Science.gov

Sample records for adhesion molecule p-selectin

  1. Borrelia burgdorferi upregulates the adhesion molecules E-selectin, P-selectin, ICAM-1 and VCAM-1 on mouse endothelioma cells in vitro.

    PubMed

    Böggemeyer, E; Stehle, T; Schaible, U E; Hahne, M; Vestweber, D; Simon, M M

    1994-06-01

    In order to obtain more information on processes leading to Borrelia burgdorferi-induced inflammation in the host, we have developed an in vitro model to study the upregulation of cell surface expression of adhesion molecules on endothelial cells by spirochetes. A mouse endothelioma cell line, derived from brain capillaries, bEnd3, was used as indicator population. bEnd3 cells were incubated with preparations of viable, inactivated or sonicated spirochetes and the expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 was monitored by immunocytochemistry and quantified by cell surface ELISA. We show that all three spirochetal preparations are able to upregulate cell surface expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 on bEnd 3 cells in a dose-dependent manner. The kinetics of cell surface expression of the individual adhesion molecules in the presence of Borrelia burgdorferi showed maxima at about 50 h of incubation or later; this was distinct from results obtained with sonicated-preparations of Escherichia coli bacteria or with enterobacterial LPS where peak expression was observed between 4 h and 16 h. The fact that Borrelia burgdorferi does not contain conventional LPS suggests that the mode of induction of adhesion molecules on endothelial cells is influenced by the phenotype of bacteria. At the peak of spirochete-induced cell surface expression of adhesion molecules (approximately 50 h), bEnd3 cells were found to bind cells of a VLA-4+ B lymphoma line (L1-2) much more efficiently than untreated control cells. The binding of L1-2 cells to presensitized bEnd3 cells was significantly inhibited (more than 75%) in the presence of monoclonal antibodies to both VLA-4 and its endothelial counterreceptor VCAM-1. These findings demonstrate that Borrelia burgdorferi organisms are able to induce functionally active adhesion molecules on endothelial cells in vitro and suggest that E-selectin, P-selectin, ICAM-1 and VCAM-1 play an important role in the

  2. Activation of polymorphonuclear leukocytes reduces their adhesion to P-selectin and causes redistribution of ligands for P-selectin on their surfaces.

    PubMed Central

    Lorant, D E; McEver, R P; McIntyre, T M; Moore, K L; Prescott, S M; Zimmerman, G A

    1995-01-01

    In acute inflammatory responses, selectins mediate initial rolling of neutrophils (PMNs) along the endothelial surface. This is followed by tight adhesion that requires activation-dependent up-regulation of CD11/CD18 integrins on PMNs. For emigration to occur, the initial bonds that are established at the endothelial surface must be disengaged. We show that activation of PMNs results in their detachment from P-selectin, a glycoprotein expressed at the surface of inflamed endothelium that mediates initial tethering of PMNs. Loosening of the bond occurs when PMNs are activated by platelet-activating factor, which is coexpressed with P-selectin, or by other signaling molecules. The time course of reduced adhesion to P-selectin, when compared to up-regulation of CD11/CD18 integrins, suggests that "bond trading" may occur as activated PMNs transmigrate in vivo. Activation of PMNs did not alter binding of fluid-phase P-selectin, indicating that the ligand(s) for P-selectin is not shed or internalized. Using microspheres coated with P-selectin, we found that ligands for P-selectin were randomly distributed over the surfaces of rounded, unactivated PMNs. An antibody against P-selectin glycoprotein ligand-1 (PSGL-1) completely inhibited binding of P-selectin-coated beads suggesting that P-selectin glycoprotein ligand-1 is the critical binding site in this assay. In contrast to the dispersed pattern on unactivated PMNs, the ligands for P-selectin were localized on the uropods of activated, polarized cells. Pretreating PMNs with cytochalasin D before activation prevented the change in cell shape, the redistribution of binding sites for P-selectin-coated beads, and the decrease in cellular adhesiveness for P-selectin. These experiments indicate that the distribution of ligands for P-selectin is influenced by cellular activation and by cytoskeletal interactions, and that redistribution of these ligands may influence adhesive interactions. Activation of PMNs may cause loosening

  3. Glycosylation inhibitors efficiently inhibit P-selectin-mediated cell adhesion to endothelial cells.

    PubMed

    Ghoshal, Pushpankur; Rajendran, Mythilypriya; Odo, Nadine; Ikuta, Tohru

    2014-01-01

    Adhesion molecules play a critical role in the adhesive interactions of multiple cell types in sickle cell disease (SCD). We previously showed that anti-P-selectin aptamer efficiently inhibits cell adhesion to endothelial cells (ECs) and permits SCD mice to survive hypoxic stress. In an effort to discover new mechanisms with which to inhibit P-selectin, we examined the role of glycosylation. P-selectin is a 90 kDa protein but was found to migrate as 90 and 140 kDa bands on gel electrophoresis. When P-selectin isolated from ECs was digested with peptide N-glycosidase F, but not O-glycosidase, the 140 kDa band was lost and the 90 kDa band was enhanced. Treatment of ECs with tunicamycin, an N-glycosylation inhibitor, suppressed CD62P (P-selectin) expression on the cell surface as well as the 140 kDa form in the cytoplasm. These results indicate that the 140 kDa band is N-glycosylated and glycosylation is critical for cell surface expression of P-selectin in ECs. Thrombin, which stimulates P-selectin expression on ECs, induced AKT phosphorylation, whereas tunicamycin inhibited AKT phosphorylation, suggesting that AKT signaling is involved in the tunicamycin-mediated inhibition of P-selectin expression. Importantly, the adhesion of sickle red blood cells (sRBCs) and leukocytes to ECs induced by thrombin or hypoxia was markedly inhibited by two structurally distinct glycosylation inhibitors; the levels of which were comparable to that of a P-selectin monoclonal antibody which most strongly inhibited cell adhesion in vivo. Knockdown studies of P-selectin using short-hairpin RNAs in ECs suppressed sRBC adhesion, indicating a legitimate role for P-selectin in sRBC adhesion. Together, these results demonstrate that P-selectin expression on ECs is regulated in part by glycosylation mechanisms and that glycosylation inhibitors efficiently reduce the adhesion of sRBCs and leukocytes to ECs. Glycosylation inhibitors may lead to a novel therapy which inhibits cell adhesion in SCD.

  4. Ascorbate inhibits platelet-endothelial adhesion in an in-vitro model of sepsis via reduced endothelial surface P-selectin expression.

    PubMed

    Secor, Dan; Swarbreck, Scott; Ellis, Christopher G; Sharpe, Michael D; Feng, Qingping; Tyml, Karel

    2017-01-01

    Plugging of the capillary bed can lead to organ failure and mortality in sepsis. We have reported that intravenous ascorbate injection reduces platelet adhesion to the capillary wall and capillary plugging in septic mice. Both platelet adhesion and capillary plugging require P-selectin, a key adhesion molecule. To elucidate the beneficial effect of ascorbate, we hypothesized that ascorbate reduces platelet-endothelial adhesion by reducing P-selectin surface expression in endothelial cells. We used mouse platelets, and monolayers of cultured microvascular endothelial cells (mouse skeletal muscle origin) stimulated with lipopolysaccharide, to examine platelet-endothelial adhesion. P-selectin mRNA expression in endothelial cells was determined by real-time PCR and P-selectin protein expression at the surface of these cells by immunofluorescence. Secretion of von Willebrand factor from cells into the supernatant (a measure of P-selectin-containing granule exocytosis) was determined by ELISA. Lipopolysaccharide (10 μg/ml, 1 h) increased platelet-endothelial adhesion. P-selectin-blocking antibody inhibited this adhesion. Lipopolysaccharide also increased P-selectin mRNA in endothelial cells, P-selectin expression at the endothelial surface, and von Willebrand factor secretion. Ascorbate pretreatment (100 μmol/l, 4 h) inhibited the increased platelet adhesion, surface expression of P-selectin, and von Willebrand factor secretion, but not the increase in P-selectin mRNA. The lipopolysaccharide-induced increase in platelet-endothelial adhesion requires P-selectin presence at the endothelial surface. Ascorbate's ability to reduce this presence could be important in reducing both platelet adhesion to the capillary wall and capillary plugging in sepsis.

  5. Soluble adhesion molecules (sICAM-1, sVCAM-1) and selectins (sE selectin, sP selectin, sL selectin) levels in children and adolescents with obesity, hypertension, and diabetes.

    PubMed

    Glowinska, Barbara; Urban, Miroslawa; Peczynska, Jadwiga; Florys, Bozena

    2005-08-01

    The attachment of monocytes and lymphocytes to endothelial cells, which initiates atherosclerosis, arises under the influence of adhesion molecules. The preclinical phase of this disease lasts many decades, and this provides an opportunity for the presymptomatic detection of high-risk subjects. We evaluated levels of the adhesion molecules: sICAM-1 (soluble intercellular adhesion molecule 1), sVCAM-1 (soluble vascular adhesion molecule 1), sE selectin, sP selectin, and sL selectin in children with atherosclerosis risk factors (n = 123, mean age 15.1 years) (obese [n = 17], hypertensive [n = 25], obese with hypertension [n = 30], type 1 diabetic [n = 51]). Twenty-seven healthy children formed the control group, mean age 15.2 years. sICAM-1 was higher in the study group compared with control (314.1 +/- 61 vs 264.9 +/- 55 ng/mL, P < .01). The same was found for sVCAM-1 (513.7 +/- 187 vs 407.9 +/- 76 ng/mL, P < .05) and E selectin (86.04 +/- 33.6 vs 62.1 +/- 20.3 ng/mL, P < .01). sP-selectin and sL-selectin levels were not different compared with controls. E selectin correlated with body mass index (BMI; r = 0.18, P = .03), total cholesterol (r = 0.2, P = .016), and triglycerides (r = 0.22, P = .008). sICAM-1 correlated with BMI (r = 0.19, P = .019) and systolic blood pressure (r = 0.13, P = .045). In multiple linear regression analysis, sE selectin was found to be associated with triglycerides (R2 = 0.29, P = .045), sICAM-1 dependent on BMI (R2 = 0.58, P = .047), and sVCAM-1 dependent on total cholesterol (R2 = 0.51, P = .006). Elevated concentrations of sICAM-1, sVCAM-1, and E selectin were found in obese, hypertensive, and diabetic children. We conclude that endothelial activation appears in these children, and adhesion molecules are related to the earliest stages of atherosclerosis.

  6. A human colon carcinoma cell line exhibits adhesive interactions with P-selectin under fluid flow via a PSGL-1-independent mechanism.

    PubMed Central

    Goetz, D. J.; Ding, H.; Atkinson, W. J.; Vachino, G.; Camphausen, R. T.; Cumming, D. A.; Luscinskas, F. W.

    1996-01-01

    It has been postulated that endothelial cell adhesion molecules involved in leukocyte recruitment play a role in metastasis. Using an in vitro flow model, we studied the adhesion of the human colon carcinoma cell line KM12-L4 to P-selectin, an inducible endothelial-expressed adhesion molecule involved in leukocyte recruitment. Recombinant forms of P-selectin and Chinese hamster ovary cells stably expressing P-selectin supported attachment and rolling of KM12-L4 cells at 1 to 2 dynes/cm2. The adhesive interactions to P-selectin were abolished by pretreatment of the KM12-L4 cells with neuraminidase but were unaltered by pretreatment of the KM12-L4 cells with O-sialoglycoprotein endopeptidase, an enzyme that cleaves mucin type glycoproteins such as P-selectin glycoprotein ligand-1 (PSGL-1). PSGL-1 is the only counter-receptor for P-selectin known to mediate myeloid cell adhesion to P-selectin under flow. Flow cytometric and Northern blot analyses revealed that KM12-L4 cells did not express PSGL-1 and monoclonal antibody PL1, a function-blocking monoclonal antibody to PSGL-1, had no inhibitory effect on KM12-L4 adhesion to P-selectin under flow. Compared with HL-60 cells, which express PSGL-1, the KM12-L4 cells exhibited a slightly lower rate of attachment to P-selectin and rolled at a significantly higher velocity. In summary, KM12-L4 human colon carcinoma cells interact with P-selectin, under flow, through a PSGL-1-independent adhesion pathway. Images Figure 3 Figure 6 PMID:8909255

  7. P-selectin cross-links PSGL-1 and enhances neutrophil adhesion to fibrinogen and ICAM-1 in a Src kinase-dependent, but GPCR-independent mechanism.

    PubMed

    Xu, Tao; Zhang, Lei; Geng, Zhen H; Wang, Hai-Bo; Wang, Jin-Tao; Chen, Ming; Geng, Jian-Guo

    2007-01-01

    Endothelial and platelet P-selectin (CD62P) and leukocyte integrin alpha(M)beta(2) (CD11bCD18, Mac-1) are cell adhesion molecules essential for host defense and innate immunity. Upon inflammatory challenges, P-selectin binds to PSGL-1 (P-selectin glycoprotein ligand-1, CD162) to mediate neutrophil rolling, during which integrins become activated by extracellular stimuli for their firm adhesion in a G-protein coupled receptor (GPCR)-dependent mechanism. Here we show that cross-linking of PSGL-1 by dimeric or multimeric forms of platelet P-selectin, P-selectin receptor-globulin, anti-PSGL-1 mAb and its F(ab')2 induced adhesion of human neutrophils to fibrinogen (Fg) and intercellular cell adhesion molecule-1 (ICAM-1, CD54) and triggered a moderate clustering of alpha(M)beta(2), but monomeric forms of soluble P-selectin and anti-PSGL-1 Fab did not. Interestingly, P-selectin did not induce a detectable interleukine-8 (IL-8) secretion (<0.1 ng/ml) in 30 minutes, whereas a high concentration of IL-8 (>50 ng/ml) was required to increase neutrophil adhesion to Fg. P-selectin-induced neutrophil adhesion was significantly inhibited by PP2 (a Src kinase inhibitor), but not by pertussis toxin (PTX; a GPCR inhibitor). Activated platelets also increased neutrophil binding to fibrinogen and triggered tyrosine phosphorylation of cellular proteins. Our results indicate that P-selectin-induced integrin activation (Src kinase-dependent) is distinct from that elicited by cytokines, chemokines, chemoattractants (GPCR-dependent), suggesting that these two signal transduction pathways may cooperate for maximal activation of leukocyte integrins.

  8. P-selectin mediates adhesion of platelets to neuroblastoma and small cell lung cancer.

    PubMed Central

    Stone, J P; Wagner, D D

    1993-01-01

    Activated platelets and stimulated endothelial cells express P-selectin, an integral membrane protein receptor that binds monocytes and neutrophils. P-selectin mediates adhesion to glycoproteins with carbohydrate structures containing sialyl-Lewis X. Since many carcinoma cells also express these carbohydrate structures and are known to interact with platelets, we asked whether P-selectin may mediate this interaction. Both small cell lung cancer and neuroblastoma cell lines bound to activated platelets, and this interaction was blocked with inhibitory anti-P-selectin antibodies and by pretreatment of these cancer cells with neuraminidase or trypsin. Platelet binding to the small cell lung cancer cells was not inhibited with anti-GP IIb-IIIa antibody or Arg-Gly-Asp-Ser peptide. Pretreatment of the neuroblastoma cells with inhibitors of N-linked carbohydrate biosynthesis had little effect on binding to P-selectin, indicating that relevant carbohydrate ligand(s) may be O-linked. In addition, lipospheres containing P-selectin specifically bound to cryostat sections derived from a small cell lung tumor and two neuroblastoma tumors, but not to sections of normal lung. These observations demonstrate that P-selectin mediates binding of platelets to small cell lung cancer and to neuroblastoma and suggest a possible role for this lectin in metastasis. Images PMID:7688763

  9. The oxidase activity of vascular adhesion protein-1 (VAP-1) induces endothelial E- and P-selectins and leukocyte binding.

    PubMed

    Jalkanen, Sirpa; Karikoski, Marika; Mercier, Nathalie; Koskinen, Kaisa; Henttinen, Tiina; Elima, Kati; Salmivirta, Katriina; Salmi, Marko

    2007-09-15

    Leukocyte migration from the blood into tissues is pivotal in immune homeostasis and in inflammation. During the multistep extravasation cascade, endothelial selectins (P- and E-selectin) and vascular adhesion protein-1 (VAP-1), a cell-surface-expressed oxidase, are important in tethering and rolling. Here, we studied the signaling functions of the catalytic activity of VAP-1. Using human endothelial cells transfected with wild-type VAP-1 and an enzymatically inactive VAP-1 point mutant, we show that transcription and translation of E- and P-selectins are induced through the enzymatic activity of VAP-1. Moreover, use of VAP-1-deficient animals and VAP-1-deficient animals carrying the human VAP-1 as a transgene show a VAP-enzyme activity-dependent induction of P-selectin in vivo. Up-regulation of P-selectin was found both in high endothelial venules in lymphoid tissues and in flat-walled vessels in noninflamed tissues. VAP-1 activity in vivo led to increased P-selectin-dependent binding of lymphocytes to endothelial cells. These data show that the oxidase reaction catalyzed by VAP-1 alters the expression of other molecules involved in the leukocyte extravasation cascade. Our findings indicate cross-talk between adhesion molecules involved in the tethering and rolling of leukocytes and show that VAP-1-dependent signaling can prime the vessels for an enhanced inflammatory response.

  10. Analytical cell adhesion chromatography reveals impaired persistence of metastatic cell rolling adhesion to P-selectin

    PubMed Central

    Oh, Jaeho; Edwards, Erin E.; McClatchey, P. Mason; Thomas, Susan N.

    2015-01-01

    ABSTRACT Selectins facilitate the recruitment of circulating cells from the bloodstream by mediating rolling adhesion, which initiates the cell–cell signaling that directs extravasation into surrounding tissues. To measure the relative efficiency of cell adhesion in shear flow for in vitro drug screening, we designed and implemented a microfluidic-based analytical cell adhesion chromatography system. The juxtaposition of instantaneous rolling velocities with elution times revealed that human metastatic cancer cells, but not human leukocytes, had a reduced capacity to sustain rolling adhesion with P-selectin. We define a new parameter, termed adhesion persistence, which is conceptually similar to migration persistence in the context of chemotaxis, but instead describes the capacity of cells to resist the influence of shear flow and sustain rolling interactions with an adhesive substrate that might modulate the probability of extravasation. Among cell types assayed, adhesion persistence to P-selectin was specifically reduced in metastatic but not leukocyte-like cells in response to a low dose of heparin. In conclusion, we demonstrate this as an effective methodology to identify selectin adhesion antagonist doses that modulate homing cell adhesion and engraftment in a cell-subtype-selective manner. PMID:26349809

  11. Neutrophil-platelet adhesion: relative roles of platelet P-selectin and neutrophil beta2 (DC18) integrins.

    PubMed

    Brown, K K; Henson, P M; Maclouf, J; Moyle, M; Ely, J A; Worthen, G S

    1998-01-01

    Neutrophils and platelets interact both physically and metabolically during inflammation and thrombosis, but the mechanisms responsible for their adhesion remain incompletely understood. Neutrophil-platelet adhesion was measured after specific stimulation of neutrophils, platelets, or both and quantified by flow cytometry. Specific stimulation of either the neutrophil or the platelet led to a marked increase in the percentage of neutrophils that bound platelets, although platelet stimulation led to a large increase and neutrophil stimulation to only a small increase in the number of platelets per neutrophil. Stimulation of both cells further increased the number of neutrophil-platelet adhesive events and led to large numbers of platelets binding to each neutrophil. Confirming previous observations, blocking antibodies to platelet P-selectin (CD62P) partially inhibited adhesion. However, blockade of the neutrophil beta2 integrin CD11b/CD18 also inhibited the percentage of neutrophils that bound platelets. Combining P-selectin and CD11b/18 blockade further inhibited the stimulated increase in the percentage of neutrophils binding platelets and the increased number of platelets per neutrophil. Both cell adhesion molecules were active even when only a single cell type was primarily activated, supporting physiologically important transcellular activation. These data suggest that: (1) neutrophil-platelet adhesion can be initiated by specific activation of either the neutrophil or the platelet and that specific activation of either cell type leads to distinct patterns of adhesion, and (2) neutrophil-platelet adhesion uses both platelet P-selectin and the neutrophil beta2 integrin CD11b/CD18 when the cells are primarily or secondarily activated.

  12. Receptor cleavage and P-selectin-dependent reduction of leukocyte adhesion in the spontaneously hypertensive rat

    PubMed Central

    Chen, Angela Y.; Ha, Jessica N.; DeLano, Frank A.; Schmid-Schönbein, Geert W.

    2012-01-01

    The SHR, a genetic model for hypertension and the metabolic syndrome, has attenuated leukocyte adhesion to the postcapillary endothelium by an unknown mechanism. Based on recent evidence of elevated levels of MMPs in plasma and on microvascular endothelium of the SHR with cleavage of several receptor types, we hypothesize that the reduced leukocyte-endothelial interaction is a result of enhanced proteolytic cleavage of P-selectin on the postcapillary endothelium and PSGL-1 on leukocytes. The attenuated rolling interactions of SHR leukocytes with the endothelium were restored by chronic treatment with a broad-spectrum MMP inhibitor (CGS) for 24 weeks. The SHR MMP levels, in plasma and mesentery, as well as the systolic blood pressure, decreased significantly with treatment. In the SHR mesentery, labeling of P-selectin in the postcapillary venules by immunohistochemistry demonstrated, on average, a 31% lower extracellular P-selectin density compared with the normotensive WKY. A significantly lower extracellular PSGL-1 density on the membranes of SHR neutrophils compared with the WKY also supported our hypothesis. In vivo stimulation of the mesenteric postcapillary venules with histamine demonstrated that the SHR had an attenuated response, as measured by leukocyte rolling velocity on the endothelium. The reduced P-selectin and PSGL-1 density, on SHR postcapillary endothelium and on SHR leukocytes, respectively, was restored significantly by chronic MMP inhibition. The impaired ability of SHR leukocytes to reduce rolling velocity upon inflammatory stimulation led to fewer firmly adhered leukocytes to the endothelium as a contributor to immune suppression. PMID:22566571

  13. Phospholipid chlorohydrin induces leukocyte adhesion to ApoE-/- mouse arteries via upregulation of P-selectin.

    PubMed

    Dever, Gary J; Benson, Robert; Wainwright, Cherry L; Kennedy, Simon; Spickett, Corinne M

    2008-02-01

    HOCl-modified low-density lipoprotein (LDL) has proinflammatory effects, including induction of inflammatory cytokine production, leukocyte adhesion, and ROS generation, but the components responsible for these effects are not completely understood. HOCl and the myeloperoxidase-H(2)O(2)-halide system can modify both protein and lipid moieties of LDL and react with unsaturated phospholipids to form chlorohydrins. We investigated the proinflammatory effects of 1-stearoyl-2-oleoyl-sn-3-glycerophosphocholine (SOPC) chlorohydrin on artery segments and spleen-derived leukocytes from ApoE(-/-) and C57 Bl/6 mice. Treatment of ApoE(-/-) artery segments with SOPC chlorohydrin, but not unmodified SOPC, caused increased leukocyte-arterial adhesion in a time- and concentration-dependent manner. This could be prevented by pretreatment of the artery with P-selectin or ICAM-1-blocking antibodies, but not anti-VCAM-1 antibody, and immunohistochemistry showed that P-selectin expression was upregulated. However, chlorohydrin treatment of leukocytes did not increase expression of adhesion molecules LFA-1 or PSGL-1, but caused increased release of ROS from PMA-stimulated leukocytes by a CD36-dependent mechanism. The SOPC chlorohydrin-induced adhesion and ROS generation could be abrogated by pretreatment of the ApoE(-/-) mice with pravastatin or a nitrated derivative, NCX 6550. These findings suggest that phospholipid chlorohydrins formed in HOCl-treated LDL could contribute to the proinflammatory effects observed for this modified lipoprotein in vitro.

  14. Two sites on P-selectin (the lectin and epidermal growth factor-like domains) are involved in the adhesion of monocytes to thrombin-activated endothelial cells.

    PubMed Central

    Murphy, J F; McGregor, J L

    1994-01-01

    P-selectin, also known as GMP-140, PADGEM or CD62, is expressed on the surface of thrombin-activated platelets and endothelial cells (EC). It is a member of the selectin family of adhesion molecules that regulate leucocyte interactions with the blood vessel wall. In this study we have found that peptides derived from both the lectin (residues 19-34 and 51-61) and epidermal growth factor (EGF)-like (residues 127-139) domains inhibit the adhesion of peripheral blood mononuclear cells (PBMC), elutriated monocytes and a monocytic cell line (U937) to thrombin-activated EC. This inhibition occurred in a concentration-dependent manner and the peptide most active at the lowest concentrations was the one derived from the EGF-like motif (127-139). The scrambled forms of these peptides, identical in amino acid composition to the authentic peptides but with altered sequences, were not inhibitory. Thrombin-activated platelets supported adhesion of U937 cells and this adhesion was dramatically inhibited by the two peptides derived from the lectin-like domain (residues 19-34 and 51-61). All three peptides, when conjugated to BSA and coated on plastic plates, mediated U937 cell adhesion. This study shows, for the first time, that two sites on P-selectin, the lectin and EGF-like domains, are involved in the adhesion of monocytes to thrombin-activated EC. PMID:7526845

  15. Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-selectin and beta2-integrin

    NASA Technical Reports Server (NTRS)

    Konstantopoulos, K.; Neelamegham, S.; Burns, A. R.; Hentzen, E.; Kansas, G. S.; Snapp, K. R.; Berg, E. L.; Hellums, J. D.; Smith, C. W.; McIntire, L. V.; Simon, S. I.

    1998-01-01

    BACKGROUND: After activation, platelets adhere to neutrophils via P-selectin and beta2-integrin. The molecular mechanisms and adhesion events in whole blood exposed to venous levels of hydrodynamic shear in the absence of exogenous activation remain unknown. METHODS AND RESULTS: Whole blood was sheared at approximately 100 s(-1). The kinetics of neutrophil-platelet adhesion and neutrophil aggregation were measured in real time by flow cytometry. P-selectin was upregulated to the platelet surface in response to shear and was the primary factor mediating neutrophil-platelet adhesion. The extent of neutrophil aggregation increased linearly with platelet adhesion to neutrophils. Blocking either P-selectin, its glycoprotein ligand PSGL-1, or both simultaneously by preincubation with a monoclonal antibody resulted in equivalent inhibition of neutrophil-platelet adhesion (approximately 30%) and neutrophil aggregation (approximately 70%). The residual amount of neutrophil adhesion was blocked with anti-CD11b/CD18. Treatment of blood with prostacyclin analogue ZK36374, which raises cAMP levels in platelets, blocked P-selectin upregulation and neutrophil aggregation to baseline. Complete abrogation of platelet-neutrophil adhesion required both ZK36374 and anti-CD18. Electron microscopic observations of fixed blood specimens revealed that platelets augmented neutrophil aggregation both by forming bridges between neutrophils and through contact-mediated activation. CONCLUSIONS: The results are consistent with a model in which venous levels of shear support platelet adherence to neutrophils via P-selectin binding PSGL-1. This interaction alone is sufficient to mediate neutrophil aggregation. Abrogation of platelet adhesion and aggregation requires blocking Mac-1 in addition to PSGL-1 or P-selectin. The described mechanisms are likely of key importance in the pathogenesis and progression of thrombotic disorders that are exacerbated by leukocyte-platelet aggregation.

  16. Fetal wound healing using a genetically modified murine model: the contribution of P-selectin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During early gestation, fetal wounds heal with paucity of inflammation and absent scar formation. P-selectin is an adhesion molecule that is important for leukocyte recruitment to injury sites. We used a murine fetal wound healing model to study the specific contribution of P-selectin to scarless wo...

  17. SDA, a DNA aptamer inhibiting E- and P-selectin mediated adhesion of cancer and leukemia cells, the first and pivotal step in transendothelial migration during metastasis formation.

    PubMed

    Faryammanesh, Rassa; Lange, Tobias; Magbanua, Eileen; Haas, Sina; Meyer, Cindy; Wicklein, Daniel; Schumacher, Udo; Hahn, Ulrich

    2014-01-01

    Endothelial (E-) and platelet (P-) selectin mediated adhesion of tumor cells to vascular endothelium is a pivotal step of hematogenous metastasis formation. Recent studies have demonstrated that selectin deficiency significantly reduces metastasis formation in vivo. We selected an E- and P-Selectin specific DNA Aptamer (SDA) via SELEX (Systematic Evolution of Ligands by EXponential enrichment) with a K(d) value of approximately 100 nM and the capability of inhibiting the interaction between selectin and its ligands. Employing human colorectal cancer (HT29) and leukemia (EOL-1) cell lines we could demonstrate an anti-adhesive effect for SDA in vitro. Under physiological shear stress conditions in a laminar flow adhesion assay, SDA inhibited dynamic tumor cell adhesion to immobilized E- or P-selectin. The stability of SDA for more than two hours allowed its application in cell-cell adhesion assays in cell culture medium. When adhesion of HT29 cells to TNFα-stimulated E-selectin presenting human pulmonary microvascular endothelial cells was analyzed, inhibition via SDA could be demonstrated as well. In conclusion, SDA is a potential new therapeutic agent that antagonizes selectin-mediated adhesion during metastasis formation in human malignancies.

  18. Structural characterization and in vitro inhibitory activities in P-selectin-mediated leukocyte adhesion of polysaccharide fractions isolated from the roots of Physalis alkekengi.

    PubMed

    Tong, Haibin; Wang, Ruifei; Liu, Ximing; Wang, Guiyun; Du, Fengguo; Zeng, Xianlu

    2011-08-01

    Selectin-mediated leukocyte initial attachment and rolling over vessel endothelial surface are crucial steps for inflammatory responses. As P-selectin is a promising target for anti-inflammation therapeutic strategy, recent works have focused on searching for more potent and non-toxic P-selectin antagonists among various natural carbohydrate products. Here, we isolated three water-soluble polysaccharide fractions (PPS-1, PPS-2 and PPS-3) from the roots of Physalis alkekengi by DEAE-cellulose and Sephacryl S-200 chromatography. Their physicochemical and structural characterizations were determined by chemical methods, GC (gas chromatography), HPLC (high performance liquid chromatography), FT-IR (Fourier transform infrared spectrometry), partial acid hydrolysis, methylation and GC-MS (gas chromatography-mass spectrometry) analyses. The inhibitory capacity of the polysaccharide fractions in P-selectin-mediated leukocyte adhesion was evaluated by flow cytometric, static adhesion and laminar flow assays. Results showed that different polysaccharide fractions possess distinct physicochemical and structural properties, including carbohydrate, protein and uronic acid contents, molecular weight, monosaccharide composition and glycosidic linkage type. Among the polysaccharide fractions, PPS-2 could effectively block the interaction between P-selectin and its native ligand.

  19. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin

    PubMed Central

    1995-01-01

    Neutrophils roll on P-selectin expressed by activated platelets or endothelial cells under the shear stresses in the microcirculation. P- selectin glycoprotein ligand-1 (PSGL-1) is a high affinity ligand for P- selectin on myeloid cells. However, it has not been demonstrated that PSGL-1 contributes to the rolling of neutrophils on P-selectin. We developed two IgG mAbs, PL1 and PL2, that appear to recognize protein- dependent epitopes on human PSGL-1. The mAbs bound to PSGL-1 on all leukocytes as well as on heterologous cells transfected with PSGL-1 cDNA. PL1, but not PL2, blocked binding of 125-I-PSGL-1 to immobilized P-selectin, binding of fluid-phase P-selectin to myeloid and lymphoid leukocytes, adhesion of neutrophils to immobilized P-selectin under static conditions, and rolling of neutrophils on P-selectin-expressing CHO cells under a range of shear stresses. PSGL-1 was localized to microvilli on neutrophils, a topography that may facilitate its adhesive function. These data indicate that (a) PSGL-1 accounts for the high affinity binding sites for P-selectin on leukocytes, and (b) PSGL- 1 must interact with P-selectin in order for neutrophils to roll on P- selectin at physiological shear stresses. PMID:7532174

  20. Expression of a P-selectin ligand in zona pellucida of porcine oocytes and P-selectin on acrosomal membrane of porcine sperm cells. Potential implications for their involvement in sperm-egg interactions.

    PubMed

    Geng, J G; Raub, T J; Baker, C A; Sawada, G A; Ma, L; Elhammer, A P

    1997-05-05

    The selectin family of cell adhesion molecules mediates initial leukocyte adhesion to vascular endothelial cells at sites of inflammation. O-glycan structural similarities between oligosaccharides from human leukocyte P-selectin glycoprotein ligand-1 (PSGL-1) and from zona pellucida glycoproteins of porcine oocytes indicate the possible existence of a P-selectin ligand in the zona pellucida. Here, using biochemical as well as morphological approaches, we demonstrate that a P-selectin ligand is expressed in the porcine zona pellucida. In addition, a search for a specific receptor for this ligand leads to the identification of P-selectin on the acrosomal membrane of porcine sperm cells. In vitro binding of porcine acrosome-reacted sperm cells to oocytes was found to be Ca2+ dependent and inhibitable with either P-selectin, P-selectin receptor-globulin, or leukocyte adhesion blocking antibodies against P-selectin and PSGL-1. Moreover, porcine sperm cells were found to be capable of binding to human promyeloid cell line HL-60. Taken together, our findings implicate a potential role for the oocyte P-selectin ligand and the sperm P-selectin in porcine sperm-egg interactions.

  1. TIM-1 glycoprotein binds the adhesion receptor P-selectin and mediates T cell trafficking during inflammation and autoimmunity.

    PubMed

    Angiari, Stefano; Donnarumma, Tiziano; Rossi, Barbara; Dusi, Silvia; Pietronigro, Enrica; Zenaro, Elena; Della Bianca, Vittorina; Toffali, Lara; Piacentino, Gennj; Budui, Simona; Rennert, Paul; Xiao, Sheng; Laudanna, Carlo; Casasnovas, Jose M; Kuchroo, Vijay K; Constantin, Gabriela

    2014-04-17

    Selectins play a central role in leukocyte trafficking by mediating tethering and rolling on vascular surfaces. Here we have reported that T cell immunoglobulin and mucin domain 1 (TIM-1) is a P-selectin ligand. We have shown that human and murine TIM-1 binds to P-selectin, and that TIM-1 mediates tethering and rolling of T helper 1 (Th1) and Th17, but not Th2 and regulatory T cells on P-selectin. Th1 and Th17 cells lacking the TIM-1 mucin domain showed reduced rolling in thrombin-activated mesenteric venules and inflamed brain microcirculation. Inhibition of TIM-1 had no effect on naive T cell homing, but it reduced T cell recruitment in a skin hypersensitivity model and blocked experimental autoimmune encephalomyelitis. Uniquely, the TIM-1 immunoglobulin variable domain was also required for P-selectin binding. Our data demonstrate that TIM-1 is a major P-selectin ligand with a specialized role in T cell trafficking during inflammatory responses and the induction of autoimmune disease.

  2. The synergy of 6-O-sulfation and N- or 3-O-sulfation of chitosan is required for efficient inhibition of P-selectin-mediated human melanoma A375 cell adhesion.

    PubMed

    Wang, Ruifei; Huang, Jinfeng; Wei, Min; Zeng, Xianlu

    2010-01-01

    We prepared chitosan sulfated derivatives to address the common structural requirement of the sulfate pattern to block P-selectin-mediated tumor cell adhesion. Our results indicate that 6-O-sulfation of chitosan is indispensable for inhibition of P-selectin binding to human melanoma A375 cells. Furthermore, additional N-sulfation or 3-O-sulfation dramatically enhanced the inhibitory activity of 6-O-sulfated chitosan, suggesting that efficient anti-P-selectin adhesion activity of sulfated saccharides requires the synergy of 6-O-sulation and N- or 3-O-sulfation in glucosamine units.

  3. Activation of β1 Integrins on Blood Eosinophils by P-Selectin

    PubMed Central

    Mosher, Deane F.

    2011-01-01

    Activation of β1 integrins of blood eosinophils, assessed by mAb N29, correlates inversely with FEV1 in two paradigms for studying control of human asthma. We asked whether P-selectin causes eosinophil β1 integrin activation and results in increased adhesivity. By dual-label flow cytometry, eosinophils with high levels of surface-associated P-selectin had higher reactivity with the activation-sensitive anti-β1 mAbs N29, 8E3, and 9EG7 than eosinophils with no or with a low-level of surface-associated P-selectin. Among patients with nonsevere asthma, surface P-selectin correlated with N29, 8E3, and 9EG7 signals. By immunofluorescence microscopy, surface-associated P-selectin was present in patches on eosinophils, some of which stained for the platelet marker thrombospondin-1. Activated β1 and P-selectin partially colocalized on eosinophils. Soluble P-selectin added to whole blood enhanced activation of eosinophil β1, but not β2, integrins. In contrast, IL-5 activated eosinophil β2, but not β1, integrins. Eosinophils that did not attach to vascular cell adhesion molecule-1 (VCAM-1) in a static adhesion assay had a lower N29 signal than the original population. Soluble P-selectin added to whole blood enhanced eosinophil adhesion to VCAM-1. These findings are compatible with a scenario whereby P-selectin, on eosinophil-associated activated platelets or acquired from plasma or from prior interactions with endothelial cells or platelets, activates eosinophil α4β1 integrin and stimulates eosinophils to adhere to VCAM-1 and move to the airway in asthma. PMID:21441381

  4. P-selectin must extend a sufficient length from the plasma membrane to mediate rolling of neutrophils

    PubMed Central

    1995-01-01

    Under physiological shear stress, neutrophils roll on P-selectin on activated endothelial cells or platelets through interactions with P- selectin glycoprotein ligand-1 (PSGL-1). Both P-selectin and PSGL-1 are extended molecules. Human P-selectin contains an NH2-terminal lectin domain, an EGF domain, nine consensus repeats (CRs), a transmembrane domain, and a cytoplasmic tail. To determine whether the length of P- selectin affected its interactions with PSGL-1, we examined the adhesion of neutrophils to CHO cells expressing membrane-anchored P- selectin constructs in which various numbers of CRs were deleted. Under static conditions, neutrophils attached equivalently to wild-type P- selectin and to constructs containing from 2-6 CRs. Under shear stress, neutrophils attached equivalently to wild-type and 6 CR P-selectin and nearly as well to 5 CR P-selectin. However, fewer neutrophils attached to the 4 CR construct, and those that did attach rolled faster and were more readily detached by increasing shear stress. Flowing neutrophils failed to attach to the 3 CR and 2 CR constructs. Neutrophils attached and rolled more efficiently on 4 CR P-selectin expressed on glycosylation-defective Lec8 CHO cells, which have less glycocalyx. We conclude that P-selectin must project its lectin domain well above the membrane to mediate optimal attachment of neutrophils under shear forces. The length of P-selectin may: (a) facilitate interactions with PSGL-1 on flowing neutrophils, and (b) increase the intermembrane distance where specific bonds form, minimizing contacts between the glycocalyces that result in cell-cell repulsion. PMID:8557755

  5. Endothelial P-selectin expression is reduced in advanced primary melanoma and melanoma metastasis.

    PubMed Central

    Nooijen, P. T.; Westphal, J. R.; Eggermont, A. M.; Schalkwijk, C.; Max, R.; de Waal, R. M.; Ruiter, D. J.

    1998-01-01

    Some malignant tumors induce a cellular immune response that results in the formation of an inflammatory infiltrate and subsequent tumor regression. The infiltrating leukocytes extravasate from the bloodstream after binding to adhesion receptors on the surface of the endothelium. One of these receptors is the P-selectin molecule (CD62P) that is constitutively present on normal capillaries. We observed that P-selectin expression is absent from the microvasculature in advanced primary melanoma and in melanoma metastasis in contrast to benign melanocytic lesions where P-selectin expression was identical to that in normal skin. We suggest that one of the mechanisms by which advanced melanoma lesions evade inflammatory regression operates via a decrease of endothelial P-selectin expression. Images Figure 1 PMID:9502409

  6. Regulation of P-selectin expression by inflammatory mediators in canine jugular endothelial cells.

    PubMed

    Doré, M; Sirois, J

    1996-11-01

    Canine endothelial cells express the adhesion molecule P-selectin to mediate the initial attachment of leukocytes to the vessel wall. Although it is known that agents like histamine and thrombin stimulate the surface expression of P-selectin, the effect of inflammatory mediators and cytokines such as lipopolysaccharides (LPS), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1 beta (IL-1 beta) on canine P-selectin expression has not been investigated. Therefore, the objective of this study was to analyze the regulation of P-selectin messenger RNA (mRNA) and protein by these cytokines in canine endothelial cells isolated from jugular veins. Analyses of cytoplasmic RNA by Northern blotting showed that stimulation of culture endothelial cells with either LPS (100 ng/ml) or recombinant human TNF-alpha (30 U/ml) for 3 or 6 hours significantly increased (P < 0.05) steady-state levels of mRNA for P-selectin (3.8- +/- 1.0- and 3.0- +/- 0.4-fold increase for LPS at 3 and 6 hours, respectively, and 2.5- +/- 0.8- and 2.7- +/- 0.9-fold increase for TNF-alpha at 3 and 6 hours, respectively). P-selectin mRNA had decreased by 48 hours to levels found in unstimulated cells. In contrast, human IL-1 beta had no effect on P-selectin mRNA. Increased levels of mRNA with LPS stimulation were associated with the synthesis of new protein, as demonstrated by the positive staining in LPS-stimulated cells using immunocytochemistry with a monoclonal antibody against canine P-selectin (MD3). These results reveal that important inflammatory mediators and cytokines such as LPS and TNF-alpha induce the synthesis of new P-selectin and suggest that this process could represent a means of sustaining local leukocyte recruitment for several hours during an acute inflammatory reaction.

  7. P-selectin-mediated LOX expression promotes insulinoma growth in Rip1-Tag2 mice by increasing tissue stiffness

    PubMed Central

    Qi, Cuiling; Li, Jialin; Guo, Simei; Li, Mengshi; Li, Yuanyuan; Li, Jiangchao; Zhang, Qianqian; Zheng, Lingyun; He, Xiaodong; Zheng, Xiaoming; He, Yanli; Wang, Lijing; Wei, Bo

    2016-01-01

    P-selectin, a cell adhesion molecule, is an important member of the selectin family. Recent studies have shown that P-selectin deletion inhibits tumor growth in Rip1-Tag2 mice by suppressing platelet accumulation in tumor tissues. This study aimed to evaluate whether and how P-selectin affects tumor stiffness in Rip1-Tag2 mice. To explore the role of P-selectin in tissue stiffness, we demonstrated that tumor progression in Rip1-Tag2 mice was correlated with tissue stiffness using immunofluorescence and histological staining. Furthermore, we showed that P-selectin deficiency significantly decreased tissue stiffness by inhibiting lysyl oxidase (LOX) expression. Our experiments involving Rip1-Tag2 mice treated with the LOX inhibitor BAPN showed that BAPN significantly abolished collagen deposition to decrease tumor stiffness and thus inhibit tumor growth. These results indicate that P-selectin deletion significantly decreases tumor stiffness in Rip1-Tag2 mice by inhibiting LOX expression. Further study demonstrated that P-selectin-mediated platelet accumulation increases tissue stiffness mainly by increasing LOX expression and thus promotes tumor growth. Therefore, P-selectin may be an effective therapeutic targeting for treating human insulinomas. PMID:27877081

  8. [Adhesion molecules and diabetes mellitus].

    PubMed

    Urso, C; Hopps, E; Caimi, G

    2010-01-01

    Adhesion molecules play a significant role in leukocyte migration across the endothelium and are also involved in regulating immune system. It is shown that diabetic patients have an increase of soluble adhesion molecules (sICAM-1, sICAM-2, sVCAM-1, sE-selectin, sL-selectin, sP-selectin) considered an integral part of inflammatory state. This inflammation is responsible for the increased cardiovascular risk of these patients. There is a close link between hyperglycemia, oxidative stress, coagulopathy and inflammation and between these factors and the vascular damage. Various studies have showed the potential role of adhesion molecules in the pathogenesis of diabetic vasculopathy. They promote leukocyte recruitment, which is one of the initial steps in the genesis of atherosclerotic plaque. Adhesion molecules are also involved in the pathogenesis of diabetes mellitus type 1; sICAM-1 would have a particular immunomodulatory role in the process of destroying beta-cells and could be used as a subclinical marker of insulitis. Plasma levels of soluble adhesion molecules correlate with hyperglycemia, insulin resistance, dyslipidemia and obesity; they are associated with the development of nephropathy, retinopathy, myocardial infarction, stroke and obliterant peripheral arterial disease in diabetic type 1 and 2. Given the role of these molecules in endothelial dysfunction genesis and tissue damage associated with diabetes, they could constitute a therapeutic target for the prevention of genesis and progression of chronic complications of diabetic disease.

  9. Heat stable antigen (mouse CD24) supports myeloid cell binding to endothelial and platelet P-selectin.

    PubMed

    Aigner, S; Ruppert, M; Hubbe, M; Sammar, M; Sthoeger, Z; Butcher, E C; Vestweber, D; Altevogt, P

    1995-10-01

    P-selectin is a Ca(2+)-dependent lectin that participates in leukocyte adhesion to vascular endothelium and platelets. Myeloid cells and a subset of T lymphocytes express carbohydrate ligands at the cell surface. Previously, we suggested that heat stable antigen (HSA/mouse CD24), an extensively glycosylated cell surface molecule on many mouse cells, is a ligand for P-selectin. Here we show that HSA mediates the binding of monocytic cells and neutrophils to P-selectin. The monocytic cell lines ESb-MP and J774, peritoneal exudate cells, and bone marrow neutrophils could bind to lipopolysaccharide-activated bend3 endothelioma cells under rotation-induced shear forces and this binding was inhibited by mAb to P-selectin and HSA. Blocking was weak at room temperature but more efficient at 4 degrees C when integrin-mediated binding was decreased. Also the adhesion of neutrophils to stimulated platelets expressing P-selectin was blocked by HSA- and P-selectin-specific mAb. Latex beads coated with purified HSA from myeloid cells bound to activated endothelioma cells or platelets, and the binding was similarly blocked by mAb to P-selectin and HSA respectively. The HSA-coated beads were stained with P-selectin-IgG, very weakly with L-selectin-IgG but not with E-selectin-IgG. The staining was dependent on divalent cations and treatment with endoglycosidase F or neuraminidase indicated that sialylated N-linked glycans were recognized. The presence of these glycans was confirmed by biosynthetic labeling studies. Our data suggest that HSA, in addition to the recently identified 160 kDa glycoprotein ligand on mouse neutrophils, belongs to a group of monospecific P-selectin ligands on myeloid cells.

  10. P-selectin upregulation in bleomycin induced lung injury in rats: effect of N-acetyl-L-cysteine

    PubMed Central

    Serrano-Mollar, A; Closa, D; Cortijo, J; Morcillo, E; Prats, N; Gironella, M; Panes, J; Rosello-Catafau, J; Bulbena, O

    2002-01-01

    Background: A number of adhesion molecules are involved in the process of neutrophil infiltration into the lung. P-selectin is one of these neutrophil-endothelial cell adhesion molecules. A study was undertaken to examine the involvement of P-selectin in the development of bleomycin induced inflammation and the ability of N-acetyl-L-cysteine to reduce the potential expression of this selectin in rats. Methods: N-acetyl-L-cysteine (3 mmol/kg po) was administered daily for seven days prior to bleomycin administration (2.5 U/kg). The kinetics of P-selectin expression and the effect of N-acetyl-L-cysteine after bleomycin treatment were measured using radiolabelled antibodies. P-selectin localisation was evaluated by immunohistochemistry and neutrophil infiltration was assessed by myeloperoxidase activity. Results: Bleomycin administration resulted in an upregulation of P-selectin at 1 hour, returning to baseline at 3 hours. Myeloperoxidase activity showed a significant increase at 6 hours after bleomycin administration that lasted for 3 days. N-acetyl-L-cysteine treatment completely prevented these increases. Conclusion: Upregulation of P-selectin in the lung is associated with neutrophil recruitment in response to bleomycin. The beneficial effect of N-acetyl-L-cysteine on bleomycin induced lung injury may be explained in part by the prevention of neutrophil recruitment in the inflammatory stage of the disease. PMID:12096208

  11. Essential Role of P-Selectin in the Initiation of the Inflammatory Response Induced by Hemorrhage and Reinfusion

    PubMed Central

    Scalia, Rosario; Armstead, Valerie E.; Minchenko, Alexander G.; Lefer, Allan M.

    1999-01-01

    Resuscitation from hemorrhage induces profound pathophysiologic alterations and activates inflammatory cascades able to initiate neutrophil accumulation in a variety of tissues. This process is accompanied by acute organ damage (e.g., lungs and liver). We have previously demonstrated that significant leukocyte–endothelium interactions occur very early in other forms of ischemia/reperfusion (i.e., splanchnic ischemia/reperfusion and traumatic shock) which are largely mediated by increased expression of the adhesion molecule, P-selectin, on the vascular endothelium. Here we postulated that increased endothelial expression of P-selectin in the microvasculature would play an essential role in initiating the inflammatory signaling of hemorrhagic shock. Using intravital microscopy, we found that hemorrhagic shock significantly increased the number of rolling and adherent leukocytes in the mouse splanchnic microcirculation. In contrast, mice genetically deficient in P-selectin, or wild-type mice given either an anti–P-selectin monoclonal antibody or a recombinant soluble P-selectin glycoprotein ligand (PSGL)-1 immunoglobulin, exhibited markedly attenuated leukocyte–endothelium interaction after hemorrhagic shock. Thus, activation of P-selectin protein on the microvascular endothelium is essential for the initial upregulation of the inflammatory response occurring in hemorrhagic shock. Moreover, endogenous levels of PSGL-1 mRNA were significantly increased in the lung, liver, and small intestine of wild-type mice subjected to hemorrhagic shock. Since PSGL-1 promotes adhesive interactions largely through P-selectin expressed on the vascular endothelium, this result further supports the crucial role played by P-selectin in the recruitment of leukocytes during hemorrhagic shock. PMID:10075976

  12. Hemorrhage and resuscitation alter the expression of ICAM-1 and P-selectin in mice.

    PubMed

    Shenkar, R; Cohen, A J; Vestweber, D; Miller, Y E; Tuder, R; Abraham, E

    1995-01-01

    Acute inflammatory lung injury is a common clinical occurrence following blood loss and trauma, and is characterized by massive neutrophil infiltration into the lung. In order to better examine cell trafficking that may contribute to lung injury in this setting, we investigated in vivo mRNA levels and immunohistochemically determined expression of the adhesion molecules P-selectin and the intercellular adhesion molecule (ICAM)-1 in murine lungs over the 3-day period following hemorrhage and resuscitation. Significant increases in P-selectin mRNA levels were present in lungs obtained 3 days after hemorrhage. ICAM-1 mRNA levels were significantly increased 6 and 72 hr after hemorrhage. Immunohistochemical staining for P-selectin was enhanced on pulmonary vascular endothelium in all visible vessels at 6, 24, and 72 hr after hemorrhage. ICAM-1 immunoreactivity was significantly increased on the alveolar epithelium at 6 and 72 hr post-hemorrhage. These results suggest that increased expression of adhesion molecules in the lung at early post-hemorrhage timepoints may contribute to neutrophil infiltration into the lungs and the frequent development of acute lung injury following blood loss and trauma.

  13. Detection of early stage atherosclerotic plaques using PET and CT fusion imaging targeting P-selectin in low density lipoprotein receptor-deficient mice

    SciTech Connect

    Nakamura, Ikuko; Hasegawa, Koki; Wada, Yasuhiro; Hirase, Tetsuaki; Node, Koichi; Watanabe, Yasuyoshi

    2013-03-29

    Highlights: ► P-selectin regulates leukocyte recruitment as an early stage event of atherogenesis. ► We developed an antibody-based molecular imaging probe targeting P-selectin for PET. ► This is the first report on successful PET imaging for delineation of P-selectin. ► P-selectin is a candidate target for atherosclerotic plaque imaging by clinical PET. -- Abstract: Background: Sensitive detection and qualitative analysis of atherosclerotic plaques are in high demand in cardiovascular clinical settings. The leukocyte–endothelial interaction mediated by an adhesion molecule P-selectin participates in arterial wall inflammation and atherosclerosis. Methods and results: A {sup 64}Cu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid conjugated anti-P-selectin monoclonal antibody ({sup 64}Cu-DOTA-anti-P-selectin mAb) probe was prepared by conjugating an anti-P-selectin monoclonal antibody with DOTA followed by {sup 64}Cu labeling. Thirty-six hours prior to PET and CT fusion imaging, 3 MBq of {sup 64}Cu-DOTA-anti-P-selectin mAb was intravenously injected into low density lipoprotein receptor-deficient Ldlr-/- mice. After a 180 min PET scan, autoradiography and biodistribution of {sup 64}Cu-DOTA-anti-P-selectin monoclonal antibody was examined using excised aortas. In Ldlr-/- mice fed with a high cholesterol diet for promotion of atherosclerotic plaque development, PET and CT fusion imaging revealed selective and prominent accumulation of the probe in the aortic root. Autoradiography of aortas that demonstrated probe uptake into atherosclerotic plaques was confirmed by Oil red O staining for lipid droplets. In Ldlr-/- mice fed with a chow diet to develop mild atherosclerotic plaques, probe accumulation was barely detectable in the aortic root on PET and CT fusion imaging. Probe biodistribution in aortas was 6.6-fold higher in Ldlr-/- mice fed with a high cholesterol diet than in those fed with a normal chow diet. {sup 64}Cu-DOTA-anti-P-selectin m

  14. P-Selectin Induces the Expression of Tissue Factor on Monocytes

    NASA Astrophysics Data System (ADS)

    Celi, Alessandro; Pellegrini, Giuliana; Lorenzet, Roberto; de Blasi, Antonio; Ready, Neal; Ready, Neal; Furie, Barbara C.; Furie, Bruce

    1994-09-01

    P-selectin on activated platelets and stimulated endothelial cells mediates cell adhesion with monocytes and neutrophils. Since activated platelets induce tissue factor on mononuclear leukocytes, we examined the effect of P-selectin on the expression of tissue factor activity in monocytes. Purified P-selectin stimulated tissue factor expression on mononuclear leukocytes in a dose-dependent manner. Chinese hamster ovary (CHO) cells expressing P-selectin stimulated tissue factor procoagulant activity in purified monocytes, whereas untransfected CHO cells and CHO cells expressing E-selectin did not. Anti-P-selectin antibodies inhibited the effects of purified P-selectin and CHO cells expressing P-selectin on monocytes. Incubation of CHO cells expressing P-selectin with monocytes leads to the development of tissue factor mRNA in monocytes and to the expression of tissue factor antigen on the monocyte surface. These results indicate that P-selectin upregulates the expression of tissue factor on monocytes as well as mediates the binding of platelets and endothelial cells with monocytes and neutrophils. The binding of P-selectin to monocytes in the area of vascular injury may be a component of a mechanism that initiates thrombosis.

  15. Platelets enhance neutrophil transendothelial migration via P-selectin glycoprotein ligand-1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Platelets are increasingly recognized as important for inflammation in addition to thrombosis. Platelets promote the adhesion of neutrophils [polymorphonuclear neutrophils (PMNs)] to the endothelium; P-selectin and P-selectin glycoprotein ligand (PSGL)-1 have been suggested to participate in these i...

  16. Eimeria bovis modulates adhesion molecule gene transcription in and PMN adhesion to infected bovine endothelial cells.

    PubMed

    Hermosilla, Carlos; Zahner, Horst; Taubert, Anja

    2006-04-01

    Eimeria bovis is an important coccidian parasite of cattle causing severe diarrhea in young animals. Its first schizogony takes place in endothelial cells of the ileum resulting in the formation of macroschizonts 14-18 days p.i. This longlasting development suggests a particular immune evasion strategy of the parasite. Here, we analyse early innate immune reactions to E. bovis by determining the adhesion of polymorphonuclear neutrophils (PMN) to infected endothelial cell layers under flow conditions and the transcription of adhesion molecule genes in infected host cells. Bovine umbilical vein endothelial cells (BUVEC) were infected with E. bovis sporozoites. Sporozoites invaded BUVEC within 1h and the first mature macroschizonts occurred 14 days p.i. PMN adhesion was enhanced in E. bovis-infected BUVEC layers as early as 8h p.i.; maximum adhesion occurred 48 h p.i. Increased adhesion rates persisted until the end of the observation period at 14 days p.i. PMN adhered to both infected and uninfected cells within monolayers, suggesting paracrine cell activation. E. bovis infection upregulated the transcription of genes encoding for P-selectin, E-selectin, vascular cellular adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1). Most marked effects concerned E-selectin followed by P-selectin, VCAM-1 and ICAM-1. Increased transcript levels were found beginning 30 min p.i. and maximum values occurred 1-2h p.i. (P-selectin) and 2-4h p.i. (E-selectin, VCAM-1, ICAM-1). By 12-24h p.i. levels had decreased to those of uninfected controls. Tumor necrosis factor alpha (TNFalpha)-induced PMN adhesion was significantly reduced in infected vs. uninfected BUVEC. Eimeria bovis also had suppressive effects on TNFalpha-mediated upregulation of adhesion molecule gene transcription. The data presented here suggest that infection of BUVEC with E. bovis on one hand induces proinflammatory reactions resulting in enhanced PMN adhesion mediated by upregulated adhesion

  17. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  18. Hodgkin lymphoma cell lines bind to platelets. Incubation with platelets induces CD15 and P-selectin dependent adhesion of the cell lines to Human Umbilical Vein Endothelial cells (HUVEC)

    PubMed Central

    Ohana, Ofra Malka; Ozer, Janet; Prinsloo, Isebrand; Benharroch, Daniel; Gopas, Jacob

    2015-01-01

    Hodgkin's lymphoma is believed to spread in an orderly fashion within the lymphatic compartment. In a minority of cases, after reaching the spleen, the neoplasm disseminates, reminiscent of metastasis. In the spleen, the Hodgkin-Reed-Sternberg tumor cells come across platelets in the blood vessels and mainly in the splenic red pulp. Based on this knowledge, we investigated the possibility of platelets inducing cell adhesion in Hodgkin's lymphoma cell lines. We showed that L428 and KMH-2 cells strongly adhere to thrombin-activated platelets. Cell adhesion to platelets is partially dependent on CD15 antigens (LewisX), mainly sialyl-CD15, and P-selectin. KMH-2, as compared to L428 cells, showed increased binding due to its differential high expression of the sialyl-CD15. As a consequence of incubation with platelets, KMH-2 cells also produced increased amounts of tumor necrosis factors α (TNFα) followed by enhanced binding to human vascular endothelial cells (HUVEC). Incubation of both cell lines with activated platelets also induced activation of AP-1 transcription complex. Our findings are consistent with the concept that platelets play a critical role in the dissemination of HRS cells in HL, predominantly in the spleen, by increasing cell adhesion and thus promoting their proliferative and migratory properties beyond the lymphatic system. PMID:26418972

  19. Hodgkin lymphoma cell lines bind to platelets. Incubation with platelets induces CD15 and P-selectin dependent adhesion of the cell lines to Human Umbilical Vein Endothelial cells (HUVEC).

    PubMed

    Ohana, Ofra Malka; Ozer, Janet; Prinsloo, Isebrand; Benharroch, Daniel; Gopas, Jacob

    2015-01-01

    Hodgkin's lymphoma is believed to spread in an orderly fashion within the lymphatic compartment. In a minority of cases, after reaching the spleen, the neoplasm disseminates, reminiscent of metastasis. In the spleen, the Hodgkin-Reed-Sternberg tumor cells come across platelets in the blood vessels and mainly in the splenic red pulp. Based on this knowledge, we investigated the possibility of platelets inducing cell adhesion in Hodgkin's lymphoma cell lines. We showed that L428 and KMH-2 cells strongly adhere to thrombin-activated platelets. Cell adhesion to platelets is partially dependent on CD15 antigens (Lewis(X)), mainly sialyl-CD15, and P-selectin. KMH-2, as compared to L428 cells, showed increased binding due to its differential high expression of the sialyl-CD15. As a consequence of incubation with platelets, KMH-2 cells also produced increased amounts of tumor necrosis factors α (TNFα) followed by enhanced binding to human vascular endothelial cells (HUVEC). Incubation of both cell lines with activated platelets also induced activation of AP-1 transcription complex. Our findings are consistent with the concept that platelets play a critical role in the dissemination of HRS cells in HL, predominantly in the spleen, by increasing cell adhesion and thus promoting their proliferative and migratory properties beyond the lymphatic system.

  20. Protein mobilities and P-selectin storage in Weibel-Palade bodies.

    PubMed

    Kiskin, Nikolai I; Hellen, Nicola; Babich, Victor; Hewlett, Lindsay; Knipe, Laura; Hannah, Matthew J; Carter, Tom

    2010-09-01

    Using fluorescence recovery after photobleaching (FRAP) we measured the mobilities of EGFP-tagged soluble secretory proteins in the endoplasmic reticulum (ER) and in individual Weibel-Palade bodies (WPBs) at early (immature) and late (mature) stages in their biogenesis. Membrane proteins (P-selectin, CD63, Rab27a) were also studied in individual WPBs. In the ER, soluble secretory proteins were mobile; however, following insertion into immature WPBs larger molecules (VWF, Proregion, tPA) and P-selectin became immobilised, whereas small proteins (ssEGFP, eotaxin-3) became less mobile. WPB maturation led to further decreases in mobility of small proteins and CD63. Acute alkalinisation of mature WPBs selectively increased the mobilities of small soluble proteins without affecting larger molecules and the membrane proteins. Disruption of the Proregion-VWF paracrystalline core by prolonged incubation with NH(4)Cl rendered P-selectin mobile while VWF remained immobile. FRAP of P-selectin mutants revealed that immobilisation most probably involves steric entrapment of the P-selectin extracellular domain by the Proregion-VWF paracrystal. Significantly, immobilisation contributed to the enrichment of P-selectin in WPBs; a mutation of P-selectin preventing immobilisation led to a failure of enrichment. Together these data shed new light on the transitions that occur for soluble and membrane proteins following their entry and storage into post-Golgi-regulated secretory organelles.

  1. P-selectin suppresses hepatic inflammation and fibrosis in mice by regulating interferon gamma and the IL-13 decoy receptor.

    PubMed

    Wynn, Thomas A; Hesse, Matthias; Sandler, Netanya G; Kaviratne, Mallika; Hoffmann, Karl F; Chiaramonte, Monica G; Reiman, Rachael; Cheever, Allen W; Sypek, Joseph P; Mentink-Kane, Margaret M

    2004-03-01

    The selectin family of cell adhesion molecules is widely thought to promote inflammatory reactions by facilitating leukocyte recruitment. However, it was unexpectedly found that mice with targeted deletion of the P-selectin gene (PsKO mice) developed unpolarized type 1/type 2 cytokine responses and severely aggravated liver pathology following infection with the type 2-promoting pathogen Schistosoma mansoni. In fact, liver fibrosis, which is dependent on interleukin 13 (IL-13), increased by a factor of more than 6, despite simultaneous induction of the antifibrotic cytokine interferon gamma (IFN-gamma). Inflammation, as measured by granuloma size, also increased significantly in the absence of P-selectin. When infected PsKO mice were treated with neutralizing anti-IFN-gamma monoclonal antibodies, however, granuloma size was restored to wild-type levels; this finding revealed the potent proinflammatory role of IFN-gamma when expressed concomitantly with IL-13. Untreated PsKO mice also exhibited a significant (sixfold) reduction in decoy IL-13 receptor (IL-13 receptor alpha-2) expression when compared with infected wild-type animals. It is noteworthy, however, that when decoy receptor activity was restored in PsKO mice by treatment with soluble IL-13 receptor alpha-2-Fc, the exacerbated fibrotic response was completely inhibited. Thus, reduced expression of the decoy IL-13 receptor mediated by the elevated type 1 cytokine response probably accounts for the enhanced activity of IL-13 in PsKO mice and for the resultant increase in collagen deposition. In conclusion, the current study has revealed the critical role of P-selectin in the progression of chronic liver disease caused by schistosome parasites. By suppressing IFN-gamma and up-regulating the decoy IL-13 receptor, P-selectin dramatically inhibits the pathologic tissue remodeling that results from chronic type 2 cytokine-mediated inflammation.

  2. Heat-stable antigen (CD24) as ligand for mouse P-selectin.

    PubMed

    Sammar, M; Aigner, S; Hubbe, M; Schirrmacher, V; Schachner, M; Vestweber, D; Altevogt, P

    1994-07-01

    Heat-stable antigen (HSA)/CD24 is a cell surface molecule expressed by many cell types in the mouse. The molecule has an unusual structure because of its small protein core and extensive glycosylation. In order to study the functional role of the HSA-associated glycoconjugates we have isolated different forms of HSA. Using lectin analysis we provide evidence for extensive heterogeneity in carbohydrate composition and sialic acid linkage. Several HSA forms were recognized by mouse P-selectin-IgG but not E-selectin-IgG in ELISA. As expected, P-selectin-IgG also bound to L2/HNK-1-positive neural glycoproteins (L2-glycoproteins) and sulfatides but not to gangliosides and other control glycoproteins. The binding of P-selectin-IgG to L2-glycoproteins and HSA required bivalent cations. The reactivity to HSA was sensitive to sialidase treatment whereas the binding to L2-glycoproteins was not. Studies with alpha 2-6 sialytransferase indicated that alpha 2-6 linked sialic acid was not involved in the P-selectin binding to HSA. Surprisingly, an L2/HNK-1 specific antibody was found to cross-react with some HSA glycoforms and its binding correlated with P-selectin-IgG reactivity. L2/HNK-1-positive or L2/HNK-1-negative HSA glycoforms were also analyzed after coating to polystyrene beads. Only the L2/HNK-1-positive HSA coated beads were reactive with P-selectin-IgG and could bind to activated bend3 endothelioma cells expressing P-selectin whereas the L2/HNK-1-negative HSA beads did not. It is suggested that in its L2/HNK-1 modified form the HSA molecule on leukocytes could represent a ligand for P-selectin on endothelial cells or platelets.

  3. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction

    PubMed Central

    Hulsmans, Maarten; Courties, Gabriel; Sun, Yuan; Heidt, Timo; Vinegoni, Claudio; Borodovsky, Anna; Fitzgerald, Kevin; Wojtkiewicz, Gregory R.; Iwamoto, Yoshiko; Tricot, Benoit; Khan, Omar F.; Kauffman, Kevin J.; Xing, Yiping; Shaw, Taylor E.; Libby, Peter; Langer, Robert; Weissleder, Ralph; Swirski, Filip K.

    2016-01-01

    Myocardial infarction (MI) leads to a systemic surge of vascular inflammation in mice and humans, resulting in secondary ischemic complications and high mortality. We show that, in ApoE−/− mice with coronary ligation, increased sympathetic tone up-regulates not only hematopoietic leukocyte production but also plaque endothelial expression of adhesion molecules. To counteract the resulting arterial leukocyte recruitment, we developed nanoparticle-based RNA interference (RNAi) that effectively silences five key adhesion molecules. Simultaneously encapsulating small interfering RNA (siRNA)–targeting intercellular cell adhesion molecules 1 and 2 (Icam1 and Icam2), vascular cell adhesion molecule 1 (Vcam1), and E- and P-selectins (Sele and Selp) into polymeric endothelial-avid nanoparticles reduced post-MI neutrophil and monocyte recruitment into atherosclerotic lesions and decreased matrix-degrading plaque protease activity. Five-gene combination RNAi also curtailed leukocyte recruitment to ischemic myocardium. Therefore, targeted multigene silencing may prevent complications after acute MI. PMID:27280687

  4. Comparison of PSGL-1 microbead and neutrophil rolling: microvillus elongation stabilizes P-selectin bond clusters.

    PubMed Central

    Park, Eric Y H; Smith, McRae J; Stropp, Emily S; Snapp, Karen R; DiVietro, Jeffrey A; Walker, William F; Schmidtke, David W; Diamond, Scott L; Lawrence, Michael B

    2002-01-01

    A cell-scaled microbead system was used to analyze the force-dependent kinetics of P-selectin adhesive bonds independent of micromechanical properties of the neutrophil's surface microvilli, an elastic structure on which P-selectin ligand glycoprotein-1 (PSGL-1) is localized. Microvillus extension has been hypothesized in contributing to the dynamic range of leukocyte rolling observed in vivo during inflammatory processes. To evaluate PSGL-1/P-selectin bond kinetics of microbeads and neutrophils, rolling and tethering on P-selectin-coated substrates were compared in a parallel-plate flow chamber. The dissociation rates for PSGL-1 microbeads on P-selectin were briefer than those of neutrophils for any wall shear stress, and increased more rapidly with increasing flow. The microvillus length necessary to reconcile dissociation constants of PSGL-1 microbeads and neutrophils on P-selectin was 0.21 microm at 0.4 dyn/cm2, and increased to 1.58 microm at 2 dyn/cm2. The apparent elastic spring constant of the microvillus ranged from 1340 to 152 pN/microm at 0.4 and 2.0 dyn/cm2 wall shear stress. Scanning electron micrographs of neutrophils rolling on P-selectin confirmed the existence of micrometer-scaled tethers. Fixation of neutrophils to abrogate microvillus elasticity resulted in rolling behavior similar to PSGL-1 microbeads. Our results suggest that microvillus extension during transient PSGL-1/P-selectin bonding may enhance the robustness of neutrophil rolling interactions. PMID:11916843

  5. P-selectin is a nanotherapeutic delivery target in the tumor microenvironment.

    PubMed

    Shamay, Yosi; Elkabets, Moshe; Li, Hongyan; Shah, Janki; Brook, Samuel; Wang, Feng; Adler, Keren; Baut, Emily; Scaltriti, Maurizio; Jena, Prakrit V; Gardner, Eric E; Poirier, John T; Rudin, Charles M; Baselga, José; Haimovitz-Friedman, Adriana; Heller, Daniel A

    2016-06-29

    Disseminated tumors are poorly accessible to nanoscale drug delivery systems because of the vascular barrier, which attenuates extravasation at the tumor site. We investigated P-selectin, a molecule expressed on activated vasculature that facilitates metastasis by arresting tumor cells at the endothelium, for its potential to target metastases by arresting nanomedicines at the tumor endothelium. We found that P-selectin is expressed on cancer cells in many human tumors. To develop a targeted drug delivery platform, we used a fucosylated polysaccharide with nanomolar affinity to P-selectin. The nanoparticles targeted the tumor microenvironment to localize chemotherapeutics and a targeted MEK (mitogen-activated protein kinase kinase) inhibitor at tumor sites in both primary and metastatic models, resulting in superior antitumor efficacy. In tumors devoid of P-selectin, we found that ionizing radiation guided the nanoparticles to the disease site by inducing P-selectin expression. Radiation concomitantly produced an abscopal-like phenomenon wherein P-selectin appeared in unirradiated tumor vasculature, suggesting a potential strategy to target disparate drug classes to almost any tumor.

  6. P-selectin is a nanotherapeutic delivery target in the tumor microenvironment

    PubMed Central

    Shamay, Yosi; Elkabets, Moshe; Li, Hongyan; Shah, Janki; Brook, Samuel; Wang, Feng; Adler, Keren; Baut, Emily; Scaltriti, Maurizio; Jena, Prakrit V.; Gardner, Eric E.; Poirier, John T.; Rudin, Charles M.; Baselga, José; Haimovitz-Friedman, Adriana; Heller, Daniel A.

    2016-01-01

    Disseminated tumors are poorly accessible to nanoscale drug delivery systems because of the vascular barrier, which attenuates extravasation at the tumor site. We investigated P-selectin, a molecule expressed on activated vasculature that facilitates metastasis by arresting tumor cells at the endothelium, for its potential to target metastases by arresting nanomedicines at the tumor endothelium. We found that P-selectin is expressed on cancer cells in many human tumors. To develop a targeted drug delivery platform, we used a fucosylated polysaccharide with nanomolar affinity to P-selectin. The nanoparticles targeted the tumor microenvironment to localize chemotherapeutics and a targeted MEK (mitogen-activated protein kinase kinase) inhibitor at tumor sites in both primary and metastatic models, resulting in superior antitumor efficacy. In tumors devoid of P-selectin, we found that ionizing radiation guided the nanoparticles to the disease site by inducing P-selectin expression. Radiation concomitantly produced an abscopal-like phenomenon wherein P-selectin appeared in unirradiated tumor vasculature, suggesting a potential strategy to target disparate drug classes to almost any tumor. PMID:27358497

  7. Elevation of serum soluble E- and P-selectin in patients with hypertension is reversed by benidipine, a long-acting calcium channel blocker.

    PubMed

    Sanada, Hironobu; Midorikawa, Sanae; Yatabe, Junichi; Yatabe, Midori Sasaki; Katoh, Tetsuo; Baba, Tsuneharu; Hashimoto, Shigeatsu; Watanabe, Tsuyoshi

    2005-11-01

    Hypertension is a major risk factor for atherosclerotic cardiovascular disease. Selectins, cell-surface adhesion molecules involved in leukocyte rolling and attachment to the vascular endothelium, play a role in the initiation of atherosclerosis. We investigated whether or not serum levels of soluble adhesion molecules are elevated in patients with essential hypertension (EH) and examined whether antihypertensive therapy lowers such levels. Twenty-one patients who had untreated mild to moderate EH without diabetes mellitus, hyperlipidemia, or obesity were recruited at a clinic for hypertensive patients. Blood pressure was measured, and the serum levels of soluble E-selectin, P-selectin, L-selectin, intercellular adhesion molecule 1 (ICAM-1), and vascular-cell adhesion molecule 1 (VCAM-1) were determined by enzyme-linked immunosorbent assays before and after 12, 24, and 53 weeks of antihypertensive treatment with benidipine, a long-acting calcium channel blocker, given at a dose of 6 mg/day for 53 weeks. As a control, 21 age- and sex-matched patients without hypertension were studied. Serum E- and P-selectin levels were significantly higher in the subjects with EH than in the controls (p < 0.01). There were no differences in serum levels of soluble L-selectin, VCAM-1, or ICAM-1 levels between the patients with EH and the controls. Treatment with benidipine decreased the elevated blood pressure over a 53-week study period (mean blood pressure: 119.8 +/- 6.5 mmHg at baseline, 101.0 +/- 5.9 mmHg at 12 weeks, 98.6 +/- 7.3 mmHg at 24 weeks, and 93.9 +/- 5.5 mmHg at 53 weeks). Serum levels of soluble E- and P-selectin decreased after the initiation of benidipine treatment and correlated with diastolic blood pressure. Serum levels of soluble L-selectin, VCAM-1, and ICAM-1 did not change significantly during the period of benidipine treatment. Benidipine treatment reduced the content of P-selectin in the platelets from patients with EH, as determined by Western blot

  8. Adhesion molecules in vernal keratoconjunctivitis

    PubMed Central

    El-Asrar, A.; Geboes, K.; Al-Kharashi, S.; Tabbara, K.; Missotten, L.; Desmet, V.

    1997-01-01

    AIMS/BACKGROUND—Adhesion molecules play a key role in the selective recruitment of different leucocyte population to inflammatory sites. The purpose of the present study was to investigate the presence and distribution of adhesion molecules in the conjunctiva of patients with vernal keratoconjunctivitis (VKC).
METHODS—The presence and distribution of adhesion molecules were studied in 14 conjunctival biopsy specimens from seven patients with active VKC and in four normal conjunctival biopsy specimens. We used a panel of specific monoclonal antibodies (mAbs) directed against intercellular adhesion molecule-1 (ICAM-1), intercellular adhesion molecule-3 (ICAM-3), lymphocyte function associated antigen-1 (LFA-1), very late activation antigen-4 (VLA-4), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leucocyte adhesion molecule-1 (ELAM-1). In addition, a panel of mAbs were used to characterise the composition of the inflammatory infiltrate.
RESULTS—In the normal conjunctiva, ICAM-1 was expressed on the vascular endothelium only, LFA-1 and ICAM-3 on epithelial and stromal mononuclear cells , and VLA-4 on stromal mononuclear cells. The expression of VCAM-1 and ELAM-1 was absent. The number of cells expressing adhesion molecules was found to be markedly increased in all VKC specimens. This was concurrent with a heavy inflammatory infiltrate. Strong ICAM-1 expression was induced on the basal epithelial cells, and vascular endothelial cells. Furthermore, ICAM-1 was expressed on stromal mononuclear cells. LFA-1 and ICAM-3 were expressed on the majority of epithelial and stromal infiltrating mononuclear cells. VLA-4 expression was noted on stromal mononuclear cells. Compared with controls, VKC specimens showed significantly more ICAM-3+, LFA-1+, and VLA-4+ cells. VCAM-1 and ELAM-1 were induced on the vascular endothelial cells.
CONCLUSIONS—Increased expression of adhesion molecules may play an important role in the pathogenesis of VKC.

