MSC suspension on the cartilage defect for 10 minutes resulted in adherence of >60% of synovial MSCs to the defect, and promoted cartilage regeneration. This adherent method makes it possible to adhere MSCs with low invasion, without periosteal coverage, and without a scaffold.

  17. Dependence of corneal keratocyte adhesion, spreading, and integrin β1 expression on deacetylated chitosan coating.

    PubMed

    Sun, Chi-Chin; Chou, Shih-Feng; Lai, Jui-Yang; Cho, Ching-Hsien; Lee, Chih-Hung

    2016-06-01

    This study reports, for the first time, the regulation of corneal keratocyte adhesion, spreading, morphology, and integrin gene expression on chitosan coating due to the effects of deacetylation. The degree of deacetylation (DD) in chitosan materials was confirmed by elemental analysis, gel permeation chromatography, and Fourier transform infrared spectroscopy. In this study, chitosan samples with the same molecular weight level but varying DD (74.1 ± 0.5%, 84.4 ± 0.7%, and 94.2 ± 0.5%) were obtained by heat-alkaline treatment under a nitrogen atmosphere. For higher DD groups, the biopolymer carried abundant amino groups since the deacetylation process removed larger amount of acetyl groups from the chitosan molecules. Results showed that the mechanical stability and crystallinity of the chitosan coatings significantly increased with increasing DD value. Fibronectin adsorption, keratocyte adhesion, and cell spreading exhibited a positive correlation with DD due to the chemical functionality of polysaccharides (bearing acetyl and amino groups) and increase of substrate stiffness and crystallinity. In particular, when adhered to chitosan coatings with a DD value of 74.1%, the keratocytes appeared to be fibroblastic, elongated, and spindle shape, indicating a loss of their characteristic dendritic morphology. Furthermore, the gene expression of integrin β1 (i.e., a cell-matrix adhesion molecule) was significantly up-regulated on the chitosan coatings with higher DD, which supports favorable attachment of corneal keratocytes. Our findings suggest that DD-mediated physicochemical properties of chitosan coatings greatly affect cell-substrate crosstalk during corneal keratocyte cultivation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Rho-ROCK signaling differentially regulates chondrocyte spreading on fibronectin and bone sialoprotein.

    PubMed

    Gill, Kamal S; Beier, Frank; Goldberg, Harvey A

    2008-07-01

    The mammalian growth plate is a dynamic structure rich in extracellular matrix (ECM). Interactions of growth plate chondrocytes with ECM proteins regulate cell behavior. In this study, we compared chondrocyte adhesion and spreading dynamics on fibronectin (FN) and bone sialoprotein (BSP). Chondrocyte adhesion and spreading were also compared with fibroblasts to analyze potential cell-type-specific effects. Chondrocyte adhesion to BSP is independent of posttranslational modifications but is dependent on the RGD sequence in BSP. Whereas chondrocytes and fibroblasts adhered at similar levels on FN and BSP, cells displayed more actin-dependent spread on FN despite a 16x molar excess of BSP adsorbed to plastic. To identify intracellular mediators responsible for this difference in spreading, we investigated focal adhesion kinase (FAK)-Src and Rho-Rho kinase (ROCK) signaling. Although activated FAK localized to the vertices of adhered chondrocytes, levels of FAK activation did not correlate with the extent of spreading. Furthermore, Src inhibition reduced chondrocyte spreading on both FN and BSP, suggesting that FAK-Src signaling is not responsible for less cell spreading on BSP. In contrast, inhibition of Rho and ROCK in chondrocytes increased cell spreading on BSP and membrane protrusiveness on FN but did not affect cell adhesion. In fibroblasts, Rho inhibition increased fibroblast spreading on BSP while ROCK inhibition changed membrane protrusiveness of FN and BSP. In summary, we identify a novel role for Rho-ROCK signaling in regulating chondrocyte spreading and demonstrate both cell- and matrix molecule-specific mechanisms controlling cell spreading.

  19. Rho-ROCK signaling differentially regulates chondrocyte spreading on fibronectin and bone sialoprotein

    PubMed Central

    Gill, Kamal S.; Beier, Frank; Goldberg, Harvey A.

    2008-01-01

    The mammalian growth plate is a dynamic structure rich in extracellular matrix (ECM). Interactions of growth plate chondrocytes with ECM proteins regulate cell behavior. In this study, we compared chondrocyte adhesion and spreading dynamics on fibronectin (FN) and bone sialoprotein (BSP). Chondrocyte adhesion and spreading were also compared with fibroblasts to analyze potential cell-type-specific effects. Chondrocyte adhesion to BSP is independent of posttranslational modifications but is dependent on the RGD sequence in BSP. Whereas chondrocytes and fibroblasts adhered at similar levels on FN and BSP, cells displayed more actin-dependent spread on FN despite a 16× molar excess of BSP adsorbed to plastic. To identify intracellular mediators responsible for this difference in spreading, we investigated focal adhesion kinase (FAK)-Src and Rho-Rho kinase (ROCK) signaling. Although activated FAK localized to the vertices of adhered chondrocytes, levels of FAK activation did not correlate with the extent of spreading. Furthermore, Src inhibition reduced chondrocyte spreading on both FN and BSP, suggesting that FAK-Src signaling is not responsible for less cell spreading on BSP. In contrast, inhibition of Rho and ROCK in chondrocytes increased cell spreading on BSP and membrane protrusiveness on FN but did not affect cell adhesion. In fibroblasts, Rho inhibition increased fibroblast spreading on BSP while ROCK inhibition changed membrane protrusiveness of FN and BSP. In summary, we identify a novel role for Rho-ROCK signaling in regulating chondrocyte spreading and demonstrate both cell- and matrix molecule-specific mechanisms controlling cell spreading. PMID:18463228

  20. Structure and function of ameloblastin as an extracellular matrix protein: adhesion, calcium binding, and CD63 interaction in human and mouse.

    PubMed

    Zhang, Xu; Diekwisch, Thomas G H; Luan, Xianghong

    2011-12-01

    The functional significance of extracellular matrix proteins in the life of vertebrates is underscored by a high level of sequence variability in tandem with a substantial degree of conservation in terms of cell-cell and cell-matrix adhesion interactions. Many extracellular matrix proteins feature multiple adhesion domains for successful attachment to substrates, such as integrin, CD63, and heparin. Here we have used homology and ab initio modeling algorithms to compare mouse ameloblastin (mAMBN) and human ameloblastin (hABMN) isoforms and to analyze their potential for cell adhesion and interaction with other matrix molecules as well as calcium binding. Sequence comparison between mAMBN and hAMBN revealed a 26-amino-acid deletion in mAMBN, corresponding to a helix-loop-helix frameshift. The human AMBN domain (174Q-201G), homologous to the mAMBN 157E-178I helix-loop-helix region, formed a helix-loop motif with an extended loop, suggesting a higher degree of flexibility of hAMBN compared with mAMBN, as confirmed by molecular dynamics simulation. Heparin-binding domains, CD63-interaction domains, and calcium-binding sites in both hAMBN and mAMBN support the concept of AMBN as an extracellular matrix protein. The high level of conservation between AMBN functional domains related to adhesion and differentiation was remarkable when compared with only 61% amino acid sequence homology. © 2011 Eur J Oral Sci.

  1. Children with postsurgical capillary leak syndrome can be distinguished by antigen expression on neutrophils and monocytes

    NASA Astrophysics Data System (ADS)

    Tarnok, Attila; Pipek, Michal; Valet, Guenter; Richter, Jacqueline; Hambsch, Joerg; Schneider, Peter

    1999-04-01

    Our initial studies indicate that children who develop post- operative capillary leak syndrome (CLS) following cardiac surgery with cardiopulmonary bypass (CPB) can be distinguished based on their pre-operative level of circulating cytokines an adhesion molecules. We tested flow cytometric analysis of surface antigen expression as a potential assay for risk assessment of CLS. 24th preoperative blood samples were stained with monoclonal antibodies for the adhesion molecules ICAM-1, LFA1, MAC1, (beta) -integrin, activation markers CD25, CD54, CD69, HLA- DR, CD14 or CD4. Cells were measured on a dual-laser flow cytometer calibrated with microbeads. Antigen expression was detected as mean fluorescence intensity. The data indicate, that neutrophils of CLS patients express preoperatively higher levels of LFA1 and monocytes higher levels of HLA-DR and activation markers thus are in a state of activation. This could in combination with surgical trauma and CPB lead to their additional stimulation and migration into sites of inflammation and induce postoperative CLS. It is planned to set up a Flow-Classification program for individual risk assessment. By discriminate analysis over 80 percent of the patients were correctly classified. Our preliminary study indicates that flow cytometry with its low samples requirements and rapid access of the results could be a powerful tool to perform risk assessment prior to pediatric open heart surgery.

  2. Moderate endurance exercise in patients with sickle cell anaemia: effects on oxidative stress and endothelial activation.

    PubMed

    Faes, Camille; Balayssac-Siransy, Edwige; Connes, Philippe; Hivert, Ludovic; Danho, Clotaire; Bogui, Pascal; Martin, Cyril; Pialoux, Vincent

    2014-01-01

    Very few studies have investigated the effects of exercise on the biological parameters involved in vaso-occlusive events in sickle cell anaemia (SCA). The aim of this study was to test how a mild-moderate endurance exercise modulates oxidative stress, nitric oxide bioavailability and endothelial activation in SCA patients and healthy individuals. Eleven patients with SCA and 15 healthy subjects completed a 20-min duration submaximal cycling exercise at ≈45 Watts. Plasma markers of oxidative stress, antioxidant activity, endothelial activation and nitric oxide bioavailability were investigated before and after the exercise. Nitric oxide levels, anti-oxidant capacity, soluble (s)E-selectin and sP-selectin did not change in response to this exercise. Except for the malondialdehyde levels, which increased in the two groups, the other markers of oxidative stress remained unchanged in both groups in response to exercise. Soluble vascular cell adhesion molecule 1 levels were increased at the end of exercise in both groups. sL-selectin decreased and soluble intercellular adhesion molecule 1 increased with exercise in SCA patients only. The present data suggest that patients with SCA may undertake mild-moderate physical activities without any acute clinical complications, but care should be taken because oxidative stress and endothelial activation significantly increased in some patients. © 2013 John Wiley & Sons Ltd.

  3. Cancer Cell Glycocalyx Mediates Mechanostransduction and Flow-Regulated Invasion

    PubMed Central

    Qazi, Henry; Palomino, Rocio; Shi, Zhong-Dong; Munn, Lance L.; Tarbell, John M.

    2014-01-01

    Mammalian cells are covered by a surface proteoglycan (glycocalyx) layer, and it is known that blood vessel-lining endothelial cells use the glycocalyx to sense and transduce the shearing forces of blood flow into intracellular signals. Tumor cells in vivo are exposed to forces from interstitial fluid flow that may affect metastatic potential but are not reproduced by most in vitro cell motility assays. We hypothesized that glycocalyx-mediated mechanotransduction of interstitial flow shear stress is an un-recognized factor that can significantly enhance metastatic cell motility and play a role in augmentation of invasion. Involvement of MMP levels, cell adhesion molecules (CD44, α3 integrin), and glycocalyx components (heparan sulfate and hyaluronan) were investigated in a cell/collagen gel suspension model designed to mimic the interstitial flow microenvironment. Physiologic levels of flow upregulated MMP levels and enhanced the motility of metastatic cells. Blocking the flow-enhanced expression of MMP actvity or adhesion molecules (CD44 and integrins) resulted in blocking the flow-enhanced migratory activity. The presence of a glycocalyx-like layer was verified around tumor cells, and the degradation of this layer by hyaluronidase and heparinase blocked the flow-regulated invasion. This study shows for the first time that interstitial flow enhancement of metastatic cell motility can be mediated by the cell surface glycocalyx – a potential target for therapeutics. PMID:24077103

  4. Inhibition of sickle red cell adhesion and vasoocclusion in the microcirculation by antioxidants.

    PubMed

    Kaul, Dhananjay K; Liu, Xiao-du; Zhang, Xiaoqin; Ma, Li; Hsia, Carleton J C; Nagel, Ronald L

    2006-07-01

    In sickle cell anemia (SCA), inflammatory (i.e., intravascular sickling and transient vasoocclusive) events result in chronic endothelial activation. In addition to sickling behavior, sickle (SS) red blood cells exhibit abnormal interaction with the vascular endothelium, which is considered to have an important role in initiation of vasoocclusion. Upregulation of endothelial adhesion molecules caused by oxidants (and cytokines) may lead to increased SS red cell adhesion. We hypothesize that endothelial activation is indispensable in SS red cell adhesion to the endothelium and that antioxidants will have an inhibitory effect on this interaction. We examined the effect of selected antioxidants in ex vivo mesocecum vasculature, a well-established model that allows measurement of hemodynamic parameters and, by intravital microscopy, can allow quantification of adhesion. We tested antioxidant enzymes (SOD and catalase) and an intravascular SOD mimetic, polynitroxyl albumin (PNA), in the presence of platelet-activating factor (PAF); the latter causes endothelial oxidant generation and endothelial activation, which characterize SCA. In ex vivo preparations, PAF not only induced marked endothelial oxidant generation, it also enhanced SS red cell adhesion, resulting in frequent blockage of small-diameter venules. The adhesion, inversely related to venular diameter, and vasoocclusion were markedly inhibited by antioxidants, resulting in improved hemodynamics. PNA, the most effective antioxidant, also abolished SS red cell adhesion in non-PAF-activated preparations. Thus SS red cell adhesion and related vasoocclusion may be ameliorated by antioxidant therapy with a stable and long-acting molecule (e.g., PNA).

  5. Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion

    NASA Astrophysics Data System (ADS)

    Pirzer, T.; Geisler, M.; Scheibel, T.; Hugel, T.

    2009-06-01

    In this paper we probe the influence of surface properties, pH and salt on the adhesion of recombinant spider silk proteins onto solid substrates with single molecule force spectroscopy. A single engineered spider silk protein (monomeric C16 or dimeric (QAQ)8NR3) is covalently bound with one end to an AFM tip, which assures long-time measurements for hours with one and the same protein. The tip with the protein is brought into contact with various substrates at various buffer conditions and then retracted to desorb the protein. We observe a linear dependence of the adhesion force on the concentration of three selected salts (NaCl, NaH2PO4 and NaI) and a Hofmeister series both for anions and cations. As expected, the more hydrophobic C16 shows a higher adhesion force than (QAQ)8NR3, and the adhesion force rises with the hydrophobicity of the substrate. Unexpected is the magnitude of the dependences—we never observe a change of more than 30%, suggesting a surprisingly well-regulated balance between dispersive forces, water-structure-induced forces as well as co-solute-induced forces in biopolymer adhesion.

  6. Free energy of adhesion of lipid bilayers on silica surfaces

    NASA Astrophysics Data System (ADS)

    Schneemilch, M.; Quirke, N.

    2018-05-01

    The free energy of adhesion per unit area (hereafter referred to as the adhesion strength) of lipid arrays on surfaces is a key parameter that determines the nature of the interaction between materials and biological systems. Here we report classical molecular simulations of water and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers at model silica surfaces with a range of silanol densities and structures. We employ a novel technique that enables us to estimate the adhesion strength of supported lipid bilayers in the presence of water. We find that silanols on the silica surface form hydrogen bonds with water molecules and that the water immersion enthalpy for all surfaces varies linearly with the surface density of these hydrogen bonds. The adhesion strength of lipid bilayers is a linear function of the surface density of hydrogen bonds formed between silanols and the lipid molecules on crystalline surfaces. Approximately 20% of isolated silanols form such bonds but more than 99% of mutually interacting geminal silanols do not engage in hydrogen bonding with water. On amorphous silica, the bilayer displays much stronger adhesion than expected from the crystalline surface data. We discuss the implications of these results for nanoparticle toxicity.

  7. The clinical spectrum of mutations in L1, a neuronal cell adhesion molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fransen, E.; Vits, L.; Van Camp, G.

    1996-07-12

    Mutations in the gene encoding the neuronal cell adhesion molecule L1 are responsible for several syndromes with clinical overlap, including X-linked hydrocephalus (XLH, HSAS), MASA (mental retardation, aphasia, shuffling gait, adducted thumbs) syndrome, complicated X-linked spastic paraplegia (SP 1), X-linked mental retardation-clasped thumb (MR-CT) syndrome, and some forms of X-linked agenesis of the corpus callosum (ACC). We review 34 L1 mutations in patients with these phenotypes. 22 refs., 3 figs., 4 tabs.

  8. Inhibition of endothelial receptor expression and of T-cell ligand activity by mycophenolate mofetil.

    PubMed

    Blaheta, R A; Leckel, K; Wittig, B; Zenker, D; Oppermann, E; Harder, S; Scholz, M; Weber, S; Schuldes, H; Encke, A; Markus, B H

    1998-12-01

    The novel immunosuppressive drug mycophenolate mofetil (CellCept, MMF) blocks DNA-synthesis by the inhibition of the enzyme inosine monophosphate dehydrogenase (IMDH). IMDH is also involved in the synthesis of adhesion receptors which are known to play an important role in the regulation of cell-cell contacts. Therefore, application of MMF might lead to a reduction of cellular infiltrates in the course of transplant rejection. To evaluate the therapeutic value of MMF, we investigated to what extent MMF blocks T-lymphocyte infiltration in vitro with regard to (a) adhesion to endothelial cells, (b) horizontal migration along these cells and (c) penetration through the endothelial cells. The results demonstrated a strong inhibition of both CD4+ and CD8+ T-cell adhesion and penetration by MMF. The ID50 value for CD4+ T-cell adhesion was calculated to be 0.03 microM and the ID50 value for CD4+ T-cell penetration 1.21 microM. MMF did not significantly influence the horizontal migration of T-lymphocytes along the human vascular endothelial cell (HUVEC) borders. FACS-analysis revealed a diminished E-selectin and P-selectin expression on endothelial cell membranes in the presence of MMF. Although MMF did not interfere with the synthesis of T-cell adhesion ligands, the binding activity of lymphocytic leucocyte function associated antigen 1 (LFA-1), very late antigen 4 (VLA-4) and PSGL-1 (P-selectin glycoprotein ligand 1) to immobilized intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and P-selectin was impaired. Moreover, MMF prevented VLA-4 and PSGL-1 receptor accumulation on the membranes of T-cell pseudopodia. It can be concluded that MMF possesses potent infiltration blocking properties. MMF evoked down-regulation of specific endothelial membrane molecules and the loss of protein localization in the lymphocyte protrusions might be predominantly responsible for the observed blockade of cell adhesion and penetration.

  9. [Effect of haw leaf extract and its preparation on polymorphonuclear leucocyte adhesion during HUVEC anoxia/reoxygenation injury].

    PubMed

    Li, Peng; Fu, Jian-hua; Li, Xin-zhi

    2008-08-01

    To study the effect and molecular mechanism of two haw leaf extracts, Vitexin-rhamnoside (VR) and Vitexin-glucoside (VG), and their preparation, Aoshaen injection (AI), on the polymorphonuclear leucocyte (PMN) adhesion during human umbilical vein endothelial cell (HUVEC) anoxia/reoxygenation (A/R) injury. The cell model of A/R injury duplicated by breaking off the oxygen supplying of HUVEC for 60 min followed with reoxygenating for 30 min (phase 1) or 240 min (phase 2) was taken as the experimental objective. The effects of testing drugs (VR, VG and AI) on PMN adhesion in the model cells were measured by enzyme immunoassay, and their effects on PMN superficial adhesion molecule CD11/CD18 expression were measured by flow cytometer respectively. After 60 min of anoxia, HUVEC was shrunk and deformed. The adhesion between PMN and HUVEC significantly revealed at phase 1 in the model group, but it was fewer in the normal cell group, and also lesser in the groups treated with various drugs. The condition of cell adhesion revealed at phase 2 was the similar to that at phase 1. All testing drugs, VR, VG and AI, showed inhibitory effect on the cell adhesion at either phase 1 or phase 2, showing a certain dose-effect relationship. The expression of CD11/ CD18 was also inhibited by the testing drugs, and a good dose-effect relation was shown by VG and AI. At the resting condition, there are almost no expression of CD11/CD18 molecule, but it could be enhanced by incubating PMN with supernate of A/R injured HUVEC culture, and more marked at phase 1. Adding the test drugs into the supernate could inhibit the enhancing of CD11/CD18 molecule expression and reduce the PMN-HUVEC adhesion, which may be one of the molecular mechanisms of haw leaf extracts and their preparation in protecting heart against A/R injury.

