Science.gov

Sample records for adhesion molecule-1 soluble

  1. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1

    NASA Astrophysics Data System (ADS)

    Koch, Alisa E.; Halloran, Margaret M.; Haskell, Catherine J.; Shah, Manisha R.; Polverini, Peter J.

    1995-08-01

    ENDOTHELIAL adhesion molecules facilitate the entry of leukocytes into inflamed tissues. This in turn promotes neovascularization, a process central to the progression of rheumatoid arthritis, tumour growth and wound repair1. Here we test the hypothesis that soluble endothelial adhesion molecules promote angiogenesis2á¤-4. Human recombinant soluble E-selectin and soluble vascular cell adhesion molecule-1 induced chemotaxis of human endothelial cells in vitro and were angiogenic in rat cornea. Soluble E-selectin acted on endothelial cells in part through a sialyl Lewis-X-dependent mechanism, while soluble vascular cell adhesion molecule-1 acted on endothelial cells in part through a very late antigen (VLA)-4 dependent mechanism. The chemotactic activity of rheumatoid synovial fluid for endothelial cells, and also its angiogenic activity, were blocked by antibodies to either soluble E-selectin or soluble vascular cell adhesion molecule-1. These results suggest a novel function for soluble endothelial adhesion molecules as mediators of angiogenesis.

  2. Differential up-regulation of circulating soluble and endothelial cell intercellular adhesion molecule-1 in mice.

    PubMed Central

    Komatsu, S.; Flores, S.; Gerritsen, M. E.; Anderson, D. C.; Granger, D. N.

    1997-01-01

    Although circulating levels of soluble intercellular adhesion molecule-1 (sICAM-1) are frequently used as an indicator of the severity of different immune, inflammatory, or neoplastic diseases, little is known about the factors that govern plasma sICAM-1 concentration and its relationship to the membranous form of ICAM-1 (mICAM-1) expressed on vascular endothelial cells. Plasma sICAM-1 concentration (measured by enzyme-linked immunosorbent assay) and mICAM-1 expression (measured using the dual radiolabeled monoclonal antibody technique) in different vascular beds (eg, lung, small intestine, and spleen) were monitored in wild-type (C57BL) and ICAM-1-deficient mice, before and after administration of tumor necrosis factor (TNF)-alpha. In wild-type mice, TNF-alpha elicited time-dependent increases in lung and intestine mICAM-1 (plateau achieved at 12 hours), with a corresponding increase in plasma sICAM-1 (peaked at 5 hours and then declined). The initial increases in mICAM-1 and pulmonary leukocyte sequestration (measured as lung myeloperoxidase activity) induced by TNF-alpha preceded any detectable elevation in sICAM-1. In ICAM-1-deficient mice, plasma sICAM-1 was reduced by approximately 70%, with > 95% reductions of mICAM-1 in lung and intestine, and > 75% reduction in splenic accumulation of anti-ICAM-1 antibody. Although TNF-alpha doubled plasma sICAM-1 in ICAM-1-deficient mice, mICAM-1 was unaffected in all tissues. Either splenectomy or pretreatment with cycloheximide resulted in an attenuated TNF-induced increase in sICAM-1, without affecting mICAM-1 expression. These findings indicate that plasma sICAM-1 concentration does not accurately reflect the level of ICAM-1 expression on endothelial cells in different vascular beds. PMID:9212746

  3. Intraocular soluble intracellular adhesion molecule-1 correlates with subretinal fluid height of diabetic macular edema

    PubMed Central

    Zhu, Dan; Zhu, He; Wang, Chunyan; Yang, Dayong

    2014-01-01

    Objective: To investigate the correlations between aqueous concentrations of vascular endothelial growth factor (VEGF), monocyte chemoattractant protein-1 (MCP-1), soluble intracellular adhesion molecule-1 (sICAM-1) and diabetic macular edema (DME). Materials and Methods: VEGF, MCP-1 and sICAM-1 concentrations in aqueous humor samples of 22 patients with DME and 23 patients with cataract of a control group were measured with solid-phase chemiluminescence immunoassay. Results: Aqueous VEGF (89.2 ± 58.5 pg/ml versus 48.5 ± 27.8 pg/ml, P = 0.006), MCP-1 (684.2 ± 423.4 pg/ml versus 432.4 ± 230.4 pg/ml, P = 0.019) and sICAM-1 (3213.8 ± 2581.6 pg/ml versus 260.2 ± 212.2 pg/ml, P < 0.001) all vary significantly between DME group and control group. Maximum height of submacular fluid measured by Optical coherence tomography (OCT) was significantly associated with aqueous sICAM-1 (r = -0.45, P = 0.034). The maximum height of macular thickness measured by OCT was not significantly associated with either VEGF (P = 0.300), MCP-1 (P = 0.320) or sICAM-1 (P = 0.285). Conclusions: Our results suggest that sICAM-1 may majorly contribute to the formation of subretinal fluid in DME patients and imply that MCP-1 and sICAM-1 may be the potential therapy targets, besides VEGF. PMID:23619489

  4. Hyperhyaluronanemia in alcoholic hepatitis is associated with increased levels of circulating soluble intercellular adhesion molecule-1.

    PubMed

    Hill, D B; Deaciuc, I V; McClain, C J

    1998-09-01

    The purpose of this study was to evaluate the role of the sinusoidal endothelial cell (SEC) during the clinical course of alcoholic hepatitis. Twenty consenting patients (mean age: 49.4 +/- 11.0 years) with moderate or severe hepatitis were studied. The patients were selected and characterized according to their history of drinking and laboratory profile, including serum aminotransferases, bilirubin, total white blood cell and neutrophil count, and prothrombin times. C-reactive protein and interleukin-6 were also measured as markers of the hepatic acute phase response. A marker of the SEC functional state, the circulating level of hyaluronan, was measured in parallel with the circulating levels of soluble intercellular adhesion molecule (sICAM)-1 over a 6-month observation period. All patients were hospitalized for the first month and encouraged to abstain from drinking for the duration of the study. The initial increased levels of both hyaluronan (542 +/- 32 ng x ml(-1) serum) and sICAM-1 (488 +/- 70 ng x ml(-1) serum), gradually fell during the 6-month observation period, eventually reaching values close to those seen in healthy subjects. A positive correlation was obtained between changes in these two markers of SEC function/activation on the one hand, and between these two tests and bilirubin, on the other hand. These data indicate that abnormalities of SEC function/activation, as reflected by serum hyaluronan and siCAM-1, are prominent in alcoholic hepatitis, and these alterations improve within relatively short periods of time after cessation of alcohol consumption.

  5. Prognostic value of soluble intercellular adhesion molecule-1 (s-ICAM-1) in HIV-infected children.

    PubMed

    Gaddi, E; Laucella, S; Balbaryski, J; Cantisano, C; Barboni, G; Candi, M; Giraudi, V

    2000-12-01

    Central events in the host defence system and immune-mediated damage are tightly regulated by cell adhesion molecules. Sera from 28 human immunodeficiency virus (HIV)-1 infected children divided into groups according to disease severity, six seroreverting (SR) children and 25 healthy controls were studied to detect the presence of soluble intercellular adhesion molecule-1 (s-ICAM-1). Soluble ICAM-1 levels were found to be significantly increased in HIV-infected children in comparison with SR children or healthy controls. Levels of soluble ICAM-1 were higher in patients with severe forms of HIV-infection than in those with a milder form of the disease. Significant differences in titers of s-ICAM-1 were recorded between SR children and HIV-infected children with mild disease or healthy controls. There was a significant correlation between s-ICAM-1 levels and the concentrations of beta 2 microglobulin (beta 2m) and, to a lesser extend, immunoglobulin A levels (IgA). Soluble ICAM-1 levels didn't change considerably in HIV-infected children in stable clinical conditions, independently of their clinical stage of the disease, during a follow-up period of 9-12 months. Conversely, s-ICAM-1 levels increased simultaneously with the appearance of new well-defined clinical disorders or decreased during the improvement of clinical conditions. A significant negative correlation was recorded between the titers of the s-ICAM-1 and the CD4(+) T-cell levels. These results suggest that the s-ICAM-1 might be another useful tool to evaluate disease progression.

  6. Soluble Vascular Cell Adhesion Molecule-1 (VCAM-1) as a Biomarker in the Mouse Model of Experimental Autoimmune Myocarditis (EAM)

    PubMed Central

    Grabmaier, U.; Kania, G.; Kreiner, J.; Grabmeier, J.; Uhl, A.; Huber, B. C.; Lackermair, K.; Herbach, N.; Todica, A.; Eriksson, U.; Weckbach, L. T.; Brunner, S.

    2016-01-01

    Vascular cell adhesion molecule-1 (VCAM-1) is strongly upregulated in hearts of mice with coxsackie virus-induced as well as in patients with viral infection-triggered dilated cardiomyopathy. Nevertheless, the role of its soluble form as a biomarker in inflammatory heart diseases remains unclear. Therefore, we investigated whether plasma levels of soluble VCAM-1 (sVCAM-1) directly correlated with disease activity and progression of cardiac dysfunction in the mouse model of experimental autoimmune myocarditis (EAM). EAM was induced by immunization of BALB/c mice with heart-specific myosin-alpha heavy chain peptide together with complete Freund`s adjuvant. ELISA revealed strong expression of cardiac VCAM-1 (cVCAM-1) throughout the course of EAM in immunized mice compared to control animals. Furthermore, sVCAM-1 was elevated in the plasma of immunized compared to control mice at acute and chronic stages of the disease. sVCAM-1 did not correlate with the degree of acute cardiac inflammation analyzed by histology or cardiac cytokine expression investigated by ELISA. Nevertheless, heart to body weight ratio correlated significantly with sVCAM-1 at chronic stages of EAM. Cardiac systolic dysfunction studied with positron emission tomography indicated a weak relationship with sVCAM-1 at the chronic stage of the disease. Our data provide evidence that plasma levels of sVCAM-1 are elevated throughout all stages of the disease but showed no strong correlation with the severity of EAM. PMID:27501319

  7. Soluble interleukin-2 receptor, intercellular adhesion molecule-1 and interleukin-10 serum levels in patients with melanoma.

    PubMed

    Boyano, M D; Garcia-Vázquez, M D; López-Michelena, T; Gardeazabal, J; Bilbao, J; Cañavate, M L; Galdeano, A G; Izu, R; Díaz-Ramón, L; Raton, J A; Díaz-Pérez, J L

    2000-10-01

    Serum soluble interleukin-2 receptor (sIL-2R), intercellular adhesion molecule-1 (sICAM-1) and interleukin-10 (IL-10) have each been reported as useful markers for melanoma progression. To evaluate the clinical relevance of these three markers, we simultaneously analysed their serum levels in patients with melanoma. A longitudinal study with a 3-year follow-up was performed and different stages of the disease were considered. Mean values of sIL-2R were significantly higher than in normal controls in all stages and correlated with the disease progression. The prognosis of patients with levels > 529 U/ml of sIL-2R was significantly poorer than in patients with sIL-2R levels < 529 U/ml. Levels of sICAM-1 were also elevated in melanoma patients, specially at the time of the metastatic disease. Serum IL-10 levels were more frequently detectable in the patients that developed metastasis during follow-up, and the prognosis of patients with detectable IL-10 levels was significantly poorer than in those patients with IL-10 undetected levels. Statistical analysis based on Logistic and Cox regression models showed that only sex, stage and sIL-2R value are factors significantly associated with metastatic progression. Moreover, high levels of sIL-2R could be a risk factor for malignant progression in melanoma.

  8. Soluble intercellular adhesion molecule-1, D-lactate and diamine oxidase in patients with inflammatory bowel disease

    PubMed Central

    Song, Wei-Bing; Lv, Yong-Hui; Zhang, Zhen-Shu; Li, Ya-Nan; Xiao, Li-Ping; Yu, Xin-Pei; Wang, Yuan-Yuan; Ji, Hong-Li; Ma, Li

    2009-01-01

    AIM: To study the levels of serum soluble intercellular adhesion molecule-1 (sICAM-1), plasma D-lactate and diamine oxidase (DAO) in patients with inflammatory bowel disease (IBD), and the potential clinical significance. METHODS: Sixty-nine patients with IBD and 30 healthy controls were included in this study. The concentration of sICAM-1 was detected with enzyme-linked immunosorbent assay, the level of D-lactate and DAO was measured by spectroscopic analysis, and the number of white blood cells (WBC) was determined by routine procedure. RESULTS: The levels of sICAM-l, DAO, and WBC in IBD patients were significantly higher than those in the control group (P < 0.01). sICAM-l in IBD patients was found to be closely related to the levels of DAO and D-lactate (212.94 ± 69.89 vs 6.35 ± 2.35, P = 0.000), DAO 212.94 ± 69.89 vs 8.65 ± 3.54, P = 0.000) and WBC (212.94 ± 69.89 vs 7.40 ± 2.61, P = 0.000), but no significant difference was observed between patients with ulcerative colitis and patients with Crohn’s disease. The post-treatment levels of sICAM-l, D-lactate and WBC were significantly lower than before treatment (sICAM-l 206.57 ± 79.21 vs 146.21 ± 64.43, P = 0.000), (D-lactate 1.46 ± 0.94 vs 0.52 ± 0.32, P = 0.000) and (WBC 7.24 ± 0.2.33 vs 5.21 ± 3.21, P = 0.000). CONCLUSION: sICAM-1, D-lactate and DAO are closely related to the specific conditions of IBD, and thus could be used as a major diagnostic index. PMID:19701972

  9. Keishibukuryogan (Gui-Zhi-Fu-Ling-Wan), a Kampo Formula, Decreases Disease Activity and Soluble Vascular Adhesion Molecule-1 in Patients with Rheumatoid Arthritis

    PubMed Central

    Nozaki, Kazuya; Hikiami, Hiroaki; Goto, Hirozo; Nakagawa, Takako; Shibahara, Naotoshi; Shimada, Yutaka

    2006-01-01

    An increasing death rate due to cardiovascular disease in patients with rheumatoid arthritis (RA) has been reported. Keishibukuryogan (KBG) is a traditional Chinese/Japanese (Kampo) formula that has been administered to patients with blood stagnation, e.g. thrombotic disease and atherosclerosis. The objective of this study was to evaluate the efficacy of KBG on disease activity and endothelial dysfunction in RA patients. Sixteen RA patients were enrolled and administered KBG (12 g per day) for 12 weeks in addition to continuing other drugs. The disease activity of RA was assessed by modified disease activity scores for 28 joints (DAS28). Plasma levels of adhesion molecules, soluble E-selectin (sE-selectin), soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) were evaluated. C-reactive protein (CRP), inflammatory cytokines (IL-1β, IL-6 and TNF-α) and lipid peroxide (LPO) were also evaluated. Fourteen patients completed the study. The disease activity of RA, tender joint count, swollen joint count and DAS28 decreased significantly. Among adhesion molecules, only sVCAM-1 decreased significantly. LPO also decreased significantly, whereas CRP and inflammatory cytokines remained unchanged. These results suggest that KBG has insufficient anti-inflammatory or immunomodulating effect but does have a beneficial effect on articular symptoms and a protective effect against endothelial dysfunction in RA patients. PMID:16951720

  10. Soluble intercellular adhesion molecule-1 (sICAM-1) as a marker of disease relapse in idiopathic uveoretinitis.

    PubMed Central

    Zaman, A G; Edelsten, C; Stanford, M R; Graham, E M; Ellis, B A; Direskeneli, H; D'Cruz, D P; Hughes, G R; Dumonde, D C; Wallace, G R

    1994-01-01

    This study reports the results of a point prevalence study of markers of endothelial dysfunction in the serum of patients with idiopathic uveoretinitis. sICAM-1, soluble endothelial leucocyte adhesion molecule (sELAM), anti-endothelial cell antibodies (AECA) and von Willebrand factor (vWF) levels were measured in 32 patients with isolated idiopathic uveoretinitis and seven with uveitis in association with systemic disease, using commercial and in-house ELISAs. Raised levels of AECA were found in 31% of patients with isolated uveitis, vWF in 28%, sELAM in 15.6% and sICAM-1 in 31%. Further analysis revealed that raised sICAM-1 levels were closely associated with recent relapse of disease (P = 0.00003). Patients with accompanying systemic disease were found to have a similar prevalence of these serum abnormalities to those with isolated ocular disease. In conclusion, vascular endothelial dysfunction may contribute to pathogenesis in uveoretinitis, and in particular sICAM-1 may prove a marker of disease relapse in this condition. PMID:7507016

  11. Serum Interleukin-18, Fetuin-A, Soluble Intercellular Adhesion Molecule-1, and Endothelin-1 in Ankylosing Spondylitis, Psoriatic Arthritis, and SAPHO Syndrome

    PubMed Central

    Przepiera-Będzak, Hanna; Fischer, Katarzyna; Brzosko, Marek

    2016-01-01

    To examine serum interleukin 18 (IL-18), fetuin-A, soluble intercellular adhesion molecule-1 (sICAM-1), and endothelin-1 (ET-1) levels in ankylosing spondylitis (AS), psoriatic arthritis (PsA), and Synovitis Acne Pustulosis Hyperostosis Osteitis syndrome (SAPHO). We studied 81 AS, 76 PsA, and 34 SAPHO patients. We measured serum IL-18, fetuin-A, sICAM-1, ET-1, IL-6, IL-23, vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF). IL-18 levels were higher in AS (p = 0.001), PsA (p = 0.0003), and SAPHO (p = 0.01) than in controls, and were positively correlated with CRP (p = 0.03), VEGF (p = 0.03), and total cholesterol (TC, p = 0.006) in AS and with IL-6 (p = 0.03) in PsA. Serum fetuin-A levels were lower in AS (p = 0.001) and PsA (p = 0.001) than in controls, and negatively correlated with C-reactive protein (CRP) in AS (p = 0.04) and SAPHO (p = 0.03). sICAM-1 positively correlated with CRP (p = 0.01), erythrocyte sedimentation rate (ESR, p = 0.01), and IL-6 (p = 0.008) in AS, and with IL-6 (p = 0.001) in SAPHO. Serum ET-1 levels were lower in AS (p = 0.0005) than in controls. ET-1 positively correlated with ESR (p = 0.04) and Disease Activity Score 28 (DAS28, p = 0.003) in PsA. In spondyloarthritis, markers of endothelial function correlated with disease activity and TC. PMID:27527149

  12. Serum Interleukin-18, Fetuin-A, Soluble Intercellular Adhesion Molecule-1, and Endothelin-1 in Ankylosing Spondylitis, Psoriatic Arthritis, and SAPHO Syndrome.