 PMID

  9. Interleukin 4 or oncostatin M induces a prolonged increase in P- selectin mRNA and protein in human endothelial cells

    PubMed Central

    1996-01-01

    During acute inflammation, P-selectin is transiently mobilized from Weibel-Palade bodies to the surface of histamine-activated endothelial cells, where it mediates rolling adhesion of neutrophils under hydrodynamic flow. During chronic or allergic inflammation, sustained expression of P-selectin on the endothelial cell surface has been observed. We found that the cytokines interleukin 4 (IL-4) or oncostatin M (OSM) induced a five- to ninefold increase in P-selectin messenger RNA (mRNA) in human umbilical vein endothelial cells (HUVEC) that persisted as long as 72 h. IL-4 elevated P-selectin mRNA by increasing its transcription rate rather than by prolonging its already long half-life. Stimulation of P-selectin transcription by IL-4 or OSM required new protein synthesis and tyrosine phosphorylation of cellular proteins. Tumor necrosis factor alpha, IL-1 beta, lipopolysaccharide, or IL-3 did not increase P-selectin mRNA in HUVEC, and did not augment the IL-4-induced increase in P-selectin transcripts. IL-4 or OSM increased P-selectin protein on the cell surface as well as in Weibel- Palade bodies. Under flow conditions, neutrophils rolled on P-selectin expressed by IL-4-treated HUVEC, and even more neutrophils rolled on P- selectin after IL-4-treated HUVEC were stimulated with histamine. These data demonstrate that IL-4 or OSM stimulates endothelial cells to synthesize more P-selectin over prolonged periods. The increased expression of P-selectin may facilitate the emigration of leukocytes into sites of chronic or allergic inflammation. PMID:8691152

  10. P-selectin, a granule membrane protein of platelets and endothelial cells, follows the regulated secretory pathway in AtT-20 cells

    PubMed Central

    1992-01-01

    P-selectin (PADGEM, GMP-140, CD62) is a transmembrane protein specific to alpha granules of platelets and Weibel-Palade bodies of endotheial cells. Upon stimulation of these cells, P-selectin is translocated to the plasma membrane where it functions as a receptor for monocytes and neutrophils. To investigate whether the mechanism of targeting of P- selectin to granules is specific for megakaryocytes and endothelial cells and/or dependent on von Willebrand factor, a soluble adhesive protein that is stored in the same granules, we have expressed the cDNA for P-selectin in AtT-20 cells. AtT-20 cells are a mouse pituitary cell line that can store proteins in a regulated fashion. By double-label immunofluorescence, P-selectin was visible as a punctate pattern at the tips of cell processes. This pattern closely resembled the localization of ACTH, the endogenous hormone produced and stored by the AtT-20 cells. Fractionation of the transfected cells resulted in the codistribution of P-selectin and ACTH in cellular compartments of the same density. Immunoelectron microscopy using a polyclonal anti-P- selectin antibody demonstrated immunogold localization in dense granules, morphologically indistinguishable from the ACTH granules. Binding experiments with radiolabeled monoclonal antibody to P-selectin indicated that there was also surface expression of P-selectin on the AtT-20 cells. After stimulation with the secretagogue 8-Bromo-cAMP the surface expression increased twofold, concomitant with the release of ACTH. In contrast, the surface expression of P-selectin transfected into CHO cells, which do not have a regulated pathway of secretion, did not change with 8-Br-cAMP treatment. In conclusion, we provide evidence for the regulated secretion of a transmembrane protein (P-selectin) in a heterologous cell line, which indicates that P-selectin contains an independent sorting signal directing it to storage granules. PMID:1370497

  11. B lymphocyte binding to E- and P-selectins is mediated through the de novo expression of carbohydrates on in vitro and in vivo activated human B cells.

    PubMed Central

    Postigo, A A; Marazuela, M; Sánchez-Madrid, F; de Landázuri, M O

    1994-01-01

    Cell adhesion to endothelium regulates the trafficking and recruitment of leukocytes towards lymphoid organs and sites of inflammation. This phenomenon is mediated by the expression of a number of adhesion molecules on both the endothelium and circulating cells. Activation of endothelial cells (EC) with different stimuli induces the expression of several adhesion molecules (E- and P-selectins, ICAM-1, VCAM-1), involved in their interaction with circulating cells. In this report, we have studied the binding of nonactivated and activated B cells to purified E- and P-selectins. Activated but not resting B cells were able to interact with both selectins. This binding capacity of activated B cells paralleled the induction of different carbohydrate epitopes (Lewisx, sialyl-Lewisx, CD57 and CDw65) as well as other molecules bearing these or related epitopes in myeloid cells (L-selectin, alpha L beta 2 and alpha X beta 2 integrins, and CD35) involved in the interaction of different cell types with selectins. B cells infiltrating inflamed tissues like in Hashimoto's thyroiditis, also expressed these selectin-binding carbohydrates in parallel with the expression of E-selectin by surrounding follicular dendritic cells. Moreover, the crosslinking of these selectin-binding epitopes resulted in an increased binding of B cells to different integrin ligands. Thus, in addition to the involvement of integrins, E- and P-selectins could play an important role in the interaction of B lymphocytes with the endothelium during B cell extravasation into lymphoid tissues and inflammatory foci as well as in their organization into lymphoid organs. Images PMID:7523454

  12. P-selectin expression in a colon tumor model exposed by sinusoidal electromagnetic fields

    PubMed Central

    TUNCEL, HANDAN; SHIMAMOTO, FUMIO; ÇIRAKOĞLU, AYŞE; KORPINAR, MEHMET ALI; KALKAN, TUNAYA

    2013-01-01

    P-selectin is mainly involved in the initial process of tumor cell adhesion to platelets. The aim of the present study was to determine the expression level of P-selectin in a colon tumor model affected by sinusoidal electromagnetic fields (SMF). Male Wistar albino rats aged 2-2.5 months were used. The animals were divided into the I [N-Methyl-N-Nitrosurea (MNU)], II (SMF-MNU), III (SMF) and IV (control) groups. The rats were housed five per polycarbonate cage. Sixty milligrams of MNU was dissolved in 6 ml sterile 0.9% NaCl. Prepared solutions were administered intra rectally (i.r.) to the 1st and 3rd groups as 0.2 ml/per animal. The same procedure was applied to the 2nd and 4th groups, although 0.2 ml/per animal sterile isotonic solution was administered instead. This procedure was repeated once a week for 10 weeks. Following the administration of MNU, the 2nd and 3rd groups were exposed to a sinusoidal magnetic field (SMF, 50 Hz, 5 mT) for 6 h/day for 8 months. P-selectin expression of the four groups of rat colon tissues was determined using immunohistochemistry on paraffin sections. The labeled streptavidin biotin method was performed. Fisher’s exact test was used for differences between proportions. Results showed that there was no statistically significant (P>0.05) change in the expression level of P-selectin. However, this result should be verified by both in vivo and in vitro experiments to determine the effects of the magnetic fields on P-selectin. PMID:24648955

  13. Nerve growth factor translates stress response and subsequent murine abortion via adhesion molecule-dependent pathways.

    PubMed

    Tometten, Mareike; Blois, Sandra; Kuhlmei, Arne; Stretz, Anna; Klapp, Burghard F; Arck, Petra C

    2006-04-01

    Spontaneous abortion is a frequent threat affecting 10%-25% of human pregnancies. Psychosocial stress has been suggested to be attributable for pregnancy losses by challenging the equilibrium of systems mandatory for pregnancy maintenance, including the nervous, endocrine, and immune system. Strong evidence indicates that stress-triggered abortion is mediated by adhesion molecules, i.e., intercellular adhesion molecule 1 (ICAM1) and leukocyte function associated molecule 1, now being referred to as integrin alpha L (ITGAL), which facilitate recruitment of inflammatory cells to the feto-maternal interface. The neurotrophin beta-nerve growth factor (NGFB), which has been shown to be upregulated in response to stress in multiple experimental settings including in the uterine lining (decidua) during pregnancy, increases ICAM1 expression on endothelial cells. Here, we investigated whether and how NGFB neutralization has a preventive effect on stress-triggered abortion in the murine CBA/J x DBA/2J model. We provide experimental evidence that stress exposure upregulates the frequency of abortion and the expression of uterine NGFB. Further, adhesion molecules ICAM1 and selectin platelet (SELP, formerly P-Selectin) and their ligands ITGAL and SELP ligand (SELPL, formerly P selectin glycoprotein ligand 1) respectively increase in murine deciduas in response to stress. Subsequently, decidual cytokines are biased toward a proinflammatory and abortogenic cytokine profile. Additionally, a decrease of pregnancy protective CD8alpha(+) decidual cells is present. Strikingly, all such uterine stress responses are abrogated by NGFB neutralization. Hence, NGFB acts as a proximal mediator in the hierarchical network of immune rejection by mediating an abortogenic environment comprised of classical signs of neurogenic inflammation.

  14. Distribution of TNF alpha and its reactive vascular adhesion molecules in fibrovascular membranes of proliferative diabetic retinopathy.

    PubMed Central

    Limb, G A; Chignell, A H; Green, W; LeRoy, F; Dumonde, D C

    1996-01-01

    AIMS: This study investigated the presence of the cytokine tumour necrosis factor alpha (TNF alpha) and the vascular adhesion glycoproteins ICAM-1, VCAM-1, E-selectin, P-selectin, and PECAM within fibrovascular membranes of eyes with proliferative diabetic retinopathy (PDR). METHODS: The presence of these molecules was determined by immunohistochemical staining using monoclonal antibodies and the APAAP technique. RESULTS: Staining for TNF alpha was observed on the retinal vascular endothelium of five of 12 specimens, on infiltrating cells within all membranes, and on the extracellular matrix of nine specimens. This staining wa abolished by absorption of the monoclonal antibody with human recombinant TNF alpha. Likewise, ICAM-1 staining was given by infiltrating cells and extracellular matrix of nine membranes and by the endothelium of three of the specimens. VCAM-1, E-selectin, and P-selectin staining was observed on the vascular endothelium of 5/12, 4/12, and 3/12 epiretinal membranes respectively. PECAM was expressed by the endothelium of 4/12 specimens, by infiltrating cells of 8/12 membranes, and also by the extracellular matrix of two of the specimens. CONCLUSION: The widespread distribution of TNF alpha and the nature of the adhesion molecules expressed by vascular endothelial cells in PDR membranes suggest that local activation of TNF alpha and enhanced expression of vascular cell adhesion molecules may play an important role in the development of the proliferative phase of diabetic retinopathy. Images PMID:8814750

  15. Targeting P-selectin glycoprotein ligand-1/P-selectin interactions as a novel therapy for metabolic syndrome.

    PubMed

    Patel, Madhukar S; Miranda-Nieves, David; Chen, Jiaxuan; Haller, Carolyn A; Chaikof, Elliot L

    2016-12-09

    Obesity-induced insulin resistance and metabolic syndrome continue to pose an important public health challenge worldwide as they significantly increase the risk of type 2 diabetes and atherosclerotic cardiovascular disease. Advances in the pathophysiologic understanding of this process has identified that chronic inflammation plays a pivotal role. In this regard, given that both animal models and human studies have demonstrated that the interaction of P-selectin glycoprotein ligand-1 (PSGL-1) with P-selectin is not only critical for normal immune response but also is upregulated in the setting of metabolic syndrome, PSGL-1/P-selectin interactions provide a novel target for preventing and treating resultant disease. Current approaches of interfering with PSGL-1/P-selectin interactions include targeted antibodies, recombinant immunoglobulins that competitively bind P-selectin, and synthetic molecular therapies. Experimental models as well as clinical trials assessing the role of these modalities in a variety of diseases have continued to contribute to the understanding of PSGL-1/P-selectin interactions and have demonstrated the difficulty in creating clinically relevant therapeutics. Most recently, however, computational simulations have further enhanced our understanding of the structural features of PSGL-1 and related glycomimetics, which are responsible for high-affinity selectin interactions. Leveraging these insights for the design of next generation agents has thus led to development of a promising synthetic method for generating PSGL-1 glycosulfopeptide mimetics for the treatment of metabolic syndrome.

  16. The CD24/P-selectin binding pathway initiates lung arrest of human A125 adenocarcinoma cells.

    PubMed

    Friederichs, J; Zeller, Y; Hafezi-Moghadam, A; Gröne, H J; Ley, K; Altevogt, P

    2000-12-01

    Carbohydrates on tumor cells have been shown to play an important role in tumor metastasis. We demonstrated before that CD24, a Mr 35,000-60,000 mucine-type glycosylphosphatidylinositol-linked cell surface molecule, can function as ligand for P-selectin and that the sialylLex carbohydrate is essential for CD24-mediated rolling of tumor cells on P-selectin. To investigate the role of both antigens more closely, we transfected human A125 adenocarcinoma cells with CD24 and/or fucosyltransferase VII (Fuc TVII) cDNAs. Stable transfectants expressed CD24 and/or sialylLex. Biochemical analysis confirmed that in A125-CD24/FucTVII double transfectants, CD24 was modified with sialylLex. Only double transfectants showed rolling on P-selectin in vivo. When injected into mice, double transfectants arrested in the lungs, and this step was P-selectin dependent because it was strongly enhanced in lipopolysaccharide (LPS) pretreated wild-type mice but not in P-selectin knockout mice. CD24 modified by sialylLex was required on the tumor cells because the LPS-induced lung arrest was abolished by removal of CD24 from the cell surface by phosphatidylinositol-specific phospholipase C. A125-FucTVII single transfectants expressing sialylLex but not CD24 did not show P-selectin-mediated lung arrest. The sialylLex epitope is abundantly expressed on human carcinomas, and significant correlations between sialylLex expression and clinical prognosis exist. Our data suggest an important role for sialylLex-modified CD24 in the lung colonization of human tumors.

  17. Interactions of human alpha/beta and gamma/delta T lymphocyte subsets in shear flow with E-selectin and P-selectin

    PubMed Central

    1996-01-01

    We have compared the ability of human alpha/beta and gamma/delta T lymphocytes to adhere to selectin-bearing substrates, an interaction thought to be essential for homing and localization at sites of inflammation. Both T cell populations form rolling adhesions on E- and P-selectin substrates under physiologic flow conditions. Although equivalent to alpha/beta T cells in binding to E-selectin, gamma/delta T cells demonstrated greater ability to adhere to P-selectin that was purified or expressed on the surface of activated, adherent platelets. Under static conditions, 80% of gamma/delta T cells and 53% of alpha/beta T cells formed shear-resistant adhesions to P-selectin, whereas only 30% of gamma/delta and alpha/beta T cells adhered to E- selectin. The enhance ability of gamma/delta T cells to adhere to P- selectin cannot be attributed to differences in expression of the P- selectin glycoprotein ligand (PSGL-1), as all alpha/beta T cells versus approximately 75% of gamma/delta T cells expressed PSGL-1. Both cell populations expressed a similar percentage of the carbohydrate antigens sialyl LewisX and cutaneous lymphocyte-associated antigen. Depletion of lymphocyte populations or T cell clones bearing these oligosaccharides with the monoclonal antibody CSLEX-1 and HECA-452, respectively, resulted in a substantial reduction in adhesion to E-selectin and slight reduction in adhesion to P-selectin under flow conditions. Treatment of cells with an endopeptidase that selectively degrades O- sialomucins such as PSGL-1, abolished P-selectin but not E-selectin adhesion. Removal of terminal sialic acids with neuraminidase or protease treatment of cells abrogated cell adhesion to both selectin substrates. These results provide direct evidence for the presence of distinct E- and P-selectin ligands on T lymphocytes and suggest that gamma/delta T cells may be preferentially recruited to inflammatory sites during the early stages of an immune response when P-selectin is

  18. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    PubMed Central

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  19. Monocyte adhesion to endothelium in simian immunodeficiency virus-induced AIDS encephalitis is mediated by vascular cell adhesion molecule-1/alpha 4 beta 1 integrin interactions.

    PubMed Central

    Sasseville, V. G.; Newman, W.; Brodie, S. J.; Hesterberg, P.; Pauley, D.; Ringler, D. J.

    1994-01-01

    Because the mechanisms associated with recruitment of monocytes to brain in AIDS encephalitis are unknown, we used tissues from rhesus monkeys infected with simian immunodeficiency virus (SIV) to examine the relative contributions of various adhesion pathways in mediating monocyte adhesion to endothelium from encephalitic brain. Using a modified Stamper and Woodruff tissue adhesion assay, we found that the human monocytic cell lines, THP-1 and U937, and the B cell line, Ramos, preferentially bound to brain vessels from monkeys with AIDS encephalitis. Using a combined tissue adhesion/immunohistochemistry approach, these cells only bound to vessels expressing vascular cell adhesion molecule-1 (VCAM-1). Furthermore, pretreatment of tissues with antibodies to VCAM-1 or cell lines with antibodies to VLA-4 (CD49d) inhibited adhesion by more than 70%. Intercellular adhesion molecule-1 (ICAM-1)/beta 2 integrin interactions were not significant in mediating cell adhesion to the vasculature in encephalitic simian brain using a cell line (JY) capable of binding rhesus monkey ICAM-1. In addition, selectin-mediated interactions did not significantly contribute to cell binding to encephalitic brain as there was no immunohistochemical expression of E-selectin and P-selectin in either normal or encephalitic brain, nor was there a demonstrable adhesive effect from L-selectin using L-selectin-transfected 300.19 cells on simian encephalitic brain. These results demonstrate that using the tissue adhesion assay, THP-1, U937, and Ramos cells bind to vessels in brain from animals with AIDS encephalitis using VCAM-1/alpha 4 beta 1 integrin interactions and suggest that VCAM-1 and VLA-4 may be integral for monocyte recruitment to the central nervous system during the development of AIDS encephalitis. Images Figure 1 PMID:7507300

  20. Phenotypic differences of human neutrophils of carriers of the PSGL-1 A and B-allele in binding to immobilised P-selectin under flow conditions.

    PubMed

    Meyer dos Santos, Sascha; Klinkhardt, Ute; Lang, Katharina; Parisius, Jeannine; Kuczka, Karina; Harder, Sebastian

    2011-02-01

    P-selectin glycoprotein ligand-1 (PSGL-1) interacts with P-selectin expressed on endothelial cells and platelets. PSGL-1 extracellular mucin-like domain displays a variable number of tandem repeats (VNTRs) polymorphism. The wildtype consists of 16 decameric repeats (designated A isoforms) and variants with 15 (B allele) and 14 (C allele) repeats that are assumed to be associated with reduced risk of vascular disease. We investigated the adhesion of these natural variants to P-selectin in native human neutrophils. Healthy volunteers were genotyped and the adhesion of neutrophils expressing the PSGL-1 isoforms A/A, A/B and B/B were studied under static and physiologic flow conditions. Homozygous B/B neutrophils attached significantly weaker to P-selectin at elevated shear rates from 24 up to 64 dyn/cm(2) than A/A and A/B neutrophils. No difference in adhesion rate was found under static conditions and shear stress below 24 dyn/cm(2), but B/B neutrophils rolled significantly faster than A/A neutrophils at shear stress ≥ 12 dyn/cm(2). There was no difference in the adhesive capacity between A/A an A/B neutrophils. These data support the view that the role of the decamers is to extend the ligand binding domain far above the cell surface to support stable leukocyte adhesion and rolling.

  1. Examining the lateral displacement of HL60 cells rolling on asymmetric P-selectin patterns.

    PubMed

    Lee, Chia-Hua; Bose, Suman; Van Vliet, Krystyn J; Karp, Jeffrey M; Karnik, Rohit

    2011-01-04

    The lateral displacement of cells orthogonal to a flow stream by rolling on asymmetrical receptor patterns presents a new opportunity for the label-free separation and analysis of cells. Understanding the nature of cell rolling trajectories on such substrates is necessary to the engineering of substrates and the design of devices for cell separation and analysis. Here, we investigate the statistical nature of cell rolling and the effect of pattern geometry and flow shear stress on cell rolling trajectories using micrometer-scale patterns of biomolecular receptors with well-defined edges. Leukemic myeloid HL60 cells expressing the PSGL-1 ligand were allowed to flow across a field of patterned lines fabricated using microcontact printing and functionalized with the P-selectin receptor, leveraging both the specific adhesion of this ligand-receptor pair and the asymmetry of the receptor pattern inclination angle with respect to the fluid shear flow direction (α = 5, 10, 15, and 20°). The effects of the fluid shear stress magnitude (τ = 0.5, 1, 1.5, and 2.0 dyn/cm(2)), α, and P-selectin incubation concentration were quantified in terms of the rolling velocity and edge tracking length. Rolling cells tracked along the inclined edges of the patterned lines before detaching and reattaching on another line. The detachment of rolling cells after tracking along the edge was consistent with a Poisson process of history-independent interactions. Increasing the edge inclination angle decreased the edge tracking length in an exponential manner, contrary to the shear stress magnitude and P-selectin incubation concentration, which did not have a significant effect. On the basis of these experimental data, we constructed an empirical model that predicted the occurrence of the maximum lateral displacement at an edge angle of 7.5°. We also used these findings to construct a Monte Carlo simulation for the prediction of rolling trajectories of HL60 cells on P-selectin

  2. P-Selectin Targeted Dexamethasone-Loaded Lipid Nanoemulsions: A Novel Therapy to Reduce Vascular Inflammation

    PubMed Central

    Simion, Viorel; Constantinescu, Cristina Ana; Stan, Daniela; Deleanu, Mariana; Tucureanu, Monica Madalina; Butoi, Elena; Manduteanu, Ileana; Simionescu, Maya

    2016-01-01

    Inflammation is a common process associated with numerous vascular pathologies. We hypothesized that targeting the inflamed endothelium by coupling a peptide with high affinity for P-selectin to the surface of dexamethasone-loaded lipid nanoemulsions will highly increase their specific binding to activated endothelial cells (EC) and reduce the cell activation. We developed and characterized dexamethasone-loaded lipid nanoemulsions directed towards P-selectin (PLN-Dex) and monitored their anti-inflammatory effects in vitro using cultured EC (EA.hy926 cells) and in vivo using a mouse model of acute inflammation [lipopolysaccharides (LPS) intravenously administered in C57BL/6 mice]. We found that PLN-Dex bound specifically to the surface of activated EC are efficiently internalized by EC and reduced the expression of proinflammatory genes, thus preventing the monocyte adhesion and transmigration to/through activated EC. Given intravenously in mice with acute inflammation, PLN-Dex accumulated at a significant high level in the lungs (compared to nontargeted nanoemulsions) and significantly reduced mRNA expression level of key proinflammatory cytokines such as IL-1β, IL-6, and MCP-1. In conclusion, the newly developed nanoformulation, PLN-Dex, is functional in vitro and in vivo, reducing selectively the endothelium activation and the consequent monocyte infiltration and diminishing significantly the lungs' inflammation, in a mouse model of acute inflammation. PMID:27703301

  3. The effect of inhaled sodium cromoglycate on cellular infiltration into the bronchial mucosa and the expression of adhesion molecules in asthmatics.

    PubMed

    Hoshino, M; Nakamura, Y

    1997-04-01

    There is no direct evidence of the anti-inflammatory effect of inhaled sodium cromoglycate (SCG). To investigate whether inhaled SCG has any effect on cellular infiltration into the bronchial mucosa and the expression of adhesion molecules in patients with asthma, biopsies of the bronchial mucosa were taken from nine patients with atopic bronchial asthma before and after treatment with inhaled SCG (8 mg x day(-1)) from a metered-dose inhaler (MDI). Eosinophils were stained with anti-EG2, neutrophils with anti-NP57, mast cells with anti-AA1, T-lymphocytes with anti-CD4, CD8 and CD3, and macrophages with anti-CD68. Intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), endothelial leucocyte adhesion molecule-1 (ELAM-1) and P-selectin were stained at the same time as adhesion molecules expressed in vascular endothelium. The intensity of ICAM-1 expression in the bronchial epithelium was also evaluated. The numbers of eosinophils, mast cells, T-lymphocytes and macrophages were significantly reduced as a result of SCG administration, and the expression of ICAM-1, VCAM-1 and ELAM-1 was also significantly inhibited. A significant correlation was found between ICAM-1 expression and T-lymphocytes and between VCAM-1 expression and eosinophils. It was concluded that sodium cromoglycate does have an effect on the infiltration of the bronchial mucosa by inflammatory cells and also on the expression of adhesion molecules.

  4. Oncostatin M is a proinflammatory mediator. In vivo effects correlate with endothelial cell expression of inflammatory cytokines and adhesion molecules.

    PubMed Central

    Modur, V; Feldhaus, M J; Weyrich, A S; Jicha, D L; Prescott, S M; Zimmerman, G A; McIntyre, T M

    1997-01-01

    Oncostatin M is a member of the IL-6 family of cytokines that is primarily known for its effects on cell growth. Endothelial cells have an abundance of receptors for oncostatin M, and may be its primary target. We determined if oncostatin M induces a key endothelial cell function, initiation of the inflammatory response. We found that subcutaneous injection of oncostatin M in mice caused an acute inflammatory reaction. Oncostatin M in vitro stimulated: (a) polymorphonuclear leukocyte (PMN) transmigration through confluent monolayers of primary human endothelial cells; (b) biphasic PMN adhesion through rapid P-selectin expression, and delayed adhesion mediated by E-selectin synthesis; (c) intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 accumulation; and (d) the expression of PMN activators IL-6, epithelial neutrophil activating peptide-78, growth-related cytokine alpha and growth-related cytokine beta without concomitant IL-8 synthesis. The nature of the response to oncostatin M varied with concentration, suggesting high and low affinity oncostatin M receptors independently stimulated specific responses. Immunohistochemistry showed that macrophage-like cells infiltrating human aortic aneurysms expressed oncostatin M, so it is present during a chronic inflammatory reaction. Therefore, oncostatin M, but not other IL-6 family members, fulfills Koch's postulates as an inflammatory mediator. Since its effects on endothelial cells differ significantly from established mediators like TNFalpha, it may uniquely contribute to the inflammatory cycle. PMID:9202068

  5. T cells, adhesion molecules and modulation of apoptosis in visceral leishmaniasis glomerulonephritis

    PubMed Central

    2010-01-01

    Background Immune complex deposition is the accepted mechanism of pathogenesis of VL glomerulopathy however other immune elements may participate. Further in the present study, no difference was seen between immunoglobulin and C3b deposit intensity in glomeruli between infected and non-infected dogs thus T cells, adhesion molecules and parameters of proliferation and apoptosis were analysed in dogs with naturally acquired VL from an endemic area. The dog is the most important domestic reservoir of the protozoa Leishmania (L.) chagasi that causes visceral leishmaniasis (VL). The similarity of VL manifestation in humans and dogs renders the study of canine VL nephropathy of interest with regard to human pathology. Methods From 55 dogs with VL and 8 control non-infected dogs from an endemic area, kidney samples were analyzed by immunohistochemistry for immunoglobulin and C3b deposits, staining for CD4+ and CD8+ T cells, ICAM-1, P-selectin and quantified using morphometry. Besides proliferation marker Ki-67, apoptosis markers M30 and TUNEL staining, and related cytokines TNF-α, IL-1α were searched and quantified. Results We observed similar IgG, IgM and IgA and C3b deposit intensity in dogs with VL and non-infected control dogs. However we detected the Leishmania antigen in cells in glomeruli in 54, CD4+ T cells in the glomeruli of 44, and CD8+ T cells in 17 of a total of 55 dogs with VL. Leishmania antigen was absent and T cells were absent/scarse in eight non-infected control dogs. CD 4+ T cells predominate in proliferative patterns of glomerulonephritis, however the presence of CD4+ and CD8+ T cells were not different in intensity in different patterns of glomerulonephritis. The expression of ICAM-1 and P-selectin was significantly greater in the glomeruli of infected dogs than in control dogs. In all patterns of glomerulonephritis the expression of ICAM-1 ranged from minimum to moderately severe and P-selectin from absent to severe. In the control animals the

  6. E-/P-selectins and colon carcinoma metastasis: first in vivo evidence for their crucial role in a clinically relevant model of spontaneous metastasis formation in the lung

    PubMed Central

    Köhler, S; Ullrich, S; Richter, U; Schumacher, U

    2009-01-01

    Background: Interactions of endothelial selectins with tumour cell glycoconjugates have been shown to have a major role in tumour cell dissemination in previous experiments. However, experiments validating this observation were limited in value, as ‘metastases' in these experiments were artificially induced by i.v. injection rather than developed spontaneously as in true metastases. Methods: Endothelial (E) and platelet (P)-selectin-deficient severe combined immunodeficient (scid) mice were generated and human HT 29 colon cancer cells were subcutaneously inoculated in these mice and in wild-type scid mice. Tumour growth, spontaneous metastasis formation in the lung and adherence of HT29 cells to E- and P-selectin under flow were determined. Results: The number of metastases decreased by 84% in E- and P-selectin-deficient scid mice, compared with wild-type scid mice. The remaining 16% metastases in the E- and P-selectin-deficient scid mice grew within the pulmonary artery and not in the alveolar septae as they did in wild-type scid mice. Flow experiments indicate that tumour cells roll and tether on an E- and P-selectin matrix similar to leukocytes; however, firm adhesion is mainly mediated in E-selectin. Conclusion: Our results indicate that E- and P-selectins have a crucial role in spontaneous metastasis formation. As the human HT 29 colon cancer cells are positive for the lectin Helix pomatia agglutinin (HPA), which identified the metastatic phenotype in earlier clinical studies, these results are of particular clinical relevance. PMID:20010946

  7. The changes in the endothelial expression of cell adhesion molecules and iNOS in the vessel wall after the short-term administration of simvastatin in rabbit model of atherosclerosis.

    PubMed

    Nachtigal, Petr; Kopecky, Martin; Solichova, Dagmar; Zdansky, Petr; Semecky, Vladimir

    2005-02-01

    Cell adhesion molecules P-selectin, VCAM-1 and ICAM-1 play an important role in the pathogenesis of atherosclerosis. High levels of nitric oxide (NO) produced by inducible NO synthase (iNOS) have been associated with atherosclerotic processes. Simvastatin is an HMG-CoA reductase inhibitor responsible for many clinical benefits. The aim of this study was to detect and quantify changes in endothelial expression of P-selectin, VCAM-1, ICAM-1 and iNOS in the vessel wall after the shortterm administration of simvastatin in a rabbit model of atherosclerosis. Eighteen New Zealand White rabbits were randomly divided into three groups (n=6). In the cholesterol group, rabbits consumed an atherogenic diet (0.4% cholesterol) for eight weeks. In the simvastatin group, rabbits consumed an atherogenic diet for six weeks and then consumed an atherogenic diet supplemented with simvastatin (10 mg kg(-1)) for two weeks. Biochemical analysis showed that administration of simvastatin led to an almost two-fold lowering of the total serum cholesterol, VLDL, LDL and HDL, but not triglycerides, compared with the cholesterol-fed rabbits only. Stereological analysis of the immunohistochemical staining revealed that administration of simvastatin (10 mg kg(-1) daily) in an atherogenic diet decreased the endothelial expression of P-selectin, ICAM-1 and iNOS in both aortic arch and carotid artery compared with the cholesterol fed-rabbits only. We conclude that simvastatin has beneficial effects on endothelial function by decreasing expression of P-selectin, ICAM-1 and iNOS in endothelial cells in the very early stages of atherogenesis.

  8. Single-molecule mechanics of mussel adhesion

    NASA Astrophysics Data System (ADS)

    Lee, Haeshin; Scherer, Norbert F.; Messersmith, Phillip B.

    2006-08-01

    The glue proteins secreted by marine mussels bind strongly to virtually all inorganic and organic surfaces in aqueous environments in which most adhesives function poorly. Studies of these functionally unique proteins have revealed the presence of the unusual amino acid 3,4-dihydroxy-L-phenylalanine (dopa), which is formed by posttranslational modification of tyrosine. However, the detailed binding mechanisms of dopa remain unknown, and the chemical basis for mussels' ability to adhere to both inorganic and organic surfaces has never been fully explained. Herein, we report a single-molecule study of the substrate and oxidation-dependent adhesive properties of dopa. Atomic force microscopy (AFM) measurements of a single dopa residue contacting a wet metal oxide surface reveal a surprisingly high strength yet fully reversible, noncovalent interaction. The magnitude of the bond dissociation energy as well as the inability to observe this interaction with tyrosine suggests that dopa is critical to adhesion and that the binding mechanism is not hydrogen bond formation. Oxidation of dopa, as occurs during curing of the secreted mussel glue, dramatically reduces the strength of the interaction to metal oxide but results in high strength irreversible covalent bond formation to an organic surface. A new picture of the interfacial adhesive role of dopa emerges from these studies, in which dopa exploits a remarkable combination of high strength and chemical multifunctionality to accomplish adhesion to substrates of widely varying composition from organic to metallic. 3,4-dihydroxylphenylalanine | atomic force microscopy | mussel adhesive protein

  9. Upregulation of endothelial cell adhesion molecules characterizes veins close to granulomatous infiltrates in the renal cortex of cats with feline infectious peritonitis and is indirectly triggered by feline infectious peritonitis virus-infected monocytes in vitro.

    PubMed

    Acar, Delphine D; Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Roukaerts, Inge D M; Baetens, Wendy; Van Bockstael, Sebastiaan; De Gryse, Gaëtan M A; Desmarets, Lowiese M B; Nauwynck, Hans J

    2016-10-01

    One of the most characteristic pathological changes in cats that have succumbed to feline infectious peritonitis (FIP) is a multifocal granulomatous phlebitis. Although it is now well established that leukocyte extravasation elicits the inflammation typically associated with FIP lesions, relatively few studies have aimed at elucidating this key pathogenic event. The upregulation of adhesion molecules on the endothelium is a prerequisite for stable leukocyte-endothelial cell (EC) adhesion that necessarily precedes leukocyte diapedesis. Therefore, the present work focused on the expression of the EC adhesion molecules and possible triggers of EC activation during the development of FIP. Immunofluorescence analysis revealed that the endothelial expression of P-selectin, E-selectin, intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) was elevated in veins close to granulomatous infiltrates in the renal cortex of FIP patients compared to non-infiltrated regions and specimens from healthy cats. Next, we showed that feline venous ECs become activated when exposed to supernatant from feline infectious peritonitis virus (FIPV)-infected monocytes, as indicated by increased adhesion molecule expression. Active viral replication seemed to be required to induce the EC-stimulating activity in monocytes. Finally, adhesion assays revealed an increased adhesion of naive monocytes to ECs treated with supernatant from FIPV-infected monocytes. Taken together, our results strongly indicate that FIPV activates ECs to increase monocyte adhesion by an indirect route, in which proinflammatory factors released from virus-infected monocytes act as key intermediates.

  10. Soluble P-selectin during a single hemodialysis session in patients with chronic renal failure and erythropoietin treatment.

    PubMed

    Stasko, Ján; Galajda, Peter; Ivanková, Jela; Hollý, Pavol; Rozborilová, Eva; Kubisz, Peter

    2007-10-01

    In several studies, hemodialysis (HD) patients treated with recombinant human erythropoietin (rHuEPO) because of renal anemia showed increased levels of soluble adhesion molecules. The purpose of the study was to investigate the changes of soluble P-selectin (sSELP) and its relationship to platelet activation during a single HD session in patients with long-term rHuEPO treatment. Fifty-two HD patients with chronic renal failure were involved--26 with rHuEPO treatment (EPO group) and 26 without (non-EPO group). Thirty healthy subjects served as the control group. The sSELP, beta-thromboglobulin, and platelet factor 4 plasma levels were measured before and after a single 4-hour HD session on a cuprophane dialyzer. The basal beta-thromboglobulin and platelet factor 4 plasma levels were significantly increased in both HD groups compared with healthy controls but did not change after a single HD session, except for a significant decrease of platelet factor 4 in the non-EPO group. The predialysis sSELP plasma levels did not differ significantly compared with those of the healthy controls, but there was a significant increase of sSELP levels after a single HD session in both groups (EPO, P < .005; non-EPO, P < .05, respectively). These results suppose that the increased sSELP level was released from platelets during the course of a single HD session. The more significant increase of the sSELP plasma levels in EPO group during HD indicates that platelets are more activated in patients with long-term rHuEPO treatment, and this fact could partially explain the suspected tendency for thrombosis in these patients.

  11. Effects of Static Cold Storage and Hypothermic Machine Perfusion on Oxidative Stress Factors, Adhesion Molecules, and Zinc Finger Transcription Factor Proteins Before and After Liver Transplantation.

    PubMed

    Zhao, De-Fang; Dong, Qin; Zhang, Tong

    2017-02-17

    BACKGROUND This study aimed to investigate the effects of static cold storage (SCS) and hypothermic machine perfusion (HMP) on the oxidative stress factors (OSF), adhesion molecules (AM), and zinc finger transcription factor (Snail) before and after liver transplantation. MATERIAL AND METHODS Experimental dogs were randomly divided into donor (group A), SCS (group B), and HMP (group C) (n=30) groups. Livers retrieved from group A were transplanted into group B after SCS, and the livers sampled from group B were transplanted into group C after HMP. The dogs in group A were euthanized and discarded, and the livers sampled from group C were used for other experiments. Twenty dogs with successful liver transplants were randomly selected from groups B and C for analysis. RESULTS During the liver sampling process, the levels of OSF, AM, and Snail between the 2 groups showed no significant differences (P>0.05); before the transplantation, the levels of chemokine CXCL14 and Snail between the 2 groups showed no significant differences (P>0.05), and compared with group B, HIF-1α and P-selectin in group C were lower (P<0.01); 60 min after the transplantation, HIF-1α, chemokine CXCL14, P-selectin, and Snail in group C were lower than that in group B (P<0.01). CONCLUSIONS HMP can significantly reduce the levels of OSF and inflammatory factors, which is conducive for liver transplantation.

  12. Elevated Plasma P-Selectin Autoantibodies in Primary Sjögren Syndrome Patients with Thrombocytopenia.

    PubMed

    Hu, Ya-Hui; Zhou, Peng-Fei; Long, Guang-Feng; Tian, Xin; Guo, Yu-Fan; Pang, Ai-Ming; Di, Ran; Shen, Yan-Na; Liu, Yun-De; Cui, Yu-Jie

    2015-11-28

    BACKGROUND Primary Sjögren's syndrome (pSS) is one of the most common chronic systemic autoimmune diseases, and thrombocytopenia is one of the hematological manifestations of pSS. When platelet and endothelial cells are activated, P-selectin is expressed on the cell surface. This study aimed to investigate the role of P-selectin autoantibodies in the pathogenesis of thrombocytopenia in pSS. MATERIAL AND METHODS P-selectin autoantibodies were measured by enzyme-linked immunosorbent assay (ELISA) in 38 pSS patients without thrombocytopenia and 32 pSS patients with thrombocytopenia, 32 idiopathic thrombocytopenic purpura (ITP) patients, and 35 healthy controls. RESULTS The plasma P-selectin autoantibodies (A490) in ITP patients and pSS patients with/without thrombocytopenia were significantly higher than those in healthy controls, but there were no significant differences between ITP patients and pSS patients with thrombocytopenia. The positive rate of P-selectin autoantibodies in pSS patients with thrombocytopenia was significantly higher than that in ITP patients. The platelet count was lower in P-selectin autoantibodies-positive patients, while among pSS patients with thrombocytopenia, the platelet count was lower in P-selectin autoantibodies-positive patients than in P-selectin autoantibodies-negative patients. In ITP patients and pSS patients with thrombocytopenia, the platelet count was lower in P-selectin autoantibodies-positive patients. CONCLUSIONS Elevated plasma P-selectin autoantibodies may play a role in the pathogenesis of thrombocytopenia in pSS patients.

  13. Bromelain decreases neutrophil interactions with P-selectin, but not E-selectin, in vitro by proteolytic cleavage of P-selectin glycoprotein ligand-1.

    PubMed

    Banks, Jessica M; Herman, Christine T; Bailey, Ryan C

    2013-01-01

    Stem bromelain, a cysteine protease isolated from pineapples, is a natural anti-inflammatory treatment, yet its mechanism of action remains unclear. Curious as to whether bromelain might affect selectin-mediated leukocyte rolling, we studied the ability of bromelain-treated human neutrophils to tether to substrates presenting immobilized P-selectin or E-selectin under shear stress. Bromelain treatment attenuated P-selectin-mediated tethering but had no effect on neutrophil recruitment on E-selectin substrates. Flow cytometric analysis of human neutrophils, using two antibodies against distinct epitopes within the P-selectin glycoprotein ligand-1 (PSGL-1) active site, revealed that bromelain cleaves PSGL-1 to remove one of two sites required for P-selectin binding, while leaving the region required for E-selectin binding intact. These findings suggest one molecular mechanism by which bromelain may exert its anti-inflammatory effects is via selective cleavage of PSGL-1 to reduce P-selectin-mediated neutrophil recruitment.

  14. Bromelain Decreases Neutrophil Interactions with P-Selectin, but Not E-Selectin, In Vitro by Proteolytic Cleavage of P-Selectin Glycoprotein Ligand-1

    PubMed Central

    Bailey, Ryan C.

    2013-01-01

    Stem bromelain, a cysteine protease isolated from pineapples, is a natural anti-inflammatory treatment, yet its mechanism of action remains unclear. Curious as to whether bromelain might affect selectin-mediated leukocyte rolling, we studied the ability of bromelain-treated human neutrophils to tether to substrates presenting immobilized P-selectin or E-selectin under shear stress. Bromelain treatment attenuated P-selectin-mediated tethering but had no effect on neutrophil recruitment on E-selectin substrates. Flow cytometric analysis of human neutrophils, using two antibodies against distinct epitopes within the P-selectin glycoprotein ligand-1 (PSGL-1) active site, revealed that bromelain cleaves PSGL-1 to remove one of two sites required for P-selectin binding, while leaving the region required for E-selectin binding intact. These findings suggest one molecular mechanism by which bromelain may exert its anti-inflammatory effects is via selective cleavage of PSGL-1 to reduce P-selectin-mediated neutrophil recruitment. PMID:24244398

  15. Effects of plasma treated PET and PTFE on expression of adhesion molecules by human endothelial cells in vitro.

    PubMed

    Pu, F R; Williams, R L; Markkula, T K; Hunt, J A

    2002-06-01

    The aim of this study was to evaluate the expression of adhesion molecules on the surface of human endothelial cells in response to the systematic variation in materials properties by the ammonia plasma modification of polyethylene terephthalate (PET) and polytetrafluorethylene (PTFE). These adhesion molecules act as mediators of cell adhesion, play a role in the modulation of cell adhesion on biomaterials and therefore condition the response of tissues to implants. First and second passage human umbilical vein endothelial cells (HUVECs) were cultured on plasma treated and untreated PET and PTFE. HUVECs grown on polystyrene tissue culture coverslips and HUVECs stimulated with tumour necrosis factor (TNF-alpha) were used as controls. After 1 day and 7 days, the expression of adhesion molecules platelet endothelial cell adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), Integrin alphavbeta3, vascular cell adhesion molecule-1 (VCAM-1), E-selectin, P-selectin and L-selectin were evaluated using flow cytometry and immunohistochemistry. There was a slight increase in positive cell numbers expressing the adhesion molecules ICAM-1 and VCAM-1 on plasma treated PET and PTFE. A significant increase in E-selectin positive cells on untreated PTFE was demonstrated after 7 days. Stimulation with TNF-alpha demonstrated a significant increase in the proportion of ICAM-1. VCAM-1 and E-selectin positive cells. Almost all cells expressed PECAM-1 and integrin alphavbeta3, on both materials and controls but did not express P- and L-selectin on any surface. When second passage cells were used, the expression of the adhesion molecules ICAM-1 and VCAM-1 was markedly increased on all surfaces but not with TNF-alpha. These significant differences were not observed in other adhesion molecules. These results were supported by immunohistochemical studies. The effects of plasma treated PET and PTFE on cell adhesion and proliferation was also studied. There was a 1.3-fold

  16. P-selectin and von Willebrand factor in bovine mesenteric lymphatics: an immunofluorescent study.

    PubMed

    Di Nucci, A; Marchetti, C; Serafini, S; Piovella, F

    1996-03-01

    P-selectin (PADGEM, GMP-140, CD62) is an integral membrane protein specific to alpha granules of platelets and Weibel-Palade bodies of blood vascular endothelial cells. The presence in lymphatic endothelial cells of numerous Weibel-Palade bodies and their positivity to immunocytochemical reaction for von Willebrand factor have previously been characterized and described. Because von Willebrand factor and P-selectin codistribute in Weibel-Palade bodies of blood vascular endothelial cells we investigated the presence of both P-selectin and von Willebrand factor in lymphatic endothelium. Lymphatic vessels expressed positive reaction to immunocytochemical assay thereby demonstrating the presence of P-selectin in the endothelium. Distribution and intensity of the reaction were similar to those observed in bovine blood vascular endothelium.

  17. Increased soluble P-selectin levels following deep venous thrombosis: cause or effect?

    PubMed

    Blann, A D; Noteboom, W M; Rosendaal, F R

    2000-01-01

    Deep vein thrombosis (DVT) is associated with coagulation abnormalities, but evidence of excess platelet activity is scant. Soluble P-selectin is a marker of platelet activity, with high levels being found in patients with thrombotic disease. We measured soluble P-selectin by enzyme-linked immunosorbent assay (ELISA) in plasma from 89 patients with objectively confirmed DVT and in 126 healthy age- and sex-matched control subjects, and found higher levels in the patients (P = 0.011). Taking the risk of DVT with a level of soluble P-selectin < 238 ng/ml to be 1, the relative risk of DVT with a soluble P-selectin level >238 ng/ml was 2.1 (95% CI 1. 2-3.6). These high levels may be a reflection of a generalized hypercoagulable state that, with factors such as the presence of persistent thrombin generation, could be responsible for excess platelet activation.

  18. P-Selectin preserves immune tolerance in mice and is reduced in human cutaneous lupus

    PubMed Central

    González-Tajuelo, Rafael; Silván, Javier; Pérez-Frías, Alicia; de la Fuente-Fernández, María; Tejedor, Reyes; Espartero-Santos, Marina; Vicente-Rabaneda, Esther; Juarranz, Ángeles; Muñoz-Calleja, Cecilia; Castañeda, Santos; Gamallo, Carlos; Urzainqui, Ana

    2017-01-01

    Mice deficient in P-Selectin presented altered immunity/tolerance balance. We have observed that the absence of P-Selectin promotes splenomegaly with reduced naïve T cell population, elevated activated/effector T cell subset, increased germinal center B and Tfh populations and high production of autoreactive antibodies. Moreover, 1.5-3-month-old P-selectin KO mice showed reduced IL-10-producing leukocytes in blood and a slightly reduced Treg population in the skin. With aging and, coinciding with disease severity, there is an increase in the IL17+ circulating and dermal T cell subpopulations and reduction of dermal Treg. As a consequence, P-Selectin deficient mice developed a progressive autoimmune syndrome showing skin alterations characteristic of lupus prone mice and elevated circulating autoantibodies, including anti-dsDNA. Similar to human SLE, disease pathogenesis was characterized by deposition of immune complexes in the dermoepidermal junction and renal glomeruli, and a complex pattern of autoantibodies. More important, skin biopsies of cutaneous lupus erythematosus patients did not show increased expression of P-Selectin, as described for other inflammatory diseases, and the number of vessels expressing P-Selectin was reduced. PMID:28150814

  19. P-Selectin preserves immune tolerance in mice and is reduced in human cutaneous lupus.

    PubMed

    González-Tajuelo, Rafael; Silván, Javier; Pérez-Frías, Alicia; de la Fuente-Fernández, María; Tejedor, Reyes; Espartero-Santos, Marina; Vicente-Rabaneda, Esther; Juarranz, Ángeles; Muñoz-Calleja, Cecilia; Castañeda, Santos; Gamallo, Carlos; Urzainqui, Ana

    2017-02-02

    Mice deficient in P-Selectin presented altered immunity/tolerance balance. We have observed that the absence of P-Selectin promotes splenomegaly with reduced naïve T cell population, elevated activated/effector T cell subset, increased germinal center B and Tfh populations and high production of autoreactive antibodies. Moreover, 1.5-3-month-old P-selectin KO mice showed reduced IL-10-producing leukocytes in blood and a slightly reduced Treg population in the skin. With aging and, coinciding with disease severity, there is an increase in the IL17(+) circulating and dermal T cell subpopulations and reduction of dermal Treg. As a consequence, P-Selectin deficient mice developed a progressive autoimmune syndrome showing skin alterations characteristic of lupus prone mice and elevated circulating autoantibodies, including anti-dsDNA. Similar to human SLE, disease pathogenesis was characterized by deposition of immune complexes in the dermoepidermal junction and renal glomeruli, and a complex pattern of autoantibodies. More important, skin biopsies of cutaneous lupus erythematosus patients did not show increased expression of P-Selectin, as described for other inflammatory diseases, and the number of vessels expressing P-Selectin was reduced.

  20. Detection of pulmonary embolism with 99mTc-labeled F(ab)2 fragment of anti-P-selectin monoclonal antibody in dogs.

    PubMed

    Ji, Shundong; Fang, Wei; Zhu, Mingqing; Bai, Xia; Wang, Chen; Ruan, Changgeng

    2011-01-01

    Pulmonary embolism is a common and potentially life-threatening condition, and its correct diagnosis is highly desirable before anticoagulant therapy is initiated. However, the safe and accurate diagnosis of acute pulmonary embolism remains a challenge. Single photon emission computed tomography (SPECT) is a highly sensitive scintigraphic imaging technique. Pulmonary embolism can be detected by SPECT with (99m)Tc-labeled imaging agents that bind to components present predominantly on thromboemboli. P-selectin is an adhesion glycoprotein that is expressed in platelets and endothelial cells. P-selectin on activated platelets is a suitable biomarker of the active thrombus process. The objective of this study was to evaluate (99m)Tc-labeled F(ab)(2) fragment of anti-P-selectin monoclonal antibody SZ51, (99m)Tc-SZ51-F(ab)(2), for imaging pulmonary embolism in beagle canines. SZ51 was digested to F(ab)(2) fragment, named SZ51-F(ab)(2), and its specific binding to P-selectin on either human or canine platelets was verified by flow cytometry assay. In each dog, an 18-gauge catheter was inserted into left or right pulmonary artery, and a two-stranded spiral stainless-steel coil (20 mm) was inserted through catheter. At 30 min after coil placement, X-ray angiography was performed to document the pulmonary embolism and the locations of the coil. After intravenous injection of (99m)Tc-SZ51-F(ab)(2), experimental thrombi in dogs could be consistently visualized for 2-3 hours by SPECT. Pulmonary embolism showed higher uptake of (99m)Tc-SZ51-F(ab)(2). The present study suggests that (99m)Tc-SZ51-F(ab)(2) may be a promising agent for detecting pulmonary embolism.

  1. Statins Attenuate the Increase in P-Selectin Produced by Prolonged Exercise

    PubMed Central

    Zaleski, Amanda; Capizzi, Jeffrey; Ballard, Kevin D.; Troyanos, Christopher; Baggish, Aaron; D'Hemecourt, Pierre; Thompson, Paul D.; Parker, Beth

    2013-01-01

    Strenuous endurance exercise increases inflammatory markers and acutely increases cardiovascular risk; however, statins may mitigate this response. We measured serum levels of p-selectin in 37 runners treated with statins and in 43 nonstatin treated controls running the 2011 Boston Marathon. Venous blood samples were obtained the day before (PRE) as well as within 1 hour after (FINISH) and 24 hours after (POST) the race. The increase in p-selectin immediately after exercise was lower in statin users (PRE to FINISH: 20.5 ± 19.4 ng/mL) than controls (PRE to FINISH: 30.9 ± 27.1 ng/mL; P < 0.001). The increase in p-selectin 24 hours after exercise was also lower in statin users (PRE to POST: 21.5 ± 26.6 ng/mL) than controls (PRE to POST: 29.3 ± 31.9 ng/mL; P < 0.001). Furthermore, LDL-C was positively correlated with p-selectin at FINISH and POST (P < 0.01 and P < 0.05, resp.), irrespective of drug treatment, suggesting that lower levels of LDL-C are associated with a reduced inflammatory response to exercise. We conclude that statins blunt the exercise-induced increase in p-selectin following a marathon and that the inflammatory response to a marathon varies directly with LDL-C levels. PMID:26464882

  2. Regulation of shear stress on rolling behaviors of HL-60 cells on P-selectin

    NASA Astrophysics Data System (ADS)

    Ling, YingChen; Fang, Ying; Yang, XiaoFang; Li, QuHuan; Lin, QinYong; Wu, JianHua

    2014-10-01

    Circulating leukocytes in trafficking to the inflammatory sites, will be first tether to, and then roll on the vascular surface. This event is mediated through specific interaction of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1), and regulated by hemodynamics. Poor data were reported in understanding P-selectin-mediated rolling. With the flow chamber technique, we herein observed HL-60 cell rolling on P-selectin with or without 3% Ficoll at various wall shear stresses from 0.05 to 0.4 dyn/cm2. The results demonstrated that force rather than transport regulated the rolling, similar to rolling on L- and E-selectin. The rolling was accelerated quickly by an increasing force below the optimal shear threshold of 0.15 dyn/cm2 first and then followed by a slowly decelerating phase starting at the optimum, showing a catch-slip transition and serving as a mechanism for the rolling. The catch-slip transition was completely reflected to the tether lifetime and other rolling parameters, such as the mean and fractional stop time. The narrow catch bond regime stabilized the rolling quickly, through steeply increasing fractional stop time to a plateau of about 0.85. Data presented here suggest that the low shear stress threshold serves as a mechanism for most cell rolling events through P-selectin.

  3. Circulating adhesion molecules in obstructive sleep apnea and cardiovascular disease.

    PubMed

    Pak, Victoria M; Grandner, Michael A; Pack, Allan I

    2014-02-01

    Over 20 years of evidence indicates a strong association between obstructive sleep apnea (OSA) and cardiovascular disease. Although inflammatory processes have been heavily implicated as an important link between the two, the mechanism for this has not been conclusively established. Atherosclerosis may be one of the mechanisms linking OSA to cardiovascular morbidity. This review addresses the role of circulating adhesion molecules in patients with OSA, and how these may be part of the link between cardiovascular disease and OSA. There is evidence for the role of adhesion molecules in cardiovascular disease risk. Some studies, albeit with small sample sizes, also show higher levels of adhesion molecules in patients with OSA compared to controls. There are also studies that show that levels of adhesion molecules diminish with continuous positive airway pressure therapy. Limitations of these studies include small sample sizes, cross-sectional sampling, and inconsistent control for confounding variables known to influence adhesion molecule levels. There are potential novel therapies to reduce circulating adhesion molecules in patients with OSA to diminish cardiovascular disease. Understanding the role of cell adhesion molecules generated in OSA will help elucidate one mechanistic link to cardiovascular disease in patients with OSA.

  4. Differential localization of P-selectin and von Willebrand factor during megakaryocyte maturation.

    PubMed

    Zingariello, M; Fabucci, M E; Bosco, D; Migliaccio, A R; Martelli, F; Rana, R A; Zetterberg, E

    2010-04-28

    An important step in megakaryocyte maturation is the appropriate assembly of at least two distinct subsets of alpha-granules. The mechanism that sorts the alpha-granule components into distinct structures and mediates their release in response to specific stimuli is now emerging. P-selectin and von Willebrand factor are two proteins present in the alpha-granules that recognize P-selectin glycoprotein ligand on neutrophils and collagen in the subendothelial matrix. These proteins may play an important role in determining the differential release of the alpha-granule contents in response to external stimuli. If P-selectin and von Willebrand factor are localized in the same or different alpha-granules is not known. To clarify this question, we analyzed by immunoelectron microscopy the localization of von Willebrand factor and P-selectin during the maturation of wild-type and Gata1(low) megakaryocytes induced in vivo by treating animals with thrombopoietin. Gata1(low) is a hypomorphic mutation that blocks megakaryocyte maturation, reduces the levels of von Willebrand factor expression and displaces P-selectin on the demarcation membrane system. The maturation block induced by this mutation is partially rescued by treatment in vivo with thrombopoietin. In immature megakaryocytes, both wild-type and Gata1(low), the two receptors were co-localized in the same cytoplasmic structures. By contrast, the two proteins were segregated to separate alpha-granule subsets as the megakaryocytes matured. These observations support the hypothesis that P-selectin and von Willebrand factor may ensure differential release of the alpha-granule content in response to external stimuli.

  5. Melanoma cell metastasis via P-selectin-mediated activation of acid sphingomyelinase in platelets.

    PubMed

    Becker, Katrin Anne; Beckmann, Nadine; Adams, Constantin; Hessler, Gabriele; Kramer, Melanie; Gulbins, Erich; Carpinteiro, Alexander

    2017-01-01

    Metastatic dissemination of cancer cells is one of the hallmarks of malignancy and accounts for approximately 90 % of human cancer deaths. Within the blood vasculature, tumor cells may aggregate with platelets to form clots, adhere to and spread onto endothelial cells, and finally extravasate to form metastatic colonies. We have previously shown that sphingolipids play a central role in the interaction of tumor cells with platelets; this interaction is a prerequisite for hematogenous tumor metastasis in at least some tumor models. Here we show that the interaction between melanoma cells and platelets results in rapid and transient activation and secretion of acid sphingomyelinase (Asm) in WT but not in P-selectin-deficient platelets. Stimulation of P-selectin resulted in activation of p38 MAPK, and inhibition of p38 MAPK in platelets prevented the secretion of Asm after interaction with tumor cells. Intravenous injection of melanoma cells into WT mice resulted in multiple lung metastases, while in P-selectin-deficient mice pulmonary tumor metastasis and trapping of tumor cells in the lung was significantly reduced. Pre-incubation of tumor cells with recombinant ASM restored trapping of B16F10 melanoma cells in the lung in P-selectin-deficient mice. These findings indicate a novel pathway in tumor metastasis, i.e., tumor cell mediated activation of P-selectin in platelets, followed by activation and secretion of Asm and in turn release of ceramide and tumor metastasis. The data suggest that p38 MAPK acts downstream from P-selectin and is necessary for the secretion of Asm.

  6. Immunologic changes in TNF-alpha, sE-selectin, sP-selectin, sICAM-1, and IL-8 in pediatric patients treated for psoriasis with the Goeckerman regimen

    SciTech Connect

    Borska, L.; Fiala, Z.; Krejsek, J.; Andrys, C.; Vokurkova, D.; Hamakova, K.; Kremlacek, J.; Ettler, K.

    2007-11-15

    Psoriasis is a chronic inflammatory skin disease which is often manifested during childhood. The present study investigated changes in the serum levels of proinflammatory cytokines and soluble forms of adhesion molecules in children with psoriasis. The observed patient group of 26 children was treated with the Goeckerman regimen. This therapy combines dermal application of crude coal tar with ultraviolet radiation. The Psoriasis Area Severity Index decreased significantly after treatment by with the Goeckerman regimen (p < 0.001). Serum levels of the proinflammatory cytokine TNF-alpha and adhesion molecules sICAM-1, sP-selectin and sE-selectin decreased after the Goeckerman regimen. The TNF-alpha and sICAM-1 decreased significantly (p < 0.05). Our findings support the complex role of these immune parameters in the immunopathogenesis of psoriasis in children. The serum level of IL-8 increased after the Goeckerman regimen. This fact indicates that the chemokine pathway of IL-8 activity could be modulated by this treatment, most likely by polycyclic aromatic hydrocarbons.

  7. Sida rhomboidea.Roxb aqueous extract down-regulates in vivo expression of vascular cell adhesion molecules in atherogenic rats and inhibits in vitro macrophage differentiation and foam cell formation.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Salunke, Sunita P; Devkar, Ranjitsinh V; Ramachandran, A V

    2012-10-01

    The present study evaluates efficacy of Sida rhomboidea.Roxb (SR) leaves extract in ameliorating experimental atherosclerosis using in vitro and in vivo experimental models. Atherogenic (ATH) diet fed rats recorded significant increment in the serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), very LDL (VLDL), autoantibody against oxidized LDL (Ox-LDL), markers of LDL oxidation and decrement in high-density lipoprotein (HDL) along with increment in aortic TC and TG. The ex vivo LDL oxidation assay revealed an increased susceptibility of LDL isolated from ATH rats to undergo copper mediated oxidation. These set of changes were minimized by simultaneous co-supplementation of SR extract to ATH diet fed rats. Histopathology of aorta and immunolocalization studies recorded pronounced atheromatous plaque formation, vascular calcification, significant elastin derangements and higher expression of macrophage surface marker (F4/80), vascular cell adhesion molecule-1 (VCAM-1) and p-selectin in ATH rats. Whereas, ATH+SR rats depicted minimal evidence of atheromatous plaque formation, calcium deposition, distortion/defragmentation of elastin and accumulation of macrophages along with lowered expression of VCAM-1 and P-selectin compared to ATH rats. Further, monocyte to macrophage differentiation and in vitro foam cell formation were significantly attenuated in presence of SR extract. In conclusion, SR extract has the potency of controlling experimental atherosclerosis and can be used as promising herbal supplement in combating atherosclerosis.

  8. Recombinant glycoproteins that inhibit complement activation and also bind the selectin adhesion molecules.

    PubMed

    Rittershaus, C W; Thomas, L J; Miller, D P; Picard, M D; Geoghegan-Barek, K M; Scesney, S M; Henry, L D; Sen, A C; Bertino, A M; Hannig, G; Adari, H; Mealey, R A; Gosselin, M L; Couto, M; Hayman, E G; Levin, J L; Reinhold, V N; Marsh, H C

    1999-04-16

    Soluble human complement receptor type 1 (sCR1, TP10) has been expressed in Chinese hamster ovary (CHO) DUKX-B11 cells and shown to inhibit the classical and alternative complement pathways in vitro and in vivo. A truncated version of sCR1 lacking the long homologous repeat-A domain (LHR-A) containing the C4b binding site has similarly been expressed and designated sCR1[desLHR-A]. sCR1[desLHR-A] was shown to be a selective inhibitor of the alternative complement pathway in vitro and to function in vivo. In this study, sCR1 and sCR1[desLHR-A] were expressed in CHO LEC11 cells with an active alpha(1,3)-fucosyltransferase, which makes possible the biosynthesis of the sialyl-Lewisx (sLex) tetrasaccharide (NeuNAcalpha2-3Galbeta1-4(Fucalpha1-3)GlcNAc) during post-translational glycosylation. The resulting glycoproteins, designated sCR1sLex and sCR1[desLHR-A]sLex, respectively, retained the complement regulatory activities of their DUKX B11 counterparts, which lack alpha(1-3)-fucose. Carbohydrate analysis of purified sCR1sLex and sCR1[desLHR-A]sLex indicated an average incorporation of 10 and 8 mol of sLex/mol of glycoprotein, respectively. sLex is a carbohydrate ligand for the selectin adhesion molecules. sCR1sLex was shown to specifically bind CHO cells expressing cell surface E-selectin. sCR1[desLHR-A]sLex inhibited the binding of the monocytic cell line U937 to human aortic endothelial cells, which had been activated with tumor necrosis factor-alpha to up-regulate the expression of E-selectin. sCR1sLex inhibited the binding of U937 cells to surface-adsorbed P-selectin-IgG. sCR1sLex and sCR1[desLHR-A]sLex have thus demonstrated both complement regulatory activity and the capacity to bind selectins and to inhibit selectin-mediated cell adhesion in vitro.

  9. [Role of "leukocyte adhesion molecules" in early periodontal disease].

    PubMed

    Vierucci, S

    1992-01-01

    The purpose of this paper is to focus on functional characteristics of leukocyte adhesion molecules, on their localization and specific ligands. In fact, leukocyte chemotaxis and adhesion to endothelium is an essential step in promoting adequate immune response to bacterial infections. Since periodontal health is highly dependent on neutrophil function against the microbial dental plaque, defects in chemotaxis and adhesion of leukocytes to endothelium often result in severe, early onset periodontitis. Furthermore, oral lesions may be the only clinical manifestation of neutrophil impairment.

  10. Platelet function alterations and their relation to P-selectin (CD62P) expression in children with iron deficiency anemia.

    PubMed

    Yıldırım, Zuhal K; Orhan, Mehmet F; Büyükavcı, Mustafa

    2011-03-01

    Iron deficiency anemia (IDA) may cause platelet aggregation dysfunction and this can be reversed by iron therapy. On the other hand, it has been reported that the platelet fractions carrying the platelet activation markers, CD62P and CD63, are increased in thalassemic patients and there is a significant correlation between the increased levels of soluble P-selectin and free iron in sickle cell disease. This study was performed to investigate the alterations of platelet functions and whether iron deficiency results in diminished expression of activation marker (P-selectin; CD62P) leading to platelet aggregation dysfunction in children with IDA. Hemoglobin, erythrocyte indices (mean erythrocyte volume and red blood cell distribution width), serum levels of iron, transferrin and ferritin, platelet aggregation tests (with ADP, collagen, and ristocetin), PFA-100 closure time, and CD62P expression were evaluated in fasting blood samples of 22 children with IDA and 20 children without anemia. CD62P expression was detected by flow cytometry in normal and 5 μmol/l ADP-activated platelets. Mean closure times were longer in the patient group than control. In platelet aggregation tests, mean values of maximum aggregation times by ristocetin, ADP, and collagen were also more prolonged in patient group. Ristocetin-induced maximum aggregation rates (amplitude) were significantly higher in patients. However, ADP and collagen induction did not produce the same effect. CD62P expressions were significantly higher on activated platelets of the patient group, although they were similar in both groups before activation by ADP. These findings suggest that platelet aggregation and adhesion have been delayed in children with IDA; however, platelet function abnormalities are not associated with CD62P expression on platelet surface.

  11. Cell adhesion molecules: detection with univalent second antibody

    PubMed Central

    1980-01-01

    Identification of cell surface molecules that play a role in cell-cell adhesion (here called cell adhesion molecules) has been achieved by demonstrating the inhibitory effect of univalent antibodies that bind these molecules in an in vitro assay of cell-cell adhesion. A more convenient reagent, intact (divalent) antibody, has been avoided because it might agglutinate the cells rather than blocking cell-cell adhesion. In this report, we show that intact rabbit immunoglobulin directed against certain cell surface molecules of Dictyostelium discoideum blocks cell-cell adhesion when the in vitro assay is performed in the presence of univalent goat anti-rabbit antibody. Under appropriate experimental conditions, the univalent second antibody blocks agglutination induced by the rabbit antibody without significantly interfering with its effect on cell-cell adhesion. This method promises to be useful for screening monoclonal antibodies raised against potential cell adhesion molecules because: (a) it allows for the screening of large numbers of antibody samples without preparation of univalent fragments; and (b) it requires much less antibody because of the greater affinity of divalent antibodies for antigens. PMID:6970200

  12. Cell Adhesion Molecules in Chemically-Induced Renal Injury

    PubMed Central

    Prozialeck, Walter C.; Edwards, Joshua R.

    2007-01-01

    Cell adhesion molecules are integral cell-membrane proteins that maintain cell-cell and cell-substrate adhesion, and in some cases, act as regulators of intracellular signaling cascades. In the kidney, cell adhesion molecules such as the cadherins, the catenins, ZO-1, occludin and the claudins are essential for maintaining the epithelial polarity and barrier integrity that are necessary for the normal absorption/excretion of fluid and solutes. A growing volume of evidence indicates that these cell adhesion molecules are important early targets for a variety of nephrotoxic substances including metals, drugs, and venom components. In addition, it is now widely appreciated that molecules such as ICAM-1, the integrins and selectins play important roles in the recruitment of leukocytes and inflammatory responses that are associated with nephrotoxic injury. This review summarizes the results of recent in vitro and in vivo studies indicating that these cell adhesion molecules may be primary molecular targets in many types of chemically-induced renal injury. Some of the specific agents that are discussed include Cd, Hg, Bi, cisplatin, aminoglycoside antibiotics, S-(1,2-dichlorovinyl-L-cysteine) (DCVC) and various venom toxins. This review also includes a discussion of the various mechanisms by which these substances can affect cell adhesion molecules in the kidney. PMID:17316817

  13. P-selectin targeting to secretory lysosomes of Rbl-2H3 cells.

    PubMed

    Kaur, Jasber; Cutler, Daniel F

    2002-03-22

    The biogenesis of secretory lysosomes, which combine characteristics of both lysosomes and secretory granules, is currently of high interest. In particular, it is not clear whether delivery of membrane proteins to the secretory lysosome requires lysosomal, secretory granule, or some novel targeting determinants. Heterologous expression of P-selectin has established that this membrane protein contains targeting signals for both secretory granules and lysosomes. P-selectin is therefore an ideal probe with which to determine the signals required for targeting to secretory lysosomes. We have exploited subcellular fractionation and immunofluorescence microscopy to monitor targeting of transiently expressed wild-type and mutant horseradish peroxidase (HRP)-P-selectin chimeras to secretory lysosomes of Rbl-2H3 cells. The exposure of the HRP chimeras to intracellular proteolysis was also determined as a third monitor of secretory lysosome targeting. Our data show that HRP-P-selectin accumulates in secretory lysosomes of Rbl-2H3 cells using those cytoplasmic sequences previously found to be sufficient for targeting to conventional lysosomes. This work highlights the similar sorting signals used for targeting of membrane proteins to conventional lysosomes and secretory lysosomes.

  14. [Changes of platelet aggregation function of apheresis collected platelets and soluble P-selectin during storage].

    PubMed

    Xie, Zuo-Ting; Yang, Li-Hong; Tao, Zhi-Hua; Wang, Ming-Shan; Hong, Jun-Ying; Zhou, Wu; Chen, Zeng-Qiang; Dai, Mei-Jie

    2008-10-01

    The objective of this study was to explore the changes of aggregation function of apheresis platelets and soluble P-selectin (sP-selectin) during storage. 20 samples of apheresis platelets were collected, and the aggregation function were examined by function test and the level of sP-selectin every day in storage of 5 days. The results showed that the aggregation function of platelets declined obviously during storage, there were significant differences between the first-day group and any of the other groups (p < 0.01). The max platelet aggregation rate was < or = 3% in the fourth-day group; sP-selectin level in plasma increased with prolong of storage time; there were significant differences between the first-day group and any of the other groups (p < 0.05). In conclusion, platelets were activated continuously during storage, while its aggregation function declines significantly. The ability of platelet aggregation to response to ADP loses almost completely since the fourth day during platelet storage. It should be paid more attention to the damage of apheresis collected platelets during storage.

  15. Force-dependent calcium signaling and its pathway of human neutrophils on P-selectin in flow.

    PubMed

    Huang, Bing; Ling, Yingchen; Lin, Jiangguo; Du, Xin; Fang, Ying; Wu, Jianhua

    2017-02-01

    P-selectin engagement of P-selectin glycoprotein ligand-1 (PSGL-1) causes circulating leukocytes to roll on and adhere to the vascular surface, and mediates intracellular calcium flux, a key but unclear event for subsequent arresting firmly at and migrating into the infection or injured tissue. Using a parallel plate flow chamber technique and intracellular calcium ion detector (Fluo-4 AM), the intracellular calcium flux of firmly adhered neutrophils on immobilized P-selectin in the absence of chemokines at various wall shear stresses was investigated here in real time by fluorescence microscopy. The results demonstrated that P-selectin engagement of PSGL-1 induced the intracellular calcium flux of firmly adhered neutrophils in flow, increasing P-selectin concentration enhanced cellular calcium signaling, and, force triggered, enhanced and quickened the cytoplasmic calcium bursting of neutrophils on immobilized P-selectin. This P-selectin-induced calcium signaling should come from intracellular calcium release rather than extracellular calcium influx, and be along the mechano-chemical signal pathway involving the cytoskeleton, moesin and Spleen tyrosine kinase (Syk). These results provide a novel insight into the mechano-chemical regulation mechanism for P-selectin-induced calcium signaling of neutrophils in flow.

  16. Adhesion Molecule-Modified Biomaterials for Neural Tissue Engineering

    PubMed Central

    Rao, Shreyas S.; Winter, Jessica O.

    2009-01-01

    Adhesion molecules (AMs) represent one class of biomolecules that promote central nervous system regeneration. These tethered molecules provide cues to regenerating neurons that recapitulate the native brain environment. Improving cell adhesive potential of non-adhesive biomaterials is therefore a common goal in neural tissue engineering. This review discusses common AMs used in neural biomaterials and the mechanism of cell attachment to these AMs. Methods to modify materials with AMs are discussed and compared. Additionally, patterning of AMs for achieving specific neuronal responses is explored. PMID:19668707

  17. Methamphetamine-associated cleavage of the synaptic adhesion molecule intercellular adhesion molecule-5.

    PubMed

    Conant, Katherine; Lonskaya, Irina; Szklarczyk, Arek; Krall, Caroline; Steiner, Joseph; Maguire-Zeiss, Kathleen; Lim, Seung T

    2011-08-01

    Methamphetamine (MA) is a highly addictive psychostimulant that, used in excess, may be neurotoxic. Although the mechanisms that underlie its addictive potential are not completely understood, in animal models matrix metalloproteinase (MMP) inhibitors can reduce behavioral correlates of addiction. In addition, evidence from genome-wide association studies suggests that polymorphisms in synaptic cell-adhesion molecules (CAMs), known MMP substrates, are linked to addictive potential in humans. In the present study, we examined the ability of MA to stimulate cleavage of intercellular adhesion molecule-5 (ICAM-5), a synaptic CAM expressed on dendritic spines in the telencephalon. Previous studies have shown that shedding of ICAM-5 is associated with maturation of dendritic spines, and that MMP-dependent shedding occurs with long term potentiation. Herein, we show that MA stimulates ectodomain cleavage of ICAM-5 in vitro, and that this is abrogated by a broad spectrum MMP inhibitor. We also show that an acute dose of MA, administered in vivo, is associated with cleavage of ICAM-5 in murine hippocampus and striatum. This occurs within 6 h and is accompanied by an increase in MMP-9 protein. In related experiments, we examined the potential consequences of ICAM-5 shedding. We demonstrate that the ICAM-5 ectodomain can interact with β(1) integrins, and that it can stimulate β(1) integrin-dependent phosphorylation of cofilin, an event that has previously been linked to MMP-dependent spine maturation. Together these data support an emerging appreciation of MMPs as effectors of synaptic plasticity and suggest a mechanism by which MA may influence the same.

  18. Modulation of Sickle Red Blood Cell Adhesion and its Associated Changes in Biomarkers by Sulfated Nonanticoagulant Heparin Derivative.

    PubMed

    Alshaiban, Abdulelah; Muralidharan-Chari, Vandhana; Nepo, Anne; Mousa, Shaker A

    2016-04-01

    Abnormal cellular adhesion is one of the primary causes of vaso-occlusive crisis in sickle cell disease (SCD). Levels of intercellular adhesion molecule 1 (ICAM-1) and P-selectin are upregulated, resulting in increased adhesion of leukocytes and sickle red blood cells (RBCs) to endothelium. This study compares the inhibitory effect of a sulfated nonanticoagulant heparin (S-NACH) derivative with a low-molecular-weight heparin, tinzaparin, on the adhesion of sickle RBCs to endothelium. The S-NACH exhibits minimum effects on hemostasis and bleeding and interferes with the binding of pancreatic cancer cells to endothelial cells via P-selectin. We show by static binding assay that pretreatment of both erythrocytes and endothelial cells with S-NACH significantly inhibits the increased adhesion of sickle RBCs to endothelial cells. The S-NACH treatment also decreases the higher plasma levels of (adhesion biomarkers) ICAM-1 and P-selectin in SCD mice. This investigation signals further research into the potential use of S-NACH in treating vaso-occlusions with minimal bleeding events in patients with SCD.

  19. Cell Adhesion Molecules and Ubiquitination—Functions and Significance

    PubMed Central

    Homrich, Mirka; Gotthard, Ingo; Wobst, Hilke; Diestel, Simone

    2015-01-01

    Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system. PMID:26703751

  20. Adhesion Molecules: Master Controllers of the Circulatory System.

    PubMed

    Schmidt, Eric P; Kuebler, Wolfgang M; Lee, Warren L; Downey, Gregory P

    2016-03-15

    This manuscript will review our current understanding of cellular adhesion molecules (CAMs) relevant to the circulatory system, their physiological role in control of vascular homeostasis, innate and adaptive immune responses, and their importance in pathophysiological (disease) processes such as acute lung injury, atherosclerosis, and pulmonary hypertension. This is a complex and rapidly changing area of research that is incompletely understood. By design, we will begin with a brief overview of the structure and classification of the major groups of adhesion molecules and their physiological functions including cellular adhesion and signaling. The role of specific CAMs in the process of platelet aggregation and hemostasis and leukocyte adhesion and transendothelial migration will be reviewed as examples of the complex and cooperative interplay between CAMs during physiological and pathophysiological processes. The role of the endothelial glycocalyx and the glycobiology of this complex system related to inflammatory states such as sepsis will be reviewed. We will then focus on the role of adhesion molecules in the pathogenesis of specific disease processes involving the lungs and cardiovascular system. The potential of targeting adhesion molecules in the treatment of immune and inflammatory diseases will be highlighted in the relevant sections throughout the manuscript.

  1. Using affinity capillary electrophoresis and computational models for binding studies of heparinoids with p-selectin and other proteins.