  10. Elevated levels of neural recognition molecule L1 in the cerebrospinal fluid of patients with Alzheimer disease and other dementia syndromes.

    PubMed

    Strekalova, Helen; Buhmann, Carsten; Kleene, Ralf; Eggers, Christian; Saffell, Jane; Hemperly, John; Weiller, Cornelius; Müller-Thomsen, Tomas; Schachner, Melitta

    2006-01-01

    In this study we surveyed a total of 218 cerebrospinal fluid (CSF) samples from patients with different neurological diseases including Alzheimer disease, non-Alzheimer forms of dementia, other neurodegenerative diseases without dementia and normal controls to quantitate by capture ELISA the concentrations of the immunoglobulin superfamily adhesion molecules L1 and NCAM, and characterized by immunoblot analysis the molecular forms of L1 and NCAM. We found a significant increase of L1 and a strong tendency for increase of the soluble fragments of NCAM in the CSF of Alzheimer patients compared to the normal control group. The proteolytic fragments of L1, but not NCAM were also elevated in patients with vascular dementia and dementia of mixed type. Higher L1 concentrations were observed irrespective of age and gender. NCAM concentrations were independent of gender, but positively correlated with age and, surprisingly, also with incidence of multiple sclerosis. Thus, there was an influence of Alzheimer and non-Alzheimer dementias and neurodegeneration on L1, whereas age and neurodegeneration influenced NCAM concentrations. These observations point to an abnormal processing and/or shedding of L1 and NCAM in dementia-related neurodegeneration and age, respectively, reflecting changes in adhesion molecule-related cell interactions.

  11. Soluble intercellular adhesion molecule-1 and clinical outcomes in patients with acute lung injury

    PubMed Central

    Eisner, Mark D.; Parsons, Polly E.; Thompson, B. Taylor; Conner, Edward R.; Matthay, Michael A.; Ware, Lorraine B.

    2009-01-01

    Objective To determine if levels of soluble intercellular adhesion molecule-1 (sICAM-1), a marker of alveolar epithelial and endothelial injury, differ in patients with hydrostatic pulmonary edema and acute lung injury (ALI) and are associated with clinical outcomes in patients with ALI. Design, setting, and participants Measurement of sICAM-1 levels in (1) plasma and edema fluid from 67 patients with either hydrostatic pulmonary edema or ALI enrolled in an observational, prospective single center study, and (2) in plasma from 778 patients with ALI enrolled in a large multi-center randomized controlled trial of ventilator strategy. Results In the single-center study, levels of sICAM-1 were significantly higher in both edema fluid and plasma (median 938 and 545 ng/ml, respectively) from ALI patients compared to hydrostatic edema patients (median 384 and 177 ng/ml, P < 0.03 for both comparisons). In the multi-center study, higher plasma sICAM-1 levels were associated with poor clinical outcomes in both unadjusted and multivariable models. Subjects with ALI whose plasma sICAM-1 levels increased over the first 3 days of the study had a higher risk of death, after adjusting for other important predictors of outcome (odds ratio 1.48; 95% CI 1.03–2.12, P = 0.03). Conclusions Both plasma and edema fluid levels of sICAM-1 are higher in patients with ALI than in patients with hydrostatic pulmonary edema. Higher plasma sICAM-1 levels and increasing sICAM-1 levels over time are associated with poor clinical outcomes in ALI. Measurement of sICAM-1 levels may be useful for identifying patients at highest risk of poor outcomes from ALI. PMID:18670758

  12. Toxicological effect of TiO2 nanoparticle-induced myocarditis in mice

    NASA Astrophysics Data System (ADS)

    Hong, Fashui; Wang, Ling; Yu, Xiaohong; Zhou, Yingjun; Hong, Jie; Sheng, Lei

    2015-08-01

    Currently, impacts of exposure to TiO2 nanoparticles (NPs) on the cardiovascular system are not well understood. The aim of this study was to investigate whether TiO2 NPs induce myocarditis and its underlying molecular mechanism in the cardiac inflammation in mice. Mice were exposed to TiO2 NPs for 6 months; biochemical parameters of serum and expression of Th1-related and Th2-related cytokines in the heart were investigated. The results showed that TiO2 NP exposure resulted in cardiac lesions coupling with pulmonary inflammation; increases of aspartate aminotransferase (AST), creatine kinase (CK), C-reaction protein (CRP), lactate dehydrogenase (LDH), alpha-hydroxybutyrate dehydrogenase (HBDH), adhesion molecule-1 (ICAM-1), and monocyte chemoattractant protein-1 (MCP-1) levels; and a reduction of nitric oxide (NOx) level in the serum. These were associated with increases of nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), interleukin (IL)-4, IL-6, transforming growth factor-β (TGF-β), creatine kinase, CRP, adhesion molecule-1, and monocyte chemoattractant protein-1, interferon-γ (IFN-γ), signal transducers and activators of transcription (STAT)1, STAT3, or STAT6, GATA-binding domain-3, GATA-binding domain-4, endothelin-1 expression levels, and T-box expressed in T cells expression level that is the master regulator of pro-inflammatory cytokines and transcription factors in the heart. These findings imply that TiO2 NP exposure may increase the occurrence and development of cardiovascular diseases.

  13. Modulation of sickle cell crisis by naturally occurring band 3 specific antibodies -- a malaria link.

    PubMed

    Kennedy, James Randall

    2002-05-01

    This paper's focus is prevention of sickle cell adhesion resulting from the erythrocyte's prematurely denatured hemoglobin. This denatured hemoglobin causes a molecule called band 3 to cluster on the erythrocyte's surface and adhere to the CD36 molecule located on the microvascular endothelium. Natural antibodies recognize these clusters on senescent erythrocytes and prevent their endothelial adhesion and target them for reticuloendothelial elimination. Band 3 is also displayed on the erythrocytes of individuals with falciparum malaria and the vaso-occlusive pathology in these patients is prevented in individuals with sickle trait. The hypothesis is that prematurely denatured sickle hemoglobin results in an up regulation of natural antibodies which control erythrocyte adhesion in both malaria and sickle cell disease.

  14. Involvement of adhesion molecules (CD11a-ICAM-1) in vascular endothelial cell injury elicited by PMA-stimulated neutrophils.

    PubMed

    Fujita, H; Morita, I; Murota, S

    1991-06-14

    Protective effect of anti-CD11a and anti-ICAM-1 antibodies on the cytotoxicity induced by PMA-stimulated neutrophils was studied using cultured endothelial cells isolated from bovine carotid artery. Anti-CD11a antibody and anti-ICAM-1 antibody inhibited the endothelial cell injury induced by the activated neutrophils in a dose dependent manner. On the other hand, both antibodies themselves had no effect on either the luminol chemiluminescence released out of the activated neutrophils or the adhesion of the neutrophils to the endothelial cell monolayer. These data suggest that these adhesion molecules play some important roles in the vascular endothelial cell injury elicited by activated neutrophils.

  15. Vasostatin-2 inhibits cell proliferation and adhesion in vascular smooth muscle cells, which are associated with the progression of atherosclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Jianghong, E-mail: jianghonghou@163.com; Xue, Xiaolin; Li, Junnong

    2016-01-22

    Recently, the serum expression level of vasostatin-2 was found to be reduced and is being studied as an important indicator to assess the presence and severity of coronary artery disease; the functional properties of vasostatin-2 and its relationship with the development of atherosclerosis remains unclear. In this study, we attempted to detect the expression of vasostatin-2 and its impact on human vascular smooth muscle cells (VSMCs). Quantitative real-time PCR (qRT-PCR) and western blot were used to assess the expression level of vasostatin-2 in VSMCs between those from atherosclerosis and disease-free donors; we found that vasostatin-2 was significantly down-regulated in atherosclerosismore » patient tissues and cell lines. In addition, the over-expression of vasostatin-2 apparently inhibits cell proliferation and migration in VSMCs. Gain-of-function in vitro experiments further show that vasostatin-2 over-expression significantly inhibits inflammatory cytokines release in VSMCs. In addition, cell adhesion experimental analysis showed that soluble adhesion molecules (sICAM-1, sVCAM-1) had decreased expression when vasostatin-2 was over-expressed in VSMCs. Therefore, our results indicate that vasostatin-2 is an atherosclerosis-related factor that can inhibit cell proliferation, inflammatory response and cell adhesion in VSMCs. Taken together, our results indicate that vasostatin-2 could serve as a potential diagnostic biomarker and therapeutic option for human atherosclerosis in the near future. - Highlights: • Vasostatin-2 levels were down-regulated in atherosclerosis patient tissues and VSMCs. • Ectopic expression of vasostatin-2 directly affects cell proliferation and migration in vitro. • Ectopic expression of vasostatin-2 protein affects pro-inflammatory cytokines release in VSMCs. • Ectopic expression of vasostatin-2 protein affects cell adhesion in VSMCs.« less

  16. The neural cell adhesion molecule promotes FGFR-dependent phosphorylation and membrane targeting of the exocyst complex to induce exocytosis in growth cones.

    PubMed

    Chernyshova, Yana; Leshchyns'ka, Iryna; Hsu, Shu-Chan; Schachner, Melitta; Sytnyk, Vladimir

    2011-03-09

    The exocyst complex is an essential regulator of polarized exocytosis involved in morphogenesis of neurons. We show that this complex binds to the intracellular domain of the neural cell adhesion molecule (NCAM). NCAM promotes FGF receptor-mediated phosphorylation of two tyrosine residues in the sec8 subunit of the exocyst complex and is required for efficient recruitment of the exocyst complex to growth cones. NCAM at the surface of growth cones induces Ca(2+)-dependent vesicle exocytosis, which is blocked by an inhibitor of L-type voltage-dependent Ca(2+) channels and tetanus toxin. Preferential exocytosis in growth cones underlying neurite outgrowth is inhibited in NCAM-deficient neurons as well as in neurons transfected with phosphorylation-deficient sec8 and dominant-negative peptides derived from the intracellular domain of NCAM. Thus, we reveal a novel role for a cell adhesion molecule in that it regulates addition of the new membrane to the cell surface of growth cones in developing neurons.

  17. Substrate stiffness governs the initiation of B cell activation by the concerted signaling of PKCβ and focal adhesion kinase

    PubMed Central

    Shaheen, Samina; Wan, Zhengpeng; Li, Zongyu; Chau, Alicia; Li, Xinxin; Zhang, Shaosen; Liu, Yang; Yi, Junyang; Zeng, Yingyue; Wang, Jing; Chen, Xiangjun; Xu, Liling; Chen, Wei; Wang, Fei; Lu, Yun; Zheng, Wenjie; Shi, Yan; Sun, Xiaolin; Li, Zhanguo; Xiong, Chunyang; Liu, Wanli

    2017-01-01

    The mechanosensing ability of lymphocytes regulates their activation in response to antigen stimulation, but the underlying mechanism remains unexplored. Here, we report that B cell mechanosensing-governed activation requires BCR signaling molecules. PMA-induced activation of PKCβ can bypass the Btk and PLC-γ2 signaling molecules that are usually required for B cells to discriminate substrate stiffness. Instead, PKCβ-dependent activation of FAK is required, leading to FAK-mediated potentiation of B cell spreading and adhesion responses. FAK inactivation or deficiency impaired B cell discrimination of substrate stiffness. Conversely, adhesion molecules greatly enhanced this capability of B cells. Lastly, B cells derived from rheumatoid arthritis (RA) patients exhibited an altered BCR response to substrate stiffness in comparison with healthy controls. These results provide a molecular explanation of how initiation of B cell activation discriminates substrate stiffness through a PKCβ-mediated FAK activation dependent manner. DOI: http://dx.doi.org/10.7554/eLife.23060.001 PMID:28755662

  18. Short communication: Conservation of Streptococcus uberis adhesion molecule and the sua gene in strains of Streptococcus uberis isolated from geographically diverse areas.

    PubMed

    Yuan, Ying; Dego, Oudessa Kerro; Chen, Xueyan; Abadin, Eurife; Chan, Shangfeng; Jory, Lauren; Kovacevic, Steven; Almeida, Raul A; Oliver, Stephen P

    2014-12-01

    The objective was to identify and sequence the sua gene (GenBank no. DQ232760; http://www.ncbi.nlm.nih.gov/genbank/) and detect Streptococcus uberis adhesion molecule (SUAM) expression by Western blot using serum from naturally S. uberis-infected cows in strains of S. uberis isolated in milk from cows with mastitis from geographically diverse areas of the world. All strains evaluated yielded a 4.4-kb sua-containing PCR fragment that was subsequently sequenced. Deduced SUAM AA sequences from those S. uberis strains evaluated shared >97% identity. The pepSUAM sequence located at the N terminus of SUAM was >99% identical among strains of S. uberis. Streptococcus uberis adhesion molecule expression was detected in all strains of S. uberis tested. These results suggest that sua is ubiquitous among strains of S. uberis isolated from diverse geographic locations and that SUAM is immunogenic. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Asthma causes inflammation of human pulmonary arteries and decreases vasodilatation induced by prostaglandin I2 analogs.

    PubMed

    Foudi, Nabil; Badi, Aouatef; Amrane, Mounira; Hodroj, Wassim

    2017-12-01

    Asthma is a chronic inflammatory disease associated with increased cardiovascular events. This study assesses the presence of inflammation and the vascular reactivity of pulmonary arteries in patients with acute asthma. Rings of human pulmonary arteries obtained from non-asthmatic and asthmatic patients were set up in organ bath for vascular tone monitoring. Reactivity was induced by vasoconstrictor and vasodilator agents. Protein expression of inflammatory markers was detected by western blot. Prostanoid releases and cyclic adenosine monophosphate (cAMP) levels were quantified using specific enzymatic kits. Protein expression of cluster of differentiation 68, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and cyclooxygenase-2 was significantly increased in arteries obtained from asthmatic patients. These effects were accompanied by an alteration of vasodilatation induced by iloprost and treprostinil, a decrease in cAMP levels and an increase in prostaglandin (PG) E 2 and PGI 2 synthesis. The use of forskolin (50 µmol/L) has restored the vasodilatation and cAMP release. No difference was observed between the two groups in reactivity induced by norepinephrine, angiotensin II, PGE 2 , KCl, sodium nitroprusside, and acetylcholine. Acute asthma causes inflammation of pulmonary arteries and decreases vasodilation induced by PGI 2 analogs through the impairment of cAMP pathway.

  20. Holding Tight: Cell Junctions and Cancer Spread.

    PubMed

    Knights, Alexander J; Funnell, Alister P W; Crossley, Merlin; Pearson, Richard C M

    2012-01-01

    Cell junctions are sites of intercellular adhesion that maintain the integrity of epithelial tissue and regulate signalling between cells. These adhesive junctions are comprised of protein complexes that serve to establish an intercellular cytoskeletal network for anchoring cells, in addition to regulating cell polarity, molecular transport and communication. The expression of cell adhesion molecules is tightly controlled and their downregulation is essential for epithelial-mesenchymal transition (EMT), a process that facilitates the generation of morphologically and functionally diverse cell types during embryogenesis. The characteristics of EMT are a loss of cell adhesion and increased cellular mobility. Hence, in addition to its normal role in development, dysregulated EMT has been linked to cancer progression and metastasis, the process whereby primary tumors migrate to invasive secondary sites in the body. This paper will review the current understanding of cell junctions and their role in cancer, with reference to the abnormal regulation of junction protein genes. The potential use of cell junction molecules as diagnostic and prognostic markers will also be discussed, as well as possible therapies for adhesive dysregulation.

  1. The conveyor belt hypothesis for thymocyte migration: participation of adhesion and de-adhesion molecules.

    PubMed

    Villa-Verde, D M; Calado, T C; Ocampo, J S; Silva-Monteiro, E; Savino, W

    1999-05-01

    Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble beta-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.

  2. Effects of cryopreservation on excretory function, cellular adhesion molecules and vessel lumen formation in human umbilical vein endothelial cells.

    PubMed

    Cai, Guoping; Lai, Binbin; Hong, Huaxing; Lin, Peng; Chen, Weifu; Zhu, Zhong; Chen, Haixiao

    2017-07-01

    Cryopreservation is widely used in regenerative medicine for tissue preservation. In the present study, the effects of cryopreservation on excretory function, cellular adhesion molecules and vessel lumen formation in human umbilical vein endothelial cells (HUVECs) were investigated. After 0, 4, 8, 12 or 24 weeks of cryopreservation in liquid nitrogen, the HUVECs were thawed. The excretory functions markers (endothelin‑1, prostaglandin E1, von Willebrand factor and nitric oxide) of HUVECs were measured by ELISA assay. The expression of intercellular adhesion molecule‑1 (ICAM‑1) in HUVECs was analyzed using flow cytometry. An angiogenesis assay was used to determine the angiogeneic capabilities of the thawed HUVECs. The results demonstrated that cryopreserved/thawed and recultivated HUVECs were unsuitable for tissue‑engineered microvascular construction. Specifically, the excretory function of the cells was significantly decreased in the post‑cryopreserved HUVECs at 24 weeks. In addition, the level of ICAM‑1 in HUVECs was significantly upregulated from the fourth week of cryopreservation. Furthermore, the tube‑like structure‑forming potential was weakened with increasing cryopreservation duration, and the numbers of lumen and the length of the pipeline were decreased in the thawed HUVECs, in a time‑dependent manner. In conclusion, the results of the present study revealed that prolonged cryopreservation may lead to HUVEC dysfunction and did not create stable cell lines for tissue‑engineered microvascular construction.

  3. Hyperoxaluria Requires TNF Receptors to Initiate Crystal Adhesion and Kidney Stone Disease.

    PubMed

    Mulay, Shrikant R; Eberhard, Jonathan N; Desai, Jyaysi; Marschner, Julian A; Kumar, Santhosh V R; Weidenbusch, Marc; Grigorescu, Melissa; Lech, Maciej; Eltrich, Nuru; Müller, Lisa; Hans, Wolfgang; Hrabě de Angelis, Martin; Vielhauer, Volker; Hoppe, Bernd; Asplin, John; Burzlaff, Nicolai; Herrmann, Martin; Evan, Andrew; Anders, Hans-Joachim

    2017-03-01

    Intrarenal crystals trigger inflammation and renal cell necroptosis, processes that involve TNF receptor (TNFR) signaling. Here, we tested the hypothesis that TNFRs also have a direct role in tubular crystal deposition and progression of hyperoxaluria-related CKD. Immunohistochemical analysis revealed upregulated tubular expression of TNFR1 and TNFR2 in human and murine kidneys with calcium oxalate (CaOx) nephrocalcinosis-related CKD compared with controls. Western blot and mRNA expression analyses in mice yielded consistent data. When fed an oxalate-rich diet, wild-type mice developed progressive CKD, whereas Tnfr1-, Tnfr2- , and Tnfr1/2- deficient mice did not. Despite identical levels of hyperoxaluria, Tnfr1-, Tnfr2- , and Tnfr1/2 -deficient mice also lacked the intrarenal CaOx deposition and tubular damage observed in wild-type mice. Inhibition of TNFR signaling prevented the induced expression of the crystal adhesion molecules, CD44 and annexin II, in tubular epithelial cells in vitro and in vivo , and treatment with the small molecule TNFR inhibitor R-7050 partially protected hyperoxaluric mice from nephrocalcinosis and CKD. We conclude that TNFR signaling is essential for CaOx crystal adhesion to the luminal membrane of renal tubules as a fundamental initiating mechanism of oxalate nephropathy. Furthermore, therapeutic blockade of TNFR might delay progressive forms of nephrocalcinosis in oxalate nephropathy, such as primary hyperoxaluria. Copyright © 2017 by the American Society of Nephrology.