    PubMed

    Przepiera-Będzak, Hanna; Fischer, Katarzyna; Brzosko, Marek

    2016-08-03

    To examine serum interleukin 18 (IL-18), fetuin-A, soluble intercellular adhesion molecule-1 (sICAM-1), and endothelin-1 (ET-1) levels in ankylosing spondylitis (AS), psoriatic arthritis (PsA), and Synovitis Acne Pustulosis Hyperostosis Osteitis syndrome (SAPHO). We studied 81 AS, 76 PsA, and 34 SAPHO patients. We measured serum IL-18, fetuin-A, sICAM-1, ET-1, IL-6, IL-23, vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF). IL-18 levels were higher in AS (p = 0.001), PsA (p = 0.0003), and SAPHO (p = 0.01) than in controls, and were positively correlated with CRP (p = 0.03), VEGF (p = 0.03), and total cholesterol (TC, p = 0.006) in AS and with IL-6 (p = 0.03) in PsA. Serum fetuin-A levels were lower in AS (p = 0.001) and PsA (p = 0.001) than in controls, and negatively correlated with C-reactive protein (CRP) in AS (p = 0.04) and SAPHO (p = 0.03). sICAM-1 positively correlated with CRP (p = 0.01), erythrocyte sedimentation rate (ESR, p = 0.01), and IL-6 (p = 0.008) in AS, and with IL-6 (p = 0.001) in SAPHO. Serum ET-1 levels were lower in AS (p = 0.0005) than in controls. ET-1 positively correlated with ESR (p = 0.04) and Disease Activity Score 28 (DAS28, p = 0.003) in PsA. In spondyloarthritis, markers of endothelial function correlated with disease activity and TC.

  13. Soluble intracellular adhesion molecule-1 secreted by human umbilical cord blood-derived mesenchymal stem cell reduces amyloid-β plaques.

    PubMed

    Kim, J-Y; Kim, D H; Kim, J H; Lee, D; Jeon, H B; Kwon, S-J; Kim, S M; Yoo, Y J; Lee, E H; Choi, S J; Seo, S W; Lee, J I; Na, D L; Yang, Y S; Oh, W; Chang, J W

    2012-04-01

    Presently, co-culture of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) with BV2 microglia under amyloid-β42 (Aβ42) exposure induced a reduction of Aβ42 in the medium as well as an overexpression of the Aβ-degrading enzyme neprilysin (NEP) in microglia. Cytokine array examinations of co-cultured media revealed elevated release of soluble intracellular adhesion molecule-1 (sICAM-1) from hUCB-MSCs. Administration of human recombinant ICAM-1 in BV2 cells and wild-type mice brains induced NEP expression in time- and dose-dependent manners. In co-culturing with BV2 cells under Aβ42 exposure, knockdown of ICAM-1 expression on hUCB-MSCs by small interfering RNA (siRNA) abolished the induction of NEP in BV2 cells as well as reduction of added Aβ42 in the co-cultured media. By contrast, siRNA-mediated inhibition of the sICAM-1 receptor, lymphocyte function-associated antigen-1 (LFA-1), on BV2 cells reduced NEP expression by ICAM-1 exposure. When hUCB-MSCs were transplanted into the hippocampus of a 10-month-old transgenic mouse model of Alzheimer's disease for 10, 20, or 40 days, NEP expression was increased in the mice brains. Moreover, Aβ42 plaques in the hippocampus and other regions were decreased by active migration of hUCB-MSCs toward Aβ deposits. These data suggest that hUCB-MSC-derived sICAM-1 decreases Aβ plaques by inducing NEP expression in microglia through the sICAM-1/LFA-1 signaling pathway.

  14. Elevation of soluble intercellular adhesion molecule-1 levels, but not angiopoietin 2, in the plasma of human immunodeficiency virus-infected African women with clinical Kaposi sarcoma.

    PubMed

    Graham, Susan M; Rajwans, Nimerta; Richardson, Barbra A; Jaoko, Walter; McClelland, R Scott; Overbaugh, Julie; Liles, W Conrad

    2014-10-01

    Circulating levels of endothelial activation biomarkers are elevated in during infection with human immunodeficiency virus 1 (HIV-1) and may also be increased in Kaposi sarcoma (KS). We compared 23 HIV-1-seropositive women with clinically diagnosed KS with 46 randomly selected controls matched for visit year, CD4 count, and antiretroviral therapy status. Conditional logistic regression was used to identify differences between cases and controls. The odds of clinical KS increased with increasing plasma viral load and with intercellular adhesion molecule 1 (ICAM-1) levels above or equal to the median. There was a borderline association between increasing plasma angiopoietin 2 levels and KS. In multivariable modeling including plasma viral load, angiopoietin 2, and ICAM-1, plasma ICAM-1 levels above or equal to the median remained associated with clinical KS (odds ratio = 14.2, 95% confidence interval = 2.3-87.7). Circulating ICAM-1 levels should be evaluated as a potential biomarker for disease progression and treatment response among HIV-infected KS patients.

  15. Vascular Cell Adhesion Molecule 1, Intercellular Adhesion Molecule 1, and Cluster of Differentiation 146 Levels in Patients with Type 2 Diabetes with Complications

    PubMed Central

    Saribal, Devrim; Yenmis, Guven; Guvenen, Guvenc

    2017-01-01

    Background Type 2 diabetes mellitus (T2DM) is a multisystemic, chronic disease accompanied by microvascular complications involving various complicated mechanisms. Intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and cluster of differentiation-146 (CD146) are mainly expressed by endothelial cells, and facilitate the adhesion and transmigration of immune cells, leading to inflammation. In the present study, we evaluated the levels of soluble adhesion molecules in patients with microvascular complications of T2DM. Methods Serum and whole blood samples were collected from 58 T2DM patients with microvascular complications and 20 age-matched healthy subjects. Levels of soluble ICAM-1 (sICAM-1) and soluble VCAM-1 (sVCAM-1) were assessed using enzyme-linked immunosorbent assay, while flow cytometry was used to determine CD146 levels. Results Serum sICAM-1 levels were lower in T2DM patients with microvascular complications than in healthy controls (P<0.05). No significant differences were found in sVCAM-1 and CD146 levels between the study and the control group. Although patients were subdivided into groups according to the type of microvascular complications that they experienced, cell adhesion molecule levels were not correlated with the complication type. Conclusion In the study group, most of the patients were on insulin therapy (76%), and 95% of them were receiving angiotensin-converting enzyme (ACE)-inhibitor agents. Insulin and ACE-inhibitors have been shown to decrease soluble adhesion molecule levels via various mechanisms, so we suggest that the decreased or unchanged levels of soluble forms of cellular adhesion molecules in our study group may have resulted from insulin and ACE-inhibitor therapy, as well as tissue-localized inflammation in patients with T2DM. PMID:28345319

  16. Circulating Concentrations of Monocyte Chemoattractant Protein-1, Plasminogen Activator Inhibitor-1, and Soluble Leukocyte Adhesion Molecule-1 in Overweight/Obese Men and Women Consuming Fructose- or Glucose-Sweetened Beverages for 10 Weeks

    PubMed Central

    Cox, Chad L.; Stanhope, Kimber L.; Schwarz, Jean Marc; Graham, James L.; Hatcher, Bonnie; Griffen, Steven C.; Bremer, Andrew A.; Berglund, Lars; McGahan, John P.; Keim, Nancy L.

    2011-01-01

    Context: Results from animal studies suggest that consumption of large amounts of fructose can promote inflammation and impair fibrinolysis. Data describing the effects of fructose consumption on circulating levels of proinflammatory and prothrombotic markers in humans are unavailable. Objective: Our objective was to determine the effects of 10 wk of dietary fructose or glucose consumption on plasma concentrations of monocyte chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1), E-selectin, intercellular adhesion molecule-1, C-reactive protein, and IL-6. Design and Setting: This was a parallel-arm study with two inpatient phases (2 wk baseline, final 2 wk intervention), conducted in a clinical research facility, and an outpatient phase (8 wk) during which subjects resided at home. Participants: Participants were older (40–72 yr), overweight/obese (body mass index = 25–35 kg/m2) men (n = 16) and women (n = 15). Interventions: Participants consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 wk. Blood samples were collected at baseline and during the 10th week of intervention. Main Outcome Measures: Fasting concentrations of MCP-1 (P = 0.009), PAI-1 (P = 0.002), and E-selectin (P = 0.048) as well as postprandial concentrations of PAI-1 (P < 0.0001) increased in subjects consuming fructose but not in those consuming glucose. Fasting levels of C-reactive protein, IL-6, and intercellular adhesion molecule-1 were not changed in either group. Conclusions: Consumption of fructose for 10 wk leads to increases of MCP-1, PAI-1, and E-selectin. These findings suggest the possibility that fructose may contribute to the development of the metabolic syndrome via effects on proinflammatory and prothrombotic mediators. PMID:21956423

  17. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  18. Reduction of atherosclerosis in cholesterol-fed rabbits and decrease of expressions of intracellular adhesion molecule-1 and vascular endothelial growth factor in foam cells by a water-soluble fraction of Polygonum multiflorum.

    PubMed

    Yang, Peng-Yuan; Almofti, Mohamad Radwan; Lu, Ling; Kang, Hui; Zhang, Jing; Li, Tie-Jun; Rui, Yao-Cheng; Sun, Lian-Na; Chen, Wan-Sheng

    2005-11-01

    Polygonum multiflorum stilbeneglycoside (PMS) is a water-soluble fraction of Polygonum multiflorum Thunb., one of the most famous tonic traditional Chinese medicines, that has protective effects on the cardiovascular system. The purpose of the present study is to elucidate the effects of PMS on macrophage-derived foam cell functions and the reduction of severity of atherosclerosis in hypercholesterolemic New Zealand White (NZW) rabbits. NZW rabbits were fed for 12 weeks with a normal diet, a high cholesterol diet, or a high cholesterol diet associated with irrigation with different doses of PMS (25, 50, or 100 mg/kg). Treatment of NZW rabbits fed with high cholesterol diet with 100 mg/kg PMS attenuated the increase in plasma cholesterol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, and plasma triglyceride. Treatment with 50 and 100 mg/kg PMS caused 43% and 60% decrease in atherosclerotic lesioned area ratio to total surface area, respectively. In U937 foam cells, PMS could decrease the high expression of intercellular adhesion molecule (ICAM)-1 protein and the vascular endothelial growth factor (VEGF) protein levels in the medium induced by oxidized lipoprotein when analyzed by flow cytometry. The results proved that PMS is a powerful agent against atherosclerosis and that PMS action could possibly be through the inhibition of the expression of ICAM-1 and VEGF in foam cells.

  19. Angiogenesis in Platelet Endothelial Cell Adhesion Molecule-1-Null Mice

    PubMed Central

    Cao, Gaoyuan; Fehrenbach, Melane L.; Williams, James T.; Finklestein, Jeffrey M.; Zhu, Jing-Xu; DeLisser, Horace M.

    2009-01-01

    Platelet endothelial cell adhesion molecule (PECAM)-1 has been previously implicated in endothelial cell migration; additionally, anti-PECAM-1 antibodies have been shown to inhibit in vivo angiogenesis. Studies were therefore performed with PECAM-1-null mice to further define the involvement of PECAM-1 in blood vessel formation. Vascularization of subcutaneous Matrigel implants as well as tumor angiogenesis were both inhibited in PECAM-1-null mice. Reciprocal bone marrow transplants that involved both wild-type and PECAM-1-deficient mice revealed that the impaired angiogenic response resulted from a loss of endothelial, but not leukocyte, PECAM-1. In vitro wound migration and single-cell motility by PECAM-1-null endothelial cells were also compromised. In addition, filopodia formation, a feature of motile cells, was inhibited in PECAM-1-null endothelial cells as well as in human endothelial cells treated with either anti-PECAM-1 antibody or PECAM-1 siRNA. Furthermore, the expression of PECAM-1 promoted filopodia formation and increased the protein expression levels of Cdc42, a Rho GTPase that is known to promote the formation of filopodia. In the developing retinal vasculature, numerous, long filamentous filopodia, emanating from endothelial cells at the tips of angiogenic sprouts, were observed in wild-type animals, but to a lesser extent in the PECAM-1-null mice. Together, these data further establish the involvement of endothelial PECAM-1 in angiogenesis and suggest that, in vivo, PECAM-1 may stimulate endothelial cell motility by promoting the formation of filopodia. PMID:19574426

  20. Localization of intercellular adhesion molecule-1 (ICAM-1) in the lungs of silica-exposed mice.

    PubMed Central

    Nario, R C; Hubbard, A K

    1997-01-01

    Intercellular adhesion molecule-1 (ICAM-1) is expressed on a variety of cells including endothelial cells, alveolar epithelial cells, and alveolar macrophages. Endothelial/epithelial cell ICAM-1 participates in the migration of leukocytes out of the blood in response to pulmonary inflammation, whereas alveolar macrophage ICAM-1 may represent cell activation. Our previous studies have shown that there is increased expression of ICAM-1 in lung tissue during acute inflammation following intratracheal injection with silica particles (2 mg/mouse). This increased expression was shown to play a role, in part, in the migration of neutrophils from the circulation into the tissue parenchyma. The aim of the current work is to localize expression of ICAM-1 during acute inflammation in lungs of mice exposed to either silica or the nuisance dust, titanium dioxide. In silica-exposed mice, a significant increase in ICAM-1 was detected on day-1 and localized by immunohistochemistry to aggregates of pulmonary macrophages and to type II epithelial cells. Areas of the lung with increased ICAM-1 expression also showed increased tumor necrosis factor alpha expression. Immunocytochemical staining of bronchoalveolar lavage (BAL) cells demonstrated increased ICAM-1 expression associated with alveolar macrophages 3, 5, and 7 days following silica exposure. Finally, soluble ICAM-1 levels in the BAL fluid were significantly increased in mice exposed to silica on the same days. Titanium dioxide exposure elicited a minimal increase in expression of ICAM-1 in the lungs. These data demonstrate that exposure to the toxic particle silica specifically increases ICAM-1 expression localized to pulmonary macrophages and type II epithelial cells. Images Figure 2. B Figure 2. A Figure 2. D Figure 2. C Figure 3. A Figure 3. B Figure 5. B Figure 5. A Figure 5. C PMID:9400721

  1. Targeting sites of inflammation: intercellular adhesion molecule-1 as a target for novel inflammatory therapies

    PubMed Central

    Hua, Susan

    2013-01-01

    Targeted drug delivery to sites of inflammation will provide effective, precise, and safe therapeutic interventions for treatment of diverse disease conditions, by limiting toxic side effects and/or increasing drug action. Disease-site targeting is believed to play a major role in the enhanced efficacy observed for a variety of drugs when formulated inside lipid vesicles. This article will focus on the factors and mechanisms involved in drug targeting to sites of inflammation and the importance of cell adhesion molecules, in particular intercellular adhesion molecule-1, in this process. PMID:24109453

  2. Epidermal Expression of Intercellular Adhesion Molecule 1 is Not a Primary Inducer of Cutaneous Inflammation in Transgenic Mice

    NASA Astrophysics Data System (ADS)

    Williams, Ifor R.; Kupper, Thomas S.

    1994-10-01

    Keratinocytes at sites of cutaneous inflammation have increased expression of intercellular adhesion molecule 1 (ICAM-1), a cytokine-inducible adhesion molecule which binds the leukocyte integrins LFA-1 and Mac-1. Transgenic mice were prepared in which the expression of mouse ICAM-1 was targeted to basal keratinocytes by using the human K14 keratin promoter. The level of constitutive expression attained in the transgenic mice exceeded the peak level of ICAM-1 expression induced on nontransgenic mouse keratinocytes in vitro by optimal combinations of interferon γ and tumor necrosis factor α or in vivo by proinflammatory stimuli such as phorbol 12-myristate 13-acetate. In vitro adhesion assays demonstrated that cultured transgenic keratinocytes were superior to normal keratinocytes as a substrate for the LFA-1-dependent binding of mouse T cells, confirming that the transgene-encoded ICAM-1 was expressed in a functional form. However, the high level of constitutive ICAM-1 expression achieved on keratinocytes in vivo in these transgenic mice did not result in additional recruitment of CD45^+ leukocytes into transgenic epidermis, nor did it elicit dermal inflammation. Keratinocyte ICAM-1 expression also did not potentiate contact-hypersensitivity reactions to epicutaneous application of haptens. The absence of a spontaneous phenotype in these transgenic mice was not the result of increased levels of soluble ICAM-1, since serum levels of soluble ICAM-1 were equal in transgenic mice and controls. We conclude that elevated ICAM-1 expression on keratinocytes cannot act independently to influence leukocyte trafficking and elicit cutaneous inflammation.

  3. Intercellular Adhesion Molecule-1 Expression by Skeletal Muscle Cells Augments Myogenesis

    PubMed Central

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2014-01-01

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. PMID:25281303

  4. Involvement of oxidative stress and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in inflammatory bowel disease

    PubMed Central

    Tanida, Satoshi; Mizoshita, Tsutomu; Mizushima, Takashi; Sasaki, Makoto; Shimura, Takaya; Kamiya, Takeshi; Kataoka, Hiromi; Joh, Takashi

    2011-01-01

    The pathophysiology of inflammatory bowel disease involves excessive immune effects of inflammatory cells against gut microbes. In genetically predisposed individuals, these effects are considered to contribute to the initiation and perpetuation of mucosal injury. Oxidative stress is a fundamental tissue-destructive mechanisms that can occur due to the reactive oxygen species and reactive nitrogen metabolites which are released in abundance from numerous inflammatory cells that have extravasated from lymphatics and blood vessels to the lamina propria. This extravasation is mediated by interactions between adhesion molecules including mucosal addressin cell adhesion molecule-1 and vascular cell adhesion molecule-1 on the surface of lymphocytes or neutrophils and their ligands on endothelial cells. Thus, reactive oxygen species and adhesion molecules play an important role in the development of inflammatory bowel disease. The present review focuses on the involvement of oxidative stress and adhesion molecules, in particular mucosal addressin cell adhesion molecule-1, in inflammatory bowel disease. PMID:21373262

  5. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    SciTech Connect

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  6. Integrin engagement mediates tyrosine dephosphorylation on platelet-endothelial cell adhesion molecule 1.