    PubMed

    Mozafari, Mona; Balasupramaniam, Shantheya; Preu, Lutz; El Deeb, Sami; Reiter, Christian G; Wätzig, Hermann

    2017-03-03

    A fast and precise affinity capillary electrophoresis (ACE) method has been developed and applied for the investigation of the binding interactions between P-selectin and heparinoids as potential P-selectin inhibitors in the presence and absence of calcium ions. Furthermore, model proteins and vitronectin were used to appraise the binding behavior of P-selectin. The normalized mobility ratios (∆R/Rf ), which provided information about the binding strength and the overall charge of the protein-ligand complex, were used to evaluate the binding affinities. It was found that P-selectin interacts more strongly with heparinoids in the presence of calcium ions. P-selectin was affected by heparinoids at the concentration of 3 mg/L. In addition, the results of the ACE experiments showed that among other investigated proteins, albumins and vitronectin exhibited strong interactions with heparinoids. Especially with P-selectin and vitronectin, the interaction may additionally induce conformational changes. Subsequently, computational models were applied to interpret the ACE experiments. Docking experiments explained that the binding of heparinoids on P-selectin is promoted by calcium ions. These docking models proved to be particularly well suited to investigate the interaction of charged compounds, and are therefore complementary to ACE experiments. This article is protected by copyright. All rights reserved.

  2. Low molecular weight fucoidan modulates P-selectin and alleviates diabetic nephropathy.

    PubMed

    Xu, Yingjie; Zhang, Quanbin; Luo, Dali; Wang, Jing; Duan, Delin

    2016-10-01

    Diabetic nephropathy (DN) is a serious microvascular complication that can lead to chronic and end-stage renal failure. It is understood that inflammation is associated with the onset and process of DN. Low molecular weight fucoidan (LMWF) isolated from Saccharina japonica has anti-inflammatory properties. Therefore, this study aimed to explore the mechanism of LMWF in DN model induced by streptozotocin. The biochemical indices levels showed LMWF reduced the DN diagnostic indices to protect renal function. The HE stained sections exhibited LMWF protected normal morphological structures and reduced inflammatory cell infiltration in the kidneys of DN rats. Furthermore, the levels of P-selectin and selectin-dependent inflammatory cytokines resulting from LMWF were obviously decreased at both the transcriptional and protein levels. Thus, our results found that LMWF protected the renal function in DN rats and alleviated inflammation through the modulation of P-selectin and inflammatory cytokines. LMWF may have therapeutic potential against DN.

  3. Adhesion molecules in breast carcinoma: a challenge to the pathologist.

    PubMed

    Rossetti, Claudia; Reis, Beatriz da Costa Aguiar Alves; Delgado, Pamela de Oliveira; Azzalis, Ligia Ajaime; Junqueira, Virginia B C; Feder, David; Fonseca, Fernando

    2015-01-01

    The role of adhesion molecules is very important both in the activation of carcinogenesis and in the differentiation of subtypes of breast carcinoma, aiding in diagnosis, prognosis and therapeutic choice in these tumors. Therefore, understanding the functions and interrelationships among these molecules is crucial to the pathologist, who often uses these factors as a resource to differentiate tumors and further classify them according to a molecular point of view. Our goal is to describe the applicability and the difficulties encountered by the pathologist in the diagnosis of breast carcinoma, discussing the most commonly used markers of adhesion in routine analyses.

  4. Aqueous extract of Rabdosia rubescens leaves: forming nanoparticles, targeting P-selectin, and inhibiting thrombosis

    PubMed Central

    Wang, Yuji; Tang, Jingcheng; Zhu, Haimei; Jiang, Xueyun; Liu, Jiawang; Xu, Wenyun; Ma, Haiping; Feng, Qiqi; Wu, Jianhui; Zhao, Ming; Peng, Shiqi

    2015-01-01

    The hot water extract of Rabdosia rubescens was traditionally used as an antithrombotic medicine. To explore its antithrombotic utility and mechanism, we carried out a series of in vitro and in vivo assays in this study. In vitro platelet aggregation assay showed that the half maximal inhibitory concentration values of aqueous extract of R. rubescens leaves (AERL) inhibiting platelet aggregation induced by thrombin, arachidonic acid, adenosine diphosphate, and platelet-activating factor ranged from 0.12 mg/mL to 1.43 mg/mL. The minimal effective oral dose of AERL inhibiting the rats from forming thrombus was 25 mg/kg. Both in vitro and in vivo actions were correlated with AERL concentration-dependently inhibiting sP-selectin release. In water, AERL formed nanoparticles, and their size depended on the concentration. Docking the five nucleotides, 21 phenolic acids, and four diterpenoids identified by high-performance liquid chromatography–photodiode array detector/(−)electrospray ionization-tandem mass spectrometry analysis into the active site of P-selectin, rosmarinic acid was predicted to be the antithrombotic ingredient of AERL. In flow cytometry analysis, 1 μM of rosmarinic acid effectively inhibited sP-selectin release in arachidonic acid-activated platelets. In a rat model, 5 mg/kg of oral rosmarinic acid effectively inhibited thrombosis. PMID:26604756

  5. Aqueous extract of Rabdosia rubescens leaves: forming nanoparticles, targeting P-selectin, and inhibiting thrombosis.

    PubMed

    Wang, Yuji; Tang, Jingcheng; Zhu, Haimei; Jiang, Xueyun; Liu, Jiawang; Xu, Wenyun; Ma, Haiping; Feng, Qiqi; Wu, Jianhui; Zhao, Ming; Peng, Shiqi

    2015-01-01

    The hot water extract of Rabdosia rubescens was traditionally used as an antithrombotic medicine. To explore its antithrombotic utility and mechanism, we carried out a series of in vitro and in vivo assays in this study. In vitro platelet aggregation assay showed that the half maximal inhibitory concentration values of aqueous extract of R. rubescens leaves (AERL) inhibiting platelet aggregation induced by thrombin, arachidonic acid, adenosine diphosphate, and platelet-activating factor ranged from 0.12 mg/mL to 1.43 mg/mL. The minimal effective oral dose of AERL inhibiting the rats from forming thrombus was 25 mg/kg. Both in vitro and in vivo actions were correlated with AERL concentration-dependently inhibiting sP-selectin release. In water, AERL formed nanoparticles, and their size depended on the concentration. Docking the five nucleotides, 21 phenolic acids, and four diterpenoids identified by high-performance liquid chromatography-photodiode array detector/(-)electrospray ionization-tandem mass spectrometry analysis into the active site of P-selectin, rosmarinic acid was predicted to be the antithrombotic ingredient of AERL. In flow cytometry analysis, 1 μM of rosmarinic acid effectively inhibited sP-selectin release in arachidonic acid-activated platelets. In a rat model, 5 mg/kg of oral rosmarinic acid effectively inhibited thrombosis.

  6. Glycopeptide Analogues of PSGL-1 Inhibit P-Selectin In Vitro and In Vivo

    PubMed Central

    Krishnamurthy, Venkata R; Sardar, Mohammed Y. R.; Yu, Ying; Song, Xuezheng; Haller, Carolyn; Dai, Erbin; Wang, Xiacong; Hanjaya-Putra, Donny; Sun, Lijun; Morikis, Vasilios; Simon, Scott I.; Woods, Robert; Cummings, Richard D.; Chaikof, Elliot L.

    2015-01-01

    Blockade of P-selectin/PSGL-1 interactions holds significant potential for treatment of disorders of innate immunity, thrombosis, and cancer. Current inhibitors remain limited due to low binding affinity or by the recognized disadvantages inherent to chronic administration of antibody therapeutics. Here we report an efficient approach for generating glycosulfopeptide mimics of N-terminal PSGL-1 through development of a stereoselective route for multi-gram scale synthesis of the C2 O-glycan building block and replacement of hydrolytically labile tyrosine sulfates with isosteric sulfonate analogs. Library screening afforded a compound of exceptional stability, GSnP-6, that binds to human P-selectin with nanomolar affinity (Kd ~ 22 nM). Molecular dynamics simulation defines the origin of this affinity in terms of a number of critical structural contributions. GSnP-6 potently blocks P-selectin/PSGL-1 interactions in vitro and in vivo and represents a promising candidate for the treatment of diseases driven by acute and chronic inflammation. PMID:25824568

  7. First-in-man Study With Inclacumab, a Human Monoclonal Antibody Against P-selectin

    PubMed Central

    Abt, Markus; Ciorciaro, Cornelia; Kling, Dorothee; Jamois, Candice; Schick, Eginhard; Solier, Corinne; Benghozi, Renée; Gaudreault, Jacques

    2015-01-01

    Abstract: Inclacumab, a novel monoclonal antibody against P-selectin in development for the treatment and prevention of atherosclerotic cardiovascular diseases, was administered in an ascending single-dose study as intravenous infusion to evaluate safety, pharmacokinetics, and pharmacodynamics. Fifty-six healthy subjects were enrolled in this randomized, double-blind placebo-controlled study. Each dose level (0.03–20 mg/kg) was investigated in separate groups of 8 subjects (6 on inclacumab, 2 on placebo). Platelet–leukocyte aggregates, free/total soluble P-selectin concentration ratio, drug concentrations, bleeding time, platelet aggregation, antibody formation, and routine laboratory parameters were measured frequently until 32 weeks. Pharmacokinetic profiles were indicative of target-mediated drug disposition. Platelet–leukocyte aggregate inhibition and soluble P-selectin occupancy showed dose dependency and were strongly correlated to inclacumab plasma concentrations, with IC50 of 740 and 4600 ng/mL, respectively. Inclacumab was well tolerated by the majority of subjects and did neither affect bleeding time nor platelet aggregation. These findings allowed the investigation of the potential beneficial therapeutic use of inclacumab in patient study. PMID:25714598

  8. First-in-Man Study With Inclacumab, a Human Monoclonal Antibody Against P-selectin.

    PubMed

    Schmitt, Christophe; Abt, Markus; Ciorciaro, Cornelia; Kling, Dorothee; Jamois, Candice; Schick, Eginhard; Solier, Corinne; Benghozi, Renée; Gaudreault, Jacques

    2015-06-01

    Inclacumab, a novel monoclonal antibody against P-selectin in development for the treatment and prevention of atherosclerotic cardiovascular diseases, was administered in an ascending single-dose study as intravenous infusion to evaluate safety, pharmacokinetics, and pharmacodynamics. Fifty-six healthy subjects were enrolled in this randomized, double-blind placebo-controlled study. Each dose level (0.03-20 mg/kg) was investigated in separate groups of 8 subjects (6 on inclacumab, 2 on placebo). Platelet-leukocyte aggregates, free/total soluble P-selectin concentration ratio, drug concentrations, bleeding time, platelet aggregation, antibody formation, and routine laboratory parameters were measured frequently until 32 weeks. Pharmacokinetic profiles were indicative of target-mediated drug disposition. Platelet-leukocyte aggregate inhibition and soluble P-selectin occupancy showed dose dependency and were strongly correlated to inclacumab plasma concentrations, with IC50 of 740 and 4600 ng/mL, respectively. Inclacumab was well tolerated by the majority of subjects and did neither affect bleeding time nor platelet aggregation. These findings allowed the investigation of the potential beneficial therapeutic use of inclacumab in patient study.

  9. Lymphocyte recruitment and the kinetics of adhesion receptor expression during the pulmonary immune response to particulate antigen.

    PubMed Central

    Wolber, F. M.; Curtis, J. L.; Milik, A. M.; Fields, T.; Seitzman, G. D.; Kim, K.; Kim, S.; Sonstein, J.; Stoolman, L. M.

    1997-01-01

    The selectins and beta2 integrins participate in the recruitment of neutrophils in acute pulmonary inflammation. However, the cell adhesion receptors that mediate lymphocyte trafficking into the lung have not been defined. This study examined the relationship between cell adhesion molecules on the pulmonary vasculature and on lymphocytes recovered from the lung during a pulmonary immune response to intratracheal (I.T.) sheep red blood cells (SRBCs) in sensitized C57BL/6J mice. Silver-enhanced immunogold staining and reverse transcriptase polymerase chain reaction of lung tissues revealed sustained induction of VCAM-1, E-selectin, and P-selectin on the pulmonary vasculature for up to 7 days after I.T.-SRBC challenge. Neither the MECA 79 nor MECA 367 antigens were induced on the pulmonary vasculature during this period. In the peripheral blood, both CD4 and CD8 T-cell subsets showed an initial increase in P-selectin ligand expression after I.T.-SRBC challenge. The number of P-selectin ligand-positive T cells in the peripheral blood fell as T cells with both P-selectin and, to a lesser extent, E-selectin ligands accumulated in the bronchoalveolar lavage fluid. We conclude that I.T.-SRBC challenge in sensitized mice elicits prolonged synthesis of P-selectin, E-selectin, and VCAM-1 by the lung vasculature as well as selectin ligand synthesis by responding T cells. Furthermore, the entry of selectin-ligand-positive T cells into the circulation and their accumulation in the bronchoalveolar lavage fluid indicates that these receptors may contribute to T cell recruitment. Finally, VCAM-1 on the vasculature may also participate; however, the vascular addressins, required for homing to peripheral and mucosal lymphoid organs, are not essential for T-cell entry into the lung following I.T.-SRBC challenge. Images Figure 2 Figure 3 Figure 5 PMID:9403722

  10. Could both vitamin D and geomagnetic activity impact serum levels of soluble cell adhesion molecules in young men?

    NASA Astrophysics Data System (ADS)

    Bleizgys, Andrius; Šapoka, Virginijus

    2016-07-01

    Vitamin D might have a role in diminishing endothelial dysfunction (ED). The initial aim was to test the hypothesis of reciprocity between levels of 25-hydroxyvitamin D (25(OH)D) and levels of soluble endothelial cell adhesion molecules (CAMs) that could serve as biomarkers of ED. Randomly selected men of age 20-39 were examined at February or March (cold season) and reexamined at August or September (warm season). Some lifestyle and anthropometrical data were recorded. Laboratory measurements, including those for serum levels of soluble CAMs—sICAM-1, sVCAM-1, sE-selectin and sP-selectin—were also performed. As some of the results were rather unexpected, indices of geomagnetic activity (GMA), obtained from the online database, were included in further analysis as a confounder. In 2012-2013, 130 men were examined in cold season, and 125 of them were reexamined in warm season. 25(OH)D levels were found to be significantly negatively associated with sVCAM-1 levels ( β = -0.15, p = 0.043 in warm season; β = -0.19, p = 0.007 for changes). Levels of sVCAM-1 and sICAM-1 from the same seasons were notably different between years and have changed in an opposite manner. Soluble P-selectin levels were higher at warm season in both years. GMA was positively associated with sVCAM-1 ( β = 0.17, p = 0.039 in cold season; β = 0.22, p = 0.002 for changes) and negatively with sICAM-1 ( β = -0.30. p < 0.001 in cold season) levels. Vitamin D might play a role in diminishing sVCAM-1 levels. Levels of sVCAM-1 and sICAM-1 were associated with the GMA; this implies a need for further research.

  11. Influences of fixatives on flow cytometric measurements of platelet P-selectin expression and fibrinogen binding.

    PubMed

    Hu, H; Daleskog, M; Li, N

    2000-11-01

    Sample fixation is an important issue in flow cytometric platelet assays. However, previous reports were less than consistent regarding the influence of sample fixation on the assays. We evaluated the effects of formaldehyde and paraformaldehyde fixation on platelet P-selectin expression and fibrinogen binding using whole-blood flow cytometry and a Coulter EPICS XL-MCL cytometer. Fluorescent-labeled whole-blood samples were diluted with HEPES-buffered saline or fixed with formaldehyde (0.2, 0.5, and 1. 0%) or paraformaldehyde (0.5, 1.0, and 2.0%). Platelet P-selectin expression was 1.1+/-0.3% and 39.6+/-13.7% in unfixed resting and 10(-5) M ADP stimulated samples, respectively. Resting P-selectin expression was not significantly altered by 0.2 or 0.5% formaldehyde fixation, but was slightly decreased by 1.0% formaldehyde fixation or PFA fixation. Formaldehyde fixation caused small increases of P-selectin expression in ADP-stimulated samples. Compared to platelet fibrinogen binding of unfixed resting (4.5+/-2.1%) and ADP-stimulated (56.7+/-22.6%) samples, formaldehyde or paraformaldehyde fixation had no significant influence on resting samples, but mildly increased fibrinogen binding in stimulated samples. Unfixed samples were stable for 2 h. Fixed samples were generally stable for at least 6 h, but not thereafter. Thus, formaldehyde and paraformaldehyde have mild but complex influences on platelet P-selectin expression and fibrinogen binding measurements. To evaluate the stabilities of unfixed and fixed samples, samples were analyzed after different durations (0, 1, 2, 4, 6, 12, and 24 h) of storage at 4 degrees C in the dark. The results suggest that sample manipulation without fixation may be used when the samples are analyzed within 2 h, and that fixation with 0.5-1.0% formaldehyde or paraformaldehyde seems to be preferable when sample analysis is delayed. Effects of fixation should be carefully evaluated when establishing flow cytometric platelet assays in

  12. P-selectin can promote thrombus propagation independently of both von Willebrand factor and thrombospondin-1 in mice.

    PubMed

    Prakash, P; Nayak, M K; Chauhan, A K

    2017-02-01

    Essentials The main receptor for platelet glycoprotein (GP) Ibα is von Willebrand factor (VWF). P-selectin and thrombospondin-1 (TSP1) have been suggested as counter receptors for GPIbα. In a laser injury model, P-selectin promotes thrombus propagation independently of VWF and TSP1. In a laser injury model, thrombus persists in interleukin-4 receptor α/GPIbα-transgenic mice.

  13. Investigating single molecule adhesion by atomic force spectroscopy.

    PubMed

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  14. Investigating Single Molecule Adhesion by Atomic Force Spectroscopy

    PubMed Central

    Stetter, Frank W. S.; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-01-01

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment. PMID:25867282

  15. Replacing the Promoter of the Murine Gene Encoding P-selectin with the Human Promoter Confers Human-like Basal and Inducible Expression in Mice*

    PubMed Central

    Liu, Zhenghui; Zhang, Nan; Shao, Bojing; Panicker, Sumith R.; Fu, Jianxin; McEver, Rodger P.

    2016-01-01

    In humans and mice, megakaryocytes/platelets and endothelial cells constitutively synthesize P-selectin and mobilize it to the plasma membrane to mediate leukocyte rolling during inflammation. TNF-α, interleukin 1β, and LPS markedly increase P-selectin mRNA in mice but decrease P-selectin mRNA in humans. Transgenic mice bearing the entire human SELP gene recapitulate basal and inducible expression of human P-selectin and reveal human-specific differences in P-selectin function. Differences in the human SELP and murine Selp promoters account for divergent expression in vitro, but their significance in vivo is not known. Here we generated knockin mice that replace the 1.4-kb proximal Selp promoter with the corresponding SELP sequence (SelpKI). SelpKI/KI mice constitutively expressed more P-selectin on platelets and more P-selectin mRNA in tissues but only slightly increased P-selectin mRNA after injection of TNF-α or LPS. Consistent with higher basal expression, leukocytes rolled more slowly on P-selectin in trauma-stimulated venules of SelpKI/KI mice. However, TNF-α did not further reduce P-selectin-dependent rolling velocities. Blunted up-regulation of P-selectin mRNA during contact hypersensitivity reduced P-selectin-dependent inflammation in SelpKI/− mice. Higher basal P-selectin in SelpKI/KI mice compensated for this defect. Therefore, divergent sequences in a short promoter mediate most of the functionally significant differences in expression of human and murine P-selectin in vivo. PMID:26631722

  16. Inhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α.

    PubMed

    Minsky, Neri; Roeder, Robert G

    2016-01-01

    Cell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood. Here we show that PGC-1α, a pivotal transcriptional co-activator of metabolic gene expression, acts to inhibit expression of cell adhesion genes. Using cell lines, primary cells and mice, we show that both endogenous and exogenous PGC-1α down-regulate expression of a variety of cell adhesion molecules. Furthermore, results obtained using mRNA stability measurements as well as intronic RNA expression are consistent with a transcriptional effect of PGC-1α on cell adhesion gene expression. Interestingly, the L2/L3 motifs of PGC-1α, necessary for nuclear hormone receptor activation, are only partly required for inhibition of several cell adhesion genes by PGC-1α. Finally, PGC-1α is able to modulate adhesion of primary fibroblasts and hepatic stellate cells to extracellular matrix proteins. Our results delineate a cross talk between a central pathway controlling metabolic regulation and cell adhesion, and identify PGC-1α as a molecular link between these two major cellular networks.

  17. Inhibition of Adhesion Molecule Gene Expression and Cell Adhesion by the Metabolic Regulator PGC-1α

    PubMed Central

    Minsky, Neri; Roeder, Robert G.

    2016-01-01

    Cell adhesion plays an important role in determining cell shape and function in a variety of physiological and pathophysiological conditions. While links between metabolism and cell adhesion were previously suggested, the exact context and molecular details of such a cross-talk remain incompletely understood. Here we show that PGC-1α, a pivotal transcriptional co-activator of metabolic gene expression, acts to inhibit expression of cell adhesion genes. Using cell lines, primary cells and mice, we show that both endogenous and exogenous PGC-1α down-regulate expression of a variety of cell adhesion molecules. Furthermore, results obtained using mRNA stability measurements as well as intronic RNA expression are consistent with a transcriptional effect of PGC-1α on cell adhesion gene expression. Interestingly, the L2/L3 motifs of PGC-1α, necessary for nuclear hormone receptor activation, are only partly required for inhibition of several cell adhesion genes by PGC-1α. Finally, PGC-1α is able to modulate adhesion of primary fibroblasts and hepatic stellate cells to extracellular matrix proteins. Our results delineate a cross talk between a central pathway controlling metabolic regulation and cell adhesion, and identify PGC-1α as a molecular link between these two major cellular networks. PMID:27984584

  18. Platelet activation by C1q results in the induction of alpha IIb/beta 3 integrins (GPIIb-IIIa) and the expression of P-selectin and procoagulant activity

    PubMed Central

    1993-01-01

    C1q receptors (C1qR) have been identified on a variety of somatic and cultured cells including peripheral blood platelets. Since platelets are likely to encounter both circulating C1q multimers and C1q associated with the extracellular matrix after complement activation by the classical pathway, the present study was designed to assess the effect of fluid phase and immobilized C1q on platelet function. Platelet adhesion to C1q-coated surfaces was accompanied by the induction of fibrinogen receptors. Scatchard analysis of fibrinogen binding to adherent platelets revealed the binding of approximately 10,000 molecules of fibrinogen per platelet with a Kd of 0.1 +/- 0.03 microM (mean +/- SD, n = 4). Furthermore, fluid phase C1q multimers were noted to aggregate platelets at doses > 5 micrograms/ml. This aggregation was preceded by a rise in inositol-1,4,5-trisphosphate (IP3) (6.9 +/- 2.4 pmoles/10(9) platelets at 15 s, n = 4), and activation of GPIIb-IIIa complexes supporting fibrinogen binding. Platelet aggregation in response to C1q multimers was accompanied by the aspirin-inhibitable release of granule contents and P-selectin (CD62) expression. Platelet aggregation was inhibited by the collagenous domain of C1q (c-Clq) and a monoclonal antibody directed against C1q receptors, suggesting the direct involvement of the 67-kD platelet C1qR. Antibodies against the very late antigen 2 or CD36 collagen receptors were without effect. Platelet exposure to C1q multimers was also accompanied by the expression of procoagulant activity, as demonstrated by the dose-dependent shortening of the kaolin recalcification time of normal plasma from 108 +/- 12 s in the presence of unstimulated platelets to 62 +/- 14 s in the presence of platelets that had been preincubated (5 min, 37 degrees C) with 100 micrograms/ml multimeric C1q (n = 3). These data suggest that platelet interactions with C1q multimers or immobilized C1q, resulting in the activation of GPIIb-IIIa fibrinogen binding

  19. Molecular mechanisms underlying synergistic adhesion of sickle red blood cells by hypoxia and low nitric oxide bioavailability.

    PubMed

    Gutsaeva, Diana R; Montero-Huerta, Pedro; Parkerson, James B; Yerigenahally, Shobha D; Ikuta, Tohru; Head, C Alvin

    2014-03-20

    The molecular mechanisms by which nitric oxide (NO) bioavailability modulates the clinical expression of sickle cell disease (SCD) remain elusive. We investigated the effect of hypoxia and NO bioavailability on sickle red blood cell (sRBC) adhesion using mice deficient for endothelial NO synthase (eNOS) because their NO metabolite levels are similar to those of SCD mice but without hypoxemia. Whereas sRBC adhesion to endothelial cells in eNOS-deficient mice was synergistically upregulated at the onset of hypoxia, leukocyte adhesion was unaffected. Restoring NO metabolite levels to physiological levels markedly reduced sRBC adhesion to levels seen under normoxia. These results indicate that sRBC adherence to endothelial cells increases in response to hypoxia prior to leukocyte adherence, and that low NO bioavailability synergistically upregulates sRBC adhesion under hypoxia. Although multiple adhesion molecules mediate sRBC adhesion, we found a central role for P-selectin in sRBC adhesion. Hypoxia and low NO bioavailability upregulated P-selectin expression in endothelial cells in an additive manner through p38 kinase pathways. These results demonstrate novel cellular and signaling mechanisms that regulate sRBC adhesion under hypoxia and low NO bioavailability. Importantly, these findings point us toward new molecular targets to inhibit cell adhesion in SCD.

  20. Single-molecule force spectroscopy of the Aplysia cell adhesion molecule reveals two homophilic bonds.

    PubMed

    Martines, E; Zhong, J; Muzard, J; Lee, A C; Akhremitchev, B B; Suter, D M; Lee, G U

    2012-08-22

    Aplysia californica neurons comprise a powerful model system for quantitative analysis of cellular and biophysical properties that are essential for neuronal development and function. The Aplysia cell adhesion molecule (apCAM), a member of the immunoglobulin superfamily of cell adhesion molecules, is present in the growth cone plasma membrane and involved in neurite growth, synapse formation, and synaptic plasticity. apCAM has been considered to be the Aplysia homolog of the vertebrate neural cell adhesion molecule (NCAM); however, whether apCAM exhibits similar binding properties and neuronal functions has not been fully established because of the lack of detailed binding data for the extracellular portion of apCAM. In this work, we used the atomic force microscope to perform single-molecule force spectroscopy of the extracellular region of apCAM and show for the first time (to our knowledge) that apCAM, like NCAM, is indeed a homophilic cell adhesion molecule. Furthermore, like NCAM, apCAM exhibits two distinct bonds in the trans configuration, although the kinetic and structural parameters of the apCAM bonds are quite different from those of NCAM. In summary, these single-molecule analyses further indicate that apCAM and NCAM are species homologs likely performing similar functions.

  1. Targeted Gene Disruption Demonstrates That P-Selectin Glycoprotein Ligand 1 (Psgl-1) Is Required for P-Selectin–Mediated but Not E-Selectin–Mediated Neutrophil Rolling and Migration

    PubMed Central

    Yang, Jing; Hirata, Takako; Croce, Kevin; Merrill-Skoloff, Glenn; Tchernychev, Boris; Williams, Eric; Flaumenhaft, Robert; Furie, Barbara C.; Furie, Bruce

    1999-01-01

    P-selectin glycoprotein ligand 1 (PSGL-1) is a mucin-like selectin counterreceptor that binds to P-selectin, E-selectin, and L-selectin. To determine its physiological role in cell adhesion as a mediator of leukocyte rolling and migration during inflammation, we prepared mice genetically deficient in PSGL-1 by targeted disruption of the PSGL-1 gene. The homozygous PSGL-1–deficient mouse was viable and fertile. The blood neutrophil count was modestly elevated. There was no evidence of spontaneous development of skin ulcerations or infections. Leukocyte infiltration in the chemical peritonitis model was significantly delayed. Leukocyte rolling in vivo, studied by intravital microscopy in postcapillary venules of the cremaster muscle, was markedly decreased 30 min after trauma in the PSGL-1–deficient mouse. In contrast, leukocyte rolling 2 h after tumor necrosis factor α stimulation was only modestly reduced, but blocking antibodies to E-selectin infused into the PSGL-1–deficient mouse almost completely eliminated leukocyte rolling. These results indicate that PSGL-1 is required for the early inflammatory responses but not for E-selectin–mediated responses. These kinetics are consistent with a model in which PSGL-1 is the predominant neutrophil P-selectin ligand but is not a required counterreceptor for E-selectin under in vivo physiological conditions. PMID:10601352

  2. P-selectin genotype is associated with the development of cancer cachexia

    PubMed Central

    Tan, Benjamin H L; Fladvad, Torill; Braun, Theodore P; Vigano, Antonio; Strasser, Florian; Deans, D A Christopher; Skipworth, Richard J E; Solheim, Tora S; Damaraju, Sambasivarao; Ross, James A; Kaasa, Stein; Marks, Daniel L; Baracos, Vickie E; Skorpen, Frank; Fearon, Kenneth C H

    2012-01-01

    The variable predisposition to cachexia may, in part, be due to the interaction of host genotype. We analyzed 129 single nucleotide polymorphisms (SNPs) in 80 genes for association with cachexia based on degree of weight loss (>5, >10, >15%) as well as weight loss in the presence of systemic inflammation (C-reactive protein, >10 mg/l). 775 cancer patients were studied with a validation association study performed on an independently recruited cohort (n = 101) of cancer patients. The C allele (minor allele frequency 10.7%) of the rs6136 (SELP) SNP was found to be associated with weight loss >10% both in the discovery study (odds ratio (OR) 0.52; 95% confidence intervals (CI), 0.29–0.93; p = 0.026) and the validation study (OR 0.09, 95% CI 0.01–0.98, p = 0.035). In separate studies, induction of muscle atrophy gene expression was investigated using qPCR following either tumour-induced cachexia in rats or intra-peritoneal injection of lipopolysaccharide in mice. P-selectin was found to be significantly upregulated in muscle in both models. Identification of P-selectin as relevant in both animal models and in cachectic cancer patients supports this as a risk factor/potential mediator in cachexia. PMID:22473907

  3. P-selectin/ PSGL-1 Inhibitors versus enoxaparin in the resolution of venous thrombosis: a meta-analysis

    PubMed Central

    Ramacciotti, Eduardo; Myers, Daniel D.; Wrobleski, Shirley K.; Deatrick, K. Barry; Londy, Frank J; Rectenwald, John E.; Henke, Peter K.; Schaub, Robert G.; Wakefield, Thomas W.

    2010-01-01

    Background P-selectin antagonism has been shown to decrease thrombogenesis and inflammation in animal models of deep venous thrombosis (DVT). Objective To determine the effectiveness of P-selectin inhibitors versus saline and enoxaparin in venous resolution in nonhuman primate models of venous thrombosis. Methods Studies reporting vein re-opening, inflammation expressed as Gadolinium enhancement and coagulation parameters were searched in the literature and pooled into a meta-analysis using an inverse variance with random effects. Results Five studies were identified comparing P-selectin/ PSGL-1 inhibitors versus saline or enoxaparin regarding venous thrombosis resolution. Vein re-opening was significantly higher on P-selectin/ PSGL-1 compounds, when compared to saline (Inverse Variance [IV] 95% CI; 44.37 [17.77–70.96], p=0.001, I2 =97%) and similar to enoxaparin (IV 95% CI; 5.03 [−8.88–18.95], p=0.48, I2 =41%). Inflammation, reflected as Gadolinium enhancement at magnetic resonance venography (MRV), was significantly decreased in the P-selectin treated group when compared to saline (IV 95% CI; −17.84 [−14.98 – −8.30], p<0.00001, I2 =80%). No significant differences on vein wall inflammation were observed between P-selectin/ PSGL-1 inhibitors and enoxaparin treated animals (IV95% CI; −3.59 [−10.67–3.48], p=0.32, I2 =66%). In addition, there was no differences in the coagulation parameters (aPTT, TCT, BT, D-Dimer, fibrinogen, platelets) between P-selectin/ PSGL-1 inhibitors and enoxaparin (IV 95% CI; −1.12[−2.36–0.11], p=0.07, I2 =92%), although there was a trend showing less prolongation in TCT with P-selectin /PSGL-1 inhibitors over enoxaparin (p<0.0001). Conclusion P-selectin antagonism successfully paralleled the low-molecular-weight-heparin enoxaparin, for the treatment of DVT in nonhuman primate models, by decreasing both thrombus burden and inflammation without causing any bleeding complications and increasing coagulation times. PMID

  4. P-Selectin Expression in Cold Preserved Kidneys in University of Wisconsin and Histidine-Tryptophan-Ketoglutarate Solutions

    PubMed Central

    Worku, Dawit; Laluf, Sebastian; McGee, Jennifer; Goswami, Monica; VanMeter, Keith; Slakey, Douglas P.

    2010-01-01

    The differences and efficacy of standard preservation solutions in kidney transplantation, University of Wisconsin (UW) and histidine-tryptophan-ketoglutarate (HTK), remain a topic of debate in recent clinical studies. P-selectins represent glycoproteins expressed on endothelial cells and platelets responsible for the earliest events in ischemia/reperfusion injury in kidney transplantation. This study aimed to compare the levels of P-selectin expression between cold preserved kidney tissues in UW and HTK solutions. Thirty kidneys were procured from male Lewis rats and stored in cold (4°C) solutions for periods of 4, 12, 16, 20, and 24h. Group 1 (n = 15) kidneys were stored in UW solutions, and group 2 (n = 15) kidneys were submerged in HTK solutions. At the end of each time point, the kidneys underwent preparation and levels of P-selectin expression in the tissues were measured using Immunoblot analyses and adjusted volumetric quantification of Western blot signals. For all periods of cold preservation, P-selectin expression was significantly down-regulated in kidney tissues stored in UW compared with HTK solutions (P < 0.001). In summary, UW demonstrated a significant benefit over HTK solution in down-regulating P-selectin expression in cold preserved kidney grafts. PMID:20036384

  5. New developments in lung endothelial heterogeneity: Von Willebrand factor, P-selectin, and the Weibel-Palade body.

    PubMed

    Ochoa, Cristhiaan D; Wu, Songwei; Stevens, Troy

    2010-04-01

    Quiescent pulmonary endothelium establishes an antithrombotic, anti-inflammatory surface that promotes blood flow. However, the endothelium rapidly responds to injury and inflammation by promoting thrombosis and enabling the directed transmigration of inflammatory cells, such as neutrophils, into the alveolar airspace. Although the endothelial cell signals responsible for establishing a prothrombotic surface are distinct from those responsible for recognizing circulating neutrophils, these processes are highly interrelated. Von Willebrand factor (VWF)-stimulated secretion plays an important role in thrombus formation, and P-selectin surface expression plays a key role in neutrophil binding necessary for transmigration. Both VWF and P-selectin are located within Weibel-Palade bodies in pulmonary arteries and arterioles, yet Weibel-Palade bodies are absent in capillaries. Despite the absence of the Weibel-Palade bodies, pulmonary capillaries express both VWF and P-selectin. The physiological and pathophysiological significance of these observations is unclear. In this review, we address some anatomical and physiological features that distinguish pulmonary artery, capillary, and vein endothelium. In addition, we review our current understanding regarding the stimulated secretion of VWF and P-selectin in pulmonary artery and capillary endothelium. This information is considered in the context of vasculitis and pneumonia, two pathophysiological processes to which the stimulated secretion of VWF and P-selectin contribute.

  6. Social defeat promotes a reactive endothelium in a brain region-dependent manner with increased expression of key adhesion molecules, selectins and chemokines associated with the recruitment of myeloid cells to the brain.

    PubMed

    Sawicki, C M; McKim, D B; Wohleb, E S; Jarrett, B L; Reader, B F; Norden, D M; Godbout, J P; Sheridan, J F

    2015-08-27

    Repeated social defeat (RSD) in mice causes myeloid cell trafficking to the brain that contributes to the development of prolonged anxiety-like behavior. Myeloid cell recruitment following RSD occurs in regions where neuronal and microglia activation is observed. Thus, we hypothesized that crosstalk between neurons, microglia, and endothelial cells contributes to brain myeloid cell trafficking via chemokine signaling and vascular adhesion molecules. Here we show that social defeat caused an exposure- and brain region-dependent increase in several key adhesion molecules and chemokines involved in the recruitment of myeloid cells. For example, RSD induced distinct patterns of adhesion molecule expression that may explain brain region-dependent myeloid cell trafficking. VCAM-1 and ICAM-1 mRNA expression were increased in an exposure-dependent manner. Furthermore, RSD-induced VCAM-1 and ICAM-1 protein expression were localized to the vasculature of brain regions implicated in fear and anxiety responses, which spatially corresponded to previously reported patterns of myeloid cell trafficking. Next, mRNA expression of additional adhesion molecules (E- and P-selectin, PECAM-1) and chemokines (CXCL1, CXCL2, CXCL12, CCL2) were determined in the brain. Social defeat induced an exposure-dependent increase in mRNA levels of E-selectin, CXCL1, and CXCL2 that increased with additional days of social defeat. While CXCL12 was unaffected by RSD, CCL2 expression was increased by six days of social defeat. Last, comparison between enriched CD11b(+) cells (microglia/macrophages) and enriched GLAST-1(+)/CD11b(-) cells (astrocytes) revealed RSD increased mRNA expression of IL-1β, CCL2, and CXCL2 in microglia/macrophages but not in astrocytes. Collectively, these data indicate that key mediators of leukocyte recruitment were increased in the brain vasculature following RSD in an exposure- and brain region-dependent manner.

  7. [Neutrophils expression of adhesion molecules in diabetic nephropaty patients].

    PubMed

    Shcherban', T D

    2013-01-01

    CD11b and CD54 expression on neutrophils in patients with diabetic nephropathy (DN), arterial hypertension patients and healthy donors were examined. Development of DN associates with an increase of the number of CD11b and CD54 positive cells and violation of cellular co-operation. In the conditions of diabetic microenvironment expression of adhesion molecules rises substantially, what may characterized the mechanism of connection between hyperglycemia and vascular and tissues injury at DN. Authentication of morphological and biochemical markers of intercellular co-operation must in a prospect assist the deeper understanding of pathogenic mechanisms of DN.

  8. Junctional Adhesion Molecule C Mediates Leukocyte Adhesion to Rheumatoid Arthritis Synovium

    PubMed Central

    Rabquer, Bradley J.; Pakozdi, Angela; Michel, James E.; Gujar, Bansari S.; Haines, G. Kenneth; Imhof, Beat A.; Koch, Alisa E.

    2010-01-01

    Objective Leukocyte infiltration into the rheumatoid arthritis (RA) synovium is a multistep process in which leukocytes leave the bloodstream and invade the synovial tissue (ST). Leukocyte transendothelial migration and adhesion to RA ST requires adhesion molecules on the surface of endothelial cells and RA ST fibroblasts. This study was undertaken to investigate the role of junctional adhesion molecule C (JAM-C) in mediating leukocyte recruitment and retention in the RA joint. Methods Immunohistologic analysis was performed on RA, osteoarthritis (OA), and normal ST samples to quantify JAM-C expression. Fibroblast JAM-C expression was also analyzed using Western blotting, cell surface enzyme-linked immunosorbent assay, and immunofluorescence. To determine the role of JAM-C in leukocyte retention in the RA synovium, in vitro and in situ adhesion assays and RA ST fibroblast transmigration assays were performed. Results JAM-C was highly expressed by RA ST lining cells, and its expression was increased in OA ST and RA ST endothelial cells compared with normal ST endothelial cells. JAM-C was also expressed on the surface of OA ST and RA ST fibroblasts. Furthermore, we demonstrated that myeloid U937 cell adhesion to both OA ST and RA ST fibroblasts and to RA ST was dependent on JAM-C. U937 cell migration through an RA ST fibroblast monolayer was enhanced in the presence of neutralizing antibodies against JAM-C. Conclusion Our results highlight the novel role of JAM-C in recruiting and retaining leukocytes in the RA synovium and suggest that targeting JAM-C may be important in combating inflammatory diseases such as RA. PMID:18821692

  9. Analysis of Adhesion Molecules and Basement Membrane Contributions to Synaptic Adhesion at the Drosophila Embryonic NMJ

    PubMed Central

    Koper, Andre; Schenck, Annette; Prokop, Andreas

    2012-01-01

    Synapse formation and maintenance crucially underlie brain function in health and disease. Both processes are believed to depend on cell adhesion molecules (CAMs). Many different classes of CAMs localise to synapses, including cadherins, protocadherins, neuroligins, neurexins, integrins, and immunoglobulin adhesion proteins, and further contributions come from the extracellular matrix and its receptors. Most of these factors have been scrutinised by loss-of-function analyses in animal models. However, which adhesion factors establish the essential physical links across synaptic clefts and allow the assembly of synaptic machineries at the contact site in vivo is still unclear. To investigate these key questions, we have used the neuromuscular junction (NMJ) of Drosophila embryos as a genetically amenable model synapse. Our ultrastructural analyses of NMJs lacking different classes of CAMs revealed that loss of all neurexins, all classical cadherins or all glutamate receptors, as well as combinations between these or with a Laminin deficiency, failed to reveal structural phenotypes. These results are compatible with a view that these CAMs might have no structural role at this model synapse. However, we consider it far more likely that they operate in a redundant or well buffered context. We propose a model based on a multi-adaptor principle to explain this phenomenon. Furthermore, we report a new CAM-independent adhesion mechanism that involves the basement membranes (BM) covering neuromuscular terminals. Thus, motorneuronal terminals show strong partial detachment of the junction when BM-to-cell surface attachment is impaired by removing Laminin A, or when BMs lose their structural integrity upon loss of type IV collagens. We conclude that BMs are essential to tie embryonic motorneuronal terminals to the muscle surface, lending CAM-independent structural support to their adhesion. Therefore, future developmental studies of these synaptic junctions in Drosophila need

  10. Cleavage and Cell Adhesion Properties of Human Epithelial Cell Adhesion Molecule (HEPCAM)*

    PubMed Central

    Tsaktanis, Thanos; Kremling, Heidi; Pavšič, Miha; von Stackelberg, Ricarda; Mack, Brigitte; Fukumori, Akio; Steiner, Harald; Vielmuth, Franziska; Spindler, Volker; Huang, Zhe; Jakubowski, Jasmine; Stoecklein, Nikolas H.; Luxenburger, Elke; Lauber, Kirsten; Lenarčič, Brigita; Gires, Olivier

    2015-01-01

    Human epithelial cell adhesion molecule (HEPCAM) is a tumor-associated antigen frequently expressed in carcinomas, which promotes proliferation after regulated intramembrane proteolysis. Here, we describe extracellular shedding of HEPCAM at two α-sites through a disintegrin and metalloprotease (ADAM) and at one β-site through BACE1. Transmembrane cleavage by γ-secretase occurs at three γ-sites to generate extracellular Aβ-like fragments and at two ϵ-sites to release human EPCAM intracellular domain HEPICD, which is efficiently degraded by the proteasome. Mapping of cleavage sites onto three-dimensional structures of HEPEX cis-dimer predicted conditional availability of α- and β-sites. Endocytosis of HEPCAM warrants acidification in cytoplasmic vesicles to dissociate protein cis-dimers required for cleavage by BACE1 at low pH values. Intramembrane cleavage sites are accessible and not part of the structurally important transmembrane helix dimer crossing region. Surprisingly, neither chemical inhibition of cleavage nor cellular knock-out of HEPCAM using CRISPR-Cas9 technology impacted the adhesion of carcinoma cell lines. Hence, a direct function of HEPCAM as an adhesion molecule in carcinoma cells is not supported and appears to be questionable. PMID:26292218

  11. Isolation and characterization of N-feruloyltyramine as the P-selectin expression suppressor from garlic (Allium sativum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because garlic (Allium sativum) is believed to have positive health effects on cardiovascular disease, the screening of isolated fractions from a garlic extract against cardiovascular disease related-processes should help identify active compounds. Both P-selectin expression suppressing activity ag...

  12. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1

    NASA Astrophysics Data System (ADS)

    Koch, Alisa E.; Halloran, Margaret M.; Haskell, Catherine J.; Shah, Manisha R.; Polverini, Peter J.

    1995-08-01

    ENDOTHELIAL adhesion molecules facilitate the entry of leukocytes into inflamed tissues. This in turn promotes neovascularization, a process central to the progression of rheumatoid arthritis, tumour growth and wound repair1. Here we test the hypothesis that soluble endothelial adhesion molecules promote angiogenesis2á¤-4. Human recombinant soluble E-selectin and soluble vascular cell adhesion molecule-1 induced chemotaxis of human endothelial cells in vitro and were angiogenic in rat cornea. Soluble E-selectin acted on endothelial cells in part through a sialyl Lewis-X-dependent mechanism, while soluble vascular cell adhesion molecule-1 acted on endothelial cells in part through a very late antigen (VLA)-4 dependent mechanism. The chemotactic activity of rheumatoid synovial fluid for endothelial cells, and also its angiogenic activity, were blocked by antibodies to either soluble E-selectin or soluble vascular cell adhesion molecule-1. These results suggest a novel function for soluble endothelial adhesion molecules as mediators of angiogenesis.

  13. Reduced immunohistochemical expression of adhesion molecules in vitiligo skin biopsies.

    PubMed

    Reichert Faria, Adriane; Jung, Juliana Elizabeth; Silva de Castro, Caio César; de Noronha, Lucia

    2017-03-01

    Because defects in adhesion impairment seem to be involved in the etiopathogenesis of vitiligo, this study aimed to compare the immunohistochemical expression of several adhesion molecules in the epidermis of vitiligo and non lesional vitiligo skin. Sixty-six specimens of lesional and non lesional skin from 33 volunteers with vitiligo were evaluated by immunohistochemistry using anti-beta-catenin, anti-E-cadherin, anti-laminin, anti-beta1 integrin, anti-collagen IV, anti-ICAM-1 and anti-VCAM-1 antibodies. Biopsies of vitiligo skin demonstrated a significant reduction in the expression of laminin and integrin. The average value of the immunohistochemically positive reaction area of the vitiligo specimens was 3053.2μm(2), compared with the observed value of 3431.8μm(2) in non vitiligo skin (p=0.003) for laminin. The immuno-positive area was 7174.6μm(2) (vitiligo) and 8966.7μm(2) (non lesional skin) for integrin (p=0.042). A reduction in ICAM-1 and VCAM-1 expression in the basal layer of the epidermis in vitiligo samples was also observed (p=0.001 and p<0.001, respectively). However, no significant differences were observed with respect to the expression of beta-catenin, E-cadherin, and collagen IV between vitiligo and non lesional skin. Our results suggest that an impairment in adhesion exists in vitiligo skin, which is supported by the diminished immunohistochemical expression of laminin, beta1 integrin, ICAM-1 and VCAM-1.

  14. Exenatide Alters Gene Expression of Neural Cell Adhesion Molecule (NCAM), Intercellular Cell Adhesion Molecule (ICAM), and Vascular Cell Adhesion Molecule (VCAM) in the Hippocampus of Type 2 Diabetic Model Mice

    PubMed Central

    Gumuslu, Esen; Cine, Naci; Gökbayrak, Merve Ertan; Mutlu, Oguz; Celikyurt, Ipek Komsuoglu; Ulak, Guner

    2016-01-01

    Background Glucagon-like peptide-1 (GLP-1), a potent and selective agonist for the GLP-1 receptor, ameliorates the symptoms of diabetes through stimulation of insulin secretion. Exenatide is a potent and selective agonist for the GLP-1 receptor. Cell adhesion molecules are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. Material/Methods The present study demonstrated the effects of exenatide treatment (0.1 μg/kg, subcutaneously, twice daily for 2 weeks) on the gene expression levels of cell adhesion molecules, neural cell adhesion molecule (NCAM), intercellular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) in the brain tissue of diabetic BALB/c male mice by real-time quantitative polymerase chain reaction (PCR). Diabetes was induced by streptozotocin/nicotinamide (STZ-NA) injection to male mice. Results The results of this study revealed that hippocampal gene expression of NCAM, ICAM, and VCAM were found to be up-regulated in STZ-NA-induced diabetic mice compared to those of controls. A significant decrease in the gene expression levels of NCAM, ICAM, and VCAM were determined after 2 weeks of exenatide administration. Conclusions Cell adhesion molecules may be involved in the molecular mechanism of diabetes. Exenatide has a strong beneficial action in managing diabetes induced by STZ/NA by altering gene expression of NCAM, ICAM, and VCAM. PMID:27465247

  15. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation

    PubMed Central

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias

    2016-01-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  16. Pharmacology of Cell Adhesion Molecules of the Nervous System

    PubMed Central

    Kiryushko, Darya; Bock, Elisabeth; Berezin, Vladimir

    2007-01-01

    Cell adhesion molecules (CAMs) play a pivotal role in the development and maintenance of the nervous system under normal conditions. They also are involved in numerous pathological processes such as inflammation, degenerative disorders, and cancer, making them attractive targets for drug development. The majority of CAMs are signal transducing receptors. CAM-induced intracellular signalling is triggered via homophilic (CAM-CAM) and heterophilic (CAM - other counter-receptors) interactions, which both can be targeted pharmacologically. We here describe the progress in the CAM pharmacology focusing on cadherins and CAMs of the immunoglobulin (Ig) superfamily, such as NCAM and L1. Structural basis of CAM-mediated cell adhesion and CAM-induced signalling are outlined. Different pharmacological approaches to study functions of CAMs are presented including the use of specific antibodies, recombinant proteins, and synthetic peptides. We also discuss how unravelling of the 3D structure of CAMs provides novel pharmacological tools for dissection of CAM-induced signalling pathways and offers therapeutic opportunities for a range of neurological disorders. PMID:19305742

  17. The conveyor belt hypothesis for thymocyte migration: participation of adhesion and de-adhesion molecules.

    PubMed

    Villa-Verde, D M; Calado, T C; Ocampo, J S; Silva-Monteiro, E; Savino, W

    1999-05-01

    Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble beta-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.

  18. Junction adhesion molecule is a receptor for reovirus.

    PubMed

    Barton, E S; Forrest, J C; Connolly, J L; Chappell, J D; Liu, Y; Schnell, F J; Nusrat, A; Parkos, C A; Dermody, T S

    2001-02-09

    Virus attachment to cells plays an essential role in viral tropism and disease. Reovirus serotypes 1 and 3 differ in the capacity to target distinct cell types in the murine nervous system and in the efficiency to induce apoptosis. The binding of viral attachment protein sigma1 to unidentified receptors controls these phenotypes. We used expression cloning to identify junction adhesion molecule (JAM), an integral tight junction protein, as a reovirus receptor. JAM binds directly to sigma1 and permits reovirus infection of nonpermissive cells. Ligation of JAM is required for reovirus-induced activation of NF-kappaB and apoptosis. Thus, reovirus interaction with cell-surface receptors is a critical determinant of both cell-type specific tropism and virus-induced intracellular signaling events that culminate in cell death.

  19. Suitable in vitro Eimeria arloingi macromeront formation in host endothelial cells and modulation of adhesion molecule, cytokine and chemokine gene transcription.

    PubMed

    Silva, Liliana M R; Vila-Viçosa, Maria J M; Cortes, Helder C E; Taubert, Anja; Hermosilla, Carlos

    2015-01-01

    Eimeria arloingi infections can cause severe haemorrhagic enteritis in young goat kids, thereby leading to high economic losses in goat industry worldwide. We aimed to isolate a new E. arloingi strain and establish a suitable in vitro culture system for the first merogony. E. arloingi oocysts were collected from naturally infected goat kids in the province of Alentejo, Portugal. For the maintenance of E. arloingi (strain A), kids kept under strict parasite-free conditions were orally infected with 10(3) sporulated oocysts each. Further, a new excystation protocol was successfully established to obtain viable sporozoites for further in vitro development in primary bovine umbilical vein endothelial cells (BUVEC). Overall, E. arloingi first merogony was successfully accomplished in BUVEC leading to macromeront formation (up to 150 μm) and the release of fully developed merozoites I stages. Moreover, host endothelial cell-parasite interactions were investigated in order to determine the extent of modulation carried out by E. arloingi in BUVEC during the first merogony. Gene transcription of adhesion molecules (E-selectin, P-selectin, VCAM-1, ICAM-1) was enhanced in the first hours post-infection (p.i.) in E. arloingi-infected BUVEC. BUVEC activation due to invasion was also shown by increased chemokine (CXCL8, CCL2, CCL5), cytokine (GM-CSF) and COX-2 gene transcription. The new E. arloingi (strain A) will be useful for better comprehension of early host innate immune reactions against this parasite in vitro/in vivo as well as to further our investigations in the complex Eimeria-host endothelial cell interactions.

  20. An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis

    PubMed Central

    Dong, Xintong; Liu, Oliver W.; Howell, Audrey S.; Shen, Kang

    2014-01-01

    Summary Robust dendrite morphogenesis is a critical step in the development of reproducible neural circuits. However, little is known about the extracellular cues that pattern complex dendrite morphologies. In the model nematode C. elegans, the sensory neuron PVD establishes stereotypical, highly-branched dendrite morphology. Here, we report the identification of a tripartite ligand-receptor complex of membrane adhesion molecules that is both necessary and sufficient to instruct spatially restricted growth and branching of PVD dendrites. The ligand complex SAX-7/L1CAM and MNR-1 function at defined locations in the surrounding hypodermal tissue, while DMA-1 acts as the cognate receptor on PVD. Mutations in this complex lead to dramatic defects in the formation, stabilization, and organization of the dendritic arbor. Ectopic expression of SAX-7 and MNR-1 generates a predictable, unnaturally patterned dendritic tree in a DMA-1 dependent manner. Both in vivo and in vitro experiments indicate that all three molecules are needed for interaction. PMID:24120131

  1. Effect of leukocyte filtration on the P-selectin expression of apheresis platelets.

    PubMed

    Xie, Z T; Chen, C; Zhang, S H; Yang, H M; Tao, Z H

    2015-06-01

    The aim of this study was to investigate the effect of leukocyte filtration on the P-selectin (CD62P) surface expression of apheresis platelets during the retention period. Ten bags of apheresis platelets stored for 1 day (0-24 h) and 10 bags of apheresis platelets stored for 2 days (24-48 h) were used for leukocyte filtration (experimental group). Ten bags of apheresis platelets with the corresponding retention periods but without filtration were used as a negative control (control group). Thereafter, 100 μL of platelet suspensions from apheresis platelets with or without leukocyte filtration were sampled before and after leukocyte filtration for the detection of CD62P surface expression by flow cytometry. No statistical difference in the CD62P surface expression of apheresis platelets was observed before and after leukocyte filtration (P > 0.05), neither did the CD62P surface expression exhibit any change among the different retention periods. Leukocyte filtration does not affect the CD62P surface expression of apheresis platelets stored for up to 2 days, which indicates that leukocyte filtration does not damage the activation of apheresis platelets within the retention period.

  2. Measurement of platelet P-selectin for remote testing of platelet function during treatment with clopidogrel and/or aspirin.

    PubMed

    Fox, S C; May, J A; Shah, A; Neubert, U; Heptinstall, S

    2009-06-01

    There is great interest in assessing the efficacy of treatment with clopidogrel and aspirin in patients with cardiovascular disease using procedures that can be used in a remote setting. Here we have established methods to assess the effects of clopidogrel and aspirin on platelets based on measurements of platelet P-selectin. Platelets were stimulated in whole blood by adding the combination of adenosine diphosphate and the TXA(2) mimetic U46619 (ADP/U4, designed to assess P2Y(12) inhibition) or the combination of arachidonic acid and epinephrine (AA/Epi, designed to assess COX-1 inhibition). The stimulated samples were then fixed using a fixative solution that provides stability for at least 9 days, and sent to a central laboratory for analysis of P-selectin by flow cytometry. Measurements were performed in blood from healthy volunteers and patients with cardiovascular disease. The inhibitory effects of clopidogrel and aspirin were assessed ex vivo and the effects of the direct acting P2Y(12) antagonist cangrelor and aspirin were assessed in vitro. Measurements of platelet aggregation were also performed for comparison. In healthy volunteers clopidogrel ex vivo and cangrelor in vitro markedly inhibited P-selectin expression induced by ADP/U4. Aspirin did not inhibit and did not interfere with the effects of clopidogrel or cangrelor using this test. There was very little overlap of results obtained in the absence and presence of clopidogrel or cangrelor. In contrast, over half of 42 patients with cardiovascular disease did not respond well to clopidogrel treatment, although cangrelor was still effective. Aspirin markedly inhibited P-selectin expression induced by AA/Epi. Clopidogrel had much less effect and did not interfere with the effects of aspirin. There was no overlap of results obtained in the absence and presence of aspirin. Aspirin provided near-complete inhibition in 29 of 30 patients with cardiovascular disease. Aggregometry measurements agreed well with

  3. Tocotrienol is the most effective vitamin E for reducing endothelial expression of adhesion molecules and adhesion to monocytes.

    PubMed

    Theriault, Andre; Chao, Jun-Tzo; Gapor, Abdul; Chao, Jun Tzo; Gapor, Abeli

    2002-01-01

    Alpha-tocopherol and its esterified derivatives have been shown to be effective in reducing monocytic-endothelial cell adhesion. However, the effect of alpha-tocotrienol (alpha-T3) has not been characterized. In the present study, using human umbilical vein endothelial cells (HUVEC) as the model system, we examined the relative inhibitory effects of alpha-T3 and other vitamin E derivatives on cell surface adhesion molecule expression under TNF-alpha stimulation. Using enzyme-linked immunosorbent assay, we demonstrated that alpha-T3 markedly inhibited the surface expression of vascular cell adhesion molecule-1 in TNF-alpha activated HUVEC in a dose- and time-dependent manner. The optimal inhibition was observed at 25 micromol/l alpha-T3 within 24 h (77+/-5%) without cytotoxicity. In addition, the surface expression of intercellular adhesion molecule-1 and E-selectin were also reduced by 40+/-7 and 42+/-5%, respectively. In order to further evaluate the effects of alpha-T3 on the vascular endothelium, we investigated the ability of monocytes to adhere to endothelial cells. Interestingly, a 63+/-3% decrease in monocytic cell adherence was observed. Compared to alpha-tocopherol and alpha-tocopheryl succinate, alpha-T3 displayed a more profound inhibitory effect on adhesion molecule expression and monocytic cell adherence. This inhibitory action by alpha-T3 on TNF-alpha-induced monocyte adhesion was shown to be NF-kappaB dependent and was interestingly reversed with co-incubation with farnesol and geranylgeraniol, suggesting a role for prenylated proteins in the regulation of adhesion molecule expression. In summary, the above results suggest that alpha-T3 is a potent and effective agent in the reduction of cellular adhesion molecule expression and monocytic cell adherence.

  4. Tyrosine phosphorylation of P-selectin in intact platelets and in a disulphide-linked complex with immunoprecipitated pp60c-src.

    PubMed Central

    Modderman, P W; von dem Borne, A E; Sonnenberg, A

    1994-01-01

    P-selectin is a 140 kDa membrane glycoprotein found in secretory granules of platelets and endothelial cells where it is rapidly translocated to the plasma membrane upon cell activation. It then functions as a receptor for various types of leucocytes. Metabolic labelling of resting platelets with 32Pi showed that P-selectin is primarily phosphorylated on serine residues, although some tyrosine phosphorylation was observed as well. However, tyrosine phosphorylation of P-selectin was greatly stimulated by treatment with the permeating phosphatase inhibitor, pervanadate. When P-selectin immunoprecipitates were incubated with [gamma-32P]ATP (in vitro kinase assay), a fraction of P-selectin was phosphorylated on its tyrosine residues by a co-precipitated kinase. P-selectin phosphorylated in vitro co-migrated with 140 kDa surface-labelled 125I-P-selectin during SDS/PAGE under reducing conditions. Under non-reducing conditions, however, phosphorylated P-selectin was disulphide-linked to unknown protein(s) in a 205 kDa complex. In vitro kinase assays of the most abundant platelet tyrosine kinase, pp60c-src, demonstrated the presence of similar 140 and 205 kDa phosphorylated proteins in SDS/PAGE under reducing and non-reducing conditions respectively. Extraction and reprecipitation studies with proteins phosphorylated in vitro indicated that P-selectin and pp60c-src form a 205 kDa 1:1 disulphide-linked complex. In the complex, pp60c-src autophosphorylation is inhibited and P-selectin is phosphorylated on tyrosine residues. As protein disulphides in the cytoplasm of intact cells are extremely rare, our results suggest that P-selectin and pp60c-src, which co-localize in platelet dense granules, may be non-covalently associated and spontaneously form disulphide bridges during lysis. In addition, the observed tyrosine phosphorylation of P-selectin in intact platelets suggests that its function might be regulated by phosphorylation by pp60c-src. Images Figure 1 Figure 2 Figure 3

  5. Relationship between renal function and circulating microparticles, soluble P-selectin and E-selectin levels in atrial fibrillation.

    PubMed

    Lau, Yee Cheng; Xiong, Qinmei; Blann, Andrew D; Lip, Gregory Y H

    2017-01-01

    Atrial fibrillation (AF) and chronic kidney disease are closely related, and any associated risk of stroke and thromboembolism due to AF is increased by concurrent renal dysfunction. The mechanism(s) for this include abnormalities in platelets and endothelial cells. We hypothesized relationships between levels of circulating platelet microparticles (PMPs, defined by CD42b), soluble P selectin (both reflecting platelet activation), soluble E-selectin (reflecting endothelial activation) and endothelial/platelet microparticles (EPMPs, defined by CD31) with progressive renal dysfunction. Blood samples were obtained from 160 anticoagulated AF patients. Microparticles were measured by flow cytometry, soluble E and P selectin levels by ELISA. Renal function was determined by estimated glomerular filtration rate (eGFR). EPMP levels demonstrated a linear increased trend across quartiles of eGFR (p = 0.034) and CKD stage (p < 0.001), and correlated with eGFR and serum creatinine (p < 0.01). PMPs, P-selectin and E-selectin levels were not significantly different across groupings of renal dysfunction, and no significant correlations with eGFR were evident (p = 0.186, p = 0.561, p = 0.746 respectively). Stepwise multivariable regression analysis demonstrated that worsening renal function was an independent predictor of EPMP levels (p < 0.001). In well-anticoagulated AF patients, there is potential relationship between endothelial function (as judged by elevated EPMP levels, with no change in PMPs) and renal function. Other markers of prothombotic state or cellular activation (PMP, P-selectin and E-selectin levels) were not significantly different across the various degree of renal dysfunction. Renal function must be addressed when measuring EPMP levels.

  6. Calsyntenins Function as Synaptogenic Adhesion Molecules in Concert with Neurexins

    PubMed Central

    Um, Ji Won; Pramanik, Gopal; Ko, Ji Seung; Song, Min-Young; Lee, Dongmin; Kim, Hyun; Park, Kang-Sik; Südhof, Thomas C.; Tabuchi, Katsuhiko; Ko, Jaewon

    2014-01-01

    SUMMARY Multiple synaptic adhesion molecules govern synapse formation. Here, we propose calsyntenin-3/alcadein-β as a synapse organizer that specifically induces presynaptic differentiation in heterologous synapse-formation assays. Calsyntenin-3 (CST-3) was highly expressed during various postnatal periods of mouse brain development. The simultaneous knockdown of all three CSTs, but not CST-3 alone, decreased inhibitory, but not excitatory, synapse densities in cultured hippocampal neurons. Moreover, the knockdown of CSTs specifically reduced inhibitory synaptic transmission in vitro and in vivo. Remarkably, the loss of CSTs induced a concomitant decrease in neuron soma size in a non-cell-autonomous manner. Furthermore, α-neurexins (α-Nrxs) were affinity-purified as components of a CST-3 complex involved in CST-3-mediated presynaptic differentiation. However, CST-3 did not directly bind to Nrxs. Viewed together, these data suggest that the three CSTs redundantly regulate inhibitory synapse formation, inhibitory synapse function, and neuron development in concert with Nrxs. PMID:24613359

  7. Angiogenesis in Platelet Endothelial Cell Adhesion Molecule-1-Null Mice

    PubMed Central

    Cao, Gaoyuan; Fehrenbach, Melane L.; Williams, James T.; Finklestein, Jeffrey M.; Zhu, Jing-Xu; DeLisser, Horace M.

    2009-01-01

    Platelet endothelial cell adhesion molecule (PECAM)-1 has been previously implicated in endothelial cell migration; additionally, anti-PECAM-1 antibodies have been shown to inhibit in vivo angiogenesis. Studies were therefore performed with PECAM-1-null mice to further define the involvement of PECAM-1 in blood vessel formation. Vascularization of subcutaneous Matrigel implants as well as tumor angiogenesis were both inhibited in PECAM-1-null mice. Reciprocal bone marrow transplants that involved both wild-type and PECAM-1-deficient mice revealed that the impaired angiogenic response resulted from a loss of endothelial, but not leukocyte, PECAM-1. In vitro wound migration and single-cell motility by PECAM-1-null endothelial cells were also compromised. In addition, filopodia formation, a feature of motile cells, was inhibited in PECAM-1-null endothelial cells as well as in human endothelial cells treated with either anti-PECAM-1 antibody or PECAM-1 siRNA. Furthermore, the expression of PECAM-1 promoted filopodia formation and increased the protein expression levels of Cdc42, a Rho GTPase that is known to promote the formation of filopodia. In the developing retinal vasculature, numerous, long filamentous filopodia, emanating from endothelial cells at the tips of angiogenic sprouts, were observed in wild-type animals, but to a lesser extent in the PECAM-1-null mice. Together, these data further establish the involvement of endothelial PECAM-1 in angiogenesis and suggest that, in vivo, PECAM-1 may stimulate endothelial cell motility by promoting the formation of filopodia. PMID:19574426

  8. Vascular Cell Adhesion Molecule 1, Intercellular Adhesion Molecule 1, and Cluster of Differentiation 146 Levels in Patients with Type 2 Diabetes with Complications

    PubMed Central

    Saribal, Devrim; Yenmis, Guven; Guvenen, Guvenc

    2017-01-01

    Background Type 2 diabetes mellitus (T2DM) is a multisystemic, chronic disease accompanied by microvascular complications involving various complicated mechanisms. Intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and cluster of differentiation-146 (CD146) are mainly expressed by endothelial cells, and facilitate the adhesion and transmigration of immune cells, leading to inflammation. In the present study, we evaluated the levels of soluble adhesion molecules in patients with microvascular complications of T2DM. Methods Serum and whole blood samples were collected from 58 T2DM patients with microvascular complications and 20 age-matched healthy subjects. Levels of soluble ICAM-1 (sICAM-1) and soluble VCAM-1 (sVCAM-1) were assessed using enzyme-linked immunosorbent assay, while flow cytometry was used to determine CD146 levels. Results Serum sICAM-1 levels were lower in T2DM patients with microvascular complications than in healthy controls (P<0.05). No significant differences were found in sVCAM-1 and CD146 levels between the study and the control group. Although patients were subdivided into groups according to the type of microvascular complications that they experienced, cell adhesion molecule levels were not correlated with the complication type. Conclusion In the study group, most of the patients were on insulin therapy (76%), and 95% of them were receiving angiotensin-converting enzyme (ACE)-inhibitor agents. Insulin and ACE-inhibitors have been shown to decrease soluble adhesion molecule levels via various mechanisms, so we suggest that the decreased or unchanged levels of soluble forms of cellular adhesion molecules in our study group may have resulted from insulin and ACE-inhibitor therapy, as well as tissue-localized inflammation in patients with T2DM. PMID:28345319

  9. Role of glucocorticoids in neutrophil and endothelial adhesion molecule expression and function

    PubMed Central

    Talbot, Vivienne

    1992-01-01

    Glucocorticoids are very effective inhibitors of both the acute and chronic inflammatory response. In this study the hypothesis that glucocorticoids inhibit an early component of the inflammatory response, neutrophil adhesion to endothelium, by down-regulation of adhesion molecules on neutrophils or endothelium was examined. No effect of dexamethasone on neutrophil adhesion to endothelium or of antigen expression by neutrophils or endothelium was found. The mechanism of action of glucocorticoids in the inflammatory response is probably not mediated by alterations in adhesion molecules. PMID:18475448

  10. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons.

    PubMed

    Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2016-01-01

    Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail.

  11. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  12. Exogenous L-arginine and HDL can alter LDL and ox-LDL-mediated platelet activation: using platelet P-selectin receptor numbers.

    PubMed

    Sener, Azize; Enc, Elif; Ozsavci, Derya; Vanizor-Kural, Birgul; Yanikkaya-Demirel, Gulderen; Oba, Rabia; Uras, Fikriye; Demir, Muzaffer

    2011-01-01

    The aim of this study is to investigate the effects of exogenous L-arginine and HDL on LDL and oxidized LDL (ox-LDL)-mediated platelet activation. Adenosine diphosphate (ADP)-activated platelets have been incubated with lipoproteins with or without L-arginine. P-selectin receptor numbers per platelet have been measured by flow cytometry. After incubation with only L-arginine (without lipoproteins), platelet nitric oxide (NO) levels and P-selectin receptor numbers significantly increased compared to the controls (P < .05). After incubation with LDL or ox-LDL, receptor numbers of P-selectin significantly increased (P < .001). However, P-selectin receptor numbers in platelets treated with L-arginine + LDL or L-arginine + ox-LDL decreased compared to the levels in platelets treated with only LDL or ox-LDL (P < .01, P < .001, respectively). Addition of HDL to L-arginine + ox-LDL caused significant reduction in P-selectin receptor numbers as in the control values (P < .001).We have concluded that L-arginine causes enhanced platelet NO levels and blocks the effects of LDL or ox-LDL on platelet P-selectin receptor numbers and HDL also strengthens this effect of L-arginine.

  13. Iron sucrose accelerates early atherogenesis by increasing superoxide production and upregulating adhesion molecules in CKD.

    PubMed

    Kuo, Ko-Lin; Hung, Szu-Chun; Lee, Tzong-Shyuan; Tarng, Der-Cherng

    2014-11-01

    High-dose intravenous iron supplementation is associated with adverse cardiovascular outcomes in patients with CKD, but the underlying mechanism is unknown. Our study investigated the causative role of iron sucrose in leukocyte-endothelium interactions, an index of early atherogenesis, and subsequent atherosclerosis in the mouse remnant kidney model. We found that expression levels of intracellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and adhesion of U937 cells increased in iron-treated human aortic endothelial cells through upregulated NADPH oxidase (NOx) and NF-κB signaling. We then measured mononuclear-endothelial adhesion and atherosclerotic lesions of the proximal aorta in male C57BL/6 mice with subtotal nephrectomy, male apolipoprotein E-deficient (ApoE(-/-)) mice with uninephrectomy, and sham-operated mice subjected to saline or parenteral iron loading. Iron sucrose significantly increased tissue superoxide production, expression of tissue cell adhesion molecules, and endothelial adhesiveness in mice with subtotal nephrectomy. Moreover, iron sucrose exacerbated atherosclerosis in the aorta of ApoE(-/-) mice with uninephrectomy. In patients with CKD, intravenous iron sucrose increased circulating mononuclear superoxide production, expression of soluble adhesion molecules, and mononuclear-endothelial adhesion compared with healthy subjects or untreated patients. In summary, iron sucrose aggravated endothelial dysfunction through NOx/NF-κB/CAM signaling, increased mononuclear-endothelial adhesion, and exacerbated atherosclerosis in mice with remnant kidneys. These results suggest a novel causative role for therapeutic iron in cardiovascular complications in patients with CKD.

  14. Adhesion molecules and the extracellular matrix as drug targets for glioma.

    PubMed

    Shimizu, Toshihiko; Kurozumi, Kazuhiko; Ishida, Joji; Ichikawa, Tomotsugu; Date, Isao

    2016-04-01

    The formation of tumor vasculature and cell invasion along white matter tracts have pivotal roles in the development and progression of glioma. A better understanding of the mechanisms of angiogenesis and invasion in glioma will aid the development of novel therapeutic strategies. The processes of angiogenesis and invasion cause the production of an array of adhesion molecules and extracellular matrix (ECM) components. This review focuses on the role of adhesion molecules and the ECM in malignant glioma. The results of clinical trials using drugs targeted against adhesion molecules and the ECM for glioma are also discussed.

  15. Soluble vascular cell adhesion molecular-1 is a potential biological indicator of hemophilic arthropathy

    PubMed Central

    Tseng, Yu-Hsin; Chiou, Shyh-Shin; Zeng, Yu-Sheng; Tsai, Shih-Pien; Chen, Chun-Shih; Liao, Yu-Mei; Lin, Pei-Chin

    2016-01-01

    Abstract Hemophilic arthropathy is the most common chronic complication in patients with hemophilia. The pathogenesis of hemophilic arthropathy involves the inflammatory processes associated with rheumatoid arthritis (RA). Determining the severity and/or progression of joint damage is crucial when evaluating the effect of treatment modalities. Identifying reliable biomarkers in the peripheral blood of patients with hemophilic arthropathy may be beneficial in clinical practice. Circulating soluble vascular cell adhesion molecule-1 (sVCAM-1), E-selectin, and P-selectin levels are elevated in patients with RA. Our study investigated whether these soluble adhesion molecules can be used as biological indicators in the course of joint damage in patients with hemophilia A. Patients with hemophilia A (mild, moderate, and severe) were enrolled. The plasma levels of sVCAM-1, E-selectin, and P-selectin in patients with hemophilia A and control were measured using specific enzyme-linked immunosorbent assay kits. Joint damages were evaluated using Pettersson scores. No statistically significant differences were observed in E-selectin and P-selectin levels between patients and controls. The sVCAM-1 level was significantly higher in patients with hemophilia A than in controls. The differences remained significant in patients with severe hemophilia A but not in patients with mild or moderate hemophilia A. The degree of hemophilic arthropathy was evaluated using Pettersson scores, and a score higher than 5 indicated marked arthropathy. Patients with more than 1 joint with marked arthropathy showed significantly higher sVCAM-1 levels. sVCAM-1 levels in patients with hemophilia A are associated with the severity of hemophilic arthropathy. PMID:27861372

  16. Nectin and junctional adhesion molecule are critical cell adhesion molecules for the apico-basal alignment of adherens and tight junctions in epithelial cells.

    PubMed

    Yamada, Tomohiro; Kuramitsu, Kaori; Rikitsu, Etsuko; Kurita, Souichi; Ikeda, Wataru; Takai, Yoshimi

    2013-11-01

    Tight junctions (TJs) and adherens junctions (AJs) form an apical junctional complex at the apical side of the lateral membranes of epithelial cells, in which TJs are aligned at the apical side of AJs. Many cell adhesion molecules (CAMs) and cell polarity molecules (CPMs) cooperatively regulate the formation of the apical junctional complex, but the mechanism for the alignment of TJs at the apical side of AJs is not fully understood. We developed a cellular system with which epithelial-like TJs and AJs were reconstituted in fibroblasts and analyzed the cooperative roles of CAMs and CPMs. We exogenously expressed various combinations of CAMs and CPMs in fibroblasts that express negligible amounts of these molecules endogenously. In these cells, the nectin-based cell-cell adhesion was formed at the apical side of the junctional adhesion molecule (JAM)-based cell-cell adhesion, and cadherin and claudin were recruited to the nectin-3- and JAM-based cell-cell adhesion sites to form AJ-like and TJ-like domains, respectively. This inversed alignment of the AJ-like and TJ-like domains was reversed by complementary expression of CPMs Par-3, atypical protein kinase C, Par-6, Crb3, Pals1 and Patj. We describe the cooperative roles of these CAMs and CPMs in the apico-basal alignment of TJs and AJs in epithelial cells.

  17. Homophilic Adhesion Mechanism of Neurofascin, a Member of the L1 Family of Neural Cell Adhesion Molecules

    SciTech Connect

    Liu, Heli; Focia, Pamela J.; He, Xiaolin

    2012-02-13

    The L1 family neural cell adhesion molecules play key roles in specifying the formation and remodeling of the neural network, but their homophilic interaction that mediates adhesion is not well understood. We report two crystal structures of a dimeric form of the headpiece of neurofascin, an L1 family member. The four N-terminal Ig-like domains of neurofascin form a horseshoe shape, akin to several other immunoglobulin superfamily cell adhesion molecules such as hemolin, axonin, and Dscam. The neurofascin dimer, captured in two crystal forms with independent packing patterns, reveals a pair of horseshoes in trans-synaptic adhesion mode. The adhesion interaction is mediated mostly by the second Ig-like domain, which features an intermolecular {beta}-sheet formed by the joining of two individual GFC {beta}-sheets and a large but loosely packed hydrophobic cluster. Mutagenesis combined with gel filtration assays suggested that the side chain hydrogen bonds at the intermolecular {beta}-sheet are essential for the homophilic interaction and that the residues at the hydrophobic cluster play supplementary roles. Our structures reveal a conserved homophilic adhesion mode for the L1 family and also shed light on how the pathological mutations of L1 affect its structure and function.