  4. Hyperoxaluria Requires TNF Receptors to Initiate Crystal Adhesion and Kidney Stone Disease

    PubMed Central

    Mulay, Shrikant R.; Eberhard, Jonathan N.; Desai, Jyaysi; Marschner, Julian A.; Kumar, Santhosh V.R.; Weidenbusch, Marc; Grigorescu, Melissa; Lech, Maciej; Eltrich, Nuru; Müller, Lisa; Hans, Wolfgang; Hrabě de Angelis, Martin; Vielhauer, Volker; Hoppe, Bernd; Asplin, John; Burzlaff, Nicolai; Herrmann, Martin; Evan, Andrew

    2017-01-01

    Intrarenal crystals trigger inflammation and renal cell necroptosis, processes that involve TNF receptor (TNFR) signaling. Here, we tested the hypothesis that TNFRs also have a direct role in tubular crystal deposition and progression of hyperoxaluria-related CKD. Immunohistochemical analysis revealed upregulated tubular expression of TNFR1 and TNFR2 in human and murine kidneys with calcium oxalate (CaOx) nephrocalcinosis-related CKD compared with controls. Western blot and mRNA expression analyses in mice yielded consistent data. When fed an oxalate-rich diet, wild-type mice developed progressive CKD, whereas Tnfr1-, Tnfr2-, and Tnfr1/2-deficient mice did not. Despite identical levels of hyperoxaluria, Tnfr1-, Tnfr2-, and Tnfr1/2-deficient mice also lacked the intrarenal CaOx deposition and tubular damage observed in wild-type mice. Inhibition of TNFR signaling prevented the induced expression of the crystal adhesion molecules, CD44 and annexin II, in tubular epithelial cells in vitro and in vivo, and treatment with the small molecule TNFR inhibitor R-7050 partially protected hyperoxaluric mice from nephrocalcinosis and CKD. We conclude that TNFR signaling is essential for CaOx crystal adhesion to the luminal membrane of renal tubules as a fundamental initiating mechanism of oxalate nephropathy. Furthermore, therapeutic blockade of TNFR might delay progressive forms of nephrocalcinosis in oxalate nephropathy, such as primary hyperoxaluria. PMID:27612997

  5. A Functional Analysis on the Interspecies Interaction between Mouse LFA-1 and Human Intercellular Adhesion Molecule-1 at the Cell Level

    PubMed Central

    Núñez, David; Comas, Laura; Lanuza, Pilar M.; Sánchez-Martinez, Diego; Pérez-Hernández, Marta; Catalán, Elena; Domingo, María Pilar; Velázquez-Campoy, Adrián; Pardo, Julián; Gálvez, Eva M.

    2017-01-01

    The interaction between intercellular adhesion molecules (ICAM) and the integrin leukocyte function-associated antigen-1 (LFA-1) is crucial for the regulation of several physiological and pathophysiological processes like cell-mediated elimination of tumor or virus infected cells, cancer metastasis, or inflammatory and autoimmune processes. Using purified proteins it was reported a species restriction for the interaction of ICAM-1 and LFA-1, being mouse ICAM-1 able to interact with human LFA-1 but not human ICAM-1 with mouse LFA-1. However, in vivo results employing tumor cells transfected with human ICAM-1 suggest that functionally mouse LFA-1 can recognize human ICAM-1. In order to clarify the interspecies cross-reactivity of the ICAM-1/LFA-1 interaction, we have performed functional studies analyzing the ability of human soluble ICAM-1 and human/mouse LFA-1 derived peptides to inhibit cell aggregation and adhesion as well as cell-mediated cytotoxicity in both mouse and human systems. In parallel, the affinity of the interaction between mouse LFA-1-derived peptides and human ICAM-1 was determined by calorimetry assays. According to the results obtained, it seems that human ICAM-1 is able to interact with mouse LFA-1 on intact cells, which should be taking into account when using humanized mice and xenograft models for the study of immune-related processes. PMID:29312326

  6. A Functional Analysis on the Interspecies Interaction between Mouse LFA-1 and Human Intercellular Adhesion Molecule-1 at the Cell Level.

    PubMed

    Núñez, David; Comas, Laura; Lanuza, Pilar M; Sánchez-Martinez, Diego; Pérez-Hernández, Marta; Catalán, Elena; Domingo, María Pilar; Velázquez-Campoy, Adrián; Pardo, Julián; Gálvez, Eva M

    2017-01-01

    The interaction between intercellular adhesion molecules (ICAM) and the integrin leukocyte function-associated antigen-1 (LFA-1) is crucial for the regulation of several physiological and pathophysiological processes like cell-mediated elimination of tumor or virus infected cells, cancer metastasis, or inflammatory and autoimmune processes. Using purified proteins it was reported a species restriction for the interaction of ICAM-1 and LFA-1, being mouse ICAM-1 able to interact with human LFA-1 but not human ICAM-1 with mouse LFA-1. However, in vivo results employing tumor cells transfected with human ICAM-1 suggest that functionally mouse LFA-1 can recognize human ICAM-1. In order to clarify the interspecies cross-reactivity of the ICAM-1/LFA-1 interaction, we have performed functional studies analyzing the ability of human soluble ICAM-1 and human/mouse LFA-1 derived peptides to inhibit cell aggregation and adhesion as well as cell-mediated cytotoxicity in both mouse and human systems. In parallel, the affinity of the interaction between mouse LFA-1-derived peptides and human ICAM-1 was determined by calorimetry assays. According to the results obtained, it seems that human ICAM-1 is able to interact with mouse LFA-1 on intact cells, which should be taking into account when using humanized mice and xenograft models for the study of immune-related processes.

  7. Ursodeoxycholic Acid (UDCA) Exerts Anti-Atherogenic Effects by Inhibiting Endoplasmic Reticulum (ER) Stress Induced by Disturbed Flow.

    PubMed

    Chung, Jihwa; Kim, Kyoung Hwa; Lee, Seok Cheol; An, Shung Hyun; Kwon, Kihwan

    2015-10-01

    Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis.

  8. Involvement of inflammation in acute coronary syndromes assessed by levels of high-sensitivity C-reactive protein, matrix metalloproteinase-9 and soluble vascular-cell adhesion molecule-1.

    PubMed

    Nomoto, Kazumiki; Oguchi, Sumito; Watanabe, Ikuyoshi; Kushiro, Toshio; Kanmatsuse, Katsuo

    2003-11-01

    Inflammation is important in the development of atherosclerosis. Matrix metalloproteinases (MMPs) and interferon-gamma which participate in collagen degradation are pathological factors in plaque vulnerability as an important mechanism underlying acute coronary syndrome. This study investigated whether inflammation is related to the onset of acute coronary syndrome. This study included 56 patients with acute coronary syndrome (ACS group), 104 patients with chronic coronary artery disease (S group), and 38 control subjects with no evidence of ischemic heart disease (C group). High-sensitivity C-reactive protein (hs-CRP), MMP-9, and interferon-gamma were measured in peripheral blood samples. Soluble adhesion molecules (VCAM-1, ICAM-1) were also measured as inflammatory markers. The hs-CRP level was significantly higher in the ACS group (44.5 mg/l) than in the S group (2.1 mg/l) and the C group (0.6 mg/l) (p < 0.0001). The MMP-9 level was also significantly higher in the ACS group (333.8 ng/ml) than in the S group (110.8 ng/ml) and the C group (72.0 ng/ml) (p < 0.0001). The VCAM-1 level was significantly higher in the ACS group (506.5 ng/ml) than in the C group (448.8 ng/ml) (p < 0.05). The ICAM-1 level and the interferon-gamma level did not differ between the groups. There was a significant positive correlation between the level of hs-CRP and the level of the collagen degradation product MMP-9 (r = 0.52) in all subjects. These results suggest that plaque destabilized by MMP-9 produced in response to inflammation participates in the mechanism of acute coronary syndrome.

  9. Soluble forms of the cell adhesion molecule L1 produced by insect and baculovirus-transduced mammalian cells enhance Schwann cell motility.

    PubMed

    Lavdas, Alexandros A; Efrose, Rodica; Douris, Vassilis; Gaitanou, Maria; Papastefanaki, Florentia; Swevers, Luc; Thomaidou, Dimitra; Iatrou, Kostas; Matsas, Rebecca

    2010-12-01

    For biotechnological applications, insect cell lines are primarily known as hosts for the baculovirus expression system that is capable to direct synthesis of high levels of recombinant proteins through use of powerful viral promoters. Here, we demonstrate the implementation of two alternative approaches based on the baculovirus system for production of a mammalian recombinant glycoprotein, comprising the extracellular part of the cell adhesion molecule L1, with potential important therapeutic applications in nervous system repair. In the first approach, the extracellular part of L1 bearing a myc tag is produced in permanently transformed insect cell lines and purified by affinity chromatography. In the second approach, recombinant baculoviruses that express L1-Fc chimeric protein, derived from fusion of the extracellular part of L1 with the Fc part of human IgG1, under the control of a mammalian promoter are used to infect mammalian HEK293 and primary Schwann cells. Both the extracellular part of L1 bearing a myc tag accumulating in the supernatants of insect cultures as well as L1-Fc secreted by transduced HEK293 or Schwann cells are capable of increasing the motility of Schwann cells with similar efficiency in a gap bridging bioassay. In addition, baculovirus-transduced Schwann cells show enhanced motility when grafted on organotypic cultures of neonatal brain slices while they retain their ability to myelinate CNS axons. This proof-of-concept that the migratory properties of myelin-forming cells can be modulated by recombinant protein produced in insect culture as well as by means of baculovirus-mediated adhesion molecule expression in mammalian cells may have beneficial applications in the field of CNS therapies. ©2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.

  10. Effects of radiotherapy and chemotherapy on angiogenesis and leukocyte infiltration in rectal cancer.

    PubMed

    Baeten, Coen I M; Castermans, Karolien; Lammering, Guido; Hillen, Femke; Wouters, Bradly G; Hillen, Harry F P; Griffioen, Arjan W; Baeten, Cornelius G M I

    2006-11-15

    We and others have shown that angiogenesis and leukocyte infiltration are important prognostic factors in rectal cancer. However, little is known about its possible changes in response to radiotherapy (RTX), which is frequently given to rectal tumors as a neoadjuvant treatment to improve the prognosis. We therefore investigated the biologic effects of RTX on these parameters using fresh-frozen biopsy samples of tumor and normal mucosa tissue before and after RTX. Biopsy samples were taken from a total of 34 patients before and after either a short course or long course of RTX combined with chemotherapy. The following parameters were analyzed by immunohistochemistry, flow cytometry, or quantitative real-time polymerase chain reaction: Microvessel density, leukocyte infiltration, proliferating epithelial and tumor cells, proliferating endothelial cells, adhesion molecule expression on endothelial cells, and the angiogenic mRNA profile. The tumor biopsy samples taken after RTX treatment demonstrated a significant decrease in microvessel density and the number of proliferating tumor cells and proliferating endothelial cells (p < 0.001). In contrast, the leukocyte infiltration, the levels of basic fibroblast growth factor in carcinoma tissue, and the adhesion molecule expression on endothelial cells in normal as well as carcinoma tissue increased significantly (p < 0.05). Our data show that together with an overall decrease in tumor cell and endothelial cell proliferation, RTX results in an increase in the expression of adhesion molecules that stimulate leukocyte infiltration. This suggests the possibility that, in addition to its direct cytotoxic effect, radiation may also stimulate an immunologic tumor response that could contribute to the documented improvement in local tumor control and distal failure rate of rectal cancers.

  11. The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: proteomic approach.

    PubMed

    Addabbo, Francesco; Ratliff, Brian; Park, Hyeong-Cheon; Kuo, Mei-Chuan; Ungvari, Zoltan; Csiszar, Anna; Ciszar, Anna; Krasnikov, Boris; Krasnikof, Boris; Sodhi, Komal; Zhang, Fung; Nasjletti, Alberto; Goligorsky, Michael S

    2009-01-01

    Endothelial cell dysfunction is associated with bioavailable nitric oxide deficiency and an excessive generation of reactive oxygen species. We modeled this condition by chronically inhibiting nitric oxide generation with subpressor doses of N(G)-monomethyl-L-arginine (L-NMMA) in C57B6 and Tie-2/green fluorescent protein mouse strains. L-NMMA-treated mice exhibited a slight reduction in vasorelaxation ability, as well as detectable abnormalities in soluble adhesion molecules (soluble intercellular adhesion molecule-1 and vascular cellular adhesion molecule-1, and matrix metalloproteinase 9), which represent surrogate indicators of endothelial dysfunction. Proteomic analysis of the isolated microvasculature using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy revealed abnormal expression of a cluster of mitochondrial enzymes, which was confirmed using immunodetection. Aconitase-2 and enoyl-CoA-hydratase-1 expression levels were decreased in L-NMMA-treated animals; this phenotype was absent in nitric oxide synthase-1 and -3 knockout mice. Depletion of aconitase-2 and enoyl-CoA-hydratase-1 resulted in the inhibition of the Krebs cycle and enhanced pyruvate shunting toward the glycolytic pathway. To assess mitochondrial mass in vivo, co-localization of green fluorescent protein and MitoTracker fluorescence was detected by intravital microscopy. Quantitative analysis of fluorescence intensity showed that L-NMMA-treated animals exhibited lower fluorescence of MitoTracker in microvascular endothelia as a result of reduced mitochondrial mass. These findings provide conclusive and unbiased evidence that mitochondriopathy represents an early manifestation of endothelial dysfunction, shifting cell metabolism toward "metabolic hypoxia" through the selective depletion of both aconitase-2 and enoyl-CoA-hydratase-1. These findings may contribute to an early preclinical diagnosis of endothelial dysfunction.

  12. Crosstalk between reticular adherens junctions and platelet endothelial cell adhesion molecule-1 regulates endothelial barrier function.

    PubMed

    Fernández-Martín, Laura; Marcos-Ramiro, Beatriz; Bigarella, Carolina L; Graupera, Mariona; Cain, Robert J; Reglero-Real, Natalia; Jiménez, Anaïs; Cernuda-Morollón, Eva; Correas, Isabel; Cox, Susan; Ridley, Anne J; Millán, Jaime

    2012-08-01

    Endothelial cells provide a barrier between the blood and tissues, which is reduced during inflammation to allow selective passage of molecules and cells. Adherens junctions (AJ) play a central role in regulating this barrier. We aim to investigate the role of a distinctive 3-dimensional reticular network of AJ found in the endothelium. In endothelial AJ, vascular endothelial-cadherin recruits the cytoplasmic proteins β-catenin and p120-catenin. β-catenin binds to α-catenin, which links AJ to actin filaments. AJ are usually described as linear structures along the actin-rich intercellular contacts. Here, we show that these AJ components can also be organized in reticular domains that contain low levels of actin. Reticular AJ are localized in areas where neighboring cells overlap and encompass the cell adhesion receptor platelet endothelial cell adhesion molecule-1 (PECAM-1). Superresolution microscopy revealed that PECAM-1 forms discrete structures distinct from and distributed along AJ, within the voids of reticular domains. Inflammatory tumor necrosis factor-α increases permeability by mechanisms that are independent of actomyosin-mediated tension and remain incompletely understood. Reticular AJ, but not actin-rich linear AJ, were disorganized by tumor necrosis factor-α. This correlated with PECAM-1 dispersal from cell borders. PECAM-1 inhibition with blocking antibodies or small interfering RNA specifically disrupted reticular AJ, leaving linear AJ intact. This disruption recapitulated typical tumor necrosis factor-α-induced alterations of barrier function, including increased β-catenin phosphorylation, without altering the actomyosin cytoskeleton. We propose that reticular AJ act coordinately with PECAM-1 to maintain endothelial barrier function in regions of low actomyosin-mediated tension. Selective disruption of reticular AJ contributes to permeability increase in response to tumor necrosis factor-α.

  13. Cytoadherence and sequestration in Plasmodium falciparum: defining the ties that bind.

    PubMed

    Sherman, Irwin W; Eda, Shigetoshi; Winograd, Enrique

    2003-08-01

    Infected erythrocytes containing the more mature stages of the human malaria Plasmodium falciparum may adhere to endothelial cells and uninfected red cells. These phenomena, called sequestration and rosetting, respectively, are involved in both host pathogenesis and parasite survival. This review provides a critical summary of recent advances in the characterization of the molecules of the infected red blood cell involved in adhesion, i.e. parasite-encoded molecules (PfEMP1, MESA, rifins, stevor, clag 9, histidine-rich protein), a modified host membrane protein (band 3) and exofacial exposure of phosphatidylserine, as well as receptors on the endothelium, i.e. thrombospondin, CD36, ICAM-1 (intercellular adhesion molecule), and chondroitin sulfate.

  14. Use of a novel cell adhesion method and digital measurement to show stimulus-dependent variation in somatic and oral ciliary beat frequency in Paramecium.

    PubMed

    Bell, Wade E; Hallworth, Richard; Wyatt, Todd A; Sisson, Joseph H

    2015-01-01

    When Paramecium encounters positive stimuli, the membrane hyperpolarizes and ciliary beat frequency increases. We adapted an established immobilization protocol using a biological adhesive and a novel digital analysis system to quantify beat frequency in immobilized Paramecium. Cells showed low mortality and demonstrated beat frequencies consistent with previous studies. Chemoattractant molecules, reduction in external potassium, and posterior stimulation all increased somatic beat frequency. In all cases, the oral groove cilia maintained a higher beat frequency than mid-body cilia, but only oral cilia from cells stimulated with chemoattactants showed an increase from basal levels. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  15. Low testosterone levels are related to oxidative stress, mitochondrial dysfunction and altered subclinical atherosclerotic markers in type 2 diabetic male patients.

    PubMed

    Rovira-Llopis, Susana; Bañuls, Celia; de Marañon, Aranzazu M; Diaz-Morales, Noelia; Jover, Ana; Garzon, Sandra; Rocha, Milagros; Victor, Victor M; Hernandez-Mijares, Antonio

    2017-07-01

    Low testosterone levels in men are associated with type 2 diabetes and cardiovascular risk. However, the role of testosterone in mitochondrial function and leukocyte-endothelium interactions is unknown. Our aim was to evaluate the relationship between testosterone levels, metabolic parameters, oxidative stress, mitochondrial function, inflammation and leukocyte-endothelium interactions in type 2 diabetic patients. The study was performed in 280 male type 2 diabetic patients and 50 control subjects. Anthropometric and metabolic parameters, testosterone levels, reactive oxygen species (ROS) production, mitochondrial membrane potential, TNFα, adhesion molecules and leukocyte-endothelium cell interactions were evaluated. Testosterone levels were lower in diabetic patients. Total and mitochondrial ROS were increased and mitochondrial membrane potential, SOD and GSR expression levels were reduced in diabetic patients. TNFα, ICAM-1 and VCAM-1 levels, leukocyte rolling flux and adhesion were all enhanced in diabetic patients, while rolling velocity was reduced. Testosterone levels correlated negatively with glucose, HOMA-IR, HbA1c, triglycerides, nonHDL-c, ApoB, hs-CRP and AIP, and positively with HDL-c and ApoA1. The multivariable regression model showed that HDL-c, HOMA-IR and age were independently associated with testosterone. Furthermore, testosterone levels correlated positively with membrane potential and rolling velocity and negatively with ROS production, VCAM-1, rolling flux and adhesion. Our data highlight that low testosterone levels in diabetic men are related to impaired metabolic profile and mitochondrial function and enhanced inflammation and leukocyte-endothelium cell interaction, which leaves said patients at risk of cardiovascular events. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Brain endothelial adhesion molecule expression in experimental colitis.