    PubMed Central

    Lu, T T; Yan, L G; Madri, J A

    1996-01-01

    Platelet-endothelial cell adhesion molecule 1 (PECAM-1, CD31) is a 130-kDa member of the immunoglobulin gene superfamily expressed on endothelial cells, platelets, neutrophils, and monocytes and plays a role during endothelial cell migration. Phosphoamino acid analysis and Western blot analysis with anti-phosphotyrosine antibody show that endothelial PECAM-1 is tyrosine-phosphorylated. Phosphorylation is decreased with endothelial cell migration on fibronectin and collagen and with cell spreading on fibronectin but not on plastic. Cell adhesion on anti-integrin antibodies is also able to specifically induce PECAM-1 dephosphorylation while concurrently inducing pp125 focal adhesion kinase phosphorylation. Inhibition of dephosphorylation with sodium orthovanadate suggests that this effect is at least partially mediated by phosphatase activity. Tyr-663 and Tyr-686 are identified as potential phosphorylation sites and mutated to phenylalanine. When expressed, both mutants show reduced PECAM-1 phosphorylation but Phe-686 mutants also show significant reversal of PECAM-1-mediated inhibition of cell migration and do not localize PECAM-1 to cell borders. Our results suggest that beta 1-integrin engagement can signal to dephosphorylate PECAM-1 and that this signaling pathway may play a role during endothelial cell migration. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8876219

  7. Control of islet intercellular adhesion molecule-1 expression by interferon-alpha and hypoxia.

    PubMed

    Chakrabarti, D; Huang, X; Beck, J; Henrich, J; McFarland, N; James, R F; Stewart, T A

    1996-10-01

    The ability of interferon-alpha (IFN-alpha) to induce the adhesion molecules that characterize the islets of patients with type I diabetes has been investigated. We have found that all tested recombinant IFN-as will induce major histocompatibility complex (MHC) class I on arterial endothelial cells. Some but not all IFN-as will induce intercellular adhesion molecule-1 (ICAM-1). However, there is only a transient and modest increase in VCAM on arterial endothelial cells. IFN-alpha has very little effect on endothelial MHC class II expression but will induce these proteins on monocytes. Thus, there is a close concordance between the biological actions of IFN-alpha and the appearance of those adhesion molecules induced in the islets of patients with type I diabetes. IFN-alpha is also produced in normal human islets during short-term cultures, probably as a result of the ischemia present at the center of the islet. This induction of IFN-alpha by hypoxia may explain the previously reported spontaneous induction of ICAM-1 in human islets and may also be a contributing factor to the failure of islet grafts.

  8. Toxoplasma gondii tachyzoites cross retinal endothelium assisted by intercellular adhesion molecule-1 in vitro.

    PubMed

    Furtado, João M; Bharadwaj, Arpita S; Chipps, Timothy J; Pan, Yuzhen; Ashander, Liam M; Smith, Justine R

    2012-10-01

    Retinal infection is the most common clinical manifestation of toxoplasmosis. The route by which circulating Toxoplasma gondii tachyzoites cross the vascular endothelium to enter the human retina is unknown. Convincing studies using murine encephalitis models have strongly implicated leukocyte taxis as one pathway used by the parasite to access target organs. To establish whether tachyzoites might also interact directly with vascular endothelium, we populated a transwell system with human ocular endothelial cells. Human retinal endothelial monolayers permitted transmigration of tachyzoites of RH and three natural isolate strains. Antibody blockade of intercellular adhesion molecule-1 significantly reduced this migration, but did not impact tachyzoite movement across an endothelial monolayer derived from the choroid, which lies adjacent to the retina within the eye. In demonstrating that tachyzoites are capable of independent migration across human vascular endothelium in vitro, this study carries implications for the development of therapeutics aimed at preventing access of T. gondii to the retina.

  9. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells.

    PubMed

    Yokawa, Satoru; Furuno, Tadahide; Suzuki, Takahiro; Inoh, Yoshikazu; Suzuki, Ryo; Hirashima, Naohide

    2016-09-01

    Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 μm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 μm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity.

  10. Differential effects of heme oxygenase isoforms on heme mediation of endothelial intracellular adhesion molecule 1 expression.

    PubMed

    Wagener, F A; da Silva, J L; Farley, T; de Witte, T; Kappas, A; Abraham, N G

    1999-10-01

    Heme oxygenase (HO), by catabolizing heme to bile pigments, down-regulates cellular hemoprotein, hemoglobin, and heme; the latter generates pro-oxidant products, including free radicals. Two HO isozymes, the products of distinct genes, have been described; HO-1 is the inducible isoform, whereas HO-2 is suggested to be constitutively expressed. We studied the inducing effect of several metal compounds (CoCl(2), stannic mesoporphyrin, and heme) on HO activity. Additionally, we studied HO-1 expression in experimental models of adhesion molecule expression produced by heme in endothelial cells, and the relationship of HO-1 expression to the induced adhesion molecules. Flow cytometry analysis showed that heme induces intracellular adhesion molecule 1 (ICAM-1) expression in a concentration (10-100 microM)- and time (1-24 h)-dependent fashion in human umbilical vein endothelial cells. Pretreatment with stannic mesoporphyrin, an inhibitor of HO activity, caused a 2-fold increase in heme-induced ICAM-1 expression. In contrast, HO induction by CoCl(2) decreased heme-induced ICAM-1 expression by 33%. To examine the contribution of HO-1 and HO-2 to endothelial HO activity, specific antisense oligonucleotides (ODNs) of each isoform were tested for their specificity to inhibit HO activity in cells exposed to heme. Endothelial cells exposed to heme elicited increased HO activity, which was prevented (70%) by HO-1 antisense ODNs. HO-2 antisense ODN inhibited heme-induced HO activity by 21%. Addition of HO-1 antisense ODNs prevented heme degradation and resulted in elevation of microsomal heme. Western blot analysis showed that HO-1 antisense ODNs selectively inhibited HO-1 protein and failed to inhibit HO-2 protein. Incubation of endothelial cells with HO-1 antisense enhanced heme-dependent increase of ICAM-1. In contrast, addition of HO-2 antisense to endothelial cells failed to increase adhesion molecules. The role of glutathione, an important antioxidant, was examined on heme

  11. Intercellular adhesion molecule-1 (ICAM-1) expression is upregulated in autoimmune murine lupus nephritis.

    PubMed Central

    Wuthrich, R. P.; Jevnikar, A. M.; Takei, F.; Glimcher, L. H.; Kelley, V. E.

    1990-01-01

    Intercellular adhesion molecule-1 (ICAM-1) is a cell-surface protein regulating interactions among immune cells. To determine whether altered expression of ICAM-1 occurs in autoimmune lupus nephritis, we studied ICAM-1 expression in kidneys of normal and autoimmune MRL-lpr and (NZBX NZW)F1 (NZB/W) mice. By immunoperoxidase staining, ICAM-1 is constitutively expressed at low levels in proximal tubules (PT), endothelium and interstitial cells in normal C3H/FeJ mice. In nephritic MRL-lpr and NZB/W kidneys, staining for ICAM-1 is increased in the PT, particularly in the brush border, and is prominent in the glomerular mesangium and the endothelium of large vessels. By Western blot analysis, ICAM-1 is not detected in the urine of normal BALB/c and C3H/FeJ or autoimmune MRL-lpr. By Northern blot analysis, nephritic MRL-lpr and NZB/W have a two- to fivefold increase in steady state levels of ICAM-1 transcripts in the kidney as compared with normal or prenephritic mice. This is paralleled by an increase in MHC class II transcripts. In cultured PT cells, ICAM-1 is expressed at basal levels in PT and is increased by the cytokines interferon-gamma, IL-1 alpha, and TNF-alpha. Thus cytokine-mediated upregulation of ICAM-1 in lupus nephritis may promote interaction of immune cells with renal tissue. The predominant apical expression of ICAM-1 opposite to the basolateral Ia expression suggests a novel role for this adhesion molecule in PT. Images Figure 1 Figure 2 Figure 3 Figure 6 Figure 7 PMID:1968316

  12. Role of Intercellular Adhesion Molecule-1 in Radiation-Induced Brain Injury

    SciTech Connect

    Wu, K.-L.; Tu Ba; Li Yuqing; Wong, C. Shun

    2010-01-15

    Purpose: To determine the role of intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of brain injury after irradiation (IR). Methods and Materials: We assessed the expression of ICAM-1 in mouse brain after cranial IR and determined the histopathologic and behavioral changes in mice that were either wildtype (+/+) or knockout (-/-) of the ICAM-1 gene after IR. Results: There was an early dose-dependent increase in ICAM-1 mRNA and protein expression after IR. Increased ICAM-1 immunoreactivity was observed in endothelia and glia of ICAM-1+/+ mice up to 8 months after IR. ICAM-1-/- mice showed no expression. ICAM-1+/+ and ICAM-1-/- mice showed similar vascular abnormalities at 2 months after 10-17 Gy, and there was evidence for demyelination and inhibition of hippocampal neurogenesis at 8 months after 10 Gy. After 10 Gy, irradiated ICAM-1+/+ and ICAM-1-/- mice showed similar behavioral changes at 2-6 months in open field, light-dark chamber, and T-maze compared with age-matched genotype controls. Conclusion: There is early and late upregulation of ICAM-1 in the vasculature and glia of mouse brain after IR. ICAM-1, however, does not have a causative role in the histopathologic injury and behavioral dysfunction after moderate single doses of cranial IR.

  13. Reduced Hepatic Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Level in Obesity

    PubMed Central

    Heinrich, Garrett; Muturi, Harrison T.; Rezaei, Khadijeh; Al-Share, Qusai Y.; DeAngelis, Anthony M.; Bowman, Thomas A.; Ghadieh, Hilda E.; Ghanem, Simona S.; Zhang, Deqiang; Garofalo, Robert S.; Yin, Lei; Najjar, Sonia M.

    2017-01-01

    Impairment of insulin clearance is being increasingly recognized as a critical step in the development of insulin resistance and metabolic disease. The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes insulin clearance. Null deletion or liver-specific inactivation of Ceacam1 in mice causes a defect in insulin clearance, insulin resistance, steatohepatitis, and visceral obesity. Immunohistological analysis revealed reduction of hepatic CEACAM1 in obese subjects with fatty liver disease. Thus, we aimed to determine whether this occurs at the hepatocyte level in response to systemic extrahepatic factors and whether this holds across species. Northern and Western blot analyses demonstrate that CEACAM1 mRNA and protein levels are reduced in liver tissues of obese individuals compared to their lean age-matched counterparts. Furthermore, Western analysis reveals a comparable reduction of CEACAM1 protein in primary hepatocytes derived from the same obese subjects. Similar to humans, Ceacam1 mRNA level, assessed by quantitative RT-PCR analysis, is significantly reduced in the livers of obese Zucker (fa/fa, ZDF) and Koletsky (f/f) rats relative to their age-matched lean counterparts. These studies demonstrate that the reduction of hepatic CEACAM1 in obesity occurs at the level of hepatocytes and identify the reduction of hepatic CEACAM1 as a common denominator of obesity across multiple species.

  14. Polymorphisms in the intercellular adhesion molecule 1 gene and cancer risk: a meta-analysis

    PubMed Central

    Tang, Weifeng; Wang, Yafeng; Chen, Yuanmei; Gu, Haiyong; Chen, Shuchen; Kang, Mingqiang

    2015-01-01

    Objectives: The correlation between intercellular adhesion molecule 1 (ICAM-1) common polymorphisms (rs5498 A>G and rs3093030 C>T) and cancer susceptibility has been explored in various ethnic groups and different cancer types; however, these investigations have yielded contradictory results. To address the relationship more precisely, we performed this meta-analysis. Design and methods: EmBase, PubMed and China National Knowledge Infrastructure (CNKI) databases were searched by two authors independently for eligible publications before April 8, 2015. Random-effects or fixed-effects model was harnessed to calculate the pooled odds ratios (ORs) and 95% confidence intervals (CIs) when appropriate. Results: The result suggested that the ICAM-1 rs5498 A>G polymorphism is not associated with cancer susceptibility in overall cancer. In a stratified analysis by ethnicity, a significant increased cancer risk was identified among Asians, but the inverse association was found among Caucasians. In a stratified analysis by cancer type, ICAM-1 rs5498 A>G polymorphism was associated with a significantly increased risk of oral cancer, but with protection from colorectal cancer and melanoma. ICAM-1 rs3093030 C>T polymorphism is not correlated with cancer susceptibility. Conclusions: In summary, this meta-analysis highlights that the ICAM-1 rs5498 A>G polymorphism probably contributes to decreased susceptibility to cancer, especially in Caucasians, in melanoma and colorectal cancer subgroup, but it may be a risk factor for oral cancer and Asians. PMID:26550112

  15. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis

    PubMed Central

    Mehrabian, Mohadeseh; Brethour, Dylan; Wang, Hansen; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold

    2015-01-01

    Despite its multi-faceted role in neurodegenerative diseases, the physiological function of the prion protein (PrP) has remained elusive. On the basis of its evolutionary relationship to ZIP metal ion transporters, we considered that PrP may contribute to the morphogenetic reprogramming of cells underlying epithelial-to-mesenchymal transitions (EMT). Consistent with this hypothesis, PrP transcription increased more than tenfold during EMT, and stable PrP-deficient cells failed to complete EMT in a mammalian cell model. A global comparative proteomics analysis identified the neural cell adhesion molecule 1 (NCAM1) as a candidate mediator of this impairment, which led to the observation that PrP-deficient cells fail to undergo NCAM1 polysialylation during EMT. Surprisingly, this defect was caused by a perturbed transcription of the polysialyltransferase ST8SIA2 gene. Proteomics data pointed toward β-catenin as a transcriptional regulator affected in PrP-deficient cells. Indeed, pharmacological blockade or siRNA-based knockdown of β-catenin mimicked PrP-deficiency in regards to NCAM1 polysialylation. Our data established the existence of a PrP-ST8SIA2-NCAM signaling loop, merged two mature fields of investigation and offer a simple model for explaining phenotypes linked to PrP. PMID:26288071

  16. Down syndrome cell adhesion molecule 1: testing for a role in insect immunity, behaviour and reproduction.

    PubMed

    Peuß, Robert; Wensing, Kristina U; Woestmann, Luisa; Eggert, Hendrik; Milutinović, Barbara; Sroka, Marlene G U; Scharsack, Jörn P; Kurtz, Joachim; Armitage, Sophie A O

    2016-04-01

    Down syndrome cell adhesion molecule 1 (Dscam1) has wide-reaching and vital neuronal functions although the role it plays in insect and crustacean immunity is less well understood. In this study, we combine different approaches to understand the roles that Dscam1 plays in fitness-related contexts in two model insect species. Contrary to our expectations, we found no short-term modulation of Dscam1 gene expression after haemocoelic or oral bacterial exposure in Tribolium castaneum, or after haemocoelic bacterial exposure in Drosophila melanogaster. Furthermore, RNAi-mediated Dscam1 knockdown and subsequent bacterial exposure did not reduce T. castaneum survival. However, Dscam1 knockdown in larvae resulted in adult locomotion defects, as well as dramatically reduced fecundity in males and females. We suggest that Dscam1 does not always play a straightforward role in immunity, but strongly influences behaviour and fecundity. This study takes a step towards understanding more about the role of this intriguing gene from different phenotypic perspectives.

  17. Lack of Platelet Endothelial Cell Adhesion Molecule-1 Attenuates Foreign Body Inflammation because of Decreased Angiogenesis

    PubMed Central

    Solowiej, Anna; Biswas, Purba; Graesser, Donnasue; Madri, Joseph A.

    2003-01-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) is a 130-kd member of the immunoglobulin superfamily of proteins, expressed on endothelial cells, leukocytes, and platelets. Antibody-blocking studies have implicated it in modulating leukocyte transmigration and angiogenesis. However, the generation of the PECAM-1 knockout mouse has shown that its function can be compensated for by similarly acting proteins because most acute inflammatory models proceed in a comparable manner in wild-type and knockout animals. We decided to examine the function of PECAM-1 in the chronic process of foreign body inflammation. We show that PECAM-1-deficient mice exhibit attenuated neutrophil infiltration in and around a subcutaneous polyvinyl acetyl implant. Bone marrow engraftment studies indicate that the lack of CD31 expression on the endothelium determines the diminished leukocyte accumulation in the knockout implants. Specifically, we find that decreased angiogenesis (as manifested by lower vessel density, decreased hemoglobin content, and less laminin deposition) correlates with lower neutrophil accumulation in the knockout animals. This study indicates that the absence of endothelial PECAM-1 results in decreased angiogenesis and therefore in diminished delivery of leukocytes to the foreign body implants. PMID:12598328

  18. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis.

    PubMed

    Mehrabian, Mohadeseh; Brethour, Dylan; Wang, Hansen; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold

    2015-01-01

    Despite its multi-faceted role in neurodegenerative diseases, the physiological function of the prion protein (PrP) has remained elusive. On the basis of its evolutionary relationship to ZIP metal ion transporters, we considered that PrP may contribute to the morphogenetic reprogramming of cells underlying epithelial-to-mesenchymal transitions (EMT). Consistent with this hypothesis, PrP transcription increased more than tenfold during EMT, and stable PrP-deficient cells failed to complete EMT in a mammalian cell model. A global comparative proteomics analysis identified the neural cell adhesion molecule 1 (NCAM1) as a candidate mediator of this impairment, which led to the observation that PrP-deficient cells fail to undergo NCAM1 polysialylation during EMT. Surprisingly, this defect was caused by a perturbed transcription of the polysialyltransferase ST8SIA2 gene. Proteomics data pointed toward β-catenin as a transcriptional regulator affected in PrP-deficient cells. Indeed, pharmacological blockade or siRNA-based knockdown of β-catenin mimicked PrP-deficiency in regards to NCAM1 polysialylation. Our data established the existence of a PrP-ST8SIA2-NCAM signaling loop, merged two mature fields of investigation and offer a simple model for explaining phenotypes linked to PrP.

  19. Down syndrome cell adhesion molecule 1: testing for a role in insect immunity, behaviour and reproduction

    PubMed Central

    Wensing, Kristina U.; Eggert, Hendrik; Scharsack, Jörn P.