  18. Modulation of lens cell adhesion molecules by particle beams

    NASA Technical Reports Server (NTRS)

    McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  19. Chinese Herbal Cardiotonic Pill Stabilizes Vulnerable Plaques in Rabbits by Decreasing the Expression of Adhesion Molecules

    PubMed Central

    Chen, Liang; Li, Xiaonan; Li, Changjiang; Rong, Yuanyuan; Xiao, Yawei; Xu, Xinsheng; Yao, Guihua; Jiang, Guihua

    2016-01-01

    Abstract: The cardiotonic pill (CP), consisting of a mixture of Radix Salviae Miltiorrhizae, Radix Notoginseng, and Borneolum Syntheticum, has been widely used in the prevention and treatment of cardiovascular disease. Adhesion molecules, including intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1, are involved in the development of vulnerable plaque. We investigated the effect of the CP in a rabbit model of vulnerable plaque established by local transfection with p53 gene. Compared with the control group, rabbits with vulnerable plaque showed a significantly lower intima-media thickness and plaque burden after CP treatment for 12 weeks. Moreover, the reduction in rate of plaque rupture and vulnerability index was similar. On enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunohistochemistry analysis, the expression of intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 was inhibited with CP treatment. CP treatment could postpone atherosclerotic plaque development and stabilize vulnerable plaque by inhibiting the expression of adhesion molecules in treatment of cardiovascular disease. PMID:27110743

  20. N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion

    SciTech Connect

    A Fogel; Y Li; Q Wang; T Lam; Y Modis; T Biederer

    2011-12-31

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.

  1. Neural cell adhesion molecule 2 as a target molecule for prostate and breast cancer gene therapy.

    PubMed

    Takahashi, Shu; Kato, Kazunori; Nakamura, Kiminori; Nakano, Rika; Kubota, Kazuishi; Hamada, Hirofumi

    2011-04-01

    In adenovirus-derived gene therapy, one of the problems is the difficulty in specific targeting. We have recently demonstrated that monoclonal antibody (mAb) libraries screened by fiber-modified adenovirus vector (Adv-FZ33), which is capable of binding to immunoglobulin-G (IgG), provide a powerful approach for the identification of suitable target antigens for prostate cancer therapy. Hybridoma libraries from mice immunized with androgen-dependent prostate cancer cell line LNCaP were screened and mAb were selected. Through this screening, we obtained one mAb, designated LNI-29, that recognizes a glycoprotein with an apparent molecular mass of 100 kD. It was identified as neural cell adhesion molecule 2 (NCAM2). Some prostate and breast cancer cell lines highly expressed NCAM2 whereas normal prostate cell lines expressed NCAM2 at low levels. In contrast to the low efficiency of gene transduction by Adv-FZ33 with a control antibody, LNI-29-mediated Adv-FZ33 infection induces high rates of gene delivery in NCAM2-positive cancers. NCAM2-mediated therapeutic gene transduction of uracil phosphoribosyltransferase (UPRT) had a highly effective cytotoxic effect on NCAM2-positive cancer cells, whereas it had less of an effect in cases with a control antibody. In conclusion, NCAM2 should be a novel gene therapy target for the treatment of prostate and breast cancer.

  2. The Effect of High-Dose Vitamin D3 on Soluble P-Selectin and hs-CRP Level in Patients With Venous Thromboembolism: A Randomized Clinical Trial.

    PubMed

    Gholami, Kheirollah; Talasaz, Azita Hajhossein; Entezari-Maleki, Taher; Salarifar, Mojtaba; Hadjibabaie, Molouk; Javadi, Mohammad Reza; Dousti, Samaneh; Hamishehkar, Hadi; Maleki, Saleh

    2016-07-01

    High plasma level of P-selectin is associated with the development of venous thromboembolism (VTE). Furthermore, supplementation of vitamin D could decrease thrombotic events. Hence, this study was designed to examine whether the administration of vitamin D can influence the plasma level of P-selectin in patients with VTE. In the randomized controlled trial, 60 patients with confirmed acute deep vein thrombosis and/or pulmonary embolism (PE) were randomized into the intervention (n = 20) and control (n = 40) groups. The intervention arm was given an intramuscular single dose of 300 000 IU vitamin D3 Plasma level of 25-hydroxy vitamin D, P-selectin, and high-sensitive C-reactive protein (hs-CRP) was measured at baseline and 4 weeks after. The plasma level of P-selectin (95% confidence interval = -5.99 to -1.63, P = .022) and hs-CRP (P = .024) significantly declined in vitamin D-treated group, while only hs-CRP was significantly decreased in the control group (P = .011). However, the magnitude of these reductions was not statistically significant. This study could not support the potential benefit of the high-dose vitamin D on plasma level of P-selectin and hs-CRP in patients with VTE.

  3. Chronic restraint stress down-regulates amygdaloid expression of polysialylated neural cell adhesion molecule.

    PubMed

    Cordero, M I; Rodríguez, J J; Davies, H A; Peddie, C J; Sandi, C; Stewart, M G

    2005-01-01

    The amygdala is a brain area which plays a decisive role in fear and anxiety. Since exposure to chronic stress can induce profound effects in emotion and cognition, plasticity in specific amygdaloid nuclei in response to prior stress has been hypothesized to account for stress-induced emotional alterations. In order to identify amygdala nuclei which may be affected under chronic stress conditions we evaluated the effects of 21-days chronic restraint stress on the expression of a molecule implicated crucially in alterations in structural plasticity: the polysialylated neural cell adhesion molecule. We found that polysialylated neural cell adhesion molecule-immunoreactivity within the amygdala, present in somata and neuronal processes, has a regional gradient with the central medial and medial amygdaloid nuclei showing the highest levels. Our results demonstrate that chronic restraint stress induced an overall reduction in polysialylated neural cell adhesion molecule-immunoreactivity in the amygdaloid complex, mainly due to a significant decrease in the central medial amygdaloid and medial amygdaloid nuclei. Our data suggest that polysialylated neural cell adhesion molecule in these nuclei may play a prominent role in functional and structural remodeling induced by stress, being a potential mechanism for cognitive and emotional modulation. Furthermore, these finding provide the first clear evidence that life experiences can regulate the expression of polysialylated neural cell adhesion molecule in the amygdaloid complex.

  4. Dynamics of adhesion molecule domains on neutrophil membranes: surfing the dynamic cell topography.

    PubMed

    Gaborski, Thomas R; Sealander, Michael N; Waugh, Richard E; McGrath, James L

    2013-12-01

    Lateral organization and mobility of adhesion molecules play a significant role in determining the avidity with which cells can bind to target cells or surfaces. Recently, we have shown that the lateral mobility of the principal adhesion molecules on neutrophils is lower for rolling associated adhesion molecules (RAAMs: L-selectin and PSGL-1) than for β2 integrins (LFA-1 and Mac-1). Here we report that all four adhesion molecules exhibit distinct punctate distributions that are mobile on the cell surface. Using uniform illumination image correlation microscopy, we measure the lateral mobility of these topologically distinct domains. For all four molecules, we find that diffusion coefficients calculated from domain mobility agree with measurements we made previously using fluorescence recovery after photobleaching. This agreement indicates that the transport of receptors on the surface of the resting neutrophil is dominated by the lateral movement of domains rather than individual molecules. The diffusion of pre-assembled integrin domains to zones of neutrophil/endothelial contact may provide a mechanism to facilitate high avidity adhesion during the earliest stages of firm arrest.

  5. Single-cell RNAseq reveals cell adhesion molecule profiles in electrophysiologically defined neurons

    PubMed Central

    Földy, Csaba; Darmanis, Spyros; Aoto, Jason; Malenka, Robert C.; Quake, Stephen R.; Südhof, Thomas C.

    2016-01-01

    In brain, signaling mediated by cell adhesion molecules defines the identity and functional properties of synapses. The specificity of presynaptic and postsynaptic interactions that is presumably mediated by cell adhesion molecules suggests that there exists a logic that could explain neuronal connectivity at the molecular level. Despite its importance, however, the nature of such logic is poorly understood, and even basic parameters, such as the number, identity, and single-cell expression profiles of candidate synaptic cell adhesion molecules, are not known. Here, we devised a comprehensive list of genes involved in cell adhesion, and used single-cell RNA sequencing (RNAseq) to analyze their expression in electrophysiologically defined interneurons and projection neurons. We compared the cell type-specific expression of these genes with that of genes involved in transmembrane ion conductances (i.e., channels), exocytosis, and rho/rac signaling, which regulates the actin cytoskeleton. Using these data, we identified two independent, developmentally regulated networks of interacting genes encoding molecules involved in cell adhesion, exocytosis, and signal transduction. Our approach provides a framework for a presumed cell adhesion and signaling code in neurons, enables correlating electrophysiological with molecular properties of neurons, and suggests avenues toward understanding synaptic specificity. PMID:27531958

  6. Latrophilins Function as Heterophilic Cell-adhesion Molecules by Binding to Teneurins

    PubMed Central

    Boucard, Antony A.; Maxeiner, Stephan; Südhof, Thomas C.

    2014-01-01

    Latrophilin-1, -2, and -3 are adhesion-type G protein-coupled receptors that are auxiliary α-latrotoxin receptors, suggesting that they may have a synaptic function. Using pulldowns, we here identify teneurins, type II transmembrane proteins that are also candidate synaptic cell-adhesion molecules, as interactors for the lectin-like domain of latrophilins. We show that teneurin binds to latrophilins with nanomolar affinity and that this binding mediates cell adhesion, consistent with a role of teneurin binding to latrophilins in trans-synaptic interactions. All latrophilins are subject to alternative splicing at an N-terminal site; in latrophilin-1, this alternative splicing modulates teneurin binding but has no effect on binding of latrophilin-1 to another ligand, FLRT3. Addition to cultured neurons of soluble teneurin-binding fragments of latrophilin-1 decreased synapse density, suggesting that latrophilin binding to teneurin may directly or indirectly influence synapse formation and/or maintenance. These observations are potentially intriguing in view of the proposed role for Drosophila teneurins in determining synapse specificity. However, teneurins in Drosophila were suggested to act as homophilic cell-adhesion molecules, whereas our findings suggest a heterophilic interaction mechanism. Thus, we tested whether mammalian teneurins also are homophilic cell-adhesion molecules, in addition to binding to latrophilins as heterophilic cell-adhesion molecules. Strikingly, we find that although teneurins bind to each other in solution, homophilic teneurin-teneurin binding is unable to support stable cell adhesion, different from heterophilic teneurin-latrophilin binding. Thus, mammalian teneurins act as heterophilic cell-adhesion molecules that may be involved in trans-neuronal interaction processes such as synapse formation or maintenance. PMID:24273166

  7. Single-molecule manipulation experiments to explore friction and adhesion

    NASA Astrophysics Data System (ADS)

    Pawlak, R.; Kawai, S.; Meier, T.; Glatzel, T.; Baratoff, A.; Meyer, E.

    2017-03-01

    Friction forces, which arise when two bodies that are in contact are moved with respect to one another, are ubiquitous phenomena. Although various measurement tools have been developed to study these phenomena at all length scales, such investigations are highly challenging when tackling the scale of single molecules in motion on a surface. This work reviews the recent advances in single-molecule manipulation experiments performed at low temperature with the aim of understanding the fundamental frictional response of single molecules. Following the advent of ‘nanotribology’ in the field based on the atomic force microscopy technique, we will show the technical requirements to direct those studies at the single-molecule level. We will also discuss the experimental prerequisites needed to obtain and interpret the phenomena, such as the implementation of single-molecule manipulation techniques, the processing of the experimental data or their comparison with appropriate numerical models. Finally, we will report examples of the controlled vertical and lateral manipulation of long polymeric chains, graphene nanoribbons or single porphyrin molecules that systematically reveal friction-like characteristics while sliding over atomically clean surfaces.

  8. Plasma treated polyethylene grafted with adhesive molecules for enhanced adhesion and growth of fibroblasts.

    PubMed

    Rimpelová, Silvie; Kasálková, Nikola Slepičková; Slepička, Petr; Lemerová, Helena; Švorčík, Václav; Ruml, Tomáš

    2013-04-01

    The cell-material interface plays a crucial role in the interaction of cells with synthetic materials for biomedical use. The application of plasma for tailoring polymer surfaces is of abiding interest and holds a great promise in biomedicine. In this paper, we describe polyethylene (PE) surface tuning by Ar plasma irradiating and subsequent grafting of the chemically active PE surface with adhesive proteins or motives to support cell attachment. These simple modifications resulted in changed polymer surface hydrophilicity, roughness and morphology, which we thoroughly characterized. The effect of our modifications on adhesion and growth was tested in vitro using mouse embryonic fibroblasts (NIH 3T3 cell line). We demonstrate that the plasma treatment of PE had a positive effect on the adhesion, spreading, homogeneity of distribution and moderately on proliferation activity of NIH 3T3 cells. This effect was even more pronounced on PE coated with biomolecules.

  9. P-selectin mRNA is expressed at a later phase of megakaryocyte maturation than mRNAs for von Willebrand factor and glycoprotein Ib-alpha.

    PubMed

    Schick, P K; Konkle, B A; He, X; Thornton, R D

    1993-05-01

    The assembly of alpha-granules occurs exclusively in megakaryocytes because platelets have limited capacity for the synthesis of macromolecules. Thus far, alpha-granule development in megakaryocytes has been primarily evaluated by ultrastructural studies. The aim of the study was to obtain molecular and biochemical evidence for the expression of selected alpha-granule proteins in megakaryocytes. Guinea pig megakaryocytes were purified and separated into subgroups at different phases of maturation by the Celsep procedure (Schick et al. Blood 1989;73:1801-8). Guinea pig-specific probes for P-selectin, von Willebrand factor (vWF), glycoprotein Ib-alpha (GpIb-alpha), and phosphoglycerate kinase were prepared by using the polymerase chain reaction. By Northern blot analysis, P-selectin messenger ribonucleic acid (mRNA) was primarily expressed in the mature megakaryocyte Celsep subgroup, whereas vWF and GpIb-alpha mRNA were expressed at all phases of megakaryocyte maturation. In situ hybridization confirmed that P-selectin mRNA was primarily expressed at later stages of cytoplasmic maturation: 14% +/- 6.2% of stage I, 35.5% +/- 6.1% of stage II, 72% +/- 5.2% of stage III, and 47.0% +/- 3.3% of stage IV megakaryocytes expressed P-selectin mRNA. Thus, the expression of mRNA for P-selectin appeared to peak in stage III cells. In contrast vWF mRNA was expressed in immature megakaryocytes and persisted throughout megakaryocyte maturation. In situ hybridization did not demonstrate a relationship between the expression of mRNA for P-selectin or vWF with megakaryocyte ploidy.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    SciTech Connect

    Wang, Yi; Wang, Xiang; Sun, Minghui; Zhang, Zhenyu; Cao, Heng; Chen, Xiaoqing

    2011-08-05

    Highlights: {yields} Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. {yields} Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. {yields} P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. {yields} Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the

  11. Involvement of oxidative stress and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in inflammatory bowel disease

    PubMed Central

    Tanida, Satoshi; Mizoshita, Tsutomu; Mizushima, Takashi; Sasaki, Makoto; Shimura, Takaya; Kamiya, Takeshi; Kataoka, Hiromi; Joh, Takashi

    2011-01-01

    The pathophysiology of inflammatory bowel disease involves excessive immune effects of inflammatory cells against gut microbes. In genetically predisposed individuals, these effects are considered to contribute to the initiation and perpetuation of mucosal injury. Oxidative stress is a fundamental tissue-destructive mechanisms that can occur due to the reactive oxygen species and reactive nitrogen metabolites which are released in abundance from numerous inflammatory cells that have extravasated from lymphatics and blood vessels to the lamina propria. This extravasation is mediated by interactions between adhesion molecules including mucosal addressin cell adhesion molecule-1 and vascular cell adhesion molecule-1 on the surface of lymphocytes or neutrophils and their ligands on endothelial cells. Thus, reactive oxygen species and adhesion molecules play an important role in the development of inflammatory bowel disease. The present review focuses on the involvement of oxidative stress and adhesion molecules, in particular mucosal addressin cell adhesion molecule-1, in inflammatory bowel disease. PMID:21373262

  12. Effects of a healthy life exercise program on arteriosclerosis adhesion molecules in elderly obese women

    PubMed Central

    Lim, Seung-Taek; Min, Seok-Ki; Park, Hyuntae; Park, Jong-Hwan; Park, Jin-Kee

    2015-01-01

    [Purpose] The aim of this study was to investigate the change in the arteriosclerosis adhesion molecules after a healthy life exercise program that included aerobic training, anaerobic training, and traditional Korean dance. [Subjects] The subjects were 20 elderly women who were over 65 years of age and had 30% body fat. [Methods] The experimental group underwent a 12-week healthy life exercise program. To evaluate the effects of the healthy life exercise program, measurements were performed before and after the healthy life exercise program in all the subjects. [Results] After the healthy life exercise program, MCP-1 and the arteriosclerosis adhesion molecules sE-selectin and sVCAM-1 were statistically significantly decreased. [Conclusion] The 12-week healthy life exercise program reduced the levels of arteriosclerosis adhesion molecules. Therefore, the results of our study suggest that a healthy life exercise program may be useful in preventing arteriosclerosis and improving quality of life in elderly obese women. PMID:26157257

  13. Relationship between Platelet PPARs, cAMP Levels, and P-Selectin Expression: Antiplatelet Activity of Natural Products.

    PubMed

    Fuentes, Eduardo; Palomo, Iván

    2013-01-01

    Platelets are no longer considered simply as cells participating in thrombosis. In atherosclerosis, platelets are regulators of multiple processes, with the recruitment of inflammatory cells towards the lesion sites, inflammatory mediators release, and regulation of endothelial function. The antiplatelet therapy has been used for a long time in an effort to prevent and treat cardiovascular diseases. However, limited efficacy in some patients, drug resistance, and side effects are limitations of current antiplatelet therapy. In this context, a large number of natural products (polyphenols, terpenoids, alkaloids, and fatty acids) have been reported with antiplatelet activity. In this sense, the present paper describes mechanisms of antiplatelet action of natural products on platelet P-selectin expression through cAMP levels and its role as peroxisome proliferator-activated receptors agonists.

  14. Relationship between Platelet PPARs, cAMP Levels, and P-Selectin Expression: Antiplatelet Activity of Natural Products

    PubMed Central

    Fuentes, Eduardo; Palomo, Iván

    2013-01-01

    Platelets are no longer considered simply as cells participating in thrombosis. In atherosclerosis, platelets are regulators of multiple processes, with the recruitment of inflammatory cells towards the lesion sites, inflammatory mediators release, and regulation of endothelial function. The antiplatelet therapy has been used for a long time in an effort to prevent and treat cardiovascular diseases. However, limited efficacy in some patients, drug resistance, and side effects are limitations of current antiplatelet therapy. In this context, a large number of natural products (polyphenols, terpenoids, alkaloids, and fatty acids) have been reported with antiplatelet activity. In this sense, the present paper describes mechanisms of antiplatelet action of natural products on platelet P-selectin expression through cAMP levels and its role as peroxisome proliferator-activated receptors agonists. PMID:24324520

  15. Candida albicans stimulates cytokine production and leukocyte adhesion molecule expression by endothelial cells.

    PubMed Central

    Filler, S G; Pfunder, A S; Spellberg, B J; Spellberg, J P; Edwards, J E

    1996-01-01

    Endothelial cells have the potential to influence significantly the host immune response to blood-borne microbial pathogens, such as Candida albicans. We investigated the ability (of this organism to stimulate endothelial cell responses relevant to host defense in vitro. Infection with C. albicans induced endothelial cells to express mRNAs encoding E-selectin, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, interleukin 6, interleukin 8, monocyte chemoattractant protein 1, and inducible cyclooxygenase (cox2). All three leukocyte adhesion molecule proteins were expressed on the surfaces of the endothelial cells after 8 h of exposure to C. albicans. An increase in secretion of all three cytokines was found after 12 h of infection. Cytochalasin D inhibited accumulation of the endothelial cell cytokine and leukocyte adhesion molecule mRNAs in response to C. albicans, suggesting that endothelial cell phagocytosis of the organism is required to induce this response. Live Candida tropicalis, Candida glabrata, a nongerminating strain of C. albicans, and killed C. albicans did not stimulate the expression of any of the cytokine or leukocyte adhesion molecule mRNAs. These findings indicate that a factor associated with live, germinating C. albicans is required for induction of endothelial cell mRNA expression. Furthermore, since endothelial cells phagocytize killed C. albicans, phagocytosis is likely necessary but not sufficient for this organism to stimulate mRNA accumulation. In conclusion, the secretion of proinflammatory cytokines and expression of leukocyte adhesion molecules by endothelial cells in response to C. albicans could enhance the host defense against this organism by contributing to the recruitment of activated leukocytes to sites of intravascular infection. PMID:8698486

  16. C-type natriuretic peptide inhibits leukocyte recruitment and platelet-leukocyte interactions via suppression of P-selectin expression

    NASA Astrophysics Data System (ADS)

    Scotland, Ramona S.; Cohen, Marc; Foster, Paul; Lovell, Matthew; Mathur, Anthony; Ahluwalia, Amrita; Hobbs, Adrian J.

    2005-10-01

    The multifaceted process of immune cell recruitment to sites of tissue injury is key to the development of an inflammatory response and involved in the pathogenesis of numerous cardiovascular disorders. We recently identified C-type natriuretic peptide (CNP) as an important endothelium-derived mediator that regulates vascular tone and protects against myocardial ischemia/reperfusion injury. Herein, we investigated whether CNP inhibits leukocyte recruitment and platelet aggregation and thereby exerts a potential antiinflammatory influence on the blood vessel wall. We assessed the effects of CNP on leukocyte-endothelial cell interactions in mouse mesenteric postcapillary venules in vivo in animals with high basal leukocyte activation (endothelial nitric oxide synthase knockout mice, eNOS-/-) or under acute inflammatory conditions (induced by interleukin-1 or histamine). CNP suppressed basal leukocyte rolling in eNOS-/- mice in a rapid, reversible, and concentration-dependent manner. These effects of CNP were mimicked by the selective natriuretic peptide receptor-C agonist cANF4-23. CNP also suppressed leukocyte rolling induced by IL-1 or histamine, inhibited platelet-leukocyte interactions, and prevented thrombin-induced platelet aggregation of human blood. Furthermore, analysis of human umbilical vein endothelial cells, leukocytes, and platelets revealed that CNP selectively attenuates expression of P-selectin. Thus, CNP is a modulator of acute inflammation in the blood vessel wall characterized by leukocyte and platelet activation. These antiinflammatory effects appear to be mediated, at least in part, via suppression of P-selectin expression. These observations suggest that endothelial CNP might maintain an anti-atherogenic influence on the blood vessel wall and represent a target for therapeutic intervention in inflammatory cardiovascular disorders. endothelium | natriuretic peptide receptor type C | atherosclerosis | thrombosis

  17. Targeting sites of inflammation: intercellular adhesion molecule-1 as a target for novel inflammatory therapies

    PubMed Central

    Hua, Susan

    2013-01-01

    Targeted drug delivery to sites of inflammation will provide effective, precise, and safe therapeutic interventions for treatment of diverse disease conditions, by limiting toxic side effects and/or increasing drug action. Disease-site targeting is believed to play a major role in the enhanced efficacy observed for a variety of drugs when formulated inside lipid vesicles. This article will focus on the factors and mechanisms involved in drug targeting to sites of inflammation and the importance of cell adhesion molecules, in particular intercellular adhesion molecule-1, in this process. PMID:24109453

  18. Sequences from the First Fibronectin Type III Repeat of the Neural Cell Adhesion Molecule Allow O-Glycan Polysialylation of an Adhesion Molecule Chimera*

    PubMed Central

    Foley, Deirdre A.; Swartzentruber, Kristin G.; Thompson, Matthew G.; Mendiratta, Shalu Shiv; Colley, Karen J.

    2010-01-01

    Polysialic acid is a developmentally regulated, anti-adhesive polymer that is added to N-glycans on the fifth immunoglobulin domain (Ig5) of the neural cell adhesion molecule (NCAM). We found that the first fibronectin type III repeat (FN1) of NCAM is required for the polysialylation of N-glycans on the adjacent Ig5 domain, and we proposed that the polysialyltransferases recognize specific sequences in FN1 to position themselves for Ig5 N-glycan polysialylation. Other studies identified a novel FN1 acidic surface patch and α-helix that play roles in NCAM polysialylation. Here, we characterize the contribution of two additional FN1 sequences, Pro510-Tyr511-Ser512 (PYS) and Gln516-Val517-Gln518 (QVQ). Replacing PYS or the acidic patch dramatically decreases the O-glycan polysialylation of a truncated NCAM protein, and replacing the α-helix or QVQ shifts polysialic acid to FN1 O-glycans in full-length NCAM. We also found that the FN1 domain of the olfactory cell adhesion molecule, a homologous but unpolysialylated protein, could partially replace NCAM FN1. Inserting Pro510-Tyr511 eliminated N-glycan polysialylation and enhanced O-glycosylation of an NCAM- olfactory cell adhesion molecule chimera, and inserting other FN1 sequences unique to NCAM, predominantly the acidic patch, created a new polysialyltransferase recognition site. Taken together, our results highlight the role of the FN1 α-helix and QVQ sequences in N-glycan polysialylation and demonstrate that the acidic patch primarily functions in O-glycan polysialylation. PMID:20805222

  19. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation.

    PubMed

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2017-01-29

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on different substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation.

  20. Dimerization of Cell-Adhesion Molecules Can Increase Their Binding Strength.

    PubMed

    Huang, Wenmao; Qin, Meng; Li, Ying; Cao, Yi; Wang, Wei

    2017-02-14

    Cell-adhesion molecules (CAMs) often exist as homodimers under physiological conditions. However, owing to steric hindrance, simultaneous binding of two ligands to the homodimers at the same location can hardly be satisfied, and the molecular mechanism underlying this natural design is still unknown. Here, we present a theoretical model to understand the rupture behavior of cell-adhesion bonds formed by multiple binding ligands with a single receptor. We found that the dissociation forces for the cell-adhesion bond could be greatly enhanced in comparison with the monomer case through a ligand rebinding and exchange mechanism. We also confirmed this prediction by measuring dimeric cRGD (cyclic Arg-Gly-Asp) unbinding from integrin (αvβ3) using atomic force microscopy-based single-molecule force spectroscopy. Our finding addresses the mechanism of increasing the binding strength of cell-adhesion bonds through dimerization at the single-molecule level, representing a key step toward the understanding of complicated cell-adhesion behaviors. Moreover, our results also highlight a wealth of opportunities to design mechanically stronger bioconjunctions for drug delivery, biolabeling, and surface modification.

  1. Lack of influence of the COX inhibitors metamizol and diclofenac on platelet GPIIb/IIIa and P-selectin expression in vitro

    PubMed Central

    Scheinichen, Dirk; Elsner, Holger-Andreas; Osorio, Rodin; Jüttner, Björn; Gröschel, Werner; Jaeger, Karsten; Piepenbrock, Siegfried

    2004-01-01

    Background The effect of non-steroidal anti-inflammatory drugs (NSAIDs) for reduced platelet aggregation and thromboxane A2 synthesis has been well documented. However, the influence on platelet function is not fully explained. Aim of this study was to examine the influence of the COX-1 inhibiting NSAIDs, diclofenac and metamizol on platelet activation and leukocyte-platelet complexes, in vitro. Surface expression of GPIIb/IIIa and P-selectin on platelets, and the percentage of platelet-leukocyte complexes were investigated. Methods Whole blood was incubated with three different concentrations of diclofenac and metamizol for 5 and 30 minutes, followed by activation with TRAP-6 and ADP. Rates of GPIIb/IIIa and P-selectin expression, and the percentage of platelet-leukocyte complexes were analyzed by a flow-cytometric assay. Results There were no significant differences in the expression of GPIIb/IIIa and P-selectin, and in the formation of platelet-leukocyte complexes after activation with ADP and TRAP-6, regarding both the time of incubation and the concentrations of diclofenac and metamizol. Conclusions Accordingly, the inhibitory effect of diclofenac and metamizol on platelet aggregation is not related to a reduced surface expression of P-selectin and GPIIb/IIIa on platelets. PMID:15107131

  2. Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.

    1994-01-01

    Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to Carcinoembryonic Antigen (CEA), an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.

  3. Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules

    NASA Astrophysics Data System (ADS)

    Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.

    1994-08-01

    Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to CEA, an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.

  4. Differential expression of cell adhesion molecules in an ionizing radiation-induced breast cancer model system.

    PubMed

    Calaf, Gloria M; Roy, Debasish; Narayan, Gopeshwar; Balajee, Adayabalam S

    2013-07-01

    Cell-cell adhesion is mediated by members of the cadherin-catenin system and among them E-cadherin and β-catenin are important adhesion molecules for epithelial cell function and preservation of tissue integrity. To investigate the importance of cell adhesion molecules in breast carcinogenesis, we developed an in vitro breast cancer model system wherein immortalized human breast epithelial cell line, MCF-10F, was malignantly transformed by exposure to low doses of high linear energy transfer (LET) α particle radiation (150 keV/µm) and subsequent growth in the presence or absence of 17β-estradiol. This model consisted of human breast epithelial cells in different stages of transformation: i) parental cell line MCF-10F; ii) MCF-l0F continuously grown with estradiol at 10(-8) (Estrogen); iii) a non-malignant cell line (Alpha3); and iv) a malignant and tumorigenic cell line (Alpha5) and the Tumor2 cell line derived from the nude mouse xenograft of the Alpha5 cell line. Expression levels of important cell adhesion molecules such as α-catenin, β-catenin, γ-catenin, E-cadherin and integrin were found to be higher at the protein level in the Alpha5 and Tumor2 cell lines relative to these levels in the non-tumorigenic MCF-10F, Estrogen and Alpha3 cell lines. In corroboration, cDNA expression analysis revealed elevated levels of genes involved in the cell adhesion function [E-cadherin, integrin β6 and desmocollin3 (DSc3)] in the Alpha5 and Tumor2 cell lines relative to the levels in the MCF-10F, Estrogen and Alpha3 cell lines. Collectively, our results suggest that cell adhesion molecules are expressed at higher levels in malignantly transformed breast epithelial cells relative to levels in non-malignant cells. However, reduced levels of adhesion molecules observed in the mouse xenograft-derived Tumor 2 cell line compared to the pre-tumorigenic Alpha5 cell line suggests that the altered expression levels of adhesion molecules depend on the tumor tissue

  5. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell.

    PubMed

    Wang, Yi; Wang, Xiang; Sun, Minghui; Zhang, Zhenyu; Cao, Heng; Chen, Xiaoqing

    2011-08-05

    Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the regulation of foam cell formation.

  6. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    PubMed

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  7. Cell adhesion molecules involved in the leukocyte recruitment induced by venom of the snake Bothrops jararaca.

    PubMed Central

    Zamuner, Stella R; Teixeira, Catarina F P

    2002-01-01

    It has been shown that Bothrops jararaca venom (BjV) induces a significant leukocyte accumulation, mainly neutrophils, at the local of tissue damage. Therefore, the role of the adhesion molecules intercellular adhesion molecule-1 (ICAM-1), LECAM-1, CD18, leukocyte function-associated antigen-1 (LFA-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1) on the BjV-induced neutrophil accumulation and the correlation with release of LTB4, TXA2, tumor necrosis factor-alpha, interleukin (IL)-1 and IL-6 have been investigated. Anti-mouse LECAM-1, LFA-1, ICAM-1 and PECAM-1 monoclonal antibody injection resulted in a reduction of 42%, 80%, 66% and 67%, respectively, of neutrophil accumulation induced by BjV (250 microg/kg, intraperitoneal) injection in male mice compared with isotype-matched control injected animals. The anti-mouse CD18 monoclonal antibody had no significant effect on venom-induced neutrophil accumulation. Concentrations of LTB(4), TXA(2), IL-6 and TNF-alpha were significant increased in the peritoneal exudates of animals injected with venom, whereas no increment in IL-1 was detected. This results suggest that ICAM-1, LECAM-1, LFA-1 and PECAM-1, but not CD18, adhesion molecules are involved in the recruitment of neutrophils into the inflammatory site induced by BjV. This is the first in vivo evidence that snake venom is able to up-regulate the expression of adhesion molecules by both leukocytes and endothelial cells. This venom effect may be indirect, probably through the release of the inflammatory mediators evidenced in the present study. PMID:12581499

  8. Junctional adhesion molecule (JAM)-B supports lymphocyte rolling and adhesion through interaction with alpha4beta1 integrin.

    PubMed

    Ludwig, Ralf J; Hardt, Katja; Hatting, Max; Bistrian, Roxana; Diehl, Sandra; Radeke, Heinfried H; Podda, Maurizio; Schön, Michael P; Kaufmann, Roland; Henschler, Reinhard; Pfeilschifter, Josef M; Santoso, Sentot; Boehncke, Wolf-Henning

    2009-10-01

    Junctional adhesion molecule-A (JAM-A), JAM-B and JAM-C have been implicated in leucocyte transmigration. As JAM-B binds to very late activation antigen (VLA)-4, a leucocyte integrin that contributes to rolling and firm adhesion of lymphocytes to endothelial cells through binding to vascular cell adhesion molecule (VCAM)-1, we hypothesized that JAM-B is also involved in leucocyte rolling and firm adhesion. To test this hypothesis, intravital microscopy of murine skin microvasculature was performed. Rolling interactions of murine leucocytes were significantly affected by blockade of JAM-B [which reduced rolling interactions from 9.1 +/- 2.6% to 3.2 +/- 1.2% (mean +/- standard deviation)]. To identify putative ligands, T lymphocytes were perfused over JAM-B-coated slides in a dynamic flow chamber system. JAM-B-dependent rolling and sticking interactions were observed at low shear stress [0.3 dyn/cm(2): 220 +/- 71 (mean +/- standard deviation) versus 165 +/- 88 rolling (P < 0.001; Mann-Whitney rank sum test) and 2.6 +/- 1.3 versus 1.0 +/- 0.7 sticking cells/mm(2)/min (P = 0.026; Mann-Whitney rank sum test) on JAM-B- compared with baseline], but not at higher shear forces (1.0 dyn/cm(2)). As demonstrated by antibody blocking experiments, JAM-B-mediated rolling and sticking of T lymphocytes was dependent on alpha4 and beta1 integrin, but not JAM-C expression. To investigate whether JAM-B-mediated leucocyte-endothelium interactions are involved in a disease-relevant in vivo model, adoptive transfer experiments in 2,4,-dinitrofluorobenzene (DNFB)-induced contact hypersensitivity reactions were performed in mice in the absence or in the presence of a function-blocking JAM-B antibody. In this model, JAM-B blockade during the sensitization phase impaired the generation of the immune response to DNFB, which was assessed as the increase in ear swelling in untreated, DNFB-challenged mice, by close to 40% [P = 0.037; analysis of variance (anova)]. Overall, JAM-B appears to

  9. Spatio-Temporally Restricted Expression of Cell Adhesion Molecules during Chicken Embryonic Development

    PubMed Central

    Roy, Priti; Bandyopadhyay, Amitabha

    2014-01-01

    Differential cell adhesive properties are known to regulate important developmental events like cell sorting and cell migration. Cadherins and protocadherins are known to mediate these cellular properties. Though a large number of such molecules have been predicted, their characterization in terms of interactive properties and cellular roles is far from being comprehensive. To narrow down the tissue context and collect correlative evidence for tissue specific roles of these molecules, we have carried out whole-mount in situ hybridization based RNA expression study for seven cadherins and four protocadherins. In developing chicken embryos (HH stages 18, 22, 26 and 28) cadherins and protocadherins are expressed in tissue restricted manner. This expression study elucidates precise expression domains of cell adhesion molecules in the context of developing embryos. These expression domains provide spatio-temporal context in which the function of these genes can be further explored. PMID:24806091

  10. Localized adhesion of monocytes to human atherosclerotic plaques demonstrated in vitro: implications for atherogenesis.

    PubMed Central

    Poston, R. N.; Johnson-Tidey, R. R.

    1996-01-01

    Blood-derived macrophages in the arterial intima are a characteristic feature of active atherosclerotic plaques. Adherent monocytes on the luminal surface and increased adhesion molecules on the endothelium have suggested that specific molecular mechanisms are involved in monocyte/macrophage traffic into the arterial wall. Adhesion of human monocytes and related cell lines was therefore studied in vitro to histological sections of human plaques. At 37 degrees C, these cells bound selectively to the plaques. Binding to the endothelium occurred and was also present extensively in the diseased intima. Inhibition studies showed that the endothelial and general intimal binding had largely similar molecular properties. Strong inhibition was produced by antibodies to the monocyte-specific adhesion molecule CD14, to beta2 integrins, and to ICAM-1. Likewise, a peptide containing the Arg-Gly-Asp sequence was strongly inhibitory, suggesting that binding of leukocyte integrins to arterial extracellular matrix was synergistic with cell-cell interactions. A P-selectin antibody was exceptional in giving selective inhibition of endothelial adhesion, which correlates with the specific endothelial localization of this adhesion molecule. These results show that monocytes adhere to atherosclerotic plaques through the focal activation of multiple arterial wall adhesion molecules, confirming the adhesion hypothesis. A positive feedback theory for the pathogenesis of atherosclerosis can be suggested, based on the ability of macrophages in the wall to activate the endothelium, induce adhesion molecules, and facilitate additional monocyte entry. The adhesion assay provides a means for the identification of adhesion inhibitors with therapeutic potential. Images Figure 2 PMID:8686764

  11. Expression of adhesion molecules and chemotactic cytokines in cultured human mesothelial cells.

    PubMed

    Jonjić, N; Peri, G; Bernasconi, S; Sciacca, F L; Colotta, F; Pelicci, P; Lanfrancone, L; Mantovani, A

    1992-10-01

    The mesothelium is a flat epithelial lining of serous cavities that could gate the traffic of molecules and cells between the circulation and these body compartments. The present study was designed to elucidate the capacity of mesothelial cells to express adhesion molecules and chemoattractant cytokines, two fundamental mechanisms of regulation of leukocyte recruitment. Cultured human mesothelial cells express appreciable levels of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), and these were increased by in vitro exposure to tumor necrosis factor (TNF), interferon gamma (IFN-gamma), or TNF and IFN-gamma. Interleukin 1 (IL-1) was a less consistent stimulus for adhesion molecule expression in vitro. Unlike endothelial cells, used as a reference cell population, resting or stimulated mesothelial cells did not express E-selectin and ICAM-2, as assessed by flow cytometry. Analysis of VCAM-1 mRNA by reverse transcriptase and polymerase chain reaction using appropriate primers revealed that mesothelial cells expressed both the seven- and the six-Ig domain transcripts, with predominance of the longer species. Monocytes bound appreciably to "resting" and, to a greater extent, to stimulated mesothelial cells. Monocytes exposed to IFN-gamma and lipopolysaccharide, used as prototypic activation signals, showed increased capacity to bind mesothelial cells. Anti-CD18 monoclonal antibody significantly inhibited binding of monocytes to mesothelial cells, and this blocking effect was amplified by anti-very late antigen 4. Mesothelial cells were able to express the chemotactic cytokines IL-8 and monocyte chemotactic protein 1 at the mRNA and protein levels. These results indicate that mesothelial cells can express a set of adhesion molecules (ICAM-1 and VCAM-1) overlapping with, but distinct from, that expressed in vascular endothelium (ICAM-1, ICAM-2, VCAM-1, E-selectin), and that these are functionally relevant for interacting with

  12. Intercellular adhesion molecule-4 and CD36 are implicated in the abnormal adhesiveness of sickle cell SAD mouse erythrocytes to endothelium

    PubMed Central

    Trinh-Trang-Tan, Marie-Marcelle; Vilela-Lamego, Camilo; Picot, Julien; Wautier, Marie-Paule; Cartron, Jean-Pierre

    2010-01-01

    Background Abnormal adhesiveness of red blood cells to endothelium has been implicated in vaso-occlusive crisis of sickle cell disease. The present study examined whether the SAD mouse model exhibits the same abnormalities of red blood cell adhesion as those found in human sickle cell disease. Design and Methods The repertoire of adhesive molecules on murine erythrocytes and bEnd.3 microvascular endothelial cells was determined by flow cytometry using monoclonal antibodies or by western blotting. Adhesion was investigated in dynamic conditions and measured at different shear stresses. Results CD36, CD47 and intercellular adhesion molecular-4, but not Lutheran blood group antigen/basal cell adhesion molecule, are present on mouse mature erythrocytes. α4β1 are not expressed on SAD and wild type reticulocytes. Endothelial bEnd.3 cells express αVβ3, α4β1, CD47, vascular cell adhesion molecule-1, and Lutheran blood group antigen/basal cell adhesion molecule, but not CD36. Adhesion of SAD red cells is: (i) 2- to 3-fold higher than that of wild type red cells; (ii) further increased on platelet activating factor-activated endothelium; (iii) not stimulated by epinephrine; (iv) inhibited after treating the endothelium with a peptide reproducing one of the binding sequences of mouse intercellular adhesion molecular-4, or with mon-oclonal antibody against murine αv integrin; and (v) inhibited after pretreatment of red blood cells with anti-mouse CD36 monoclonal antibodies. The combination of treatments with intercellular adhesion molecular-4 peptide and anti-CD36 monoclonal antibodies eliminates excess adhesion of SAD red cells. The phosphorylation state of intercellular adhesion molecular-4 and CD36 is probably not involved in the over-adhesiveness of SAD erythrocytes. Conclusions Intercellular adhesion molecular-4/αvβ3 and CD36/thrombospondin interactions might contribute to the abnormally high adhesiveness of SAD red cells. The SAD mouse is a valuable animal model

  13. Adhesion molecules in gonarthrosis and knee prosthesis aseptic loosening follow-up: possible therapeutic implications.

    PubMed

    Dambra, P; Loria, M P; Moretti, B; D'Oronzio, L; Patella, V; Pannofino, A; Cavallo, E; Pesce, V; Dell'Osso, A; Simone, C

    2003-05-01

    The involvement of the synovium is common in phlogistic processes of various joint diseases. Apart from synoviocytes and the other cells in the synovial tissue, circulating cells recruited from peripheral blood also participate in the phlogistic process. The increased expression of adhesion molecules on both circulating and endothelial cell surface may further this recruitment. We studied 15 patients affected by serious gonarthrosis requiring a prosthetic implant (GPI) and 7 with knee prosthesis aseptic loosening (KPL) to evaluate adhesion molecule expression and phlogistic infiltration in the synovium using immunohistochemistry and microscopic analysis. As control we studied 10 subjects affected by degenerative meniscopathies undergoing a selective arthroscopic surgical meniscectomy. Analysis with Kruskal-Wallis test showed no statistical significant differences in the expression of CD54, CD11a, CD11b and CD18 in three groups examined. The model of variance analysis (Friedman test), showed that CD54 expression is greater in patients with GPI and KPL in comparison with the other molecules. Adhesion molecules and their functions are important in arthropathies not only because their evaluation can allow us to identify the degree of inflammation and to predict its evolution, but also because pharmacological control of their expression could have important therapeutic implications.

  14. Distribution of carcinoembryonic antigen-related cellular adhesion molecules in human gingiva.

    PubMed

    Huynh-Torlakovic, Hong; Bjerkan, Louise; Schenck, Karl; Blix, Inger J S

    2012-10-01

    Carcinoembryonic antigen-related cellular adhesion molecules (CEACAMs) are glycoproteins produced in epithelial, endothelial, lymphoid, and myeloid cells. Carcinoembryonic antigen-related cellular adhesion molecules mediate cell-cell contact and host-pathogen interactions. The aims of this study were to map the distribution and examine the regulation of CEACAMs in human gingival sites. Quantitative real-time PCR performed on human gingival biopsies from periodontitis sites revealed mRNA coding for CEACAM1, -5, -6, and -7. Immunohistochemistry showed that CEACAMs were not found in oral gingival epithelium, except for CEACAM5 in periodontitis. Carcinoembryonic antigen-related cellular adhesion molecules 1, 5, and 6 were present in the oral sulcular epithelium of periodontitis but not in that of healthy gingiva. In junctional epithelium, all three molecules were present in healthy gingiva, but in periodontitis only CEACAM1 and -6 were detected. Staining for CEACAM1 and -6 was also seen in the inflammatory cell infiltrate in periodontitis. No staining for CEACAM7 was found. Proinflammatory mediators, including lipopolysaccharide (LPS), tumour necrosis factor-α (TNF-α)/interleukin-1β (IL-1β), and interferon-γ (IFN-γ), increased the expression of CEACAM1 and CEACAM6 mRNAs in cultured human oral keratinocytes. CEACAM1 and CEACAM6 mRNAs were also strongly up-regulated upon stimulation with lysophosphatidic acid. In conclusion, the distribution of different CEACAMs was related to specific sites in the gingiva. This might reflect different functional roles in this tissue.

  15. The Junctional Adhesion Molecule-B regulates JAM-C-dependent melanoma cell metastasis.

    PubMed

    Arcangeli, Marie-Laure; Frontera, Vincent; Bardin, Florence; Thomassin, Jeanne; Chetaille, Bruno; Adams, Susanne; Adams, Ralf H; Aurrand-Lions, Michel

    2012-11-16

    Metastasis is a major clinical issue and results in poor prognosis for most cancers. The Junctional Adhesion Molecule-C (JAM-C) expressed by B16 melanoma and endothelial cells has been involved in metastasis of tumor cells through homophilic JAM-C/JAM-C trans-interactions. Here, we show that JAM-B expressed by endothelial cells contributes to murine B16 melanoma cells metastasis through its interaction with JAM-C on tumor cells. We further show that this adhesion molecular pair mediates melanoma cell adhesion to primary Lung Microvascular Endothelial Cells and that it is functional in vivo as demonstrated by the reduced metastasis of B16 cells in Jam-b deficient mice.

  16. The coffee diterpene kahweol inhibits tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in human endothelial cells

    SciTech Connect

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang . E-mail: hgjeong@chosun.ac.kr

    2006-12-15

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppressed the TNF{alpha}-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNF{alpha}-induced JAK2-PI3K/Akt-NF-{kappa}B activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells.

  17. Intercellular Adhesion Molecule-1 Expression by Skeletal Muscle Cells Augments Myogenesis

    PubMed Central

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2014-01-01

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. PMID:25281303

  18. Besnoitia besnoiti infections activate primary bovine endothelial cells and promote PMN adhesion and NET formation under physiological flow condition.

    PubMed

    Maksimov, P; Hermosilla, C; Kleinertz, S; Hirzmann, J; Taubert, A

    2016-05-01

    Besnoitia besnoiti is an obligate intracellular and emerging coccidian parasite of cattle that mainly infects host endothelial cells during acute infection. We here analyzed early innate immune reactions of B. besnoiti-infected primary bovine umbilical vein endothelial cells (BUVEC). B. besnoiti infections significantly activated BUVEC since the gene transcripts of several adhesion molecules (P-selectin, intercellular adhesion molecule 1(ICAM-1)), chemokines (CXCL1, CXCL8, CCL5), and of COX-2 were significantly upregulated during in vitro infection. Overall, the highest upregulation of most transcripts was observed at 24 or 48 h post infection (p.i.). Enhanced adhesion molecule expression in infected host cells was confirmed by PMN adhesion assays being performed under physiological flow conditions revealing a significantly increased PMN adhesion on B. besnoiti-infected BUVEC layers at 24 h p.i. Furthermore, we were able to illustrate neutrophil extracellular traps (NETs) being released by PMN under physiological flow conditions after adhesion to B. besnoiti-infected BUVEC layers. The present study shows that B. besnoiti infections of primary BUVEC induce a cascade of pro-inflammatory reactions and triggers early innate immune responses.

  19. Remarkably enhanced adhesion of coherently aligned catechol-terminated molecules on ultraclean ultraflat gold nanoplates.

    PubMed

    Lee, Miyeon; Park, Changjun; Lee, Hyoban; Kim, Hongki; Kim, Sang Youl; In, Insik; Kim, Bongsoo

    2016-11-25

    We report the characterization and formation of catechol-terminated molecules immobilized on gold nanoplates (Au NPLs) using N-(3,4-dihydroxyphenethyl)-2-mercaptoacetamide (Cat-EAA-SH). Single-crystalline Au NPLs, synthesized using a one-step chemical vapor transport method, have ultraclean and ultraflat surfaces that make Cat-EAA-SH molecules aligned into a well-ordered network of a large-scale. Topographic study of the catechol-terminated molecules on Au NPLs using atomic force microscopy showed more orderly orientation and higher density, leading to significantly higher adhesion as observed from local force-distance curves than those on other Au surfaces. These coherently aligned catechol-terminated molecules on the atomically smooth gold surface led to significanty more reproducible and thus more physico-chemically meaningful measurements than was possible before by employing rough gold surfaces.

  20. Remarkably enhanced adhesion of coherently aligned catechol-terminated molecules on ultraclean ultraflat gold nanoplates

    NASA Astrophysics Data System (ADS)

    Lee, Miyeon; Park, Changjun; Lee, Hyoban; Kim, Hongki; Kim, Sang Youl; In, Insik; Kim, Bongsoo

    2016-11-01

    We report the characterization and formation of catechol-terminated molecules immobilized on gold nanoplates (Au NPLs) using N-(3,4-dihydroxyphenethyl)-2-mercaptoacetamide (Cat-EAA-SH). Single-crystalline Au NPLs, synthesized using a one-step chemical vapor transport method, have ultraclean and ultraflat surfaces that make Cat-EAA-SH molecules aligned into a well-ordered network of a large-scale. Topographic study of the catechol-terminated molecules on Au NPLs using atomic force microscopy showed more orderly orientation and higher density, leading to significantly higher adhesion as observed from local force-distance curves than those on other Au surfaces. These coherently aligned catechol-terminated molecules on the atomically smooth gold surface led to significanty more reproducible and thus more physico-chemically meaningful measurements than was possible before by employing rough gold surfaces.

  1. Correlation between the levels of circulating adhesion molecules and atherosclerosis in hypertensive type-2 diabetic patients.

    PubMed

    Rubio-Guerra, Alberto Francisco; Vargas-Robles, Hilda; Serrano, Alberto Maceda; Vargas-Ayala, German; Rodriguez-Lopez, Leticia; Escalante-Acosta, Bruno Alfonso

    2010-01-01

    Endothelial dysfunction is a common feature in type-2 diabetic patients and in hypertension, and is associated with inflammation, increased levels of circulating soluble adhesion molecules, and atherosclerosis. The aim of this study was to evaluate the relationship between the levels of circulating soluble adhesion molecules and the degree of atherosclerosis in hypertensive type-2 diabetic patients. We studied 30 hypertensive type-2 diabetic patients in whom VCAM-1, ICAM-1, and E-selectin were measured by ELISA. Additionally, the intimal-medial thickness of both the common and internal carotid arteries was measured (B-mode ultrasound). The levels of circulating adhesion molecules and maximal carotid artery intimal-medial thicknesses were correlated using the Spearman correlation coefficient test. Statistical analysis was performed with ANOVA. We found significant correlations between ICAM-1 (r = 0.5) levels and maximal carotid artery intimal-medial thickness these patients. No correlation was observed with E-selectin and VCAM-1. Our results suggest that ICAM-1 is associated and correlated with the degree of atherosclerosis in type-2 diabetic hypertensive patients.

  2. Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity

    PubMed Central

    Shin, Hyewon; van Riesen, Christoph; Whitcomb, Daniel; Warburton, Julia M.; Jo, Jihoon; Kim, Doyoun; Kim, Sun Gyun; Um, Seung Min; Kwon, Seok-kyu; Kim, Myoung-Hwan; Roh, Junyeop Daniel; Woo, Jooyeon; Jun, Heejung; Lee, Dongmin; Mah, Won; Kim, Hyun; Kaang, Bong-Kiun; Cho, Kwangwook; Rhee, Jeong-Seop; Choquet, Daniel; Kim, Eunjoon

    2016-01-01

    Summary Synaptic adhesion molecules regulate synapse development and plasticity through mechanisms including trans-synaptic adhesion and recruitment of diverse synaptic proteins. We report here that the immunoglobulin superfamily member 11 (IgSF11), a homophilic adhesion molecule preferentially expressed in the brain, is a novel and dual-binding partner of the postsynaptic scaffolding protein PSD-95 and AMPAR glutamate receptors (AMPARs). IgSF11 requires PSD-95 binding for its excitatory synaptic localization. In addition, IgSF11 stabilizes synaptic AMPARs, as shown by IgSF11 knockdown-induced suppression of AMPAR-mediated synaptic transmission and increased surface mobility of AMPARs, measured by high-throughput, single-molecule tracking. IgSF11 deletion in mice leads to suppression of AMPAR-mediated synaptic transmission in the dentate gyrus and long-term potentiation in the CA1 region of the hippocampus. IgSF11 does not regulate the functional characteristics of AMPARs, including desensitization, deactivation, or recovery. These results suggest that IgSF11 regulates excitatory synaptic transmission and plasticity through its tripartite interactions with PSD-95 and AMPARs. PMID:26595655

  3. Erythroid Adhesion Molecules in Sickle Cell Anaemia Infants: Insights Into Early Pathophysiology.

    PubMed

    Brousse, Valentine; Colin, Yves; Pereira, Catia; Arnaud, Cecile; Odièvre, Marie Helene; Boutemy, Anne; Guitton, Corinne; de Montalembert, Mariane; Lapouméroulie, Claudine; Picot, Julien; Le Van Kim, Caroline; El Nemer, Wassim

    2015-01-01

    Sickle cell anaemia (SCA) results from a single mutation in the β globin gene. It is seldom symptomatic in the first semester of life. We analysed the expression pattern of 9 adhesion molecules on red blood cells, in a cohort of 54 SCA and 17 non-SCA very young infants of comparable age (median 144 days, 81-196). Haemoglobin F (HbF) level was unsurprisingly elevated in SCA infants (41.2% ± 11.2) and 2-4 fold higher than in non-SCA infants, yet SCA infants presented significantly decreased Hb level and increased reticulocytosis. Cytometry analysis evidenced a specific expression profile on reticulocytes of SCA infants, with notably an increased expression of the adhesion molecules Lu/BCAM, ICAM-4 and LFA-3, both in percentage of positive cells and in surface density. No significant difference was found on mature red cells. Our findings demonstrate the very early onset of reticulocyte membrane modifications in SCA asymptomatic infants and allow an insight into the first pathological changes with the release of stress reticulocytes expressing a distinctive profile of adhesion molecules.

  4. Correlation between the levels of circulating adhesion molecules and atherosclerosis in type-2 diabetic normotensive patients

    PubMed Central

    Vargas-Robles, Hilda; Serrano, Alberto Maceda; Lozano-Nuevo, Jose Juan; Escalante-Acosta, Bruno Alfonso

    2009-01-01

    Endothelial dysfunction is a common feature in type-2 diabetic patients and is associated with inflammation, increased levels of circulating soluble adhesion molecules and atherosclerosis. The aim of this study was to evaluate the relationship between the levels of circulating soluble adhesion molecules and the degree of atherosclerosis in normotensive type-2 diabetic patients. Results: We found significant correlations between ICAM-1 (r = 0.69, p < 0.001 95% IC 0.65 to 0.82) and VCAM-1 (r = 0.4, p < 0.03, 95% IC 0.65 to 0.82) levels and maximal carotid artery intimal-medial thickness, whereas no correlation was observed with E-selectin. Methods: We studied 30 normotensive type-2 diabetic patients in whom VCAM-1, ICAM-1 and E-selectin were measured by ELISA. Additionally, the intimal-medial thickness of both the common and internal carotid arteries was measured (B-mode ultrasound). The levels of circulating adhesion molecules and maximal carotid artery intimal-medial thicknesses were correlated using the Spearman correlation coefficient test. Statistical analysis was performed with ANOVA. Conclusion: Our results suggest that ICAM-1 and VCAM-1 are markers associated, and correlated with the degree of atherosclerosis in normotensive type-2 diabetic patients. PMID:19717975

  5. Control of islet intercellular adhesion molecule-1 expression by interferon-alpha and hypoxia.

    PubMed

    Chakrabarti, D; Huang, X; Beck, J; Henrich, J; McFarland, N; James, R F; Stewart, T A

    1996-10-01

    The ability of interferon-alpha (IFN-alpha) to induce the adhesion molecules that characterize the islets of patients with type I diabetes has been investigated. We have found that all tested recombinant IFN-as will induce major histocompatibility complex (MHC) class I on arterial endothelial cells. Some but not all IFN-as will induce intercellular adhesion molecule-1 (ICAM-1). However, there is only a transient and modest increase in VCAM on arterial endothelial cells. IFN-alpha has very little effect on endothelial MHC class II expression but will induce these proteins on monocytes. Thus, there is a close concordance between the biological actions of IFN-alpha and the appearance of those adhesion molecules induced in the islets of patients with type I diabetes. IFN-alpha is also produced in normal human islets during short-term cultures, probably as a result of the ischemia present at the center of the islet. This induction of IFN-alpha by hypoxia may explain the previously reported spontaneous induction of ICAM-1 in human islets and may also be a contributing factor to the failure of islet grafts.

  6. Experimental Cerebral Malaria Develops Independently of Endothelial Expression of Intercellular Adhesion Molecule-1 (ICAM-1)*

    PubMed Central

    Ramos, Theresa N.; Bullard, Daniel C.; Darley, Meghan M.; McDonald, Kristin; Crawford, David F.; Barnum, Scott R.

    2013-01-01

    Cerebral malaria (CM) is a severe clinical complication of Plasmodium falciparum malaria infection and is characterized by a high fatality rate and neurological damage. Sequestration of parasite-infected red blood cells in brain microvasculature utilizes host- and parasite-derived adhesion molecules and is an important factor in the development of CM. ICAM-1, an alternatively spliced adhesion molecule, is believed to be critical on endothelial cells for infected red blood cell sequestration in CM. Using ICAM-1 mutant mice, we found that the full-length ICAM-1 isoform is not required for development of murine experimental CM (ECM) and that ECM phenotype varies with the combination of ICAM-1 isoforms expressed. Furthermore, we observed development of ECM in transgenic mice expressing ICAM-1 only on leukocytes, indicating that endothelial cell expression of this adhesion molecule is not required for disease pathogenesis. We propose that ICAM-1-dependent cellular aggregation, independent of ICAM-1 expression on the cerebral microvasculature, contributes to ECM. PMID:23493396

  7. Experimental cerebral malaria develops independently of endothelial expression of intercellular adhesion molecule-1 (icam-1).

    PubMed

    Ramos, Theresa N; Bullard, Daniel C; Darley, Meghan M; McDonald, Kristin; Crawford, David F; Barnum, Scott R

    2013-04-19

    Cerebral malaria (CM) is a severe clinical complication of Plasmodium falciparum malaria infection and is characterized by a high fatality rate and neurological damage. Sequestration of parasite-infected red blood cells in brain microvasculature utilizes host- and parasite-derived adhesion molecules and is an important factor in the development of CM. ICAM-1, an alternatively spliced adhesion molecule, is believed to be critical on endothelial cells for infected red blood cell sequestration in CM. Using ICAM-1 mutant mice, we found that the full-length ICAM-1 isoform is not required for development of murine experimental CM (ECM) and that ECM phenotype varies with the combination of ICAM-1 isoforms expressed. Furthermore, we observed development of ECM in transgenic mice expressing ICAM-1 only on leukocytes, indicating that endothelial cell expression of this adhesion molecule is not required for disease pathogenesis. We propose that ICAM-1-dependent cellular aggregation, independent of ICAM-1 expression on the cerebral microvasculature, contributes to ECM.

  8. Serum activated leukocyte cell adhesion molecule and intercellular adhesion molecule-1 in patients with gastric cancer: Can they be used as biomarkers?

    PubMed

    Erturk, Kayhan; Tastekin, Didem; Bilgin, Elif; Serilmez, Murat; Bozbey, Hamza Ugur; Sakar, Burak

    2016-02-01

    Cellular adhesion molecules might be used as markers in diagnosis and prognosis in some types of malignant tumors. The purpose of this study was to determine the clinical significance of the serum levels of activated leukocyte cell adhesion molecule-1 (ALCAM) and intercellular adhesion molecule-1 (ICAM-1) in gastric cancer (GC) patients. Fifty-eight GC patients and 20 age- and sex-matched healthy controls were enrolled into this study. Pretreatment serum markers were determined by the solid-phase sandwich enzyme-linked immunosorbent assay (ELISA). The median age at diagnosis was 59.5 years (range 32-82 years). Tumor localizations of the majority of the patients were antrum (n=42, 72.4%) and tumor histopathologies of the majority of the patients were diffuse (n=43, 74.1%). The majority of the patients had stage IV disease (n=41, 70.7%). Thirty six (62.1%) patients had lymph node involvement. The median follow-up time was 66 months (range 1-97.2 months). At the end of the observation period, 26 patients (44.8%) were dead. The median survival for all patients was 21.4±5 months (%95 CI, 11.5-31.3). The 1-year survival rates were 66.2%. The baseline serum ALCAM levels of the patients were significantly higher than those of the controls (p=0.001). There was no significant difference in the serum levels of ICAM-1 between the patients and controls (p=0.232). No significant correlation was detected between the levels of the serum markers and other clinical parameters (p>0.05). Tumor localization (p=0.03), histopathology (p=0.05), and response to chemotherapy (p=0.003) had prognostic factors on survival. Neither serum ALCAM levels nor serum ICAM-1 levels were identified to have a prognostic role on overall survival (ICAM-1 p=0.6, ALCAM p=0.25). In conclusion, serum levels of ALCAM were found to have diagnostic value in GC patients.

  9. Micromanipulation of adhesion of phorbol 12-myristate-13-acetate-stimulated T lymphocytes to planar membranes containing intercellular adhesion molecule-1.

    PubMed Central

    Tözeren, A; Mackie, L H; Lawrence, M B; Chan, P Y; Dustin, M L; Springer, T A

    1992-01-01

    This paper presents an analytical and experimental methodology to determine the physical strength of cell adhesion to a planar membrane containing one set of adhesion molecules. In particular, the T lymphocyte adhesion due to the interaction of the lymphocyte function associated molecule 1 on the surface of the cell, with its counter-receptor, intercellular adhesion molecule-1 (ICAM-1), on the planar membrane, was investigated. A micromanipulation method and mathematical analysis of cell deformation were used to determine (a) the area of conjugation between the cell and the substrate and (b) the energy that must be supplied to detach a unit area of the cell membrane from its substrate. T lymphocytes stimulated with phorbol 12-myristate-13-acetate (PMA) conjugated strongly with the planar membrane containing purified ICAM-1. The T lymphocytes attached to the planar membrane deviated occasionally from their round configuration by extending pseudopods but without changing the size of the contact area. These adherent cells were dramatically deformed and then detached when pulled away from the planar membrane by a micropipette. Detachment occurred by a gradual decrease in the radius of the contact area. The physical strength of adhesion between a PMA-stimulated T lymphocyte and a planar membrane containing 1,000 ICAM-1 molecules/micron 2 was comparable to the strength of adhesion between a cytotoxic T cell and its target cell. The comparison of the adhesive energy density, measured at constant cell shape, with the model predictions suggests that the physical strength of cell adhesion may increase significantly when the adhesion bonds in the contact area are immobilized by the actin cytoskeleton. Images FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 8 FIGURE 9 PMID:1358239

  10. The Effect of Treatment of Vitamin D Deficiency on the Level of P-Selectin and hs-CRP in Patients With Thromboembolism: A Pilot Randomized Clinical Trial.

    PubMed

    Hejazi, Mohammad Esmaeil; Modarresi-Ghazani, Faezeh; Hamishehkar, Hadi; Mesgari-Abbasi, Mehran; Dousti, Samaneh; Entezari-Maleki, Taher

    2017-01-01

    Despite the known role of vitamin D deficiency in development of thrombosis, no studies have evaluated the impact of treating of vitamin D deficiency on the markers of thrombosis. A pilot randomized clinical trial was done on 40 vitamin D-deficient patients with deep vein thrombosis (DVT) or pulmonary embolism (PE). The intervention group received an oral dose of 50,000 IU vitamin D3 every week for 8 weeks, followed by 1 pearl every 2 weeks for 4 weeks (a total of 3 months), while the control group did not receive vitamin D. Then, P-selectin and hs-CRP were measured at baseline and 1 and 3 months after the intervention. There was no significant decrease in hs-CRP in either group after 1 month (P = .955) or after 3 months (P = .525). Likewise, there was no significant decrease in P-selectin between the 2 groups after 1 month (P = .921) or 3 months (P = .795). The results indicated that treatment of vitamin D deficiency had no significant effect on hs-CRP or P-selectin after 3 months among DVT/PE patients. However, treatment of vitamin D deficiency in these patients resulted in the control of the international normalized ratio (INR) with the lower doses of warfarin. This observation is the first clinical report of enhancement of the anticoagulant effect of warfarin by the supplementing of vitamin D. Larger trials are needed to clearly show the effect of treating of vitamin D deficiency on thrombosis.

  11. Soluble P-selectin rescues viper venom–induced mortality through anti-inflammatory properties and PSGL-1 pathway-mediated correction of hemostasis

    PubMed Central

    Sun, Der-Shan; Ho, Pei-Hsun; Chang, Hsin-Hou

    2016-01-01

    Venomous snakebites are lethal and occur frequently worldwide each year, and receiving the antivenom antibody is currently the most effective treatment. However, the specific antivenom might be unavailable in remote areas. Snakebites by Viperidae usually lead to hemorrhage and mortality if untreated. In the present study, challenges of rattlesnake (Crotalus atrox) venom markedly increased the circulating soluble P-selectin (sP-sel) level, but not P-selectin (P-sel, Selp−/−) mutants, in wild-type mice. Because sP-sel enhances coagulation through the P-selectin ligand 1 (PSGL-1, Selplg) pathway to produce tissue factor–positive microparticles, we hypothesized that increasing the plasma sP-sel level can be a self-rescue response in hosts against snake venom–mediated suppression of the coagulation system. Confirming our hypothesis, our results indicated that compared with wild-type mice, Selp−/− and Selplg−/− mice were more sensitive to rattlesnake venom. Additionally, administration of recombinant sP-sel could effectively reduce the mortality rate of mice challenged with venoms from three other Viperidae snakes. The antivenom property of sP-sel is associated with improved coagulation activity in vivo. Our data suggest that the elevation of endogenous sP-sel level is a self-protective response against venom-suppressed coagulation. The administration of recombinant sP-sel may be developed as a new strategy to treat Viperidae snakebites. PMID:27779216

  12. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    SciTech Connect

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  13. Active Site Formation, Not Bond Kinetics, Limits Adhesion Rate between Human Neutrophils and Immobilized Vascular Cell Adhesion Molecule 1

    PubMed Central

    Waugh, Richard E.; Lomakina, Elena B.

    2009-01-01

    Abstract The formation of receptor ligand bonds at the interface between different cells and between cells and substrates is a widespread phenomenon in biological systems. Physical measurements of bond formation rates between cells and substrates have been exploited to increase our understanding of the biophysical mechanisms that regulate bond formation at interfaces. Heretofore, these measurements have been interpreted in terms of simple bimolecular reaction kinetics. Discrepancies between this simple framework and the behavior of neutrophils adhering to surfaces expressing vascular cell adhesion molecule 1 (VCAM-1) motivated the development of a new kinetic framework in which the explicit formation of active bond formation sites (reaction zones) are a prerequisite for bond formation to occur. Measurements of cells interacting with surfaces having a wide range of VCAM-1 concentrations, and for different durations of contact, enabled the determination of novel kinetic rate constants for the formation of reaction zones and for the intrinsic bond kinetics. Comparison of these rates with rates determined previously for other receptor-ligand pairs points to a predominant role of extrinsic factors such as surface topography and accessibility of active molecules to regions of close contact in determining forward rates of bond formation at cell interfaces. PMID:19134479

  14. Identification of a peptide sequence involved in homophilic binding in the neural cell adhesion molecule NCAM

    PubMed Central

    1992-01-01

    The neural cell adhesion molecule NCAM is capable of mediating cell- cell adhesion via homophilic interactions. In this study, three strategies have been combined to identify regions of NCAM that participate directly in NCAM-NCAM binding: analysis of domain deletion mutations, mapping of epitopes of monoclonal antibodies, and use of synthetic peptides to inhibit NCAM activity. Studies on L cells transfected with NCAM mutant cDNAs using cell aggregation and NCAM- covasphere binding assays indicate that the third immunoglobulin-like domain is involved in homophilic binding. The epitopes of four monoclonal antibodies that have been previously shown to affect cell- cell adhesion mediated by NCAM were also mapped to domain 3. Overlapping hexapeptides were synthesized on plastic pins and assayed for binding with these monoclonal antibodies. One of them (PP) reacted specifically with the sequence KYSFNY. Synthetic oligopeptides containing the PP epitope were potent and specific inhibitors of NCAM binding activity. A substratum containing immobilized peptide conjugates also exhibited adhesiveness for neural retinal cells. Cell attachment was specifically inhibited by peptides that contained the PP- epitope and by anti-NCAM univalent antibodies. The shortest active peptide has the sequence KYSFNYDGSE, suggesting that this site is directly involved in NCAM homophilic interaction. PMID:1380002

  15. Macrosphelide B suppressed metastasis through inhibition of adhesion of sLe(x)/E-selectin molecules.

    PubMed

    Fukami, Akiko; Iijima, Kousuke; Hayashi, Masahiko; Komiyama, Kanki; Omura, Satoshi

    2002-03-08

    Macrosphelide B (MSB), a 16-membered macrolide from Microsphaeropsis sp. FO-5050, inhibits adhesion of sialyl Lewis(x) (sLe(x))-expressing HL-60 cells to LPS-activated (E-selectin-expressing) human umbilical vein endothelial cells (HUVECs) in vitro. This study examines MSB effects on metastasis of B16/BL6 mouse melanoma cells (B16/BL6 cells) and L5178Y-ML mouse lymphoma cells in vivo and analyzes the MSB antimetastatic activity mechanism. When administered MSB at 20 mg/kg/day, lung metastatic nodules of B16/BL6 cells were significantly decreased (T/C = 45%). However, no inhibition of metastasis of L5178Y-ML cells to the spleen and liver was observed. Flow cytometry analysis showed that B16/BL6 cells expressed high levels of sLe(x) antigen, whereas expression on L5178Y-ML cells was low. Under in vitro conditions, B16/BL6 cells demonstrated a greater degree of adhesion to LPS-activated HUVECs than L5178Y-ML cells, but adhesion was significantly inhibited by MSB and sLe(x) antibody. Combined therapy of MSB and cisplatin (CDDP) induced remarkable lung metastasis inhibition without adverse effects of CDDP to the host. All these findings suggest that MSB suppresses lung metastasis of B16/BL6 cells by inhibiting cell adhesion to endothelial cells through the sLe(x) molecule.

  16. Multiparticle adhesive dynamics. Interactions between stably rolling cells.

    PubMed Central

    King, M R; Hammer, D A

    2001-01-01

    A novel numerical simulation of adhesive particles (cells) reversibly interacting with an adhesive surface under flow is presented. Particle--particle and particle--wall hydrodynamic interactions in low Reynolds number Couette flow are calculated using a boundary element method that solves an integral representation of the Stokes equation. Molecular bonds between surfaces are modeled as linear springs and stochastically formed and broken according to postulated descriptions of force-dependent kinetics. The resulting simulation, Multiparticle Adhesive Dynamics, is applied to the problem of selectin-mediated rolling of hard spheres coated with leukocyte adhesion molecules (cell-free system). Simulation results are compared to flow chamber experiments performed with carbohydrate-coated spherical beads rolling on P-selectin. Good agreement is found between theory and experiment, with the main observation being a decrease in rolling velocity with increasing concentration of rolling cells or increasing proximity between rolling cells. Pause times are found to increase and deviation motion is found to decrease as pairs of rolling cells become closer together or align with the flow. PMID:11463626

  17. Adhesion of single polyelectrolyte molecules on silica, mica, and bitumen surfaces.

    PubMed

    Long, Jun; Xu, Zhenghe; Masliyah, Jacob H

    2006-02-14

    In a recent study (Energy Fuels 2005, 19, 936), a partially hydrolyzed polyacrylamide (HPAM) was used as a process aid to recover bitumen from oil sand ores. It was found that HPAM addition at the bitumen extraction step not only improved bitumen recovery but also enhanced fine solids settling in the tailings stream. To understand the role of HPAM, single-molecule force spectroscopy was employed for the first time to measure the desorption/adhesion forces of single HPAM molecules on silica, mica, and bitumen surfaces using an atomic force microscope (AFM). Silicon wafers with an oxidized surface layer and newly cleaved mica were used, respectively, to represent sand grains and clays in oil sands. The force measurements were carried out in deionized water and in commercial plant process water under equilibrium conditions. The desorption/adhesion forces of HPAM obtained on mica, silica, and bitumen surfaces were approximately 200, 40, and 80 pN in deionized water and approximately 100, 50, and 40 pN in the plant process water, respectively. The measured adhesion forces together with the zeta potential values of these surfaces indicate that the polymer would preferentially adsorb onto clay surfaces rather than onto bitumen surfaces. It is the selective adsorption of HPAM that benefits both bitumen recovery and tailings settling when the polymer was added directly to the bitumen extraction process at an appropriate dosage.

  18. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules

    PubMed Central

    Halberg, Kenneth A.; Rainey, Stephanie M.; Veland, Iben R.; Neuert, Helen; Dornan, Anthony J.; Klämbt, Christian; Davies, Shireen-Anne; Dow, Julian A. T.

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell–cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border. PMID:27072072

  19. Adhesions

    MedlinePlus

    Adhesions are bands of scar-like tissue. Normally, internal tissues and organs have slippery surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They ...

  20. Adhesion

    MedlinePlus

    ... the intestines, adhesions can cause partial or complete bowel obstruction . Adhesions inside the uterine cavity, called Asherman syndrome , ... 1. Read More Appendicitis Asherman syndrome Glaucoma Infertility Intestinal obstruction Review Date 4/5/2016 Updated by: Irina ...

  1. A juxta-membrane amino acid sequence of P-selectin glycoprotein ligand-1 is involved in moesin binding and ezrin/radixin/moesin-directed targeting at the trailing edge of migrating lymphocytes.

    PubMed

    Serrador, Juan M; Urzainqui, Ana; Alonso-Lebrero, Jose L; Cabrero, J Román; Montoya, Maria C; Vicente-Manzanares, Miguel; Yáñez-Mó, María; Sánchez-Madrid, Francisco

    2002-06-01

    P-selectin glycoprotein ligand 1 (PSGL-1) is an adhesion receptor localized on the tips of microvilli that is involved in the rolling of neutrophils on activated endothelium. We found that PSGL-1 was concentrated at the uropod of chemokine-stimulated lymphoid cells. Dynamic fluorescence videomicroscopy analyses of migrating lymphocytes demonstrated that PSGL-1 and moesin redistributed towards the cellular uropod at the trailing edge of these cells, where activated ezrin/radixin/moesin (ERM) proteins were located. An eighteen amino acid sequence in the juxta-membrane region of the PSGL-1 cytoplasmic tail was found to be critical for uropod targeting and moesin binding. Substitution of S336, S348, and the basic cluster R337K338 by alanines within this region significantly impaired both moesin binding and PSGL-1 polarization. These results underline the role of moesin in the subcellular redistribution of PSGL-1 in lymphoid cells and make evident the importance of specific serine residues within the cytoplasmic tail of PSGL-1 for this process.

  2. cis Interaction of the Cell Adhesion Molecule CEACAM1 with Integrin β3

    PubMed Central

    Brümmer, Jens; Ebrahimnejad, Alireza; Flayeh, Raid; Schumacher, Udo; Löning, Thomas; Bamberger, Ana-Maria; Wagener, Christoph

    2001-01-01

    CEACAM1 is a cell adhesion molecule that has been implicated in a number of physiological processes (eg, tumor suppressor in epithelial tissues, potent angiogenic factor in microvessel formation, microbial receptor in human granulocytes and epithelial cells). The mechanism of CEACAM1 action is still largely unresolved but recent findings demonstrated that the cytoplasmic CEACAM1 domain is linked indirectly to the actin-based cytoskeleton. We have isolated integrin β3 as an associated protein using CEACAM1 tail affinity purification. This association depends on phosphorylation of Tyr-488 in the CEACAM1 cytoplasmic domain. Confocal laser scanning microscopy confirmed in vivo colocalization of both molecules in human granulocytes and epithelial cells. Furthermore, the concentrated colocalization at the tumor-stroma interface of invading melanoma masses suggests a functional role of CEACAM1-integrin β3 interaction in melanoma invasion. Moreover, colocalization of the two adhesion molecules is also found at the apical surface of glandular cells of pregnancy endometrium. Colocalization of CEACAM1 and integrin β3 at the transitional zone from proliferative to invasive extravillous trophoblast of the maternal-fetal interface supports a role for CEACAM1/integrin β3 complexes in cell invasion. PMID:11485912

  3. Association between genetic variants in adhesion molecules and outcomes after hematopoietic cell transplants.

    PubMed

    Thyagarajan, B; Jackson, S; Basu, S; Jacobson, P; Gross, M D; Weisdorf, D J; Arora, M

    2013-04-01

    Allogeneic hematopoietic cell transplant (HCT) is associated with a high morbidity and mortality. Adhesion molecules play an important role in endothelial activation and initiation of inflammatory response. We hypothesized that single nucleotide polymorphisms (SNPs) in the endothelial molecules may contribute to heterogeneity in HCT outcomes. We evaluated the association of 4 SNPs in ICAM1 (rs5498), PECAM1 (rs668 and rs1131012) and SELL (rs2229569) genes with acute and chronic graft-versus-host disease (GvHD) and those experiencing transplant-related mortality (TRM) within 1 year among 425 allogeneic HCT recipient-donor pairs. Using a Fine and Gray proportional hazards model to evaluate the association between genetic variants and clinical outcomes, after adjustment for recipient age, race, diagnosis, disease status, gender mismatch, cytomegalovirus serostatus, gender, donor type, conditioning regimen and year of transplant, only rs5498 in the ICAM1 gene among both recipients and donors was associated with a decreased risk of TRM (P ≤ 0.02). None of the SNPs were associated with acute or chronic GvHD risk. These findings suggest that genetic variants in the vascular adhesion molecules may be used to identify patients at high risk for TRM.