    PubMed

    Sans, M; Kawachi, S; Soriano, A; Palacín, A; Morise, Z; Granger, D N; Piqué, J M; Grisham, M B; Panés, J

    2001-04-01

    1) To determine if endothelial expression of adhesion molecules involved in leukocyte recruitment is increased in the brain and other organs in four different models of experimental colitis, and 2) to investigate whether leukocyte infiltration occurs in the brain of colitic animals. Endothelial vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression was quantified, using the dual radiolabeled antibody technique in rats with trinitrobenzenesulfonic acid (TNBS)-induced colitis, in mice with dextran sulfate sodium (DSS)-induced colitis, in SCID mice reconstituted with CD45RBhigh T-cells, and in IL-10-/- mice. Leukocyte infiltration in the brain of TNBS-induced colitic rats was assessed by myeloperoxidase activity and immunohistochemical staining with anti-CD45 monoclonal antibody. Marked upregulation of brain endothelial VCAM-1 (2- to 5.5-fold) was consistently found in colitic animals in the four models studied. Brain VCAM-1 strongly correlated with colon VCAM-1 and colon weight. By contrast, upregulation of brain ICAM-1 in colitic animals was only observed in the CD45RBhigh transfer (3-fold) and the TNBS-induced (1.5-fold models). Heart and muscle VCAM-1 and ICAM-1 were not upregulated in colitic animals in the majority of models studied. There was no leukocyte infiltration into the brain of TNBS-induced colitic rats. Our study demonstrates a marked and specific upregulation of endothelial VCAM-1 in the brain of colitic animals. This activation of cerebral endothelial cells was not associated with an infiltration of leukocytes into brain tissue.

  17. Cytoadherence of Plasmodium falciparum to intercellular adhesion molecule 1 and chondroitin-4-sulfate expressed by the syncytiotrophoblast in the human placenta.

    PubMed Central

    Maubert, B; Guilbert, L J; Deloron, P

    1997-01-01

    Late stages of Plasmodium falciparum-infected erythrocytes (IRBCs) frequently sequester in the placentas of pregnant women, a phenomenon associated with low birth weight of the offspring. To investigate the physiological mechanism of this sequestration, we developed an in vitro assay for studying the cytoadherence of IRBCs to cultured term human trophoblasts. The capacity for binding to the syncytiotrophoblast varied greatly among P. falciparum isolates and was mediated by intercellular adhesion molecule 1 (ICAM-1), as binding was totally inhibited by 84H10, a monoclonal antibody specific for ICAM-1. Binding of the P. falciparum line RP5 to the syncytiotrophoblast involves chondroitin-4-sulfate (CSA), as this binding was dramatically impaired by addition of free CSA to the binding medium or by preincubation of the syncytiotrophoblast with chondroitinase ABC. ICAM-1 and CSA were visualized on the syncytiotrophoblast by immunofluorescence, while CD36, E-selectin, and vascular cell adhesion molecule 1 were not expressed even on tumor necrosis factor alpha (TNF-alpha)-stimulated syncytiotrophoblast tissue, and monoclonal antibodies against these cell adhesion molecules did not inhibit cytoadherence. ICAM-1 expression and cytoadherence of wild isolates was upregulated by TNF-alpha, a cytokine that can be secreted by the numerous mononuclear phagocytes present in malaria-infected placentas. These results suggest that cytoadherence may be involved in the placental sequestration and broaden the understanding of the physiopathology of the malaria-infected placenta. PMID:9119459

  18. NCAM (CD56) expression in keratin-producing odontogenic cysts: aberrant expression in KCOT.

    PubMed

    Vera-Sirera, Beatriz; Forner-Navarro, Leopoldo; Vera-Sempere, Francisco

    2015-02-12

    To investigate immunohistochemically the expression of neural cell adhesion molecule (NCAM), which has been identified as a signaling receptor with frequent reactivity in ameloblastomas (AB), in a series of keratin-producing odontogenic cysts (KPOCs). Immunohistochemical expression of NCAM, using a monoclonal antibody, was determined in a series of 58 KPOCs comprising 12 orthokeratinized odontogenic cysts (OOCs) and 46 keratocystic odontogenic tumors (KCOTs), corresponding to 40 non-syndromic KCOT (NS-KCOTs) and 6 syndromic KCOT (S-KCOTs), associated with nevic basocellular syndrome (NBCS). NCAM expression was negative in all OOCs, but 36.45% of KCOTs exhibited focal and heterogeneous expression at the basal cell level, as well as in basal budding areas and the basal cells of daughter cysts. The latter two locations were especially applicable to S-KCOTs, with focal NCAM reactivity occurring in 66.66% of cases. Aberrant NCAM expression, in KCOTs but especially in S-KCOTs, together with its immunomorphological location, suggests that this adhesion molecule and signaling receptor plays a role in the pathogenesis of KCOTs, with a probable impact on lesional recurrence.

  19. Myeloid-Related Protein-14/MRP-14/S100A9/Calgranulin B is Associated with Inflammation in Proliferative Diabetic Retinopathy.

    PubMed

    Abu El-Asrar, Ahmed M; Alam, Kaiser; Siddiquei, Mohammad M; Van den Eynde, Kathleen; Mohammad, Ghulam; De Hertogh, Gert; Opdenakker, Ghislain

    2018-01-01

    To investigate the expression of the leukocyte proteins myeloid-related protein (MRP)-8 and MRP-14 in proliferative diabetic retinopathy (PDR) and the effect of MRP-8/MRP-14 (calprotectin) heterodimer on induction of proinflammatory factors in human retinal microvascular endothelial cells (HRMEC). Epiretinal membranes from 20 patients with PDR and 10 patients with proliferative vitreoretinopathy (PVR), vitreous fluid samples from PDR and non-diabetic subjects and HRMEC were studied by immunohistochemistry and Western blot analysis. MRP-14 expression was localized in endothelial cells, leukocytes and myofibroblasts in all PDR membranes. MRP-8 expression was limited to intravascular leukocytes in 42% of the studied membranes. In PVR membranes, MRP-14 was expressed in leukocytes and myofibroblasts, whereas MRP-8 immunoreactivity was limited to leukocytes. MRP-14 was significantly upregulated in vitreous from PDR patients. MRP-8/MRP-14 (calprotectin) increased expression of intercellular adhesion molecule-1, but attenuated vascular cell adhesion molecule-1 expression in HRMEC. Increased MRP-14 levels are associated with inflammation in PDR.

  20. Non-Cell-Adhesive Substrates for Printing of Arrayed Biomaterials

    PubMed Central

    Appel, Eric A.; Larson, Benjamin L.; Luly, Kathryn M.; Kim, Jinseong D.

    2015-01-01

    Cellular microarrays have become extremely useful in expediting the investigation of large libraries of (bio)materials for both in vitro and in vivo biomedical applications. We have developed an exceedingly simple strategy for the fabrication of non-cell-adhesive substrates supporting the immobilization of diverse (bio)material features, including both monomeric and polymeric adhesion molecules (e.g. RGD and polylysine), hydrogels, and polymers. PMID:25430948

  1. Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix

    PubMed Central

    Mekhdjian, Armen H.; Kai, FuiBoon; Rubashkin, Matthew G.; Prahl, Louis S.; Przybyla, Laralynne M.; McGregor, Alexandra L.; Bell, Emily S.; Barnes, J. Matthew; DuFort, Christopher C.; Ou, Guanqing; Chang, Alice C.; Cassereau, Luke; Tan, Steven J.; Pickup, Michael W.; Lakins, Jonathan N.; Ye, Xin; Davidson, Michael W.; Lammerding, Jan; Odde, David J.; Dunn, Alexander R.; Weaver, Valerie M.

    2017-01-01

    Metastasis requires tumor cells to navigate through a stiff stroma and squeeze through confined microenvironments. Whether tumors exploit unique biophysical properties to metastasize remains unclear. Data show that invading mammary tumor cells, when cultured in a stiffened three-dimensional extracellular matrix that recapitulates the primary tumor stroma, adopt a basal-like phenotype. Metastatic tumor cells and basal-like tumor cells exert higher integrin-mediated traction forces at the bulk and molecular levels, consistent with a motor-clutch model in which motors and clutches are both increased. Basal-like nonmalignant mammary epithelial cells also display an altered integrin adhesion molecular organization at the nanoscale and recruit a suite of paxillin-associated proteins implicated in invasion and metastasis. Phosphorylation of paxillin by Src family kinases, which regulates adhesion turnover, is similarly enhanced in the metastatic and basal-like tumor cells, fostered by a stiff matrix, and critical for tumor cell invasion in our assays. Bioinformatics reveals an unappreciated relationship between Src kinases, paxillin, and survival of breast cancer patients. Thus adoption of the basal-like adhesion phenotype may favor the recruitment of molecules that facilitate tumor metastasis to integrin-based adhesions. Analysis of the physical properties of tumor cells and integrin adhesion composition in biopsies may be predictive of patient outcome. PMID:28381423

  2. Connective tissue growth factor inhibits gastric cancer peritoneal metastasis by blocking integrin α3β1-dependent adhesion.

    PubMed

    Chen, Chiung-Nien; Chang, Cheng-Chi; Lai, Hong-Shiee; Jeng, Yung-Ming; Chen, Chia-I; Chang, King-Jeng; Lee, Po-Huang; Lee, Hsinyu

    2015-07-01

    Connective tissue growth factor (CTGF) plays important roles in normal and pathological conditions. The aim of this study was to investigate the role of CTGF in peritoneal metastasis as well as the underlying mechanism in gastric cancer progression. CTGF expression levels for wild-type and stable overexpression clones were determined by Western blotting and quantitative polymerase chain reaction (Q-PCR). Univariate and multivariate analyses, immunohistochemistry, and survival probability analyses were performed on gastric cancer patients. The extracellular matrix components involved in CTGF-regulated adhesion were determined. Recombinant CTGF was added to cells or coinoculated with gastric cancer cells into mice to evaluate its therapeutic potential. CTGF overexpression and treatment with the recombinant protein significantly inhibited cell adhesion. In vivo peritoneal metastasis demonstrated that CTGF-stable transfectants markedly decreased the number and size of tumor nodules in the mesentery. Statistical analysis of gastric cancer patient data showed that patients expressing higher CTGF levels had earlier TNM staging and a higher survival probability after the surgery. Integrin α3β1 was the cell adhesion molecule mediating gastric cancer cell adhesion to laminin, and blocking of integrin α3β1 prevented gastric cancer cell adhesion to recombinant CTGF. Coimmunoprecipitation results indicated that CTGF binds to integrin α3. Coinoculation of recombinant CTGF and gastric cancer cell lines in mice showed effective inhibition of peritoneal dissemination. Our results suggested that gastric cancer peritoneal metastasis is mediated through integrin α3β1 binding to laminin, and CTGF effectively blocks the interaction by binding to integrin α3β1, thus demonstrating the therapeutic potential of recombinant CTGF in gastric cancer patients.

  3. Substrate Deformation Predicts Neuronal Growth Cone Advance

    PubMed Central

    Athamneh, Ahmad I.M.; Cartagena-Rivera, Alexander X.; Raman, Arvind; Suter, Daniel M.

    2015-01-01

    Although pulling forces have been observed in axonal growth for several decades, their underlying mechanisms, absolute magnitudes, and exact roles are not well understood. In this study, using two different experimental approaches, we quantified retrograde traction force in Aplysia californica neuronal growth cones as they develop over time in response to a new adhesion substrate. In the first approach, we developed a novel method, to our knowledge, for measuring traction forces using an atomic force microscope (AFM) with a cantilever that was modified with an Aplysia cell adhesion molecule (apCAM)-coated microbead. In the second approach, we used force-calibrated glass microneedles coated with apCAM ligands to guide growth cone advance. The traction force exerted by the growth cone was measured by monitoring the microneedle deflection using an optical microscope. Both approaches showed that Aplysia growth cones can develop traction forces in the 100–102 nN range during adhesion-mediated advance. Moreover, our results suggest that the level of traction force is directly correlated to the stiffness of the microneedle, which is consistent with a reinforcement mechanism previously observed in other cell types. Interestingly, the absolute level of traction force did not correlate with growth cone advance toward the adhesion site, but the amount of microneedle deflection did. In cases of adhesion-mediated growth cone advance, the mean needle deflection was 1.05 ± 0.07 μm. By contrast, the mean deflection was significantly lower (0.48 ± 0.06 μm) when the growth cones did not advance. Our data support a hypothesis that adhesion complexes, which can undergo micron-scale elastic deformation, regulate the coupling between the retrogradely flowing actin cytoskeleton and apCAM substrates, stimulating growth cone advance if sufficiently abundant. PMID:26445437

  4. Release of Membrane-Bound Vesicles and Inhibition of Tumor Cell Adhesion by the Peptide Neopetrosiamide A

    PubMed Central

    Austin, Pamela; Heller, Markus; Williams, David E.; McIntosh, Lawrence P.; Vogl, A. Wayne; Foster, Leonard J.; Andersen, Raymond J.; Roberge, Michel; Roskelley, Calvin D.

    2010-01-01

    Background Neopetrosiamide A (NeoA) is a 28-amino acid tricyclic peptide originally isolated from a marine sponge as a tumor cell invasion inhibitor whose mechanism of action is unknown. Methodology/Principal Findings We show that NeoA reversibly inhibits tumor cell adhesion, disassembles focal adhesions in pre-attached cells, and decreases the level of β1 integrin subunits on the cell surface. NeoA also induces the formation of dynamic, membrane-bound protrusions on the surface of treated cells and the release of membrane-bound vesicles into the culture medium. Proteomic analysis indicates that the vesicles contain EGF and transferrin receptors as well as a number of proteins involved in adhesion and migration including: β1 integrin and numerous α integrin subunits; actin and actin-binding proteins such as cofilin, moesin and myosin 1C; and membrane modulating eps15 homology domain (EHD) proteins. Surface labeling, trafficking inhibition, and real-time imaging experiments all suggest that β1 integrin-containing vesicles are released directly from NeoA-induced cell surface protrusions rather than from vesicles generated intracellularly. The biological activity of NeoA is dependent on its disulfide bond pattern and NMR spectroscopy indicates that the peptide is globular with a continuous ridge of hydrophobic groups flanked by charged amino acid residues that could facilitate a simultaneous interaction with lipids and proteins in the membrane. Conclusions/Significance NeoA is an anti-adhesive peptide that decreases cell surface integrin levels through a novel, yet to be elucidated, mechanism that involves the release of adhesion molecule-containing vesicles from the cell surface. PMID:20520768

  5. MHC Class II Activation and Interferon-γ Mediate the Inhibition of Neutrophils and Eosinophils by Staphylococcal Enterotoxin Type A (SEA).

    PubMed

    Ferreira-Duarte, Ana P; Pinheiro-Torres, Anelize S; Anhê, Gabriel F; Condino-Neto, Antônio; Antunes, Edson; DeSouza, Ivani A

    2017-01-01

    Staphylococcal enterotoxins are classified as superantigens that act by linking T-cell receptor with MHC class II molecules, which are expressed on classical antigen-presenting cells (APC). Evidence shows that MHC class II is also expressed in neutrophils and eosinophils. This study aimed to investigate the role of MHC class II and IFN-γ on chemotactic and adhesion properties of neutrophils and eosinophils after incubation with SEA. Bone marrow (BM) cells obtained from BALB/c mice were resuspended in culture medium, and incubated with SEA (3-30 ng/ml; 1-4 h), after which chemotaxis and adhesion were evaluated. Incubation with SEA significantly reduced the chemotactic and adhesive responses in BM neutrophils activated with IL-8 (200 ng/ml). Likewise, SEA significantly reduced the chemotactic and adhesive responses of BM eosinophils activated with eotaxin (300 ng/ml). The inhibitory effects of SEA on cell chemotaxis and adhesion were fully prevented by prior incubation with an anti-MHC class II blocking antibody (2 μg/ml). SEA also significantly reduced the intracellular Ca 2+ levels in IL-8- and eotaxin-activated BM cells. No alterations of MAC-1, VLA4, and LFA-1α expressions were observed after SEA incubation. In addition, SEA elevated by 3.5-fold ( P < 0.05) the INF-γ levels in BM cells. Incubation of BM leukocytes with IFN-γ (10 ng/ml, 2 h) reduced both neutrophil and eosinophil chemotaxis and adhesion, which were prevented by prior incubation with anti-MHC class II antibody (2 μg/ml). In conclusion, SEA inhibits neutrophil and eosinophil by MHC class II-dependent mechanism, which may be modulated by concomitant release of IFN-γ.

  6. Molecular cloning of a human Ca2+-dependent cell-cell adhesion molecule homologous to mouse placental cadherin: its low expression in human placental tissues

    PubMed Central

    1989-01-01

    P-cadherin is a subclass of Ca2+-dependent cell-cell adhesion molecules present in mouse placenta, where its localization suggests a function of connecting the embryo to the uterus (Nose, A., and M. Takeichi. 1986. J. Cell Biol. 103:2649-2658). We recently identified a human cadherin detected by an mAb capable of disrupting cell-cell adhesion of A-431 cells, and found that it was closely related immunochemically to mouse P-cadherin. Curiously, this cadherin was undetectable in human placenta by immunohistochemical examination (Shimoyama, Y., S. Hirohashi, S. Hirano, M. Noguchi, Y. Shimosato, M. Takeichi, and O. Abe. 1989. Cancer Res. 49:2128-2133). We here report the cloning and sequencing of cDNA clone encoding the human homologue of mouse P- cadherin. The deduced amino acid sequence of the human P-cadherin consists of 829 amino acid and shows striking homology with mouse P- cadherin. On Northern blot analysis, human P-cadherin was scarcely expressed in human placenta in contrast to mouse P-cadherin, which was abundantly expressed in mouse placenta throughout pregnancy, and it was shown that E-cadherin, but not P-cadherin, was the major cadherin molecule in human placenta. Moreover, NIH3T3 cells transfected with human P-cadherin cDNA expressed the functional cadherin molecule, which was identical to the cadherin we had previously identified using the mAb, showing that this molecule really does mediate cell-cell adhesion and that the cadherin we detected immunochemically is undoubtedly human P-cadherin. The results obtained in this study support the idea that P- cadherin plays little role, if any, in Ca2+-dependent cell-cell binding in human placental tissue at least after several weeks of pregnancy. PMID:2793940

  7. Adhesion molecules, chemokines and matrix metallo-proteinases response after albendazole and albendazole plus steroid therapy in swine neurocysticercosis.

    PubMed

    Singh, Satyendra K; Prasad, Kashi N; Singh, Aloukick K; Gupta, Kamlesh K; Singh, Amrita; Tripathi, Mukesh; Gupta, Rakesh K

    2017-11-01

    The treatment of neurocysticercosis (NCC) varies with location, number and stage of the Taenia solium cysticerci (cysts). Albendazole (ABZ) effectively kills cysticerci, and subsequently induces neuro-inflammation facilitated by leukocyte infiltration. We hypothesize that immune response varies around drug responder (degenerating/dying) and non-responder (viable) cysts after ABZ and ABZ plus steroid (ABZS) therapy, which may determine the disease pathogenesis. Twenty cysticercotic swine were treated with ABZ (n = 10; group1) and ABZS (n = 10; group2). Expression of adhesion molecules, chemokines and matrix metallo-proteinases (MMPs) was measured by qRT-PCR (quantitative reverse transcriptase-polymerase chain reaction) and ELISA. Gelatin gel zymography was performed to detect the activity of MMP-2 and -9. In group1, ABZ therapy induced higher expressions of ICAM-1 (intercellular adhesion molecule-1), VCAM-1 (vascular cell adhesion molecule-1), E-selectin, MCP-1 (monocyte chemotactic protein-1), Eotaxin-1, MIP-1α (macrophage inflammatory protein-1α), RANTES (regulated on activation, normal T cell expressed and secreted), MMP-2 and MMP-9 around ABZ responder (AR) cysts. Three pigs with cyst burdens ≥10 died following ABZ therapy. However, in group2, moderate expressions of ICAM-1, VCAM-1, E-selectin, RANTES and MMP-9 were associated with ABZS responder (ASR), whereas low expressions of these molecules were associated with ABZS non-responder (ASNR) cysts. In conclusion, ABZ alone therapy is not safe since it causes death of pigs due to higher inflammatory immune response around dying cysts. However, combination therapy is an effective treatment regimen even with the high cyst burden. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Heterotypic binding between neuronal membrane vesicles and glial cells is mediated by a specific cell adhesion molecule

    PubMed Central

    1984-01-01

    By means of a multistage quantitative assay, we have identified a new kind of cell adhesion molecule (CAM) on neuronal cells of the chick embryo that is involved in their adhesion to glial cells. The assay used to identify the binding component (which we name neuron-glia CAM or Ng-CAM) was designed to distinguish between homotypic binding (e.g., neuron to neuron) and heterotypic binding (e.g., neuron to glia). This distinction was essential because a single neuron might simultaneously carry different CAMs separately mediating each of these interactions. The adhesion of neuronal cells to glial cells in vitro was previously found to be inhibited by Fab' fragments prepared from antisera against neuronal membranes but not by Fab' fragments against N-CAM, the neural cell adhesion molecule. This suggested that neuron-glia adhesion is mediated by specific cell surface molecules different from previously isolated CAMs . To verify that this was the case, neuronal membrane vesicles were labeled internally with 6-carboxyfluorescein and externally with 125I-labeled antibodies to N-CAM to block their homotypic binding. Labeled vesicles bound to glial cells but not to fibroblasts during a 30-min incubation period. The specific binding of the neuronal vesicles to glial cells was measured by fluorescence microscopy and gamma spectroscopy of the 125I label. Binding increased with increasing concentrations of both glial cells and neuronal vesicles. Fab' fragments prepared from anti-neuronal membrane sera that inhibited binding between neurons and glial cells were also found to inhibit neuronal vesicle binding to glial cells. The inhibitory activity of the Fab' fragments was depleted by preincubation with neuronal cells but not with glial cells. Trypsin treatment of neuronal membrane vesicles released material that neutralized Fab' fragment inhibition; after chromatography, neutralizing activity was enriched 50- fold. This fraction was injected into mice to produce monoclonal antibodies; an antibody was obtained that interacted with neurons, inhibited binding of neuronal membrane vesicles to glial cells, and recognized an Mr = 135,000 band in immunoblots of embryonic chick brain membranes. These results suggest that this molecule is present on the surfaces of neurons and that it directly or indirectly mediates adhesion between neurons and glial cells. Because the monoclonal antibody as well as the original polyspecific antibodies that were active in the assay did not bind to glial cells, we infer that neuron- glial interaction is heterophilic, i.e., it occurs between Ng-CAM on neurons and an as yet unidentified CAM present on glial cells. PMID:6725397

  9. TNF-α enhancement of CD62E mediates adhesion of non-small cell lung cancer cells to brain endothelium via CD15 in lung-brain metastasis.