    2016-01-01

    Down syndrome cell adhesion molecule 1 (Dscam1) has wide-reaching and vital neuronal functions although the role it plays in insect and crustacean immunity is less well understood. In this study, we combine different approaches to understand the roles that Dscam1 plays in fitness-related contexts in two model insect species. Contrary to our expectations, we found no short-term modulation of Dscam1 gene expression after haemocoelic or oral bacterial exposure in Tribolium castaneum, or after haemocoelic bacterial exposure in Drosophila melanogaster. Furthermore, RNAi-mediated Dscam1 knockdown and subsequent bacterial exposure did not reduce T. castaneum survival. However, Dscam1 knockdown in larvae resulted in adult locomotion defects, as well as dramatically reduced fecundity in males and females. We suggest that Dscam1 does not always play a straightforward role in immunity, but strongly influences behaviour and fecundity. This study takes a step towards understanding more about the role of this intriguing gene from different phenotypic perspectives. PMID:27152227

  20. Circulating thrombomodulin and vascular cell adhesion molecule-1 and renal vascular lesion in patients with lupus nephritis.

    PubMed

    Yao, G H; Liu, Z H; Zhang, X; Zheng, C X; Chen, H P; Zeng, C H; Li, L S

    2008-08-01

    Currently, the detection of renal vascular lesions (VLS) in lupus nephritis (LN) mainly depends on biopsy examination, and lack surrogate biomarkers for clinical dynamic evaluation. The aim of the present study is to explore the correlation between circulatory endothelial damage biomarkers and VLS. Soluble E-selectin, thrombomodulin (TM) and vascular cell adhesion molecule-1 (VCAM-1) were measured by ELISA. TM and VCAM-1 levels both were significantly elevated in LN with VLS than in LN without VLS (P < 0.01). However, the serum E-selectin was not significantly changed in LN patients with and without VLS. A positive correlation was found between TM and serum creatinine (r = 0.617, P < 0.05) in patients with vascular lesions. In order to further analyse the relationship between TM level and severity degree of vascular lesions in LN patients, we subdivided the patients with vascular lesions into two groups: with thrombotic microangiopathy (TMA) and without TMA. TM level of the patients with TMA is significantly higher than those without TMA (P < 0.01). In conclusion, combined with renal pathological examination, monitoring the circulatory levels of TM and VCAM-1, can provide circulating biomarkers of VLS in LN patients.

  1. Active Site Formation, Not Bond Kinetics, Limits Adhesion Rate between Human Neutrophils and Immobilized Vascular Cell Adhesion Molecule 1

    PubMed Central

    Waugh, Richard E.; Lomakina, Elena B.

    2009-01-01

    Abstract The formation of receptor ligand bonds at the interface between different cells and between cells and substrates is a widespread phenomenon in biological systems. Physical measurements of bond formation rates between cells and substrates have been exploited to increase our understanding of the biophysical mechanisms that regulate bond formation at interfaces. Heretofore, these measurements have been interpreted in terms of simple bimolecular reaction kinetics. Discrepancies between this simple framework and the behavior of neutrophils adhering to surfaces expressing vascular cell adhesion molecule 1 (VCAM-1) motivated the development of a new kinetic framework in which the explicit formation of active bond formation sites (reaction zones) are a prerequisite for bond formation to occur. Measurements of cells interacting with surfaces having a wide range of VCAM-1 concentrations, and for different durations of contact, enabled the determination of novel kinetic rate constants for the formation of reaction zones and for the intrinsic bond kinetics. Comparison of these rates with rates determined previously for other receptor-ligand pairs points to a predominant role of extrinsic factors such as surface topography and accessibility of active molecules to regions of close contact in determining forward rates of bond formation at cell interfaces. PMID:19134479

  2. Role of intercellular adhesion molecule-1 in glucan-induced pulmonary granulomatosis in the rat.

    PubMed

    Barton, P A; Imlay, M M; Flory, C M; Warren, J S

    1996-08-01

    Glucan-induced pulmonary granulomatous vasculitis in the rat mimics several human lung diseases (e.g., Wegener's granulomatosis, intravenous talcosis). We sought to clarify the role of intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of glucan-induced granulomatous vasculitis. Immunohistochemical analysis of lung sections from rats with florid vasculitis (48 hours) revealed marked alveolar septal and lesional expression of ICAM-1. An ex vivo binding analysis with isotope-labeled antibodies and lung sections taken at various times up to 48 hours after glucan infusion revealed a progressive increase in whole-lung ICAM-1 expression. In vivo measurements of vascular wall-associated ICAM-1 expression revealed an earlier rise that began less than 6 hours after glucan infusion, peaked at 24 to 48 hours, and then declined to near baseline during the ensuing 24 to 96 hours. To assess whether ICAM-1 expression both within blood vessel walls and within lesions per se is important in granuloma development, we carried out in vivo neutralization experiments with several different routes of administration of antibody to ICAM-1. Monoclonal antibody to rat ICAM-1 was either infused intravenously at time 0 (when glucan was infused), infused intravenously at time 0 and after 24 hours, instilled only intratracheally 24 hours after glucan infusion, or given both intravenously (time = 0 and 24 hours) and intratracheally (time = 24 hours). Infusions of monoclonal antibody to rat ICAM-1 resulted in dose-dependent reductions in mean granuloma number and cross-sectional area. Intrapulmonary instillation of antibody to rat ICAM-1 (via tracheostomy 24 hours after glucan infusion) resulted in a modest reduction in mean granuloma number and cross-sectional area. When antibody to ICAM-1 was both infused and instilled via the trachea, we found an additive reduction in mean granuloma size and number. There was a 12-fold increase in adhesion of ED-1-positive peripheral blood

  3. Intercellular Adhesion Molecule-1 (ICAM-1) Polymorphisms and Cancer Risk: A Meta-Analysis

    PubMed Central

    CHENG, Daye; LIANG, Bin

    2015-01-01

    Background: Intercellular adhesion molecule-1 (ICAM-1) Lys469Glu (K469E) polymorphism and Gly 241Arg (G241R) polymorphism might play important roles in cancer development and progression. However, the results of previous studies are inconsistent. The aim of this study was to evaluate the association between ICAM-1 K469E and G241R polymorphisms and the risk of cancer by meta-analysis. Methods: A comprehensive literature search (last search updated in November 2013) was conducted to identify case-control studies that investigated the association between ICAM-1 K469E and G241R polymorphisms and cancer risk. Results: A total of 18 case-control studies for ICAM-1 polymorphisms were included in the meta-analysis, including 4,844 cancer cases and 5,618 healthy controls. For K469E polymorphism, no significant association was found between K469E polymorphism and cancer risk. However, subgroup analysis by ethnicity revealed one genetic comparison (GG vs. AA) presented the relationship with cancer risk in Asian subgroup, and two genetic models (GG+GA vs. AA and GA vs. AA) in European subgroup, respectively. For G241R polymorphism, G241R polymorphism was significantly association with cancer risk in overall analysis. The subgroup analysis by ethnicity showed that G241R polymorphism was significantly associated with cancer risk in European subgroup. Conclusion: ICAM-1 G241R polymorphism might be associated with cancer risk, especially in European populations, but the results doesn’t support ICAM-1 K469E polymorphism as a risk factor for cancer. PMID:26284202

  4. R-Ras Regulates Murine T Cell Migration and Intercellular Adhesion Molecule-1 Binding

    PubMed Central

    Yan, Xiaocai; Yan, Mingfei; Guo, Yihe; Singh, Gobind; Chen, Yuhong; Yu, Mei; Wang, Demin; Hillery, Cheryl A.; Chan, Andrew M.

    2015-01-01

    The trafficking of T-lymphocytes to peripheral draining lymph nodes is crucial for mounting an adaptive immune response. The role of chemokines in the activation of integrins via Ras-related small GTPases has been well established. R-Ras is a member of the Ras-subfamily of small guanosine-5’-triphosphate-binding proteins and its role in T cell trafficking has been investigated in R-Ras null mice (Rras−/−). An examination of the lymphoid organs of Rras−/− mice revealed a 40% reduction in the cellularity of the peripheral lymph nodes. Morphologically, the high endothelial venules of Rras−/− mice were more disorganized and less mature than those of wild-type mice. Furthermore, CD4+ and CD8+ T cells from Rras−/− mice had approximately 42% lower surface expression of L-selectin/CD62L. These aberrant peripheral lymph node phenotypes were associated with proliferative and trafficking defects in Rras−/− T cells. Furthermore, R-Ras could be activated by the chemokine, CCL21. Indeed, Rras−/− T cells had approximately 14.5% attenuation in binding to intercellular adhesion molecule 1 upon CCL21 stimulation. Finally, in a graft-versus host disease model, recipient mice that were transfused with Rras−/− T cells showed a significant reduction in disease severity when compared with mice transplanted with wild-type T cells. These findings implicate a role for R-Ras in T cell trafficking in the high endothelial venules during an effective immune response. PMID:26710069

  5. Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice

    PubMed Central

    1994-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is one of three immunoglobulin superfamily members that bind to the integrins lymphocyte function associated 1 (LFA-1) and Mac-1 on leukocytes. We have generated mice that are genetically and functionally deficient in ICAM-1. These mice have elevated numbers of circulating neutrophils and lymphocytes, as well as diminished allogeneic T cell responses and delayed type hypersensitivity. Mutant mice are resistant to lethal effects of high doses of endotoxin (lipopolysaccharide [LPS]), and this correlates with a significant decrease in neutrophil infiltration in the liver. Production of inflammatory cytokines such as tumor necrosis factor alpha or interleukin 1 is normal in ICAM-1-deficient mice, and thus protection appears to be related to a diminution in critical leukocyte-endothelial interactions. After sensitization with D- galactosamine (D-Gal), ICAM-1-deficient mice are resistant to the lethal effect of low doses of exotoxin (Staphylococcus aureus enterotoxin B [SEB]), which has been shown to mediate its toxic effects via the activation of specific T cells. In this model, ICAM-1-mediated protection against SEB lethality correlates with a decrease in the systemic release of inflammatory cytokines, as well as with prevention of extensive hepatocyte necrosis and hemorrhage. ICAM-1-deficient mice sensitized with D-Gal, however, are not protected from lethality when challenged with low doses of endotoxin (LPS). These studies show that the different contribution of ICAM-1 in the activation of either T cells or macrophages is decisive for the fatal outcome of the shock in these two models. This work suggests that anti-ICAM-1 therapy may be beneficial in both gram-positive and -negative septic shock, either by reducing T cell activation or by diminishing neutrophil infiltration. PMID:7911822

  6. De novo expression of intercellular adhesion molecule 1 (ICAM-1, CD54) in pancreas cancer.

    PubMed

    Schwaeble, W; Kerlin, M; Meyer zum Büschenfelde, K H; Dippold, W

    1993-01-21

    We examined the expression of intercellular--adhesion molecule-I (ICAM-I, CD54) in 6 surgically removed pancreatic tumors and 8 pancreatic tumor cell lines. Immunohistochemistry revealed a varying percentage of ICAM-I-positive pancreas tumor cells, while normal pancreatic tissue (except for slight reactivity of endothelial cells) was not stained. The presence of the ICAM-I molecule on the cell surface and the expression of ICAM-I mRNA were investigated for 8 different pancreatic tumor cell lines. Three of these (Capan-I, Capan-2, QGP-I) expressed ICAM-I constitutively. In 4 of the ICAM-I-negative pancreas cancer cell lines, it was possible to induce a remarkable expression of ICAM-I by incubating the cells in the presence of inflammatory cytokines, whereas one cell line, 818-4, remained ICAM-I-negative. The responsiveness to either IFN-gamma, TNF-alpha, or IL-I beta treatment was shown to vary from cell line to cell line, indicating complex mechanisms that regulate the expression of ICAM-I at both, the transcriptional and the post-transcriptional level. Interestingly, ICAM-I is shed by pancreatic tumor cells, since soluble sICAM-I was detected in the cell-culture supernatants. In comparison with normal sera, the mean level of sICAM-I in sera of patients with pancreas carcinoma is elevated 2-fold.

  7. Plasma zinc levels inversely correlate with vascular cell adhesion molecule-1 concentration in children with sickle cell disease.

    PubMed Central

    Kuvibidila, Solo R.; Sandoval, Manuel; Lao, Juan; Velez, Maria; Yu, Lolie; Ode, David; Gardner, Renée; Lane, Gerald; Warrier, Raj P.

    2006-01-01

    Zinc deficiency has been implicated in impaired cell-mediated immunity of children with sickle cell disease (SCD). However, its influence on the expression of vascular cell-adhesion molecule-1 (VCAM-1) on endothelial cells, a protein involved in vasoocclusion, has not been previously investigated. We therefore measured (soluble) sVCAM-1 and zinc in 76 SCD children and 96 non-SCD children, mean age 7.73 years and 11.24 years, respectively. Although mean zinc levels of both groups were within the normal range (approximately 14.5 micromol/l), 14.5 % of SCD and 11% of non-SCD children (without inflammation) had levels below normal (10.7 micromol/L). Mean sVCAM-1 concentrations of SCD children (837 microg/l) were significantly higher than those of controls (627 microg/l) (p < 0.001). Differences persisted after taking into account age, hemoglobin phenotype, and inflammation (alpha-l acid glycoprotein >l g/l and C-reactive protein >10 mg/I). sVCAM-1 negatively correlated with serum (r = -0.444) and red blood cells zinc (r = -0.242, p < 0.05) but not with acute-phase proteins. Mean sVCAM-1 tended to be higher in SCD children with than in those without a history of a health problem (infection, pain crisis or were transfused; not significant). Data suggest that zinc may modulate the clinical status of SCD children through VCAM-1 expression, and zinc supplementation may be beneficial in these patients. PMID:16916123

  8. Monocyte adhesion to endothelium in simian immunodeficiency virus-induced AIDS encephalitis is mediated by vascular cell adhesion molecule-1/alpha 4 beta 1 integrin interactions.

    PubMed Central

    Sasseville, V. G.; Newman, W.; Brodie, S. J.; Hesterberg, P.; Pauley, D.; Ringler, D. J.

    1994-01-01

    Because the mechanisms associated with recruitment of monocytes to brain in AIDS encephalitis are unknown, we used tissues from rhesus monkeys infected with simian immunodeficiency virus (SIV) to examine the relative contributions of various adhesion pathways in mediating monocyte adhesion to endothelium from encephalitic brain. Using a modified Stamper and Woodruff tissue adhesion assay, we found that the human monocytic cell lines, THP-1 and U937, and the B cell line, Ramos, preferentially bound to brain vessels from monkeys with AIDS encephalitis. Using a combined tissue adhesion/immunohistochemistry approach, these cells only bound to vessels expressing vascular cell adhesion molecule-1 (VCAM-1). Furthermore, pretreatment of tissues with antibodies to VCAM-1 or cell lines with antibodies to VLA-4 (CD49d) inhibited adhesion by more than 70%. Intercellular adhesion molecule-1 (ICAM-1)/beta 2 integrin interactions were not significant in mediating cell adhesion to the vasculature in encephalitic simian brain using a cell line (JY) capable of binding rhesus monkey ICAM-1. In addition, selectin-mediated interactions did not significantly contribute to cell binding to encephalitic brain as there was no immunohistochemical expression of E-selectin and P-selectin in either normal or encephalitic brain, nor was there a demonstrable adhesive effect from L-selectin using L-selectin-transfected 300.19 cells on simian encephalitic brain. These results demonstrate that using the tissue adhesion assay, THP-1, U937, and Ramos cells bind to vessels in brain from animals with AIDS encephalitis using VCAM-1/alpha 4 beta 1 integrin interactions and suggest that VCAM-1 and VLA-4 may be integral for monocyte recruitment to the central nervous system during the development of AIDS encephalitis. Images Figure 1 PMID:7507300

  9. Micromanipulation of adhesion of phorbol 12-myristate-13-acetate-stimulated T lymphocytes to planar membranes containing intercellular adhesion molecule-1.

    PubMed Central

    Tözeren, A; Mackie, L H; Lawrence, M B; Chan, P Y; Dustin, M L; Springer, T A

    1992-01-01

    This paper presents an analytical and experimental methodology to determine the physical strength of cell adhesion to a planar membrane containing one set of adhesion molecules. In particular, the T lymphocyte adhesion due to the interaction of the lymphocyte function associated molecule 1 on the surface of the cell, with its counter-receptor, intercellular adhesion molecule-1 (ICAM-1), on the planar membrane, was investigated. A micromanipulation method and mathematical analysis of cell deformation were used to determine (a) the area of conjugation between the cell and the substrate and (b) the energy that must be supplied to detach a unit area of the cell membrane from its substrate. T lymphocytes stimulated with phorbol 12-myristate-13-acetate (PMA) conjugated strongly with the planar membrane containing purified ICAM-1. The T lymphocytes attached to the planar membrane deviated occasionally from their round configuration by extending pseudopods but without changing the size of the contact area. These adherent cells were dramatically deformed and then detached when pulled away from the planar membrane by a micropipette. Detachment occurred by a gradual decrease in the radius of the contact area. The physical strength of adhesion between a PMA-stimulated T lymphocyte and a planar membrane containing 1,000 ICAM-1 molecules/micron 2 was comparable to the strength of adhesion between a cytotoxic T cell and its target cell. The comparison of the adhesive energy density, measured at constant cell shape, with the model predictions suggests that the physical strength of cell adhesion may increase significantly when the adhesion bonds in the contact area are immobilized by the actin cytoskeleton. Images FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 8 FIGURE 9 PMID:1358239

  10. Human Dermal Mast Cells Contain and Release Tumor Necrosis Factor α, which Induces Endothelial Leukocyte Adhesion Molecule 1

    NASA Astrophysics Data System (ADS)

    Walsh, Laurence J.; Trinchieri, Giorgio; Waldorf, Heidi A.; Whitaker, Diana; Murphy, George F.

    1991-05-01

    Tumor necrosis factor α (TNF-α) is a proinflammatory cytokine that mediates endothelial leukocyte interactions by inducing expression of adhesion molecules. In this report, we demonstrate that human dermal mast cells contain sizeable stores of immunoreactive and biologically active TNF-α within granules, which can be released rapidly into the extracellular space upon degranulation. Among normal human dermal cells, mast cells are the predominant cell type that expresses both TNF-α protein and TNF-α mRNA. Moreover, induction of endothelial leukocyte adhesion molecule 1 expression is a direct consequence of release of mast cell-derived TNF-α. These findings establish a role for human mast cells as "gatekeepers" of the dermal microvasculature and indicate that mast cell products other than vasoactive amines influence endothelium in a proinflammatory fashion.