  4. Both Th1 and Th2 Cells Require P-Selectin Glycoprotein Ligand-1 for Optimal Rolling on Inflamed Endothelium

    PubMed Central

    Mangan, Paul R.; O’Quinn, Darrell; Harrington, Laurie; Bonder, Claudine S.; Kubes, Paul; Kucik, Dennis F.; Bullard, Daniel C.; Weaver, Casey T.

    2005-01-01

    The acquisition of homing receptors that redirect lymphocyte trafficking to nonlymphoid tissues after antigen encounter is a fundamental aspect of effector T-cell development. Although a role for selectins and their ligands has been well characterized for trafficking of Th1 cells to nonlymphoid sites, mechanisms responsible for Th2 trafficking are not well understood. Using a flow chamber system in which the endothelial interactions of two distinct T-cell populations could be examined simultaneously, we directly compared the requirements for Th1 and Th2 cell tethering and rolling. We found that although Th2 cells expressed significantly lower levels of selectin ligands than Th1 cells, activation of the endothelium by Th2-derived factors induced rolling interactions that were comparable for both Th1 and Th2 populations. Further, in the absence of PSGL-1, no other adhesion molecule could effectively compensate for lack of PSGL-1 to mediate rolling of either Th1 or Th2 cells. Thus, both Th1 and Th2 populations express functional PSGL-1-based selectin ligands for tethering and rolling on activated endothelium, and both effector populations can use PSGL-1 as the dominant scaffold for functional selectin ligand expression. PMID:16314478

  5. Altered expression of adhesion molecules on peripheral blood leukocytes in feline infectious peritonitis.

    PubMed

    Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Desmarets, Lowiese M B; Vermeulen, Ben L; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-10-25

    Feline infectious peritonitis (FIP) is a fatal, coronavirus-induced systemic disease in domestic and wild felids. The pathology associated with FIP (multifocal granulomatous vasculitis) is considered to be elicited by exaggerated activation and subsequent extravasation of leukocytes. As changes in the expression of adhesion molecules on circulating leukocytes precede their margination and emigration, we reasoned that the expression of leukocyte adhesion molecules may be altered in FIP. In present study, the expression of principal adhesion molecules involved in leukocyte transmigration (CD15s, CD11a, CD11b, CD18, CD49d, and CD54) on peripheral blood leukocytes from cats with naturally occurring FIP (n=15) and controls (n=12) was quantified by flow cytometry using a formaldehyde-based rapid leukocyte preparation technique. T- and B-lymphocytes from FIP patients exhibit higher expression of both subunits (CD11a and CD18) composing the β2 integrin lymphocyte function-associated antigen (LFA)-1. In addition, the expression of the α4 subunit (CD49d) of the β1 integrin very late antigen (VLA)-4 was elevated on B-lymphocytes from FIP patients. The expression of CD11b and CD18, that combine to form the β2 integrin macrophage-1 antigen (Mac-1), was elevated on monocytes, whereas the density of CD49d was reduced on this population in FIP. Granulocytes of FIP cats displayed an increased expression of the α chain of Mac-1 (CD11b). These observations suggest that leukocytes from FIP patients show signs of systemic activation causing them to extravasate into surrounding tissues and ultimately contribute to pyogranuloma formation seen in FIP.

  6. Neutrophil adhesion molecule expression during cardiopulmonary bypass: a comparative study of roller and centrifugal pumps.

    PubMed

    Macey, M G; McCarthy, D A; Trivedi, U R; Venn, G E; Chambers, D J; Brown, K A

    1997-09-01

    The purpose of this study was to determine whether adhesion molecules and markers of cell activation were preferentially increased on blood neutrophils during cardiopulmonary bypass (CPB) and whether such effects were influenced by the use of a roller pump or a centrifugal pump. Forty-six patients undergoing open heart surgery were randomly allocated into either the roller or centrifugal groups. Blood (1 ml volumes) was removed from arterial and venous lines immediately before and 1 h after the start of bypass. Whole blood samples were immunolabelled and flow cytometry used to measure the distribution and expression of the adhesion molecules CD11b, CD18, CD62L on neutrophils, monocytes and lymphocytes, in addition to CD64 on neutrophils and monocytes, and CD14 on monocytes. The expression of CD11b was significantly enhanced on neutrophils in arterial and venous samples from both the roller pump (mean 84% and 100% increase, respectively; p < 0.001) and centrifugal pump (mean 74% and 73% increase, respectively; p < 0.001) groups. Neutrophil L-selectin expression increased to a small but significant extent in arterial and venous samples from the centrifugal pump group (mean 16% increase; p < 0.001) and in venous samples from the roller pump group (mean 10% increase; p < 0.01). Neither the percentage of neutrophils bearing CD11b/CD18, CD62L and CD64, nor the expression of adhesion molecules on lymphocytes and monocytes were modified by 1 h of bypass. These results suggest that patients subjected to CPB with roller or centrifugal pumps are equally at risk to neutrophil activation that could lead to increased interaction of these cells with blood vessel walls.

  7. Inhalation of ultrafine particles alters blood leukocyte expression of adhesion molecules in humans.

    PubMed

    Frampton, Mark W; Stewart, Judith C; Oberdörster, Günter; Morrow, Paul E; Chalupa, David; Pietropaoli, Anthony P; Frasier, Lauren M; Speers, Donna M; Cox, Christopher; Huang, Li-Shan; Utell, Mark J

    2006-01-01

    Ultrafine particles (UFPs; aerodynamic diameter < 100 nm) may contribute to the respiratory and cardiovascular morbidity and mortality associated with particulate air pollution. We tested the hypothesis that inhalation of carbon UFPs has vascular effects in healthy and asthmatic subjects, detectable as alterations in blood leukocyte expression of adhesion molecules. Healthy subjects inhaled filtered air and freshly generated elemental carbon particles (count median diameter approximately 25nm, geometric standard deviation approximately 1.6), for 2 hr, in three separate protocols: 10 microg/m3 at rest, 10 and 25 microg/m3 with exercise, and 50 microg/m3 with exercise. In a fourth protocol, subjects with asthma inhaled air and 10 microg/m3 UFPs with exercise. Peripheral venous blood was obtained before and at intervals after exposure, and leukocyte expression of surface markers was quantitated using multiparameter flow cytometry. In healthy subjects, particle exposure with exercise reduced expression of adhesion molecules CD54 and CD18 on monocytes and CD18 and CD49d on granulocytes. There were also concentration-related reductions in blood monocytes, basophils, and eosinophils and increased lymphocyte expression of the activation marker CD25. In subjects with asthma, exposure with exercise to 10 microg/m3 UFPs reduced expression of CD11b on monocytes and eosinophils and CD54 on granulocytes. Particle exposure also reduced the percentage of CD4+ T cells, basophils, and eosinophils. Inhalation of elemental carbon UFPs alters peripheral blood leukocyte distribution and expression of adhesion molecules, in a pattern consistent with increased retention of leukocytes in the pulmonary vascular bed.

  8. Differential effects of heme oxygenase isoforms on heme mediation of endothelial intracellular adhesion molecule 1 expression.

    PubMed

    Wagener, F A; da Silva, J L; Farley, T; de Witte, T; Kappas, A; Abraham, N G

    1999-10-01

    Heme oxygenase (HO), by catabolizing heme to bile pigments, down-regulates cellular hemoprotein, hemoglobin, and heme; the latter generates pro-oxidant products, including free radicals. Two HO isozymes, the products of distinct genes, have been described; HO-1 is the inducible isoform, whereas HO-2 is suggested to be constitutively expressed. We studied the inducing effect of several metal compounds (CoCl(2), stannic mesoporphyrin, and heme) on HO activity. Additionally, we studied HO-1 expression in experimental models of adhesion molecule expression produced by heme in endothelial cells, and the relationship of HO-1 expression to the induced adhesion molecules. Flow cytometry analysis showed that heme induces intracellular adhesion molecule 1 (ICAM-1) expression in a concentration (10-100 microM)- and time (1-24 h)-dependent fashion in human umbilical vein endothelial cells. Pretreatment with stannic mesoporphyrin, an inhibitor of HO activity, caused a 2-fold increase in heme-induced ICAM-1 expression. In contrast, HO induction by CoCl(2) decreased heme-induced ICAM-1 expression by 33%. To examine the contribution of HO-1 and HO-2 to endothelial HO activity, specific antisense oligonucleotides (ODNs) of each isoform were tested for their specificity to inhibit HO activity in cells exposed to heme. Endothelial cells exposed to heme elicited increased HO activity, which was prevented (70%) by HO-1 antisense ODNs. HO-2 antisense ODN inhibited heme-induced HO activity by 21%. Addition of HO-1 antisense ODNs prevented heme degradation and resulted in elevation of microsomal heme. Western blot analysis showed that HO-1 antisense ODNs selectively inhibited HO-1 protein and failed to inhibit HO-2 protein. Incubation of endothelial cells with HO-1 antisense enhanced heme-dependent increase of ICAM-1. In contrast, addition of HO-2 antisense to endothelial cells failed to increase adhesion molecules. The role of glutathione, an important antioxidant, was examined on heme

  9. Tumor Specific Regulation of C-CAM Cell Adhesion Molecule in Prostate Cancer Carcinogenesis

    DTIC Science & Technology

    2002-08-01

    692 9. Graff, J. R., Herman, J. G., Lapidus, R. G., Chopra, H., Xu , R., Jarrard, D. F., Isaacs, W. B., Pitha, P. M., Davidson, N. E., and Baylin, S. B...2001) 115-123 www.elsevier.com/locate/mce Androgen regulation of the cell-cell adhesion molecule-1 (Ceacam i) gene Dillon Phan a, Xiaomei Sui b, Dung...Nature Medicine, 1: 686-692, 1995. 27 34. Graff, J. R., Herman, J. G., Lapidus, R. G., Chopra, H., Xu , R., Jarrard, D. F., Isaacs, W. B., Pitha, P. M

  10. The clinical spectrum of mutations in L1, a neuronal cell adhesion molecule

    SciTech Connect

    Fransen, E.; Vits, L.; Van Camp, G.; Willems, P.J.

    1996-07-12

    Mutations in the gene encoding the neuronal cell adhesion molecule L1 are responsible for several syndromes with clinical overlap, including X-linked hydrocephalus (XLH, HSAS), MASA (mental retardation, aphasia, shuffling gait, adducted thumbs) syndrome, complicated X-linked spastic paraplegia (SP 1), X-linked mental retardation-clasped thumb (MR-CT) syndrome, and some forms of X-linked agenesis of the corpus callosum (ACC). We review 34 L1 mutations in patients with these phenotypes. 22 refs., 3 figs., 4 tabs.

  11. Therapy with hydroxyurea is associated with reduced adhesion molecule gene and protein expression in sickle red cells with a concomitant reduction in adhesive properties.

    PubMed

    Gambero, Sheley; Canalli, Andreia A; Traina, Fabiola; Albuquerque, Dulcinéia M; Saad, Sara T O; Costa, Fernando F; Conran, Nicola

    2007-02-01

    Propagation of the vaso-occlusive process in sickle cell anaemia (SCA) is a complex process involving the adhesion of steady-state SCA patients red cells and reticulocytes to the vascular endothelium. The effect of hydroxyurea therapy (HUT) on the adhesive properties of sickle cells and the expression of adhesion molecule genes by erythroid cells of SCA individuals is not yet fully understood. The expressions of the CD36 gene and the VLA-4-integrin subunit genes, CD49d (alpha-subunit) and CD29 (beta-subunit), were compared in the reticulocytes of steady-state SCA patients and patients on HUT using real-time PCR. Basal adhesion of red cells from these subjects was also compared using static adhesion assays, as was surface protein expression, using flow cytometry. Basal sickle red cell adhesion to fibronectin was significantly greater than that of normal cells (P < 0.01); in contrast, HUT was associated with significantly lower levels (P < 0.01) of red cell adhesion that were similar to those of control cells; this decrease could not be justified solely by altered reticulocyte numbers in this population. Accordingly, flow cytometry demonstrated that reticulocytes from patients on HUT had significantly lower CD36 and CD49d surface expressions (P < 0.01) and, importantly, significantly lower expressions of the CD36, CD49d and CD29 genes (P < 0.05) than reticulocytes of SCA patients not on HUT. Taken together, data support the hypothesis that HUT reduces the adhesive properties of sickle cells and that this decrease appears to be mediated, at least in part, by a decrease in the gene and, consequently, surface protein expression of adhesion molecules such as VLA-4 and CD36.

  12. Microparticle Adhesive Dynamics and Rolling Mediated by Selectin-Specific Antibodies Under Flow

    PubMed Central

    Ham, Anthony Sang Won; Goetz, Douglas J.; Klibanov, Alexander L.

    2013-01-01

    In vitro studies were performed to characterize the relative performance of candidate receptors to target microparticles to inflammatory markers on vascular endothelium. To model the interactions of drug-bearing micro-particles or imaging contrast agents with the vasculature, 6 micron polystyrene particles bearing antibodies, peptides, or carbohydrates were perfused over immobilized E- or P-selectin in a flow chamber. Microparticles conjugated with HuEP5C7.g2 (HuEP), a monoclonal antibody (mAb) specific to E- and P-selectin, supported leukocyte-like rolling and transient adhesion at venular shear rates. In contrast, microparticles conjugated with a higher affinity mAb specific for P-selectin (G1) were unable to form bonds at venular flow rates. When both HuEP and G1 were conjugated to the microparticle, HuEP supported binding to P-selectin in flow which allowed G1 to form bonds leading to stable adhesion. While the microparticle attachment and rolling performance was not as stable as that mediated by the natural ligands P-selectin Glycoprotein Ligand-1 or sialyl Lewisx, HuEP performed significantly better than any previously characterized mAb in terms of mediating micro-particle binding under flow conditions. HuEP may be a viable alternative to natural ligands to selectins for targeting particles to inflamed endothelium. PMID:16917925

  13. Overexpression of junctional adhesion molecule-A and EphB2 predicts poor survival in lung adenocarcinoma patients.

    PubMed

    Zhao, Chen; Wang, Aili; Lu, Funian; Chen, Hongxia; Fu, Pin; Zhao, Xianda; Chen, Honglei

    2017-02-01

    Junctional adhesion molecules are important components of tight junctions, and Eph/ephrin proteins constitute the largest family of receptor tyrosine kinases. Both junctional adhesion molecules and Eph/ephrin are involved in normal tissue development and cancer progression. However, the expression levels and clinical significances of junctional adhesion molecule-A, a member of junctional adhesion molecules, and EphB2, a member of Eph/ephrin family, in lung adenocarcinoma patients are unclear. Therefore, in this study, we aimed to identify the expression and prognostic values of junctional adhesion molecule-A and EphB2 in lung adenocarcinoma patients' cohort. In our study, 70 (55.6%) showed high expression of junctional adhesion molecule-A protein and 51 (40.5%) showed high expression of EphB2 protein in 126 lung adenocarcinoma tissues. Junctional adhesion molecule-A and EphB2 expressions were both significantly increased in tumor tissues compared with noncancerous lung tissues. Kaplan-Meier analysis and log-rank test indicated that low expression of junctional adhesion molecule-A and EphB2 proteins can predict better survival and low mortality rate of lung adenocarcinomas. In univariate analysis, high expression levels of junctional adhesion molecule-A and EphB2 were both found to be significantly correlated with poor overall survival of lung adenocarcinoma patients (hazard ratio = 1.791, 95% confidence interval = 1.041-3.084, p = 0.035; hazard ratio = 1.762, 95% confidence interval = 1.038-2.992, p = 0.036, respectively). The multivariate Cox proportional hazard model demonstrated that EphB2 expression is an independent prognosis parameter in lung adenocarcinoma patients (hazard ratio = 1.738, 95% confidence interval = 1.023-2.952, p = 0.016). Taken together, high expression of junctional adhesion molecule-A and EphB2 can predict poor overall survival and high mortality rate, and EphB2 is an independent prognostic biomarker in

  14. An ICAM-1 like cell adhesion molecule is responsible for CD34 positive haemopoietic stem cells adhesion to bone-marrow stroma.

    PubMed

    Rao, S G; Chitnis, V S; Deora, A; Tanavde, V; Desai, S S

    1996-04-01

    The microenvironment in the haematopoietic organs plays an important role in regulating and sustaining differentiation and self-renewal of haematopoietic stem cells. Although crucial for stem cell maintenance and homing, the stromal cell-stem cell interactions are poorly understood. Here we show that an ICAM-like molecule is responsible for stem cell adhesion to stromal cells in vitro. The molecule was characterized by a monoclonal antibody 3E10. Immunoblotting results indicated that the molecule had an electrophoretic mobility equal to that of intercellular cell adhesion molecule-1 (ICAM-1). Binding inhibition assays, however, showed that inhibition of binding of enriched CD34 cells by 3E10 was more prominent in comparison with that of ICAM-1.

  15. Diatomic molecules and metallic adhesion, cohesion, and chemisorption - A single binding-energy relation

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1983-01-01

    Potential-energy relations involving a few parameters in simple analytic forms have been found to represent well the energetics of a wide variety of diatomic molecules. However, such two-atom potential functions are not appropriate for metals. It is well known that, in the case of metals, there exist strong volume-dependent forces which can never be expressed as pairwise interactions. The present investigation has the objective to show that, in spite of the observation concerning metals, a single binding-energy relation can be found which accurately describes diatomic molecules as well as adhesion, cohesion, and chemisorption on metals. This universality reveals a commonality between the molecular and metallic bond.

  16. Expression of claudins, occludin, junction adhesion molecule A and zona occludens 1 in canine organs

    PubMed Central

    Ahn, Changhwan; Shin, Da-Hye; Lee, Dongoh; Kang, Su-Myung; Seok, Ju-Hyung; Kang, Hee Young; Jeung, Eui-Bae

    2016-01-01

    Tight junctions are the outermost structures of intercellular junctions and are classified as transmembrane proteins. These factors form selective permeability barriers between cells, act as paracellular transporters and regulate structural and functional polarity of cells. Although tight junctions have been previously studied, comparison of the transcriptional-translational levels of these molecules in canine organs remains to be investigated. In the present study, organ-specific expression of the tight junction proteins, claudin, occludin, junction adhesion molecule A and zona occludens 1 was examined in the canine duodenum, lung, liver and kidney. Results of immunohistochemistry analysis demonstrated that the tight junctions were localized in intestinal villi and glands of the duodenum, bronchiolar epithelia and alveolar walls of the lung, endometrium and myometrium of the hepatocytes, and the distal tubules and glomeruli of the kidney. These results suggest that tight junctions are differently expressed in organs, and therefore may be involved in organ-specific functions to maintain physiological homeostasis. PMID:27600198

  17. Integrin engagement mediates tyrosine dephosphorylation on platelet-endothelial cell adhesion molecule 1.

    PubMed Central

    Lu, T T; Yan, L G; Madri, J A

    1996-01-01

    Platelet-endothelial cell adhesion molecule 1 (PECAM-1, CD31) is a 130-kDa member of the immunoglobulin gene superfamily expressed on endothelial cells, platelets, neutrophils, and monocytes and plays a role during endothelial cell migration. Phosphoamino acid analysis and Western blot analysis with anti-phosphotyrosine antibody show that endothelial PECAM-1 is tyrosine-phosphorylated. Phosphorylation is decreased with endothelial cell migration on fibronectin and collagen and with cell spreading on fibronectin but not on plastic. Cell adhesion on anti-integrin antibodies is also able to specifically induce PECAM-1 dephosphorylation while concurrently inducing pp125 focal adhesion kinase phosphorylation. Inhibition of dephosphorylation with sodium orthovanadate suggests that this effect is at least partially mediated by phosphatase activity. Tyr-663 and Tyr-686 are identified as potential phosphorylation sites and mutated to phenylalanine. When expressed, both mutants show reduced PECAM-1 phosphorylation but Phe-686 mutants also show significant reversal of PECAM-1-mediated inhibition of cell migration and do not localize PECAM-1 to cell borders. Our results suggest that beta 1-integrin engagement can signal to dephosphorylate PECAM-1 and that this signaling pathway may play a role during endothelial cell migration. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8876219

  18. Release activity-dependent control of vesicle endocytosis by the synaptic adhesion molecule N-cadherin.

    PubMed

    van Stegen, Bernd; Dagar, Sushma; Gottmann, Kurt

    2017-01-20

    At synapses in the mammalian brain, continuous information transfer requires the long-term maintenance of homeostatic coupling between exo- and endocytosis of synaptic vesicles. Because classical endocytosis is orders of magnitude slower than the millisecond-range exocytosis of vesicles, high frequency vesicle fusion could potentially compromise structural stability of synapses. However, the molecular mechanisms mediating the tight coupling of exo- and endocytosis are largely unknown. Here, we investigated the role of the transsynaptic adhesion molecules N-cadherin and Neuroligin1 in regulating vesicle exo- and endocytosis by using activity-induced FM4-64 staining and by using synaptophysin-pHluorin fluorescence imaging. The synaptic adhesion molecules N-cadherin and Neuroligin1 had distinct impacts on exo- and endocytosis at mature cortical synapses. Expression of Neuroligin1 enhanced vesicle release in a N-cadherin-dependent way. Most intriguingly, expression of N-cadherin enhanced both vesicle exo- and endocytosis. Further detailed analysis of N-cadherin knockout neurons revealed that the boosting of endocytosis by N-cadherin was largely dependent on preceding high levels of vesicle release activity. In summary, regulation of vesicle endocytosis was mediated at the molecular level by N-cadherin in a release activity-dependent manner. Because of its endocytosis enhancing function, N-cadherin might play an important role in the coupling of vesicle exo- and endocytosis.

  19. Mutations in PVRL4, encoding cell adhesion molecule nectin-4, cause ectodermal dysplasia-syndactyly syndrome.

    PubMed

    Brancati, Francesco; Fortugno, Paola; Bottillo, Irene; Lopez, Marc; Josselin, Emmanuelle; Boudghene-Stambouli, Omar; Agolini, Emanuele; Bernardini, Laura; Bellacchio, Emanuele; Iannicelli, Miriam; Rossi, Alfredo; Dib-Lachachi, Amina; Stuppia, Liborio; Palka, Giandomenico; Mundlos, Stefan; Stricker, Sigmar; Kornak, Uwe; Zambruno, Giovanna; Dallapiccola, Bruno

    2010-08-13

    Ectodermal dysplasias form a large disease family with more than 200 members. The combination of hair and tooth abnormalities, alopecia, and cutaneous syndactyly is characteristic of ectodermal dysplasia-syndactyly syndrome (EDSS). We used a homozygosity mapping approach to map the EDSS locus to 1q23 in a consanguineous Algerian family. By candidate gene analysis, we identified a homozygous mutation in the PVRL4 gene that not only evoked an amino acid change but also led to exon skipping. In an Italian family with two siblings affected by EDSS, we further detected a missense and a frameshift mutation. PVRL4 encodes for nectin-4, a cell adhesion molecule mainly implicated in the formation of cadherin-based adherens junctions. We demonstrated high nectin-4 expression in hair follicle structures, as well as in the separating digits of murine embryos, the tissues mainly affected by the EDSS phenotype. In patient keratinocytes, mutated nectin-4 lost its capability to bind nectin-1. Additionally, in discrete structures of the hair follicle, we found alterations of the membrane localization of nectin-afadin and cadherin-catenin complexes, which are essential for adherens junction formation, and we found reorganization of actin cytoskeleton. Together with cleft lip and/or palate ectodermal dysplasia (CLPED1, or Zlotogora-Ogur syndrome) due to an impaired function of nectin-1, EDSS is the second known "nectinopathy" caused by mutations in a nectin adhesion molecule.

  20. Release activity-dependent control of vesicle endocytosis by the synaptic adhesion molecule N-cadherin

    PubMed Central

    van Stegen, Bernd; Dagar, Sushma; Gottmann, Kurt

    2017-01-01

    At synapses in the mammalian brain, continuous information transfer requires the long-term maintenance of homeostatic coupling between exo- and endocytosis of synaptic vesicles. Because classical endocytosis is orders of magnitude slower than the millisecond-range exocytosis of vesicles, high frequency vesicle fusion could potentially compromise structural stability of synapses. However, the molecular mechanisms mediating the tight coupling of exo- and endocytosis are largely unknown. Here, we investigated the role of the transsynaptic adhesion molecules N-cadherin and Neuroligin1 in regulating vesicle exo- and endocytosis by using activity-induced FM4–64 staining and by using synaptophysin-pHluorin fluorescence imaging. The synaptic adhesion molecules N-cadherin and Neuroligin1 had distinct impacts on exo- and endocytosis at mature cortical synapses. Expression of Neuroligin1 enhanced vesicle release in a N-cadherin-dependent way. Most intriguingly, expression of N-cadherin enhanced both vesicle exo- and endocytosis. Further detailed analysis of N-cadherin knockout neurons revealed that the boosting of endocytosis by N-cadherin was largely dependent on preceding high levels of vesicle release activity. In summary, regulation of vesicle endocytosis was mediated at the molecular level by N-cadherin in a release activity-dependent manner. Because of its endocytosis enhancing function, N-cadherin might play an important role in the coupling of vesicle exo- and endocytosis. PMID:28106089

  1. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    SciTech Connect

    Rudenko, Gabby

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.

  2. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    PubMed Central

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, forming trans-complexes spanning the synaptic cleft or cis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics. PMID:28255461

  3. TMIGD1 is a novel adhesion molecule that protects epithelial cells from oxidative cell injury.

    PubMed

    Arafa, Emad; Bondzie, Philip A; Rezazadeh, Kobra; Meyer, Rosana D; Hartsough, Edward; Henderson, Joel M; Schwartz, John H; Chitalia, Vipul; Rahimi, Nader

    2015-10-01

    Oxidative damage to renal tubular epithelial cells is a fundamental pathogenic mechanism implicated in both acute kidney injury and chronic kidney diseases. Because epithelial cell survival influences the outcome of acute kidney injury and chronic kidney diseases, identifying its molecular regulators could provide new insight into pathobiology and possible new therapeutic strategies for these diseases. We have identified transmembrane and immunoglobulin domain-containing 1 (TMIGD1) as a novel adhesion molecule, which is highly conserved in humans and other species. TMIGD1 is expressed in renal tubular epithelial cells and promotes cell survival. The extracellular domain of TMIGD1 contains two putative immunoglobulin domains and mediates self-dimerization. Our data suggest that TMIGD1 regulates transepithelial electric resistance and permeability of renal epithelial cells. TMIGD1 controls cell migration, cell morphology, and protects renal epithelial cells from oxidative- and nutrient-deprivation-induced cell injury. Hydrogen peroxide-induced oxidative cell injury downregulates TMIGD1 expression and targets it for ubiquitination. Moreover, TMIGD1 expression is significantly affected in both acute kidney injury and in deoxy-corticosterone acetate and sodium chloride (deoxy-corticosterone acetate salt)-induced chronic hypertensive kidney disease mouse models. Taken together, we have identified TMIGD1 as a novel cell adhesion molecule expressed in kidney epithelial cells that protects kidney epithelial cells from oxidative cell injury to promote cell survival.

  4. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells.

    PubMed

    Yokawa, Satoru; Furuno, Tadahide; Suzuki, Takahiro; Inoh, Yoshikazu; Suzuki, Ryo; Hirashima, Naohide

    2016-09-01

    Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 μm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 μm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity.

  5. Resveratrol abrogates adhesion molecules and protects against TNBS-induced ulcerative colitis in rats.

    PubMed

    Abdallah, Dalaal M; Ismael, Naglaa R

    2011-11-01

    Resveratrol, a polyphenol compound with anti-inflammatory properties, has been previously evaluated for its beneficial effects in several ulcerative colitis models. However, the current study elucidates the effect of resveratrol on adhesion molecules, as well as its antioxidant efficacy in a trinitrobenzene sulfonic acid (TNBS)-induced ulcerative-colitis model. Colitis was induced by rectal instillation of TNBS, followed by daily per os administration of either sulphasalazine (300 mg/kg) or resveratrol (2 and 10 mg/kg) for 7 days. Administration of resveratrol decreased the ulcerative area and colon mass index; these effects were further supported by the reduction in colon inflammation grades, as well as histolopathological changes, and reflected by the stalling of body mass loss. The anti-inflammatory effects of resveratrol were indicated by lowered myeloperoxidase activity, and by suppressing ICAM-1 and VCAM-1 levels in the colon and serum. In addition, it restored a reduced colonic nitric oxide level and reinstated its redox balance, as evidenced by the suppression of lipid peroxides and prevention of glutathione depletion. The anti-ulcerative effect of the higher dose of resveratrol was comparable with those of sulphasalazine. The study confirms the anti-ulcerative effect of resveratrol in TNBS-induced experimental colitis via reduction of neutrophil infiltration, inhibition of adhesive molecules, and restoration of the nitric oxide level, as well as the redox status.

  6. Abciximab treatment in vitro after aspirin treatment in vivo has additive effects on platelet aggregation, ATP release, and P-selectin expression.

    PubMed

    Scazziota, A; Altman, R; Rouvier, J; Gonzalez, C; Ahmed, Z; Jeske, W P; Walenga, J M; Fareed, J

    2000-12-15

    To prevent arterial thrombosis, abciximab is administered together with aspirin. However, whether or not there are benefits to combine abciximab with aspirin is not yet well defined. Healthy volunteers were studied for the effect of aspirin + abciximab using sodium arachidonate and adenosine diphosphate (ADP) alone or in combination to induce platelet activation/aggregation. Abciximab produced complete inhibition of platelet aggregation induced with ADP but only 40% inhibition of aggregation induced by 0.75-mmol/l sodium arachidonate. Abciximab added in vitro to platelet-rich plasma (PRP) from platelets from aspirin-treated donors produced an almost complete inhibition of platelet aggregation. Aspirin, and abciximab alone, did not inhibit adenosine triphosphate (ATP) release as thoroughly as aspirin + abciximab did. Abciximab (3-5 microg/ml) produced inhibition of P-selectin expression induced with 5 (from 46.2 +/- 6.0% to 27.4 +/- 7.0%, P=0.002) and 20-micromol/l ADP (from 53.1 +/- 8.1% to 35.1 +/- 11.0%, P=0.019), but no effect was observed when 0.75-mmol/l sodium arachidonate was used (P=0.721). Aspirin diminished P-selectin expression in sodium arachidonate-stimulated platelets (from 77.7 +/- 11.8% to 40.2 +/- 3.6%, P<0.0001) in non-aspirinated and platelets from aspirin-treated donors, respectively. Abciximab (3, 4, and 5 microg/ml) added to platelets from aspirin-treated donors decreased P-selectin expression in platelets stimulated with sodium arachidonate from 40.2 +/- 8.6% to 25.6 +/- 11.5% (P=0.027), to 20.5 +/- 3.5% (P<0.0001), and to 22.5 +/- 1.8% (P<0.0001). We concluded that the antiplatelet effect of abciximab is greatly increased by aspirin.

  7. Junctional adhesion molecule (JAM)-C deficient C57BL/6 mice develop a severe hydrocephalus.

    PubMed

    Wyss, Lena; Schäfer, Julia; Liebner, Stefan; Mittelbronn, Michel; Deutsch, Urban; Enzmann, Gaby; Adams, Ralf H; Aurrand-Lions, Michel; Plate, Karl H; Imhof, Beat A; Engelhardt, Britta

    2012-01-01

    The junctional adhesion molecule (JAM)-C is a widely expressed adhesion molecule regulating cell adhesion, cell polarity and inflammation. JAM-C expression and function in the central nervous system (CNS) has been poorly characterized to date. Here we show that JAM-C(-/-) mice backcrossed onto the C57BL/6 genetic background developed a severe hydrocephalus. An in depth immunohistochemical study revealed specific immunostaining for JAM-C in vascular endothelial cells in the CNS parenchyma, the meninges and in the choroid plexus of healthy C57BL/6 mice. Additional JAM-C immunostaining was detected on ependymal cells lining the ventricles and on choroid plexus epithelial cells. Despite the presence of hemorrhages in the brains of JAM-C(-/-) mice, our study demonstrates that development of the hydrocephalus was not due to a vascular function of JAM-C as endothelial re-expression of JAM-C failed to rescue the hydrocephalus phenotype of JAM-C(-/-) C57BL/6 mice. Evaluation of cerebrospinal fluid (CSF) circulation within the ventricular system of JAM-C(-/-) mice excluded occlusion of the cerebral aqueduct as the cause of hydrocephalus development but showed the acquisition of a block or reduction of CSF drainage from the lateral to the 3(rd) ventricle in JAM-C(-/-) C57BL/6 mice. Taken together, our study suggests that JAM-C(-/-) C57BL/6 mice model the important role for JAM-C in brain development and CSF homeostasis as recently observed in humans with a loss-of-function mutation in JAM-C.

  8. Human cell adhesion molecules: annotated functional subtypes and overrepresentation of addiction-associated genes

    PubMed Central

    Zhong, Xiaoming; Drgonova, Jana; Li, Chuan-Yun; Uhl, George R.

    2015-01-01

    Human cell adhesion molecules (CAMs) are essential both for a) proper development, modulation and maintenance of interactions between cells and for b) cell-to-cell (and matrix-to-cell) communication about these interactions. CAMs are thus key to proper development and plasticity of organs and tissues that include the brain. Despite recognition of the existence of these dual CAM roles and appreciation of the differential functional significance of these roles, there have been surprisingly few systematic studies that have carefully enumerated the universe of CAMs, identified the preferred roles for specific CAMs in distinct types of cellular connections and communication, or related these issues to specific brain disorders or brain circuits. In this paper, we substantially update and review the set of human genes that are likely to encode CAMs based on searches of databases, literature reviews and annotations. We describe the likely CAMs and the functional CAM subclasses into which they fall. These include “iCAMs”, whose contacts largely mediate cell to cell communication, those involved in focal adhesions, CAM genes whose products are preferentially involved with stereotyped and morphologically-identifiable connections between cells (adherens junctions, gap junctions) and smaller numbers of genes in other classes. We discuss a novel proposed mechanism involving selective anchoring of the constituents of iCAM-containing lipid rafts in zones of close neuronal apposition to membranes expressing binding partners of these iCAMs. CAM data from genetic and genomic studies of addiction in humans and mouse models provide examples of the ways in which CAM variation is likely to contribute to a specific brain-based disorder. We discuss how differences in CAM splicing mediated by differences in the addiction-associated splicing regulator RBFOX1/A2BP1 could enrich this picture. CAM expression in dopamine neurons provides one of the ways in which variations in cell adhesion

  9. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri.

    PubMed

    Matsuo, Yosuke; Miyoshi, Yukihiro; Okada, Sanae; Satoh, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion.

  10. The Enhancement of Metallic Silver Monomer Evaporation by the Adhesion of Polar Molecules to Silver Nanocluster Ions

    DTIC Science & Technology

    1994-09-21

    POLAR MOLECULES TO SILVER NANOCLUSTER IONS by Clifton Fagerquist, Dilip K. Sensharma, Angel Rubio, Marvin L. Cohen and M. A. EI-Sayed Prepared for...MOLECULES TO SILVER NANOCLUSTER IONS Clifton K. Fagerquist#, Dilip K. Sensharma and Mostafa A. E1-Sayed* Department of Chemistry and Biochemistry...CZVERED 4. TITLE AND SUBTITLE S. .:UNO:NG :.UMBERS Tl1E ENANCDEET OF METALLIC SILVER MONOMER EVAPORATION .- 1 9Y THE ADHESION OF POLAR MOLECULES TO SILVER

  11. Expression of leukocyte-endothelial cell adhesion molecules on monocyte adhesion to human endothelial cells on plasma treated PET and PTFE in vitro.

    PubMed

    Pu, F R; Williams, R L; Markkula, T K; Hunt, J A

    2002-12-01

    We used a coculture model to evaluate the inflammatory potential of ammonia gas plasma modified PET and PTFE by flow cytometry and immunohistochemistry. In these studies, human endothelial cells from umbilical cord (HUVEC) and promonocytic U937 cells were used. HUVECs grown on polystyrene tissue culture coverslips and HUVECs stimulated with tumour necrosis factor (TNF-alpha) were used as controls. U937 adhesion to endothelium on each surface was evaluated at day 1 and day 7. To further investigate the role of leukocyte-endothelial cell adhesion molecules (CAMs) in cell-to-cell interaction on material surfaces, the expression of the leukocyte-endothelial CAMs: ICAM-1, VCAM-1, PECAM-1, and E-selectin on HUVECs were evaluated after U937 cell adhesion. The results demonstrated that plasma treated PET (T-PET) and treated PTFE (T-PTFE) did not increase U937 cell adhesion compared to the negative control. Maximal adhesion of U937 cells to HUVEC was observed on TNF-alpha stimulated endothelium with significant differences between day 1 and day 7, which is consistent with our prior observation that T-PET and T-PTFE did not cause HUVECs to increase the expression of adhesion molecules. After U937 cell adhesion, the expression of ICAM-1 and VCAM-1 of HUVECs were not different on T-PET and T-PTFE compared with the negative control. However, the expression of E-selectin was reduced on day 1, but not on day 7. The effects of plasma treated PET and PTFE on HUVEC adhesion and proliferation were also studied. On day 1 there were slight increases in the growth of HUVECs on both of T-PET and T-PTFE but this was not statistically significant. On day 7, the cell number increased significantly on the surfaces compared to the negative control. The results demonstrate that the plasma treatment of PET and PTFE with ammonia improves the adhesion and growth of endothelial cells and these surfaces do not exhibit a direct inflammatory effect in terms of monocyte adhesion and expression of

  12. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells.

    PubMed

    Stopp, Sabine; Bornhäuser, Martin; Ugarte, Fernando; Wobus, Manja; Kuhn, Matthias; Brenner, Sebastian; Thieme, Sebastian

    2013-04-01

    The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA interference or ectopic overexpression of the melanoma cell adhesion molecule in human mesenchymal stromal cells to evaluate the effect of the melanoma cell adhesion molecule on their proliferation and differentiation as well as its influence on co-cultivated hematopoietic stem and progenitor cells. Knockdown and overexpression of the melanoma cell adhesion molecule affected several characteristics of human mesenchymal stromal cells related to osteogenic differentiation, proliferation, and migration. Furthermore, knockdown of the melanoma cell adhesion molecule in human mesenchymal stromal cells stimulated the proliferation of hematopoietic stem and progenitor cells, and strongly reduced the formation of long-term culture-initiating cells. In contrast, melanoma cell adhesion molecule-overexpressing human mesenchymal stromal cells provided a supportive microenvironment for hematopoietic stem and progenitor cells. Expression of the melanoma cell adhesion molecule increased the adhesion of hematopoietic stem and progenitor cells to human mesenchymal stromal cells and their migration beneath the monolayer of human mesenchymal stromal cells. Our results demonstrate that the expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells determines their fate and regulates the maintenance of hematopoietic stem and progenitor cells through direct cell-cell contact.

  13. Histamine H4 receptor mediates eosinophil chemotaxis with cell shape change and adhesion molecule upregulation

    PubMed Central

    Ling, Ping; Ngo, Karen; Nguyen, Steven; Thurmond, Robin L; Edwards, James P; Karlsson, Lars; Fung-Leung, Wai-Ping

    2004-01-01

    During mast cell degranulation, histamine is released in large quantities. Human eosinophils were found to express histamine H4 but not H3 receptors. The possible effects of histamine on eosinophils and the receptor mediating these effects were investigated in our studies. Histamine (0.01–30 μM) induced a rapid and transient cell shape change in human eosinophils, but had no effects on neutrophils. The maximal shape change was at 0.3 μM histamine with EC50 at 19 nM. After 60 min incubation with 1 μM histamine, eosinophils were desensitized and were refractory to shape change response upon histamine restimulation. Histamine (0.01–1 μM) also enhanced the eosinophil shape change induced by other chemokines. Histamine-induced eosinophil shape change was mediated by the H4 receptor. This effect was completely inhibited by H4 receptor-specific antagonist JNJ 7777120 (IC50 0.3 μM) and H3/H4 receptor antagonist thioperamide (IC50 1.4 μM), but not by selective H1, H2 or H3 receptor antagonists. H4 receptor agonists imetit (EC50 25 nM) and clobenpropit (EC50 72 nM) could mimic histamine effect in inducing eosinophil shape change. Histamine (0.01–100 μM) induced upregulation of adhesion molecules CD11b/CD18 (Mac-1) and CD54 (ICAM-1) on eosinophils. This effect was mediated by the H4 receptor and could be blocked by H4 receptor antagonists JNJ 7777120 and thioperamide. Histamine (0.01–10 μM) induced eosinophil chemotaxis with an EC50 of 83 nM. This effect was mediated by the H4 receptor and could be blocked by H4 receptor antagonists JNJ 7777120 (IC50 86 nM) and thioperamide (IC50 519 nM). Histamine (0.5 μM) also enhanced the eosinophil shape change induced by other chemokines. In conclusion, we have demonstrated a new mechanism of eosinophil recruitment driven by mast cells via the release of histamine. Using specific histamine receptor ligands, we have provided a definitive proof that the H4 receptor mediates eosinophil chemotaxis, cell shape change and

  14. Epithelial Cell Adhesion Molecule (EpCAM) Regulates Claudin Dynamics and Tight Junctions* ♦

    PubMed Central

    Wu, Chuan-Jin; Mannan, Poonam; Lu, Michael; Udey, Mark C.

    2013-01-01

    Epithelial cell adhesion molecule (EpCAM) (CD326) is a surface glycoprotein expressed by invasive carcinomas and some epithelia. Herein, we report that EpCAM regulates the composition and function of tight junctions (TJ). EpCAM accumulated on the lateral interfaces of human colon carcinoma and normal intestinal epithelial cells but did not co-localize with TJ. Knockdown of EpCAM in T84 and Caco-2 cells using shRNAs led to changes in morphology and adhesiveness. TJ formed readily after EpCAM knockdown; the acquisition of trans-epithelial electroresistance was enhanced, and TJ showed increased resistance to disruption by calcium chelation. Preparative immunoprecipitation demonstrated that EpCAM bound tightly to claudin-7. Co-immunoprecipitation documented associations of EpCAM with claudin-7 and claudin-1 but not claudin-2 or claudin-4. Claudin-1 associated with claudin-7 in co-transfection experiments, and claudin-7 was required for association of claudin-1 with EpCAM. EpCAM knockdown resulted in decreases in claudin-7 and claudin-1 proteins that were reversed with lysosome inhibitors. Immunofluorescence microscopy revealed that claudin-7 and claudin-1 continually trafficked into lysosomes. Although EpCAM knockdown decreased claudin-1 and claudin-7 protein levels overall, accumulations of claudin-1 and claudin-7 in TJ increased. Physical interactions between EpCAM and claudins were required for claudin stabilization. These findings suggest that EpCAM modulates adhesion and TJ function by regulating intracellular localization and degradation of selected claudins. PMID:23486470

  15. Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles

    NASA Astrophysics Data System (ADS)

    Andersson, Magnus; Axner, Ove; Uhlin, Bernt Eric; Fällman, Erik

    2006-08-01

    Instrumentation and methodologies for single molecule force spectroscopy on bacterial adhesion organelles by the use of force measuring optical tweezers have been developed. A thorough study of the biomechanical properties of fimbrial adhesion organelles expressed by uropathogenic E. coli, so-called pili, is presented. Steady-state as well as dynamic force measurements on P pili, expressed by E. coli causing pyelonephritis, have revealed, among other things, various unfolding and refolding properties of the helical structure of P pili, the PapA rod. Based on these properties an energy landscape model has been constructed by which specific biophysical properties of the PapA rod have been extracted, e.g. the number of subunits, the length of a single pilus, bond lengths and activation energies for bond opening and closure. Moreover, long time repetitive measurements have shown that the rod can be unfolded and refolded repetitive times without losing its intrinsic properties. These properties are believed to be of importance for the bacteria's ability to maintain close contact with host cells during initial infections. The results presented are considered to be of importance for the field of biopolymers in general and the development of new pharmaceuticals towards urinary tract infections in particular. The results show furthermore that the methodology can be used to gain knowledge of the intrinsic biomechanical function of adhesion organelles. The instrumentation is currently used for characterization of type 1 pili, expressed by E. coli causing cystitis, i.e. infections in the bladder. The first force spectrometry investigations of these pili will be presented.

  16. Expression changes of nerve cell adhesion molecules L1 and semaphorin 3A after peripheral nerve injury

    PubMed Central

    He, Qian-ru; Cong, Meng; Chen, Qing-zhong; Sheng, Ya-feng; Li, Jian; Zhang, Qi; Ding, Fei; Gong, Yan-pei

    2016-01-01

    The expression of nerve cell adhesion molecule L1 in the neuronal growth cone of the central nervous system is strongly associated with the direction of growth of the axon, but its role in the regeneration of the peripheral nerve is still unknown. This study explored the problem in a femoral nerve section model in rats. L1 and semaphorin 3A mRNA and protein expressions were measured over the 4-week recovery period. Quantitative polymerase chain reaction showed that nerve cell adhesion molecule L1 expression was higher in the sensory nerves than in motor nerves at 2 weeks after injury, but vice versa for the expression of semaphorin 3A. Western blot assay results demonstrated that nerve cell adhesion molecule L1 expression was higher in motor nerves than in the sensory nerves at the proximal end after injury, but its expression was greater in the sensory nerves at 2 weeks. Semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 3 days and 1 week after injury. Nerve cell adhesion molecule L1 and semaphorin 3A expressions at the distal end were higher in the motor nerves than in the sensory nerves at 3 days, 1 and 2 weeks. Immunohistochemical staining results showed that nerve cell adhesion molecule L1 expression at the proximal end was greater in the sensory nerves than in the motor nerves; semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 2 weeks after injury. Taken together, these results indicated that nerve cell adhesion molecules L1 and semaphorin 3A exhibited different expression patterns at the proximal and distal ends of sensory and motor nerves, and play a coordinating role in neural chemotaxis regeneration. PMID:28197202

  17. Hydrogen sulfide augments neutrophil migration through enhancement of adhesion molecule expression and prevention of CXCR2 internalization: role of ATP-sensitive potassium channels.

    PubMed

    Dal-Secco, Daniela; Cunha, Thiago M; Freitas, Andressa; Alves-Filho, José Carlos; Souto, Fabrício O; Fukada, Sandra Y; Grespan, Renata; Alencar, Nylane M N; Neto, Alberto F; Rossi, Marcos A; Ferreira, Sérgio H; Hothersall, John S; Cunha, Fernando Q

    2008-09-15

    In this study, we have addressed the role of H(2)S in modulating neutrophil migration in either innate (LPS-challenged naive mice) or adaptive (methylated BSA (mBSA)-challenged immunized mice) immune responses. Treatment of mice with H(2)S synthesis inhibitors, dl-propargylglycine (PAG) or beta-cyanoalanine, reduced neutrophil migration induced by LPS or methylated BSA (mBSA) into the peritoneal cavity and by mBSA into the femur/tibial joint of immunized mice. This effect was associated with decreased leukocyte rolling, adhesion, and P-selectin and ICAM-1 expression on endothelium. Predictably, treatment of animals with the H(2)S donors, NaHS or Lawesson's reagent, enhanced these parameters. Moreover, the NaHS enhancement of neutrophil migration was not observed in ICAM-1-deficient mice. Neither PAG nor NaHS treatment changed LPS-induced CD18 expression on neutrophils, nor did the LPS- and mBSA-induced release of neutrophil chemoattractant mediators TNF-alpha, keratinocyte-derived chemokine, and LTB(4). Furthermore, in vitro MIP-2-induced neutrophil chemotaxis was inhibited by PAG and enhanced by NaHS treatments. Accordingly, MIP-2-induced CXCR2 internalization was enhanced by PAG and inhibited by NaHS treatments. Moreover, NaHS prevented MIP-2-induced CXCR2 desensitization. The PAG and NaHS effects correlated, respectively, with the enhancement and inhibition of MIP-2-induced G protein-coupled receptor kinase 2 expression. The effects of NaHS on neutrophil migration both in vivo and in vitro, together with CXCR2 internalization and G protein-coupled receptor kinase 2 expression were prevented by the ATP-sensitive potassium (K(ATP)(+)) channel blocker, glybenclamide. Conversely, diazoxide, a K(ATP)(+) channel opener, increased neutrophil migration in vivo. Together, our data suggest that during the inflammatory response, H(2)S augments neutrophil adhesion and locomotion, by a mechanism dependent on K(ATP)(+) channels.

  18. Association of Cell Adhesion Molecules Contactin-6 and Latrophilin-1 Regulates Neuronal Apoptosis

    PubMed Central

    Zuko, Amila; Oguro-Ando, Asami; Post, Harm; Taggenbrock, Renske L. R. E.; van Dijk, Roland E.; Altelaar, A. F. Maarten; Heck, Albert J. R.; Petrenko, Alexander G.; van der Zwaag, Bert; Shimoda, Yasushi; Pasterkamp, R. Jeroen; Burbach, J. Peter H.

    2016-01-01

    In view of important neurobiological functions of the cell adhesion molecule contactin-6 (Cntn6) that have emerged from studies on null-mutant mice and autism spectrum disorders patients, we set out to examine pathways underlying functions of Cntn6 using a proteomics approach. We identified the cell adhesion GPCR latrophilin-1 (Lphn1, a.k.a. CIRL1/CL, ADGRL1) as a binding partner for Cntn6 forming together a heteromeric cis-complex. Lphn1 expression in cultured neurons caused reduction in neurite outgrowth and increase in apoptosis, which was rescued by coexpression of Cntn6. In cultured neurons derived from Cntn6-/- mice, Lphn1 knockdown reduced apoptosis, suggesting that the observed apoptosis was Lphn1-dependent. In line with these data, the number of apoptotic cells was increased in the cortex of Cntn6-/- mice compared to wild-type littermate controls. These results show that Cntn6 can modulate the activity of Lphn1 by direct binding and suggests that Cntn6 may prevent apoptosis thereby impinging on neurodevelopment. PMID:28018171

  19. L1 CELL ADHESION MOLECULE IS NEUROPROTECTIVE OF ALCOHOL INDUCED CELL DEATH

    PubMed Central

    Gubitosi-Klug, Rose; Larimer, Corena G.; Bearer, Cynthia F.

    2009-01-01

    L1 cell adhesion molecule (L1), a protein critical for appropriate development of the central nervous system, is a target for ethanol teratogenicity. Ethanol inhibits both L1 mediated cell adhesion as well as L1 mediated neurite outgrowth. L1 has been shown to increase cell survival in cerebellar granule cells while ethanol has been shown to increase cell death. We sought to determine if L1 protected cells from ethanol induced cell death. Cerebellar granule cells from postnatal day 6 rat pups were cultured on either poly L-lysine with or without an L1 substratum. Alcohol was added at 2 hours post plating and cell survival was measured at various times. L1 substratum significantly increased cell survival at 72 and 120 hours. Ethanol significantly reduced cell survival at 48 hours, with no effect at 72 or 120 hours, both in the presence and absence of L1. At 48 hours, L1 significantly increased cell survival in the presence of ethanol. We conclude that ethanol interferes with processes other than L1-L1 interactions in causing cell death, and that ethanol effects would be more severe in the absence of L1. PMID:17267039

  20. The cell adhesion molecule nectin-1 is critical for normal enamel formation in mice

    PubMed Central

    Barron, Martin J.; Brookes, Steven J.; Draper, Clare E.; Garrod, David; Kirkham, Jennifer; Shore, Roger C.; Dixon, Michael J.

    2008-01-01

    Nectin-1 is a member of a sub-family of immunoglobulin-like adhesion molecules and a component of adherens junctions. In the current study, we have shown that mice lacking nectin-1 exhibit defective enamel formation in their incisor teeth. Although the incisors of nectin-1-null mice were hypomineralized, the protein composition of the enamel matrix was unaltered. While strong immunostaining for nectin-1 was observed at the interface between the maturation-stage ameloblasts and the underlying cells of the stratum intermedium (SI), its absence in nectin-1-null mice correlated with separation of the cell layers at this interface. Numerous, large desmosomes were present at this interface in wild-type mice; however, where adhesion persisted in the mutant mice, the desmosomes were smaller and less numerous. Nectins have been shown to regulate tight junction formation; however, this is the first report showing that they may also participate in the regulation of desmosome assembly. Importantly, our results show that integrity of the SI–ameloblast interface is essential for normal enamel mineralization. PMID:18703497

  1. PRIMING EFFECT OF HOMOCYSTEINE ON INDUCIBLE VASCULAR CELL ADHESION MOLECULE-1 EXPRESSION IN ENDOTHELIAL CELLS

    PubMed Central

    Séguin, Chantal; Abid, Md. Ruhul; Spokes, Katherine C.; Schoots, Ivo G; Brkovic, Alexandre; Sirois, Martin G.; Aird, William C.

    2017-01-01

    Hyperhomocysteinemia is an independent risk factor for the development of atherosclerosis, as well as for arterial and venous thrombosis. However, the mechanisms through which elevated circulating levels of homocysteine cause vascular injury and promote thrombosis remain unclear. Here, we tested the hypothesis that homocysteine (Hcy) sensitizes endothelial cells to the effect of inflammatory mediators. Human umbilical vein endothelial cells (HUVEC) were incubated with Hcy 1.0 mM for varying time points, and then treated in the absence or presence of 1.5 U/ml thrombin or 10 ng/ml lipopolysaccharide (LPS). Hcy alone had no effect on the expression of vascular cell adhesion molecule (VCAM)-1. However, Hcy enhanced thrombin- and LPS-mediated induction of VCAM-1 mRNA and protein levels. Consistent with these results, pretreatment of HUVEC with Hcy resulted in a two-fold increase in LSP-mediated induction of leukocyte adhesion. The latter effect was significantly inhibited by anti-VCAM-1 antibodies. Together, these findings suggest that Hcy sensitizes HUVEC to the effect of inflammatory mediators thrombin and LPS, at least in part through VCAM-1 expression and function. PMID:18406566

  2. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation

    SciTech Connect

    Capkovic, Katie L.; Stevenson, Severin; Johnson, Marc C.; Thelen, Jay J.; Cornelison, D.D.W.

    2008-04-15

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression.

  3. Chick neural retina adhesion and survival molecule is a retinol-binding protein

    SciTech Connect

    Schubert, D.; LaCorbiere, M.; Esch, F.

    1986-01-01

    A 20,000-D protein called purpurin has recently been isolated from the growth-conditioned medium of cultured embryonic chick neural retina cells. Purpurin is a constituent of adherons and promotes cell-adheron adhesion by interacting with a cell surface heparan sulfate proteoglycan. It also prolongs the survival of cultured neural retina cells. This paper shows that purpurin is a secretory protein that has sequence homology with a human protein synthesized in the liver that transports retinol in the blood, the serum retinol-binding protein (RBP). Purpurin binds (/sup 3/H)retinol, and both purpurin and chick serum RBP stimulate the adhesion of neural retina cells, although the serum protein is less active than purpurin. Purpurin and the serum RBP are, however, different molecules, for the serum protein is approx.3.000 D larger than purpurin and has different silver-staining characteristics. Finally, purpurin supports the survival of dissociated ciliary ganglion cells, indicating that RBPs can act as ciliary neurotrophic factors.

  4. Interactions between intercellular adhesion molecule-5 positive elements and their surroundings in the rodent visual cortex.

    PubMed

    Kelly, Emily A; Tremblay, Marie-Ève; Gahmberg, Carl G; Tian, Li; Majewska, Ania K

    2013-11-01

    The telencephalon-associated intercellular adhesion molecule 5 (Telencephalin; ICAM-5) regulates dendritic maturation, a process dependent on extracellular proteases in the developing brain. Using transmission electron microscopy, we have reported previously that ICAM-5 is localized primarily in dendritic protrusions during a period of robust synaptogenesis (P14 in mouse visual cortex). As dendritic protrusions mature (P28), ICAM-5 immuno-reactivity shifts from dendritic protrusions into dendritic shafts. ICAM-5 immuno-reactivity does not shift in animals lacking the matrix metalloproteinase-9 (MMP-9), a protease shown to regulate ICAM-5 cleavage. Cleaved ICAM-5 (soluble fraction; sICAM-5) has been shown to bind to a number of receptors located in neighboring structures, resulting in a variety of downstream signaling events, including enhanced neurotransmission. Here, we investigated the potential MMP-regulated ICAM-5 signaling by examining the relationship between ICAM-5 immuno-positive elements and the structures that directly neighbor them.

  5. Toxoplasma gondii tachyzoites cross retinal endothelium assisted by intercellular adhesion molecule-1 in vitro.

    PubMed

    Furtado, João M; Bharadwaj, Arpita S; Chipps, Timothy J; Pan, Yuzhen; Ashander, Liam M; Smith, Justine R

    2012-10-01

    Retinal infection is the most common clinical manifestation of toxoplasmosis. The route by which circulating Toxoplasma gondii tachyzoites cross the vascular endothelium to enter the human retina is unknown. Convincing studies using murine encephalitis models have strongly implicated leukocyte taxis as one pathway used by the parasite to access target organs. To establish whether tachyzoites might also interact directly with vascular endothelium, we populated a transwell system with human ocular endothelial cells. Human retinal endothelial monolayers permitted transmigration of tachyzoites of RH and three natural isolate strains. Antibody blockade of intercellular adhesion molecule-1 significantly reduced this migration, but did not impact tachyzoite movement across an endothelial monolayer derived from the choroid, which lies adjacent to the retina within the eye. In demonstrating that tachyzoites are capable of independent migration across human vascular endothelium in vitro, this study carries implications for the development of therapeutics aimed at preventing access of T. gondii to the retina.

  6. Effects of Gravitational Mechanical Unloading in Endothelial Cells: Association between Caveolins, Inflammation and Adhesion Molecules

    PubMed Central

    Grenon, S. Marlene; Jeanne, Marion; Aguado-Zuniga, Jesus; Conte, Michael S.; Hughes-Fulford, Millie

    2013-01-01

    Mechanical forces including gravity affect endothelial cell (ECs) function, and have been implicated in vascular disease as well as physiologic changes associated with low gravity environments. The goal of this study was to investigate the impact of gravitational mechanical unloading on ECs phenotype as determined by patterns of gene expression. Human umbilical vascular endothelial cells were exposed to 1-gravity environment or mechanical unloading (MU) for 24 hours, with or without periods of mechanical loading (ML). MU led to a significant decrease in gene expression of several adhesion molecules and pro-inflammatory cytokines. On the contrary, eNOS, Caveolin-1 and -2 expression were significantly increased with MU. There was a decrease in the length and width of the cells with MU. Addition of ML during the MU period was sufficient to reverse the changes triggered by MU. Our results suggest that gravitational loading could dramatically affect vascular endothelial cell function. PMID:23511048

  7. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo.

    PubMed

    Woodfin, Abigail; Voisin, Mathieu-Benoit; Beyrau, Martina; Colom, Bartomeu; Caille, Dorothée; Diapouli, Frantzeska-Maria; Nash, Gerard B; Chavakis, Triantafyllos; Albelda, Steven M; Rainger, G Ed; Meda, Paolo; Imhof, Beat A; Nourshargh, Sussan

    2011-06-26

    The migration of neutrophils into inflamed tissues is a fundamental component of innate immunity. A decisive step in this process is the polarized migration of blood neutrophils through endothelial cells (ECs) lining the venular lumen (transendothelial migration (TEM)) in a luminal-to-abluminal direction. By real-time confocal imaging, we found that neutrophils had disrupted polarized TEM ('hesitant' and 'reverse') in vivo. We noted these events in inflammation after ischemia-reperfusion injury, characterized by lower expression of junctional adhesion molecule C (JAM-C) at EC junctions, and they were enhanced by blockade or genetic deletion of JAM-C in ECs. Our results identify JAM-C as a key regulator of polarized neutrophil TEM in vivo and suggest that reverse TEM of neutrophils can contribute to the dissemination of systemic inflammation.

  8. Neutrophil and monocyte adhesion molecules in bronchopulmonary dysplasia, and effects of corticosteroids

    PubMed Central

    Ballabh, P; Simm, M; Kumari, J; Krauss, A; Jain, A; Califano, C; Lesser, M; Cunningham-Rundle..., S

    2004-01-01

    Aims: To study a longitudinal change in the expression of adhesion molecules CD11b, CD18, and CD62L on neutrophils and monocytes in very low birth weight babies who develop respiratory distress syndrome, to compare these levels between bronchopulmonary dysplasia (BPD) and non-BPD infants, and to assess the effect of corticosteroid treatment on these adhesion molecules. Methods: Of 40 eligible neonates, 11 neonates were oxygen dependent at 36 weeks (BPD 36 weeks), 16 infants were oxygen dependent at 28 days, but not at 36 weeks (BPD d28), and 13 infants did not develop BPD. Seventeen neonates received a six day course of steroid treatment. Expression of CD11b, CD18, and CD62L was measured on neutrophils and monocytes in arterial blood on days 1, 3, 7, 14, 21, and 28, and before and 2–3 days after initiation of dexamethasone treatment by flow cytometry. Results: CD18 expression on neutrophils and monocytes and CD62L on neutrophils, measured as mean fluorescent intensity, was significantly decreased in BPD neonates compared to non-BPD neonates on days 1–28. Dexamethasone treatment significantly decreased CD11b, CD18, and CD62L expression on neutrophils, and CD11b and CD18L expression on monocytes. Conclusions: Decreased CD18 expression on neutrophils and monocytes, and decreased CD62L expression on neutrophils, measured as mean fluorescent intensity during the first four weeks of life in micropremies may be risk factors and early predictors of BPD. Dexamethasone use was associated with decreased expression of CD11b, CD18, and CD62L. PMID:14711863

  9. Intercellular adhesion molecule-1 (ICAM-1) expression is upregulated in autoimmune murine lupus nephritis.

    PubMed Central

    Wuthrich, R. P.; Jevnikar, A. M.; Takei, F.; Glimcher, L. H.; Kelley, V. E.

    1990-01-01

    Intercellular adhesion molecule-1 (ICAM-1) is a cell-surface protein regulating interactions among immune cells. To determine whether altered expression of ICAM-1 occurs in autoimmune lupus nephritis, we studied ICAM-1 expression in kidneys of normal and autoimmune MRL-lpr and (NZBX NZW)F1 (NZB/W) mice. By immunoperoxidase staining, ICAM-1 is constitutively expressed at low levels in proximal tubules (PT), endothelium and interstitial cells in normal C3H/FeJ mice. In nephritic MRL-lpr and NZB/W kidneys, staining for ICAM-1 is increased in the PT, particularly in the brush border, and is prominent in the glomerular mesangium and the endothelium of large vessels. By Western blot analysis, ICAM-1 is not detected in the urine of normal BALB/c and C3H/FeJ or autoimmune MRL-lpr. By Northern blot analysis, nephritic MRL-lpr and NZB/W have a two- to fivefold increase in steady state levels of ICAM-1 transcripts in the kidney as compared with normal or prenephritic mice. This is paralleled by an increase in MHC class II transcripts. In cultured PT cells, ICAM-1 is expressed at basal levels in PT and is increased by the cytokines interferon-gamma, IL-1 alpha, and TNF-alpha. Thus cytokine-mediated upregulation of ICAM-1 in lupus nephritis may promote interaction of immune cells with renal tissue. The predominant apical expression of ICAM-1 opposite to the basolateral Ia expression suggests a novel role for this adhesion molecule in PT. Images Figure 1 Figure 2 Figure 3 Figure 6 Figure 7 PMID:1968316

  10. The Neuroplastin adhesion molecules: key regulators of neuronal plasticity and synaptic function.

    PubMed

    Beesley, Philip W; Herrera-Molina, Rodrigo; Smalla, Karl-Heinz; Seidenbecher, Constanze

    2014-11-01

    The Neuroplastins Np65 and Np55 are neuronal and synapse-enriched immunoglobulin superfamily molecules that play important roles in a number of key neuronal and synaptic functions including, for Np65, cell adhesion. In this review we focus on the physiological roles of the Neuroplastins in promoting neurite outgrowth, regulating the structure and function of both inhibitory and excitatory synapses in brain, and in neuronal and synaptic plasticity. We discuss the underlying molecular and cellular mechanisms by which the Neuroplastins exert their physiological effects and how these are dependent upon the structural features of Np65 and Np55, which enable them to bind to a diverse range of protein partners. In turn this enables the Neuroplastins to interact with a number of key neuronal signalling cascades. These include: binding to and activation of the fibroblast growth factor receptor; Np65 trans-homophilic binding leading to activation of p38 MAPK and internalization of glutamate (GluR1) receptor subunits; acting as accessory proteins for monocarboxylate transporters, thus affecting neuronal energy supply, and binding to GABAA α1, 2 and 5 subunits, thus regulating the composition and localization of GABAA receptors. An emerging theme is the role of the Neuroplastins in regulating the trafficking and subcellular localization of specific binding partners. We also discuss the involvement of Neuroplastins in a number of pathophysiological conditions, including ischaemia, schizophrenia and breast cancer and the role of a single nucleotide polymorphism in the human Neuroplastin (NPTN) gene locus in impairment of cortical development and cognitive functions. Neuroplastins are neuronal cell adhesion molecules, which induce neurite outgrowth and play important roles in synaptic maturation and plasticity. This review summarizes the functional implications of Neuroplastins for correct synaptic membrane protein localization, neuronal energy supply, expression of LTP and LTD

  11. Soluble Adhesion Molecules in Patients Coinfected with HIV and HCV: A Predictor of Outcome

    PubMed Central

    Aldámiz-Echevarría, Teresa; Berenguer, Juan; Miralles, Pilar; Jiménez-Sousa, María A.; Carrero, Ana; Pineda-Tenor, Daniel; Díez, Cristina; Tejerina, Francisco; Pérez-Latorre, Leire; Bellón, José M.; Resino, Salvador

    2016-01-01

    Background Higher serum levels of adhesion molecules (sICAM-1 and sVCAM-1) are associated with advanced liver fibrosis in patients coinfected with human immunodeficiency virus and hepatitis C virus. We assessed the relationship between serum levels of adhesion molecules and liver-related events (LRE) or death, in coinfected patients. Methods We studied clinical characteristics and outcomes of 182 coinfected patients with a baseline liver biopsy (58 with advanced fibrosis) and simultaneous plasma samples who were followed for median of 9 years. We used receiver-operating characteristic (ROC) curves to calculate optimized cutoff values (OCV) of sICAM-1 and sVCAM-1, defined as the values with the highest combination of sensitivity and specificity for LRE. We used multivariate regression analysis to test the association between OCVs of sICAM-1 and sVCAM-1 and outcomes. The variables for adjustment were age, HIV transmission category, liver fibrosis, baseline CD4+ T-cell counts, antiretroviral therapy, and sustained virologic response (SVR). Results During the study period 51 patients had SVR, 19 had LRE, and 16 died. The OCVs for LRE were 5.68 Log pg/mL for sICAM-1 and 6.25 Log pg/mL for sVCAM-1, respectively. The adjusted subhazard ratio (aSHR) (95% confidence interval [CI]) of death or LRE, whichever occurred first, for sICAM-1 and sVCAM-1 > OCV were 3.98 ([1.14; 13.89], P = 0.030) and 2.81 ([1.10; 7.19], respectively (P = 0.030). Conclusions Serum levels of sICAM-1 and sVCAM-1 can serve as markers of outcome in HIV/HCV-coinfected patients. Therapies targeting necroinflammatory damage and fibrogenesis may have a role in the management chronic hepatitis C. PMID:26849641

  12. Neural cell adhesion molecule expression in dilated cardiomyopathy is associated with intramyocardial inflammation and hypertrophy.

    PubMed

    Ostermann, Karsten; Schultheiss, Heinz-Peter; Noutsias, Michel

    2017-03-18

    Chronic intramyocardial inflammation (inflammatory cardiomyopathy/DCMi) is linked to the pathogenesis of dilated cardiomyopathy (DCM). Neural cell adhesion molecule (NCAM) is involved in orchestrating cardiac muscle morphogenesis, but is down-regulated after embryogenesis. We investigated NCAM expression in adult DCM hearts, its possible association with DCMi-parameters, and with cardiomyocyte hypertrophy (CMH). Endomyocardial biopsies (EMBs) from DCM patients (n=85; n=37 females; age: 48±19years; LVEF <40%) and controls from non-cardiac deaths were immunostained for DCMi markers and for NCAM expression, and quantified by digital image analysis (DIA). NCAM expression on the intercalated discs and the sarcolemma was confirmed in n=46 (54%) of the DCM-EMBs. In the 17 controls, NCAM expression was confined to scattered intramyocardial nerves, but was absent on cardiomyocytes. DIA-quantified area fraction (AF) of NCAM was significantly (p=0.0001) higher in the DCM hearts (0.0044±0.017) compared with the controls (0.0006±0.0004). Multivariate analysis of DIA-quantified NCAM-AF revealed significant associations with infiltrates (CD18(+), CD11a/LFA-1(+), CD11b/Mac-1(+), TNFα(+), CD3(+)) and with endothelial cell adhesion molecules (CAM; CD54/ICAM-1 and CD29; p<0.05). The mean cardiomyocyte diameter (MCD) correlated highly significantly (p<0.01) with NCAM-AF, ICAM-1-AF, CD29-AF, CD18(+) and TNFa(+) infiltrates, and was associated less significantly (p<0.05) with CD3(+), CD11a/LFA-1(+), and CD11b/Mac-1(+) infiltrates. In conclusion, NCAM-expression in ca. 50% of adult DCM hearts is associated with CMH, and may be induced by inflammatory pathways.

  13. The effect of iron treatment on adhesion molecules in patients with iron deficiency anemia.

    PubMed

    Yuksel, Arif; Kebapcilar, Levent; Erdur, Erkan; Bozkaya, Giray; Sari, Ismail; Alacacioglu, Ahmet; Kebapcilar, Ayse Gul; Sop, Gulten

    2010-12-01

    The present study was aimed to determine the effect of iron supplementation on levels of soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) in patients with iron deficiency anemia (IDA). In this study, 26 female patients diagnosed with iron deficiency were treated approximately 3 months of oral iron supplementation (99 ± 10 days; ferrous glycine sulfate; 100 mg/day of elemental iron). Levels of sICAM-1 and sVCAM-1 were assessed prior to treatment and after approximately 3 months of treatment and compared with 26 healthy female subjects. A significant increase in sVCAM levels was found in the patients with iron deficiency at the end of the treatment relative to pretreatment levels compared to controls, whereas no significant differences were determined in sICAM levels. In the posttreatment period, no significant change was observed in sICAM levels compared to the pretreatment levels, whereas sVCAM levels decreased. However, after the treatment period, the sVCAM, hemoglobin, mean corpuscular volume (MCV), and serum ferritin levels did not return to the normal range compared to the controls. Pretreatment sVCAM-1 levels were inversely correlated with levels of hemoglobin, hemotocrit, MCV, serum iron, and ferritin. After treatment, the sVCAM-1 levels were negatively correlated with ferritin levels. Levels of sVCAM were significantly higher in patients with IDA than controls. After the treatment period, the sVCAM levels were not completely normalized in patients with IDA compared to controls, regardless of the presence of inadequate levels of hemoglobin, MCV, and serum ferritin. Thus, iron supplementation not only ameliorates anemia, but may also reduce the inflammation markers in cases with IDA.

  14. Cyclosporin A reduces expression of adhesion molecules in the kidney of rats with chronic serum sickness

    PubMed Central

    Rincón, J; Parra, G; Quiroz, Y; Benatuil, L; Rodríguez-Iturbe, B

    2000-01-01

    Treatment with cyclosporin A (CsA) improves proteinuria and reduces renal cellular infiltration in chronic serum sickness (CSS). We examined if these effects were associated with a reduced renal expression of CD54 and its ligands, interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α) and MHC class II molecules. We studied two groups of rats in which CSS was induced by daily injections of ovalbumin (OVA): a group treated with CsA (OVA.CsA group, n = 11) and a group that received no treatment (OVA.CSS group, n = 11). An additional group of five rats (control group) received only phosphate buffer. Immunostaining techniques were used to follow CSS and to study the expression of CD54, CD18, CD11b/c, IFN-γ, TNF-α and MHC class molecules. Proteinuria (mg/24 h) was reduced from 248·2 ± 73·1 (OVA.CCS group) to 14·5 ± 13·1 with CsA treatment (P < 0·0001). The renal expression of CD54 and its ligands (CD18 and CD11b/c) was reduced by 50% to 75%. Correspondingly, there was a 60% to 85% reduction in the number of infiltrating leucocytes. The number of cells expressing TNF-α, IFN-γ and MHC II molecules was also reduced. CsA reduces expression of CD54 and its ligands. This effect is associated with a reduction of cellular infiltration, IFN-γ, TNF-α-producing cells and with MHC II expression in the kidney. These findings suggest that expression of adhesion molecules plays a critical role in CSS and underline the importance of cellular immunity in this experimental model. PMID:10931158

  15. 5,7-Dihydroxy-3,4,6-trimethoxyflavone inhibits intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 via the Akt and nuclear factor-κB-dependent pathway, leading to suppression of adhesion of monocytes and eosinophils to bronchial epithelial cells.

    PubMed

    Jung, Jireh; Ko, Su H; Yoo, Do Y; Lee, Jin Y; Kim, Yeong-Jeon; Choi, Seul M; Kang, Kyung K; Yoon, Ho J; Kim, Hyeyoung; Youn, Jeehee; Kim, Jung M

    2012-09-01

    5,7-Dihydroxy-3',4',6'-trimethoxyflavone (eupatilin), the active pharmacological ingredient from Artemisia asiatica Nakai (Asteraceae), is reported to have a variety of anti-inflammatory properties in intestinal epithelial cells. However, little information is known about the molecular mechanism of eupatilin-induced attenuation of bronchial epithelial inflammation. This study investigates the role of eupatilin in the adhesion of inflammatory cells such as monocytes and eosinophils to bronchial epithelial cells. Stimulation of a human bronchial epithelial cell line (BEAS-2B) with tumour necrosis factor-α (TNF-α) increased the expression of surface adhesion molecules, including intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in which eupatilin significantly inhibited the expression of those adhesion molecules in a dose-dependent manner. Eupatilin suppressed the TNF-α-induced activation of IκBα and nuclear factor-κB (NF-κB) signals in BEAS-2B cells. The IκB kinase (IKK) activation was also significantly reduced in eupatilin-pre-treated BEAS-2B and primary normal human bronchial epithelial (NHBE) cells. However, eupatilin did not influence AP-1 activity in TNF-α-stimulated cells. Suppression of NF-κB signalling induced by eupatilin resulted in the inhibition of the expression of adhesion molecules and the adhesion of monocytes and eosinophils to BEAS-2B cells. Furthermore, eupatilin suppressed the phosphorylation of Akt in TNF-α-stimulated BEAS-2B and NHBE cells, leading to down-regulation of NF-κB activation and adhesion molecule expression and finally to suppression of the inflammatory cell adhesion to epithelial cells. These results suggest that eupatilin can inhibit the adhesion of inflammatory cells to bronchial epithelial cells via a signalling pathway, including activation of Akt and NF-κB, as well as expression of adhesion molecules.

  16. 5,7-Dihydroxy-3,4,6-trimethoxyflavone inhibits intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 via the Akt and nuclear factor-κB-dependent pathway, leading to suppression of adhesion of monocytes and eosinophils to bronchial epithelial cells

    PubMed Central

    Jung, Jireh; Ko, Su H; Yoo, Do Y; Lee, Jin Y; Kim, Yeong-Jeon; Choi, Seul M; Kang, Kyung K; Yoon, Ho J; Kim, Hyeyoung; Youn, Jeehee; Kim, Jung M

    2012-01-01

    5,7-Dihydroxy-3′,4′,6′-trimethoxyflavone (eupatilin), the active pharmacological ingredient from Artemisia asiatica Nakai (Asteraceae), is reported to have a variety of anti-inflammatory properties in intestinal epithelial cells. However, little information is known about the molecular mechanism of eupatilin-induced attenuation of bronchial epithelial inflammation. This study investigates the role of eupatilin in the adhesion of inflammatory cells such as monocytes and eosinophils to bronchial epithelial cells. Stimulation of a human bronchial epithelial cell line (BEAS-2B) with tumour necrosis factor-α (TNF-α) increased the expression of surface adhesion molecules, including intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in which eupatilin significantly inhibited the expression of those adhesion molecules in a dose-dependent manner. Eupatilin suppressed the TNF-α-induced activation of IκBα and nuclear factor-κB (NF-κB) signals in BEAS-2B cells. The IκB kinase (IKK) activation was also significantly reduced in eupatilin-pre-treated BEAS-2B and primary normal human bronchial epithelial (NHBE) cells. However, eupatilin did not influence AP-1 activity in TNF-α-stimulated cells. Suppression of NF-κB signalling induced by eupatilin resulted in the inhibition of the expression of adhesion molecules and the adhesion of monocytes and eosinophils to BEAS-2B cells. Furthermore, eupatilin suppressed the phosphorylation of Akt in TNF-α-stimulated BEAS-2B and NHBE cells, leading to down-regulation of NF-κB activation and adhesion molecule expression and finally to suppression of the inflammatory cell adhesion to epithelial cells. These results suggest that eupatilin can inhibit the adhesion of inflammatory cells to bronchial epithelial cells via a signalling pathway, including activation of Akt and NF-κB, as well as expression of adhesion molecules. PMID:22862554

  17. Hydroxycarbamide decreases sickle reticulocyte adhesion to resting endothelium by inhibiting endothelial lutheran/basal cell adhesion molecule (Lu/BCAM) through phosphodiesterase 4A activation.