    PubMed

    Jassam, Samah A; Maherally, Zaynah; Smith, James R; Ashkan, Keyoumars; Roncaroli, Federico; Fillmore, Helen L; Pilkington, Geoffrey J

    2016-05-01

    CD15, which is overexpressed on various cancers, has been reported as a cell adhesion molecule that plays a key role in non-CNS metastasis. However, the role of CD15 in brain metastasis is largely unexplored. This study provides a better understanding of CD15/CD62E interaction, enhanced by tumor necrosis factor-α (TNF-α), and its correlation with brain metastasis in non-small cell lung cancer (NSCLC). CD15 and E-selectin (CD62E) expression was demonstrated in both human primary and metastatic NSCLC cells using flow cytometry, immunofluorescence, and Western blotting. The role of CD15 was investigated using an adhesion assay under static and physiological flow live-cell conditions. Human tissue sections were examined using immunohistochemistry. CD15, which was weakly expressed on hCMEC/D3 human brain endothelial cells, was expressed at high levels on metastatic NSCLC cells (NCI-H1299, SEBTA-001, and SEBTA-005) and at lower levels on primary NSCLC (COR-L105 and A549) cells (P < .001). The highest expression of CD62E was observed on hCMEC/D3 cells activated with TNF-α, with lower levels on metastatic NSCLC cells followed by primary NSCLC cells. Metastatic NSCLC cells adhered most strongly to hCMEC/D3 compared with primary NSCLC cells. CD15 immunoblocking decreased cancer cell adhesion to brain endothelium under static and shear stress conditions (P < .0001), confirming a correlation between CD15 and cerebral metastasis. Both CD15 and CD62E expression were detected in lung metastatic brain biopsies. This study enhances the understanding of cancer cell-brain endothelial adhesion and confirms that CD15 plays a crucial role in adhesion in concert with TNF-α activation of its binding partner, CD62E. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.

  10. TNF-α enhancement of CD62E mediates adhesion of non–small cell lung cancer cells to brain endothelium via CD15 in lung-brain metastasis

    PubMed Central

    Jassam, Samah A.; Maherally, Zaynah; Smith, James R.; Ashkan, Keyoumars; Roncaroli, Federico; Fillmore, Helen L.; Pilkington, Geoffrey J.

    2016-01-01

    Background CD15, which is overexpressed on various cancers, has been reported as a cell adhesion molecule that plays a key role in non-CNS metastasis. However, the role of CD15 in brain metastasis is largely unexplored. This study provides a better understanding of CD15/CD62E interaction, enhanced by tumor necrosis factor-α (TNF-α), and its correlation with brain metastasis in non–small cell lung cancer (NSCLC). Methods CD15 and E-selectin (CD62E) expression was demonstrated in both human primary and metastatic NSCLC cells using flow cytometry, immunofluorescence, and Western blotting. The role of CD15 was investigated using an adhesion assay under static and physiological flow live-cell conditions. Human tissue sections were examined using immunohistochemistry. Results CD15, which was weakly expressed on hCMEC/D3 human brain endothelial cells, was expressed at high levels on metastatic NSCLC cells (NCI-H1299, SEBTA-001, and SEBTA-005) and at lower levels on primary NSCLC (COR-L105 and A549) cells (P < .001). The highest expression of CD62E was observed on hCMEC/D3 cells activated with TNF-α, with lower levels on metastatic NSCLC cells followed by primary NSCLC cells. Metastatic NSCLC cells adhered most strongly to hCMEC/D3 compared with primary NSCLC cells. CD15 immunoblocking decreased cancer cell adhesion to brain endothelium under static and shear stress conditions (P < .0001), confirming a correlation between CD15 and cerebral metastasis. Both CD15 and CD62E expression were detected in lung metastatic brain biopsies. Conclusion This study enhances the understanding of cancer cell-brain endothelial adhesion and confirms that CD15 plays a crucial role in adhesion in concert with TNF-α activation of its binding partner, CD62E. PMID:26472821

  11. Effect of consumption of tomato juice enriched with n-3 polyunsaturated fatty acids on the lipid profile, antioxidant biomarker status, and cardiovascular disease risk in healthy women.

    PubMed

    García-Alonso, F J; Jorge-Vidal, V; Ros, G; Periago, M J

    2012-06-01

    We compared the effects of consumption of n-3 polyunsaturated fatty acids (PUFA)-enriched tomato juice versus plain tomato juice on the serum lipid profile and levels of biomarkers related to antioxidant status and cardiovascular disease (CVD) risk in women. Eighteen healthy women participated in a 2-week intervention trial involving the daily intake of 500 mL of n-3 PUFA-enriched juice (n = 11) or plain tomato juice (n = 7). Each serving of enriched juice provided 250 mg of eicosapentaenoic acid (EPA) plus docosahexanoic acid (DHA). Both juices provided natural antioxidant compounds such as phenolics (181 mg) and lycopene (26.5 mg). Intervention with the enriched juice had no effect on the lipid profile, and serum levels of triglycerides and cholesterol (total, LDL, and HDL) remained unchanged. The serum antioxidant status improved following juice intake, as revealed by an increase in total antioxidant capacity and a slight decrease in lipid peroxidation. The serum levels of homocysteine, a cardiovascular risk factor, decreased following n-3 PUFA-enriched juice consumption. A decrease in vascular adhesion molecule 1 (VCAM-1) levels was also noted after intake of either plain or enriched tomato juice, whereas intercellular adhesion molecule 1 (ICAM-1) levels only decreased following intake of the enriched juice. Overall, stronger positive amelioration of CVD risk factors was observed following the intake of n-3 PUFA-enriched juice than after plain tomato juice consumption, which suggested a possible synergistic action between n-3 PUFAs and tomato antioxidants.

  12. Multilayer Choline Phosphate Molecule Modified Surface with Enhanced Cell Adhesion but Resistance to Protein Adsorption.

    PubMed

    Chen, Xingyu; Yang, Ming; Liu, Botao; Li, Zhiqiang; Tan, Hong; Li, Jianshu

    2017-08-22

    Choline phosphate (CP), which is a new zwitterionic molecule, and has the reverse order of phosphate choline (PC) and could bind to the cell membrane though the unique CP-PC interaction. Here we modified a glass surface with multilayer CP molecules using surface-initiated atom-transfer radical polymerization (SI-ATRP) and the ring-opening method. Polymeric brushes of (dimethylamino)ethyl methacrylate (DMAEMA) were synthesized by SI-ATRP from the glass surface. Then the grafted PDMAEMA brushes were used to introduce CP groups to fabricate the multilayer CP molecule modified surface. The protein adsorption experiment and cell culture test were used to evaluate the biocompatibility of the modified surfaces by using human umbilical veinendothelial cells (HUVECs). The protein adsorption results demonstrated that the multilayer CP molecule decorated surface could prevent the adsorption of fibrinogen and serum protein. The adhesion and proliferation of cells were improved significantly on the multilayer CP molecule modified surface. Therefore, the biocompatibility of the material surface could be improved by the modified multilayer CP molecule, which exhibits great potential for biomedical applications, e.g., scaffolds in tissue engineering.

  13. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  14. Glycolipids from spinach suppress LPS-induced vascular inflammation through eNOS and NK-κB signaling.

    PubMed

    Ishii, Masakazu; Nakahara, Tatsuo; Araho, Daisuke; Murakami, Juri; Nishimura, Masahiro

    2017-07-01

    Glycolipids are the major constituent of the thylakoid membrane of higher plants and have a variety of biological and pharmacological activities. However, anti-inflammatory effects of glycolipids on vascular endothelial cells have not been elucidated. Here, we investigated the effect of glycolipids extracted from spinach on lipopolysaccharides (LPS)-induced endothelial inflammation and evaluated the underlying molecular mechanisms. Treatment with glycolipids from spinach had no cytotoxic effects on cultured human umbilical vein endothelial cells (HUVECs) and significantly blocked the expression of LPS-induced interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), and intracellular adhesion molecule-1 (ICAM-1) in them. Glycolipids treatment also effectively suppressed monocyte adhesion to HUVECs. Treatment with glycolipids inhibited LPS-induced NF-κB phosphorylation and nuclear translocation. In addition, glycolipids treatment significantly promoted endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) production in HUVECs. Furthermore, glycolipids treatment blocked LPS-induced inducible NOS (iNOS) expression in HUVECs. Pretreatment with a NOS inhibitor attenuated glycolipids-induced suppression of NF-κB activation and adhesion molecule expression, and abolished the glycolipids-mediated suppression of monocyte adhesion to HUVECs. These results indicate that glycolipids suppress LPS-induced vascular inflammation through attenuation of the NF-κB pathway by increasing NO production in endothelial cells. These findings suggest that glycolipids from spinach may have a potential therapeutic use for inflammatory vascular diseases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10.

    PubMed

    Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Suh, Hwa-Jin; Kim, Young Mi; Boo, Yong Chool

    2016-01-01

    Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10). PM10 stimulates the production of reactive oxygen species (ROS) and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE) on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1), and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). PPE at 10-100 μg mL(-1) attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL(-1)). PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter.

  16. Influence of surface potential on the adhesive force of radioactive gold surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kweon, Hyojin; Yiacoumi, Sotira; Lee, Ida

    2013-08-23

    Radioactive particles may acquire surface potential through self-charging, and thus can behave differently from natural aerosols in atmospheric systems with respect to aggregation, deposition, resuspension, and transport to areas surrounding a radioactive source. Here, this work focuses on the adhesive force between radioactive particles and metallic surfaces, which relates to the deposition and resuspension of particles on surrounding surfaces. Scanning surface potential microscopy was employed to measure the surface potential of radioactive gold foil. Atomic force microscopy was used to investigate the adhesive force for gold that acquired surface charge either by irradiation or by application of an equivalent electricalmore » bias. Overall, the adhesive force increases with increasing surface potential or relative humidity. However, a behavior that does not follow the general trend was observed for the irradiated gold at a high decay rate. A comparison between experimental measurements and calculated values revealed that the surface potential promotes adhesion. The contribution of the electrostatic force at high levels of relative humidity was lower than the one found using theoretical calculations due to the effects caused by enhanced adsorption rate of water molecules under a high surface charge density. Lastly, the results of this study can be used to provide a better understanding of the behavior of radioactive particles in atmospheric systems.« less

  17. Blocking the Adhesion Cascade at the Premetastatic Niche for Prevention of Breast Cancer Metastasis

    PubMed Central

    Kang, Shin-Ae; Hasan, Nafis; Mann, Aman P; Zheng, Wei; Zhao, Lichao; Morris, Lynsie; Zhu, Weizhu; Zhao, Yan D; Suh, K Stephen; Dooley, William C; Volk, David; Gorenstein, David G; Cristofanilli, Massimo; Rui, Hallgeir; Tanaka, Takemi

    2015-01-01

    Shear-resistant adhesion and extravasation of disseminated cancer cells at the target organ is a crucial step in hematogenous metastasis. We found that the vascular adhesion molecule E-selectin preferentially promoted the shear-resistant adhesion and transendothelial migration of the estrogen receptor (ER)–/CD44+ hormone-independent breast cancer cells, but not of the ER+/CD44-/low hormone-dependent breast cancer cells. Coincidentally, CD44+ breast cancer cells were abundant in metastatic lung and brain lesions in ER– breast cancer, suggesting that E-selectin supports hematogenous metastasis of ER–/CD44+ breast cancer. In an attempt to prevent hematogenous metastasis through the inhibition of a shear-resistant adhesion of CD44+ cancer cells to E-selectin-expressing blood vessels on the premetastatic niche, an E-selectin targeted aptamer (ESTA) was developed. We demonstrated that a single intravenous injection of ESTA reduced metastases to a baseline level in both syngeneic and xenogeneic forced breast cancer metastasis models without relocating the site of metastasis. The effect of ESTA was absent in E-selectin knockout mice, suggesting that E-selectin is a molecular target of ESTA. Our data highlight the potential application of an E-selectin antagonist for the prevention of hematogenous metastasis of ER–/CD44+ breast cancer. PMID:25815697

  18. Blocking the adhesion cascade at the premetastatic niche for prevention of breast cancer metastasis.

    PubMed

    Kang, Shin-Ae; Hasan, Nafis; Mann, Aman P; Zheng, Wei; Zhao, Lichao; Morris, Lynsie; Zhu, Weizhu; Zhao, Yan D; Suh, K Stephen; Dooley, William C; Volk, David; Gorenstein, David G; Cristofanilli, Massimo; Rui, Hallgeir; Tanaka, Takemi

    2015-06-01

    Shear-resistant adhesion and extravasation of disseminated cancer cells at the target organ is a crucial step in hematogenous metastasis. We found that the vascular adhesion molecule E-selectin preferentially promoted the shear-resistant adhesion and transendothelial migration of the estrogen receptor (ER)(-)/CD44(+) hormone-independent breast cancer cells, but not of the ER(+)/CD44(-/low) hormone-dependent breast cancer cells. Coincidentally, CD44(+) breast cancer cells were abundant in metastatic lung and brain lesions in ER(-) breast cancer, suggesting that E-selectin supports hematogenous metastasis of ER(-)/CD44(+) breast cancer. In an attempt to prevent hematogenous metastasis through the inhibition of a shear-resistant adhesion of CD44(+) cancer cells to E-selectin-expressing blood vessels on the premetastatic niche, an E-selectin targeted aptamer (ESTA) was developed. We demonstrated that a single intravenous injection of ESTA reduced metastases to a baseline level in both syngeneic and xenogeneic forced breast cancer metastasis models without relocating the site of metastasis. The effect of ESTA was absent in E-selectin knockout mice, suggesting that E-selectin is a molecular target of ESTA. Our data highlight the potential application of an E-selectin antagonist for the prevention of hematogenous metastasis of ER(-)/CD44(+) breast cancer.

  19. Progranulin protects vascular endothelium against atherosclerotic inflammatory reaction via Akt/eNOS and nuclear factor-κB pathways.

    PubMed

    Hwang, Hwan-Jin; Jung, Tae Woo; Hong, Ho Cheol; Choi, Hae Yoon; Seo, Ji-A; Kim, Sin Gon; Kim, Nan Hee; Choi, Kyung Mook; Choi, Dong Seop; Baik, Sei Hyun; Yoo, Hye Jin

    2013-01-01

    Atherosclerosis is considered a chronic inflammatory disease, initiated by activation and dysfunction of the endothelium. Recently, progranulin has been regarded as an important modulator of inflammatory processes; however, the role for prgranulin in regulating inflammation in vascular endothelial cells has not been described. Signaling pathways mediated by progranulin were analyzed in human umbilical vein endothelial cells (HUVECs) treated with progranulin. Progranulin significantly induced Akt and endothelial nitric oxide synthase (eNOS) phosphorylation in HUVECs, an effect that was blocked with Akt inhibitor. Furthermore, nitric oxide (NO) level, the end product of Akt/eNOS pathway, was significantly upregulated after progranulin treatment. Next, we showed that progranulin efficiently inhibited lipopolysaccharide (LPS)-mediated pro-inflammatory signaling. LPS-induced phosphorylation of IκB and nuclear factor-κB (NF-κB) levels decreased after progranulin treatment. Also, progranulin blocked translocation of NF-κB from the cytosol to the nucleus. In addition, progranulin significantly reduced the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) by inhibiting binding of NF- κB to their promoter regions and blocked attachment of monocytes to HUVECs. Progranulin also significantly reduced the expression of tumor necrosis factor receptor-α (TNF-α) and monocyte chemo-attractant protein-1 (MCP-1), the crucial inflammatory molecules known to aggravate atherosclerosis. Progranulin efficiently inhibited LPS-mediated pro-inflammatory signaling in endothelial cells through activation of the Akt/eNOS pathway and attenuation of the NF-κB pathway, suggesting its protective roles in vascular endothelium against inflammatory reaction underlying atherosclerosis.

  20. A composite model of the human postcapillary venule for investigation of microvascular leukocyte recruitment

    PubMed Central

    Lauridsen, Holly M.; Pober, Jordan S.; Gonzalez, Anjelica L.

    2014-01-01

    Neutrophil extravasation occurs across postcapillary venules, structures composed of endothelial cells (ECs), pericytes (PCs), and basement membrane (BM). We constructed composite models of the human postcapillary venule, combining ECs with PCs or PC-deposited BM, to better study this process. Quiescent and tumor necrosis factor α (TNF-α)-activated composites demonstrated in situ-like expression of cadherins, E-selectin, intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), platelet-endothelial cell adhesion molecule 1 (PECAM-1), CD99, and interleukin 8 (IL-8). After TNF-α activation, the ECs supported greater neutrophil adhesion (66.1 vs. 23.7% of input cells) and transmigration (35.1 vs. 7.20% of input cells) than did the PCs, but the composites behaved comparably (no significant difference) to ECs in both assays. TNF-α-activated EC-conditioned medium (CM) increased transmigration across the PCs, whereas TNF-α-activated PC-CM decreased transmigration across the ECs, and culturing on PC-derived BM decreased both adhesion to and transmigration across the ECs. Anti-very late antigen 4 (VLA-4; on neutrophils) inhibited adhesion to TNF-α-activated composites, but not to ECs alone. Anti-CD99 (expressed on all 3 cell types) inhibited transmigration across the composites (14.5% of control) more than across the ECs (39.0% of control), and venular shear stress reduced transmigration across the ECs (17.3% of static) more than across the composites (36.7% of static). These results provide proof of concept that our composite human EC/PC/BM venular construct can reveal new interactions in the inflammatory cascade.—Lauridsen, H. M., Pober, J. S., Gonzalez, A. L. A composite model of the human postcapillary venule for investigation of microvascular leukocyte recruitment. PMID:24297702

  1. Inhibition of STAT3 phosphorylation by sulforaphane reduces adhesion molecule expression in vascular endothelial cell.