  11. Experimental Cerebral Malaria Develops Independently of Endothelial Expression of Intercellular Adhesion Molecule-1 (ICAM-1)*

    PubMed Central

    Ramos, Theresa N.; Bullard, Daniel C.; Darley, Meghan M.; McDonald, Kristin; Crawford, David F.; Barnum, Scott R.

    2013-01-01

    Cerebral malaria (CM) is a severe clinical complication of Plasmodium falciparum malaria infection and is characterized by a high fatality rate and neurological damage. Sequestration of parasite-infected red blood cells in brain microvasculature utilizes host- and parasite-derived adhesion molecules and is an important factor in the development of CM. ICAM-1, an alternatively spliced adhesion molecule, is believed to be critical on endothelial cells for infected red blood cell sequestration in CM. Using ICAM-1 mutant mice, we found that the full-length ICAM-1 isoform is not required for development of murine experimental CM (ECM) and that ECM phenotype varies with the combination of ICAM-1 isoforms expressed. Furthermore, we observed development of ECM in transgenic mice expressing ICAM-1 only on leukocytes, indicating that endothelial cell expression of this adhesion molecule is not required for disease pathogenesis. We propose that ICAM-1-dependent cellular aggregation, independent of ICAM-1 expression on the cerebral microvasculature, contributes to ECM. PMID:23493396

  12. Experimental cerebral malaria develops independently of endothelial expression of intercellular adhesion molecule-1 (icam-1).

    PubMed

    Ramos, Theresa N; Bullard, Daniel C; Darley, Meghan M; McDonald, Kristin; Crawford, David F; Barnum, Scott R

    2013-04-19

    Cerebral malaria (CM) is a severe clinical complication of Plasmodium falciparum malaria infection and is characterized by a high fatality rate and neurological damage. Sequestration of parasite-infected red blood cells in brain microvasculature utilizes host- and parasite-derived adhesion molecules and is an important factor in the development of CM. ICAM-1, an alternatively spliced adhesion molecule, is believed to be critical on endothelial cells for infected red blood cell sequestration in CM. Using ICAM-1 mutant mice, we found that the full-length ICAM-1 isoform is not required for development of murine experimental CM (ECM) and that ECM phenotype varies with the combination of ICAM-1 isoforms expressed. Furthermore, we observed development of ECM in transgenic mice expressing ICAM-1 only on leukocytes, indicating that endothelial cell expression of this adhesion molecule is not required for disease pathogenesis. We propose that ICAM-1-dependent cellular aggregation, independent of ICAM-1 expression on the cerebral microvasculature, contributes to ECM.

  13. PRIMING EFFECT OF HOMOCYSTEINE ON INDUCIBLE VASCULAR CELL ADHESION MOLECULE-1 EXPRESSION IN ENDOTHELIAL CELLS

    PubMed Central

    Séguin, Chantal; Abid, Md. Ruhul; Spokes, Katherine C.; Schoots, Ivo G; Brkovic, Alexandre; Sirois, Martin G.; Aird, William C.

    2017-01-01

    Hyperhomocysteinemia is an independent risk factor for the development of atherosclerosis, as well as for arterial and venous thrombosis. However, the mechanisms through which elevated circulating levels of homocysteine cause vascular injury and promote thrombosis remain unclear. Here, we tested the hypothesis that homocysteine (Hcy) sensitizes endothelial cells to the effect of inflammatory mediators. Human umbilical vein endothelial cells (HUVEC) were incubated with Hcy 1.0 mM for varying time points, and then treated in the absence or presence of 1.5 U/ml thrombin or 10 ng/ml lipopolysaccharide (LPS). Hcy alone had no effect on the expression of vascular cell adhesion molecule (VCAM)-1. However, Hcy enhanced thrombin- and LPS-mediated induction of VCAM-1 mRNA and protein levels. Consistent with these results, pretreatment of HUVEC with Hcy resulted in a two-fold increase in LSP-mediated induction of leukocyte adhesion. The latter effect was significantly inhibited by anti-VCAM-1 antibodies. Together, these findings suggest that Hcy sensitizes HUVEC to the effect of inflammatory mediators thrombin and LPS, at least in part through VCAM-1 expression and function. PMID:18406566

  14. Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1.

    PubMed

    Ribic, Adema; Liu, Xinran; Crair, Michael C; Biederer, Thomas

    2014-03-01

    Adhesive interactions in the retina instruct the developmental specification of inner retinal layers. However, potential roles of adhesion in the development and function of photoreceptor synapses remain incompletely understood. This contrasts with our understanding of synapse development in the CNS, which can be guided by select adhesion molecules such as the Synaptic Cell Adhesion Molecule 1 (SynCAM 1/CADM1/nectin-like 2 protein). This immunoglobulin superfamily protein modulates the development and plasticity of classical excitatory synapses. We show here by immunoelectron microscopy and immunoblotting that SynCAM 1 is expressed on mouse rod photoreceptors and their terminals in the outer nuclear and plexiform layers in a developmentally regulated manner. Expression of SynCAM 1 on rods is low in early postnatal stages (P3-P7) but increases after eye opening (P14). In support of functional roles in the photoreceptors, electroretinogram recordings demonstrate impaired responses to light stimulation in SynCAM 1 knockout (KO) mice. In addition, the structural integrity of synapses in the OPL requires SynCAM 1. Quantitative ultrastructural analysis of SynCAM 1 KO retina measured fewer fully assembled, triadic rod ribbon synapses. Furthermore, rod synapse ribbons are shortened in KO mice, and protein levels of Ribeye, a major structural component of ribbons, are reduced in SynCAM 1 KO retina. Together, our results implicate SynCAM 1 in the synaptic organization of the rod visual pathway and provide evidence for novel roles of synaptic adhesion in the structural and functional integrity of ribbon synapses.

  15. Benzo[a]pyrene induces intercellular adhesion molecule-1 through a caveolae and aryl hydrocarbon receptor mediated pathway

    SciTech Connect

    Oesterling, Elizabeth; Toborek, Michal; Hennig, Bernhard

    2008-10-15

    Toxicologic and epidemiologic studies have linked benzo[a]pyrene (B[a]P) exposure with cardiovascular diseases such as atherosclerosis. The mechanisms of action leading to these diseases have not been fully understood. One key step in the development of atherosclerosis is vascular endothelial dysfunction, which is characterized by increased adhesiveness. To determine if B[a]P could lead to increased endothelial adhesiveness, the effects of B[a]P on human endothelial cell intercellular adhesion molecule-1 (ICAM-1) expression was investigated. B[a]P was able to increase ICAM-1 protein only after pretreatment with the aryl hydrocarbon receptor (AhR) agonist {beta}-naphthoflavone ({beta}-NF). Knockdown of AhR by siRNA or treatment with AhR antagonist {alpha}-naphthoflavone ({alpha}-NF) eliminated the induction of ICAM-1 from B[a]P, confirming the necessity of AhR in this process. Likewise, B[a]P only increased monocyte adhesion to the vascular endothelium when cells were pretreated with {beta}-NF. Experiments were done to define a signaling mechanism. B[a]P increased phosphorylation of MEK and p38-MAPK, and inhibitors to these proteins blunted the ICAM-1 induction. B[a]P was also able to increase AP-1 DNA binding and phosphorylation of cJun. Phosphorylation of cJun was disrupted by MEK and p38-MAPK inhibitors linking the signaling cascade. Finally, the importance of membrane microdomains, caveolae, was demonstrated by knockdown of the structural protein caveolin-1. Disruption of caveolae eliminated the B[a]P-induced ICAM-1 expression. These data suggest a possible pro-inflammatory mechanism of action of B[a]P involving caveolae, leading to increased vascular endothelial adhesiveness, and this inflammation may be a critical step in the development of B[a]P-induced atherosclerosis.

  16. MITF is a critical regulator of the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in malignant melanoma.

    PubMed

    Ullrich, Nico; Löffek, Stefanie; Horn, Susanne; Ennen, Marie; Sánchez-Del-Campo, Luis; Zhao, Fang; Breitenbuecher, Frank; Davidson, Irwin; Singer, Bernhard B; Schadendorf, Dirk; Goding, Colin R; Helfrich, Iris

    2015-11-01

    The multifunctional Ig-like carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is neo-expressed in the majority of malignant melanoma lesions. CEACAM1 acts as a driver of tumor cell invasion, and its expression correlates with poor patient prognosis. Despite its importance in melanoma progression, how CEACAM1 expression is regulated is largely unknown. Here, we show that CEACAM1 expression in melanoma cell lines and melanoma tissue strongly correlates with that of the microphthalmia-associated transcription factor (MITF), a key regulator of melanoma proliferation and invasiveness. MITF is revealed as a direct and positive regulator for CEACAM1 expression via binding to an M-box motif located in the CEACAM1 promoter. Taken together, our study provides novel insights into the regulation of CEACAM1 expression and suggests an MITF-CEACAM1 axis as a potential determinant of melanoma progression.

  17. Role of intercellular adhesion molecule 1 in pathogenesis of staphylococcal arthritis and in host defense against staphylococcal bacteremia.

    PubMed Central

    Verdrengh, M; Springer, T A; Gutierrez-Ramos, J C; Tarkowski, A

    1996-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is a member of the immunoglobulin superfamily that interacts with two integrins, LFA-1 and Mac-1. These interactions are critical for leukocyte extravasation into inflamed tissue. To assess the role of ICAM-1 expression in the pathogenesis of bacterial infection, homozygously mutant mice lacking the ICAM-1 gene were exposed to Staphylococcus aureus. Within 6 days after inoculation 50% of the animals in the ICAM-1(-/-) group, but none of the controls, had died. Despite the high level of mortality, ICAM-1(-/-) mice developed less frequent and less severe arthritis than their wild-type littermates. In agreement, normal mice inoculated with staphylococci and administered anti-ICAM-1 antibodies exhibited a higher frequency of mortality but less severe arthritis than the controls. Our results indicate that ICAM-1 on the one hand provides protection against systemic disease but on the other hand aggravates the local disease manifestation. PMID:8698512

  18. Expression of HLA-ABC, HLA-DR and intercellular adhesion molecule-1 in oesophageal carcinoma.

    PubMed Central

    Rockett, J C; Darnton, S J; Crocker, J; Matthews, H R; Morris, A G

    1995-01-01

    AIM--To examine the expression of HLA-ABC and HLA-DR major histocompatibility (MHC) antigens and intercellular adhesion molecule (ICAM)-1 in normal, inflamed, metaplastic, and neoplastic oesophageal tissue and in freshly disaggregated tumours. METHODS--Sequential sections of frozen tissue and cytospins of freshly disaggregated tumour were stained using the ABC peroxidase system and monoclonal antibodies specific for HLA-ABC, HLA-DR and ICAM-1. RESULTS--Normal oesophageal tissue showed positive staining for HLA-ABC in the basal layers of the oesophageal squamous epithelium and on the epithelial cells of the submucosal oesophageal glands. HLA-DR and ICAM-1 were not detected in either of these cell types. In 20 of 37 (54%) carcinomas HLA-ABC was expressed weakly, with heterogeneous expression in nine (24%). Two tumours showed strong expression of HLA-ABC, but 15 of 37 (41%) were negative. HLA-DR and ICAM-1 were expressed weakly in six of 37 (16%) carcinomas without correlation with each other or with the expression of HLA-ABC. CONCLUSIONS--HLA-ABC is absent from a high proportion of oesophageal carcinomas (41%) and is otherwise variably and weakly expressed with strong expression in only a small fraction (3%). In other carcinomas there is a higher level of HLA-ABC expression. This discrepancy may partly explain the aggressive nature of oesophageal carcinomas. HLA-DR and ICAM-1 are not normally expressed on those cells from which oesophageal carcinomas are thought to arise. The limited expression found here could suggest a partial or inhibited immune response against oesophageal carcinoma. In vivo repressive factors may be involved. Images PMID:7665697

  19. Mechanism of Collaborative Enhancement of Binding of Paired Antibodies to Distinct Epitopes of Platelet Endothelial Cell Adhesion Molecule-1

    PubMed Central

    Greineder, Colin F.; Villa, Carlos H.; Hood, Elizabeth D.; Shuvaev, Vladimir V.; Sun, Jing; Chacko, Ann-Marie; Abraham, Valsamma; DeLisser, Horace M.; Muzykantov, Vladimir R.

    2017-01-01

    Monoclonal antibodies (mAbs) directed to extracellular epitopes of human and mouse Platelet Endothelial Cell Adhesion Molecule-1 (CD31 or PECAM-1) stimulate binding of other mAbs to distinct adjacent PECAM-1 epitopes. This effect, dubbed Collaborative Enhancement of Paired Affinity Ligands, or CEPAL, has been shown to enhance delivery of mAb-targeted drugs and nanoparticles to the vascular endothelium. Here we report new insights into the mechanism underlying this effect, which demonstrates equivalent amplitude in the following models: i) cells expressing a full length PECAM-1 and mutant form of PECAM-1 unable to form homodimers; ii) isolated fractions of cellular membranes; and, iii) immobilized recombinant PECAM-1. These results indicate that CEPAL is mediated not by interference in cellular functions or homophilic PECAM-1 interactions, but rather by conformational changes within the cell adhesion molecule induced by ligand binding. This mechanism, mediated by exposure of partially occult epitopes, is likely to occur in molecules other than PECAM-1 and may represent a generalizable phenomenon with valuable practical applications. PMID:28085903

  20. MicroRNA-221 controls expression of intercellular adhesion molecule-1 in epithelial cells in response to Cryptosporidium parvum infection

    PubMed Central

    Gong, Ai-Yu; Hu, Guoku; Zhou, Rui; Liu, Jun; Feng, Yaoyu; Soukup, Garrett A.; Chen, Xian-Ming

    2011-01-01

    Cryptosporidium parvum is a protozoan parasite that infects gastrointestinal epithelial cells and causes diarrheal disease in humans and animals globally. Pathological changes following C. parvum infection include crypt hyperplasia, a modest inflammatory reaction with increased infiltration of lymphocytes into intestinal mucosa. Expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), on infected epithelial cell surfaces may facilitate adhesion and recognition of lymphocytes at infection sites. MicroRNAs (miRNAs) are small RNA molecules of 23 nucleotides that negatively regulate protein-coding gene expression via translational suppression or mRNA degradation. We recently reported that microRNA-221 (miR-221) regulates ICAM-1 translation through targeting the ICAM-1 3′-untranslated region (UTR). In this study, we tested the role of miR-221 in regulating ICAM-1 expression in epithelial cells in response to C. parvum infection using an in vitro model of human biliary cryptosporidiosis. Up-regulation of ICAM-1 at both message and protein levels was detected in epithelial cells following C. parvum infection. Inhibition of ICAM-1 transcription with actinomycin D could only partially block C. parvum-induced ICAM-1 expression at the protein level. Cryptosporidium parvum infection decreased miR-221 expression in infected epithelial cells. When cells were transfected with a luciferase reporter construct covering the miR-221 binding site in the ICAM-1 3′-UTR and then exposed to C. parvum, an enhanced luciferase activity was detected. Transfection of miR-221 precursor abolished C. parvum-stimulated ICAM-1 protein expression. In addition, expression of ICAM-1 on infected epithelial cells facilitated epithelial adherence of co-cultured Jurkat cells. These results indicate that miR-221-mediated translational suppression controls ICAM-1 expression in epithelial cells in response to C. parvum infection. PMID:21236259

  1. Identification of the binding site in intercellular adhesion molecule 1 for its receptor, leukocyte function-associated antigen 1.

    PubMed Central

    Fisher, K L; Lu, J; Riddle, L; Kim, K J; Presta, L G; Bodary, S C

    1997-01-01

    Intercellular adhesion molecule 1 (ICAM-1, CD54) is a member of the Ig superfamily and is a counterreceptor for the beta 2 integrins: lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18), complement receptor 1 (MAC-1, CD11b/CD18), and p150,95 (CD11c/CD18). Binding of ICAM-1 to these receptors mediates leukocyte-adhesive functions in immune and inflammatory responses. In this report, we describe a cell-free assay using purified recombinant extracellular domains of LFA-1 and a dimeric immunoadhesin of ICAM-1. The binding of recombinant secreted LFA-1 to ICAM-1 is divalent cation dependent (Mg2+ and Mn2+ promote binding) and sensitive to inhibition by antibodies that block LFA-1-mediated cell adhesion, indicating that its conformation mimics that of LFA-1 on activated lymphocytes. We describe six novel anti-ICAM-1 monoclonal antibodies, two of which are function blocking. Thirty-five point mutants of the ICAM-1 immunoadhesin were generated and residues important for binding of monoclonal antibodies and purified LFA-1 were identified. Nineteen of these mutants bind recombinant LFA-1 equivalently to wild type. Sixteen mutants show a 66-2500-fold decrease in LFA-1 binding yet, with few exceptions, retain binding to the monoclonal antibodies. These mutants, along with modeling studies, define the LFA-1 binding site on ICAM-1 as residues E34, K39, M64, Y66, N68, and Q73, that are predicted to lie on the CDFG beta-sheet of the Ig fold. The mutant G32A also abrogates binding to LFA-1 while retaining binding to all of the antibodies, possibly indicating a direct interaction of this residue with LFA-1. These data have allowed the generation of a highly refined model of the LFA-1 binding site of ICAM-1. Images PMID:9188101

  2. Identification of Human Junctional Adhesion Molecule 1 as a Functional Receptor for the Hom-1 Calicivirus on Human Cells.