    PubMed

    Chaar, Vicky; Laurance, Sandrine; Lapoumeroulie, Claudine; Cochet, Sylvie; De Grandis, Maria; Colin, Yves; Elion, Jacques; Le Van Kim, Caroline; El Nemer, Wassim

    2014-04-18

    Vaso-occlusive crises are the main acute complication in sickle cell disease. They are initiated by abnormal adhesion of circulating blood cells to vascular endothelium of the microcirculation. Several interactions involving an intricate network of adhesion molecules have been described between sickle red blood cells and the endothelial vascular wall. We have shown previously that young sickle reticulocytes adhere to resting endothelial cells through the interaction of α4β1 integrin with endothelial Lutheran/basal cell adhesion molecule (Lu/BCAM). In the present work, we investigated the functional impact of endothelial exposure to hydroxycarbamide (HC) on this interaction using transformed human bone marrow endothelial cells and primary human pulmonary microvascular endothelial cells. Adhesion of sickle reticulocytes to HC-treated endothelial cells was decreased despite the HC-derived increase of Lu/BCAM expression. This was associated with decreased phosphorylation of Lu/BCAM and up-regulation of the cAMP-specific phosphodiesterase 4A expression. Our study reveals a novel mechanism for HC in endothelial cells where it could modulate the function of membrane proteins through the regulation of phosphodiesterase expression and cAMP-dependent signaling pathways.

  18. Effects of protein tyrosine kinase inhibitors on cytokine-induced adhesion molecule expression by human umbilical vein endothelial cells.

    PubMed Central

    May, M. J.; Wheeler-Jones, C. P.; Pearson, J. D.

    1996-01-01

    1. Endothelial cells can be stimulated by the pro-inflammatory cytokines interleukin (IL)-1 alpha and tumour necrosis factor (TNF) alpha to express the leukocyte adhesion molecules E-selectin, vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 but the intracellular signalling mechanisms leading to this expression are incompletely understood. We have investigated the role of protein tyrosine kinases (PTK) in adhesion molecule expression by cytokine-activated human umbilical vein endothelial cells (HUVEC) using the PTK inhibitors genistein and herbimycin A, and the protein tyrosine phosphatase (PTP) inhibitor sodium orthovanadate. 2. Maximal E-selectin expression induced by incubation of HUVEC for 4 h with IL-1 alpha (100 u ml-1) and TNF alpha (100 u ml-1) was dose-dependently inhibited by genistein and herbimycin A. Although similar effects were seen on phorbol 12-myristate, 13-acetate (PMA)-induced expression, this was not due to inhibition of protein kinase C (PKC) activity as the selective inhibitors of PKC, bisindolylmaleimide (BIM), Ro31-7549 or Ro31-8220 did not affect IL-1 alpha- or TNF alpha-induced E-selectin expression at concentrations which maximally inhibited PMA-induced expression. 3. Genistein inhibited VCAM-1 expression induced by incubation of HUVEC for 24 h with TNF alpha or IL-1 alpha whereas it did not affect ICAM-1 expression induced by 24 h incubation with either of these cytokines. Herbimycin A inhibited both VCAM-1 and ICAM-1 expression induced by TNF alpha. 4. Basal expression of E-selectin, VCAM-1 and ICAM-1 was dose-dependently enhanced by sodium orthovanadate. In contrast, vanadate differentially affected TNF alpha-induced expression of these molecules with maximal E-selectin and ICAM-1 expression being slightly enhanced and VCAM-1 expression dose-dependently reduced. 5. We also studied the effects of PTK and PTP inhibitors on adhesion of the human pre-myeloid cell line U937 to TNF alpha-stimulated HUVEC

  19. Human mast cell progenitors use alpha4-integrin, VCAM-1, and PSGL-1 E-selectin for adhesive interactions with human vascular endothelium under flow conditions.

    PubMed

    Boyce, Joshua A; Mellor, Elizabeth A; Perkins, Brandy; Lim, Yaw-Chyn; Luscinskas, Francis W

    2002-04-15

    Mast cells (MCs) are central to asthma and other allergic diseases, and for responses to infection and tissue injuries. MCs arise from committed progenitors (PrMCs) that migrate from the circulation to tissues by incompletely characterized mechanisms, and differentiate in situ in perivascular connective tissues of multiple organs. PrMCs derived in vitro from human cord blood were examined for adhesion molecule expression and their ability to adhere to human umbilical vein endothelial cells (HUVECs) under conditions that mimic physiologic shear flow. The PrMCs expressed alpha(4)beta(1), low levels of beta7, and the beta2-integrins alphaLbeta2 and alphaMbeta2. The PrMCs also expressed PSGL-1, but not L-selectin. At low (0.5 dynes/cm(2)-1.0 dynes/cm(2)) shear stress, PrMCs attached and rolled on recombinant E-selectin and P-selectin and VCAM-1. An anti-PSGL-1 monoclonal antibody (mAb) blocked essentially all adhesion to P-selectin but reduced adhesion to E-selectin by only 40%, suggesting PrMCs express other ligands for E-selectin. PrMCs adhered strongly to tumor necrosis factor-alpha (TNF-alpha)-activated HUVECs, whereas adhesion to interleukin 4 (IL-4)-activated HUVECs was lower. PrMC adhesion to IL-4-activated HUVECs was totally alpha4-integrin- and VCAM-1-dependent. Adhesion to TNF-alpha-activated HUVECs was blocked by 50% by mAbs against alpha4-integrin, vascular cell adhesion molecule-1 (VCAM-1), E-selectin, or PSGL-1, whereas combinations of mAbs to alpha4-integrin plus PSGL-1, or VCAM-1 plus E-selectin, blocked adhesion by greater than 70%. Thus, PrMCs derived in vitro predominantly use alpha4-integrin, VCAM-1, PSGL-1, and other ligands that bind E-selectin for adhesion to cytokine-activated HUVEC monolayers. These observations may explain the abundance of MCs at sites of mucosal inflammation, where VCAM-1 and E-selectin are important inducible receptors.

  20. De novo expression of intercellular adhesion molecule 1 (ICAM-1, CD54) in pancreas cancer.

    PubMed

    Schwaeble, W; Kerlin, M; Meyer zum Büschenfelde, K H; Dippold, W

    1993-01-21

    We examined the expression of intercellular--adhesion molecule-I (ICAM-I, CD54) in 6 surgically removed pancreatic tumors and 8 pancreatic tumor cell lines. Immunohistochemistry revealed a varying percentage of ICAM-I-positive pancreas tumor cells, while normal pancreatic tissue (except for slight reactivity of endothelial cells) was not stained. The presence of the ICAM-I molecule on the cell surface and the expression of ICAM-I mRNA were investigated for 8 different pancreatic tumor cell lines. Three of these (Capan-I, Capan-2, QGP-I) expressed ICAM-I constitutively. In 4 of the ICAM-I-negative pancreas cancer cell lines, it was possible to induce a remarkable expression of ICAM-I by incubating the cells in the presence of inflammatory cytokines, whereas one cell line, 818-4, remained ICAM-I-negative. The responsiveness to either IFN-gamma, TNF-alpha, or IL-I beta treatment was shown to vary from cell line to cell line, indicating complex mechanisms that regulate the expression of ICAM-I at both, the transcriptional and the post-transcriptional level. Interestingly, ICAM-I is shed by pancreatic tumor cells, since soluble sICAM-I was detected in the cell-culture supernatants. In comparison with normal sera, the mean level of sICAM-I in sera of patients with pancreas carcinoma is elevated 2-fold.

  1. Thyroid hormone-dependent transcriptional repression of neural cell adhesion molecule during brain maturation.

    PubMed Central

    Iglesias, T; Caubín, J; Stunnenberg, H G; Zaballos, A; Bernal, J; Muñoz, A

    1996-01-01

    Thyroid hormone (T3) is a main regulator of brain development acting as a transcriptional modulator. However, only a few T3-regulated brain genes are known. Using an improved whole genome PCR approach, we have isolated seven clones encoding sequences expressed in neonatal rat brain which are under the transcriptional control of T3. Six of them, including the neural cell adhesion molecule NCAM, alpha-tubulin and four other unidentified sequences (RBA3, RBA4, RBB3 and RBB5) were found to be upregulated in the hypothyroid brain, whereas another (RBE7) was downregulated. Binding sites for the T3 receptor (T3R/c-erbA) were identified in the isolated clones by gel-shift and footprinting assays. Sites in the NCAM (in an intron), alpha-tubulin (in an exon) and RBA4 clones mediated transcriptional regulation by T3 when inserted upstream of a reporter construct. However, no effect of the NCAM clone was found when located downstream of another reporter gene. Northern blotting and in situ hybridization studies showed a higher expression of NCAM in the brain of postnatal hypothyroid rats. Since NCAM is an important morphoregulatory molecule, abnormal NCAM expression is likely to contribute to the alterations present in the brain of thyroid-deficient humans and experimental animals. Images PMID:8861959

  2. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression

    SciTech Connect

    Nygaard, Gyrid; Herfindal, Lars; Kopperud, Reidun; Aragay, Anna M.; Holmsen, Holm; Døskeland, Stein Ove; Kleppe, Rune; Selheim, Frode

    2014-07-04

    Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigated whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.

  3. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment

    PubMed Central

    Klamer, Sofieke; Voermans, Carlijn

    2014-01-01

    Maintenance of haematopoietic stem cells and differentiation of committed progenitors occurs in highly specialized niches. The interactions of haematopoietic stem and progenitor cells (HSPCs) with cells, growth factors and extracellular matrix (ECM) components of the bone marrow (BM) microenvironment control homeostasis of HSPCs. We only start to understand the complexity of the haematopoietic niche(s) that comprises endosteal, arterial, sinusoidal, mesenchymal and neuronal components. These distinct niches produce a broad range of soluble factors and adhesion molecules that modulate HSPC fate during normal hematopoiesis and BM regeneration. Adhesive interactions between HSPCs and the microenvironment will influence their localization and differentiation potential. In this review we highlight the current understanding of the functional role of ECM- and adhesion (regulating) molecules in the haematopoietic niche during homeostatic and regenerative hematopoiesis. This knowledge may lead to the improvement of current cellular therapies and more efficient development of future cellular products. PMID:25482635

  4. Age-Related Cognitive Impairments in Mice with a Conditional Ablation of the Neural Cell Adhesion Molecule

    ERIC Educational Resources Information Center

    Bisaz, Reto; Boadas-Vaello, Pere; Genoux, David; Sandi, Carmen

    2013-01-01

    Most of the mechanisms involved in neural plasticity support cognition, and aging has a considerable effect on some of these processes. The neural cell adhesion molecule (NCAM) of the immunoglobulin superfamily plays a pivotal role in structural and functional plasticity and is required to modulate cognitive and emotional behaviors. However,…

  5. Chemokines, chemokine receptors and adhesion molecules on different human endothelia: discriminating the tissue-specific functions that affect leucocyte migration

    PubMed Central

    HILLYER, P; MORDELET, E; FLYNN, G; MALE, D

    2003-01-01

    The selective accumulation of different leucocyte populations during inflammation is regulated by adhesion molecules and chemokines expressed by vascular endothelium. This study examined how chemokine production and the expression of adhesion molecules and chemokine receptors vary between endothelia from different vascular beds. Human saphenous vein endothelium was compared with lung and dermal microvascular endothelia and with umbilical vein endothelium and a bone-marrow endothelial cell line. All endothelia produced CCL2 and CXCL8 constitutively, whereas CXCL10 and CCL5 were only secreted after tumour necrosis factor (TNF)-α or interferon (IFN)-γ stimulation. In combination with TNF-α, IFN-γ suppressed CXCL8 but enhanced CCL5 and CXCL10, whereas transforming growth factor (TGF)-β reduced secretion of all chemokines. Basal chemokine secretion was higher from umbilical vein than other endothelial cells. Chemokine receptors, CXCR1, CXCR3 and CCR3, were present on all endothelia but highest on saphenous vein. CCR4, CCR5, CCR6, CXCR2, CXCR4 and CXCR5 were also detected at variable levels on different endothelia. The variation between endothelia in chemokine secretion was much greater than the variations in adhesion molecules, both on resting cells and following cytokine stimulation. These results indicate that it is the tissue-specific variations in endothelial chemokine secretion rather than variations in adhesion molecules that can explain the different patterns of inflammation and leucocyte traffic seen in non-lymphoid tissues. PMID:14632748

  6. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    SciTech Connect

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu . E-mail: dxliu001@yahoo.com

    2007-07-13

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.

  7. The Neural Cell Adhesion Molecule-Derived Peptide FGL Facilitates Long-Term Plasticity in the Dentate Gyrus in Vivo

    ERIC Educational Resources Information Center

    Dallerac, Glenn; Zerwas, Meike; Novikova, Tatiana; Callu, Delphine; Leblanc-Veyrac, Pascale; Bock, Elisabeth; Berezin, Vladimir; Rampon, Claire; Doyere, Valerie

    2011-01-01

    The neural cell adhesion molecule (NCAM) is known to play a role in developmental and structural processes but also in synaptic plasticity and memory of the adult animal. Recently, FGL, a NCAM mimetic peptide that binds to the Fibroblast Growth Factor Receptor 1 (FGFR-1), has been shown to have a beneficial impact on normal memory functioning, as…

  8. Developmental role of the cell adhesion molecule Contactin-6 in the cerebral cortex and hippocampus

    PubMed Central

    Zuko, Amila; Oguro-Ando, Asami; van Dijk, Roland; Gregorio-Jordan, Sara; van der Zwaag, Bert; Burbach, J. Peter H.

    2016-01-01

    ABSTRACT The gene encoding the neural cell adhesion molecule Contactin-6 (Cntn6 a.k.a. NB-3) has been implicated as an autism risk gene, suggesting that its mutation is deleterious to brain development. Due to its GPI-anchor at Cntn6 may exert cell adhesion/receptor functions in complex with other membrane proteins, or serve as a ligand. We aimed to uncover novel phenotypes related to Cntn6 functions during development in the cerebral cortex of adult Cntn6−/− mice. We first determined Cntn6 protein and mRNA expression in the cortex, thalamic nuclei and the hippocampus at P14, which decreased specifically in the cortex at adult stages. Neuroanatomical analysis demonstrated a significant decrease of Cux1+ projection neurons in layers II-IV and an increase of FoxP2+ projection neurons in layer VI in the visual cortex of adult Cntn6−/− mice compared to wild-type controls. Furthermore, the number of parvalbumin+ (PV) interneurons was decreased in Cntn6−/− mice, while the amount of NPY+ interneurons remained unchanged. In the hippocampus the delineation and outgrowth of mossy fibers remained largely unchanged, except for the observation of a larger suprapyramidal bundle. The observed abnormalities in the cerebral cortex and hippocampus of Cntn6−/− mice suggests that Cntn6 serves developmental functions involving cell survival, migration and fasciculation. Furthermore, these data suggest that Cntn6 engages in both trans- and cis-interactions and may be involved in larger protein interaction networks. PMID:26939565

  9. Differential mouse-strain specific expression of Junctional Adhesion Molecule (JAM)-B in placental structures.

    PubMed

    Stelzer, Ina Annelies; Mori, Mayumi; DeMayo, Francesco; Lydon, John; Arck, Petra Clara; Solano, Maria Emilia

    2016-03-03

    The junctional adhesion molecule (JAM)-B, a member of the immunoglobulin superfamily, is involved in stabilization of interendothelial cell-cell contacts, formation of vascular tubes, homeostasis of stem cell niches and promotion of leukocyte adhesion and transmigration. In the human placenta, JAM-B protein is abundant and mRNA transcripts are enriched in first-trimester extravillous trophoblast in comparison to the villous trophoblast. We here aimed to elucidate the yet unexplored spatio-temporal expression of JAM-B in the mouse placenta. We investigated and semi-quantified JAM-B protein expression by immunohistochemistry in early post-implantation si tes and in mid- to late gestation placentae of various murine mating combinations. Surprisingly, the endothelium of the placental labyrinth was devoid of JAM-B expression. JAM-B was mainly present in spongiotrophoblast cells of the junctional zone, as well as in the fetal vessels of the chorionic plate, the umbilical cord and in maternal myometrial smooth muscle. We observed a strain-specific placental increase of JAM-B protein expression from mid- to late gestation in Balb/c-mated C57BL/6 females, which was absent in DBA/2J-mated Balb/c females. Due to the essential role of progesterone during gestation, we further assessed a possible modulation of JAM-B in mid-gestational placentae deficient in the progesterone receptor (Pgr(-/-)) and observed an increased expression of JAM-B in Pgr(-/-) placentae, compared to Pgr(+/+) tissue samples. We propose that JAM-B is an as yet underappreciated trophoblast lineage-specific protein, which is modulated via the progesterone receptor and shows unique strain-specific kinetics. Future work is needed to elucidate its possible contribution to placental processes necessary to ensuring its integrity, ultimately facilitating placental development and fetal growth.

  10. Activated Leukocyte Cell Adhesion Molecule Expression and Shedding in Thyroid Tumors

    PubMed Central

    Miccichè, Francesca; Da Riva, Luca; Fabbi, Marina; Pilotti, Silvana; Mondellini, Piera; Ferrini, Silvano; Canevari, Silvana; Pierotti, Marco A.; Bongarzone, Italia

    2011-01-01

    Activated leukocyte cell adhesion molecule (ALCAM, CD166) is expressed in various tissues, cancers, and cancer-initiating cells. Alterations in expression of ALCAM have been reported in several human tumors, and cell adhesion functions have been proposed to explain its association with cancer. Here we documented high levels of ALCAM expression in human thyroid tumors and cell lines. Through proteomic characterization of ALCAM expression in the human papillary thyroid carcinoma cell line TPC-1, we identified the presence of a full-length membrane-associated isoform in cell lysate and of soluble ALCAM isoforms in conditioned medium. This finding is consistent with proteolytically shed ALCAM ectodomains. Nonspecific agents, such as phorbol myristate acetate (PMA) or ionomycin, provoked increased ectodomain shedding. Epidermal growth factor receptor stimulation also enhanced ALCAM secretion through an ADAM17/TACE-dependent pathway. ADAM17/TACE was expressed in the TPC-1 cell line, and ADAM17/TACE silencing by specific small interfering RNAs reduced ALCAM shedding. In addition, the CGS27023A inhibitor of ADAM17/TACE function reduced ALCAM release in a dose-dependent manner and inhibited cell migration in a wound-healing assay. We also provide evidence for the existence of novel O-glycosylated forms and of a novel 60-kDa soluble form of ALCAM, which is particularly abundant following cell stimulation by PMA. ALCAM expression in papillary and medullary thyroid cancer specimens and in the surrounding non-tumoral component was studied by western blot and immunohistochemistry, with results demonstrating that tumor cells overexpress ALCAM. These findings strongly suggest the possibility that ALCAM may have an important role in thyroid tumor biology. PMID:21364949

  11. Learning under stress: a role for the neural cell adhesion molecule NCAM.

    PubMed

    Bisaz, Reto; Conboy, Lisa; Sandi, Carmen

    2009-05-01

    Stress is known to be a potent modulator of brain function and cognition. While prolonged and/or excessive stress generally exerts negative effects on learning and memory processes, acute stress can have differential effects on memory function depending on a number of factors (such as stress duration, stress intensity, timing and the source of the stress, as well as the learning type under study). Here, we have focused on the effects of 'acute' stress, and examined the literature attending to whether the "source of stress" is 'intrinsic' (i.e., when stress is originated by the cognitive task) or 'extrinsic' (i.e., when stress is induced by elements not related to the cognitive task). We have questioned here whether the neural cell adhesion molecule of the immunoglobulin superfamily (NCAM) contributes to the neurobiological mechanisms that translate the effects of these two different stress sources into the different behavioral and cognitive outcomes. NCAM is a cell adhesion macromolecule known to play a critical role in development and plasticity of the nervous system. NCAM and its post-translational modified form PSA-NCAM are critically involved in mechanisms of learning and memory and their expression levels are known to be highly susceptible to modulation by stress. Whereas available data are insufficient to conclude as to whether NCAM mediates extrinsic stress effects on learning and memory processes, we present systematic evidence supporting a key mediating role for both NCAM and PSA-NCAM in the facilitation of memory consolidation induced by intrinsic stress. Furthermore, NCAM is suggested to participate in some of the bidirectional effects of stress on memory processes, with its enhanced synaptic expression involved in facilitating stress actions while its reduced expression being related to impairing effects of stress on memory function.

  12. Immunohistochemistry of adhesion molecules, metalloproteinases and NO-synthases in extravillous trophoblast of tubal pregnancy.

    PubMed

    Dubernard, G; Galtier-Fougairolles, M; Cortez, A; Uzan, S; Challier, J C

    2005-12-12

    Trophoblast invasion in uterine pregnancy is fine-tuned for the remodelling of the uterine wall and its vascularization. Tubal pregnancy, which occurs in a limited number of patients, involves a dramatic trophoblast invasion in a context of a poor decidualization. By studying the histology of the extravillous trophoblast (EVC) in the anchoring villi, the Ki67 labelling, the location of several adhesion markers (cytokeratin-7, alpha1, alpha6, alphaV, beta1, beta4 integrin subunits and E-cadherin, V/E-cadherin), metalloproteinases (MMP-2, 9 and11), NOS2 and 3, we aimed to detect the specificity of tubal compared to intrauterine pregnancies. No difference could be observed between meso or anti-salpingial trophoblast proliferation or invasion using Ki67. Cytokeratin-7 allowed detection of spindle-shape EVCs and we identified some decidualized stromal cells. Integrins alpha1, beta1 and alphaV, and V/E-cadherin were expressed mainly in the distal EVC correspondingly to intrauterine pregnancy, with a poor expression of alpha1. Integrins alpha6 and beta4, E-cadherin were detected in the distal EVC in contrast to uterine pregnancy. MMP-2, 9, 11 were also shown in distal EVC. NOS2 and 3 labelled the perivascular EVC and NOS3 the endothelial cells of the tubal vessels. These changed distributions of adhesion molecules and MMP together with that of the basic and inducible NOS expressions could be related to mechanical effects in superficial implantation or to a failure of decidualization in tubal pregnancies.

  13. Factors Affecting the Endothelial Retention of Targeted Microbubbles: Influence of Microbubble Shell Design and Cell Surface Projection of the Endothelial Target Molecule

    PubMed Central

    Khanicheh, Elham; Mitterhuber, Martina; Kinslechner, Katharina; Xu, Lifen; Lindner, Jonathan R.; Kaufmann, Beat A.

    2014-01-01

    Background In biologic systems, the arrest of circulating cells is mediated by adhesion molecules projecting their active binding domain above the cell surface to enhance bond formation and tether strength. Similarly, molecular spacers are used for ligands on particle-based molecular imaging agents. The aim of this study was to evaluate the influence of tether length for targeting ligands on ultrasound molecular imaging agents. Methods Microbubbles bearing biotin at the end of variable-length polyethylene glycol spacer arms (MB2000 and MB3400) were prepared. To assess in vivo attachment efficiency to endothelial counterligands that vary in their distance from the endothelial cell surface, contrast-enhanced ultrasound (CEU) molecular imaging of tumor necrosis factor–α–induced P-selectin (long distance) or intercellular adhesion molecule–2 (short distance) was performed with each agent in murine hind limbs. To assess the influence of the glycocalyx on microbubble attachment, CEU molecular imaging of intercellular adhesion molecule–2 was performed after degradation of the glycocalyx. Results CEU molecular imaging targeted to P-selectin showed signal enhancement above control agent for MB2000 and MB3400, the degree of which was significantly higher for MB3400 compared with MB2000. CEU molecular imaging targeted to intercellular adhesion molecule–2 showed low overall signal for all agents and signal enhancement above control for MB3400 only. Glycocalyx degradation increased signal for MB3400 and MB2000. Conclusions Microbubble targeting to endothelial ligands is influenced by (1) the tether length of the ligand, (2) the degree to which the endothelial target is projected from the cell surface, and (3) the status of the glycocalyx. These considerations are important for designing targeted imaging probes and understanding potential obstacles to molecular imaging. PMID:22266330

  14. Effect of soy nuts on adhesion molecules and markers of inflammation in hypertensive and normotensive postmenopausal women.

    PubMed

    Nasca, Melita M; Zhou, Jin-Rong; Welty, Francine K

    2008-07-01

    Recently, it was shown that substituting soy nuts for nonsoy protein in a therapeutic lifestyle change (TLC) diet lowered systolic and diastolic blood pressure by 9.9% and 6.8%, respectively, in postmenopausal women with hypertension and by 5.2% and 2.9%, respectively, in normotensive postmenopausal women. In this study, to examine mechanisms for these reductions, markers of inflammation were measured, including soluble vascular cell adhesion molecule-1, soluble intercellular adhesion molecule-1, C-reactive protein, interleukin-6, and matrix metalloproteinase-9. Sixty healthy postmenopausal women (48 normotensive and 12 with hypertension) were randomized in a crossover design to a TLC diet alone or a TLC diet in which 0.5 cups of soy nuts (25 g soy protein and 101 mg aglycone isoflavones) replaced 25 g of nonsoy protein daily. Each diet was followed for 8 weeks. Compared with the TLC diet alone, levels of soluble vascular cell adhesion molecule-1 were significantly lower on the soy diet in women with hypertension (623.6 +/- 153.8 vs 553.8 +/- 114.4 ng/ml, respectively, p = 0.003), whereas no significant differences were observed in normotensive women. Soy nuts were associated with a trend toward reduction in C-reactive protein in normotensive women. No effect on levels of soluble intercellular adhesion molecule-1, interleukin-6, or matrix metalloproteinase-9 was observed. In conclusion, the reduction in soluble vascular cell adhesion molecule-1 with soy nuts in women with hypertension suggests an improvement in endothelial function that may reflect an overall improvement in the underlying inflammatory process underlying atherosclerosis.

  15. A role for leukocyte-endothelial adhesion mechanisms in epilepsy

    PubMed Central

    Fabene, Paolo F.; Mora, Graciela Navarro; Martinello, Marianna; Rossi, Barbara; Merigo, Flavia; Ottoboni, Linda; Bach, Simona; Angiari, Stefano; Benati, Donatella; Chakir, Asmaa; Zanetti, Lara; Schio, Federica; Osculati, Antonio; Marzola, Pasquina; Nicolato, Elena; Homeister, Jonathon W.; Xia, Lijun; Lowe, John B.; McEver, Rodger P.; Osculati, Francesco; Sbarbati, Andrea; Butcher, Eugene C.; Constantin, Gabriela

    2009-01-01

    The mechanisms involved in the pathogenesis of epilepsy, a chronic neurological disorder that affects approximately 1 percent of the world population, are not well understood1–3. Using a mouse model of epilepsy, we show that seizures induce elevated expression of vascular cell adhesion molecules and enhanced leukocyte rolling and arrest in brain vessels mediated by the leukocyte mucin P-selectin glycoprotein ligand-1 (PSGL-1) and leukocyte integrins α4β1 and αLβ2. Inhibition of leukocyte-vascular interactions either with blocking antibodies, or in mice genetically deficient in functional PSGL-1, dramatically reduced seizures. Treatment with blocking antibodies following acute seizures prevented the development of epilepsy. Neutrophil depletion also inhibited acute seizure induction and chronic spontaneous recurrent seizures. Blood-brain barrier (BBB) leakage, which is known to enhance neuronal excitability, was induced by acute seizure activity but was prevented by blockade of leukocyte-vascular adhesion, suggesting a pathogenetic link between leukocyte-vascular interactions, BBB damage and seizure generation. Consistent with potential leukocyte involvement in the human, leukocytes were more abundant in brains of epileptics than of controls. Our results suggest leukocyte-endothelial interaction as a potential target for the prevention and treatment of epilepsy. PMID:19029985

  16. T-lymphocyte responsiveness in murine schistosomiasis mansoni is dependent upon the adhesion molecules intercellular adhesion molecule-1, lymphocyte function-associated antigen-1, and very late antigen-4.

    PubMed Central

    Langley, J G; Boros, D L

    1995-01-01

    Granuloma formation in murine schistosomiasis is dependent on CD4+ Th lymphocytes and requires recruitment and accumulation of inflammatory cells at the site of egg deposition. The present study examined the role of three adhesion molecules, intercellular adhesion molecule-1 (ICAM-1), lymphocyte function-associated antigen-1 (LFA-1), and very late antigen-4 (VLA-4), that participate in cellular recruitment, interaction, and lymphocyte activation during in vitro activation of acutely and chronically infected spleen and liver granuloma lymphocytes. Blockade of ICAM-1, LFA-1, or VLA-4 by rat monoclonal antibody inhibited spleen and granuloma lymphocyte interleukin-2 (IL-2) and IL-4 production as well as lymphoproliferative responses at similar levels (66 to 87%). The down-modulated cytokine and proliferative responses of chronically infected lymphocytes were inhibited to the same extent as their acutely infected counterparts. Cell sorting analysis demonstrated that acutely and chronically infected splenic and granuloma lymphocytes expressed similar levels of LFA-1, ICAM-1, and VLA-4 and that more ICAM-1 was expressed on infected than on uninfected mouse lymphocytes. By exposure of cells to paired monoclonal antibodies at suboptimal doses, it was determined that whereas all three adhesion molecules may participate, only ICAM-1 and LFA-1 showed synergistic interactions in determining lymphocyte responsiveness. These data suggest that spleen and liver granuloma lymphocytes are equally well armed with functional adhesion receptors. Thus, ICAM-1, LFA-1, and VLA-4 play an important accessory role in inflammatory cytokine production and lymphocyte proliferation, and therefore these adhesion molecules may participate in the initiation and maintenance of the granulomatous inflammation. PMID:7558308

  17. Activation of tumour cell ECM degradation by thrombin-activated platelet membranes: potentially a P-selectin and GPIIb/IIIa-dependent process.

    PubMed

    Pang, J H; Coupland, L A; Freeman, C; Chong, B H; Parish, Christopher R

    2015-06-01

    The promotion of tumour metastasis by platelets may occur through several mechanisms including the induction of a more metastatic phenotype in tumour cells and assisted extravasation of circulating tumour cells. Whilst the mechanisms underlying platelet-assisted extravasation have been extensively studied, much less attention has been paid to the mechanisms underlying platelet promotion of an aggressive phenotype within a tumour cell population. Herein, we demonstrate in vitro that MDA-MB-231 breast carcinoma cells incubated with washed thrombin-activated platelet membranes adopt a Matrigel-degrading phenotype in a dose- and contact time-dependent manner. The same phenotypic change was observed with three other human tumour cell lines of diverse anatomical origin. Moreover, tumour cell lines that had been cultured with washed thrombin-activated platelet membranes had a greater metastatic capacity when injected into mice. This in vivo effect was reliant upon a co-incubation period of >2 h implying a mechanism involving more than platelet membrane binding that occurred within 5 min. Upon further investigation it was found that simultaneous blocking of the platelet-membrane proteins P-selectin and GPIIb/IIIa prevented interactions between platelet membranes and MDA-MB-231 cells but also significantly reduced the ability of tumour cells to degrade Matrigel. These results confirm that platelets induce a more aggressive phenotype in tumour cells but also identify the platelet proteins involved in this effect. P-selectin and GPIIb/IIIa also play a role in assisting tumour cell extravasation and, thus, are ideal targets for the therapeutic intervention of both stages of platelet-assisted metastasis.

  18. Co-localization of neural cell adhesion molecule and fibroblast growth factor receptor 2 in early embryo development.

    PubMed

    Vesterlund, Liselotte; Töhönen, Virpi; Hovatta, Outi; Kere, Juha

    2011-01-01

    During development there is a multitude of signaling events governing the assembly of the developing organism. Receptors for signaling molecules such as fibroblast growth factor receptor 2 (FGFR2) enable the embryo to communicate with the surrounding environment and activate downstream pathways. The neural cell adhesion molecule (NCAM) was first characterized as a cell adhesion molecule highly expressed in the nervous system, but recent studies have shown that it is also a signaling receptor. Using a novel single oocyte adaptation of the proximity ligation assay, we here show a close association between NCAM and FGFR2 in mouse oocytes and 2-cell embryos. Real-time PCR analyses revealed the presence of messenger RNA encoding key proteins in downstream signaling pathways in oocytes and early mouse embryos. In summary these findings show a co-localization of NCAM and FGFR2 in early vertebrate development with intracellular signaling pathways present to enable a cellular response.

  19. Expression of cell adhesion molecules and doublecortin in canine anaplastic meningiomas.

    PubMed

    Ide, T; Uchida, K; Suzuki, K; Kagawa, Y; Nakayama, H

    2011-01-01

    Tumor cell invasion into the surrounding nervous tissue is one of the histologic hallmarks of anaplastic meningiomas. To identify other possible markers for aggression in canine meningiomas, the relationship between histologic features and the expression of molecules involved in cell adhesion, cell proliferation, and invasion was examined. Immunohistochemistry for epithelial cadherin (E-cadherin), neural cadherin (N-cadherin), β-catenin, doublecortin (DCX), and Ki-67 was performed for 55 cases of canine meningioma. DCX was preferentially expressed in tumor cells invading the brain parenchyma (12 of 14 cases), suggesting its involvement in the invasion process. Regardless of the histologic type, E-cadherin and N-cadherin expression was observed in 31 of 55 and 44 of 55 cases, respectively. There was a significant positive correlation between DCX and N-cadherin expression and a significant negative correlation between E-cadherin and N-cadherin expression, suggesting that decreased E-cadherin and increased N-cadherin expression induce DCX expression. Typical membranous β-catenin expression was observed in 10 of 55 cases, whereas nuclear translocation was observed in 33 cases. Nuclear β-catenin expression was frequently found in anaplastic meningiomas (12 of 14 cases). The Ki-67 labeling indices were significantly higher in anaplastic meningiomas than in other types. These findings indicate that the expression of N-cadherin and DCX and the nuclear translocation of β-catenin are closely associated with the presence of invasion and anaplasia in canine meningiomas. Notably, granular cell meningiomas were negative for almost all the molecules examined, suggesting that they have a different tumor biology than other meningiomas.

  20. Omentin inhibits TNF-α-induced expression of adhesion molecules in endothelial cells via ERK/NF-κB pathway.

    PubMed

    Zhong, Xia; Li, Xiaonan; Liu, Fuli; Tan, Hui; Shang, Deya

    2012-08-24

    In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-α (TNF-α) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-α-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-α-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-α-activated signal pathway of nuclear factor-κB (NF-κB) by preventing NF-κB inhibitory protein (IκBα) degradation and NF-κB/DNA binding activity. Omentin pretreatment significantly inhibited TNF-α-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-α-induced NF-κB activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-α. These results suggest that omentin may inhibit TNF-α-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-κB pathway.

  1. Cell Migration in the Immune System: the Evolving Inter-Related Roles of Adhesion Molecules and Proteinases

    PubMed Central

    Graesser, Donnasue

    2000-01-01

    Leukocyte extravasation into perivascular tissue during inflammation and lymphocyte homing to lymphoid organs involve transient adhesion to the vessel endothelium, followed by transmigration through the endothelial cell (EC) layer and establishment of residency at the tissue site for a period of time. In these processes, leukocytes undergo multiple attachments to, and detachments from, the vessel-lining endothelial cells, prior to transendothelial cell migration. Transmigrating leukocytes must traverse a subendothelial basement membrane en route to perivascular tissues and utilize enzymes known as matrix metalloproteinases to make selective clips in the extracellular matrix components of the basement membrane. This review will focus on the evidence for a link between adhesion of leukocytes to endothelial cells, the induction of matrix metalloproteinases mediated by engagement of adhesion receptors on leukocytes, and the ability to utilize these matrix metalloproteinases to facilitate leukocyte invasion of tissues. Leukocytes with invasive phenotypes express high levels of MMPs, and expression of MMPs enhances the migratory and invasive properties of these cells. Furthermore, MMPs may be used by lymphocytes to proteolytically cleave molecules such as adhesion receptors and membrane bound cytokines, increasing their efficiency in the immune response. Engagement of leukocyte adhesion receptors may modulate adhesive (modulation of integrin affinities and expression), synthetic (proteinase induction and activation), and surface organization (clustering of proteolyric complexes) behaviors of invasive leukocytes. Elucidation of these pathways will lead to better understanding of controlling mechanisms in order to develop rational therapeutic approaches in the areas of inflammation and autoimmunity. PMID:11097205

  2. Nanoscale organization of synaptic adhesion proteins revealed by single-molecule localization microscopy.

    PubMed

    Chamma, Ingrid; Levet, Florian; Sibarita, Jean-Baptiste; Sainlos, Matthieu; Thoumine, Olivier

    2016-10-01

    The advent of superresolution imaging has created a strong need for both optimized labeling strategies and analysis methods to probe the nanoscale organization of complex biological structures. We present a thorough description of the distribution of synaptic adhesion proteins at the nanoscopic scale, namely presynaptic neurexin-[Formula: see text] ([Formula: see text]), and its two postsynaptic binding partners neuroligin-1 (Nlg1) and leucine-rich-repeat transmembrane protein 2 (LRRTM2). We monitored these proteins in the membrane of neurons by direct stochastic optical reconstruction microscopy, after live surface labeling with Alexa647-conjugated monomeric streptavidin. The small probe ([Formula: see text]) efficiently penetrates into crowded synaptic junctions and reduces the distance to target. We quantified the organization of the single-molecule localization data using a tesselation-based analysis technique. We show that Nlg1 exhibits a fairly disperse organization within dendritic spines, while LRRTM2 is organized in compact domains, and [Formula: see text] in presynaptic terminals displays a dual-organization pattern intermediate between that of Nlg1 and LRRTM2. These results suggest that part of [Formula: see text] interacts transsynaptically with Nlg1 and the other part with LRRTM2.

  3. Homocysteine, circulating vascular cell adhesion molecule and carotid atherosclerosis in postmenopausal vegetarian women and omnivores.

    PubMed

    Su, Ta-Chen; Jeng, Jiann-Shing; Wang, Jung-Der; Torng, Pao-Ling; Chang, Sue-Joan; Chen, Chen-Fang; Liau, Chiau-Suong

    2006-02-01

    Since the adoption of vegetarian diets as a healthy lifestyle has become popular, the cardiovascular effects of long-term vegetarianism need to be explored. The present study aimed to compare the presence and severity of carotid atherosclerosis (CA), and the blood levels of Vitamin B12, homocysteine (Hcy) and soluble vascular cell adhesion molecule-1 (sVCAM-1) between 57 healthy postmenopausal vegetarians and 61 age-matched omnivores. Carotid atherosclerosis, as measured by ultrasound, was found to be of no significant difference between the two groups. Yet, fasting blood glucose, low-density lipoprotein cholesterol, and Vitamin B12 were significantly lower, while Hcy and sVCAM-1 were higher in the vegetarians as comparing with the omnivores. Multivariate regression analysis showed that the level of Vitamin B12 was negatively associated with the level of Hcy. Vegetarianism itself and Hcy level were significantly associated with sVCAM-1 level in univariate analysis; however, after adjustment for covariates, we identified age but not vegetarianism as the determinant of sVCAM-1 level. Multiple linear regression analysis identified age and systolic blood pressure, but not vegetarianism, as determinants of common carotid artery IMT. In conclusion, there was no significant difference in CA between apparently healthy postmenopausal vegetarians and omnivores. The findings of elevated Hcy in vegetarians indicate the importance of prevention of Vitamin B12 deficiency.

  4. Role of Intercellular Adhesion Molecule-1 in Radiation-Induced Brain Injury

    SciTech Connect

    Wu, K.-L.; Tu Ba; Li Yuqing; Wong, C. Shun

    2010-01-15

    Purpose: To determine the role of intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of brain injury after irradiation (IR). Methods and Materials: We assessed the expression of ICAM-1 in mouse brain after cranial IR and determined the histopathologic and behavioral changes in mice that were either wildtype (+/+) or knockout (-/-) of the ICAM-1 gene after IR. Results: There was an early dose-dependent increase in ICAM-1 mRNA and protein expression after IR. Increased ICAM-1 immunoreactivity was observed in endothelia and glia of ICAM-1+/+ mice up to 8 months after IR. ICAM-1-/- mice showed no expression. ICAM-1+/+ and ICAM-1-/- mice showed similar vascular abnormalities at 2 months after 10-17 Gy, and there was evidence for demyelination and inhibition of hippocampal neurogenesis at 8 months after 10 Gy. After 10 Gy, irradiated ICAM-1+/+ and ICAM-1-/- mice showed similar behavioral changes at 2-6 months in open field, light-dark chamber, and T-maze compared with age-matched genotype controls. Conclusion: There is early and late upregulation of ICAM-1 in the vasculature and glia of mouse brain after IR. ICAM-1, however, does not have a causative role in the histopathologic injury and behavioral dysfunction after moderate single doses of cranial IR.

  5. Genetic polymorphisms of cell adhesion molecules in Behcet’s disease in a Chinese Han population

    PubMed Central

    Zheng, Minming; Zhang, Lijun; Yu, Hongsong; Hu, Jiayue; Cao, Qingfeng; Huang, Guo; Huang, Yang; Yuan, Gangxiang; Kijlstra, Aize; Yang, Peizeng

    2016-01-01

    Cell adhesion molecules (CAMs) are involved in various immune-mediated diseases. This study was conducted to investigate the association of single nucleotide polymorphisms (SNPs) of CAMs with Behçet’s disease (BD) in a Chinese Han population. A two-stage association study was carried out in 1149 BD patients and 2107 normal controls. Genotyping of 43 SNPs was performed using MassARRAY System (Sequenom), polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and TaqMan SNP assays. The expression of CD6 and CD11c was examined by real-time PCR and cytokine production was measured by ELISA. A significantly higher frequency of the CT genotype, and a lower frequency of the CC genotype and C allele of CD6 rs11230563 were observed in BD as compared with controls. Analysis of CD11c rs2929 showed that patients with BD had a significantly higher frequency of the GG genotype and G allele, and a lower frequency of the AG genotype as compared with controls. Functional experiments showed an increased CD11c expression and increased production of TNF-α and IL-1beta by LPS stimulated PBMCs in GG carriers of CD11c rs2929 compared to AA/AG carriers. Our study provides evidence that CD6 and CD11c are involved in the susceptibility to BD in a Chinese Han population. PMID:27108704

  6. Role of endothelial cell-selective adhesion molecule in hematogeneous metastasis

    PubMed Central

    Cangara, Husni M.; Ishida, Tatsuro; Hara, Tetsuya; Sun, Li; Toh, Ryuji; Rikitake, Yoshiyuki; Kundu, Ramendra K.; Quertermous, Thomas; Hirata, Ken-ichi; Hayashi, Yoshitake

    2016-01-01

    The spread of malignant cells from a localized tumor is thought to be directly related to the number of microvessels in the tumor. The endothelial cell-selective adhesion molecule (ESAM) is a member of the immunoglobulin superfamily that mediates homophilic interactions between endothelial cells. Previous studies have indicated that ESAM regulates angiogenesis in the primary tumor growth and endothelial permeability. In this study, we aimed to further elucidate the role of ESAM in tumor metastasis through angiogenic processes. ESAM expression was higher in hypervascular metastatic tumor tissues than in normal tissues in human lungs. Cell culture studies found that conditioned medium from B16F10 melanoma cells increased ESAM expression in endothelial cells and promoted endothelial migration and tube formation. The B16F10 medium-induced endothelial migration and tube formation were significantly attenuated when ESAM was downregulated by siRNA transfection. Intravenous injection of B16F10 cells into ESAM+/+ and ESAM−/− mice for comparison of metastatic potential resulted in the number of metastatic lung nodules in ESAM−/− mice being 83% lower than of those in ESAM+/+ mice. The microvascular density in the tumor was also lower in ESAM−/− than in ESAM+/+ mice. These findings indicate that ESAM regulates tumor metastasis through endothelial cell migration and tube formation in metastatic nodules. Inhibition of ESAM may therefore inhibit tumor metastasis by inhibiting the angiogenic processes. PMID:20153339

  7. Myelin Basic Protein Cleaves Cell Adhesion Molecule L1 and Promotes Neuritogenesis and Cell Survival*

    PubMed Central

    Lutz, David; Loers, Gabriele; Kleene, Ralf; Oezen, Iris; Kataria, Hardeep; Katagihallimath, Nainesh; Braren, Ingke; Harauz, George; Schachner, Melitta

    2014-01-01

    The cell adhesion molecule L1 is a Lewisx-carrying glycoprotein that plays important roles in the developing and adult nervous system. Here we show that myelin basic protein (MBP) binds to L1 in a Lewisx-dependent manner. Furthermore, we demonstrate that MBP is released by murine cerebellar neurons as a sumoylated dynamin-containing protein upon L1 stimulation and that this MBP cleaves L1 as a serine protease in the L1 extracellular domain at Arg687 yielding a transmembrane fragment that promotes neurite outgrowth and neuronal survival in cell culture. L1-induced neurite outgrowth and neuronal survival are reduced in MBP-deficient cerebellar neurons and in wild-type cerebellar neurons in the presence of an MBP antibody or L1 peptide containing the MBP cleavage site. Genetic ablation of MBP in shiverer mice and mutagenesis of the proteolytically active site in MBP or of the MBP cleavage site within L1 as well as serine protease inhibitors and an L1 peptide containing the MBP cleavage site abolish generation of the L1 fragment. Our findings provide evidence for novel functions of MBP in the nervous system. PMID:24671420

  8. Reduced Hepatic Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Level in Obesity

    PubMed Central

    Heinrich, Garrett; Muturi, Harrison T.; Rezaei, Khadijeh; Al-Share, Qusai Y.; DeAngelis, Anthony M.; Bowman, Thomas A.; Ghadieh, Hilda E.; Ghanem, Simona S.; Zhang, Deqiang; Garofalo, Robert S.; Yin, Lei; Najjar, Sonia M.

    2017-01-01

    Impairment of insulin clearance is being increasingly recognized as a critical step in the development of insulin resistance and metabolic disease. The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes insulin clearance. Null deletion or liver-specific inactivation of Ceacam1 in mice causes a defect in insulin clearance, insulin resistance, steatohepatitis, and visceral obesity. Immunohistological analysis revealed reduction of hepatic CEACAM1 in obese subjects with fatty liver disease. Thus, we aimed to determine whether this occurs at the hepatocyte level in response to systemic extrahepatic factors and whether this holds across species. Northern and Western blot analyses demonstrate that CEACAM1 mRNA and protein levels are reduced in liver tissues of obese individuals compared to their lean age-matched counterparts. Furthermore, Western analysis reveals a comparable reduction of CEACAM1 protein in primary hepatocytes derived from the same obese subjects. Similar to humans, Ceacam1 mRNA level, assessed by quantitative RT-PCR analysis, is significantly reduced in the livers of obese Zucker (fa/fa, ZDF) and Koletsky (f/f) rats relative to their age-matched lean counterparts. These studies demonstrate that the reduction of hepatic CEACAM1 in obesity occurs at the level of hepatocytes and identify the reduction of hepatic CEACAM1 as a common denominator of obesity across multiple species.

  9. Identification, isolation, and partial characterization of a novel Streptococcus uberis adhesion molecule (SUAM).

    PubMed

    Almeida, Raul A; Luther, Douglas A; Park, Hee-Myung; Oliver, Stephen P

    2006-06-15

    The ability to attach to the host cell surface has been considered an important virulence strategy in many bovine mammary gland pathogens, including Streptococcus uberis. Research conducted in our laboratory lead to the identification of an S. uberis adhesion molecule (SUAM) with affinity for bovine lactoferrin (LF) and delineation of its role in adherence of S. uberis to bovine mammary epithelial cells. Using a selected bacterial surface protein extraction protocol and affinity chromatography, a 112-kDa protein that had a similar molecular mass and the LF affinity as one of the identified S. uberis LBP described by Fang and Oliver in 1999 was found. To further characterize SUAM, the N-terminal amino acid sequence of this protein was elucidated. A protein query versus translated database TBLASTN search of the National Center for Biotechnology (NCBI), non-redundant database, nr, with the LBP N-terminal amino acid sequence showed no significant similarity with previous entries. Antibodies directed against SUAM and a 17 amino acid long N-terminal sequence (pep-SUAM) inhibited adherence to and internalization of S. uberis UT888 into bovine mammary epithelial cells. Data presented suggests that we have discovered a novel bacterial protein involved in the pathogenesis of this economically important mastitis pathogen.

  10. Relocalization of cell adhesion molecules during neoplastic transformation of human fibroblasts.

    PubMed

    Belgiovine, Cristina; Chiodi, Ilaria; Mondello, Chiara

    2011-11-01

    Studying neoplastic transformation of telomerase immortalized human fibroblasts (cen3tel), we found that the transition from normal to tumorigenic cells was associated with the loss of growth contact inhibition, the acquisition of an epithelial-like morphology and a change in actin organization, from stress fibers to cortical bundles. We show here that these variations were paralleled by an increase in N-cadherin expression and relocalization of different adhesion molecules, such as N-cadherin, α-catenin, p-120 and β-catenin. These proteins presented a clear membrane localization in tumorigenic cells compared to a more diffuse, cytoplasmic distribution in primary fibroblasts and non-tumorigenic immortalized cells, suggesting that tumorigenic cells could form strong cell-cell contacts and cell contacts did not induce growth inhibition. The epithelial-like appearance of tumorigenic cells did not reflect a mesenchymal-epithelial transition; in fact, cen3tel cells expressed vimentin and did not express cytokeratins at all transformation stages. Moreover, they did not express epithelial proteins such as occluding and claudin-1. In contrast, ZO-1 showed higher levels and a more defined membrane localization in tumorigenic cells compared to non-tumorigenic cells; this confirms its role in adherens junction formation in mesenchymal cells and is in agreement with the strong cell-cell contact formation by neoplastically transformed cells. Finally, we found α-catenin and ZO-1 nuclear localization in non-transformed cells, suggestive of possible additional roles of these proteins besides cell junction formation.

  11. CD44: a novel synaptic cell adhesion molecule regulating structural and functional plasticity of dendritic spines

    PubMed Central

    Roszkowska, Matylda; Skupien, Anna; Wójtowicz, Tomasz; Konopka, Anna; Gorlewicz, Adam; Kisiel, Magdalena; Bekisz, Marek; Ruszczycki, Blazej; Dolezyczek, Hubert; Rejmak, Emilia; Knapska, Ewelina; Mozrzymas, Jerzy W.; Wlodarczyk, Jakub; Wilczynski, Grzegorz M.; Dzwonek, Joanna

    2016-01-01

    Synaptic cell adhesion molecules regulate signal transduction, synaptic function, and plasticity. However, their role in neuronal interactions with the extracellular matrix (ECM) is not well understood. Here we report that the CD44, a transmembrane receptor for hyaluronan, modulates synaptic plasticity. High-resolution ultrastructural analysis showed that CD44 was localized at mature synapses in the adult brain. The reduced expression of CD44 affected the synaptic excitatory transmission of primary hippocampal neurons, simultaneously modifying dendritic spine shape. The frequency of miniature excitatory postsynaptic currents decreased, accompanied by dendritic spine elongation and thinning. These structural and functional alterations went along with a decrease in the number of presynaptic Bassoon puncta, together with a reduction of PSD-95 levels at dendritic spines, suggesting a reduced number of functional synapses. Lack of CD44 also abrogated spine head enlargement upon neuronal stimulation. Moreover, our results indicate that CD44 contributes to proper dendritic spine shape and function by modulating the activity of actin cytoskeleton regulators, that is, Rho GTPases (RhoA, Rac1, and Cdc42). Thus CD44 appears to be a novel molecular player regulating functional and structural plasticity of dendritic spines. PMID:27798233

  12. Polymorphisms in the intercellular adhesion molecule 1 gene and cancer risk: a meta-analysis

    PubMed Central

    Tang, Weifeng; Wang, Yafeng; Chen, Yuanmei; Gu, Haiyong; Chen, Shuchen; Kang, Mingqiang

    2015-01-01

    Objectives: The correlation between intercellular adhesion molecule 1 (ICAM-1) common polymorphisms (rs5498 A>G and rs3093030 C>T) and cancer susceptibility has been explored in various ethnic groups and different cancer types; however, these investigations have yielded contradictory results. To address the relationship more precisely, we performed this meta-analysis. Design and methods: EmBase, PubMed and China National Knowledge Infrastructure (CNKI) databases were searched by two authors independently for eligible publications before April 8, 2015. Random-effects or fixed-effects model was harnessed to calculate the pooled odds ratios (ORs) and 95% confidence intervals (CIs) when appropriate. Results: The result suggested that the ICAM-1 rs5498 A>G polymorphism is not associated with cancer susceptibility in overall cancer. In a stratified analysis by ethnicity, a significant increased cancer risk was identified among Asians, but the inverse association was found among Caucasians. In a stratified analysis by cancer type, ICAM-1 rs5498 A>G polymorphism was associated with a significantly increased risk of oral cancer, but with protection from colorectal cancer and melanoma. ICAM-1 rs3093030 C>T polymorphism is not correlated with cancer susceptibility. Conclusions: In summary, this meta-analysis highlights that the ICAM-1 rs5498 A>G polymorphism probably contributes to decreased susceptibility to cancer, especially in Caucasians, in melanoma and colorectal cancer subgroup, but it may be a risk factor for oral cancer and Asians. PMID:26550112

  13. Neural cell adhesion molecule-mediated Fyn activation promotes GABAergic synapse maturation in postnatal mouse cortex.

    PubMed

    Chattopadhyaya, Bidisha; Baho, Elie; Huang, Z Josh; Schachner, Melitta; Di Cristo, Graziella

    2013-04-03

    GABAergic basket interneurons form perisomatic synapses, which are essential for regulating neural networks, and their alterations are linked to various cognitive dysfunction. Maturation of basket synapses in postnatal cortex is activity dependent. In particular, activity-dependent downregulation of polysialiac acid carried by the neural cell adhesion molecule (NCAM) regulates the timing of their maturation. Whether and how NCAM per se affects GABAergic synapse development is unknown. Using single-cell genetics to knock out NCAM in individual basket interneurons in mouse cortical slice cultures, at specific developmental time periods, we found that NCAM loss during perisomatic synapse formation impairs the process of basket cell axonal branching and bouton formation. However, loss of NCAM once the synapses are already formed did not show any effect. We further show that NCAM120 and NCAM140, but not the NCAM180 isoform, rescue the phenotype. Finally, we demonstrate that a dominant-negative form of Fyn kinase mimics, whereas a constitutively active form of Fyn kinase rescues, the effects of NCAM knockdown. Altogether, our data suggest that NCAM120/NCAM140-mediated Fyn activation promotes GABAergic synapse maturation in postnatal cortex.

  14. Immunohistochemical Investigation of HER/AKT/mTOR Pathway and Cellular Adhesion Molecules in Urothelial Carcinomas

    PubMed Central

    Koletsas, Nikolaos; Choidas, Spyros; Anagnostopoulos, Konstantinos; Touloupidis, Stavros; Zaramboukas, Thomas; Raptou, Georgia; Papadopoulos, Nikolaos

    2017-01-01

    Background. Several investigators have suggested the possibility that the expression of both EGFR and HER2 could be utilized for molecularly targeted therapy in urinary bladder cancer. We tried to evaluate the expression of HER2 and EGFR and activation of the AKT/PTEN/mTOR pathway in urothelial carcinomas and if there is any association between them and cellular adhesion molecules (CAMs). Materials and Methods. Forty-one paraffin-embedded urothelial cancer tissue blocks were collected. Immunostains for HER2, EGFR, MIB1, phospho-AKT, PTEN, phospho-mTOR, e-cadherin, p-cadherin, and b-catenin were performed on tissue microarrays sections. The immunohistochemical results were correlated with clinicopathological parameters. Results. The overexpression of HER2 was found in 19.6% of the cases and it was associated with high grade tumors with a high mitotic index and phosphorylation of AKT and mTOR. Muscle-invasive tumors presented both cytoplasmic and nuclear losses of PTEN expression. There was no association between HER/AKT/mTOR pathway activation and CAM expression. Although cadherins were often coexpressed, only p-cadherin immunoreactivity was associated with tumor grade and high proliferative index. Conclusions. HER2 overexpression is found in a respective proportion of urothelial carcinomas. P-cadherin expression is associated with high grade UCs but it is not affected by HER2 overexpression or by activation of HER/AKT/mTOR pathway. PMID:28210516

  15. Annexin A2 Acts as an Adhesion Molecule on the Endometrial Epithelium during Implantation in Mice.

    PubMed

    Wang, Bing; Ye, Tian-Min; Lee, Kai-Fai; Chiu, Philip C N; Pang, Ronald T K; Ng, Ernest H Y; Yeung, William S B

    2015-01-01

    To determine the function of Annexin A2 (Axna2) in mouse embryo implantation in vivo, experimental manipulation of Axna2 activities was performed in mouse endometrial tissue in vivo and in vitro. Histological examination of endometrial tissues was performed throughout the reproduction cycle and after steroid treatment. Embryo implantation was determined after blockage of the Axna2 activities by siRNA or anti-Axna2 antibody. The expression of Axna2 immunoreactivies in the endometrial luminal epithelium changed cyclically in the estrus cycle and was upregulated by estrogen. After nidatory estrogen surge, there was a concentration of Axna2 immunoreactivities at the interface between the implanting embryo and the luminal epithelium. The phenomenon was likely to be induced by the implanting embryos as no such concentration of signal was observed in the inter-implantation sites and in pseudopregnancy. Knockdown of Axna2 by siRNA reduced attachment of mouse blastocysts onto endometrial tissues in vitro. Consistently, the number of implantation sites was significantly reduced after infusion of anti-Axna2 antibody into the uterine cavity. Steroids and embryos modulate the expression of Axna2 in the endometrial epithelium. Axna2 may function as an adhesion molecule during embryo implantation in mice.

  16. Junctional Adhesion Molecule-A Is Required for Hematogenous Dissemination of Reovirus

    PubMed Central

    Antar, Annukka A. R.; Konopka, Jennifer L.; Campbell, Jacquelyn A.; Henry, Rachel A.; Perdigoto, Ana L.; Carter, Bruce D.; Pozzi, Ambra; Abel, Ty W.; Dermody, Terence S.

    2009-01-01

    SUMMARY Diverse families of viruses bind immunoglobulin superfamily (IgSF) proteins located in tight junctions (TJs) and adherens junctions of epithelium and endothelium. However, little is known about the roles of these receptors in the pathogenesis of viral disease. Junctional adhesion molecule-A (JAM-A) is an IgSF protein that localizes to TJs and serves as a receptor for mammalian reovirus. We inoculated wild-type (wt) and isogenic JAM-A−/− mice perorally with reovirus and found that JAM-A is dispensable for viral replication in the intestine but required for systemic dissemination. Reovirus replication in the brain and tropism for discrete neural regions are equivalent in wt and JAM-A−/− mice following intracranial inoculation, suggesting a function for JAM-A in reovirus spread to extra-intestinal sites. JAM-A promotes reovirus infection of endothelial cells, providing a conduit for the virus into the bloodstream. These findings indicate that a broadly expressed IgSF viral receptor specifically mediates hematogenous dissemination in the host. PMID:19154988

  17. Structure and dynamics of the fibronectin-III domains of Aplysia californica cell adhesion molecules.

    PubMed

    Kelly, Catherine M; Muzard, Julien; Brooks, Bernard R; Lee, Gil U; Buchete, Nicolae-Viorel

    2015-04-21

    Due to their homophilic and heterophilic binding properties, cell adhesion molecules (CAMs) such as integrin, cadherin and the immunoglobulin superfamily CAMs are of primary importance in cell-cell and cell-substrate interactions, signalling pathways and other crucial biological processes. We study the molecular structures and conformational dynamics of the two fibronectin type III (Fn-III) extracellular domains of the Aplysia californica CAM (apCAM) protein, by constructing and probing an atomically-detailed structural model based on apCAM's homology with other CAMs. The stability and dynamic properties of the Fn-III domains, individually and in tandem, are probed and analysed using all-atom explicit-solvent molecular dynamics (MD) simulations and normal mode analysis of their corresponding elastic network models. The refined structural model of the Fn-III tandem of apCAM reveals a specific pattern of amino acid interactions that controls the stability of the β-sheet rich structure and could affect apCAM's response to physical or chemical changes of its environment. It also exposes the important role of several specific charged residues in modulating the structural properties of the linker segment connecting the two Fn-III domains, as well as of the inter-domain interface.

  18. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis

    PubMed Central

    Mehrabian, Mohadeseh; Brethour, Dylan; Wang, Hansen; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold

    2015-01-01

    Despite its multi-faceted role in neurodegenerative diseases, the physiological function of the prion protein (PrP) has remained elusive. On the basis of its evolutionary relationship to ZIP metal ion transporters, we considered that PrP may contribute to the morphogenetic reprogramming of cells underlying epithelial-to-mesenchymal transitions (EMT). Consistent with this hypothesis, PrP transcription increased more than tenfold during EMT, and stable PrP-deficient cells failed to complete EMT in a mammalian cell model. A global comparative proteomics analysis identified the neural cell adhesion molecule 1 (NCAM1) as a candidate mediator of this impairment, which led to the observation that PrP-deficient cells fail to undergo NCAM1 polysialylation during EMT. Surprisingly, this defect was caused by a perturbed transcription of the polysialyltransferase ST8SIA2 gene. Proteomics data pointed toward β-catenin as a transcriptional regulator affected in PrP-deficient cells. Indeed, pharmacological blockade or siRNA-based knockdown of β-catenin mimicked PrP-deficiency in regards to NCAM1 polysialylation. Our data established the existence of a PrP-ST8SIA2-NCAM signaling loop, merged two mature fields of investigation and offer a simple model for explaining phenotypes linked to PrP. PMID:26288071

  19. Down syndrome cell adhesion molecule 1: testing for a role in insect immunity, behaviour and reproduction.

    PubMed

    Peuß, Robert; Wensing, Kristina U; Woestmann, Luisa; Eggert, Hendrik; Milutinović, Barbara; Sroka, Marlene G U; Scharsack, Jörn P; Kurtz, Joachim; Armitage, Sophie A O

    2016-04-01

    Down syndrome cell adhesion molecule 1 (Dscam1) has wide-reaching and vital neuronal functions although the role it plays in insect and crustacean immunity is less well understood. In this study, we combine different approaches to understand the roles that Dscam1 plays in fitness-related contexts in two model insect species. Contrary to our expectations, we found no short-term modulation of Dscam1 gene expression after haemocoelic or oral bacterial exposure in Tribolium castaneum, or after haemocoelic bacterial exposure in Drosophila melanogaster. Furthermore, RNAi-mediated Dscam1 knockdown and subsequent bacterial exposure did not reduce T. castaneum survival. However, Dscam1 knockdown in larvae resulted in adult locomotion defects, as well as dramatically reduced fecundity in males and females. We suggest that Dscam1 does not always play a straightforward role in immunity, but strongly influences behaviour and fecundity. This study takes a step towards understanding more about the role of this intriguing gene from different phenotypic perspectives.

  20. Lack of Platelet Endothelial Cell Adhesion Molecule-1 Attenuates Foreign Body Inflammation because of Decreased Angiogenesis

    PubMed Central

    Solowiej, Anna; Biswas, Purba; Graesser, Donnasue; Madri, Joseph A.

    2003-01-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) is a 130-kd member of the immunoglobulin superfamily of proteins, expressed on endothelial cells, leukocytes, and platelets. Antibody-blocking studies have implicated it in modulating leukocyte transmigration and angiogenesis. However, the generation of the PECAM-1 knockout mouse has shown that its function can be compensated for by similarly acting proteins because most acute inflammatory models proceed in a comparable manner in wild-type and knockout animals. We decided to examine the function of PECAM-1 in the chronic process of foreign body inflammation. We show that PECAM-1-deficient mice exhibit attenuated neutrophil infiltration in and around a subcutaneous polyvinyl acetyl implant. Bone marrow engraftment studies indicate that the lack of CD31 expression on the endothelium determines the diminished leukocyte accumulation in the knockout implants. Specifically, we find that decreased angiogenesis (as manifested by lower vessel density, decreased hemoglobin content, and less laminin deposition) correlates with lower neutrophil accumulation in the knockout animals. This study indicates that the absence of endothelial PECAM-1 results in decreased angiogenesis and therefore in diminished delivery of leukocytes to the foreign body implants. PMID:12598328

  1. Identification and characterization of the intercellular adhesion molecule-2 gene as a novel p53 target

    PubMed Central

    Ogi, Kazuhiro; Nakagaki, Takafumi; Koyama, Ryota; Idogawa, Masashi; Hiratsuka, Hiroyoshi; Tokino, Takashi

    2016-01-01

    The p53 tumor suppressor inhibits cell growth through the activation of both cell cycle arrest and apoptosis, which maintain genome stability and prevent cancer development. Here, we report that intercellular adhesion molecule-2 (ICAM2) is transcriptionally activated by p53. Specifically, ICAM2 is induced by the p53 family and DNA damage in a p53-dependent manner. We identified a p53 binding sequence located within the ICAM2 gene that is responsive to wild-type p53, TAp73, and TAp63. In terms of function, we found that the ectopic expression of ICAM2 inhibited cancer cell migration and invasion. In addition, we demonstrated that silencing endogenous ICAM2 in cancer cells caused a marked increase in extracellular signal-regulated kinase (ERK) phosphorylation levels, suggesting that ICAM2 inhibits migration and invasion of cancer cells by suppressing ERK signaling. Moreover, ICAM2 is underexpressed in human cancer tissues containing mutant p53 as compared to those with wild-type p53. Notably, the decreased expression of ICAM2 is associated with poor survival in patients with various cancers. Our findings demonstrate that ICAM2 induction by p53 has a key role in inhibiting migration and invasion. PMID:27556181

  2. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis.

    PubMed

    Mehrabian, Mohadeseh; Brethour, Dylan; Wang, Hansen; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold

    2015-01-01

    Despite its multi-faceted role in neurodegenerative diseases, the physiological function of the prion protein (PrP) has remained elusive. On the basis of its evolutionary relationship to ZIP metal ion transporters, we considered that PrP may contribute to the morphogenetic reprogramming of cells underlying epithelial-to-mesenchymal transitions (EMT). Consistent with this hypothesis, PrP transcription increased more than tenfold during EMT, and stable PrP-deficient cells failed to complete EMT in a mammalian cell model. A global comparative proteomics analysis identified the neural cell adhesion molecule 1 (NCAM1) as a candidate mediator of this impairment, which led to the observation that PrP-deficient cells fail to undergo NCAM1 polysialylation during EMT. Surprisingly, this defect was caused by a perturbed transcription of the polysialyltransferase ST8SIA2 gene. Proteomics data pointed toward β-catenin as a transcriptional regulator affected in PrP-deficient cells. Indeed, pharmacological blockade or siRNA-based knockdown of β-catenin mimicked PrP-deficiency in regards to NCAM1 polysialylation. Our data established the existence of a PrP-ST8SIA2-NCAM signaling loop, merged two mature fields of investigation and offer a simple model for explaining phenotypes linked to PrP.

  3. Polysialic acid of the neural cell adhesion molecule distinguishes small cell lung carcinoma from carcinoids.

    PubMed Central

    Komminoth, P.; Roth, J.; Lackie, P. M.; Bitter-Suermann, D.; Heitz, P. U.

    1991-01-01

    The neural cell adhesion molecule (NCAM) exists in various types of neuroendocrine cells and their tumors. A typical feature of NCAM is polysialic acid, of which the chain length is developmentally regulated. The authors have performed a comparative immunohistochemical study on small cell lung carcinomas and bronchial as well as gastrointestinal carcinoids with the monoclonal antibody (MAb) 735 reactive with the long-chain form of polysialic acid. The small cell lung carcinomas, irrespective of their histological type, were positive for polysialic acid. Metastatic tumor cell complexes also exhibited immunostaining. The tumor cell-surface-associated immunostaining for polysialic acid was sensitive to endoneuraminidase. The mature and atypical bronchial and gastrointestinal carcinoids were not immunoreactive for polysialic acid. Cytoplasmic staining in groups of cells of carcinoids (2 of 28 cases) was due to nonspecific antibody binding, which could be prevented by increased ion strength. These data indicate that neuroendocrine tumors of the lung can be distinguished by their content of highly sialylated NCAM. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1651057

  4. Down syndrome cell adhesion molecule 1: testing for a role in insect immunity, behaviour and reproduction

    PubMed Central

    Wensing, Kristina U.; Eggert, Hendrik; Scharsack, Jörn P.

    2016-01-01

    Down syndrome cell adhesion molecule 1 (Dscam1) has wide-reaching and vital neuronal functions although the role it plays in insect and crustacean immunity is less well understood. In this study, we combine different approaches to understand the roles that Dscam1 plays in fitness-related contexts in two model insect species. Contrary to our expectations, we found no short-term modulation of Dscam1 gene expression after haemocoelic or oral bacterial exposure in Tribolium castaneum, or after haemocoelic bacterial exposure in Drosophila melanogaster. Furthermore, RNAi-mediated Dscam1 knockdown and subsequent bacterial exposure did not reduce T. castaneum survival. However, Dscam1 knockdown in larvae resulted in adult locomotion defects, as well as dramatically reduced fecundity in males and females. We suggest that Dscam1 does not always play a straightforward role in immunity, but strongly influences behaviour and fecundity. This study takes a step towards understanding more about the role of this intriguing gene from different phenotypic perspectives. PMID:27152227

  5. NK cells, displaying early activation, cytotoxicity and adhesion molecules, are associated with mild dengue disease.

    PubMed

    Azeredo, E L; De Oliveira-Pinto, L M; Zagne, S M; Cerqueira, D I S; Nogueira, R M R; Kubelka, C F

    2006-02-01

    During the innate immune response against infections, Natural Killer (NK) cells are as important effector cells as are Cytotoxic T lymphocytes (CTL) generated after antigenic stimulation in the adaptative response. NK cells increase in numbers, after viral infection or vaccination. We investigated the NK cell and CD8 T lymphocyte status in 55 dengue infected patients. The NK (CD56+CD3-) and CD56+ T cell (CD56+CD3+) rates rise during the acute phase of disease. The majority of NK cells from dengue patients display early markers for activation (CD69, HLA-DR, and CD38) and cell adhesion molecules (CD44, CD11a) during the acute phase of disease. The intracellular cytotoxic granule, TIA-1, is also up-regulated early in NK cells. Most of these markers appear also on CD8+ T lymphocytes but during the late acute phase. Circulating IL-15 is elevated in a significant number of patients during early acute infection and its values were statistically correlated with NK frequencies and cytotoxic markers on NKs. We have therefore shown that dengue virus infection is very likely stimulating a cytotoxic response that may be efficient in controlling the virus in synergism with CD8+ T lymphocytes. Interestingly, the heightened CD56+CD3-, CD56+CD3+, CD56+TIA-1+ and CD56+CD11a+ cell rates are associated with mild dengue clinical manifestations and might indicate a good prognosis of the disease.

  6. Distribution of the feline calicivirus receptor junctional adhesion molecule a in feline tissues.

    PubMed

    Pesavento, P A; Stokol, T; Liu, H; van der List, D A; Gaffney, P M; Parker, J S

    2011-03-01

    Junctional adhesion molecule A (JAM-A) is an immunoglobulin superfamily protein that plays an important role in the assembly and maintenance of tight junctions and the establishment of epithelial cell polarity. The feline JAM-A (fJAM-A) is a functional receptor for feline calicivirus (FCV). Among natural diseases associated with FCV infection, isolates that cause oral vesicular disease are detected in epithelial cells; however, isolates that cause systemic disease are detected in multiple cell types. The distribution of an FCV receptor or receptors in feline tissues is relevant to viral pathogenesis in that it should reflect the wide latitude of clinical sequelae associated with FCV infection. The authors examined the expression of feline JAM-A in the cat by using confocal immunofluorescence localization on normal tissues, with special regard to tissue targets of naturally occurring FCV. As described in the human and the mouse, fJAM-A was widely distributed in feline tissues, where it localized at cell-cell junctions of epithelial and endothelial cells. fJAM-A was highly expressed on feline platelets, with lower levels of expression on feline peripheral blood leukocytes. Additionally, FCV infection of a feline epithelial cell monolayer causes redistribution of fJAM-A to the cytosol of infected cells. It is reasonable to propose that the spectrum of lesions caused by FCV reflects disruption of intercellular junctions that rely on fJAM-A function and tight junctional integrity.

  7. Rosiglitazone influences the expression of leukocyte adhesion molecules and CD14 receptor in type 2 diabetes mellitus patients.

    PubMed

    Štulc, T; Svobodová, H; Krupičková, Z; Doležalová, R; Marinov, I; Češka, R

    2014-01-01

    Diabetes mellitus is associated with increased inflammatory response, which may contribute to atherosclerosis progression. Experimental results demonstrated anti-inflammatory activity of glitazones; their effect on leukocyte adhesion molecules has not been studied to date. We therefore studied the effect of rosiglitazone treatment on leukocyte surface expression of adhesion molecules in patients with type 2 diabetes mellitus and compared our results with findings in healthy subjects. 33 subjects with type 2 diabetes and 32 healthy controls were included; patients were examined at baseline and after 5 months of rosiglitazone treatment (4 mg/d). Leukocyte expression of adhesion molecules LFA-1, CD18 and ICAM-1 was quantified using flow cytometry; in addition, CD14 (lipopolysaccharide receptor) expression was analyzed as a marker of nonspecific immunity. The expression of examined molecules at baseline was higher in patients compared to controls. Despite only mild decrease in blood glucose, rosiglitazone treatment induced substantial decrease of CD18 and CD14 expression and borderline decrease of LFA-1 and ICAM-1 expression (on monocytes only). We thus observed improvement in the expression of leukocyte inflammatory markers after rosiglitazone treatment. This effect is supposed to be mediated by direct effect of rosiglitazone on PPAR-gamma receptors on leukocytes.

  8. Borrelia burgdorferi upregulates expression of adhesion molecules on endothelial cells and promotes transendothelial migration of neutrophils in vitro.