    PubMed

    Cho, Young S; Kim, Chan H; Ha, Tae S; Ahn, Hee Y

    2015-11-18

    Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) play key roles in the initiation of vascular inflammation. In this study, we explored whether sulforaphane, a dietary phytochemical, can inhibit the expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS), and the mechanisms involved. Sulforaphane prevented the LPS-mediated increase in ICAM-1 and VCAM-1 expression, (P < 0.01) in HUVEC. Sulforaphane also prevented the LPS-mediated increase in the phosphorylation of signal transducer and activator of transcription 3 (STAT3) (P < 0.01). Stattic, a STAT3 inhibitor, reduced the LPS-induced expression of ICAM-1 and VCAM-1, and STAT3 phosphorylation (P < 0.01). STAT3 small interfering RNA treatment reduced the LPS-induced expression of ICAM-1, VCAM-1, and STAT3 (P < 0.01). Sulforaphane reduced LPS-mediated THP-1 monocyte adhesion to HUVEC (P < 0.01). In C57BL/6 mice, injection of LPS increased aortic ICAM-1 and VCAM-1 expression, and this effect was prevented by sulforaphane. These data provide insight into the mechanism through which sulforaphane partly reduces the expression of ICAM-1 and VCAM-1 on the vascular wall by inhibiting STAT3 phosphorylation.

  2. Distortion of the normal function of synaptic cell adhesion molecules by genetic variants as a risk for autism spectrum disorders.

    PubMed

    Baig, Deeba Noreen; Yanagawa, Toru; Tabuchi, Katsuhiko

    2017-03-01

    Synaptic cell adhesion molecules (SCAMs) are a functional category of cell adhesion molecules that connect pre- and postsynapses by the protein-protein interaction via their extracellular cell adhesion domains. Countless numbers of common genetic variants and rare mutations in SCAMs have been identified in the patients with autism spectrum disorders (ASDs). Among these, NRXN and NLGN family proteins cooperatively function at synaptic terminals both of which genes are strongly implicated as risk genes for ASDs. Knock-in mice carrying a single rare point mutation of NLGN3 (NLGN3 R451C) discovered in the patients with ASDs display a deficit in social interaction and an enhancement of spatial learning and memory ability reminiscent of the clinical phenotype of ASDs. NLGN4 knockout (KO) and NRXN2α KO mice also show a deficit in sociability as well as some specific neuropsychiatric behaviors. In this review, we selected NRXNs/NLGNs, CNTNAP2/CNTNAP4, CNTN4, ITGB3, and KIRREL3 as strong ASD risk genes based on SFARI score and summarize the protein structures, functions at synapses, representative discoveries in human genetic studies, and phenotypes of the mutant model mice in light of the pathophysiology of ASDs. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Exclusion from spheroid formation identifies loss of essential cell-cell adhesion molecules in colon cancer cells.

    PubMed

    Stadler, Mira; Scherzer, Martin; Walter, Stefanie; Holzner, Silvio; Pudelko, Karoline; Riedl, Angelika; Unger, Christine; Kramer, Nina; Weil, Beatrix; Neesen, Jürgen; Hengstschläger, Markus; Dolznig, Helmut

    2018-01-18

    Many cell lines derived from solid cancers can form spheroids, which recapitulate tumor cell clusters and are more representative of the in vivo situation than 2D cultures. During spheroid formation, a small proportion of a variety of different colon cancer cell lines did not integrate into the sphere and lost cell-cell adhesion properties. An enrichment protocol was developed to augment the proportion of these cells to 100% purity. The basis for the separation of spheroids from non-spheroid forming (NSF) cells is simple gravity-sedimentation. This protocol gives rise to sub-populations of colon cancer cells with stable loss of cell-cell adhesion. SW620 cells lacked E-cadherin, DLD-1 cells lost α-catenin and HCT116 cells lacked P-cadherin in the NSF state. Knockdown of these molecules in the corresponding spheroid-forming cells demonstrated that loss of the respective proteins were indeed responsible for the NSF phenotypes. Loss of the spheroid forming phenotype was associated with increased migration and invasion properties in all cell lines tested. Hence, we identified critical molecules involved in spheroid formation in different cancer cell lines. We present here a simple, powerful and broadly applicable method to generate new sublines of tumor cell lines to study loss of cell-cell adhesion in cancer progression.

  4. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy

    PubMed Central

    Chen, Zhan

    2010-01-01

    This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecular-level understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecular-level information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layer-by-layer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques. PMID:21113334

  5. Surgery-derived reactive oxygen species produced by polymorphonuclear leukocytes promote tumor recurrence: studies in an in vitro model.

    PubMed

    van Grevenstein, Wilhelmina M U; Aalbers, Arend G J; Ten Raa, Sander; Sluiter, Wim; Hofland, Leo J; Jeekel, Hans; van Eijck, Casper H J

    2007-06-01

    Tissue injury induces the acute phase response, aimed at minimizing damage and starting the healing process. Polymorphonuclear leukocytes (PMNs) respond to the presence of specific chemoattractants and begin to appear in large numbers. The aim of this study was to investigate the influence of reactive oxygen species (ROS) produced by PMNs on the interaction between colon carcinoma cells and mesothelial cells. An experimental human in vitro model was designed using Caco-2 colon carcinoma cells and primary cultures of mesothelial cells. Tumor cell adhesion to a mesothelial monolayer was assessed after preincubation of the mesothelium with stimulated PMNs and unstimulated PMNs. Mesothelial cells were also incubated with xanthine/xanthine oxidase (X/XO) complex producing ROS after which adhesion of Caco-2 cells was investigated and the expression of adhesion molecules (ICAM-1, VCAM-1, and CD44) by means of enzyme immunoassay. In the control situation the average adhesion of Caco-2 cells to the mesothelial monolayers was 23%. Mesothelial monolayers incubated with unstimulated PMNs showed a 25% increase of tumor cell adhesion (P < 0.05). The adhesion of tumor to the monolayers incubated with the N-formyl-methionyl-leucyl-phenylalanine-stimulated PMNs increased with 40% (P < 0.01). Incubation of the mesothelium with X/XO resulted in an enhancement of adhesion of Caco-2 cells of 70% and an up-regulation of expression of ICAM-1, VCAM-1, and CD44. This study reveals an increase of tumor cell adhesion to the mesothelium induced by incubating the mesothelial monolayers with PMNs. PMNs are producing a number of products, like proteolytic enzymes, cytokines, and ROS. These factors up-regulate the expression of adhesion molecules and in that way stimulate the adhesion of tumor to the mesothelium.

  6. Altered plasma levels of cytokines, soluble adhesion molecules and matrix metalloproteases in venous thrombosis.

    PubMed

    Mosevoll, Knut Anders; Lindås, Roald; Tvedt, Tor Henrik Anderson; Bruserud, Øystein; Reikvam, Håkon

    2015-07-01

    Recent studies have emphasized the importance of the inflammatory response mediated by monocyte and neutrophil activation in deep venous thrombosis (DVT); we therefore investigated whether this response was reflected in the plasma profile of inflammatory mediators in patients with suspected DVT. We included a group of 169 consecutive patients admitted to hospital from the primary health care service with suspected lower limb DVT. Plasma levels of 43 mediators were examined for a cohort of 89 consecutive patients and 20 healthy controls by Luminex multiplex analyses, i.e. 13 interleukins, 3 immunomodulatory cytokines, 8 chemokines, 8 growth factors, 3 adhesion molecules and 8 matrix metalloproteases. Selected mediators were analyzed for a second cohort of 80 consecutive patients. Thirty-five of 169 (21%) of referred patients were diagnosed with DVT. Only P-selectin (p<0.0001), vascular cell adhesion protein 1 (VCAM-1, p=0.0009), matrix metalloprotease 8 (MMP-8, p=0.0151) and hepatocyte growth factor (HGF, p=0.0415) differed significantly when comparing patients with and without DVT. When comparing DVT patients with healthy controls we observed significant differences for several mediators, where P-selectin (p=0.0009), VCAM-1 (p<0.0001), all the MMPs (all p<0.0014) and HGF (p<0.0001) showed the strongest significant differences. Unsupervised hierarchical clustering analyses based on biomarkers showing differences between patients with and without DVT could be used to identify patient subsets that differed significantly in DVT frequency. Plasma biomarker profiling of selected soluble mediators can be used to identify subsets among patients with suspected lower limb thrombosis that differ significantly in their frequencies of DVT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism

    PubMed Central

    Jansen, Felix; Yang, Xiaoyan; Baumann, Katharina; Przybilla, David; Schmitz, Theresa; Flender, Anna; Paul, Kathrin; Alhusseiny, Adil; Nickenig, Georg; Werner, Nikos

    2015-01-01

    Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE−/− mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced. PMID:26081516

  8. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Baumann, Katharina; Przybilla, David; Schmitz, Theresa; Flender, Anna; Paul, Kathrin; Alhusseiny, Adil; Nickenig, Georg; Werner, Nikos

    2015-09-01

    Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE-/- mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Direct Observation of Asphaltene Nanoparticles on Model Mineral Substrates.

    PubMed

    Raj, Gijo; Lesimple, Alain; Whelan, Jamie; Naumov, Panče

    2017-06-27

    The propensity for adherence to solid surfaces of asphaltenes, a complex solubility class of heteropolycyclic aromatic compounds from the heavy fraction of crude oil, has long been the root cause of scale deposition and remains an intractable problem in the petroleum industry. Although the adhesion is essential to understanding the process of asphaltene deposition, the relationship between the conformation of asphaltene molecules on mineral substrates and its impact on adhesion and mechanical properties of the deposits is not completely understood. To rationalize the primary processes in the process of organic scale deposition, here we use atomic force microscopy (AFM) to visualize the morphology of petroleum asphaltenes deposited on model mineral substrates. High imaging contrast was achieved by the differential adhesion of the tip between asphaltenes and the mineral substrate. While asphaltenes form smooth continuous films on all substrates at higher concentrations, they deposit as individual nanoparticles at lower concentrations. The size, shape, and spatial distribution of the nanoaggregates are strongly affected by the nature of the substrate; while uniformly distributed spherical particles are formed on highly polar and hydrophilic substrates (mica), irregular islands and thicker patches are observed with substrates of lower polarity (silica and calcite). Asphaltene nanoparticles flatten when adsorbed on highly oriented pyrolytic graphite due to π-π interactions with the polycyclic core. Force-distance profiles provide direct evidence of the conformational changes of asphaltene molecules on hydrophilic/hydrophobic substrates that result in dramatic changes in adhesion and mechanical properties of asphaltene deposits. Such an understanding of the nature of adhesion and mechanical properties tuned by surface properties, on the level of asphaltene nanoaggregates, would contribute to the design of efficient asphaltene inhibitors for preventing asphaltene fouling on targeted surfaces. Unlike flat surfaces, the AFM phase contrast images of defected calcite surfaces show that asphaltenes form continuous deposits to fill the recesses, and this process could trigger the onset for asphaltene deposition.

  10. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers.

    PubMed

    Bergstralh, Dan T; Lovegrove, Holly E; St Johnston, Daniel

    2015-11-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium. Here we test this assumption in three types of Drosophila epithelium; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells seems to be driven by lateral adhesion, which pulls cells born outside the epithelial layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions.

  11. WAVE2 Protein Complex Coupled to Membrane and Microtubules.

    PubMed

    Takahashi, Kazuhide

    2012-01-01

    E-cadherin is one of the key molecules in the formation of cell-cell adhesion and interacts intracellularly with a group of proteins collectively named catenins, through which the E-cadherin-catenin complex is anchored to actin-based cytoskeletal components. Although cell-cell adhesion is often disrupted in cancer cells by either genetic or epigenetic alterations in cell adhesion molecules, disruption of cell-cell adhesion alone seems to be insufficient for the induction of cancer cell migration and invasion. A small GTP-binding protein, Rac1, induces the specific cellular protrusions lamellipodia via WAVE2, a member of WASP/WAVE family of the actin cytoskeletal regulatory proteins. Biochemical and pharmacological investigations have revealed that WAVE2 interacts with many proteins that regulate microtubule growth, actin assembly, and membrane targeting of proteins, all of which are necessary for directional cell migration through lamellipodia formation. These findings might have important implications for the development of effective therapeutic agents against cancer cell migration and invasion.

  12. WAVE2 Protein Complex Coupled to Membrane and Microtubules

    PubMed Central

    Takahashi, Kazuhide

    2012-01-01

    E-cadherin is one of the key molecules in the formation of cell-cell adhesion and interacts intracellularly with a group of proteins collectively named catenins, through which the E-cadherin-catenin complex is anchored to actin-based cytoskeletal components. Although cell-cell adhesion is often disrupted in cancer cells by either genetic or epigenetic alterations in cell adhesion molecules, disruption of cell-cell adhesion alone seems to be insufficient for the induction of cancer cell migration and invasion. A small GTP-binding protein, Rac1, induces the specific cellular protrusions lamellipodia via WAVE2, a member of WASP/WAVE family of the actin cytoskeletal regulatory proteins. Biochemical and pharmacological investigations have revealed that WAVE2 interacts with many proteins that regulate microtubule growth, actin assembly, and membrane targeting of proteins, all of which are necessary for directional cell migration through lamellipodia formation. These findings might have important implications for the development of effective therapeutic agents against cancer cell migration and invasion. PMID:22315597

  13. Protective effects of hydrogen-rich medium on lipopolysaccharide-induced monocytic adhesion and vascular endothelial permeability through regulation of vascular endothelial cadherin.

    PubMed

    Yu, Y; Wang, W N; Han, H Z; Xie, K L; Wang, G L; Yu, Y H

    2015-06-11

    We observed the effect of hydrogen-rich medium on lipopolysaccharide (LPS)-induced human umbilical vein endothelial cells (HUVECs), hyaline leukocyte conglutination, and permeability of the endothelium. Endotheliocytes were inoculated on 6-well plates and randomly divided into 4 groups: control, H2, LPS, LPS+H2, H2, and LPS+H2 in saturated hydrogen-rich medium. We applied Wright's stain-ing to observe conglutination of hyaline leukocytes and HUVECs, flow cytometry to determine the content of vascular cell adhesion protein 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), enzyme-linked immunosorbent assay to measure the E-selectin concentration in the cell liquor, the transendothelial electrical resistance (TEER) to test the permeability of endothelial cells, and Western blot and immunofluorescence to test the expression and distribution of vascular endothelial (VE)-cadherin. Compared with control cells, there was an increase in endothelium-hyaline leukocyte conglutination, a reduction in VCAM-1, ICAM-1, and E-selectin, and the TEER value increased obviously. Compared with LPS, there was an obvious reduction in the conglutination of LPS+H2 cells, a reduction in VCAM-1, ICAM-1, and E-selectin levels, and a reduction in the TEER-resistance value, while the expression of VE-cadherin increased. Fluorescence results showed that, compared with control cells, the VE-cadherin in LPS cells was in-complete at the cell joints. Compared with LPS cells, the VE-cadherin in LPS+H2 cells was even and complete at the cell joints. Liquid rich in hydrogen could reduce LPS-induced production of adhesion molecules and endothelium-hyaline leukocyte conglutination, and influence the expression and distribution of VE-cadherin to regulate the permeability of the endothelium.

  14. Reduced Expression of Adipose Triglyceride Lipase Enhances Tumor Necrosis Factor α-induced Intercellular Adhesion Molecule-1 Expression in Human Aortic Endothelial Cells via Protein Kinase C-dependent Activation of Nuclear Factor-κB*

    PubMed Central

    Inoue, Tomoaki; Kobayashi, Kunihisa; Inoguchi, Toyoshi; Sonoda, Noriyuki; Fujii, Masakazu; Maeda, Yasutaka; Fujimura, Yoshinori; Miura, Daisuke; Hirano, Ken-ichi; Takayanagi, Ryoichi

    2011-01-01

    We examined the effects of adipose triglyceride lipase (ATGL) on the initiation of atherosclerosis. ATGL was recently identified as a rate-limiting triglyceride (TG) lipase. Mutations in the human ATGL gene are associated with neutral lipid storage disease with myopathy, a rare genetic disease characterized by excessive accumulation of TG in multiple tissues. The cardiac phenotype, known as triglyceride deposit cardiomyovasculopathy, shows massive TG accumulation in both coronary atherosclerotic lesions and the myocardium. Recent reports show that myocardial triglyceride content is significantly higher in patients with prediabetes or diabetes and that ATGL expression is decreased in the obese insulin-resistant state. Therefore, we investigated the effect of decreased ATGL activity on the development of atherosclerosis using human aortic endothelial cells. We found that ATGL knockdown enhanced monocyte adhesion via increased expression of TNFα-induced intercellular adhesion molecule-1 (ICAM-1). Next, we determined the pathways (MAPK, PKC, or NFκB) involved in ICAM-1 up-regulation induced by ATGL knockdown. Both phosphorylation of PKC and degradation of IκBα were increased in ATGL knockdown human aortic endothelial cells. In addition, intracellular diacylglycerol levels and free fatty acid uptake via CD36 were significantly increased in these cells. Inhibition of the PKC pathway using calphostin C and GF109203X suppressed TNFα-induced ICAM-1 expression. In conclusion, we showed that ATGL knockdown increased monocyte adhesion to the endothelium through enhanced TNFα-induced ICAM-1 expression via activation of NFκB and PKC. These results suggest that reduced ATGL expression may influence the atherogenic process in neutral lipid storage diseases and in the insulin-resistant state. PMID:21828047

  15. FABP4 regulates eosinophil recruitment and activation in allergic airway inflammation.

    PubMed

    Ge, Xiao Na; Bastan, Idil; Dileepan, Mythili; Greenberg, Yana; Ha, Sung Gil; Steen, Kaylee A; Bernlohr, David A; Rao, Savita P; Sriramarao, P

    2018-04-26

    Fatty acid binding protein 4 (FABP4), a member of a family of lipid-binding proteins, is known to play a role in inflammation by virtue of its ability to regulate intracellular events such as lipid fluxes and signaling. Studies have indicated a pro-inflammatory role for FABP4 in allergic asthma, although its expression and function in eosinophils, the predominant inflammatory cells recruited to allergic airways, was not investigated. We examined expression of FABP4 in murine eosinophils and its role in regulating cell recruitment in vitro as well as in cockroach antigen (CRA)-induced allergic airway inflammation. CRA exposure led to airway recruitment of FABP4-expressing inflammatory cells, specifically eosinophils, in wild type (WT) mice. FABP4 expression in eosinophils was induced by TNF-α as well as IL-4 and IL-13. FABP4-deficient eosinophils exhibited markedly decreased cell spreading/formation of leading edges on vascular cell adhesion molecule-1 and significantly decreased adhesion to intercellular adhesion molecule-1 associated with reduced β2 integrin expression relative to WT cells. Further, FABP4-deficient eosinophils exhibited decreased migration, F-actin polymerization, calcium flux and ERK (1/2) phosphorylation in response to eotaxin-1. In vivo, CRA-challenged FABP4-deficient mice exhibited attenuated eosinophilia and significantly reduced airway inflammation (improved airway reactivity, lower IL-5, IL-13, TNFα and LTC4 levels, decreased airway structural changes) compared to WT mice. In conclusion, expression of FABP4 in eosinophils is induced during conditions of inflammation and plays a pro-inflammatory role in the development of allergic asthma by promoting eosinophil adhesion and migration and contributing to the development of various aspects of airway inflammation.

  16. MicroRNA-200a/200b Modulate High Glucose-Induced Endothelial Inflammation by Targeting O-linked N-Acetylglucosamine Transferase Expression.