    PubMed

    Sosnovtsev, Stanislav V; Sandoval-Jaime, Carlos; Parra, Gabriel I; Tin, Christine M; Jones, Ronald W; Soden, Jo; Barnes, Donna; Freeth, Jim; Smith, Alvin W; Green, Kim Y

    2017-02-14

    The Hom-1 vesivirus was reported in 1998 following the inadvertent transmission of the animal calicivirus San Miguel sea lion virus to a human host in a laboratory. We characterized the Hom-1 strain and investigated the mechanism by which human cells could be infected. An expression library of 3,559 human plasma membrane proteins was screened for reactivity with Hom-1 virus-like particles, and a single interacting protein, human junctional adhesion molecule 1 (hJAM1), was identified. Transient expression of hJAM1 conferred susceptibility to Hom-1 infection on nonpermissive Chinese hamster ovary (CHO) cells. Virus infection was markedly inhibited when CHO cells stably expressing hJAM were pretreated with anti-hJAM1 monoclonal antibodies. Cell lines of human origin were tested for growth of Hom-1, and efficient replication was observed in HepG2, HuH7, and SK-CO15 cells. The three cell lines (of hepatic or intestinal origin) were confirmed to express hJAM1 on their surface, and clustered regularly interspaced short palindromic repeats/Cas9-mediated knockout of the hJAM1 gene in each line abolished Hom-1 propagation. Taken together, our data indicate that entry of the Hom-1 vesivirus into these permissive human cell lines is mediated by the plasma membrane protein hJAM1 as a functional receptor.IMPORTANCE Vesiviruses, such as San Miguel sea lion virus and feline calicivirus, are typically associated with infection in animal hosts. Following the accidental infection of a laboratory worker with San Miguel sea lion virus, a related virus was isolated in cell culture and named Hom-1. In this study, we found that Hom-1 could be propagated in a number of human cell lines, making it the first calicivirus to replicate efficiently in cultured human cells. Screening of a library of human cell surface membrane proteins showed that the virus could utilize human junctional adhesion molecule 1 as a receptor to enter cells and initiate replication. The Hom-1 virus presents a new

  3. SNPs in the neural cell adhesion molecule 1 gene (NCAM1) may be associated with human neural tube defects

    PubMed Central

    Deak, Kristen L.; Boyles, Abee L.; Etchevers, Heather C.; Melvin, Elizabeth C.; Siegel, Deborah G.; Graham, Felicia L.; Slifer, Susan H.; Enterline, David S.; George, Timothy M.; Vekemans, Michel; McClay, David; Bassuk, Alexander G.; Kessler, John A.; Linney, Elwood; Gilbert, John R.

    2011-01-01

    Neural tube defects (NTDs) are common birth defects, occurring in approximately 1/1,000 births; both genetic and environmental factors are implicated. To date, no major genetic risk factors have been identified. Throughout development, cell adhesion molecules are strongly implicated in cell–cell interactions, and may play a role in the formation and closure of the neural tube. To evaluate the role of neural cell adhesion molecule 1 (NCAM1) in risk of human NTDs, we screened for novel single-nucleotide polymorphisms (SNPs) within the gene. Eleven SNPs across NCAM1 were genotyped using TaqMan. We utilized a family-based approach to evaluate evidence for association and/or linkage disequilibrium. We evaluated American Caucasian simplex lumbosacral myelomeningocele families (n=132 families) using the family based association test (FBAT) and the pedigree disequilibrium test (PDT). Association analysis revealed a significant association between risk for NTDs and intronic SNP rs2298526 using both the FBAT test (P=0.0018) and the PDT (P=0.0025). Using the HBAT version of the FBAT to look for haplotype association, all pairwise comparisons with SNP rs2298526 were also significant. A replication study set, consisting of 72 additional families showed no significant association; however, the overall trend for overtransmission of the less common allele of SNP rs2298526 remained significant in the combined sample set. In addition, we analyzed the expression pattern of the NCAM1 protein in human embryos, and while NCAM1 is not expressed within the neural tube at the time of closure, it is expressed in the surrounding and later in differentiated neurons of the CNS. These results suggest variations in NCAM1 may influence risk for human NTDs. PMID:15883837

  4. Targeted disruption of carcinoembryonic antigen-related cell adhesion molecule 1 promotes diet-induced hepatic steatosis and insulin resistance.

    PubMed

    Xu, Elaine; Dubois, Marie-Julie; Leung, Nelly; Charbonneau, Alexandre; Turbide, Claire; Avramoglu, Rita Kohen; DeMarte, Luisa; Elchebly, Mounib; Streichert, Thomas; Lévy, Emile; Beauchemin, Nicole; Marette, André

    2009-08-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CC1) is a cell adhesion molecule within the Ig superfamily. The Tyr-phosphorylated isoform of CC1 (CC1-L) plays an important metabolic role in the regulation of hepatic insulin clearance. In this report, we show that CC1-deficient (Cc1(-/-)) mice are prone to hepatic steatosis, as revealed by significantly elevated hepatic triglyceride and both total and esterified cholesterol levels compared with age-matched wild-type controls. Cc1(-/-) mice were also predisposed to lipid-induced hepatic steatosis and dysfunction as indicated by their greater susceptibility to store lipids and express elevated levels of enzymatic markers of liver damage after chronic feeding of a high-fat diet. Hepatic steatosis in the Cc1(-/-) mice was linked to a significant increase in the expression of key lipogenic (fatty acid synthase, acetyl CoA carboxylase) and cholesterol synthetic (3-hydroxy-3-methylglutaryl-coenzyme A reductase) enzymes under the control of sterol regulatory element binding proteins-1c and -2 transcription factors. Cc1(-/-) mice also exhibited impaired insulin clearance, glucose intolerance, liver insulin resistance, and elevated hepatic expression of the key gluconeogenic transcriptional activators peroxisome proliferator-activated receptor-gamma coactivator-1 and Forkhead box O1. Lack of CC1 also exacerbated both glucose intolerance and hepatic insulin resistance induced by high-fat feeding, but insulin clearance was not further deteriorated in the high-fat-fed Cc1(-/-) mice. In conclusion, our data indicate that CC1 is a key regulator of hepatic lipogenesis and that Cc1(-/-) mice are predisposed to liver steatosis, leading to hepatic insulin resistance and liver damage, particularly when chronically exposed to dietary fat.

  5. Inducible expression of vascular cell adhesion molecule-1 by vascular smooth muscle cells in vitro and within rabbit atheroma.

    PubMed Central

    Li, H.; Cybulsky, M. I.; Gimbrone, M. A.; Libby, P.

    1993-01-01

    Vascular cell adhesion molecule-1 (VCAM-1), a mononuclear leukocyte adhesion molecule, is expressed in cultured vascular endothelial cells activated by cytokines and is induced in rabbit aortic endothelium in vivo within 1 week after initiation of an atherogenic diet. We now demonstrate that vascular smooth muscle cells can also express VCAM-1 in rabbit atherosclerotic lesions in vivo and in response to cytokines in vitro. Immunohistochemical staining of aortas from rabbits fed a 0.3% cholesterol-containing diet revealed that a portion of smooth muscle cells within intimal foam cell-rich lesions expressed VCAM-1. The intimal VCAM-1-expressing cells localized predominantly in regions above the internal elastic lamina. These VCAM-1-positive cells had the typical spindle shape of smooth muscle cells but had reduced alpha-actin expression in comparison to normal medial smooth muscle cells, and did not bear markers for endothelium, macrophages, and T cells. In culture, rabbit aortic smooth muscle cells expressed VCAM-1 mRNA and protein in a time- and concentration-dependent fashion when exposed to interferon-gamma or Gram-negative bacterial lipopolysaccharide. Cultured human vascular smooth muscle cells also expressed VCAM-1 mRNA and protein in response to lipopolysaccharide, interferon-gamma, and interleukin-4. The monokines interleukin-1 alpha and tumor necrosis factor-alpha did not induce VCAM-1 expression in either rabbit or human vascular smooth muscle cells. Inducible VCAM-1 expression by vascular smooth muscle cells in vivo during hypercholesterolemia and in vitro in response to certain cytokines suggests a broader range of VCAM-1 functions in vascular biology than heretofore appreciated. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7504883

  6. Early Detection of Junctional Adhesion Molecule-1 (JAM-1) in the Circulation after Experimental and Clinical Polytrauma.

    PubMed

    Denk, Stephanie; Wiegner, Rebecca; Hönes, Felix M; Messerer, David A C; Radermacher, Peter; Weiss, Manfred; Kalbitz, Miriam; Ehrnthaller, Christian; Braumüller, Sonja; McCook, Oscar; Gebhard, Florian; Weckbach, Sebastian; Huber-Lang, Markus

    2015-01-01

    Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of the barrier molecule junctional adhesion molecule-1 (JAM-1) was investigated in plasma of C57BL/6 mice 2 h after experimental mono- and polytrauma as well as in polytrauma patients (ISS ≥ 18) during a 10-day period. Correlation analyses were performed to indicate a linkage between JAM-1 plasma concentrations and organ failure. JAM-1 was systemically detected after experimental trauma in mice with blunt chest trauma as a driving force. Accordingly, JAM-1 was reduced in lung tissue after pulmonary contusion and JAM-1 plasma levels significantly correlated with increased protein levels in the bronchoalveolar lavage as a sign for alveolocapillary barrier dysfunction. Furthermore, JAM-1 was markedly released into the plasma of polytrauma patients as early as 4 h after the trauma insult and significantly correlated with severity of disease and organ dysfunction (APACHE II and SOFA score). The data support an early injury- and time-dependent appearance of the barrier molecule JAM-1 in the circulation indicative of a commencing trauma-induced barrier dysfunction.

  7. Expression of intercellular adhesion molecule 1 (ICAM-1) on the human oviductal epithelium and mediation of lymphoid cell adherence.

    PubMed

    Utreras, E; Ossandon, P; Acuña-Castillo, C; Varela-Nallar, L; Müller, C; Arraztoa, J A; Cardenas, H; Imarai, M

    2000-09-01

    The epithelium of the human oviduct expresses the major histocompatibility complex (MHC) class II and shows endocytic properties towards luminal antigens. Therefore, the epithelial cells might behave as antigen-presenting cells, inducing a local immune response. The activation of antigen-specific T cells not only requires presentation of the peptide antigen by MHC class II, but also the presence of co-stimulatory molecules in the antigen-presenting cells. Therefore, the expression of the intercellular adhesion molecule 1 (ICAM-1) was examined in the epithelium of the human oviduct. Most oviducts showed epithelial ICAM-1 expression, as assessed by immunocytochemistry, western blot analysis and RT-PCR assay, and the expression was restricted to the luminal border of ciliated and secretory cells. Interferon gamma, interleukin 1 and lipopolysaccharide treatments increased the percentage of ICAM-1-positive cells in primary cultures, indicating that the expression of ICAM-1 in the oviduct might be upregulated in vivo by inflammatory cytokines or bacterial infections. Binding assays between allogenic phytohaemagglutinin-activated lymphocytes and epithelial monolayers expressing ICAM-1 demonstrated that this molecule stimulated lymphocyte adherence. The presence of ICAM-1, in addition to MHC class II, supports the putative role of the oviductal epithelium in antigen presentation. The exclusive apical distribution of ICAM-1 indicates that T-cell activation would occur in a polarized manner. Binding of lymphoid cells to the surface of the oviductal epithelium may help to retain these immune cells that are required for the clearance of pathogens.

  8. Intercellular adhesion molecule-1 expression in experimental alcoholic liver disease: relationship to endotoxemia and TNF alpha messenger RNA.

    PubMed

    Nanji, A A; Griniuviene, B; Yacoub, L K; Fogt, F; Tahan, S R

    1995-02-01

    We used the intragastric feeding rat model for alcoholic liver disease to evaluate the relationship among intercellular adhesion molecule-1 (ICAM-1) expression, tumor necrosis factor-alpha (TNF-alpha), plasma endotoxin, and inflammatory changes in the liver. Rats were fed different dietary fats (saturated fat, corn oil, and fish oil) with ethanol; control rats were fed isocaloric amounts of dextrose instead of ethanol. At sacrifice the following were evaluated: liver pathologic changes, TNF-alpha mRNA by reverse transcription-PCR, plasma endotoxin, and ICAM-1 by immunohistochemistry and immunoblot analysis. Upregulation of ICAM-1 in endothelial lining cells in central and portal veins was observed in rats showing evidence of pathologic changes. Rats fed fish oil and ethanol, which exhibited the most severe inflammation, also showed hepatocyte ICAM-1 staining. The presence of ICAM-1 staining, in general, correlated with the level of TNF-alpha mRNA expression and plasma endotoxin levels. Upregulation of ICAM-1 in rats fed ethanol may contribute to the inflammatory changes seen in this model. The association between ICAM-1 upregulation and endotoxin and TNF-alpha mRNA suggests a role for these mediators in the inflammatory process in alcoholic liver injury.

  9. Identification of Human Junctional Adhesion Molecule 1 as a Functional Receptor for the Hom-1 Calicivirus on Human Cells

    PubMed Central

    Sandoval-Jaime, Carlos; Parra, Gabriel I.; Tin, Christine M.; Jones, Ronald W.; Soden, Jo; Barnes, Donna; Freeth, Jim; Smith, Alvin W.; Green, Kim Y.

    2017-01-01

    ABSTRACT The Hom-1 vesivirus was reported in 1998 following the inadvertent transmission of the animal calicivirus San Miguel sea lion virus to a human host in a laboratory. We characterized the Hom-1 strain and investigated the mechanism by which human cells could be infected. An expression library of 3,559 human plasma membrane proteins was screened for reactivity with Hom-1 virus-like particles, and a single interacting protein, human junctional adhesion molecule 1 (hJAM1), was identified. Transient expression of hJAM1 conferred susceptibility to Hom-1 infection on nonpermissive Chinese hamster ovary (CHO) cells. Virus infection was markedly inhibited when CHO cells stably expressing hJAM were pretreated with anti-hJAM1 monoclonal antibodies. Cell lines of human origin were tested for growth of Hom-1, and efficient replication was observed in HepG2, HuH7, and SK-CO15 cells. The three cell lines (of hepatic or intestinal origin) were confirmed to express hJAM1 on their surface, and clustered regularly interspaced short palindromic repeats/Cas9-mediated knockout of the hJAM1 gene in each line abolished Hom-1 propagation. Taken together, our data indicate that entry of the Hom-1 vesivirus into these permissive human cell lines is mediated by the plasma membrane protein hJAM1 as a functional receptor. PMID:28196955

  10. Folate deficiency and aberrant expression of cell adhesion molecule 1 are potential indicators of prognosis in laryngeal squamous cell carcinoma

    PubMed Central

    Chang, Hao; Ma, Min; Ma, Rui; Zhang, Chao; Zeng, Wei; Xing, Lu Qi

    2016-01-01

    The etiology of laryngeal squamous cell carcinoma (LSCC) has not yet been adequately examined. Therefore, the present study aimed to investigate the association between serum folate deficiency and abnormal expression of the cell adhesion molecule 1 (CADM1) protein in the progression of LSCC. Samples were collected from 60 patients with LSCC and 30 healthy people. Radioimmunoassays and immunohistochemical staining were performed to measure serum folate levels and CADM1 protein expression, respectively. The results demonstrated that CADM1 expression in LSCC specimens was significantly lower than in adjacent normal tissues (χ2=28.229, P<0.001), which was associated with histological differentiation and clinical stage (P=0.010 and 0.020, respectively). Levels of serum folate in patients with LSCC were significantly lower than those observed in healthy individuals (P=0.002). Furthermore, TSLCl expression and serum folate levels were positively correlated in LSCC (r=0.642, P=0.001). Thus, the present study determined that decreased CADM1 protein expression and low levels of serum folate were correlated with an increased severity of LSCC. PMID:28105160

  11. 5,7-Dihydroxy-3,4,6-trimethoxyflavone inhibits intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 via the Akt and nuclear factor-κB-dependent pathway, leading to suppression of adhesion of monocytes and eosinophils to bronchial epithelial cells.

    PubMed

    Jung, Jireh; Ko, Su H; Yoo, Do Y; Lee, Jin Y; Kim, Yeong-Jeon; Choi, Seul M; Kang, Kyung K; Yoon, Ho J; Kim, Hyeyoung; Youn, Jeehee; Kim, Jung M

    2012-09-01

    5,7-Dihydroxy-3',4',6'-trimethoxyflavone (eupatilin), the active pharmacological ingredient from Artemisia asiatica Nakai (Asteraceae), is reported to have a variety of anti-inflammatory properties in intestinal epithelial cells. However, little information is known about the molecular mechanism of eupatilin-induced attenuation of bronchial epithelial inflammation. This study investigates the role of eupatilin in the adhesion of inflammatory cells such as monocytes and eosinophils to bronchial epithelial cells. Stimulation of a human bronchial epithelial cell line (BEAS-2B) with tumour necrosis factor-α (TNF-α) increased the expression of surface adhesion molecules, including intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in which eupatilin significantly inhibited the expression of those adhesion molecules in a dose-dependent manner. Eupatilin suppressed the TNF-α-induced activation of IκBα and nuclear factor-κB (NF-κB) signals in BEAS-2B cells. The IκB kinase (IKK) activation was also significantly reduced in eupatilin-pre-treated BEAS-2B and primary normal human bronchial epithelial (NHBE) cells. However, eupatilin did not influence AP-1 activity in TNF-α-stimulated cells. Suppression of NF-κB signalling induced by eupatilin resulted in the inhibition of the expression of adhesion molecules and the adhesion of monocytes and eosinophils to BEAS-2B cells. Furthermore, eupatilin suppressed the phosphorylation of Akt in TNF-α-stimulated BEAS-2B and NHBE cells, leading to down-regulation of NF-κB activation and adhesion molecule expression and finally to suppression of the inflammatory cell adhesion to epithelial cells. These results suggest that eupatilin can inhibit the adhesion of inflammatory cells to bronchial epithelial cells via a signalling pathway, including activation of Akt and NF-κB, as well as expression of adhesion molecules.

  12. 5,7-Dihydroxy-3,4,6-trimethoxyflavone inhibits intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 via the Akt and nuclear factor-κB-dependent pathway, leading to suppression of adhesion of monocytes and eosinophils to bronchial epithelial cells

    PubMed Central

    Jung, Jireh; Ko, Su H; Yoo, Do Y; Lee, Jin Y; Kim, Yeong-Jeon; Choi, Seul M; Kang, Kyung K; Yoon, Ho J; Kim, Hyeyoung; Youn, Jeehee; Kim, Jung M

    2012-01-01

    5,7-Dihydroxy-3′,4′,6′-trimethoxyflavone (eupatilin), the active pharmacological ingredient from Artemisia asiatica Nakai (Asteraceae), is reported to have a variety of anti-inflammatory properties in intestinal epithelial cells. However, little information is known about the molecular mechanism of eupatilin-induced attenuation of bronchial epithelial inflammation. This study investigates the role of eupatilin in the adhesion of inflammatory cells such as monocytes and eosinophils to bronchial epithelial cells. Stimulation of a human bronchial epithelial cell line (BEAS-2B) with tumour necrosis factor-α (TNF-α) increased the expression of surface adhesion molecules, including intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in which eupatilin significantly inhibited the expression of those adhesion molecules in a dose-dependent manner. Eupatilin suppressed the TNF-α-induced activation of IκBα and nuclear factor-κB (NF-κB) signals in BEAS-2B cells. The IκB kinase (IKK) activation was also significantly reduced in eupatilin-pre-treated BEAS-2B and primary normal human bronchial epithelial (NHBE) cells. However, eupatilin did not influence AP-1 activity in TNF-α-stimulated cells. Suppression of NF-κB signalling induced by eupatilin resulted in the inhibition of the expression of adhesion molecules and the adhesion of monocytes and eosinophils to BEAS-2B cells. Furthermore, eupatilin suppressed the phosphorylation of Akt in TNF-α-stimulated BEAS-2B and NHBE cells, leading to down-regulation of NF-κB activation and adhesion molecule expression and finally to suppression of the inflammatory cell adhesion to epithelial cells. These results suggest that eupatilin can inhibit the adhesion of inflammatory cells to bronchial epithelial cells via a signalling pathway, including activation of Akt and NF-κB, as well as expression of adhesion molecules. PMID:22862554

  13. Serum activated leukocyte cell adhesion molecule and intercellular adhesion molecule-1 in patients with gastric cancer: Can they be used as biomarkers?