    PubMed Central

    Sellati, T J; Burns, M J; Ficazzola, M A; Furie, M B

    1995-01-01

    The accumulation of leukocytic infiltrates in perivascular tissues is a key step in the pathogenesis of Lyme disease, a chronic inflammatory disorder caused by Borrelia burgdorferi. During an inflammatory response, endothelial cell adhesion molecules mediate the attachment of circulating leukocytes to the blood vessel wall and their subsequent extravasation into perivascular tissues. Using cultured human umbilical vein endothelial cells (HUVEC) in a whole-cell enzyme-linked immunosorbent assay, we demonstrated that B. burgdorferi activated endothelium in a dose- and time-dependent fashion as measured by upregulation of the adhesion molecules E-selectin, vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1). As few as one spirochete per endothelial cell stimulated increased expression of these molecules. Expression of E-selectin peaked after spirochetes and HUVEC were coincubated for 4 h and returned to near-basal levels by 24 h. In contrast, expression of VCAM-1 and ICAM-1 peaked at 12 h and remained elevated at 24 h. HUVEC monolayers cultured on acellular amniotic tissue were used to investigate the consequences of endothelial cell activation by spirochetes. After incubation of HUVEC-amnion cultures with B. burgdorferi, subsequently added neutrophils migrated across the endothelial monolayers. This process was mediated by E-selectin and by CD11/CD18 leukocytic integrins. The extent of migration depended on both the number of spirochetes used to stimulate the HUVEC and the length of the coincubation period. These results raise the possibility that B. burgdorferi induces a host inflammatory response and accompanying perivascular damage through activation of vascular endothelium. PMID:7591083

  9. The L1 adhesion molecule is a cellular ligand for VLA-5

    PubMed Central

    1995-01-01

    The L1 adhesion molecule is a member of the immunoglobulin superfamily shared by neural and immune cells. In the nervous system L1 can mediate cell binding by a homophilic mechanism. To analyze its function on leukocytes we studied whether L1 could interact with integrins. Here we demonstrate that VLA-5, an RGD-specific fibronectin receptor on a wide variety of cell types, can bind to murine L1. Mouse ESb-MP cells expressing VLA-5 and L1 could be induced to aggregate in the presence of specific mAbs to CD24 (heat-stable antigen), a highly and heterogeneously glycosylated glycophosphatidylinositol-linked differentiation antigen of hematopoietic and neural cells. The aggregation was blocked by both mAbs to L1 and VLA-5, respectively. Aggregation was blocked also by a synthetic RGD-containing peptide derived from the Ig-domain VI of the L1 protein. ESb-MP subclones with low L1 expression could not aggregate. In heterotypic binding assays mouse bone marrow cells could adhere in an L1-dependent fashion to platelets that expressed VLA-5. Also purified L1 coated to polystyrene beads could bind to platelets. The binding of L1-beads was again inhibited by mAbs to L1 and VLA-5, by soluble L1 and the L1-RGD peptide in a dose-dependent manner. Thymocytes or human Nalm-6 tumor cells expressing VLA-5 could adhere to affinity-purified L1 and to the L1- derived RGD-containing peptide coated to glass slides. The adhesion was strongly enhanced in the presence of Mn(2+)-ions and blocked by mAbs to VLA-5. We also demonstrate a direct L1-VLA-5 protein interaction. Our results suggest a novel binding pathway, in which the VLA-5 integrin binds to L1 on adjacent cells. Given its rapid downregulation on lymphocytes after induction of cell proliferation, L1 may be important in integrin-mediated and activation-regulated cell-cell interactions. PMID:8557754

  10. Activated leukocyte cell adhesion molecule regulates the interaction between pancreatic cancer cells and stellate cells

    PubMed Central

    Zhang, Wei-Wei; Zhan, Shu-Hui; Geng, Chang-Xin; Sun, Xin; Erkan, Mert; Kleeff, Jörg; Xie, Xiang-Jun

    2016-01-01

    Activated leukocyte cell adhesion molecule (ALCAM/CD166) is a transmembrane glycoprotein that is involved in tumor progression and metastasis. In the present study, the expression and functional role of ALCAM in pancreatic cancer cells and pancreatic stellate cells (PSCs) was investigated. Tissue specimens were obtained from patients with pancreatic ductal adenocarcinoma (n=56) or chronic pancreatitis (CP; n=10), who underwent pancreatic resection, and from normal pancreatic tissue samples (n=10). Immunohistochemistry was used to analyze the localization and expression of ALCAM in pancreatic tissues. Subsequently, reverse transcription-quantitative polymerase chain reaction and immunoblotting were applied to assess the expression of ALCAM in pancreatic cancer Panc-1 and T3M4 cells, as well as in PSCs. An enzyme-linked immunosorbent assay was used to measure ALCAM levels in cell culture medium stimulated by hypoxia, tumor necrosis factor (TNF)-α and transforming growth factor-β. Silencing of ALCAM was performed using ALCAM small interfering (si)RNA and immunocytochemistry was used to analyze the inhibition efficiency. An invasion assay and a cell interaction assay were performed to assess the invasive ability and co-cultured adhesive potential of Panc-1 and T3M4 cells, as well as PSCs. Histologically, ALCAM expression was generally weak or absent in pancreatic cancer cells, but was markedly upregulated in PSCs in pancreatic cancer tissues. ALCAM was highly expressed in PSCs from CP tissues and PSCs surrounding pancreatic intraepithelial neoplasias, as well as in pancreatic cancer cells. ALCAM mRNA was highly expressed in PSCs, with a low to moderate expression in T3M4 and Panc-1 cells. Similar to the mRNA expression, immunoblotting demonstrated that ALCAM protein levels were high in PSCs and T3M4 cells, but low in Panc-1 cells. The expression of TNF-α increased, while hypoxia decreased the secretion of ALCAM in pancreatic cancer Panc-1 and T3M4 cells, and also in

  11. Role of intercellular adhesion molecule-1 in glucan-induced pulmonary granulomatosis in the rat.

    PubMed

    Barton, P A; Imlay, M M; Flory, C M; Warren, J S

    1996-08-01

    Glucan-induced pulmonary granulomatous vasculitis in the rat mimics several human lung diseases (e.g., Wegener's granulomatosis, intravenous talcosis). We sought to clarify the role of intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of glucan-induced granulomatous vasculitis. Immunohistochemical analysis of lung sections from rats with florid vasculitis (48 hours) revealed marked alveolar septal and lesional expression of ICAM-1. An ex vivo binding analysis with isotope-labeled antibodies and lung sections taken at various times up to 48 hours after glucan infusion revealed a progressive increase in whole-lung ICAM-1 expression. In vivo measurements of vascular wall-associated ICAM-1 expression revealed an earlier rise that began less than 6 hours after glucan infusion, peaked at 24 to 48 hours, and then declined to near baseline during the ensuing 24 to 96 hours. To assess whether ICAM-1 expression both within blood vessel walls and within lesions per se is important in granuloma development, we carried out in vivo neutralization experiments with several different routes of administration of antibody to ICAM-1. Monoclonal antibody to rat ICAM-1 was either infused intravenously at time 0 (when glucan was infused), infused intravenously at time 0 and after 24 hours, instilled only intratracheally 24 hours after glucan infusion, or given both intravenously (time = 0 and 24 hours) and intratracheally (time = 24 hours). Infusions of monoclonal antibody to rat ICAM-1 resulted in dose-dependent reductions in mean granuloma number and cross-sectional area. Intrapulmonary instillation of antibody to rat ICAM-1 (via tracheostomy 24 hours after glucan infusion) resulted in a modest reduction in mean granuloma number and cross-sectional area. When antibody to ICAM-1 was both infused and instilled via the trachea, we found an additive reduction in mean granuloma size and number. There was a 12-fold increase in adhesion of ED-1-positive peripheral blood

  12. B-cell receptor-associated protein 31 regulates human embryonic stem cell adhesion, stemness, and survival via control of epithelial cell adhesion molecule.

    PubMed

    Kim, Won-Tae; Seo Choi, Hong; Min Lee, Hyun; Jang, Young-Joo; Ryu, Chun Jeih

    2014-10-01

    B-Cell receptor-associated protein 31 (BAP31) regulates the export of secreted membrane proteins from the endoplasmic reticulum (ER) to the downstream secretory pathway. Previously, we generated a monoclonal antibody 297-D4 against the surface molecule on undifferentiated human embryonic stem cells (hESCs). Here, we found that 297-D4 antigen was localized to pluripotent hESCs and downregulated during early differentiation of hESCs and identified that the antigen target of 297-D4 was BAP31 on the hESC-surface. To investigate the functional role of BAP31 in hESCs, BAP31 expression was knocked down by small interfering RNA. BAP31 depletion impaired hESC self-renewal and pluripotency and drove hESC differentiation into multicell lineages. BAP31 depletion hindered hESC proliferation by arresting cell cycle at G0/G1 phase and inducing caspase-independent cell death. Interestingly, BAP31 depletion reduced hESC adhesion to extracellular matrix (ECM). Analysis of cell surface molecules showed decreased expression of epithelial cell adhesion molecule (EpCAM) in BAP31-depleted hESCs, while ectopic expression of BAP31 elevated the expression of EpCAM. EpCAM depletion also reduced hESC adhesion to ECM, arrested cell cycle at G0/G1 phase and induced cell death, producing similar effects to those of BAP31 depletion. BAP31 and EpCAM were physically associated and colocalized at the ER and cell surface. Both BAP31 and EpCAM depletion decreased cyclin D1 and E expression and suppressed PI3K/Akt signaling, suggesting that BAP31 regulates hESC stemness and survival via control of EpCAM expression. These findings provide, for the first time, mechanistic insights into how BAP31 regulates hESC stemness and survival via control of EpCAM expression.

  13. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    SciTech Connect

    Zhong, Xia; Li, Xiaonan; Liu, Fuli; Tan, Hui; Shang, Deya

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.

  14. Relevance of angiopoietin-2 and soluble P-selectin levels in patients with pulmonary arterial hypertension receiving combination therapy with oral treprostinil: a FREEDOM-C2 biomarker substudy

    PubMed Central

    Schermuly, Ralph; Seeger, Werner; Rao, Youlan; Ghofrani, Hossein A.; Gall, Henning

    2016-01-01

    Abstract Studies have suggested roles for angiopoietin-2 (Ang-2) and soluble P-selectin (sP-selectin) as biomarkers of disease severity and treatment response in pulmonary arterial hypertension (PAH), but additional data are required for validation. We evaluated these biomarkers using data from FREEDOM-C2, in which patients with PAH receiving stable monotherapy or combination therapy were randomized to receive additional treatment with oral treprostinil (up-titrated from 0.25 mg twice daily) or placebo for 16 weeks. Biomarker analysis was optional in FREEDOM-C2. We measured plasma Ang-2 and sP-selectin levels at baseline and at week 16, and we assessed their association with predefined outcomes (6-minute walk distance [6MWD] change from baseline >40 m, 6MWD >380 m, functional class I/II, and/or N-terminal pro-brain natriuretic peptide [NT-proBNP] <1,800 pg/mL at week 16) using Spearman correlation, receiver operating characteristics, and logistic regression. Biomarker data were available for 83 of 157 and 95 of 153 patients in the oral treprostinil and placebo groups, respectively. In the oral treprostinil group, baseline Ang-2 levels correlated with week 16 NT-proBNP levels (P < 0.0001). Baseline Ang-2 ≥12 ng/mL was associated with a reduced likelihood of having NT-proBNP <1,800 pg/mL at week 16 (multivariate odds ratio: 0.08; 95% confidence interval: 0.02–0.32). However, Ang-2 showed no significant association with the other assessed outcomes, and sP-selectin was not associated or correlated with any of the outcomes. These data suggest that Ang-2 and sP-selectin are not associated with response to oral treprostinil in patients already receiving stable PAH therapy. Trial registration: Clinicaltrials.gov identifier NCT00887978. PMID:28090293

  15. Effect of stress on eotaxin and expression of adhesion molecules in a murine model of allergic airway inflammation.

    PubMed

    Joachim, Ricarda A; Sagach, Viktoriya; Quarcoo, David; Dinh, Q Thai; Arck, Petra C; Klapp, Burghard F

    2007-01-01

    Recently we have shown that sound stress enhances allergic airway inflammation in a combined murine model. In the current study we investigated mediating factors and early kinetics of stress exacerbated allergic airway inflammation. Stress significantly increased allergen induced airway inflammation as identified by leukocyte numbers in BAL fluids. Eotaxin levels from stressed mice were significantly higher 24 h after stress. No differences were found for vascular or cellular adhesion molecule expression or cytokine levels. Our data indicate that the effect of stress on allergic airway inflammation might be mediated by the chemoattractant eotaxin, while Th2 cytokines and expression of adhesion molecules seem not to be differently regulated in stressed and non-stressed mice.

  16. Mice lacking the synaptic adhesion molecule Neph2/Kirrel3 display moderate hyperactivity and defective novel object preference

    PubMed Central

    Choi, Su-Yeon; Han, Kihoon; Cutforth, Tyler; Chung, Woosuk; Park, Haram; Lee, Dongsoo; Kim, Ryunhee; Kim, Myeong-Heui; Choi, Yeeun; Shen, Kang; Kim, Eunjoon

    2015-01-01

    Synaptic adhesion molecules regulate diverse aspects of neuronal synapse development, including synapse specificity, formation, and maturation. Neph2, also known as Kirrel3, is an immunoglobulin superfamily adhesion molecule implicated in intellectual disability, neurocognitive delay associated with Jacobsen syndrome, and autism spectrum disorders. We here report mice lacking Neph2 (Neph2-/- mice) display moderate hyperactivity in a familiar, but not novel, environment and defective novel object recognition with normal performances in Morris water maze spatial learning and memory, contextual fear conditioning and extinction, and pattern separation tests. These mice also show normal levels of anxiety-like behaviors, social interaction, and repetitive behaviors. At the synapse level, Neph2-/- dentate gyrus granule cells exhibit unaltered dendritic spine density and spontaneous excitatory synaptic transmission. These results suggest that Neph2 is important for normal locomotor activity and object recognition memory. PMID:26283919

  17. Human Dermal Mast Cells Contain and Release Tumor Necrosis Factor α, which Induces Endothelial Leukocyte Adhesion Molecule 1

    NASA Astrophysics Data System (ADS)

    Walsh, Laurence J.; Trinchieri, Giorgio; Waldorf, Heidi A.; Whitaker, Diana; Murphy, George F.

    1991-05-01

    Tumor necrosis factor α (TNF-α) is a proinflammatory cytokine that mediates endothelial leukocyte interactions by inducing expression of adhesion molecules. In this report, we demonstrate that human dermal mast cells contain sizeable stores of immunoreactive and biologically active TNF-α within granules, which can be released rapidly into the extracellular space upon degranulation. Among normal human dermal cells, mast cells are the predominant cell type that expresses both TNF-α protein and TNF-α mRNA. Moreover, induction of endothelial leukocyte adhesion molecule 1 expression is a direct consequence of release of mast cell-derived TNF-α. These findings establish a role for human mast cells as "gatekeepers" of the dermal microvasculature and indicate that mast cell products other than vasoactive amines influence endothelium in a proinflammatory fashion.

  18. Hematopoietic Progenitor Cell Rolling in Bone Marrow Microvessels: Parallel Contributions by Endothelial Selectins and Vascular Cell Adhesion Molecule 1

    PubMed Central

    Mazo, Irina B.; Gutierrez-Ramos, Jose-Carlos; Frenette, Paul S.; Hynes, Richard O.; Wagner, Denisa D.; von Andrian, Ulrich H.

    1998-01-01

    We have used intravital microscopy to study physiologically perfused microvessels in murine bone marrow (BM). BM sinusoids and venules, but not adjacent bone vessels, supported rolling interactions of hematopoietic progenitor cells. Rolling did not involve L-selectin, but was partially reduced in wild-type mice treated with antibodies to P- or E-selectin and in mice that were deficient in these two selectins. Selectin-independent rolling was mediated by α4 integrins, which interacted with endothelial vascular cell adhesion molecule (VCAM)-1. Parallel contribution of the endothelial selectins and VCAM-1 is not known to direct blood cell trafficking to other noninflamed tissues. This combination of constitutively expressed adhesion molecules may thus constitute a BM-specific recruitment pathway for progenitor cells analogous to the vascular addressins that direct selective lymphocyte homing to lymphoid organs. PMID:9687524

  19. Human neural cell adhesion molecule L1 and rat homologue NILE are ligands for integrin alpha v beta 3

    PubMed Central

    1996-01-01

    Integrin alpha v beta 3 is distinct in its capacity to recognize the sequence Arg-Gly-Asp (RGD) in many extra-cellular matrix (ECM) components. Here, we demonstrate that in addition to the recognition of ECM components, alpha v beta 3 can interact with the neural cell adhesion molecule L1-CAM; a member of the immunoglobulin superfamily (IgSF). M21 melanoma cells displayed significant Ca(++)-dependent adhesion and spreading on immunopurified rat L1 (NILE). This adhesion was found to be dependent on the expression of the alpha v-integrin subunit and could be significantly inhibited by an antibody to the alpha v beta 3 heterodimer. M21 cells also displayed some alpha v beta 3-dependent adhesion and spreading on immunopurified human L1. Ligation between this ligand and alpha v beta 3 was also observed to promote significant haptotactic cell migration. To map the site of alpha v beta 3 ligation we used recombinant L1 fragments comprising the entire extracellular domain of human L1. Significant alpha v beta 3-dependent adhesion and spreading was evident on a L1 fragment containing Ig-like domains 4, 5, and 6. Importantly, mutation of an RGD sequence present in the sixth Ig-like domain of L1 abrogated M21 cell adhesion. We conclude that alpha v beta 3-dependent recognition of human L1 is dependent on ligation of this RGD site. Despite high levels of L1 expression the M21 melanoma cells did not display significant adhesion via a homophilic L1-L1 interaction. These data suggest that M21 melanoma cells recognize and adhere to L1 through a mechanism that is primarily heterophilic and integrin dependent. Finally, we present evidence that melanoma cells can shed and deposit L1 in occluding ECM. In this regard, alpha v beta 3 may recognize L1 in a cell-cell or cell- substrate interaction. PMID:8636223

  20. Differential up-regulation of circulating soluble and endothelial cell intercellular adhesion molecule-1 in mice.

    PubMed Central

    Komatsu, S.; Flores, S.; Gerritsen, M. E.; Anderson, D. C.; Granger, D. N.

    1997-01-01

    Although circulating levels of soluble intercellular adhesion molecule-1 (sICAM-1) are frequently used as an indicator of the severity of different immune, inflammatory, or neoplastic diseases, little is known about the factors that govern plasma sICAM-1 concentration and its relationship to the membranous form of ICAM-1 (mICAM-1) expressed on vascular endothelial cells. Plasma sICAM-1 concentration (measured by enzyme-linked immunosorbent assay) and mICAM-1 expression (measured using the dual radiolabeled monoclonal antibody technique) in different vascular beds (eg, lung, small intestine, and spleen) were monitored in wild-type (C57BL) and ICAM-1-deficient mice, before and after administration of tumor necrosis factor (TNF)-alpha. In wild-type mice, TNF-alpha elicited time-dependent increases in lung and intestine mICAM-1 (plateau achieved at 12 hours), with a corresponding increase in plasma sICAM-1 (peaked at 5 hours and then declined). The initial increases in mICAM-1 and pulmonary leukocyte sequestration (measured as lung myeloperoxidase activity) induced by TNF-alpha preceded any detectable elevation in sICAM-1. In ICAM-1-deficient mice, plasma sICAM-1 was reduced by approximately 70%, with > 95% reductions of mICAM-1 in lung and intestine, and > 75% reduction in splenic accumulation of anti-ICAM-1 antibody. Although TNF-alpha doubled plasma sICAM-1 in ICAM-1-deficient mice, mICAM-1 was unaffected in all tissues. Either splenectomy or pretreatment with cycloheximide resulted in an attenuated TNF-induced increase in sICAM-1, without affecting mICAM-1 expression. These findings indicate that plasma sICAM-1 concentration does not accurately reflect the level of ICAM-1 expression on endothelial cells in different vascular beds. PMID:9212746

  1. The neural cell adhesion molecule is a receptor for rabies virus.

    PubMed

    Thoulouze, M I; Lafage, M; Schachner, M; Hartmann, U; Cremer, H; Lafon, M

    1998-09-01

    Previous reports strongly suggest that, in addition to the nicotinic acetylcholine receptor, rabies virus can use other, as-yet-unidentified receptors. We found that laboratory cell lines susceptible to rabies virus infection express the neural cell adhesion molecule (NCAM) (CD56) on their surface, whereas resistant cells do not, supporting the idea that NCAM could be a rabies virus receptor. We observed that (i) incubation with rabies virus decreases the surface expression of NCAM; (ii) treatment of susceptible cells with heparan sulfate, a ligand for NCAM, or with NCAM antibodies significantly reduces the rabies virus infection; and (iii) preincubation of rabies virus inoculum with soluble NCAM protein as a receptor decoy drastically neutralizes the capacity of rabies virus to infect susceptible cells. Moreover, we demonstrated that transfection of resistant L fibroblasts with the NCAM-encoding gene induces rabies virus susceptibility whereas absence of NCAM in the primary cortical cell cultures prepared from NCAM-deficient mice reduces the rabies virus infection and virus production. This provides evidence that NCAM is an in vitro receptor for the rabies virus. Moreover, the in vivo relevance for the use of NCAM as a receptor was demonstrated by the infection of NCAM-deficient mice, in which rabies mortality was delayed and brain invasion by rabies virus was drastically restricted. Our results showed that NCAM, which is expressed mainly in the adult nervous system, plays an important role in rabies infection. However, it cannot be excluded that receptors other than NCAM are utilized. Thus, the description of NCAM as a new rabies virus receptor would be another example of the use by viruses of more than one receptor to gain entry into the host.

  2. Intercellular Adhesion Molecule-1 (ICAM-1) Polymorphisms and Cancer Risk: A Meta-Analysis

    PubMed Central

    CHENG, Daye; LIANG, Bin

    2015-01-01

    Background: Intercellular adhesion molecule-1 (ICAM-1) Lys469Glu (K469E) polymorphism and Gly 241Arg (G241R) polymorphism might play important roles in cancer development and progression. However, the results of previous studies are inconsistent. The aim of this study was to evaluate the association between ICAM-1 K469E and G241R polymorphisms and the risk of cancer by meta-analysis. Methods: A comprehensive literature search (last search updated in November 2013) was conducted to identify case-control studies that investigated the association between ICAM-1 K469E and G241R polymorphisms and cancer risk. Results: A total of 18 case-control studies for ICAM-1 polymorphisms were included in the meta-analysis, including 4,844 cancer cases and 5,618 healthy controls. For K469E polymorphism, no significant association was found between K469E polymorphism and cancer risk. However, subgroup analysis by ethnicity revealed one genetic comparison (GG vs. AA) presented the relationship with cancer risk in Asian subgroup, and two genetic models (GG+GA vs. AA and GA vs. AA) in European subgroup, respectively. For G241R polymorphism, G241R polymorphism was significantly association with cancer risk in overall analysis. The subgroup analysis by ethnicity showed that G241R polymorphism was significantly associated with cancer risk in European subgroup. Conclusion: ICAM-1 G241R polymorphism might be associated with cancer risk, especially in European populations, but the results doesn’t support ICAM-1 K469E polymorphism as a risk factor for cancer. PMID:26284202

  3. Hyperhyaluronanemia in alcoholic hepatitis is associated with increased levels of circulating soluble intercellular adhesion molecule-1.

    PubMed

    Hill, D B; Deaciuc, I V; McClain, C J

    1998-09-01

    The purpose of this study was to evaluate the role of the sinusoidal endothelial cell (SEC) during the clinical course of alcoholic hepatitis. Twenty consenting patients (mean age: 49.4 +/- 11.0 years) with moderate or severe hepatitis were studied. The patients were selected and characterized according to their history of drinking and laboratory profile, including serum aminotransferases, bilirubin, total white blood cell and neutrophil count, and prothrombin times. C-reactive protein and interleukin-6 were also measured as markers of the hepatic acute phase response. A marker of the SEC functional state, the circulating level of hyaluronan, was measured in parallel with the circulating levels of soluble intercellular adhesion molecule (sICAM)-1 over a 6-month observation period. All patients were hospitalized for the first month and encouraged to abstain from drinking for the duration of the study. The initial increased levels of both hyaluronan (542 +/- 32 ng x ml(-1) serum) and sICAM-1 (488 +/- 70 ng x ml(-1) serum), gradually fell during the 6-month observation period, eventually reaching values close to those seen in healthy subjects. A positive correlation was obtained between changes in these two markers of SEC function/activation on the one hand, and between these two tests and bilirubin, on the other hand. These data indicate that abnormalities of SEC function/activation, as reflected by serum hyaluronan and siCAM-1, are prominent in alcoholic hepatitis, and these alterations improve within relatively short periods of time after cessation of alcohol consumption.

  4. R-Ras Regulates Murine T Cell Migration and Intercellular Adhesion Molecule-1 Binding

    PubMed Central

    Yan, Xiaocai; Yan, Mingfei; Guo, Yihe; Singh, Gobind; Chen, Yuhong; Yu, Mei; Wang, Demin; Hillery, Cheryl A.; Chan, Andrew M.

    2015-01-01

    The trafficking of T-lymphocytes to peripheral draining lymph nodes is crucial for mounting an adaptive immune response. The role of chemokines in the activation of integrins via Ras-related small GTPases has been well established. R-Ras is a member of the Ras-subfamily of small guanosine-5’-triphosphate-binding proteins and its role in T cell trafficking has been investigated in R-Ras null mice (Rras−/−). An examination of the lymphoid organs of Rras−/− mice revealed a 40% reduction in the cellularity of the peripheral lymph nodes. Morphologically, the high endothelial venules of Rras−/− mice were more disorganized and less mature than those of wild-type mice. Furthermore, CD4+ and CD8+ T cells from Rras−/− mice had approximately 42% lower surface expression of L-selectin/CD62L. These aberrant peripheral lymph node phenotypes were associated with proliferative and trafficking defects in Rras−/− T cells. Furthermore, R-Ras could be activated by the chemokine, CCL21. Indeed, Rras−/− T cells had approximately 14.5% attenuation in binding to intercellular adhesion molecule 1 upon CCL21 stimulation. Finally, in a graft-versus host disease model, recipient mice that were transfused with Rras−/− T cells showed a significant reduction in disease severity when compared with mice transplanted with wild-type T cells. These findings implicate a role for R-Ras in T cell trafficking in the high endothelial venules during an effective immune response. PMID:26710069

  5. Expression Level of Genes Coding for Cell Adhesion Molecules of Cadherin Group in Colorectal Cancer Patients

    PubMed Central

    Lorenc, Zbigniew; Opiłka, Mieszko Norbert; Kruszniewska-Rajs, Celina; Rajs, Antoni; Waniczek, Dariusz; Starzewska, Małgorzata; Lorenc, Justyna; Mazurek, Urszula

    2015-01-01

    Background Colorectal Cancer (CRC) is one of the most frequently diagnosed neoplasms and also one of the main death causes. Cell adhesion molecules are taking part in specific junctions, contributing to tissue integrality. Lower expression of the cadherins may be correlated with poorer differentiation of the CRC, and its more aggressive phenotype. The aim of the study is to designate the cadherin genes potentially useful for the diagnostics, prognostics, and the treatment of CRC. Material/Method Specimens were collected from 28 persons (14 female and 14 male), who were operated for CRC. The molecular analysis was performed using oligonucleotide microarrays, mRNA used was collected from adenocarcinoma, and macroscopically healthy tissue. The results were validated using qRT-PCR technique. Results Agglomerative hierarchical clustering of normalized mRNA levels has shown 4 groups with statistically different gene expression. The control group was divided into 2 groups, the one was appropriate control (C1), the second (C2) had the genetic properties of the CRC, without pathological changes histologically and macroscopically. The other 2 groups were: LSC (Low stage cancer) and HSC (High stage cancer). Consolidated results of the fluorescency of all of the differential genes, designated two coding E-cadherin (CDH1) with the lower expression, and P-cadherin (CDH3) with higher expression in CRC tissue. Conclusions The levels of genes expression are different for several groups of cadherins, and are related with the stage of CRC, therefore could be potentially the useful marker of the stage of the disease, also applicable in treatment and diagnostics of CRC. PMID:26167814

  6. Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice

    PubMed Central

    1994-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is one of three immunoglobulin superfamily members that bind to the integrins lymphocyte function associated 1 (LFA-1) and Mac-1 on leukocytes. We have generated mice that are genetically and functionally deficient in ICAM-1. These mice have elevated numbers of circulating neutrophils and lymphocytes, as well as diminished allogeneic T cell responses and delayed type hypersensitivity. Mutant mice are resistant to lethal effects of high doses of endotoxin (lipopolysaccharide [LPS]), and this correlates with a significant decrease in neutrophil infiltration in the liver. Production of inflammatory cytokines such as tumor necrosis factor alpha or interleukin 1 is normal in ICAM-1-deficient mice, and thus protection appears to be related to a diminution in critical leukocyte-endothelial interactions. After sensitization with D- galactosamine (D-Gal), ICAM-1-deficient mice are resistant to the lethal effect of low doses of exotoxin (Staphylococcus aureus enterotoxin B [SEB]), which has been shown to mediate its toxic effects via the activation of specific T cells. In this model, ICAM-1-mediated protection against SEB lethality correlates with a decrease in the systemic release of inflammatory cytokines, as well as with prevention of extensive hepatocyte necrosis and hemorrhage. ICAM-1-deficient mice sensitized with D-Gal, however, are not protected from lethality when challenged with low doses of endotoxin (LPS). These studies show that the different contribution of ICAM-1 in the activation of either T cells or macrophages is decisive for the fatal outcome of the shock in these two models. This work suggests that anti-ICAM-1 therapy may be beneficial in both gram-positive and -negative septic shock, either by reducing T cell activation or by diminishing neutrophil infiltration. PMID:7911822

  7. Localization of intercellular adhesion molecule-1 (ICAM-1) in the lungs of silica-exposed mice.

    PubMed Central

    Nario, R C; Hubbard, A K

    1997-01-01

    Intercellular adhesion molecule-1 (ICAM-1) is expressed on a variety of cells including endothelial cells, alveolar epithelial cells, and alveolar macrophages. Endothelial/epithelial cell ICAM-1 participates in the migration of leukocytes out of the blood in response to pulmonary inflammation, whereas alveolar macrophage ICAM-1 may represent cell activation. Our previous studies have shown that there is increased expression of ICAM-1 in lung tissue during acute inflammation following intratracheal injection with silica particles (2 mg/mouse). This increased expression was shown to play a role, in part, in the migration of neutrophils from the circulation into the tissue parenchyma. The aim of the current work is to localize expression of ICAM-1 during acute inflammation in lungs of mice exposed to either silica or the nuisance dust, titanium dioxide. In silica-exposed mice, a significant increase in ICAM-1 was detected on day-1 and localized by immunohistochemistry to aggregates of pulmonary macrophages and to type II epithelial cells. Areas of the lung with increased ICAM-1 expression also showed increased tumor necrosis factor alpha expression. Immunocytochemical staining of bronchoalveolar lavage (BAL) cells demonstrated increased ICAM-1 expression associated with alveolar macrophages 3, 5, and 7 days following silica exposure. Finally, soluble ICAM-1 levels in the BAL fluid were significantly increased in mice exposed to silica on the same days. Titanium dioxide exposure elicited a minimal increase in expression of ICAM-1 in the lungs. These data demonstrate that exposure to the toxic particle silica specifically increases ICAM-1 expression localized to pulmonary macrophages and type II epithelial cells. Images Figure 2. B Figure 2. A Figure 2. D Figure 2. C Figure 3. A Figure 3. B Figure 5. B Figure 5. A Figure 5. C PMID:9400721

  8. Expression of HLA-ABC, HLA-DR and intercellular adhesion molecule-1 in oesophageal carcinoma.

    PubMed Central

    Rockett, J C; Darnton, S J; Crocker, J; Matthews, H R; Morris, A G

    1995-01-01

    AIM--To examine the expression of HLA-ABC and HLA-DR major histocompatibility (MHC) antigens and intercellular adhesion molecule (ICAM)-1 in normal, inflamed, metaplastic, and neoplastic oesophageal tissue and in freshly disaggregated tumours. METHODS--Sequential sections of frozen tissue and cytospins of freshly disaggregated tumour were stained using the ABC peroxidase system and monoclonal antibodies specific for HLA-ABC, HLA-DR and ICAM-1. RESULTS--Normal oesophageal tissue showed positive staining for HLA-ABC in the basal layers of the oesophageal squamous epithelium and on the epithelial cells of the submucosal oesophageal glands. HLA-DR and ICAM-1 were not detected in either of these cell types. In 20 of 37 (54%) carcinomas HLA-ABC was expressed weakly, with heterogeneous expression in nine (24%). Two tumours showed strong expression of HLA-ABC, but 15 of 37 (41%) were negative. HLA-DR and ICAM-1 were expressed weakly in six of 37 (16%) carcinomas without correlation with each other or with the expression of HLA-ABC. CONCLUSIONS--HLA-ABC is absent from a high proportion of oesophageal carcinomas (41%) and is otherwise variably and weakly expressed with strong expression in only a small fraction (3%). In other carcinomas there is a higher level of HLA-ABC expression. This discrepancy may partly explain the aggressive nature of oesophageal carcinomas. HLA-DR and ICAM-1 are not normally expressed on those cells from which oesophageal carcinomas are thought to arise. The limited expression found here could suggest a partial or inhibited immune response against oesophageal carcinoma. In vivo repressive factors may be involved. Images PMID:7665697

  9. Endothelial cell adhesion molecule CD146: implications for its role in the pathogenesis of COPD.

    PubMed

    Kratzer, Adelheid; Chu, Hong Wei; Salys, Jonas; Moumen, Zakaria; Leberl, Maike; Bowler, Russ; Cool, Carlyne; Zamora, Martin; Taraseviciene-Stewart, Laima

    2013-08-01

    CD146 is an adhesion molecule localized at endothelial cell junctions and facilitates cell-cell interactions. The circulating soluble form (sCD146) lacks both the intracellular and the transmembrane domains. In this study we show that CD146 expression was significantly decreased in the lung tissue of smokers with chronic obstructive pulmonary disease (COPD) and also in rats exposed to second-hand smoke (SHS). Concurrently, levels of sCD146 were increased in both the plasma and bronchoalveolar lavage fluid (BALF) of COPD patients as well as in BALF from rats exposed to SHS. Decreased or abolished CD146 protein expression in rat pulmonary micro- and macrovascular endothelial cells was found after treatment with cigarette smoke extract (CSE), proinflammatory cytokine interleukin 18 (IL-18) or after silencing CD146 expression with siRNA. The decrease in CD146 protein was accompanied by increased endothelial monolayer permeability and enhanced macrophage infiltration in vitro. In CD146 knockout (KO) mice, distinct perivascular oedema was seen and increased numbers of inflammatory cells, along with increased protein levels in BALF. Increased sCD146 was found in BALF and plasma from patients with COPD. The circulating plasma levels of sCD146 correlated positively with the presence of anti-endothelial cell antibodies (AECAs). sCD146 in combination with AECAs may be useful markers for early detection of COPD. Our study indicates that loss of CD146 function damages pulmonary endothelial integrity. This damage may represent part of the pathophysiological processes that are involved in the basic aetiology of COPD/emphysema.

  10. Usefulness of epithelial cell adhesion molecule expression in the algorithmic approach to Lynch syndrome identification.

    PubMed

    Musulen, Eva; Blanco, Ignacio; Carrato, Cristina; Fernandez-Figueras, Maria Teresa; Pineda, Marta; Capella, Gabriel; Ariza, Aurelio

    2013-03-01

    Lynch syndrome (LS), the most frequent form of hereditary colorectal cancer syndrome, is caused by germ-line mutations in the mismatch repair system genes. Recently, a new mechanism involving the epithelial cell adhesion molecule (EPCAM)/TACSTD1 gene has been shown to be responsible in cases with abnormal MSH2 expression. Of interest, 3' exons deletions of the EPCAM gene, which is located upstream of MSH2 in chromosome 2, are associated with MSH2 promoter hypermethylation. EPCAM protein, expressed in epithelial tissues, is encoded by the EPCAM/TACSTD1 gene. Our study's aim was to explore EPCAM expression in colorectal carcinomas of MSH2-associated LS cases to evaluate the usefulness of EPCAM protein expression in the algorithm approach to LS population screening. We included a total of 19 MSH2-negative colorectal carcinomas from 14 different patients in whom we were able to perform a complete germ-line analysis. Nine patients showed a deleterious germ-line mutation that involved the MSH2 gene in 3 instances and the EPCAM gene exon 9 in 6 instances. All patients harboring the EPCAM mutation belonged to the same family. Of the 19 colorectal carcinomas, EPCAM expression loss was seen in only 5 tumors, all of them from patients showing a germ-line EPCAM deletion. Of interest, 6 tumors from 3 different patients carrying the same germ-line EPCAM deletion showed normal EPCAM expression. In conclusion, owing to the high specificity of EPCAM protein expression to identify LS patients carrying an EPCAM deletion, we recommend adding EPCAM immunohistochemistry to the LS diagnostic algorithm in MSH2-negative colorectal carcinoma.

  11. Intraocular soluble intracellular adhesion molecule-1 correlates with subretinal fluid height of diabetic macular edema

    PubMed Central

    Zhu, Dan; Zhu, He; Wang, Chunyan; Yang, Dayong

    2014-01-01

    Objective: To investigate the correlations between aqueous concentrations of vascular endothelial growth factor (VEGF), monocyte chemoattractant protein-1 (MCP-1), soluble intracellular adhesion molecule-1 (sICAM-1) and diabetic macular edema (DME). Materials and Methods: VEGF, MCP-1 and sICAM-1 concentrations in aqueous humor samples of 22 patients with DME and 23 patients with cataract of a control group were measured with solid-phase chemiluminescence immunoassay. Results: Aqueous VEGF (89.2 ± 58.5 pg/ml versus 48.5 ± 27.8 pg/ml, P = 0.006), MCP-1 (684.2 ± 423.4 pg/ml versus 432.4 ± 230.4 pg/ml, P = 0.019) and sICAM-1 (3213.8 ± 2581.6 pg/ml versus 260.2 ± 212.2 pg/ml, P < 0.001) all vary significantly between DME group and control group. Maximum height of submacular fluid measured by Optical coherence tomography (OCT) was significantly associated with aqueous sICAM-1 (r = -0.45, P = 0.034). The maximum height of macular thickness measured by OCT was not significantly associated with either VEGF (P = 0.300), MCP-1 (P = 0.320) or sICAM-1 (P = 0.285). Conclusions: Our results suggest that sICAM-1 may majorly contribute to the formation of subretinal fluid in DME patients and imply that MCP-1 and sICAM-1 may be the potential therapy targets, besides VEGF. PMID:23619489

  12. Thrombospondin-1 up-regulates expression of cell adhesion molecules and promotes monocyte binding to endothelium

    PubMed Central

    Narizhneva, Natalya V.; Razorenova, Olga V.; Podrez, Eugene A.; Chen, Juhua; Chandrasekharan, Unni M.; DiCorleto, Paul E.; Plow, Edward F.; Topol, Eric J.; Byzova, Tatiana V.

    2006-01-01

    Expression of cell adhesion molecules (CAM) responsible for leukocyte-endothelium interactions plays a crucial role in inflammation and atherogenesis. Up-regulation of vascular CAM-1 (VCAM-1), intracellular CAM-1 (ICAM-1), and E-selectin expression promotes monocyte recruitment to sites of injury and is considered to be a critical step in atherosclerotic plaque development. Factors that trigger this initial response are not well understood. As platelet activation not only promotes thrombosis but also early stages of atherogenesis, we considered the role of thrombospondin-1 (TSP-1), a matricellular protein released in abundance from activated platelets and accumulated in sites of vascular injury, as a regulator of CAM expression. TSP-1 induced expression of VCAM-1 and ICAM-1 on endothelium of various origins, which in turn, resulted in a significant increase of monocyte attachment. This effect could be mimicked by a peptide derived from the C-terminal domain of TSP-1 and known to interact with CD47 on the cell surface. The essential role of CD47 in the cellular responses to TSP-1 was demonstrated further using inhibitory antibodies and knockdown of CD47 with small interfering RNA. Furthermore, we demonstrated that secretion of endogenous TSP-1 and its interaction with CD47 on the cell surface mediates endothelial response to the major proinflammatory agent, tumor necrosis factor α (TNF-α). Taken together, this study identifies a novel mechanism regulating CAM expression and subsequent monocyte binding to endothelium, which might influence the development of anti-atherosclerosis therapeutic strategies. PMID:15833768

  13. Altered Monocyte and Endothelial Cell Adhesion Molecule Expression Is Linked to Vascular Inflammation in Human Immunodeficiency Virus Infection

    PubMed Central

    Kulkarni, Manjusha; Bowman, Emily; Gabriel, Janelle; Amburgy, Taylor; Mayne, Elizabeth; Zidar, David A.; Maierhofer, Courtney; Turner, Abigail Norris; Bazan, Jose A.; Koletar, Susan L.; Lederman, Michael M.; Sieg, Scott F.

    2016-01-01

    Background. Human immunodeficiency virus (HIV)-infected individuals have increased risk for vascular thrombosis, potentially driven by interactions between activated leukocytes and the endothelium. Methods. Monocyte subsets (CD14+CD16−, CD14+CD16+, CD14DimCD16+) from HIV negative (HIV−) and antiretroviral therapy-treated HIV positive (HIV+) participants (N = 19 and 49) were analyzed by flow cytometry for adhesion molecule expression (lymphocyte function-associated antigen 1 [LFA-1], macrophage-1 antigen [Mac-1], CD11c/CD18, very late antigen [VLA]-4) and the fractalkine receptor (CX3CR1); these receptors recognize ligands (intercellular adhesion molecules [ICAMs], vascular cell adhesion molecule [VCAM]-1, fractalkine) on activated endothelial cells (ECs) and promote vascular migration. Plasma markers of monocyte (soluble [s]CD14, sCD163) and EC (VCAM-1, ICAM-1,2, fractalkine) activation and systemic (tumor necrosis factor receptor [TNFR-I], TNFR-II) and vascular (lipoprotein-associated phospholipase A2 [Lp-PLA2]) inflammation were measured by enzyme-linked immunosorbent assay. Results. Proportions of CD16+ monocyte subsets were increased in HIV+ participants. Among all monocyte subsets, levels of LFA-1 were increased and CX3CR1 levels were decreased in HIV+ participants (P < .01). Levels of sCD163, sCD14, fractalkine, ICAM-1, VCAM-1, TNFR-II, and Lp-PLA2 were also increased in HIV+ participants (P < .05), and levels of sCD14, TNFR-I, and TNFR-II were directly related to ICAM-1 and VCAM-1 levels in HIV+ participants. Expression of CX3CR1 on monocyte subsets was inversely related to plasma Lp-PLA2 (P < .05 for all). Conclusions. Increased proportions of CD16+ monocytes, cells with altered adhesion molecule expression, combined with elevated levels of their ligands, may promote vascular inflammation in HIV infection. PMID:28066794

  14. Inhibitor of DASH proteases affects expression of adhesion molecules in osteoclasts and reduces myeloma growth and bone disease.

    PubMed

    Pennisi, Angela; Li, Xin; Ling, Wen; Khan, Sharmin; Gaddy, Dana; Suva, Larry J; Barlogie, Bart; Shaughnessy, John D; Aziz, Nazneen; Yaccoby, Shmuel

    2009-06-01

    Dipeptidyl peptidase (DPP) IV activity and/or structure homologues (DASH) are serine proteases implicated in tumourigenesis. We previously found that a DASH protease, fibroblast activation protein (FAP), was involved in osteoclast-induced myeloma growth. Here we further demonstrated expression of various adhesion molecules in osteoclasts cultured alone or cocultured with myeloma cells, and tested the effects of DASH inhibitor, PT-100, on myeloma cell growth, bone disease, osteoclast differentiation and activity, and expression of adhesion molecules in osteoclasts. PT-100 had no direct effects on viability of myeloma cells or mature osteoclasts, but significantly reduced survival of myeloma cells cocultured with osteoclasts. Real-time PCR array for 85 adhesion molecules revealed upregulation of 17 genes in osteoclasts after coculture with myeloma cells. Treatment of myeloma/osteoclast cocultures with PT-100 significantly downregulated 18 of 85 tested genes in osteoclasts, some of which are known to play roles in tumourigenesis and osteoclastogenesis. PT-100 also inhibited osteoclast differentiation and subsequent pit formation. Resorption activity of mature osteoclasts and differentiation of osteoblasts were not affected by PT-100. In primary myelomatous severe combined immunodeficient (SCID)-hu mice PT-100 reduced osteoclast activity, bone resorption and tumour burden. These data demonstrated that DASH proteases are involved in myeloma bone disease and tumour growth.

  15. Maprotiline inhibits LPS-induced expression of adhesion molecules (ICAM-1 and VCAM-1) in human endothelial cells

    PubMed Central

    Rafiee, Laleh; Hajhashemi, Valiollah; Javanmard, Shaghayegh Haghjooy

    2016-01-01

    Regardless of the known anti-inflammatory potential of heterocyclic antidepressants, the mechanisms concerning their modulating effects are not completely known. In our earlier work, maprotiline, a heterocyclic antidepressants, considerably inhibited infiltration of polymorphonuclear cell leucocytes into the inflamed paw. To understand the mechanism involved, we evaluated the effect of vascular cell adhesion molecule (VCAM-1), intracellular adhesion molecule (ICAM-1) expression in stimulated endothelial cells. Endothelial cells were stimulated with lipopolysaccharide (LPS) in the presence and absence of maprotiline (10-8 to 10-6 M) and ICAM-1 and VCAM-1 expression were measured using real-time quantitative reverse transcription polymerase chain reaction. Maprotiline significantly decreased the LPS-induced expression of VCAM-1 at all applied concentrations. The expression of ICAM-1 decreased in the presence of maprotiline at 10-6 M concentration (P<0.05). Since maprotiline inhibits the expression of adhesion molecules, ICAM-1 and VCAM-1 in LPS-stimulated human endothelial cells, it can be a possible way through which maprotiline exerts its anti-inflammatory properties. PMID:27168753

  16. Interleukin-7 is a potent co-stimulus of the adhesion pathway involving CD2 and CD28 molecules.

    PubMed Central

    Costello, R; Brailly, H; Mallet, F; Mawas, C; Olive, D

    1993-01-01

    Co-stimulation of highly purified peripheral T lymphocytes from healthy blood donors with the adhesion molecules CD2 and CD28 in association with recombinant interleukin-7 (rIL-7) induced T-cell proliferation, multiple cytokine secretion and IL-2 receptivity. We demonstrated that rIL-7 is as potent as rIL-2 in inducing the proliferation of unseparated, CD4+ and CD8+ T cells. In contrast to low or undetectable levels of IL-1 alpha, IL-6 and IL-2, high levels of tumour necrosis factor-alpha (TNF-alpha), IL-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF) were secreted. Experiments using blocking antibodies suggested a direct mechanism for rIL-7 co-stimulatory effect, although induction of the CD25/IL-2 receptor alpha-chain (CD25/IL-2R alpha) was observed. Monoclonal antibodies (mAb) against the adhesion molecules CD2 and CD28 are likely to mimic the interaction with their respective physiological ligands [lymphocyte function-associated antigen-3 (LFA-3)/CD58, CD59 and CD48 for CD2, B7/BB1 for CD28]. Taken together, these in vitro data suggest that IL-7 could participate in paracrine interactions between T lymphocytes and thymic stromal cells or dendritic cells, via its potent co-stimulatory activity with CD2 and CD28 adhesion molecules. PMID:7904590

  17. Green tea polyphenol epigallocatechin-3-gallate attenuates TNF-α-induced intercellular adhesion molecule-1 expression and monocyte adhesion to retinal pigment epithelial cells.

    PubMed

    Thichanpiang, Peeradech; Wongprasert, Kanokpan

    2015-01-01

    Epigallocatechin-3-gallate (EGCG) is a major polyphenol component of green tea (Camellia sinensis) and demonstrates anti-oxidant, anticancer and anti-inflammatory properties. EGCG has been shown to protect retinal pigment epithelium (RPE) against oxidative stress-induced cell death. The pathogenesis of diseases in the retina is usually initiated by local inflammation at the RPE cell layer, and inflammation is mostly associated with leukocyte migration and the secretion of pro-inflammatory cytokines. Whether EGCG can modulate the cytokine-induced inflammatory response of RPE, particularly leukocyte migration, has not been clearly elucidated, and was therefore the objective of this study. ARPE-19 cells were cultured with different concentrations of TNF-α in the presence or absence of EGCG to different time points. Intracellular reactive oxygen species (ROS) levels were determined. Intercellular adhesion molecule (ICAM)-1 and phosphor-NF-κB and IκB expression were determined by Western blot analysis. Phosphor-NF-κB nuclear translocation and monocyte-RPE adhesion were investigated using immunofluorescence confocal laser scanning microscopy. Scanning electron microscopy (SEM) was carried out to further determine the ultrastructure of monocyte-RPE adhesion. The results demonstrated that TNF-α modulated inflammatory effects in ARPE-19 by induction of ROS and up-regulation of ICAM-1 expression. Moreover, TNF-α-induced phosphor-NF-κB nuclear translocation, increased phosphor-NF-κB expression and IκB degradation, and increased the degree of monocyte-RPE adhesion. Pretreating the cells with EGCG ameliorated the inflammatory effects of TNF-α. The results indicated that EGCG significantly exerts anti-inflammatory effects in ARPE-19 cells, partly as a suppressor of TNF-α signaling and that the inhibition was mediated via the NF-κB pathway.

  18. Micromanipulation of adhesion of a Jurkat cell to a planar bilayer membrane containing lymphocyte function-associated antigen 3 molecules

    PubMed Central

    1992-01-01

    Cell adhesion plays a fundamental role in the organization of cells in differentiated organs, cell motility, and immune response. A novel micromanipulation method is employed to quantify the direct contribution of surface adhesion receptors to the physical strength of cell adhesion. In this technique, a cell is brought into contact with a glass-supported planar membrane reconstituted with a known concentration of a given type of adhesion molecules. After a period of incubation (5-10 min), the cell is detached from the planar bilayer by pulling away the pipette holding the cell in the direction perpendicular to the glass-supported planar bilayer. In particular, we investigated the adhesion between a Jurkat cell expressing CD2 and a glass-supported planar bilayer containing either the glycosyl- phosphatidylinositol (GPI) or the transmembrane (TM) isoform of the counter-receptor lymphocyte function-associated antigen 3 (LFA-3) at a concentration of 1,000 molecules/microns 2. In response to the pipette force the Jurkat cells that adhered to the planar bilayer containing the GPI isoform of LFA-3 underwent extensive elongation. When the contact radius was reduced by approximately 50%, the cell then detached quickly from its substrate. The aspiration pressure required to detach a Jurkat cell from its substrate was comparable to that required to detach a cytotoxic T cell from its target cell. Jurkat cells that had been separated from the substrate again adhered strongly to the planar bilayer when brought to proximity by micromanipulation. In experiments using the planar bilayer containing the TM isoform of LFA-3, Jurkat cells detached with little resistance to micromanipulation and without changing their round shape. PMID:1370839

  19. Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1.

    PubMed

    Ribic, Adema; Liu, Xinran; Crair, Michael C; Biederer, Thomas

    2014-03-01

    Adhesive interactions in the retina instruct the developmental specification of inner retinal layers. However, potential roles of adhesion in the development and function of photoreceptor synapses remain incompletely understood. This contrasts with our understanding of synapse development in the CNS, which can be guided by select adhesion molecules such as the Synaptic Cell Adhesion Molecule 1 (SynCAM 1/CADM1/nectin-like 2 protein). This immunoglobulin superfamily protein modulates the development and plasticity of classical excitatory synapses. We show here by immunoelectron microscopy and immunoblotting that SynCAM 1 is expressed on mouse rod photoreceptors and their terminals in the outer nuclear and plexiform layers in a developmentally regulated manner. Expression of SynCAM 1 on rods is low in early postnatal stages (P3-P7) but increases after eye opening (P14). In support of functional roles in the photoreceptors, electroretinogram recordings demonstrate impaired responses to light stimulation in SynCAM 1 knockout (KO) mice. In addition, the structural integrity of synapses in the OPL requires SynCAM 1. Quantitative ultrastructural analysis of SynCAM 1 KO retina measured fewer fully assembled, triadic rod ribbon synapses. Furthermore, rod synapse ribbons are shortened in KO mice, and protein levels of Ribeye, a major structural component of ribbons, are reduced in SynCAM 1 KO retina. Together, our results implicate SynCAM 1 in the synaptic organization of the rod visual pathway and provide evidence for novel roles of synaptic adhesion in the structural and functional integrity of ribbon synapses.

  20. Modification of P-selectin glycoprotein ligand-1 with a natural killer cell-restricted sulfated lactosamine creates an alternate ligand for L-selectin

    PubMed Central

    André, Pascale; Spertini, Olivier; Guia, Sophie; Rihet, Pascal; Dignat-George, Françoise; Brailly, Hervé; Sampol, José; Anderson, Paul J.; Vivier, Eric

    2000-01-01

    Natural killer (NK) cells are components of the innate immune system that can recognize and kill virally infected cells, tumor cells, and allogeneic cells without prior sensitization. NK cells also elaborate cytokines (e.g., interferon-γ and tumor necrosis factor-α) and chemokines (e.g., macrophage inflammatory protein-1α) that promote the acquisition of antigen-specific immunity. NK cell differentiation is accompanied by the cell surface expression of a mucin-like glycoprotein bearing an NK cell-restricted keratan sulfate-related lactosamine carbohydrate, the PEN5 epitope. Here, we report that PEN5 is a post-translational modification of P-selectin glycoprotein ligand-1 (PSGL-1). The PEN5 epitope creates on PSGL-1 a unique binding site for L-selectin, which is independent of PSGL-1 tyrosine sulfation. On the surface of NK cells, the expression of PEN5 is coordinated with the disappearance of L-selectin and the up-regulation of Killer cell Ig-like Receptors (KIR). These results indicate that NK cell differentiation is accompanied by the acquisition of a unique carbohydrate, PEN5, that can serve as part of a combination code to deliver KIR+ NK cells to specific tissues. PMID:10725346

  1. Exosomes from iPSCs Delivering siRNA Attenuate Intracellular Adhesion Molecule-1 Expression and Neutrophils Adhesion in Pulmonary Microvascular Endothelial Cells.

    PubMed

    Ju, Zhihai; Ma, Jinhui; Wang, Chen; Yu, Jie; Qiao, Yeru; Hei, Feilong

    2017-04-01

    The pro-inflammatory activation of pulmonary microvascular endothelial cells resulting in continuous expression of cellular adhesion molecules, and subsequently recruiting primed neutrophils to form a firm neutrophils-endothelium (PMN-EC) adhesion, has been examined and found to play a vital role in acute lung injury (ALI). RNA interference (RNAi) is a cellular process through harnessing a natural pathway silencing target gene based on recognition and subsequent degradation of specific mRNA sequences. It opens a promising approach for precision medicine. However, this application was hampered by many obstacles, such as immunogenicity, instability, toxicity problems, and difficulty in across the biological membrane. In this study, we reprogrammed urine exfoliated renal epithelial cells into human induced pluripotent stem cells (huiPSCs) and purified the exosomes (Exo) from huiPSCs as RNAi delivery system. Through choosing the episomal system to deliver transcription factors, we obtained a non-integrating huiPSCs. Experiments in both vitro and vivo demonstrated that these huiPSCs possess the pluripotent properties. The exosomes of huiPSCs isolated by differential centrifugation were visualized by transmission electron microscopy (TEM) showing a typical exosomal appearance with an average diameter of 122 nm. Immunoblotting confirmed the presence of the typical exosomal markers, including CD63, TSG 101, and Alix. Co-cultured PKH26-labeled exosomes with human primary pulmonary microvascular endothelial cells (HMVECs) confirmed that they could be internalized by recipient cells at a time-dependent manner. Then, electroporation was used to introduce siRNA against intercellular adhesion molecule-1 (ICAM-1) into exosomes to form an Exo/siRNA compound. The Exo/siRNA compound efficiently delivered the target siRNA into HMVECs causing selective gene silencing, inhibiting the ICAM-1 protein expression, and PMN-EC adhesion induced by lipopolysaccharide (LPS). These data suggest

  2. Targeted Gene Deletion Demonstrates that Cell Adhesion MoleculeICAM-4 is Critical for Erythroblastic Island Formation

    SciTech Connect

    Lee, Gloria; Lo, Annie; Short, Sarah A.; Mankelow, Tosti J.; Spring, Frances; Parsons, Stephen F.; Mohandas, Narla; Anstee, David J.; Chasis, Joel Anne

    2006-02-15

    Erythroid progenitors differentiate in erythroblastic islands, bone marrow niches composed of erythroblasts surrounding a central macrophage. Evidence suggests that within islands adhesive interactions regulate erythropoiesis and apoptosis. We are exploring whether erythroid intercellular adhesion molecule-4 (ICAM-4), animmunoglobulin superfamily member, participates in island formation. Earlier, we identified alpha V integrins as ICAM-4 counter receptors. Since macrophages express alpha V, ICAM-4 potentially mediates island attachments. To test this, we generated ICAM-4 knockout mice and developed quantitative, live cell techniques for harvesting intact islands and for reforming islands in vitro. We observed a 47 percent decrease in islands reconstituted from ICAM-4 null marrow compared to wild type. We also found a striking decrease in islands formed in vivo in knockout mice. Further, peptides that block ICAM-4 alpha V adhesion produced a 53-57 percent decrease in reconstituted islands, strongly suggesting that ICAM-4 binding to macrophage alpha V functions in island integrity. Importantly, we documented that alpha V integrin is expressed in macrophages isolated from erythro blastic islands. Collectively, these data provide convincing evidence that ICAM-4 is critical in erythroblastic island formation via ICAM-4/alpha V adhesion and also demonstrate that the novel experimental strategies we developed will be valuable in exploring molecular mechanisms of erythroblastic island formation and their functional role in regulating erythropoiesis.

  3. Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma

    NASA Astrophysics Data System (ADS)

    Lee, H. J.; Shon, C. H.; Kim, Y. S.; Kim, S.; Kim, G. C.; Kong, M. G.

    2009-11-01

    Increased expression of integrins and focal adhesion kinase (FAK) is important for the survival, growth and metastasis of melanoma cells. Based on this well-established observation in oncology, we propose to use degradation of integrin and FAK proteins as a potential strategy for melanoma cancer therapy. A low-temperature radio-frequency atmospheric microplasma jet is used to study their effects on the adhesion molecules of G361 melanoma cells. Microplasma treatment is shown to (1) cause significant cell detachment from the bottom of microtiter plates coated with collagen, (2) induce the death of human melanoma cells, (3) inhibit the expression of integrin α2, integrin α4 and FAK on the cell surface and finally (4) change well-stretched actin filaments to a diffuse pattern. These results suggest that cold atmospheric pressure plasmas can strongly inhibit the adhesion of melanoma cells by reducing the activities of adhesion proteins such as integrins and FAK, key biomolecules that are known to be important in malignant transformation and acquisition of metastatic phenotypes.

  4. Epidermal Expression of Intercellular Adhesion Molecule 1 is Not a Primary Inducer of Cutaneous Inflammation in Transgenic Mice

    NASA Astrophysics Data System (ADS)

    Williams, Ifor R.; Kupper, Thomas S.

    1994-10-01

    Keratinocytes at sites of cutaneous inflammation have increased expression of intercellular adhesion molecule 1 (ICAM-1), a cytokine-inducible adhesion molecule which binds the leukocyte integrins LFA-1 and Mac-1. Transgenic mice were prepared in which the expression of mouse ICAM-1 was targeted to basal keratinocytes by using the human K14 keratin promoter. The level of constitutive expression attained in the transgenic mice exceeded the peak level of ICAM-1 expression induced on nontransgenic mouse keratinocytes in vitro by optimal combinations of interferon γ and tumor necrosis factor α or in vivo by proinflammatory stimuli such as phorbol 12-myristate 13-acetate. In vitro adhesion assays demonstrated that cultured transgenic keratinocytes were superior to normal keratinocytes as a substrate for the LFA-1-dependent binding of mouse T cells, confirming that the transgene-encoded ICAM-1 was expressed in a functional form. However, the high level of constitutive ICAM-1 expression achieved on keratinocytes in vivo in these transgenic mice did not result in additional recruitment of CD45^+ leukocytes into transgenic epidermis, nor did it elicit dermal inflammation. Keratinocyte ICAM-1 expression also did not potentiate contact-hypersensitivity reactions to epicutaneous application of haptens. The absence of a spontaneous phenotype in these transgenic mice was not the result of increased levels of soluble ICAM-1, since serum levels of soluble ICAM-1 were equal in transgenic mice and controls. We conclude that elevated ICAM-1 expression on keratinocytes cannot act independently to influence leukocyte trafficking and elicit cutaneous inflammation.

  5. Human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation mediated by vascular cell adhesion molecule-1: evidence for involvement of cell adhesion molecules in HTLV-1 biology.

    PubMed Central

    Hildreth, J E; Subramanium, A; Hampton, R A

    1997-01-01

    While studying the potential role of vascular cell adhesion molecule-1 (VCAM-1) in infection of endothelial cells by human immunodeficiency virus (HIV), we found that VCAM-1 can mediate human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation. Both expression-vector-encoded and endogenously expressed VCAM-1 supported fusion of uninfected cells with HTLV-1-infected cells. Fusion was obtained with cell lines carrying the HTLV-1 genome and expressing viral proteins but not with an HTLV-1-transformed cell line that does not express viral proteins. In clones of VCAM-1-transfected cells, the degree of syncytium formation observed directly reflected the level of VCAM-1 expression. Syncytium formation between HTLV-1-expressing cells and VCAM-1+ cells could be blocked with antiserum against HTLV-1 gp46 and with a monoclonal antibody (MAb) against VCAM-1. Fusion was not blocked by antiserum against HIV or a MAb against VLA-4, the physiological counter-receptor for VCAM-1. The results indicate that VCAM-1 can serve as an accessory molecule or potential coreceptor for HTLV-1-induced cell fusion and provide direct evidence of a role for cell adhesion molecules in the biology of HTLV-1. PMID:8995639

  6. Characterization of adhesive molecule with affinity to Caco-2 cells in Lactobacillus acidophilus by proteome analysis.

    PubMed

    Ashida, Nobuhisa; Yanagihara, Sae; Shinoda, Tadashi; Yamamoto, Naoyuki

    2011-10-01

    The adhesive activities of eight Lactobacillus acidophilus strains toward intestinal epithelial Caco-2 cells were studied to understand the probiotic characteristics of the L. acidophilus L-92 strain. Most of the strains, including L-92, showed high adhesive activity; CP23 showed the lowest adhesive activity. CP23 was selected for comparative analysis of cell wall-associated proteins versus the L-92 strain. Cell wall-associated proteins extracted from L-92 and CP23 were subjected to two-dimensional electrophoresis, and major spots observed in the former were compared to the corresponding spots in the latter. To understand the effects of key components of L-92 on its adhesion to Caco-2 cells, 18 spots with stronger signals in L-92 than those in CP23 were identified by a MALDI-TOF/TOF of Ultraflex analysis. Among the identified proteins of L-92, surface-layer protein A (SlpA) was considered strongly involved in adhesion in the eight L. acidophilus strains. To study the importance of SlpA in the adhesion of L. acidophilus, the amounts of SlpA proteins in LiCl extracts of the eight strains were compared by SDSpolyacrylamide gel electrophoresis. As a result, the adhesive abilities of L. acidophilus strains to Caco-2 cells correlated closely to the amount of SlpA in the cells and the productivity of IL-12, an inflammatory cytokine, in all eight strains. These results strongly suggested that SlpA in L. acidophilus might play a key role in its attachment to Caco-2 cells and in the release of IL-12 from dendritic cells.

  7. A pentacyclic triterpene natural product, ursolic acid and its prodrug US597 inhibit targets within cell adhesion pathway and prevent cancer metastasis

    PubMed Central

    Xiang, Liping; Chi, Ting; Tang, Qiao; Yang, Xiang; Ou, Minrui; Chen, Xiufen; Yu, Xiaobo; Chen, Jianzhong; Ho, Rodney J.Y.; Shao, Jingwei; Jia, Lee

    2015-01-01

    Here we showed that ursolic acid (UA), a pentacyclic triterpene natural product, and its novel prodrug derivative US597 suppressed cancer cells adhesion, invasion and migration. This effect was accompanied by inhibition of focal adhesion signaling pathway including alterations in ICAM-1, VCAM-1, E-selectin, P-selectin, integrin α6β1, FAK, Src, paxillin and PTEN. While oral administration of UA or US597 increases survival rate of melanoma lung metastasis in C57BL/6 mice, US597 treatment extend the survival rate above that of UA. Immunohistochemical analysis revealed that US597 treatment regulates ICAM-1, a biomarker of metastasis. We did not detect side effects with US597 in mice such as weight loss, viscera tissues toxicity and blood cell abnormalities. Thus, UA and US597 are potential drug candidates for preventing cancer metastasis. Molecular and cellular study data suggest that UA and US597 modulate expression of cell adhesion molecules within focal adhesion signaling pathway leading to cancer cell motility. PMID:25823660

  8. Benzo[a]pyrene induces intercellular adhesion molecule-1 through a caveolae and aryl hydrocarbon receptor mediated pathway

    SciTech Connect

    Oesterling, Elizabeth; Toborek, Michal; Hennig, Bernhard

    2008-10-15

    Toxicologic and epidemiologic studies have linked benzo[a]pyrene (B[a]P) exposure with cardiovascular diseases such as atherosclerosis. The mechanisms of action leading to these diseases have not been fully understood. One key step in the development of atherosclerosis is vascular endothelial dysfunction, which is characterized by increased adhesiveness. To determine if B[a]P could lead to increased endothelial adhesiveness, the effects of B[a]P on human endothelial cell intercellular adhesion molecule-1 (ICAM-1) expression was investigated. B[a]P was able to increase ICAM-1 protein only after pretreatment with the aryl hydrocarbon receptor (AhR) agonist {beta}-naphthoflavone ({beta}-NF). Knockdown of AhR by siRNA or treatment with AhR antagonist {alpha}-naphthoflavone ({alpha}-NF) eliminated the induction of ICAM-1 from B[a]P, confirming the necessity of AhR in this process. Likewise, B[a]P only increased monocyte adhesion to the vascular endothelium when cells were pretreated with {beta}-NF. Experiments were done to define a signaling mechanism. B[a]P increased phosphorylation of MEK and p38-MAPK, and inhibitors to these proteins blunted the ICAM-1 induction. B[a]P was also able to increase AP-1 DNA binding and phosphorylation of cJun. Phosphorylation of cJun was disrupted by MEK and p38-MAPK inhibitors linking the signaling cascade. Finally, the importance of membrane microdomains, caveolae, was demonstrated by knockdown of the structural protein caveolin-1. Disruption of caveolae eliminated the B[a]P-induced ICAM-1 expression. These data suggest a possible pro-inflammatory mechanism of action of B[a]P involving caveolae, leading to increased vascular endothelial adhesiveness, and this inflammation may be a critical step in the development of B[a]P-induced atherosclerosis.

  9. Mechanism of Collaborative Enhancement of Binding of Paired Antibodies to Distinct Epitopes of Platelet Endothelial Cell Adhesion Molecule-1

    PubMed Central

    Greineder, Colin F.; Villa, Carlos H.; Hood, Elizabeth D.; Shuvaev, Vladimir V.; Sun, Jing; Chacko, Ann-Marie; Abraham, Valsamma; DeLisser, Horace M.; Muzykantov, Vladimir R.

    2017-01-01

    Monoclonal antibodies (mAbs) directed to extracellular epitopes of human and mouse Platelet Endothelial Cell Adhesion Molecule-1 (CD31 or PECAM-1) stimulate binding of other mAbs to distinct adjacent PECAM-1 epitopes. This effect, dubbed Collaborative Enhancement of Paired Affinity Ligands, or CEPAL, has been shown to enhance delivery of mAb-targeted drugs and nanoparticles to the vascular endothelium. Here we report new insights into the mechanism underlying this effect, which demonstrates equivalent amplitude in the following models: i) cells expressing a full length PECAM-1 and mutant form of PECAM-1 unable to form homodimers; ii) isolated fractions of cellular membranes; and, iii) immobilized recombinant PECAM-1. These results indicate that CEPAL is mediated not by interference in cellular functions or homophilic PECAM-1 interactions, but rather by conformational changes within the cell adhesion molecule induced by ligand binding. This mechanism, mediated by exposure of partially occult epitopes, is likely to occur in molecules other than PECAM-1 and may represent a generalizable phenomenon with valuable practical applications. PMID:28085903

  10. MicroRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development

    PubMed Central

    Lu, Cecilia S.; Zhai, Bo; Mauss, Alex; Landgraf, Matthias; Gygi, Stephen; Van Vactor, David

    2014-01-01

    Neuronal connectivity and specificity rely upon precise coordinated deployment of multiple cell-surface and secreted molecules. MicroRNAs have tremendous potential for shaping neural circuitry by fine-tuning the spatio-temporal expression of key synaptic effector molecules. The highly conserved microRNA miR-8 is required during late stages of neuromuscular synapse development in Drosophila. However, its role in initial synapse formation was previously unknown. Detailed analysis of synaptogenesis in this system now reveals that miR-8 is required at the earliest stages of muscle target contact by RP3 motor axons. We find that the localization of multiple synaptic cell adhesion molecules (CAMs) is dependent on the expression of miR-8, suggesting that miR-8 regulates the initial assembly of synaptic sites. Using stable isotope labelling in vivo and comparative mass spectrometry, we find that miR-8 is required for normal expression of multiple proteins, including the CAMs Fasciclin III (FasIII) and Neuroglian (Nrg). Genetic analysis suggests that Nrg and FasIII collaborate downstream of miR-8 to promote accurate target recognition. Unlike the function of miR-8 at mature larval neuromuscular junctions, at the embryonic stage we find that miR-8 controls key effectors on both sides of the synapse. MiR-8 controls multiple stages of synapse formation through the coordinate regulation of both pre- and postsynaptic cell adhesion proteins. PMID:25135978

  11. Biogenesis and fate of the cell-cell adhesion molecule, agglutinin, during gametogenesis and fertilization of Chlamydomonas reinhardtii

    SciTech Connect

    Hunnicutt, G.R.

    1989-01-01

    Fertilization in Chlamydomonas begins with the species-specific recognition and adhesion between gametes of opposite mating types via agglutinin molecules on the flagellar surface. This adhesion generates a cAMP-mediated sexual signal that initiates the subsequent events of call wall release, mating structure activation, and cell fusion. Although flagella of paired gametes remain attached to each other until the zygote forms, the process is dynamic. Engaged agglutinins rapidly become inactivated and turnover, requiring the constant supply of new agglutinins to replace the lost molecules. A population of cell body associated agglutinins has been postulated to the pool of agglutinins recruited during this turnover. Cell body agglutinins, therefore were identified, purified, localized within the cells and compared to flagellar agglutinins. The relationship between these two agglutinin populations was also examined. Cell body agglutinins were biochemically indistinguishable from the flagellar form with respect to their M{sub r}, sedimentation coefficient, and hydrophobicity elution properties. Functionally, however, these molecules were inactive in situ. The calculated surface density of agglutinins in the cell body and flagellar domains was similar and thus could not explain their functional difference, but two domains contiguous and yet distinctive suggested they may be separated by a functional barrier. To test this, a method was developed, using a monoclonal antibody and cycloheximide, that removed the flagellar agglutinins so movement between the domains could be monitored. Mobilization of agglutinins onto the flagella did not occur unless sexual signaling was induced with cAMP and papaverine.

  12. Expression of adhesion molecules, chemokines and matrix metallo- proteinases (MMPs) in viable and degenerating stage of Taenia solium metacestode in swine neurocysticercosis.

    PubMed

    Singh, Satyendra K; Singh, Aloukick K; Prasad, Kashi N; Singh, Amrita; Singh, Avinash; Rai, Ravi P; Tripathi, Mukesh; Gupta, Rakesh K; Husain, Nuzhat

    2015-11-30

    Neurocysticercosis (NCC) is a parasitic infection of central nervous system (CNS). Expression of adhesion molecules, chemokines and matrix metalloproteinases (MMPs) were investigated on brain tissues surrounding viable (n=15) and degenerating cysticerci (n=15) of Taenia solium in swine by real-time RT-PCR and ELISA. Gelatin gel zymography was performed for MMPs activity. ICAM-1 (intercellular adhesion molecule-1), E-selectin, MIP-1α (macrophage inflammatory protein-1α), Eotaxin-1 and RANTES (regulated on activation, normal T cell expressed and secreted) were associated with degenerating cysticerci (cysts). However, VCAM-1 (vascular cell adhesion molecule-1), MCP-1 (monocyte chemotactic protein-1), MMP-2 and MMP-9 were associated with both viable and degenerating cysts. In conclusion, viable and degenerating cysticerci have different immune molecule profiles and role of these molecules in disease pathogenesis needs to be investigated.

  13. MicroRNA-221 controls expression of intercellular adhesion molecule-1 in epithelial cells in response to Cryptosporidium parvum infection

    PubMed Central

    Gong, Ai-Yu; Hu, Guoku; Zhou, Rui; Liu, Jun; Feng, Yaoyu; Soukup, Garrett A.; Chen, Xian-Ming

    2011-01-01

    Cryptosporidium parvum is a protozoan parasite that infects gastrointestinal epithelial cells and causes diarrheal disease in humans and animals globally. Pathological changes following C. parvum infection include crypt hyperplasia, a modest inflammatory reaction with increased infiltration of lymphocytes into intestinal mucosa. Expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), on infected epithelial cell surfaces may facilitate adhesion and recognition of lymphocytes at infection sites. MicroRNAs (miRNAs) are small RNA molecules of 23 nucleotides that negatively regulate protein-coding gene expression via translational suppression or mRNA degradation. We recently reported that microRNA-221 (miR-221) regulates ICAM-1 translation through targeting the ICAM-1 3′-untranslated region (UTR). In this study, we tested the role of miR-221 in regulating ICAM-1 expression in epithelial cells in response to C. parvum infection using an in vitro model of human biliary cryptosporidiosis. Up-regulation of ICAM-1 at both message and protein levels was detected in epithelial cells following C. parvum infection. Inhibition of ICAM-1 transcription with actinomycin D could only partially block C. parvum-induced ICAM-1 expression at the protein level. Cryptosporidium parvum infection decreased miR-221 expression in infected epithelial cells. When cells were transfected with a luciferase reporter construct covering the miR-221 binding site in the ICAM-1 3′-UTR and then exposed to C. parvum, an enhanced luciferase activity was detected. Transfection of miR-221 precursor abolished C. parvum-stimulated ICAM-1 protein expression. In addition, expression of ICAM-1 on infected epithelial cells facilitated epithelial adherence of co-cultured Jurkat cells. These results indicate that miR-221-mediated translational suppression controls ICAM-1 expression in epithelial cells in response to C. parvum infection. PMID:21236259

  14. Murine junctional adhesion molecules JAM-B and JAM-C mediate endothelial and stellate cell interactions during hepatic fibrosis.

    PubMed

    Hintermann, Edith; Bayer, Monika; Ehser, Janine; Aurrand-Lions, Michel; Pfeilschifter, Josef M; Imhof, Beat A; Christen, Urs

    2016-07-03

    Classical junctional adhesion molecules JAM-A, JAM-B and JAM-C influence vascular permeability, cell polarity as well as leukocyte recruitment and immigration into inflamed tissue. As the vasculature becomes remodelled in chronically injured, fibrotic livers we aimed to determine distribution and role of junctional adhesion molecules during this pathological process. Therefore, livers of naïve or carbon tetrachloride-treated mice were analyzed by immunohistochemistry to localize all 3 classical junctional adhesion molecules. Hepatic stellate cells and endothelial cells were isolated and subjected to immunocytochemistry and flow cytometry to determine localization and functionality of JAM-B and JAM-C. Cells were further used to perform contractility and migration assays and to study endothelial tubulogenesis and pericytic coverage by hepatic stellate cells. We found that in healthy tissue, JAM-A was ubiquitously expressed whereas JAM-B and JAM-C were restricted to the vasculature. During fibrosis, JAM-B and JAM-C levels increased in endothelial cells and JAM-C was de novo generated in myofibroblastic hepatic stellate cells. Soluble JAM-C blocked contractility but increased motility in hepatic stellate cells. Furthermore, soluble JAM-C reduced endothelial tubulogenesis and endothelial cell/stellate cell interaction. Thus, during liver fibrogenesis, JAM-B and JAM-C expression increase on the vascular endothelium. More importantly, JAM-C appears on myofibroblastic hepatic stellate cells linking them as pericytes to JAM-B positive endothelial cells. This JAM-B/JAM-C mediated interaction between endothelial cells and stellate cells stabilizes vessel walls and may control the sinusoidal diameter. Increased hepatic stellate cell contraction mediated by JAM-C/JAM-C interaction may cause intrahepatic vasoconstriction, which is a major complication in liver cirrhosis.

  15. Expression of cell adhesion molecules, chemokines and chemokine receptors involved in leukocyte traffic in rats undergoing autoimmune orchitis.

    PubMed

    Guazzone, V A; Jacobo, P; Denduchis, B; Lustig, L

    2012-05-01

    The testis is considered an immunologically privileged site where germ cell antigens are protected from autoimmune attack. Yet in response to infections, inflammatory diseases, or trauma, there is an influx of leukocytes to testicular interstitium. Interactions between endothelial cells (EC) and circulating leukocytes are implicated in the initiation and evolution of inflammatory processes. Chemokines are a family of chemoattractant cytokines characterized by their ability to both recruit and activate cells. Thus, we investigated the expression of CCL3, its receptors, and adhesion molecules CD31 and CD106 in an in vivo model of experimental autoimmune orchitis (EAO). In EAO, the highest content of CCL3 in testicular fluid coincides with onset of the disease. However, CCL3 released in vitro by testicular macrophages is higher during the immunization period. The specific chemokine receptors, CCR1 and CCR5, were expressed by testicular monocytes/macrophages and an increased number of CCR5+ cells was associated with the degree of testicular lesion. EC also play an essential role by facilitating leukocyte recruitment via their ability to express cell surface adhesion molecules that mediate interactions with leukocytes in the bloodstream. Rats with EAO showed a significant increase in the percentage of CD31+ EC that upregulate the expression of CD106. The percentage of leukocytes isolated from peripheral blood and lymph nodes expressing CD49d (CD106 ligand) also increases during orchitis. These data suggest that cell adhesion molecules, in conjunction with chemokines, contribute to the formation of a chemotactic gradient within the testis, causing the leukocyte infiltration characteristic of EAO histopathology.

  16. Dietary Selenium Supplementation Modulates Growth of Brain Metastatic Tumors and Changes the Expression of Adhesion Molecules in Brain Microvessels.