    PubMed

    Lo, Wan-Yu; Yang, Wen-Kai; Peng, Ching-Tien; Pai, Wan-Yu; Wang, Huang-Joe

    2018-01-01

    Background and Aims: Increased O -linked N -acetylglucosamine ( O -GlcNAc) modification of proteins by O -GlcNAc transferase (OGT) is associated with diabetic complications. Furthermore, oxidative stress promotes endothelial inflammation during diabetes. A previous study reported that microRNA-200 (miR-200) family members are sensitive to oxidative stress. In this study, we examined whether miR-200a and miR-200b regulate high-glucose (HG)-induced OGT expression in human aortic endothelial cells (HAECs) and whether miRNA-200a/200b downregulate OGT expression to control HG-induced endothelial inflammation. Methods: HAECs were stimulated with high glucose (25 mM) for 12 and 24 h. Real-time polymerase chain reaction (PCR), western blotting, THP-1 adhesion assay, bioinformatics predication, transfection of miR-200a/200b mimic or inhibitor, luciferase reporter assay, and transfection of siRNA OGT were performed. The aortic endothelium of db/db diabetic mice was evaluated by immunohistochemistry staining. Results: HG upregulated OGT mRNA and protein expression and protein O -GlcNAcylation levels (RL2 antibody) in HAECs, and showed increased intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin gene expression; ICAM-1 expression; and THP-1 adhesion. Bioinformatics analysis revealed homologous sequences between members of the miR-200 family and the 3'-untranslated region (3'-UTR) of OGT mRNA, and real-time PCR analysis confirmed that members of miR-200 family were significantly decreased in HG-stimulated HAECs. This suggests the presence of an impaired feedback restraint on HG-induced endothelial protein O -GlcNAcylation levels because of OGT upregulation. A luciferase reporter assay demonstrated that miR-200a/200b mimics bind to the 3'-UTR of OGT mRNA. Transfection with miR-200a/200b mimics significantly inhibited HG-induced OGT mRNA expression, OGT protein expression; protein O -GlcNAcylation levels; ICAM-1, VCAM-1, and E-selectin gene expression; ICAM-1 expression; and THP-1 adhesion. Additionally, siRNA-mediated OGT depletion reduced HG-induced protein O -GlcNAcylation; ICAM-1, VCAM-1, and E-selectin gene expression; ICAM-1 expression; and THP-1 adhesion, confirming that HG-induced endothelial inflammation is partially mediated via OGT-induced protein O -GlcNAcylation. These results were validated in vivo : tail-vein injection of miR-200a/200b mimics downregulated endothelial OGT and ICAM-1 expression in db/db mice. Conclusion: miR-200a/200b are involved in modulating HG-induced endothelial inflammation by regulating OGT-mediated protein O -GlcNAcylation, suggesting the therapeutic role of miR-200a/200b on vascular complications in diabetes.

  17. Very late antigen integrins are involved in the adhesive interaction of lymphoid cells to human gingival fibroblasts.

    PubMed Central

    Murakami, S; Saho, T; Shimabukuro, Y; Isoda, R; Miki, Y; Okada, H

    1993-01-01

    To date, it is still unclear how the trafficking and retention of activated lymphocytes in periodontal lesions are regulated. In this study, we investigated the molecular basis for the adhesive interactions between lymphocytes and human gingival fibroblasts (HGF). Peripheral blood T lymphocytes (PBT) exhibited binding ability, but only when the calls were activated with phorbol 12-myristate 13-acetate (PMA). Among several human cell lines tested, PMA-stimulated Molt-4, a human T-cell leukaemia line, also displayed significant binding ability to HGF. In order to clarify the molecule(s) involved in this cell-cell interaction, a panel of monoclonal antibodies (mAb) was prepared to PMA-activated Molt-4 and one clone, 4-145, was selected on the basis of its ability to block the binding of PMA-activated Molt-4 to HGF. Moreover, 4-145 inhibited the binding of not only activated Molt-4 but also activated PBT and other cell types to HGF. Biochemical and flow cytometric analyses revealed that 4-145 probably recognizes the beta 1 chain of very late antigen (VLA) integrins. Blocking experiments using mAb specific for the alpha-chain of VLA integrins demonstrated the involvement of alpha 4 (VLA-4) and, to a lesser extent, alpha 5 (VLA-5) chains in the adhesive interactions between T cells and HGF. Despite the significant involvement of VLA integrins in the adhesive interaction between PBT and HGF, the binding of PBT to human dermal fibroblasts (HDF) was not abrogated by 4-145, suggesting that HGF and HDF differ in their requirement of VLA integrins for adhesion to activated PBT. Furthermore, the fact that vascular cell adhesion molecule-1 (VCAM-1), one of the ligands of VLA-4, was not detected on HGF by flow cytometry and anti-fibronectin (FN) Ab did not block the adhesive interaction to HGF suggests that not-yet-identified ligand(s) for VLA-4 might be present on HGF. Images Figure 4 PMID:8406571

  18. Liraglutide suppresses non-esterified free fatty acids and soluble vascular cell adhesion molecule-1 compared with metformin in patients with recent-onset type 2 diabetes.

    PubMed

    Chen, Xiao-Min; Zhang, Wen-Qiang; Tian, Yuan; Wang, Li-Fen; Chen, Chan-Chan; Qiu, Chuan-Mei

    2018-04-10

    It has been suggested that liraglutide could have an impact on glucose and lipid metabolism disorder and adhesion molecule activation, which may play important roles in the vascular damage of diabetes. In this study, we examined the effects of liraglutide versus metformin on non-esterified free fatty acids, beta-cell insulin secretion, and adhesion molecule levels in patients with recent-onset type 2 diabetes mellitus. In this study, 60 patients newly diagnosed with type 2 diabetes mellitus (mean age 33.97 ± 5.67 years) were randomly assigned to receive once-daily subcutaneous liraglutide or oral metformin. Before the study and after the 8-week treatment period, a 75 g oral glucose tolerance test was performed. Plasma glucose, lipids and lipoprotein, plasma insulin, glycaemic and insulin responses, non-esterified free fatty acids (NEFA), and soluble vascular cell adhesion molecule-1 (sVCAM-1) levels were evaluated. After 8 weeks, 120 min of NEFA (155 ± 125 vs 99 ± 73 µmol/L, P = 0.026) and the levels of sVCAM-1 (465 ± 136 vs 382 ± 131 ng/ml, P = 0.013) significantly decreased, while the early phase insulin secretion index (24.94 [7.78, 38.89] vs. 31.13 [17.67, 59.09], P = 0.031), fasting plasma insulin (104 [51, 123] vs 113 [54, 171] mIU/L, P = 0.015), 60 min plasma insulin (326 [165, 441] vs 471 [334, 717] mIU/L, P = 0.005), 120 min plasma insulin (401 [193, 560] vs 500 [367, 960] mIU/L, P = 0.047), and insulin area under the curve (AUCins) (648 [321, 742] vs 738 [451, 1118] mIU/L, P = 0.005) remarkably increased for patients in the liraglutide treatment group. The levels of sVCAM-1 dramatically decreased after 8 weeks of liraglutide treatment (503 ± 182 vs 382 ± 131 ng/ml, P = 0.046) compared to that of the metformin treatment group. At the same time, the differences before and after liraglutide treatment in 120 min of NEFA (- 32 [- 96, - 5] vs 5 [- 35, 38] µmol/L, P = 0.033) and AUCins (738 [451, 1118] vs 594 [357, 1216] mIU/L, P = 0.014) were remarkably enhanced compared to that of the metformin therapy. Nevertheless, there were no significant differences in fasting NEFA after liraglutide or metformin treatment. The reduction of 120 min NEFA (ΔNEFA) was positively correlated with the decrease of sVCAM-1 (ΔsVCAM-1) after 8 weeks of liraglutide treatment (r = 0.523, P = 0.003). Our results demonstrate that liraglutide administration is more effective than metformin in reducing 120 min NEFA and suppressing sVCAM-1 levels for recent-onset type 2 diabetes mellitus. We suggest that this outcome may be because liraglutide is associated with potentiating insulin secretion capacity, inhibiting vascular inflammatory cytokines, and antagonizing atherosclerosis.

  19. Neuron-Glia Adhesion is Inhibited by Antibodies to Neural Determinants

    NASA Astrophysics Data System (ADS)

    Grumet, M.; Rutishauser, U.; Edelman, G. M.

    1983-10-01

    Suspensions of embryonic chick neuronal cells adhered to monolayers of glial cells, but few neurons bound to control monolayers of fibroblastic cells from meninges or skin. Neuronal cell-glial cell adhesion was inhibited by prior incubation of the neurons with Fab' fragments of antibodies to neuronal membranes. In contrast, antibodies to the neural cell adhesion molecule (N-CAM) did not inhibit the binding. These results suggest that a specific adhesive mechanism between neurons and glial cells exists and that it is mediated by CAM's that differ from those so far identified.

  20. Cell Adhesions: Actin-Based Modules that Mediate Cell-Extracellular Matrix and Cell-Cell Interactions

    PubMed Central

    Bachir, Alexia; Horwitz, Alan Rick; Nelson, W. James; Bianchini, Julie M.

    2018-01-01

    Cell adhesions link cells to the extracellular matrix (ECM) and to each other, and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping functional modules. These modules establish physical association with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as sense and translate the mechanical properties of the cellular environment to changes in cell organization and behavior. In this chapter we discuss the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions, and how adhesion molecules mediate crosstalk between cell-ECM and cell-cell adhesion sites. PMID:28679638

  1. High-performance mussel-inspired adhesives of reduced complexity.

    PubMed

    Ahn, B Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H; Israelachvili, Jacob N; Waite, J Herbert

    2015-10-19

    Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m(-2)) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.

  2. Isolation and sequence of partial cDNA clones of human L1: homology of human and rodent L1 in the cytoplasmic region.

    PubMed

    Harper, J R; Prince, J T; Healy, P A; Stuart, J K; Nauman, S J; Stallcup, W B

    1991-03-01

    We have isolated cDNA clones coding for the human homologue of the neuronal cell adhesion molecule L1. The nucleotide sequence of the cDNA clones and the deduced primary amino acid sequence of the carboxy terminal portion of the human L1 are homologous to the corresponding sequences of mouse L1 and rat NILE glycoprotein, with an especially high sequences identity in the cytoplasmic regions of the proteins. There is also protein sequence homology with the cytoplasmic region of the Drosophila cell adhesion molecule, neuroglian. The conservation of the cytoplasmic domain argues for an important functional role for this portion of the molecule.

  3. Comparison of the effects of Crataegus oxyacantha extract, aerobic exercise and their combination on the serum levels of ICAM-1 and E-Selectin in patients with stable angina pectoris.

    PubMed

    Jalaly, Leila; Sharifi, Gholamreza; Faramarzi, Mohammad; Nematollahi, Alireza; Rafieian-kopaei, Mahmoud; Amiri, Masoud; Moattar, Fariborz

    2015-12-19

    Adhesion molecules play an important role in the development and progression of coronary atherosclerosis. The aim of this study was comparing the effect of Cratagol herbal tablet, aerobic exercise and their combination on the serum levels of Intercellular adhesion molecule (ICAM)-1 and E-Selectin in patients with stable angina pectoris. Eighty stable angina pectoris patients aged between 45 and 65 years, were randomly divided into four groups including three experimental groups and one control group: aerobic exercise (E), Crataegus oxyacantha extract (S), aerobic exercise and Crataegus oxyacantha extract (S+E), and control (C). Blood sampling was taken 24 h before and after 12 weeks of aerobic exercise and Crataegus oxyacantha extract consumption. The results of serum levels of ICAM-1 and E-selectin were compared. Intergroup comparison of the data revealed a significant reduction (P <0.01) in serum levels of ICAM-1 and E-selectin in experimental groups. Analysis of data showed that the serum levels of ICAM-1 had significant difference when group S+E was compared with groups S and C, but not group E (P = 0.021, P = 0.000 and P = 0.068, respectively). Also the difference between the levels of E-selectin was significant comparing S+E and S but not E with group C (P = 0.021, P = 0.000 and P = 0.052, respectively). Twelve weeks effects of aerobic exercise and Crataegus oxyacantha extract consuming is an effective complementary strategy to significantly lower the risk of atherosclerosis and heart problems.

  4. Randomized clinical trial on the efficacy of hesperidin 2S on validated cardiovascular biomarkers in healthy overweight individuals.

    PubMed

    Salden, Bouke N; Troost, Freddy J; de Groot, Eric; Stevens, Yala R; Garcés-Rimón, Marta; Possemiers, Sam; Winkens, Bjorn; Masclee, Ad A

    2016-12-01

    Endothelial dysfunction (ED) is involved in the development of atherosclerosis. Hesperidin, a citrus flavonoid with antioxidant and other biological properties, potentially exerts beneficial effects on endothelial function (EF). We investigated the effect of hesperidin 2S supplementation on EF in overweight individuals. This was a randomized, double-blind, placebo-controlled study in which 68 individuals were randomly assigned to receive hesperidin 2S (450 mg/d) or a placebo for 6 wk. At baseline and after 6 wk of intervention, flow-mediated dilation (FMD), soluble vascular adhesion molecule-1 (sVCAM-1), soluble intracellular adhesion molecule-1 (sICAM-1), soluble P-selectin (sP-selectin), systolic blood pressure (SBP), and diastolic blood pressure (DBP) were assessed. Acute, reversible ED was induced by intake of a high-fat meal (HFM). A second FMD scan was performed 2 h postprandially, and adhesion molecules were assessed 2 and 4 h postprandially. An additional exploratory analysis was performed in subjects with baseline FMD ≥3%. No significant change in fasting or postprandial FMD was observed after 6 wk of hesperidin intake compared with placebo intake. However, there was a trend for a reduction of sVCAM-1, sICAM-1, sP-selectin, SBP, and DBP after 6 wk of hesperidin treatment. In the FMD ≥3% group, hesperidin protected individuals from postprandial ED (P = 0.050) and significantly downregulated sVCAM-1 and sICAM-1 (all P ≤ 0.030). The results reported in the current article were not adjusted for multiplicity. Six weeks of consumption of hesperidin 2S did not improve basal or postprandial FMD in our total study population. There was a tendency toward a reduction of adhesion molecules and a decrease in SBP and DBP. Further exploratory analyses revealed that, in subjects with baseline FMD ≥3%, hesperidin 2S improved ED after an HFM and reduced adhesion molecules. These results indicate the cardiovascular health benefits of hesperidin 2S in overweight and obese individuals with a relatively healthy endothelium. This trial was registered at clinicaltrials.gov as NCT02228291. © 2016 American Society for Nutrition.

  5. Decrease of PECAM-1-gene-expression induced by proinflammatory cytokines IFN-γ and IFN-α is reversed by TGF-β in sinusoidal endothelial cells and hepatic mononuclear phagocytes

    PubMed Central

    Neubauer, Katrin; Lindhorst, Alexander; Tron, Kyrylo; Ramadori, Giuliano; Saile, Bernhard

    2008-01-01

    Background and aim The mechanisms of transmigration of inflammatory cells through the sinusoids are still poorly understood. This study aims to identify in vitro conditions (cytokine treatment) which may allow a better understanding of the changes in PECAM (platelet endothelial cell adhesion molecule)-1-gene-expression observed in vivo. Methods and results In this study we show by immunohistochemistry, that there is an accumulation of ICAM-1 (intercellular cell adhesion molecule-1) and ED1 positive cells in necrotic areas of livers of CCl4-treated rats, whereas there are few PECAM-1 positive cells observable. After the administration of CCl4, we could detect an early rise of levels of IFN-γ followed by an enhanced TGF-β protein level. As shown by Northern blot analysis and surface protein expression analysed by flow cytometry, IFN-γ-treatment decreased PECAM-1-gene-expression in isolated SECs (sinusoidal endothelial cells) and mononuclear phagocytes (MNPs) in parallel with an increase in ICAM-1-gene-expression in a dose and time dependent manner. In contrast, TGF-β-treatment increased PECAM-1-expression. Additional administration of IFN-γ to CCl4-treated rats and observations in IFN-γ-/- mice confirmed the effect of IFN-γ on PECAM-1 and ICAM-1-expression observed in vitro and increased the number of ED1-expressing cells 12 h after administration of the toxin. Conclusion The early decrease of PECAM-1-expression and the parallel increase of ICAM-1-expression following CCl4-treatment is induced by elevated levels of IFN-γ in livers and may facilitate adhesion and transmigration of inflammatory cells. The up-regulation of PECAM-1-expression in SECs and MNPs after TGF-β-treatment suggests the involvement of PECAM-1 during the recovery after liver damage. PMID:18466611

  6. Indoxyl sulfate enhances IL-1β-induced E-selectin expression in endothelial cells in acute kidney injury by the ROS/MAPKs/NFκB/AP-1 pathway.

    PubMed

    Shen, Wen-Ching; Liang, Chan-Jung; Huang, Tao-Ming; Liu, Chen-Wei; Wang, Shu-Huei; Young, Guang-Huar; Tsai, Jaw-Shiun; Tseng, Ying-Chin; Peng, Yu-Sen; Wu, Vin-Cent; Chen, Yuh-Lien

    2016-11-01

    Uremic toxins are considered a risk factor for cardiovascular disorders in kidney diseases, but it is not known whether, under inflammatory conditions, they affect adhesion molecule expression on endothelial cells, which may play a critical role in acute kidney injury (AKI). In the present study, in cardiovascular surgery-related AKI patients, who are known to have high plasma levels of the uremic toxin indoxyl sulfate (IS), plasma levels of IL-1β were found to be positively correlated with plasma levels of the adhesion molecule E-selectin. In addition, high E-selectin and IL-1β expression were seen in the kidney of ischemia/reperfusion mice in vivo. We also examined the effects of IS on E-selectin expression by IL-1β-treated human umbilical vein endothelial cells (HUVECs) and the underlying mechanism. IS pretreatment of HUVECs significantly increased IL-1β-induced E-selectin expression, monocyte adhesion, and the phosphorylation of mitogen-activated protein kinases (ERK, p38, and JNK) and transcription factors (NF-κB and AP-1), and phosphorylation was decreased by pretreatment with inhibitors of ERK1/2 (PD98059), p38 MAPK (SB202190), and JNK (SP600125). Furthermore, IS increased IL-1β-induced reactive oxygen species (ROS) production and this effect was inhibited by pretreatment with N-acetylcysteine (a ROS scavenger) or apocynin (a NADPH oxidase inhibitor). Gel shift assays and ChIP-PCR demonstrated that IS enhanced E-selectin expression in IL-1-treated HUVECs by increasing NF-κB and AP-1 DNA-binding activities. Moreover, IS-enhanced E-selectin expression in IL-1β-treated HUVECs was inhibited by Bay11-7082, a NF-κB inhibitor. Thus, IS may play an important role in the development of cardiovascular disorders in kidney diseases during inflammation by increasing endothelial expression of E-selectin.

  7. Anxa5 mediates the in vitro malignant behaviours of murine hepatocarcinoma Hca-F cells with high lymph node metastasis potential preferentially via ERK2/p-ERK2/c-Jun/p-c-Jun(Ser73) and E-cadherin.

    PubMed

    Sun, Xujuan; Wei, Bin; Liu, Shuqing; Guo, Chunmei; Wu, Na; Liu, Qinlong; Sun, Ming-Zhong

    2016-12-01

    Annexin A5 (Anxa5) is associated with the progression of some cancers, while its role and regulation mechanism in tumor lymphatic metastasis is rarely reported. This study aims to investigate the influence of Anxa5 knockdown on the malignant behaviours of murine hepatocarcinoma Hca-F cell line with high lymph node metastatic (LNM) potential and the underlying regulation mechanism. RNA interfering was performed to silence Anxa5 in Hca-F. Monoclonal shRNA-Anxa5- Hca-F cells were obtained via G418 screening by limited dilution method. Quantitative real-time RT-PCR (qRT-PCR) and Western blotting (WB) were applied to measure Anxa5 expression levels. CCK-8, Boyden transwell-chamber and in situ LN adhesion assays were performed to explore the effects of Anxa5 on the proliferation, migration, invasion and adhesion capacities of Hca-F. WB and qRT-PCR were used to detect the level changes of key molecules in corresponding signal pathways. We obtained two monoclonal shRNA-Anxa5-transfected Hca-F cell lines with stable knockdowns of Anxa5. Anxa5 knockdown resulted in significantly reduced proliferation, migration, invasion and in situ LN adhesion potentials of Hca-F in proportion to its knockdown extent. Anxa5 downregulation enhanced E-cadherin levels in Hca-F. Moreover, Anxa5 affected Hca-F behaviours specifically via ERK2/p-ERK2/c-Jun/p-c-Jun(Ser73) instead of p38MAPK/c-Jun, Jnk/c-Jun and AKT/c-Jun pathways. Anxa5 mediates the in vitro malignant behaviours of murine hepatocarcinoma Hca-F cells via ERK2/c-Jun/p-c-Jun(Ser73) and ERK2/E-cadherin pathways. It is an important molecule in metastasis (especially LNM) and a potential therapeutic target for hepatocarcinoma. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Leukocyte adhesion: High-speed cells with ABS.