    PubMed

    Erturk, Kayhan; Tastekin, Didem; Bilgin, Elif; Serilmez, Murat; Bozbey, Hamza Ugur; Sakar, Burak

    2016-02-01

    Cellular adhesion molecules might be used as markers in diagnosis and prognosis in some types of malignant tumors. The purpose of this study was to determine the clinical significance of the serum levels of activated leukocyte cell adhesion molecule-1 (ALCAM) and intercellular adhesion molecule-1 (ICAM-1) in gastric cancer (GC) patients. Fifty-eight GC patients and 20 age- and sex-matched healthy controls were enrolled into this study. Pretreatment serum markers were determined by the solid-phase sandwich enzyme-linked immunosorbent assay (ELISA). The median age at diagnosis was 59.5 years (range 32-82 years). Tumor localizations of the majority of the patients were antrum (n=42, 72.4%) and tumor histopathologies of the majority of the patients were diffuse (n=43, 74.1%). The majority of the patients had stage IV disease (n=41, 70.7%). Thirty six (62.1%) patients had lymph node involvement. The median follow-up time was 66 months (range 1-97.2 months). At the end of the observation period, 26 patients (44.8%) were dead. The median survival for all patients was 21.4±5 months (%95 CI, 11.5-31.3). The 1-year survival rates were 66.2%. The baseline serum ALCAM levels of the patients were significantly higher than those of the controls (p=0.001). There was no significant difference in the serum levels of ICAM-1 between the patients and controls (p=0.232). No significant correlation was detected between the levels of the serum markers and other clinical parameters (p>0.05). Tumor localization (p=0.03), histopathology (p=0.05), and response to chemotherapy (p=0.003) had prognostic factors on survival. Neither serum ALCAM levels nor serum ICAM-1 levels were identified to have a prognostic role on overall survival (ICAM-1 p=0.6, ALCAM p=0.25). In conclusion, serum levels of ALCAM were found to have diagnostic value in GC patients.

  14. FMC46, a cell protrusion-associated leukocyte adhesion molecule-1 epitope on human lymphocytes and thymocytes.

    PubMed

    Pilarski, L M; Turley, E A; Shaw, A R; Gallatin, W M; Laderoute, M P; Gillitzer, R; Beckman, I G; Zola, H

    1991-07-01

    In this report, we describe a 76-kDa glycoprotein recognized by mAb FMC46 that, by virtue of its concentration on cell protrusions involved in motility, may be important in lymphoid cell locomotion. FMC46 detects an epitope of the leukocyte adhesion molecule-1 (LAM-1), a member of the selecting family (LAM-1, Endothelial Leukocyte Adhesion Molecular-1 (ELAM-1), and Granule Membrane Protein-140 (GMP-140), that is expressed on LAM-1-transfected cell lines, is a glycosylation epitope based on its loss after culture in tunicamycin, and is closely related to the LAM-1.2 epitope. FMC46 is expressed at high density on the majority of CD45RA+ and CD45RO+ peripheral blood T cells (60 to 70%) and on a subset of thymocytes that includes the multinegative CD3- CD4- CD8- progenitor cells (100% FMC46hi) and the CD45R0- presumptive thymic generative lineage (70% FMC46hi). It appears at reduced density and frequency on CD45RA- thymocytes (50% FMC46lo), comprised mainly of death-committed thymocytes. Among thymic subsets defined by expression of CD4 and/or CD8, FMC46 is expressed at high density predominantly on a subset of single-positive cells and not on double-positive cells. These results suggest a fundamental role for LAM-1 in thymic development, with a high density preferentially expressed on cells involved in thymic generative processes and a low density on cells progressing to intrathymic death. A major subset of peripheral blood B cells and thymic B cells also express FMC46. Immunohistochemistry on frozen sections indicated strong staining in splenic follicles and around blood vessels, staining of the thymic medulla and subcapsular areas, and staining of the mantle zone of germinal centers of the lymph node. FMC46+ lymphocytes accumulated along high endothelial venules in the lymph node. On locomoting multinegative thymocytes, FMC46 is concentrated on the leading tip of extended processes, on pseudopods, and on ruffles, unlike the distribution of either CD44 or TQ1 (LAM 1

  15. Leptin Resistance Contributes to Obesity in Mice with Null Mutation of Carcinoembryonic Antigen-related Cell Adhesion Molecule 1.

    PubMed

    Heinrich, Garrett; Russo, Lucia; Castaneda, Tamara R; Pfeiffer, Verena; Ghadieh, Hilda E; Ghanem, Simona S; Wu, Jieshen; Faulkner, Latrice D; Ergün, Süleyman; McInerney, Marcia F; Hill, Jennifer W; Najjar, Sonia M

    2016-05-20

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance. Consistently, mice with null mutation of Ceacam1 (Cc1(-/-)) exhibit impaired insulin clearance with increased lipid production in liver and redistribution to white adipose tissue, leading to visceral obesity at 2 months of age. When the mutation is propagated on the C57/BL6J genetic background, total fat mass rises significantly with age, and glucose intolerance and systemic insulin resistance develop at 6 months of age. This study was carried out to determine the mechanisms underlying the marked increase in total fat mass in 6-month-old mutants. Indirect calorimetry analysis showed that Cc1(-/-) mice develop hyperphagia and a significant reduction in physical activity, in particular in the early hours of the dark cycle, during which energy expenditure is only slightly lower than in wild-type mice. They also exhibit increased triglyceride accumulation in skeletal muscle, due in part to incomplete fatty acid β-oxidation. Mechanistically, hypothalamic leptin signaling is reduced, as demonstrated by blunted STAT3 phosphorylation in coronal sections in response to an intracerebral ventricular injection of leptin. Hypothalamic fatty-acid synthase activity is also elevated in the mutants. Together, the data show that the increase in total fat mass in Cc1(-/-) mice is mainly attributed to hyperphagia and reduced spontaneous physical activity. Although the contribution of the loss of CEACAM1 from anorexigenic proopiomelanocortin neurons in the arcuate nucleus is unclear, leptin resistance and elevated hypothalamic fatty-acid synthase activity could underlie altered energy balance in these mice.

  16. Exosomes from iPSCs Delivering siRNA Attenuate Intracellular Adhesion Molecule-1 Expression and Neutrophils Adhesion in Pulmonary Microvascular Endothelial Cells.

    PubMed

    Ju, Zhihai; Ma, Jinhui; Wang, Chen; Yu, Jie; Qiao, Yeru; Hei, Feilong

    2017-04-01

    The pro-inflammatory activation of pulmonary microvascular endothelial cells resulting in continuous expression of cellular adhesion molecules, and subsequently recruiting primed neutrophils to form a firm neutrophils-endothelium (PMN-EC) adhesion, has been examined and found to play a vital role in acute lung injury (ALI). RNA interference (RNAi) is a cellular process through harnessing a natural pathway silencing target gene based on recognition and subsequent degradation of specific mRNA sequences. It opens a promising approach for precision medicine. However, this application was hampered by many obstacles, such as immunogenicity, instability, toxicity problems, and difficulty in across the biological membrane. In this study, we reprogrammed urine exfoliated renal epithelial cells into human induced pluripotent stem cells (huiPSCs) and purified the exosomes (Exo) from huiPSCs as RNAi delivery system. Through choosing the episomal system to deliver transcription factors, we obtained a non-integrating huiPSCs. Experiments in both vitro and vivo demonstrated that these huiPSCs possess the pluripotent properties. The exosomes of huiPSCs isolated by differential centrifugation were visualized by transmission electron microscopy (TEM) showing a typical exosomal appearance with an average diameter of 122 nm. Immunoblotting confirmed the presence of the typical exosomal markers, including CD63, TSG 101, and Alix. Co-cultured PKH26-labeled exosomes with human primary pulmonary microvascular endothelial cells (HMVECs) confirmed that they could be internalized by recipient cells at a time-dependent manner. Then, electroporation was used to introduce siRNA against intercellular adhesion molecule-1 (ICAM-1) into exosomes to form an Exo/siRNA compound. The Exo/siRNA compound efficiently delivered the target siRNA into HMVECs causing selective gene silencing, inhibiting the ICAM-1 protein expression, and PMN-EC adhesion induced by lipopolysaccharide (LPS). These data suggest

  17. Inside-out Signaling Promotes Dynamic Changes in the Carcinoembryonic Antigen-related Cellular Adhesion Molecule 1 (CEACAM1) Oligomeric State to Control Its Cell Adhesion Properties*

    PubMed Central

    Patel, Prerna C.; Lee, Hannah S. W.; Ming, Aaron Y. K.; Rath, Arianna; Deber, Charles M.; Yip, Christopher M.; Rocheleau, Jonathan V.; Gray-Owen, Scott D.

    2013-01-01

    Cell-cell contacts are fundamental to multicellular organisms and are subject to exquisite levels of control. The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) can engage in both cis-homophilic (parallel) oligomerization and trans-homophilic (anti-parallel) binding. In this study, we establish that the CEACAM1 transmembrane domain has a propensity to form cis-dimers via the transmembrane-embedded 432GXXXG436 motif and that this basal state is overcome when activated calmodulin binds to the CEACAM1 cytoplasmic domain. Although mutation of the 432GXXXG436 motif reduced CEACAM1 oligomerization, it did not affect surface localization of the receptor or influence CEACAM1-dependent cellular invasion by the pathogenic Neisseria. The mutation did, however, have a striking effect on CEACAM1-dependent cellular aggregation, increasing both the kinetics of cell-cell association and the size of cellular aggregates formed. CEACAM1 association with tyrosine kinase c-Src and tyrosine phosphatases SHP-1 and SHP-2 was not affected by the 432GXXXG436 mutation, consistent with their association with the monomeric form of wild type CEACAM1. Collectively, our results establish that a dynamic oligomer-to-monomer shift in surface-expressed CEACAM1 facilitates trans-homophilic binding and downstream effector signaling. PMID:24005674

  18. Maternal serum uric acid concentration is associated with the expression of tumour necrosis factor-α and intercellular adhesion molecule-1 in patients with preeclampsia.

    PubMed

    Zhao, J; Zheng, D-Y; Yang, J-M; Wang, M; Zhang, X-T; Sun, L; Yun, X-G

    2016-07-01

    We aimed to investigate whether there is a correlation between elevated serum uric acid (SUA) concentration and endothelial inflammatory response in women with preeclampsia (PE). On the basis of clinical and laboratory findings, patients were assigned to three groups: normal blood pressure (Control (Con)), gestational hypertension (GH) and PE (n=50 in each group). SUA concentration was measured by spectrophotometry, and serum tumour necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) levels were measured by enzyme-linked immunosorbent assay. Western blotting and immunohistochemical staining were also used to detect the changes in TNF-α and ICAM-1 expression in subcutaneous fat tissue. PE patients showed significantly higher systolic and diastolic blood pressures compared with Con and GH pregnant women (P=0.02 and P=0.02, respectively). The changes of body mass index (ΔBMI) before and after pregnancy and 24-h urine protein were significantly different among the three groups (P<0.001). Maternal SUA, TNF-α and soluble ICAM-1 (sICAM-1) levels were significantly increased in the patients with PE (P<0.05) compared with the other two groups. Scatterplot analysis revealed that elevated SUA concentration positively correlated with TNF-α and sICAM-1 in pregnant women. Moreover, vessels in subcutaneous fat tissues of preeclamptic patients showed intense TNF-α and ICAM-1 staining compared with Con and GH patients. The results support that, to a certain extent, elevated SUA concentration is significantly associated with inflammation of maternal systemic vasculature as indicated by increased TNF-α and ICAM-1 expression in women with PE.

  19. Vitamin E supplementation reduces plasma vascular cell adhesion molecule-1 and von Willebrand factor levels and increases nitric oxide concentrations in hypercholesterolemic patients.

    PubMed

    Desideri, Giovambattista; Marinucci, Maria Contina; Tomassoni, Gianluca; Masci, Pier Giorgio; Santucci, Anna; Ferri, Claudio

    2002-06-01

    Up-regulation of vascular cell adhesion molecule-1 (VCAM-1) and reduced nitric oxide (NO) availability represent early characteristics of atherosclerosis. To evaluate whether the antioxidant vitamin E affected the circulating levels of soluble VCAM-1 (sVCAM-1) and the plasma metabolite of NO (nitrite+nitrate) in hypercholesterolemic patients, either vitamin E (either 400 IU or 800 IU/d for 8 wk) or placebo were randomly, double-blindly given to 36 hypercholesterolemic patients and 22 age- and sex-matched controls. At baseline hypercholesterolemic patients showed higher plasma sVCAM-1 (microg.liter(-1)) (591.2 +/- 132.5 vs. 505.0 +/- 65.6, P < 0.007) and lower NO metabolite (microM) levels (15.9 +/- 3.4 vs. 29.2 +/- 5.1, P < 0.0001) than controls. In hypercholesterolemic patients, 8 wk vitamin E (but not placebo) treatment significantly decreased circulating sVCAM-1 levels (400 IU: -148.9 +/- 84.6, P < 0.009; 800 IU: -204.0 +/- 75.7, P < 0.0001; placebo: -4.7 +/- 22.6, NS), whereas it increased NO metabolite concentrations (400 IU: +4.0 +/- 1.7, P < 0.02; 800 IU: +5.5 +/- 0.8, P < 0.0001; placebo: +0.1 +/- 1.1, NS) without affecting circulating low- density lipoprotein levels. Changes in both plasma sVCAM-1 and NO metabolite levels showed a trend to significantly correlate (r = -0.515, P = 0.010; and r = 0.435, P = 0.034, respectively) with changes in vitamin E concentrations induced by vitamin E supplementation. In conclusion, isolated hypercholesterolemia both increased circulating sVCAM-1 and reduced NO metabolite concentrations. Vitamin E supplementation counteracts these alterations, thus representing a potential tool for endothelial protection in hypercholesterolemic patients.

  20. Effects of nitrogen dioxide on the expression of intercellular adhesion molecule-1, neutrophil adhesion, and cytotoxicity: studies in human bronchial epithelial cells.

    PubMed

    Ayyagari, Vijayalakshmi N; Januszkiewicz, Adolph; Nath, Jayasree

    2007-02-01

    Nitrogen Dioxide (NO2) is a product of high-temperature combustion and an environmental oxidant of concern. We have recently reported that early changes in NO2-exposed human bronchial epithelial cells are causally linked to increased generation of proinflammatory mediators, such as nitric oxide/nitrite and cytokines like interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha and IL-8. The objective of the present in vitro study was to further delineate the cellular mechanisms of NO2-mediated toxicity, and to define the nature of cell death that ensues upon exposure of normal human bronchial epithelial (NHBE) cells to a brief high dose of NO2. Our results demonstrate that the NHBE cells undergo apoptotic cell death during the early post-NO2 period, but this is independent of any significant increase in caspase-3 activity. However, necrotic cell death was more prevalent at later time intervals. Interestingly, an increased expression of HO-1, a redox-sensitive stress protein, was observed in NO2-exposed NHBE cells at 24 h. Since neutrophils (PMNs) play an active role in acute lung inflammation and resultant oxidative injury, we also investigated changes in human PMN-NHBE cell interactions. As compared to normal cells, increased adhesion of PMNs to NO2-exposed cells was observed, which resulted in an increased NHBE cell death. The latter was also increased in the presence of IL-8 and TNF-alpha + interferon (IFN)-gamma, which correlated with upregulation of intercellular adhesion molecule-1 (ICAM-1). Our results confirmed an involvement of nitric oxide (NO) in NO2-induced cytotoxicity. By using NO synthase inhibitors such as L-NAME and 3-aminoguanidine (AG), a significant decrease in cell death, PMN adhesion, and ICAM-1 expression was observed. These findings indicate a role for the L-arginine/NO synthase pathway in the observed NO2-mediated toxicity in NHBE cells. Therapeutic strategies aimed at controlling excess generation of NO and/or inflammatory cytokines may

  1. Kinin B1 receptor regulates interactions between neutrophils and endothelial cells by modulating the levels of Mac-1, LFA-1 and intercellular adhesion molecule-1.

    PubMed

    Figueroa, Carlos D; Matus, Carola E; Pavicic, Francisca; Sarmiento, Jose; Hidalgo, Maria A; Burgos, Rafael A; Gonzalez, Carlos B; Bhoola, Kanti D; Ehrenfeld, Pamela

    2015-04-01

    Kinins are pro-inflammatory peptides that mimic the cardinal features of inflammation. We examined the concept that expression levels of endothelial intercellular adhesion molecule-1 (ICAM-1) and neutrophil integrins Mac-1 and LFA-1 are modulated by the kinin B1 receptor (B1R) agonist, Lys-des[Arg(9)]bradykinin (LDBK). Stimulation of endothelial cells with LDBK increased the levels of ICAM-1 mRNA transcripts/protein, and also of E-selectin and platelet endothelial adhesion molecule-1. ICAM-1 levels increased in a magnitude comparable with that produced by TNF-α. This stimulatory effect was reduced when endothelial cells, which had been previously transfected with a B1R small interfering RNA, were stimulated with LDBK, under comparable conditions. Similarly, LDBK produced a significant increase in protein levels of LFA-1 and Mac-1 integrins in human neutrophils, an effect that was reversed by pretreatment of cells with 10 µg/ml cycloheximide or a B1R antagonist. Functional experiments performed with post-confluent monolayers of endothelial cells stimulated with LDBK and neutrophils primed with TNF-α, and vice versa, resulted in enhanced adhesiveness between both cells. Neutralizing Abs to ICAM-1 and Mac-1 reduced the adhesion between them. Our results indicate that kinin B1R is a novel modulator that promotes adhesion of leukocytes to endothelial cells, critically enhancing the movement of neutrophils from the circulation to sites of inflammation.