    PubMed

    Wrobel, Jagoda K; Wolff, Gretchen; Xiao, Rijin; Power, Ronan F; Toborek, Michal

    2016-08-01

    Various dietary agents can modulate tumor invasiveness. The current study explored whether selenoglycoproteins (SeGPs) extracted from selenium-enriched yeast affect tumor cell homing and growth in the brain. Mice were fed diets enriched with specific SeGPs (SeGP40 or SeGP65, 1 mg/kg Se each), glycoproteins (GP40 or GP65, 0.2-0.3 mg/kg Se each) or a control diet (0.2-0.3 mg/kg Se) for 12 weeks. Then, murine Lewis lung carcinoma cells were infused into the brain circulation. Analyses were performed at early (48 h) and late stages (3 weeks) post tumor cell infusion. Imaging of tumor progression in the brain revealed that mice fed SeGP65-enriched diet displayed diminished metastatic tumor growth, fewer extravasating tumor cells and smaller metastatic lesions. While administration of tumor cells resulted in a significant upregulation of adhesion molecules in the early stage of tumor progression, overexpression of VCAM-1 (vascular call adhesion molecule-1) and ALCAM (activated leukocyte cell adhesion molecule) messenger RNA (mRNA) was diminished in SeGP65 supplemented mice. Additionally, mice fed SeGP65 showed decreased expression of acetylated NF-κB p65, 48 h post tumor cell infusion. The results indicate that tumor progression in the brain can be modulated by specific SeGPs. Selenium-containing compounds were more effective than their glycoprotein controls, implicating selenium as a potential negative regulator of metastatic process.

  17. Plasma Vitamin D Status and Its Correlation with Risk Factors of Thrombosis, P-selectin and hs-CRP Level in Patients with Venous Thromboembolism; the First Study of Iranian Population.

    PubMed

    Entezari-Maleki, Taher; Hajhossein Talasaz, Azita; Salarifar, Mojtaba; Hadjibabaie, Molouk; Javadi, Mohammad Reza; Bozorgi, Ali; Jenab, Yaser; Boroumand, Mohammad Ali; Gholami, Kheirollah

    2014-01-01

    Low plasma level of vitamin D is linked to the increased risk of cardiovascular diseases such as hypertension, diabetes, dyslipidemia and peripheral vascular diseases. Vitamin D deficiency is a worldwide problem that involves Iranian population. To the best of our knowledge, this was the first investigation on venous thromboembolism (VTE) subjects that assessed the correlation of vitamin D level with plasma P-selectin, hs-CRP, and risk factors of thrombosis. In this prospective pilot study, patients with diagnosis of acute deep vein thrombosis and/ or pulmonary embolism were enrolled. All patients' clinical data, demographics and risk factors of thrombosis were evaluated. Plasma level of P-selectin and hs-CRP were measured by ELISA method. Radio immune assay method was used to determine plasma level of 25-hydroxy vitamin D (25(OH) D). In this study, 60 subjects were included. The mean ± SD plasma 25-hydroxy vitamin D level (25(OH) D) of participants was 21.4 ± 14.6 ng/mL. The vitamin D deficiency was detected in 60% of patients. No significant relation was found between the plasma 25(OH)D level and P-selectin and hs-CRP. In multiple regression analysis, there was a significant relationship between the level of 25(OH)D and the patients' age (beta = 0.452; p = 0.001), diabetes (beta = 0.280; p = 0.036) and positive family history of cardiovascular diseases (beta = 0.373; p = 0.003). Vitamin D deficiency is a frequent problem in Iranian VTE patients. Moreover, Plasma level of vitamin D is not associated with P-selectin and hs-CRP in VTE patients.

  18. Unraveling the Secrets of Bacterial Adhesion Organelles Using Single-Molecule Force Spectroscopy

    NASA Astrophysics Data System (ADS)

    Axner, Ove; Björnham, Oscar; Castelain, Mickaël; Koutris, Efstratios; Schedin, Staffan; Fällman, Erik; Andersson, Magnus

    Many types of bacterium express micrometer-long attachment organelles (so-called pili) whose role is to mediate adhesion to host tissue. Until recently, little was known about their function in the adhesion process. Force-measuring optical tweezers (FMOT) have since then been used to unravel the biomechanical properties of various types of pili, primarily those from uropathogenic E. coli, in particular their force-vs.-elongation response, but lately also some properties of the adhesin are situated at the distal end of the pilus. This knowledge provides an understanding of how piliated bacteria can sustain external shear forces caused by rinsing processes, e.g., urine flow. It has been found that many types of pilus exhibit unique and complex force-vs.-elongation responses. It has been conjectured that their dissimilar properties impose significant differences in their ability to sustain external forces and that different types of pilus therefore have dissimilar predisposition to withstand different types of rinsing conditions. An understanding of these properties is of high importance since it can serve as a basis for finding new means to combat bacterial adhesion, including that caused by antibiotic-resistance bacteria. This work presents a review of the current status of the assessment of biophysical properties of individual pili on single bacteria exposed to strain/stress, primarily by the FMOT technique. It also addresses, for the first time, how the elongation and retraction properties of the rod couple to the adhesive properties of the tip adhesin.

  19. Physiology and pathophysiology of selectins, integrins, and IgSF cell adhesion molecules focusing on inflammation. A paradigm model on infectious endocarditis.

    PubMed

    Golias, Christos; Batistatou, Anna; Bablekos, Georgios; Charalabopoulos, Alexandros; Peschos, Dimitrios; Mitsopoulos, Panagiotis; Charalabopoulos, Konstantinos

    2011-06-01

    The development of adhesion bonds, either among cells or among cells and components of the extracellular matrix, is a crucial process. These interactions are mediated by some molecules collectively known as adhesion molecules (CAMs). CAMs are ubiquitously expressed proteins playing a central role in controlling cell migration, proliferation, survival, and apoptosis. Besides their key function in physiological maintenance of tissue integrity, CAMs play an eminent role in various pathological processes such as cardiovascular disorders, atherogenesis, atherosclerotic plaque progression and regulation of the inflammatory response. CAMs such as selectins, integrins, and immunoglobulin superfamily take part in interactions between leukocyte and vascular endothelium (leukocyte rolling, arrest, firm adhesion, migration). Experimental data and pathologic observations support the assumption that pathogenic microorganisms attach to vascular endothelial cells or sites of vascular injury initiating intravascular infections. In this review a paradigm focusing on cell adhesion molecules pathophysiology and infective endocarditis development is given.

  20. New domains of neural cell-adhesion molecule L1 implicated in X-linked hydrocephalus and MASA syndrome

    SciTech Connect

    Jouet, M.; Kenwick, S.; Moncla, A.

    1995-06-01

    The neural cell-adhesion molecule L1 is involved in intercellular recognition and neuronal migration in the CNS. Recently, we have shown that mutations in the gene encoding L1 are responsible for three related disorders; X-linked hydrocephalus, MASA (mental retardation, aphasia, shuffling gait, and adducted thumbs) syndrome, and spastic paraplegia type I (SPG1). These three disorders represent a clinical spectrum that varies not only between families but sometimes also within families. To date, 14 independent L1 mutations have been reported and shown to be disease causing. Here we report nine novel L1 mutations in X-linked hydrocephalus and MASA-syndrome families, including the first examples of mutations affecting the fibronectin type III domains of the molecule. They are discussed in relation both to phenotypes and to the insights that they provide into L1 function. 39 refs., 5 figs., 3 tabs.

  1. In vitro characterization of multivalent adhesion molecule 7-based inhibition of multidrug-resistant bacteria isolated from wounded military personnel.

    PubMed

    Krachler, Anne Marie; Mende, Katrin; Murray, Clinton; Orth, Kim

    2012-07-01

    Treatment of wounded military personnel at military medical centers is often complicated by colonization and infection of wounds with pathogenic bacteria. These include nosocomially transmitted, often multidrug-resistant pathogens such as Acinetobacter baumannii-calcoaceticus complex, Pseudomonas aeruginosa and extended spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. We analyzed the efficacy of multivalent adhesion molecule (MAM) 7-based anti-adhesion treatment of host cells against aforementioned pathogens in a tissue culture infection model. Herein, we observed that a correlation between two important hallmarks of virulence, attachment and cytotoxicity, could serve as a useful predictor for the success of MAM7-based inhibition against bacterial infections. Initially, we characterized 20 patient isolates (five from each pathogen mentioned above) in terms of genotypic diversity, antimicrobial susceptibility and important hallmarks of pathogenicity (biofilm formation, attachment to and cytotoxicity toward cultured host cells). All isolates displayed a high degree of genotypic diversity, which was also reflected by large strain-to-strain variability in terms of biofilm formation, attachment and cytotoxicity within each group of pathogen. Using non-pathogenic bacteria expressing MAM7 or latex beads coated with recombinant MAM7 for anti-adhesion treatment, we showed a decrease in cytotoxicity, indicating that MAM7 has potential as a prophylactic agent to attenuate infection by multidrug-resistant bacterial pathogens.

  2. Characterization of mechanics and cytocompatibility of fibrin-genipin annulus fibrosus sealant with the addition of cell adhesion molecules.

    PubMed

    Guterl, Clare C; Torre, Olivia M; Purmessur, Devina; Dave, Khyati; Likhitpanichkul, Morakot; Hecht, Andrew C; Nicoll, Steven B; Iatridis, James C

    2014-09-01

    There is an unmet clinical need for a biomaterial sealant capable of repairing small annulus fibrosus (AF) defects. Causes of these defects include painful intervertebral disc herniations, microdiscectomy procedures, morbidity associated with needle puncture injury from discography, and future nucleus replacement procedures. This study describes the enhancements of a fibrin gel through genipin crosslinking (FibGen) and the addition of the cell adhesion molecules (CAMs), fibronectin and collagen. The gel's performance as a potential AF sealant is assessed using a series of in vitro tests. FibGen gels with CAMs had equivalent adhesive strength, gene expression, cytomorphology, and cell proliferation as fibrin alone. However, FibGen gels had enhanced material behaviors that were tunable to higher shear stiffness values and approximated human annulus tissue as compared with fibrin alone, were more dimensionally stable, and had a slower in vitro degradation rate. Cytomorphology of human AF cells cultured on FibGen gels exhibited increased elongation compared with fibrin alone, and the addition of CAMs to FibGen did not significantly affect elongation. This FibGen gel offers the promise of being used as a sealant material to repair small AF defects or to be used in combination with other biomaterials as an adhesive for larger defects.

  3. Characterization of Mechanics and Cytocompatibility of Fibrin-Genipin Annulus Fibrosus Sealant with the Addition of Cell Adhesion Molecules

    PubMed Central

    Guterl, Clare C.; Torre, Olivia M.; Purmessur, Devina; Dave, Khyati; Likhitpanichkul, Morakot; Hecht, Andrew C.; Nicoll, Steven B.

    2014-01-01

    There is an unmet clinical need for a biomaterial sealant capable of repairing small annulus fibrosus (AF) defects. Causes of these defects include painful intervertebral disc herniations, microdiscectomy procedures, morbidity associated with needle puncture injury from discography, and future nucleus replacement procedures. This study describes the enhancements of a fibrin gel through genipin crosslinking (FibGen) and the addition of the cell adhesion molecules (CAMs), fibronectin and collagen. The gel's performance as a potential AF sealant is assessed using a series of in vitro tests. FibGen gels with CAMs had equivalent adhesive strength, gene expression, cytomorphology, and cell proliferation as fibrin alone. However, FibGen gels had enhanced material behaviors that were tunable to higher shear stiffness values and approximated human annulus tissue as compared with fibrin alone, were more dimensionally stable, and had a slower in vitro degradation rate. Cytomorphology of human AF cells cultured on FibGen gels exhibited increased elongation compared with fibrin alone, and the addition of CAMs to FibGen did not significantly affect elongation. This FibGen gel offers the promise of being used as a sealant material to repair small AF defects or to be used in combination with other biomaterials as an adhesive for larger defects. PMID:24684314

  4. Macrophage function in alloxan diabetic mice: expression of adhesion molecules, generation of monokines and oxygen and NO radicals

    PubMed Central

    Ptak, W; Klimek, M; Bryniarski, K; Ptak, M; Majcher, P

    1998-01-01

    The increased incidence of bacterial and mycotic infections in poorly controlled diabetic patients or animals is frequently attributed to impaired activities of professional phagocytes (granulocytes, macrophages) in hypoinsulinaemic milieu. We measured production of monokines (IL-6 and tumour necrosis factor-alpha (TNF-α)), active NO and reactive oxygen intermediates (ROIs), as well as expression of several cell surface adhesion molecules (Mac-1, -2 and -3, intercellular adhesion molecule-1 (ICAM-1) and FcγRII), by thioglycollate medium-induced peritoneal macrophages of normoglycaemic and alloxan diabetic CBA/J mice (blood glucose level in the range 300 or 500 mg/dl). Macrophages of animals with moderate diabetes (300 mg/dl) produced significantly more IL-6 and TNF-α and ROIs than cells of control mice and showed an increased expression of all cell surface molecules, except Mac-3. NO/NO2 production was not affected. Administration of insulin restored enhanced values to normal levels, except for the production of ROIs which remained unusually high. We conclude that two separate mechanisms influence macrophage physiology in diabetes—lack of saturation of insulin receptors on macrophages and an indirect effect due to formation of advanced glycosylation endproducts (AGE) on their surfaces. The latter is possibly responsible for increased generation of ROIs, since it cannot be down-regulated by prolonged insulin treatment. How the increased activity of macrophages of moderately diabetic mice (enhanced production of proinflammatory monokines and oxygen radicals as well as expression of molecules) is related to their ability to kill bacteria is now under investigation. PMID:9764597

  5. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    PubMed Central

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  6. Semi-microdroplet assay for cell adhesion molecules. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Tawa, Lawrence Shinzo

    1988-01-01

    A new cell-to-cell adhesion assay was devised. Using dissociated embryos of the sea urchin, this procedure involves rotating a 0.100 ml suspension of single cells with 0.100 ml of the solution to be tested in the bulb portion of a transfer pipet with the tip removed. After 1 hour of rotation at 60 rpm at 15 C, the contents of each bulb were transferred into individual wells of a 96 well flat bottom plate. After the plate was incubated for 1 hour at 15 C, black and white photographs were taken with a 35 mm camera attached to an inverted photomicroscope. Examining a proof sheet of the negatives directly allowed a rapid evaluation of suspected cell adhesion promoting factors. A ranking system was used to evaluate all samples. The assay was tested by examining the effect of specific solutions on the aggregation of single cells obtained from dissociated 23 hour embryos.

  7. Soy-Leaf Extract Exerts Atheroprotective Effects via Modulation of Krüppel-Like Factor 2 and Adhesion Molecules

    PubMed Central

    Han, Jong-Min; Li, Hua; Cho, Moon-Hee; Baek, Seung-Hwa; Lee, Chul-Ho; Park, Ho-Yong; Jeong, Tae-Sook

    2017-01-01

    Soy-leaf extracts exert their cardioprotective effects by inducing endothelium-dependent vasodilation in the arteries, and they favorably modulate the serum lipid profile. In this study, we investigated the atheroprotective effects of an ethanol extract of soy leaf (ESL) in human umbilical vein endothelial cells (HUVECs) and high-cholesterol diet (HCD)-fed low-density lipoprotein receptor deficient (LDLR−/−) mice. ESL induced the expression of Krüppel-like factor 2 (KLF2), an endothelial transcription factor, and endothelial nitric oxide synthase (eNOS), and suppressed the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) through moderate inflammatory signal activation, not only in tumor necrosis factor-α (TNF-α)-stimulated HUVECs but also in 7-ketocholesterol (7-KC)-stimulated HUVECs. ESL supplementation reduced aortic lesion formation in Western diet-fed LDLR−/− mice by 46% (p < 0.01) compared to the HCD group. ESL also markedly decreased the aortic expression levels of VCAM-1, ICAM-1, monocyte chemotactic protein-1 (MCP-1), TNF-α, IL-6, IL-1β, matrix metallopeptidase 9 (MMP-9), and fractalkine, while the expression of KLF2 was significantly increased. These results suggest that ESL supplementation has potential for preventing HCD-induced atherosclerosis effectively. PMID:28208647

  8. New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales.

    PubMed

    Yamashiro, Sawako; Mizuno, Hiroaki; Smith, Matthew B; Ryan, Gillian L; Kiuchi, Tai; Vavylonis, Dimitrios; Watanabe, Naoki

    2014-04-01

    Speckle microscopy directly visualizes the retrograde actin flow, which is believed to promote cell-edge protrusion when linked to focal adhesions (FAs). However, it has been argued that, due to rapid actin turnover, the use of green fluorescent protein-actin, the lack of appropriate analysis algorithms, and technical difficulties, speckle microscopy does not necessarily report the flow velocities of entire actin populations. In this study, we developed a new, user-friendly single-molecule speckle (SiMS) microscopy using DyLight dye-labeled actin. Our new SiMS method enables in vivo nanometer-scale displacement analysis with a low localization error of ±8-8.5 nm, allowing accurate flow-velocity measurement for actin speckles with lifetime <5 s. In lamellipodia, both short- and long-lived F-actin molecules flow with the same speed, indicating they are part of a single actin network. These results do not support coexistence of F-actin populations with different flow speeds, which is referred to as the lamella hypothesis. Mature FAs, but not nascent adhesions, locally obstruct the retrograde flow. Interestingly, the actin flow in front of mature FAs is fast and biased toward FAs, suggesting that mature FAs attract the flow in front and actively remodel the local actin network.

  9. Significance of TNF-α and the Adhesion Molecules: L-Selectin and VCAM-1 in Papillary Thyroid Carcinoma

    PubMed Central

    Kobawala, Toral P.; Trivedi, Trupti I.; Gajjar, Kinjal K.; Patel, Darshita H.; Patel, Girish H.; Ghosh, Nandita R.

    2016-01-01

    Circulating levels of TNF-α and the adhesion molecules L-Selectin and VCAM-1 as well as their expression in the primary tumors of patients with benign thyroid diseases and papillary thyroid carcinoma (PTC) have been determined in this study. The serum levels of TNF-α, L-Selectin, and VCAM-1 were significantly higher in patients with both benign thyroid diseases and PTC as compared to the healthy individuals. However, the levels of only TNF-α and L-Selectin, and not VCAM-1, were significantly higher in patients with PTC in comparison to those observed in patients with benign thyroid diseases. Further the expression of TNF-α and L-Selectin was also significantly higher in the primary tumors of PTC patients, relative to the benign thyroid diseases. The expression of L-Selectin and VCAM-1 significantly correlated with aggressive tumor behavior. In PTC patients, the circulating TNF-α levels significantly positively correlated with the levels of L-Selectin, while TNF-α immunoreactivity was significantly associated with VCAM-1 expression. Serum TNF-α was found to be a significant prognosticator for OS in PTC patients. Overall the results signify that the interaction between TNF-α and the adhesion molecules may have a role in thyroid carcinogenesis and understanding this complexity may offer potential therapeutic targets for better management of thyroid cancer. PMID:26881177

  10. Polyclonal neural cell adhesion molecule antibody prolongs the effective duration time of botulinum toxin in decreasing muscle strength.

    PubMed

    Guo, Yan; Pan, Lizhen; Liu, Wuchao; Pan, Yougui; Nie, Zhiyu; Jin, Lingjing

    2015-11-01

    This study aimed to investigate if the effective duration time of botulinum toxin A (Btx-A) could be prolonged by polyclonal neural cell adhesion molecule antibody (P-NCAM-Ab). 175 male SD rats were randomly divided into three major groups: control group (n = 25), Btx-A group (n = 25), and P-NCAM-Ab groups. P-NCAM-Ab groups were composed of five sub-groups, with 25 rats each in the dose-response study. Muscle strength of rat lower limbs was determined using a survey system. The expressions of muscle-specific receptor tyrosine kinase (MuSK) and neural cell adhesion molecule (NCAM) were determined by real-time polymerase chain reactions (RT-PCR) and western blotting (WB). The muscle strength was significantly decreased by Btx-A in Btx-A/P-NCAM-Ab groups compared with normal control group. Besides, the muscle strength of P-NCAM-Ab group was significantly decreased compared with the Btx-A group. The recovery time of muscle strength in P-NCAM-Ab group was significantly longer compared with Btx-A group. RT-PCR and WB assay showed that PNCAM-Ab delayed the increase of MuSK and NCAM after Btx-A injection. P-NCAM-Ab prolongs the effective duration time of Btx-A in decreasing muscle strength, which could provide a novel enhancement in clinical application.

  11. Interferon gamma regulates platelet endothelial cell adhesion molecule 1 expression and neutrophil infiltration into herpes simplex virus- infected mouse corneas

    PubMed Central

    1996-01-01

    In a mouse model of herpes simplex virus (HSV) 1 corneal infection, tissue destruction results from a CD4+ T cell-mediated chronic inflammation, in which interleukin 2 and interferon (IFN) gamma are requisite inflammatory mediators and polymorphonuclear leukocytes (PMN) are the predominant infiltrating cells. In vivo neutralization of IFN- gamma relieved inflammation at least in part through a specific block of PMN extravasation into HSV-1-infected corneas. Intercellular adhesion molecule (ICAM) 1 and platelet endothelial cell adhesion molecule (PECAM) 1 were upregulated on the vascular endothelium of inflamed corneas. Reduced PMN extravasation in anti-IFN-gamma-treated mice was associated with a dramatic reduction of PECAM-1 but not ICAM-1 expression on vascular endothelium. PMN accumulated in the lumen of corneal vessels after in vivo IFN-gamma neutralization. PECAM-1 was readily detectable on PMN inside the vessels but was not detectable on PMN that extravasated into the infected cornea. Moreover, flow cytometric analysis revealed reduced PECAM-1 expression but elevated major histocompatibility complex class I expression on PMN that recently extravasated into the peritoneal cavity when compared with PMN in the peripheral blood. We conclude that IFN-gamma contributes to HSV- 1-induced corneal inflammation by facilitating PMN infiltration; this appears to be accomplished through upregulation of PECAM-1 expression on the vascular endothelium; and PMN downregulate PECAM-1 expression during the process of extravasation. PMID:8879215

  12. New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales

    PubMed Central

    Yamashiro, Sawako; Mizuno, Hiroaki; Smith, Matthew B.; Ryan, Gillian L.; Kiuchi, Tai; Vavylonis, Dimitrios; Watanabe, Naoki

    2014-01-01

    Speckle microscopy directly visualizes the retrograde actin flow, which is believed to promote cell-edge protrusion when linked to focal adhesions (FAs). However, it has been argued that, due to rapid actin turnover, the use of green fluorescent protein–actin, the lack of appropriate analysis algorithms, and technical difficulties, speckle microscopy does not necessarily report the flow velocities of entire actin populations. In this study, we developed a new, user-friendly single-molecule speckle (SiMS) microscopy using DyLight dye-labeled actin. Our new SiMS method enables in vivo nanometer-scale displacement analysis with a low localization error of ±8–8.5 nm, allowing accurate flow-velocity measurement for actin speckles with lifetime <5 s. In lamellipodia, both short- and long-lived F-actin molecules flow with the same speed, indicating they are part of a single actin network. These results do not support coexistence of F-actin populations with different flow speeds, which is referred to as the lamella hypothesis. Mature FAs, but not nascent adhesions, locally obstruct the retrograde flow. Interestingly, the actin flow in front of mature FAs is fast and biased toward FAs, suggesting that mature FAs attract the flow in front and actively remodel the local actin network. PMID:24501425

  13. Characterization of an adhesive molecule from Bacillus megaterium ADE-0-1.

    PubMed

    Kumar, Santosh; Shah, Avinash K

    2015-03-06

    An adhesive exopolysaccharide (EPS), from a biofilm forming marine strain ADE-0-1, identified as Bacillus megaterium using conventional microbiological test and 16S rDNA analysis, contained 75% carbohydrate, 17% uronic acid and 0.00125% pyruvate on dry weight basis as per colorimetric determinations and found anionic in nature by ion exchange chromatography. Paper chromatographic and HPLC analysis of EPS hydrolysate indicated presence of arabinose, glucose, mannose, galacturonic acid and glucuronic acid. Its molecular weight was 0.5×10(6) Da, by gel permeation chromatography. FT-IR spectroscopic analysis of EPS revealed presence of hydroxyl and carboxyl groups particularly. EPS exhibited an adhesive nature and could glue wood, metals and acrylic plastic. Using this EPS adhesive (10% w/v), maximum lap shear strength observed was 6.12 MPa at pH 7 and 50 °C (curing temperature) for wood to wood specimen as compared to 6.54 MPa obtained with fevicol (48 to 50% w/v).

  14. Improved adhesion, growth and maturation of vascular smooth muscle cells on polyethylene grafted with bioactive molecules and carbon particles.

    PubMed

    Parizek, Martin; Kasalkova, Nikola; Bacakova, Lucie; Slepicka, Petr; Lisa, Vera; Blazkova, Martina; Svorcik, Vaclav

    2009-11-20

    High-density polyethylene (PE) foils were modified by an Ar(+) plasma discharge and subsequent grafting with biomolecules, namely glycine (Gly), polyethylene glycol (PEG), bovine serum albumin (BSA), colloidal carbon particles (C) or BSA and C (BSA + C). As revealed by atomic force microscopy (AFM), goniometry and Rutherford Backscattering Spectroscopy (RBS), the surface chemical structure and surface morphology of PE changed dramatically after plasma treatment. The contact angle decreased for the samples treated by plasma, mainly in relation to the formation of oxygen structures during plasma irradiation. A further decrease in the contact angle was obvious after glycine and PEG grafting. The increase in oxygen concentration after glycine and PEG grafting proved that the two molecules were chemically linked to the plasma-activated surface. Plasma treatment led to ablation of the PE surface layer, thus the surface morphology was changed and the surface roughness was increased. The materials were then seeded with vascular smooth muscle cells (VSMC) derived from rat aorta and incubated in a DMEM medium with fetal bovine serum. Generally, the cells adhered and grew better on modified rather than on unmodified PE samples. Immunofluorescence showed that focal adhesion plaques containing talin, vinculin and paxillin were most apparent in cells on PE grafted with PEG or BSA + C, and the fibres containing alpha-actin, beta-actin or SM1 and SM2 myosins were thicker, more numerous and more brightly stained in the cells on all modified PE samples than on pristine PE. An enzyme-linked immunosorbent assay (ELISA) revealed increased concentrations of focal adhesion proteins talin and vinculin and also a cytoskeletal protein beta-actin in cells on PE modified with BSA + C. A contractile protein alpha-actin was increased in cells on PE grafted with PEG or Gly. These results showed that PE activated with plasma and subsequently grafted with bioactive molecules and colloidal C

  15. Improved Adhesion, Growth and Maturation of Vascular Smooth Muscle Cells on Polyethylene Grafted with Bioactive Molecules and Carbon Particles

    PubMed Central

    Parizek, Martin; Kasalkova, Nikola; Bacakova, Lucie; Slepicka, Petr; Lisa, Vera; Blazkova, Martina; Svorcik, Vaclav

    2009-01-01

    High-density polyethylene (PE) foils were modified by an Ar+ plasma discharge and subsequent grafting with biomolecules, namely glycine (Gly), polyethylene glycol (PEG), bovine serum albumin (BSA), colloidal carbon particles (C) or BSA and C (BSA + C). As revealed by atomic force microscopy (AFM), goniometry and Rutherford Backscattering Spectroscopy (RBS), the surface chemical structure and surface morphology of PE changed dramatically after plasma treatment. The contact angle decreased for the samples treated by plasma, mainly in relation to the formation of oxygen structures during plasma irradiation. A further decrease in the contact angle was obvious after glycine and PEG grafting. The increase in oxygen concentration after glycine and PEG grafting proved that the two molecules were chemically linked to the plasma-activated surface. Plasma treatment led to ablation of the PE surface layer, thus the surface morphology was changed and the surface roughness was increased. The materials were then seeded with vascular smooth muscle cells (VSMC) derived from rat aorta and incubated in a DMEM medium with fetal bovine serum. Generally, the cells adhered and grew better on modified rather than on unmodified PE samples. Immunofluorescence showed that focal adhesion plaques containing talin, vinculin and paxillin were most apparent in cells on PE grafted with PEG or BSA + C, and the fibres containing α-actin, β-actin or SM1 and SM2 myosins were thicker, more numerous and more brightly stained in the cells on all modified PE samples than on pristine PE. An enzyme-linked immunosorbent assay (ELISA) revealed increased concentrations of focal adhesion proteins talin and vinculin and also a cytoskeletal protein β-actin in cells on PE modified with BSA + C. A contractile protein α-actin was increased in cells on PE grafted with PEG or Gly. These results showed that PE activated with plasma and subsequently grafted with bioactive molecules and colloidal C particles

  16. The role of photobiomodulation on gene expression of cell adhesion molecules in diabetic wounded fibroblasts in vitro.

    PubMed

    Ayuk, Sandra M; Abrahamse, Heidi; Houreld, Nicolette N

    2016-08-01

    Cell adhesion molecules (CAMs) are cell surface glycoproteins that facilitate cell-cell contacts and adhesion with the extracellular matrix (ECM). Cellular adhesion is affected by various disease conditions, such as diabetes mellitus (DM) and inflammation. Photobiomodulation (PBM) stimulates biological processes and expression of these cellular molecules. The aim of this experimental work was to demonstrate the role of PBM at 830nm on CAMs in diabetic wounded fibroblast cells. Isolated human skin fibroblast cells were used. Normal (N-) and diabetic wounded (DW-) cells were irradiated with a continuous wave diode laser at 830nm with an energy density of 5J/cm(2). Real time reverse transcriptase polymerase chain reaction (RT-PCR) was used to determine the relative gene expression of 39 CAMs 48h post-irradiation. Normalized expression levels from irradiated cells were calculated relative to non-irradiated control cells according to the 2^(-ΔΔCt) method. Thirty-one genes were significantly regulated in N-cells (28 were genes up-regulated and three genes down-regulated), and 22 genes in DW-cells (five genes were up-regulated and 17 genes down-regulated). PBM induced a stimulatory effect on various CAMs namely cadherins, integrins, selectins and immunoglobulins, and hence may be used as a complementary therapy in advancing treatment of non-healing diabetic ulcers. The regulation of CAMs as well as evaluating the role of PBM on the molecular effects of these genes may expand knowledge and prompt further research into the cellular mechanisms in diabetic wound healing that may lead to valuable clinical outcomes.

  17. The cell adhesion molecules Echinoid and Friend of Echinoid coordinate cell adhesion and cell signaling to regulate the fidelity of ommatidial rotation in the Drosophila eye.

    PubMed

    Fetting, Jennifer L; Spencer, Susan A; Wolff, Tanya

    2009-10-01

    Directed cellular movements are a universal feature of morphogenesis in multicellular organisms. Differential adhesion between the stationary and motile cells promotes these cellular movements to effect spatial patterning of cells. A prominent feature of Drosophila eye development is the 90 degrees rotational movement of the multicellular ommatidial precursors within a matrix of stationary cells. We demonstrate that the cell adhesion molecules Echinoid (Ed) and Friend of Echinoid (Fred) act throughout ommatidial rotation to modulate the degree of ommatidial precursor movement. We propose that differential levels of Ed and Fred between stationary and rotating cells at the initiation of rotation create a permissive environment for cell movement, and that uniform levels in these two populations later contribute to stopping the movement. Based on genetic data, we propose that ed and fred impart a second, independent, ;brake-like' contribution to this process via Egfr signaling. Ed and Fred are localized in largely distinct and dynamic patterns throughout rotation. However, ed and fred are required in only a subset of cells - photoreceptors R1, R7 and R6 - for normal rotation, cells that have only recently been linked to a role in planar cell polarity (PCP). This work also provides the first demonstration of a requirement for cone cells in the ommatidial rotation aspect of PCP. ed and fred also genetically interact with the PCP genes, but affect only the degree-of-rotation aspect of the PCP phenotype. Significantly, we demonstrate that at least one PCP protein, Stbm, is required in R7 to control the degree of ommatidial rotation.

  18. Early Detection of Junctional Adhesion Molecule-1 (JAM-1) in the Circulation after Experimental and Clinical Polytrauma.

    PubMed

    Denk, Stephanie; Wiegner, Rebecca; Hönes, Felix M; Messerer, David A C; Radermacher, Peter; Weiss, Manfred; Kalbitz, Miriam; Ehrnthaller, Christian; Braumüller, Sonja; McCook, Oscar; Gebhard, Florian; Weckbach, Sebastian; Huber-Lang, Markus

    2015-01-01

    Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of the barrier molecule junctional adhesion molecule-1 (JAM-1) was investigated in plasma of C57BL/6 mice 2 h after experimental mono- and polytrauma as well as in polytrauma patients (ISS ≥ 18) during a 10-day period. Correlation analyses were performed to indicate a linkage between JAM-1 plasma concentrations and organ failure. JAM-1 was systemically detected after experimental trauma in mice with blunt chest trauma as a driving force. Accordingly, JAM-1 was reduced in lung tissue after pulmonary contusion and JAM-1 plasma levels significantly correlated with increased protein levels in the bronchoalveolar lavage as a sign for alveolocapillary barrier dysfunction. Furthermore, JAM-1 was markedly released into the plasma of polytrauma patients as early as 4 h after the trauma insult and significantly correlated with severity of disease and organ dysfunction (APACHE II and SOFA score). The data support an early injury- and time-dependent appearance of the barrier molecule JAM-1 in the circulation indicative of a commencing trauma-induced barrier dysfunction.

  19. Effects of nitrogen dioxide on the expression of intercellular adhesion molecule-1, neutrophil adhesion, and cytotoxicity: studies in human bronchial epithelial cells.

    PubMed

    Ayyagari, Vijayalakshmi N; Januszkiewicz, Adolph; Nath, Jayasree

    2007-02-01

    Nitrogen Dioxide (NO2) is a product of high-temperature combustion and an environmental oxidant of concern. We have recently reported that early changes in NO2-exposed human bronchial epithelial cells are causally linked to increased generation of proinflammatory mediators, such as nitric oxide/nitrite and cytokines like interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha and IL-8. The objective of the present in vitro study was to further delineate the cellular mechanisms of NO2-mediated toxicity, and to define the nature of cell death that ensues upon exposure of normal human bronchial epithelial (NHBE) cells to a brief high dose of NO2. Our results demonstrate that the NHBE cells undergo apoptotic cell death during the early post-NO2 period, but this is independent of any significant increase in caspase-3 activity. However, necrotic cell death was more prevalent at later time intervals. Interestingly, an increased expression of HO-1, a redox-sensitive stress protein, was observed in NO2-exposed NHBE cells at 24 h. Since neutrophils (PMNs) play an active role in acute lung inflammation and resultant oxidative injury, we also investigated changes in human PMN-NHBE cell interactions. As compared to normal cells, increased adhesion of PMNs to NO2-exposed cells was observed, which resulted in an increased NHBE cell death. The latter was also increased in the presence of IL-8 and TNF-alpha + interferon (IFN)-gamma, which correlated with upregulation of intercellular adhesion molecule-1 (ICAM-1). Our results confirmed an involvement of nitric oxide (NO) in NO2-induced cytotoxicity. By using NO synthase inhibitors such as L-NAME and 3-aminoguanidine (AG), a significant decrease in cell death, PMN adhesion, and ICAM-1 expression was observed. These findings indicate a role for the L-arginine/NO synthase pathway in the observed NO2-mediated toxicity in NHBE cells. Therapeutic strategies aimed at controlling excess generation of NO and/or inflammatory cytokines may

  20. Expression of the immunoglobulin superfamily cell adhesion molecules in the developing spinal cord and dorsal root ganglion.

    PubMed

    Gu, Zirong; Imai, Fumiyasu; Kim, In Jung; Fujita, Hiroko; Katayama, Kei ichi; Mori, Kensaku; Yoshihara, Yoshihiro; Yoshida, Yutaka

    2015-01-01

    Cell adhesion molecules belonging to the immunoglobulin superfamily (IgSF) control synaptic specificity through hetero- or homophilic interactions in different regions of the nervous system. In the developing spinal cord, monosynaptic connections of exquisite specificity form between proprioceptive sensory neurons and motor neurons, however, it is not known whether IgSF molecules participate in regulating this process. To determine whether IgSF molecules influence the establishment of synaptic specificity in sensory-motor circuits, we examined the expression of 157 IgSF genes in the developing dorsal root ganglion (DRG) and spinal cord by in situ hybridization assays. We find that many IgSF genes are expressed by sensory and motor neurons in the mouse developing DRG and spinal cord. For instance, Alcam, Mcam, and Ocam are expressed by a subset of motor neurons in the ventral spinal cord. Further analyses show that Ocam is expressed by obturator but not quadriceps motor neurons, suggesting that Ocam may regulate sensory-motor specificity in these sensory-motor reflex arcs. Electrophysiological analysis shows no obvious defects in synaptic specificity of monosynaptic sensory-motor connections involving obturator and quadriceps motor neurons in Ocam mutant mice. Since a subset of Ocam+ motor neurons also express Alcam, Alcam or other functionally redundant IgSF molecules may compensate for Ocam in controlling sensory-motor specificity. Taken together, these results reveal that IgSF molecules are broadly expressed by sensory and motor neurons during development, and that Ocam and other IgSF molecules may have redundant functions in controlling the specificity of sensory-motor circuits.

  1. Activated peripheral lymphocytes with increased expression of cell adhesion molecules and cytotoxic markers are associated with dengue fever disease.

    PubMed

    Azeredo, Elzinandes L; Zagne, Sonia M O; Alvarenga, Allan R; Nogueira, Rita M R; Kubelka, Claire F; de Oliveira-Pinto, Luzia M

    2006-06-01

    The immune mechanisms involved in dengue fever and dengue hemorrhagic/dengue shock syndrome are not well understood. The ex vivo activation status of immune cells during the dengue disease in patients was examined. CD4 and CD8 T cells were reduced during the acute phase. Interestingly, CD8 T cells co-expressing activation marker HLA-DR, Q, P, and cytolytic granule protein-Tia-1 were significantly higher in dengue patients than in controls. Detection of adhesion molecules indicated that in dengue patients the majority of T cells (CD4 and CD8) express the activation/memory phenotype, characterized as CD44HIGH and lack the expression of the naïve cell marker, CD62L LOW. Also, the levels of T cells co-expressing ICAM-1 (CD54), VLA-4, and LFA-1 (CD11a) were significantly increased. CD8 T lymphocytes expressed predominantly low levels of anti-apoptotic molecule Bcl-2 in the acute phase, possibly leading to the exhibition of a phenotype of activated/effector cells. Circulating levels of IL-18, TGF-b1 and sICAM-1 were significantly elevated in dengue patients. Early activation events occur during acute dengue infection which might contribute to viral clearance. Differences in expression of adhesion molecules among CD4 and CD8 T cells might underlie the selective extravasation of these subsets from blood circulation into lymphoid organs and/or tissues. In addition, activated CD8 T cells would be more susceptible to apoptosis as shown by the alteration in Bcl-2 expression. Cytokines such as IL-18, TGF-b1, and sICAM-1 may be contributing by either stimulating or suppressing the adaptative immune response, during dengue infection, thereby perhaps establishing a relationship with disease severity.

  2. Organ Preference of Cancer Metastasis and Metastasis-Related Cell Adhesion Molecules Including Carbohydrates.

    PubMed

    Kawaguchi, Takanori

    2016-01-01

    This review starts on one of our special interests, the organ preference of metastasis. We examined data on 1,117 autopsy cases and found that the organ distribution of metastasis of cancers of the lung, pancreas, stomach, colon, rectum, uterine cervix, liver, bile duct, and esophagus involved the lung, liver, adrenal gland, bone/bone marrow, lymph node, and pleura/peritoneum. Cancers of the kidney, thyroid, ovary, choriocarcinoma, and breast, however, manifested different metastatic patterns. The distribution of leukemia and lymphoma metastases was quite different from that of epithelial cancers. On the basis of experimental studies, we believe that the anatomical-mechanical hypothesis should be replaced by the microinjury hypothesis, which suggests that tissue microinjury induced by temporal tumor cell embolization is crucial for successful metastasis. This hypothesis may actually reflect the so-called inflammatory oncotaxis concept. To clarify the mechanisms underlying metastasis, we developed an experimental model system of a rat hepatoma AH7974 that embraced substrate adhesiveness. This model did not prove a relationship between substrate-adhesion potential and metastatic lung-colonizing potential of tumor cells, but metastatic potential was correlated with the expression of the laminin carbohydrate that was recognized by Griffonia (Bandeiraea) simplicifolia isolectin G4. Therefore, we investigated the relationship between carbohydrate expression profiles and metastasis and prognosis. We indeed found an intimate relationship between the carbohydrate expression of cancer cells and the progression of malignant tumors, organ preference of metastasis, metastatic potential of tumor cells, and prognosis of patients.

  3. Significant role of adhesion properties of primary osteoblast-like cells in early adhesion events for chondroitin sulfate and dermatan sulfate surface molecules.

    PubMed

    Stanford, C M; Solursh, M; Keller, J C

    1999-12-05

    The purpose of this study was to characterize the role of cell surface adhesive macromolecules through enzyme modulation and metabolic recovery prior to and during a kinetic cell adhesion assay. Primary rat calvarial osteoblast-like cells were derived from Sprague-Dawley calvarial plates. Cell adhesion kinetics was evaluated with the definition of first-order adhesion kinetics. Osteoblasts were incubated in an adhesion buffer for 1 h prior to a cell attachment assay using various enzymes to remove cell surface glycosaminoglycans (GAGs). A subtractive adhesion analysis was performed by plating cells at 5 x 10(4)/well for variable periods through 2 h. The medium was collected, the well surface washed and pooled, and the number of cells enumerated with a Coulter Counter. Cell adhesion demonstrated first-order logarithmic adhesion kinetics in the first 60 min. Scatchard analysis demonstrated a linear relationship. Preexposure of cells to various enzyme combinations demonstrated that 50% of the equilibrium adhesion was dependent on chondroitin sulfate or dermatan sulfate surface macromolecules. These results were confirmed with pretreatment with a metabolic inhibitor of GAG synthesis (beta-D-xyloside). These results suggest an important role for cell associated chondroitin sulfate and dermatan sulfate in cell adhesion in addition to Arg-Gly-Asp or integrin mediated adhesion events.

  4. The Effect of Vitamin D Administration on Intracellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 Levels in Hemodialysis Patients: A Placebo-controlled, Double-blinded Clinical Trial

    PubMed Central

    Naeini, Afsoon Emami; Moeinzadeh, Firouzeh; Vahdat, Sahar; Ahmadi, Akbar; Hedayati, Zahra Parin; Shahzeidi, Safoora

    2017-01-01

    Objective: Vitamin D deficiency is quite common among end-stage renal disease (ESRD) patients, and Vitamin D administration could reduce morbidity and mortality in these patients through different mechanisms. Cardiovascular diseases are the most common cause of mortality in these patients that are caused by vascular injuries. Intracellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) are vascular inflammation indicators. The goal of this study is to find the effect of Vitamin D administration on ICAM-1 and VCAM-1 serum levels in ESRD patients on hemodialysis. Methods: The current study is a double-blind, randomized, placebo-controlled clinical trial on 64 patients in two groups of control and treatment. Serum levels of Vitamin D, ICAM-1, and VCAM-1 were measured before and after the study. Treatment group was treated with Vitamin D pearls while control group underwent treatment with placebo pearls. Average serum levels of Vitamin D, ICAM, and VCAM were measured in both groups before and after the study and were analyzed by ANOVA, paired t-test, and Chi-square test using SPSS software. Findings: Sixty-four ESRD patients were recruited for this study consisting of 32 male and 32 female subjects within the ages of 18 and 76 years. The change in serum level of Vitamin D was significant in treatment group (P = 0.001) but not in control group (P > 0.05). Serum levels of ICAM and VCAM also changed significantly in treatment group (P = 0.001) but not in control group (P > 0.05) Conclusion: Based on the findings of this study, it could be said that Vitamin D administration in ESRD patients may increase serum level of Vitamin D up to four times. It also reduces serum levels of ICAM and VCAM which might improve the vascular condition of these patients.

  5. Monoclonal antibodies to human lymphocyte homing receptors define a novel class of adhesion molecules on diverse cell types

    PubMed Central

    1989-01-01

    A 90-kD lymphocyte surface glycoprotein, defined by monoclonal antibodies of the Hermes series, is involved in lymphocyte recognition of high endothelial venules (HEV). Lymphocyte gp90Hermes binds in a saturable, reversible fashion to the mucosal vascular addressin (MAd), a tissue-specific endothelial cell adhesion molecule for lymphocytes. We and others have recently shown that the Hermes antigen is identical to or includes CD44 (In[Lu]-related p80), human Pgp-1, and extracellular matrix receptor III-molecules reportedly expressed on diverse cell types. Here, we examine the relationship between lymphoid and nonlymphoid Hermes antigens using serologic, biochemical, and, most importantly, functional assays. Consistent with studies using mAbs to CD44 or Pgp-1, mAbs against five different epitopes on lymphocyte gp90Hermes reacted with a wide variety of nonhematolymphoid cells in diverse normal human tissues, including many types of epithelium, mesenchymal elements such as fibroblasts and smooth muscle, and a subset of glia in the central nervous system. To ask whether these non- lymphoid molecules might also be functionally homologous to lymphocyte homing receptors, we assessed their ability to interact with purified MAd using fluorescence energy transfer techniques. The Hermes antigen isolated from both glial cells and fibroblasts--which express a predominant 90-kD form similar in relative molecular mass, isoelectric point, and protease sensitivity to lymphocyte gp90Hermes--was able to bind purified MAd. In contrast, a 140-160-kD form of the Hermes antigen isolated from squamous epithelial cells lacked this capability. Like lymphocyte binding to mucosal HEV, the interaction between glial gp90Hermes and MAd is inhibited by mAb Hermes-3, but not Hermes-1, suggesting that similar molecular domains are involved in the two binding events. The observation that the Hermes/CD44 molecules derived from several nonlymphoid cell types display binding domains homologous to those

  6. Inside-out Signaling Promotes Dynamic Changes in the Carcinoembryonic Antigen-related Cellular Adhesion Molecule 1 (CEACAM1) Oligomeric State to Control Its Cell Adhesion Properties*

    PubMed Central

    Patel, Prerna C.; Lee, Hannah S. W.; Ming, Aaron Y. K.; Rath, Arianna; Deber, Charles M.; Yip, Christopher M.; Rocheleau, Jonathan V.; Gray-Owen, Scott D.

    2013-01-01

    Cell-cell contacts are fundamental to multicellular organisms and are subject to exquisite levels of control. The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) can engage in both cis-homophilic (parallel) oligomerization and trans-homophilic (anti-parallel) binding. In this study, we establish that the CEACAM1 transmembrane domain has a propensity to form cis-dimers via the transmembrane-embedded 432GXXXG436 motif and that this basal state is overcome when activated calmodulin binds to the CEACAM1 cytoplasmic domain. Although mutation of the 432GXXXG436 motif reduced CEACAM1 oligomerization, it did not affect surface localization of the receptor or influence CEACAM1-dependent cellular invasion by the pathogenic Neisseria. The mutation did, however, have a striking effect on CEACAM1-dependent cellular aggregation, increasing both the kinetics of cell-cell association and the size of cellular aggregates formed. CEACAM1 association with tyrosine kinase c-Src and tyrosine phosphatases SHP-1 and SHP-2 was not affected by the 432GXXXG436 mutation, consistent with their association with the monomeric form of wild type CEACAM1. Collectively, our results establish that a dynamic oligomer-to-monomer shift in surface-expressed CEACAM1 facilitates trans-homophilic binding and downstream effector signaling. PMID:24005674

  7. Glossogyne tenuifolia Extract Inhibits TNF-α-Induced Expression of Adhesion Molecules in Human Umbilical Vein Endothelial Cells via Blocking the NF-kB Signaling Pathway.

    PubMed

    Hsuan, Chin-Feng; Hsu, Hsia-Fen; Tseng, Wei-Kung; Lee, Thung-Lip; Wei, Yu-Feng; Hsu, Kwan-Lih; Wu, Chau-Chung; Houng, Jer-Yiing

    2015-09-17

    Chronic inflammation plays a pivotal role in the development of atherosclerosis, where the pro-inflammatory cytokine-induced expression of endothelial adhesion molecules and the recruitment of monocytes are the crucial events leading to its pathogenesis. Glossogyne tenuifolia ethanol extract (GTE) is shown to have potent anti-inflammatory and antioxidant activities. We evaluated the effects of GTE and its major components, luteolin (lut), luteolin-7-glucoside (lut-7-g), and oleanolic acid (OA) on TNF-α-induced expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results demonstrated that GTE, lut, and lut-7-g attenuated the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-activated HUVECs, and inhibited the adhesion of monocytes to TNF-α-activated HUVECs. The TNF-α-induced mRNA expression of ICAM-1 and VCAM-1 was also suppressed, revealing their inhibitory effects at the transcriptional level. Furthermore, GTE, lut, and lut-7-g blocked the TNF-α-induced degradation of nuclear factor-kB inhibitor (IkB), an indicator of the activation of nuclear factor-kB (NF-kB). In summary, GTE and its bioactive components were effective in preventing the adhesion of monocytes to cytokine-activated endothelium by the inhibition of expression of adhesion molecules, which in turn is mediated through blocking the activation and nuclear translocation of NF-kB. The current results reveal the therapeutic potential of GTE in atherosclerosis.

  8. Expression of intercellular adhesion molecule 1 (ICAM-1) on the human oviductal epithelium and mediation of lymphoid cell adherence.

    PubMed

    Utreras, E; Ossandon, P; Acuña-Castillo, C; Varela-Nallar, L; Müller, C; Arraztoa, J A; Cardenas, H; Imarai, M

    2000-09-01

    The epithelium of the human oviduct expresses the major histocompatibility complex (MHC) class II and shows endocytic properties towards luminal antigens. Therefore, the epithelial cells might behave as antigen-presenting cells, inducing a local immune response. The activation of antigen-specific T cells not only requires presentation of the peptide antigen by MHC class II, but also the presence of co-stimulatory molecules in the antigen-presenting cells. Therefore, the expression of the intercellular adhesion molecule 1 (ICAM-1) was examined in the epithelium of the human oviduct. Most oviducts showed epithelial ICAM-1 expression, as assessed by immunocytochemistry, western blot analysis and RT-PCR assay, and the expression was restricted to the luminal border of ciliated and secretory cells. Interferon gamma, interleukin 1 and lipopolysaccharide treatments increased the percentage of ICAM-1-positive cells in primary cultures, indicating that the expression of ICAM-1 in the oviduct might be upregulated in vivo by inflammatory cytokines or bacterial infections. Binding assays between allogenic phytohaemagglutinin-activated lymphocytes and epithelial monolayers expressing ICAM-1 demonstrated that this molecule stimulated lymphocyte adherence. The presence of ICAM-1, in addition to MHC class II, supports the putative role of the oviductal epithelium in antigen presentation. The exclusive apical distribution of ICAM-1 indicates that T-cell activation would occur in a polarized manner. Binding of lymphoid cells to the surface of the oviductal epithelium may help to retain these immune cells that are required for the clearance of pathogens.

  9. Freezing adhesion molecules in a state of high-avidity binding blocks eosinophil migration

    PubMed Central

    1993-01-01

    Leukocyte extravasation is mediated by multiple interactions of adhesive surface structures with ligands on endothelial cells and matrix components. The functional role of beta 1 (CD29) integrins (or very late antigen [VLA] proteins) in eosinophil migration across polycarbonate filters was examined under several in vitro conditions. Eosinophil migration induced by the chemoattractant C5a or platelet- activating factor was fully inhibited by monoclonal antibody (mAb) 8A2, a recently characterized "activating" CD29 mAb. However, inhibition by mAb 8A2 was observed only under filter conditions that best reflected the in vivo situation, i.e., when the eosinophils migrated over filters preincubated with the extracellular matrix (ECM) protein fibronectin (FN), or when the filters were covered with confluent monolayers of cultured human umbilical vein endothelial cells (HUVEC). When bare untreated filters were used, mAb 8A2 had no effect, whereas the C5a- directed movement was prevented by CD18 mAb. Studies with alpha-subunit (CD49)-specific mAbs indicated that the integrins VLA-4 and -5 mediated migration across FN-preincubated filters, and VLA-2, -4, -5, and -6 were involved in eosinophil migration through filters covered with HUVEC. In contrast with the activating CD29 mAb 8A2, a combination of blocking CD49 mAbs or the nonactivating but blocking CD29 mAb AIIB2 failed to inhibit completely eosinophil migration over FN-preincubated or HUVEC-covered filters. mAb 8A2 stimulated binding to FN but not to HUVEC. Moreover, eosinophil migration over FN-preincubated or HUVEC- covered filters was significantly inhibited by anti-connecting segment 1 (CS-1) mAbs, as well as the soluble CS-1 peptide (unlike migration across bare untreated filters). Thus, inhibition of eosinophil migration by mAb 8A2 depended upon the presence of ECM proteins and not upon the presence of HUVEC per se. In conclusion, "freezing" adhesion receptors of the beta 1 integrin family into their high

  10. Endothelial cells proactively form microvilli-like membrane projections upon intercellular adhesion molecule 1 engagement of leukocyte LFA-1.

    PubMed

    Carman, Christopher V; Jun, Chang-Duk; Salas, Azucena; Springer, Timothy A

    2003-12-01

    Specific leukocyte/endothelial interactions are critical for immunity and inflammation, yet the molecular details of this interaction interface remain poorly understood. Thus, we investigated, with confocal microscopy, the distribution dynamics of the central adhesion molecules ICAM-1 and LFA-1 in this context. Monolayers of activated HUVECs stained with fluorescent anti-ICAM-1 Fabs or Chinese hamster ovary-K1 cells expressing ICAM-1-green fluorescent protein were allowed to bind LFA-1-bearing monocytes, neutrophils, or K562 LFA-1 transfectants. ICAM-1 was rapidly relocalized to newly formed microvilli-like membrane projections in response to binding LFA-1 on leukocytes. These ICAM-1-enriched projections encircled the leukocytes extending up their sides and clustered LFA-1 underneath into linear tracks. Projections formed independently of VCAM-1/very late Ag 4 interactions, shear, and proactive contributions from the LFA-1-bearing cells. In the ICAM-1-bearing endothelial cells, projections were enriched in actin but not microtubules, required intracellular calcium, and intact microfilament and microtubule cytoskeletons and were independent of Rho/Rho kinase signaling. Disruption of these projections with cytochalasin D, colchicine, or BAPTA-AM had no affect on firm adhesion. These data show that in response to LFA-1 engagement the endothelium proactively forms an ICAM-1-enriched cup-like structure that surrounds adherent leukocytes but is not important for firm adhesion. This finding leaves open a possible role in leukocyte transendothelial migration, which would be consistent with the geometry and kinetics of formation of the cup-like structure.

  11. Novel secreted isoform of adhesion molecule ICAM-4: Potential regulator of membrane-associated ICAM-4 interactions

    SciTech Connect

    Lee, Gloria; Spring, Frances A.; Parons, Stephen F.; Mankelow, Tosti J.; Peters, Luanne L.; Koury, Mark J.; Mohandas, Narla; Anstee, David J.; Chasis, Joel Anne

    2003-02-18

    ICAM-4, a newly characterized adhesion molecule, is expressed early in human erythropoiesis and functions as a ligand for binding a4b1 and aV integrin-expressing cells. Within the bone marrow, erythroblasts surround central macrophages forming erythroblastic islands. Evidence suggests that these islands are highly specialized subcompartments where cell adhesion events, in concert with cytokines, play critical roles in regulating erythropoiesis and apoptosis. Since erythroblasts express a4b1 and ICAM-4 and macrophages exhibit aV, ICAM-4 is an attractive candidate for mediating cellular interactions within erythroblastic islands. To determine whether ICAM-4 binding properties are conserved across species, we first cloned and sequenced the murine homologue. The translated amino acid sequence showed 68 percent overall identity with human ICAM-4. Using recombinant murine ICAM-4 extracellular domains, we discovered that hematopoietic a4b1-expressing HEL cells and non-hematopoietic aV-expressing FLY cells adhered to mouse ICAM-4. Cell adhesion studies showed that FLY and HEL cells bound to mouse and human proteins with similar avidity. These data strongly suggest conservation of integrin-binding properties across species. Importantly, we characterized a novel second splice cDNA that would be predicted to encode an ICAM-4 isoform, lacking the membrane-spanning domain. Erythroblasts express both isoforms of ICAM-4. COS-7 cells transfected with GFP constructs of prototypic or novel ICAM-4 cDNA showed different cellular localization patterns. Moreover, analysis of tissue culture medium revealed that the novel ICAM-4 cDNA encodes a secreted protein. We postulate that secretion of this newly described isoform, ICAM-4S, may modulate binding of membrane-associated ICAM-4 and could thus play a critical regulatory role in erythroblast molecular attachments.

  12. Identification of the binding site in intercellular adhesion molecule 1 for its receptor, leukocyte function-associated antigen 1.

    PubMed Central

    Fisher, K L; Lu, J; Riddle, L; Kim, K J; Presta, L G; Bodary, S C

    1997-01-01

    Intercellular adhesion molecule 1 (ICAM-1, CD54) is a member of the Ig superfamily and is a counterreceptor for the beta 2 integrins: lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18), complement receptor 1 (MAC-1, CD11b/CD18), and p150,95 (CD11c/CD18). Binding of ICAM-1 to these receptors mediates leukocyte-adhesive functions in immune and inflammatory responses. In this report, we describe a cell-free assay using purified recombinant extracellular domains of LFA-1 and a dimeric immunoadhesin of ICAM-1. The binding of recombinant secreted LFA-1 to ICAM-1 is divalent cation dependent (Mg2+ and Mn2+ promote binding) and sensitive to inhibition by antibodies that block LFA-1-mediated cell adhesion, indicating that its conformation mimics that of LFA-1 on activated lymphocytes. We describe six novel anti-ICAM-1 monoclonal antibodies, two of which are function blocking. Thirty-five point mutants of the ICAM-1 immunoadhesin were generated and residues important for binding of monoclonal antibodies and purified LFA-1 were identified. Nineteen of these mutants bind recombinant LFA-1 equivalently to wild type. Sixteen mutants show a 66-2500-fold decrease in LFA-1 binding yet, with few exceptions, retain binding to the monoclonal antibodies. These mutants, along with modeling studies, define the LFA-1 binding site on ICAM-1 as residues E34, K39, M64, Y66, N68, and Q73, that are predicted to lie on the CDFG beta-sheet of the Ig fold. The mutant G32A also abrogates binding to LFA-1 while retaining binding to all of the antibodies, possibly indicating a direct interaction of this residue with LFA-1. These data have allowed the generation of a highly refined model of the LFA-1 binding site of ICAM-1. Images PMID:9188101

  13. L1 adhesion molecule on mouse leukocytes: regulation and involvement in endothelial cell binding.

    PubMed

    Hubbe, M; Kowitz, A; Schirrmacher, V; Schachner, M; Altevogt, P

    1993-11-01

    L1 is a cell surface glycoprotein of the immunoglobulin superfamily which was initially shown to mediate adhesion between neural cells. Recently we have reported that L1 is expressed by bone marrow cells and the majority of mature lymphocytes (Kowitz et al., Eur. J. Immunol. 1992. 22: 1199-1205). To analyze the function of L1 on leukocytes we studied its regulation following cell activation. In vitro activation of B lymphocytes with lipopolysaccharide or T lymphocytes with phorbol 12-myristate 13-acetate/Ca2+ ionophore, concanavalin A or anti-CD3 monoclonal antibody as well as in vivo activation of V beta 8+ T cells with staphylococcal enterotoxin B (SEB) revealed a down-regulation of L1 within 48 h. A rapid loss of L1 expression was seen when mouse neutrophils were activated with PMA alone. This rapid loss paralleled the shedding of L-selectin. We also studied a possible role of L1 in the binding of leukocytes to endothelial cells. ESb-MP lymphoma cells with a high expression of L1 (L1hi) could bind to bend3 endothelioma cells without prior activation with inflammatory cytokines. The interaction was inhibited by anti-L1 antibodies. In contrast, ESb-MP cells with low L1 expression (L1lo) were only marginally bound. Latex beads coated with affinity-isolated L1 antigen were also able to bind to the endothelioma cells in a specific fashion. The binding of ESb-MP lymphoma cells required Ca2+ and Mg2+ ions and was sensitive to cold temperature. Since the endothelioma cells did not express L1 the binding mechanism studied here is distinct from the established L1-L1 homotypic interaction. It is possible that the novel L1-mediated adhesion pathway involves an unidentified ligand and could play a role in leukocyte migration.

  14. Neuroprotectant androst-3β, 5α, 6β-triol suppresses TNF-α-induced endothelial adhesion molecules expression and neutrophil adhesion to endothelial cells by attenuation of CYLD-NF-κB pathway.

    PubMed

    Yan, Min; Leng, Tiandong; Tang, Lipeng; Zheng, Xiaoke; Lu, Bingzheng; Li, Yuan; Sheng, Longxiang; Lin, Suizhen; Shi, Haitao; Yan, Guangmei; Yin, Wei

    2017-02-05

    Neuroinflammation is one of key pathologic element in neurological diseases including stroke, traumatic brain injury, Alzheimer' s Disease, Parkinson's Disease, and multiple sclerosis as well. Up-regulation of endothelial adhesion molecules, which facilitate leukocyte adhesion to the endothelium, is the vital process of endothelial cells mediated neuroinflammation. Androst-3β, 5α, 6β-triol (Triol) is a synthetic steroid which has been reported to have neuroprotective effects in hypoxia/re-oxygenation-induced neuronal injury model. In the present study, we firstly investigated whether Triol inhibited the TNF-α-induced inflammatory response in rat brain microvascular endothelial cells (RBMECs). Our data showed that Triol decreased TNF-α-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) and the adhesion of neutrophil to RBMECs. We also found that Triol inhibited TNF-α-induced degradation of IκBα and phosphorylation of NF-κBp65 that are required for NF-κB activation. Furthermore, Triol significantly reversed TNF-α-induced down-expression of CYLD, which is a deubiquitinase that negatively regulates activation of NF-κB. These results suggest that Triol displays an anti-inflammatory effect on TNF-α-induced RBMECs via downregulating of CYLD-NF-κB signaling pathways and might have a potential benefit in therapeutic neuroinflammation related diseases.

  15. Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A–deficient mice

    PubMed Central

    Cera, Maria Rosaria; Del Prete, Annalisa; Vecchi, Annunciata; Corada, Monica; Martin-Padura, Ines; Motoike, Toshiyuki; Tonetti, Paolo; Bazzoni, Gianfranco; Vermi, William; Gentili, Francesca; Bernasconi, Sergio; Sato, Thomas N.; Mantovani, Alberto; Dejana, Elisabetta

    2004-01-01

    Junctional adhesion molecule-A (JAM-A) is a transmembrane adhesive protein expressed at endothelial junctions and in leukocytes. In the present work, we found that DCs also express JAM-A. To evaluate the biological relevance of this observation, Jam-A–/– mice were generated and the functional behavior of DCs in vitro and in vivo was studied. In vitro, Jam-A–/– DCs showed a selective increase in random motility and in the capacity to transmigrate across lymphatic endothelial cells. In vivo, Jam-A–/– mice showed enhanced DC migration to lymph nodes, which was not observed in mice with endothelium-restricted deficiency of the protein. Furthermore, increased DC migration to lymph nodes was associated with enhanced contact hypersensitivity (CHS). Adoptive transfer experiments showed that JAM-A–deficient DCs elicited increased CHS in Jam-A+/+ mice, further supporting the concept of a DC-specific effect. Thus, we identified here a novel, non-redundant role of JAM-A in controlling DC motility, trafficking to lymph nodes, and activation of specific immunity. PMID:15343392

  16. IL-17A and TNF-α Increase the Expression of the Antiapoptotic Adhesion Molecule Amigo-2 in Arthritis Synoviocytes.

    PubMed

    Benedetti, Giulia; Bonaventura, Paola; Lavocat, Fabien; Miossec, Pierre

    2016-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disorder, characterized by a persistent immune cell infiltrate in the synovium accompanied by high levels of inflammatory mediators and synovial hyperplasia. Despite significant therapeutic advances, RA remains an important unmet medical need. To discover potential new genes controlling inflammation and apoptosis in synoviocytes, genes induced by the two pro-inflammatory cytokines, tumor necrosis factor α (TNF-α) and interleukin 17A (IL-17A), were systematically searched. We identified Amphoterin-induced gene and ORF 2 (Amigo-2), a novel antiapoptotic adhesion molecule, as synergistically upregulated by the IL-17A/TNF combination specifically in RA synoviocytes. In addition, when RA synoviocytes were cocultured with immune cells, Amigo2 expression was significantly increased in both fibroblasts and immune cells. This induction persisted in RA synoviocytes even after the removal of the immune cells. Amigo2 induction was ERK-dependent and on the contrary, inhibited by JNK. Furthermore, Amigo2 expression levels correlated with apoptosis of the cells when exposed to the proapoptotic agent cadmium (Cd). Interestingly, exposure of the cells to HMGB1 in inflammatory conditions increased synergistically Amigo2 expression and significantly reduced Cd-mediated cellular toxicity. Our findings support a model whereby cell-cell contact with immune cells and exposure to the combination of both inflammatory cytokines and HMGB1 in the joints of RA patients increases Amigo2 expression in synoviocytes in an ERK-dependent manner which, in turn, enhances cellular adhesion and promotes cell survival and cellular proliferation.

  17. ETHANOL INHIBITS L1 CELL ADHESION MOLECULE TYROSINE PHOSPHORYLATION AND DEPHOSPHORYLATION AND ACTIVATION OF PP60SRC

    PubMed Central

    Yeaney, Natalie K.; He, Min; Tang, Ningfeng; Malouf, Alfred T.; O’Riordan, Mary Ann; Lemmon, Vance; Bearer, Cynthia F.

    2009-01-01

    Fetal alcohol syndrome(Abel, 2000) is a leading cause of mental retardation. The neuropathology found in fetal alcohol syndrome is similar to the phenotypes expressed in diseases caused by mutations in the gene for L1 cell adhesion molecule. L1 has a crucial role in the developing nervous system, acting in cell-cell adhesion, neuronal guidance, and growth. We have previously shown that L1 mediated neurite outgrowth and L1 activation of ERK1/2 is exquisitely sensitive to ethanol (Tang, He, O'Riordan, Farkas, Buck, Lemmon, and Bearer, 2006). One possible mechanism for this effect is through disruption of a tyrosine based sorting signal, Y(1176)RSLE, on the cytoplasmic domain of L1. Our goal was to determine if ethanol inhibited the sorting signal or its phosphorylation state. Ethanol had no effect on L1 distribution to the growth cone or its ability to be expressed on the cell surface. Clustering of L1 resulted in increased dephosphorylation of Y(1176), increased L1 tyrosine phosphorylation, and an increase in the activation of pp60src, all of which were inhibited by 25 mM ethanol. Inhibition of pp60src inhibited increases in L1 tyrosine and ERK1/2 phosphorylation, and Y(1176) dephosphorylation. We conclude that ethanol disrupts L1 trafficking/signaling following its expression on the surface of the growth cone, and prior to its activation of pp60src. PMID:19457108

  18. Experimental approaches to interfere with the polysialylation of the neural cell adhesion molecule in vitro and in vivo.

    PubMed

    Bork, Kaya; Gagiannis, Daniel; Orthmann, André; Weidemann, Wenke; Kontou, Maria; Reutter, Werner; Horstkorte, Rüdiger

    2007-11-01

    Sialic acid (Sia) is expressed as terminal sugar in many glycoconjugates and plays an important role during development and regeneration. Addition of homopolymers of Sia (polysialic acid; polySia/PSA) is a unique and highly regulated post-translational modification of the neural cell adhesion molecule (NCAM). The presence of polySia affects NCAM-dependent cell adhesion and plays an important role during brain development, neural regeneration, and plastic processes including learning and memory. PolySia-NCAM is expressed on several neuroendocrine tumors of high malignancy and correlates with poor prognosis. Two closely related enzymes, the polysialyltransferases ST8SiaII and ST8SiaIV, catalyze the biosynthesis of polySia. This review summarizes recent knowledge on Sia biosynthesis and the correlation between Sia biosynthesis and polysialylation of NCAM and report on approaches to modify the degree of polySia on NCAM in vitro and in vivo. First, we describe the inhibition of polysialylation of NCAM in ST8SiaII-expressing cells using synthetic Sia precursors. Second, we demonstrate that the key enzyme of the Sia biosynthesis (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase) regulates and limits the synthesis of polySia by controlling the cellular Sia concentration.

  19. Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons.

    PubMed

    Park, Kyoung Ho; Yeo, Sang Won; Troy, Frederic A

    2014-10-17

    During brain development, polysialylated (polySia) neural cell adhesion molecules (polySia-NCAMs) modulate cell-cell adhesive interactions involved in synaptogenesis, neural plasticity, myelination, and neural stem cell (NSC) proliferation and differentiation. Our findings show that polySia-NCAM is expressed on NSC isolated from adult guinea pig spiral ganglion (GPSG), and in neurons and Schwann cells after differentiation of the NSC with epidermal, glia, fibroblast growth factors (GFs) and neurotrophins. These differentiated cells were immunoreactive with mAb's to polySia, NCAM, β-III tubulin, nestin, S-100 and stained with BrdU. NSC could regenerate and be differentiated into neurons and Schwann cells. We conclude: (1) polySia is expressed on NSC isolated from adult GPSG and on neurons and Schwann cells differentiated from these NSC; (2) polySia is expressed on neurons primarily during the early stage of neuronal development and is expressed on Schwann cells at points of cell-cell contact; (3) polySia is a functional biomarker that modulates neuronal differentiation in inner ear stem cells. These new findings suggest that replacement of defective cells in the inner ear of hearing impaired patients using adult spiral ganglion neurons may offer potential hope to improve the quality of life for patients with auditory dysfunction and impaired hearing disorders.

  20. MITF is a critical regulator of the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in malignant melanoma.

    PubMed

    Ullrich, Nico; Löffek, Stefanie; Horn, Susanne; Ennen, Marie; Sánchez-Del-Campo, Luis; Zhao, Fang; Breitenbuecher, Frank; Davidson, Irwin; Singer, Bernhard B; Schadendorf, Dirk; Goding, Colin R; Helfrich, Iris

    2015-11-01

    The multifunctional Ig-like carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is neo-expressed in the majority of malignant melanoma lesions. CEACAM1 acts as a driver of tumor cell invasion, and its expression correlates with poor patient prognosis. Despite its importance in melanoma progression, how CEACAM1 expression is regulated is largely unknown. Here, we show that CEACAM1 expression in melanoma cell lines and melanoma tissue strongly correlates with that of the microphthalmia-associated transcription factor (MITF), a key regulator of melanoma proliferation and invasiveness. MITF is revealed as a direct and positive regulator for CEACAM1 expression via binding to an M-box motif located in the CEACAM1 promoter. Taken together, our study provides novel insights into the regulation of CEACAM1 expression and suggests an MITF-CEACAM1 axis as a potential determinant of melanoma progression.

  1. Outline structure of the human L1 cell adhesion molecule and the sites where mutations cause neurological disorders.

    PubMed Central

    Bateman, A; Jouet, M; MacFarlane, J; Du, J S; Kenwrick, S; Chothia, C

    1996-01-01

    The L1 cell adhesion molecule has six domains homologous to members of the immunoglobulin superfamily and five homologous to fibronectin type III domains. We determined the outline structure of the L1 domains by showing that they have, at the key sites that determine conformation, residues similar to those in proteins of known structure. The outline structure describes the relative positions of residues, the major secondary structures and residue solvent accessibility. We use the outline structure to investigate the likely effects of 22 mutations that cause neurological diseases. The mutations are not randomly distributed but cluster in a few regions of the structure. They can be divided into those that act mainly by changing conformation or denaturing their domain and those that alter its surface properties. Images PMID:8947027

  2. Role of intercellular adhesion molecule 1 in pathogenesis of staphylococcal arthritis and in host defense against staphylococcal bacteremia.

    PubMed Central

    Verdrengh, M; Springer, T A; Gutierrez-Ramos, J C; Tarkowski, A

    1996-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is a member of the immunoglobulin superfamily that interacts with two integrins, LFA-1 and Mac-1. These interactions are critical for leukocyte extravasation into inflamed tissue. To assess the role of ICAM-1 expression in the pathogenesis of bacterial infection, homozygously mutant mice lacking the ICAM-1 gene were exposed to Staphylococcus aureus. Within 6 days after inoculation 50% of the animals in the ICAM-1(-/-) group, but none of the controls, had died. Despite the high level of mortality, ICAM-1(-/-) mice developed less frequent and less severe arthritis than their wild-type littermates. In agreement, normal mice inoculated with staphylococci and administered anti-ICAM-1 antibodies exhibited a higher frequency of mortality but less severe arthritis than the controls. Our results indicate that ICAM-1 on the one hand provides protection against systemic disease but on the other hand aggravates the local disease manifestation. PMID:8698512

  3. Genetic analysis of a Drosophila neural cell adhesion molecule: interaction of fasciclin I and Abelson tyrosine kinase mutations.

    PubMed

    Elkins, T; Zinn, K; McAllister, L; Hoffmann, F M; Goodman, C S

    1990-02-23

    Drosophila fasciclin I is a homophilic cell adhesion molecule expressed in the developing embryo on the surface of a subset of fasciculating CNS axons, all PNS axons, and some nonneuronal cells. We have identified protein-null mutations in the fasciclin I (fas I) gene, and show that these mutants are viable and do not display gross defects in nervous system morphogenesis. The Drosophila Abelson (abl) proto-oncogene homolog encodes a cytoplasmic tyrosine kinase that is expressed during embryogenesis primarily in developing CNS axons; abl mutants show no gross defects in CNS morphogenesis. However, embryos doubly mutant for fas I and abl display major defects in CNS axon pathways, particularly in the commissural tracts where expression of these two proteins normally overlaps. The double mutant shows a clear defect in growth cone guidance; for example, the RP1 growth cone (normally fas I positive) does not follow its normal path across the commissure.

  4. Expression of COX-2 in platelet-monocyte interactions occurs via combinatorial regulation involving adhesion and cytokine signaling

    PubMed Central

    Dixon, Dan A.; Tolley, Neal D.; Bemis-Standoli, Kristi; Martinez, Mark L.; Weyrich, Andrew S.; Morrow, Jason D.; Prescott, Stephen M.; Zimmerman, Guy A.

    2006-01-01

    Tight regulation of COX-2 expression is a key feature controlling eicosanoid production in atherosclerosis and other inflammatory syndromes. Adhesive interactions between platelets and monocytes occur in these conditions and deliver specific signals that trigger inflammatory gene expression. Using a cellular model of monocyte signaling induced by activated human platelets, we identified the central posttranscriptional mechanisms that regulate timing and magnitude of COX-2 expression. Tethering of monocytes to platelets and to purified P-selectin, a key adhesion molecule displayed by activated platelets, induces NF-κB activation and COX-2 promoter activity. Nevertheless, COX-2 mRNA is rapidly degraded, leading to aborted protein synthesis. Time-dependent signaling of monocytes induces a second phase of transcript accumulation accompanied by COX-2 enzyme synthesis and eicosanoid production. Here, generation of IL-1β, a proinflammatory cytokine, promoted stabilization of COX-2 mRNA by silencing of the AU-rich mRNA decay element (ARE) in the 3′-untranslated region (3'UTR) of the mRNA. Consistent with observed mRNA stabilization, activated platelets or IL-1β treatment induced cytoplasmic accumulation and enhanced ARE binding of the mRNA stability factor HuR in monocytes. These findings demonstrate that activated platelets induce COX-2 synthesis in monocytes by combinatorial signaling to transcriptional and posttranscriptional checkpoints. These checkpoints may be altered in disease and therefore useful as targets for antiinflammatory intervention. PMID:16998585

  5. Prognostic value of soluble intercellular adhesion molecule-1 (s-ICAM-1) in HIV-infected children.

    PubMed

    Gaddi, E; Laucella, S; Balbaryski, J; Cantisano, C; Barboni, G; Candi, M; Giraudi, V

    2000-12-01

    Central events in the host defence system and immune-mediated damage are tightly regulated by cell adhesion molecules. Sera from 28 human immunodeficiency virus (HIV)-1 infected children divided into groups according to disease severity, six seroreverting (SR) children and 25 healthy controls were studied to detect the presence of soluble intercellular adhesion molecule-1 (s-ICAM-1). Soluble ICAM-1 levels were found to be significantly increased in HIV-infected children in comparison with SR children or healthy controls. Levels of soluble ICAM-1 were higher in patients with severe forms of HIV-infection than in those with a milder form of the disease. Significant differences in titers of s-ICAM-1 were recorded between SR children and HIV-infected children with mild disease or healthy controls. There was a significant correlation between s-ICAM-1 levels and the concentrations of beta 2 microglobulin (beta 2m) and, to a lesser extend, immunoglobulin A levels (IgA). Soluble ICAM-1 levels didn't change considerably in HIV-infected children in stable clinical conditions, independently of their clinical stage of the disease, during a follow-up period of 9-12 months. Conversely, s-ICAM-1 levels increased simultaneously with the appearance of new well-defined clinical disorders or decreased during the improvement of clinical conditions. A significant negative correlation was recorded between the titers of the s-ICAM-1 and the CD4(+) T-cell levels. These results suggest