    PubMed

    van der Merwe, P A

    1999-06-03

    In order to decide where to exit blood vessels and enter tissues, leukocytes roll along endothelial surfaces. Recent studies suggest that an 'automatic braking system' (ABS), involving selectin cell-adhesion molecules, enables leukocytes to roll at a fairly constant velocity despite large variations in blood flow rate.

  9. Self assembling bioactive materials for cell adhesion in tissue repair

    NASA Astrophysics Data System (ADS)

    Hwang, Julia J.

    This work involved the study of biodegradable and biocompatible materials that have the potential to modify tissue engineering scaffolds through self assembly, generating multiple layers that deliver bioactivity. Diblock biomaterials containing cholesteryl moieties and oligomers of lactic acid units were found to form single crystals when precipitated from hot ethanol and smectic liquid crystalline phases when cast as a film. Cell culture experiments on these films with 3T3 and 3T6 fibroblasts indicated that these ordered materials form surfaces with specific chemistries that favored cell adhesion, spreading, and proliferation suggesting the potential of mediating human tissue repair. The author believes the cholesteryl moieties found on the surface play a key role in determining cell behavior. Cholesteryl-(L-lactic acid) diblock molecules were then functionalized with moieties including vitamin Bx, cholesterol, and the anti-inflammatory drug indomethacin. An unstable activated ester between indomethacin and the diblock molecule resulted in the release of indomethacin into the culture medium which inhibited the proliferation of 3T3 fibroblasts. Finally, a series of molecules were designed to incorporate dendrons based on amino acids at the termini of the diblock structures. It was determined that lysine, a basic amino acid, covalently coupled to cholesteryl-(L-lactic acid) can promote cell adhesion and spreading while negatively charged and zwitterionic 2nd generation dendrons based on aspartic acid do not. Incorporation of the well known arginine-glycine-aspartic acid (RGD) sequence, which is found in many adhesive proteins, to the dendrons imparted integrin-mediated cell adhesion as evidenced by the formation of stress fibers. We also explored the capacity of integrin receptors to bind to ligands that are not the linear form of RGD, but have R, G, and D spatially positioned to mimic the linear RGD environments. For this purpose, the arms of the 2 nd generation lysine dendrons were functionalized with R, G, and D to yield an 'R,G,D library' of molecules. These materials were found to promote adhesion of 3T3 fibroblasts through integrin receptors. A dendron is multifunctional and allows a large degree of functionality in chemical design.

  10. The hepatoprotective activity of blue green algae in Schistosoma mansoni infected mice.

    PubMed

    Mohamed, Azza H; Osman, Gamalat Y; Salem, Tarek A; Elmalawany, Alshimaa M

    2014-10-01

    This study aims to evaluate the immunomodulatory effects of a natural product, blue green algae (BGA) (100 mg/kg BW), alone or combined with praziquantel PZQ (250 mg/kg BW) on granulomatous inflammation, liver histopathology, some biochemical and immunological parameters in mice infected with Schistosoma mansoni. Results showed that the diameter and number of egg granuloma were significantly reduced after treatment of S. mansoni-infected mice with BGA, PZQ and their combination. The histopathological alterations observed in the liver of S. mansoni-infected mice were remarkably inhibited after BGA treatments. BGA decreased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) as well as the level of total protein (TP) while the level of albumin was increased. Treatment of infected mice with BGA, PZQ as well as their combination led to significant elevation in the activities of hepatic antioxidant enzymes glutathione peroxidase (GPX) and glutathione-S-transferase (GST) as compared with control group. Combination of BGA and PZQ resulted in significant reduction in the level of intercellular adhesion molecules-1 (ICAM-1), vascular adhesion molecules-1 (VCAM-1) and tumor necrosis factor-alpha (TNF-α) when compared to those of the S. mansoni-infected group. Overall, BGA significantly inhibited the liver damage accompanied with schistosomiasis, exhibited a potent antioxidant and immunoprotective activities. This study suggests that BGA can be considered as promising for development a complementary and/or alternative medicine against schistosomiasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. HSP27 Inhibits Homocysteine-Induced Endothelial Apoptosis by Modulation of ROS Production and Mitochondrial Caspase-Dependent Apoptotic Pathway.

    PubMed

    Tian, Xin; Zhao, Lei; Song, Xianjing; Yan, Youyou; Liu, Ning; Li, Tianyi; Yan, Bingdi; Liu, Bin

    2016-01-01

    Objectives. Elevated plasma homocysteine (Hcy) could lead to endothelial dysfunction and is viewed as an independent risk factor for atherosclerosis. Heat shock protein 27 (HSP27), a small heat shock protein, is reported to exert protective effect against atherosclerosis. This study aims to investigate the protective effect of HSP27 against Hcy-induced endothelial cell apoptosis in human umbilical vein endothelial cells (HUVECs) and to determine the underlying mechanisms. Methods. Apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) of normal or HSP27-overexpressing HUVECs in the presence of Hcy were analyzed by flow cytometry. The mRNA and protein expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Results. We found that Hcy could induce cell apoptosis with corresponding decrease of nitric oxide (NO) level, increase of endothelin-1 (ET-1), intracellular adhesion molecule-1 (ICAM-1), vascular cellular adhesion molecule-1 (VCAM-1), and monocyte chemoattractant protein-1 (MCP-1) levels, elevation of ROS, and dissipation of MMP. In addition, HSP27 could protect the cell against Hcy-induced apoptosis and inhibit the effect of Hcy on HUVECs. Furthermore, HSP27 could increase the ratio of Bcl-2/Bax and inhibit caspase-3 activity. Conclusions. Therefore, we concluded that HSP27 played a protective role against Hcy-induced endothelial apoptosis through modulation of ROS production and the mitochondrial caspase-dependent apoptotic pathway.

  12. Moderate consumption of red wine and human platelet responsiveness.

    PubMed

    Tozzi Ciancarelli, Maria Giuliana; Di Massimo, Caterina; De Amicis, Daniela; Ciancarelli, Irene; Carolei, Antonio

    2011-08-01

    Available studies showed an inverse association between red wine consumption and prevalence of vascular risk factors in coronary hearth disease and stroke. Effects were mainly associated to wine antioxidant and antiaggregant properties. Actually, in vitro studies indicate a favourable effect of wine and/or of its non-alcoholic components in decreasing platelet sensitivity and aggregability. In a 4-week supplementation in 15 healthy male volunteers, we evaluated whether moderate red wine consumption might improve antioxidant defence mechanisms and promote positive modulation of inflammatory cytokines and cell adhesion molecules in relation to platelet responsiveness. We did not find any change of ADP- and collagen-induced platelet aggregation ex vivo, any change of biomarkers of oxidative stress, and any change of plasma lipid profile and haemostatic parameters, with the only exception of decreased fibrinogen levels (P<0.05). We also found an increase of mean platelet volume (P<0.05) without any significant modification of CD40 Ligand and P-selectin levels. Increased expressions of intercellular adhesion molecule-1, soluble E-selectin and interleukin-6 (P<0.05) were also observed. According to our findings increased circulating levels of inflammatory and endothelial cell activation markers may indicate a low-grade systemic inflammation and vascular activation that could be responsible for the lack of inhibition or of decreased platelet responsiveness, possibly because the plasmatic increase of wine antioxidant compounds is insufficient to improve endothelial function and to counteract the influence of ethanol on endothelial activation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Dietary Selenium Supplementation Modulates Growth of Brain Metastatic Tumors and Changes the Expression of Adhesion Molecules in Brain Microvessels.

    PubMed

    Wrobel, Jagoda K; Wolff, Gretchen; Xiao, Rijin; Power, Ronan F; Toborek, Michal

    2016-08-01

    Various dietary agents can modulate tumor invasiveness. The current study explored whether selenoglycoproteins (SeGPs) extracted from selenium-enriched yeast affect tumor cell homing and growth in the brain. Mice were fed diets enriched with specific SeGPs (SeGP40 or SeGP65, 1 mg/kg Se each), glycoproteins (GP40 or GP65, 0.2-0.3 mg/kg Se each) or a control diet (0.2-0.3 mg/kg Se) for 12 weeks. Then, murine Lewis lung carcinoma cells were infused into the brain circulation. Analyses were performed at early (48 h) and late stages (3 weeks) post tumor cell infusion. Imaging of tumor progression in the brain revealed that mice fed SeGP65-enriched diet displayed diminished metastatic tumor growth, fewer extravasating tumor cells and smaller metastatic lesions. While administration of tumor cells resulted in a significant upregulation of adhesion molecules in the early stage of tumor progression, overexpression of VCAM-1 (vascular call adhesion molecule-1) and ALCAM (activated leukocyte cell adhesion molecule) messenger RNA (mRNA) was diminished in SeGP65 supplemented mice. Additionally, mice fed SeGP65 showed decreased expression of acetylated NF-κB p65, 48 h post tumor cell infusion. The results indicate that tumor progression in the brain can be modulated by specific SeGPs. Selenium-containing compounds were more effective than their glycoprotein controls, implicating selenium as a potential negative regulator of metastatic process.

  14. Short-term high-fat diet alters postprandial glucose metabolism and circulating vascular cell adhesion molecule-1 in healthy males.

    PubMed

    Numao, Shigeharu; Kawano, Hiroshi; Endo, Naoya; Yamada, Yuka; Takahashi, Masaki; Konishi, Masayuki; Sakamoto, Shizuo

    2016-08-01

    Short-term intake of a high-fat diet aggravates postprandial glucose metabolism; however, the dose-response relationship has not been investigated. We hypothesized that short-term intake of a eucaloric low-carbohydrate/high-fat diet (LCHF) would aggravate postprandial glucose metabolism and circulating adhesion molecules in healthy males. Seven healthy young males (mean ± SE; age: 26 ± 1 years) consumed either a eucaloric control diet (C, approximately 25% fats), a eucaloric intermediate-carbohydrate/intermediate-fat diet (ICIF, approximately 50% fats), or an LCHF (approximately 70% fats) for 3 days. An oral meal tolerance test (MTT) was performed after the 3-day dietary intervention. The concentrations of plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 (VCAM-1) were determined at rest and during MTT. The incremental area under the curve (iAUC) of plasma glucose concentration during MTT was significantly higher in LCHF than in C (P = 0.009). The first-phase insulin secretion indexes were significantly lower in LCHF than in C (P = 0.04). Moreover, the iAUC of GLP-1 and VCAM-1 concentrations was significantly higher in LCHF than in C (P = 0.014 and P = 0.04, respectively). The metabolites from ICIF and C were not significantly different. In conclusion, short-term intake of eucaloric diet containing a high percentage of fats in healthy males excessively increased postprandial glucose and VCAM-1 concentrations and attenuated first-phase insulin release.

  15. AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans.

    PubMed

    González, Alex; Bellenberg, Sören; Mamani, Sigde; Ruiz, Lina; Echeverría, Alex; Soulère, Laurent; Doutheau, Alain; Demergasso, Cecilia; Sand, Wolfgang; Queneau, Yves; Vera, Mario; Guiliani, Nicolas

    2013-04-01

    Biofilm formation plays a pivotal role in bioleaching activities of bacteria in both industrial and natural environments. Here, by visualizing attached bacterial cells on energetic substrates with different microscopy techniques, we obtained the first direct evidence that it is possible to positively modulate biofilm formation of the extremophilic bacterium Acidithiobacillus ferrooxidans on sulfur and pyrite surfaces by using Quorum Sensing molecules of the N-acylhomoserine lactone type (AHLs). Our results revealed that AHL-signaling molecules with a long acyl chain (12 or 14 carbons) increased the adhesion of A. ferrooxidans cells to these substrates. In addition, Card-Fish experiments demonstrated that C14-AHL improved the adhesion of indigenous A. ferrooxidans cells from a mixed bioleaching community to pyrite. Finally, we demonstrated that this improvement of cell adhesion is correlated with an increased production of extracellular polymeric substances. Our results open up a promising means to develop new strategies for the improvement of bioleaching efficiency and metal recovery, which could also be used to control environmental damage caused by acid mine/rock drainage.

  16. The melanocortin receptor agonist NDP-MSH impairs the allostimulatory function of dendritic cells.

    PubMed

    Rennalls, La'Verne P; Seidl, Thomas; Larkin, James M G; Wellbrock, Claudia; Gore, Martin E; Eisen, Tim; Bruno, Ludovica

    2010-04-01

    As alpha-melanocyte-stimulating hormone (alpha-MSH) is released by immunocompetent cells and has potent immunosuppressive properties, it was determined whether human dendritic cells (DCs) express the receptor for this hormone. Reverse transcription-polymerase chain reaction detected messenger RNA specific for all of the known melanocortin receptors in DCs. Mixed lymphocyte reactions also revealed that treatment with [Nle(4), DPhe(7)]-alpha-MSH (NDP-MSH), a potent alpha-MSH analogue, significantly reduced the ability of DCs to stimulate allogeneic T cells. The expression of various cell surface adhesion, maturation and costimulatory molecules on DCs was also investigated. Although treatment with NDP-MSH did not alter the expression of CD83 and major histocompatibility complex class I and II, the surface expression of CD86 (B7.2), intercellular adhesion molecule (ICAM-1/CD54) and CD1a was reduced. In summary, our data indicate that NDP-MSH inhibits the functional activity of DCs, possibly by down-regulating antigen-presenting and adhesion molecules and that these events may be mediated via the extracellular signal-regulated kinase 1 and 2 pathway.

  17. House dust mite induces expression of intercellular adhesion molecule-1 in EoL-1 human eosinophilic leukemic cells.

    PubMed

    Kwon, Byoung Chul; Sohn, Myung Hyun; Kim, Kyung Won; Kim, Eun Soo; Kim, Kyu-Earn; Shin, Myeong Heon

    2007-10-01

    The house dust mite (HDM) is considered to be the most common indoor allergen associated with bronchial asthma. In this study, we investigated whether crude extract of the HDM Dermatophagoides farinae could activate human eosinophilic leukemic cells (EoL-1) to induce upregulation of cell-surface adhesion molecules. When EoL-1 cells were incubated with D. farinae extract, expression of intercellular adhesion molecule-1 (ICAM-1) significantly increased on the cell surfaces compared to cells incubated with medium alone. In contrast, surface expression of CD11b and CD49d in EoL-1 cells was not affected by D. farinae extract. In addition, pretreatment of cells with NF-kappaB inhibitor (MG-132) or JNK inhibitor (SP600125) significantly inhibited ICAM-1 expression promoted by HDM extract. However, neither p38 MAP kinase inhibitor nor MEK inhibitor prevented HDM-induced ICAM-1 expression in EoL-1 cells. These results suggest that crude extract of D. farinae induces ICAM-1 expression in EoL-1 cells through signaling pathways involving both NF-kappaB and JNK.

  18. House Dust Mite Induces Expression of Intercellular Adhesion Molecule-1 in EoL-1 Human Eosinophilic Leukemic Cells

    PubMed Central

    Kwon, Byoung Chul; Sohn, Myung Hyun; Kim, Kyung Won; Kim, Eun Soo; Kim, Kyu-Earn

    2007-01-01

    The house dust mite (HDM) is considered to be the most common indoor allergen associated with bronchial asthma. In this study, we investigated whether crude extract of the HDM Dermatophagoides farinae could activate human eosinophilic leukemic cells (EoL-1) to induce upregulation of cell-surface adhesion molecules. When EoL-1 cells were incubated with D. farinae extract, expression of intercellular adhesion molecule-1 (ICAM-1) significantly increased on the cell surfaces compared to cells incubated with medium alone. In contrast, surface expression of CD11b and CD49d in EoL-1 cells was not affected by D. farinae extract. In addition, pretreatment of cells with NF-κB inhibitor (MG-132) or JNK inhibitor (SP600125) significantly inhibited ICAM-1 expression promoted by HDM extract. However, neither p38 MAP kinase inhibitor nor MEK inhibitor prevented HDM-induced ICAM-1 expression in EoL-1 cells. These results suggest that crude extract of D. farinae induces ICAM-1 expression in EoL-1 cells through signaling pathways involving both NF-κB and JNK. PMID:17982228

  19. Natural and bio-inspired underwater adhesives: Current progress and new perspectives

    NASA Astrophysics Data System (ADS)

    Cui, Mengkui; Ren, Susu; Wei, Shicao; Sun, Chengjun; Zhong, Chao

    2017-11-01

    Many marine organisms harness diverse protein molecules as underwater adhesives to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Natural underwater adhesion phenomena thus provide inspiration for engineering adhesive materials that can perform in water or high-moisture settings for biomedical and industrial applications. Here we review examples of biological adhesives to show the molecular features of natural adhesives and discuss how such knowledge serves as a heuristic guideline for the rational design of biologically inspired underwater adhesives. In view of future bio-inspired research, we propose several potential opportunities, either in improving upon current L-3, 4-dihydroxyphenylalanine-based and coacervates-enabled adhesives with new features or engineering conceptually new types of adhesives that recapitulate important characteristics of biological adhesives. We underline the importance of viewing natural adhesives as dynamic materials, which owe their outstanding performance to the cellular coordination of protein expression, delivery, deposition, assembly, and curing of corresponding components with spatiotemporal control. We envision that the emerging synthetic biology techniques will provide great opportunities for advancing both fundamental and application aspects of underwater adhesives.

  20. Carotid Intima-Media Thickness and Plasma Asymmetric Dimethylarginine in Mexican Children Exposed to Inorganic Arsenic

    PubMed Central

    Osorio-Yáñez, Citlalli; Ayllon-Vergara, Julio C.; Aguilar-Madrid, Guadalupe; Arreola-Mendoza, Laura; Hernández-Castellanos, Erika; Barrera-Hernández, Angel; De Vizcaya-Ruiz, Andrea

    2013-01-01

    Background: Arsenic exposure is a risk factor for atherosclerosis in adults, but there is little information on arsenic and early risk biomarkers for atherosclerosis in children. Carotid intima-media thickness (cIMT) is an indicator of subclinical atherosclerotic burden that has been associated with plasma asymmetric dimethylarginine (ADMA), a predictor of cardiovascular disease risk. Objectives: The aim of this study was to investigate associations of arsenic exposure with cIMT, ADMA, and endothelial adhesion molecules [soluble intercellular cell adhesion molecule-1 (sICAM-1); soluble vascular cell adhesion molecule-1 (sVCAM-1)] in children who had been exposed to environmental inorganic arsenic (iAs). Methods: We conducted a cross-sectional study in 199 children 3–14 years of age who were residents of Zimapan, México. We evaluated cIMT using ultrasonography, and plasma lipid profiles by standard methods. We analyzed ADMA, sICAM-1, and sVCAM-1 by ELISA, and measured the concentrations of total speciated arsenic (tAs) in urine using hydride generation cryotrapping atomic absorption spectrometry. Results: In the multiple linear regression model for cIMT, tAs categories were positively associated with cIMT increase. The estimated cIMT diameter was greater in 35- to 70-ng/mL and > 70-ng/mL groups (0.035 mm and 0.058 mm per 1-ng/mL increase in urinary tAs, respectively), compared with the < 35-ng/mL group. In addition to tAs level, plasma ADMA was a significant predictor of cIMT. In the adjusted regression model, cIMT, percent iAs, and plasma sVCAM-1 were significant predictors of ADMA levels (e.g., 0.419-μmol/L increase in ADMA per 1-mm increase in cIMT). Conclusions: Arsenic exposure and plasma ADMA levels were positively associated with cIMT in a population of Mexican children with environmental arsenic exposure through drinking water. Citation: Osorio-Yáñez C, Ayllon-Vergara JC, Aguilar-Madrid G, Arreola-Mendoza L, Hernández-Castellanos E, Barrera-Hernández A, De Vizcaya-Ruíz A, Del Razo LM. 2013. Carotid intima-media thickness and plasma asymmetric dimethylarginine in Mexican children exposed to inorganic arsenic. Environ Health Perspect 121:1090–1096; http://dx.doi.org/10.1289/ehp.1205994 PMID:23757599

Top