  2. The relationship between platelet endothelial cell adhesion molecule-1 and paraquat-induced lung injury in rabbits

    PubMed Central

    Shi, Jing; Hu, Chun-lin; Gao, Yu-feng; Liao, Xiao-xing; Xu, Hope

    2012-01-01

    BACKGROUND: Platelet endothelial cell adhesion molecule-1 (PECAM-1), also known as CD31, is mainly distributed in vascular endothelial cells. Studies have shown that PECAM-1 is a very significant indicator of angiogenesis, and has been used as an indicator for vascular endothelial cells. The present study aimed to explore the relationship between the expression of PECAM-1 and the degree of acute lung injury (ALI) and fibrosis in paraquat (PQ) induced lung injury in rabbits. METHODS: Thirty-six adult New Zealand rabbits were randomly divided into three groups (12 rabbits in each group) according to PQ dosage: 8 mg/kg (group A), 16 mg/kg (group B), and 32 mg/kg (group C). After PQ infusion, the rabbits were monitored for 7 days and then euthanized. The lungs were removed for histological evaluation. Masson staining was used to determine the degree of lung fibrosis (LF), and semi-quantitative immune-histochemistry analysis to determine the expression of PECAM-1. Pearson’s product-moment correlation analysis was performed to evaluate the relationship between the expression of PECAM-1 and the extent of lung injuries expressed by ALI score and degree of LF. RESULTS: Rabbits in the three groups showed apparent poisoning. The rabbits survived longer in group A than in groups B and C (6.47±0.99 days vs. 6.09±1.04 days vs. 4.77±2.04 days) (P<0.05). ALI score was lower in group A than in groups B and C (8.33±1.03 vs. 9.83±1.17 vs. 11.50±1.38) (P<0.05), and there was statistically significant difference between group B and group C (P=0.03). LF was slighter in group A than in groups B and C (31.09%±2.05 % vs. 34.37%±1.62 % vs. 36.54%±0.44%) (P<0.05), and there was statistically significant difference between group B and group C (P=0.026). The PEACAM-1 expression was higher in group A than in groups B and C (20.31%±0.70% vs. 19.34%±0.68% vs. 18.37%±0.46%) (P<0.05), and there was statistically significant difference between group B and group C (P=0.017). Pearson

  3. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    SciTech Connect

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu . E-mail: dxliu001@yahoo.com

    2007-07-13

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.

  4. Hematopoietic Progenitor Cell Rolling in Bone Marrow Microvessels: Parallel Contributions by Endothelial Selectins and Vascular Cell Adhesion Molecule 1

    PubMed Central

    Mazo, Irina B.; Gutierrez-Ramos, Jose-Carlos; Frenette, Paul S.; Hynes, Richard O.; Wagner, Denisa D.; von Andrian, Ulrich H.

    1998-01-01

    We have used intravital microscopy to study physiologically perfused microvessels in murine bone marrow (BM). BM sinusoids and venules, but not adjacent bone vessels, supported rolling interactions of hematopoietic progenitor cells. Rolling did not involve L-selectin, but was partially reduced in wild-type mice treated with antibodies to P- or E-selectin and in mice that were deficient in these two selectins. Selectin-independent rolling was mediated by α4 integrins, which interacted with endothelial vascular cell adhesion molecule (VCAM)-1. Parallel contribution of the endothelial selectins and VCAM-1 is not known to direct blood cell trafficking to other noninflamed tissues. This combination of constitutively expressed adhesion molecules may thus constitute a BM-specific recruitment pathway for progenitor cells analogous to the vascular addressins that direct selective lymphocyte homing to lymphoid organs. PMID:9687524

  5. Sesamin attenuates intercellular cell adhesion molecule-1 expression in vitro in TNF-alpha-treated human aortic endothelial cells and in vivo in apolipoprotein-E-deficient mice.

    PubMed

    Wu, Wen-Huey; Wang, Shu-Huei; Kuan, I-I; Kao, Ya-Shi; Wu, Pei-Jhen; Liang, Chan-Jung; Chien, Hsiung-Fei; Kao, Chiu-Hua; Huang, Ching-Jang; Chen, Yuh-Lien

    2010-09-01

    Sesame lignans have antioxidative and anti-inflammatory properties. We focused on the effects of the lignans sesamin and sesamol on the expression of endothelial-leukocyte adhesion molecules in tumor necrosis factor-alpha (TNF-alpha)-treated human aortic endothelial cells (HAECs). When HAECs were pretreated with sesamin (10 or 100 microM), the TNF-alpha-induced expression of intercellular cell adhesion molecule-1 (ICAM-1) was significantly reduced (35 or 70% decrease, respectively) by Western blotting. Sesamol was less effective at inhibiting ICAM-1 expression (30% decrease at 100 microM). Sesamin and sesamol reduced the marked TNF-alpha-induced increase in human antigen R (HuR) translocation and the interaction between HuR and the 3'UTR of ICAM-1 mRNA. Both significantly reduced the binding of monocytes to TNF-alpha-stimulated HAECs. Sesamin significantly attenuated TNF-alpha-induced ICAM-1 expression and cell adhesion by downregulation of extracellular signal-regulated kinase 1/2 and p38. Furthermore, in vivo, sesamin attenuated intimal thickening and ICAM-1 expression seen in aortas of apolipoprotein-E-deficient mice. Taken together, these data suggest that sesamin inhibits TNF-alpha-induced extracellular signal-regulated kinase/p38 phosphorylation, nuclear translocation of NF-kappaB p65, cytoplasmic translocalization of HuR and thereby suppresses ICAM-1 expression, resulting in reduced adhesion of leukocytes. These results also suggest that sesamin may prevent the development of atherosclerosis and inflammatory responses.

  6. αdβ2 Integrin Is Expressed on Human Eosinophils and Functions as an Alternative Ligand for Vascular Cell Adhesion Molecule 1 (VCAM-1)

    PubMed Central

    Grayson, Mitchell H.; Van der Vieren, Monica; Sterbinsky, Sherry A.; Michael Gallatin, W.; Hoffman, Patricia A.; Staunton, Donald E.; Bochner, Bruce S.

    1998-01-01

    The β2 family of integrins, CD11a, CD11b, CD11c, and αd, are expressed on most leukocytes. We show that the newest member of this family, αd, is expressed on human eosinophils in peripheral blood, and surface expression can be upregulated within minutes by phorbol ester or calcium ionophore A23187. Culture of eosinophils with interleukin 5 (IL-5) leads to a two- to fourfold increase in αd levels by 3–7 d without a change in α4 integrin expression. Eosinophils isolated from late phase bronchoalveolar lavage fluids express αd at levels similar to that seen after 3 d of IL-5 culture. Regarding αdβ2 ligands, in both freshly isolated and IL-5–cultured eosinophils, as well as αdβ2-transfected Chinese hamster ovary cells, αdβ2 can function as a ligand for vascular cell adhesion molecule 1 (VCAM-1). This conclusion is based on the ability of monoclonal antibodies to αd, β2, or VCAM-1 to block cell attachment in static adhesion assays. In experiments with eosinophils, the relative contribution of αdβ2 integrin– mediated adhesion is enhanced after IL-5 culture. These experiments demonstrate that αdβ2 is an alternative ligand for VCAM-1, and this integrin may play a role in eosinophil adhesion to VCAM-1 in states of chronic inflammation. PMID:9841932

  7. The 18-kDa Translocator Protein Inhibits Vascular Cell Adhesion Molecule-1 Expression via Inhibition of Mitochondrial Reactive Oxygen Species

    PubMed Central

    Joo, Hee Kyoung; Lee, Yu Ran; Kang, Gun; Choi, Sunga; Kim, Cuk-Seong; Ryoo, Sungwoo; Park, Jin Bong; Jeon, Byeong Hwa

    2015-01-01

    Translocator protein 18 kDa (TSPO) is a mitochondrial outer membrane protein and is abundantly expressed in a variety of organ and tissues. To date, the functional role of TSPO on vascular endothelial cell activation has yet to be fully elucidated. In the present study, the phorbol 12-myristate 13-acetate (PMA, 250 nM), an activator of protein kinase C (PKC), was used to induce vascular endothelial activation. Adenoviral TSPO overexpression (10–100 MOI) inhibited PMA-induced vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) expression in a dose dependent manner. PMA-induced VCAM-1 expressions were inhibited by Mito-TEMPO (0.1–0.5 μM), a specific mitochondrial antioxidants, and cyclosporin A (1–5 μM), a mitochondrial permeability transition pore inhibitor, implying on an important role of mitochondrial reactive oxygen species (ROS) on the endothelial activation. Moreover, adenoviral TSPO overexpression inhibited mitochondrial ROS production and manganese superoxide dismutase expression. On contrasts, gene silencing of TSPO with siRNA increased PMA-induced VCAM-1 expression and mitochondrial ROS production. Midazolam (1–50 μM), TSPO ligands, inhibited PMA-induced VCAM-1 and mitochondrial ROS production in endothelial cells. These results suggest that mitochondrial TSPO can inhibit PMA-induced endothelial inflammation via suppression of VCAM-1 and mitochondrial ROS production in endothelial cells. PMID:26608360

  8. The Effect of Vitamin D Administration on Intracellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 Levels in Hemodialysis Patients: A Placebo-controlled, Double-blinded Clinical Trial

    PubMed Central

    Naeini, Afsoon Emami; Moeinzadeh, Firouzeh; Vahdat, Sahar; Ahmadi, Akbar; Hedayati, Zahra Parin; Shahzeidi, Safoora

    2017-01-01

    Objective: Vitamin D deficiency is quite common among end-stage renal disease (ESRD) patients, and Vitamin D administration could reduce morbidity and mortality in these patients through different mechanisms. Cardiovascular diseases are the most common cause of mortality in these patients that are caused by vascular injuries. Intracellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) are vascular inflammation indicators. The goal of this study is to find the effect of Vitamin D administration on ICAM-1 and VCAM-1 serum levels in ESRD patients on hemodialysis. Methods: The current study is a double-blind, randomized, placebo-controlled clinical trial on 64 patients in two groups of control and treatment. Serum levels of Vitamin D, ICAM-1, and VCAM-1 were measured before and after the study. Treatment group was treated with Vitamin D pearls while control group underwent treatment with placebo pearls. Average serum levels of Vitamin D, ICAM, and VCAM were measured in both groups before and after the study and were analyzed by ANOVA, paired t-test, and Chi-square test using SPSS software. Findings: Sixty-four ESRD patients were recruited for this study consisting of 32 male and 32 female subjects within the ages of 18 and 76 years. The change in serum level of Vitamin D was significant in treatment group (P = 0.001) but not in control group (P > 0.05). Serum levels of ICAM and VCAM also changed significantly in treatment group (P = 0.001) but not in control group (P > 0.05) Conclusion: Based on the findings of this study, it could be said that Vitamin D administration in ESRD patients may increase serum level of Vitamin D up to four times. It also reduces serum levels of ICAM and VCAM which might improve the vascular condition of these patients.

  9. Endothelial cells proactively form microvilli-like membrane projections upon intercellular adhesion molecule 1 engagement of leukocyte LFA-1.

    PubMed

    Carman, Christopher V; Jun, Chang-Duk; Salas, Azucena; Springer, Timothy A

    2003-12-01

    Specific leukocyte/endothelial interactions are critical for immunity and inflammation, yet the molecular details of this interaction interface remain poorly understood. Thus, we investigated, with confocal microscopy, the distribution dynamics of the central adhesion molecules ICAM-1 and LFA-1 in this context. Monolayers of activated HUVECs stained with fluorescent anti-ICAM-1 Fabs or Chinese hamster ovary-K1 cells expressing ICAM-1-green fluorescent protein were allowed to bind LFA-1-bearing monocytes, neutrophils, or K562 LFA-1 transfectants. ICAM-1 was rapidly relocalized to newly formed microvilli-like membrane projections in response to binding LFA-1 on leukocytes. These ICAM-1-enriched projections encircled the leukocytes extending up their sides and clustered LFA-1 underneath into linear tracks. Projections formed independently of VCAM-1/very late Ag 4 interactions, shear, and proactive contributions from the LFA-1-bearing cells. In the ICAM-1-bearing endothelial cells, projections were enriched in actin but not microtubules, required intracellular calcium, and intact microfilament and microtubule cytoskeletons and were independent of Rho/Rho kinase signaling. Disruption of these projections with cytochalasin D, colchicine, or BAPTA-AM had no affect on firm adhesion. These data show that in response to LFA-1 engagement the endothelium proactively forms an ICAM-1-enriched cup-like structure that surrounds adherent leukocytes but is not important for firm adhesion. This finding leaves open a possible role in leukocyte transendothelial migration, which would be consistent with the geometry and kinetics of formation of the cup-like structure.

  10. Interferon gamma regulates platelet endothelial cell adhesion molecule 1 expression and neutrophil infiltration into herpes simplex virus- infected mouse corneas

    PubMed Central

    1996-01-01

    In a mouse model of herpes simplex virus (HSV) 1 corneal infection, tissue destruction results from a CD4+ T cell-mediated chronic inflammation, in which interleukin 2 and interferon (IFN) gamma are requisite inflammatory mediators and polymorphonuclear leukocytes (PMN) are the predominant infiltrating cells. In vivo neutralization of IFN- gamma relieved inflammation at least in part through a specific block of PMN extravasation into HSV-1-infected corneas. Intercellular adhesion molecule (ICAM) 1 and platelet endothelial cell adhesion molecule (PECAM) 1 were upregulated on the vascular endothelium of inflamed corneas. Reduced PMN extravasation in anti-IFN-gamma-treated mice was associated with a dramatic reduction of PECAM-1 but not ICAM-1 expression on vascular endothelium. PMN accumulated in the lumen of corneal vessels after in vivo IFN-gamma neutralization. PECAM-1 was readily detectable on PMN inside the vessels but was not detectable on PMN that extravasated into the infected cornea. Moreover, flow cytometric analysis revealed reduced PECAM-1 expression but elevated major histocompatibility complex class I expression on PMN that recently extravasated into the peritoneal cavity when compared with PMN in the peripheral blood. We conclude that IFN-gamma contributes to HSV- 1-induced corneal inflammation by facilitating PMN infiltration; this appears to be accomplished through upregulation of PECAM-1 expression on the vascular endothelium; and PMN downregulate PECAM-1 expression during the process of extravasation. PMID:8879215

  11. Short-term high-fat diet alters postprandial glucose metabolism and circulating vascular cell adhesion molecule-1 in healthy males.

    PubMed

    Numao, Shigeharu; Kawano, Hiroshi; Endo, Naoya; Yamada, Yuka; Takahashi, Masaki; Konishi, Masayuki; Sakamoto, Shizuo

    2016-08-01

    Short-term intake of a high-fat diet aggravates postprandial glucose metabolism; however, the dose-response relationship has not been investigated. We hypothesized that short-term intake of a eucaloric low-carbohydrate/high-fat diet (LCHF) would aggravate postprandial glucose metabolism and circulating adhesion molecules in healthy males. Seven healthy young males (mean ± SE; age: 26 ± 1 years) consumed either a eucaloric control diet (C, approximately 25% fats), a eucaloric intermediate-carbohydrate/intermediate-fat diet (ICIF, approximately 50% fats), or an LCHF (approximately 70% fats) for 3 days. An oral meal tolerance test (MTT) was performed after the 3-day dietary intervention. The concentrations of plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 (VCAM-1) were determined at rest and during MTT. The incremental area under the curve (iAUC) of plasma glucose concentration during MTT was significantly higher in LCHF than in C (P = 0.009). The first-phase insulin secretion indexes were significantly lower in LCHF than in C (P = 0.04). Moreover, the iAUC of GLP-1 and VCAM-1 concentrations was significantly higher in LCHF than in C (P = 0.014 and P = 0.04, respectively). The metabolites from ICIF and C were not significantly different. In conclusion, short-term intake of eucaloric diet containing a high percentage of fats in healthy males excessively increased postprandial glucose and VCAM-1 concentrations and attenuated first-phase insulin release.

  12. Ligand-induced adhesion to activated endothelium and to vascular cell adhesion molecule-1 in lymphocytes transfected with the N-formyl peptide receptor.

    PubMed

    Honda, S; Campbell, J J; Andrew, D P; Engelhardt, B; Butcher, B A; Warnock, R A; Ye, R D; Butcher, E C

    1994-04-15

    Binding of FMLP to the neutrophil N-formyl peptide receptor (FPR) transmits signals through pertussis toxin-sensitive G proteins triggering Ca2+ flux, superoxide production, granule exocytosis, and neutrophil aggregation and adhesion involving the beta 2 (CD18) integrins. Expression of the FPR in mouse fibroblasts or human kidney cells has been shown to confer an N-formyl peptide-inducible Ca2+ flux in transfectants. Here we demonstrate that the transfected receptor can also support ligand-induced alterations in cellular adhesion. We established stable transfectants of mouse L1-2 pre-B cells with cDNA for human FPR (L1-2 FPR cells). The transfectants bind N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys-fluorescein with 1.4 x 10(5) sites per cell and a dissociation constant of 3.3 nM. Stimulation with FMLP induces a transient Ca2+ flux. FMLP also triggers adhesion of L1-2 FPR cells to TNF-alpha- or LPS-activated bEnd3 cells (mouse brain-derived endothelial cells) and to purified mouse VCAM-1. Binding is inhibited by Abs to VCAM-1 and to the alpha-chain of its lymphocyte receptor (the alpha 4 beta 1 integrin, VLA-4). Stimulation with FMLP does not induce a change in cell surface expression of alpha 4. Induced adhesion to VCAM-1 is rapid, detectable at the earliest times measurable (30 to 60 s after FMLP addition), and is inhibited by pertussis toxin. We conclude that FPR can mediate integrin activation not only in neutrophils but also in lymphocytes, and can trigger rapid adhesion via lymphocyte alpha 4 beta 1. The adhesion of lymphocytes is critical to their migration and targeting; our results suggest the possibility of manipulating adhesive responses through expression of chemoattractant receptors in lymphoid cells engineered for cellular therapy, allowing targeted adhesion and potentially migration in response to locally administered ligands.

  13. Synthesis and characterization of soluble conducting polymers and conducting adhesives

    NASA Astrophysics Data System (ADS)

    Oztemiz, Serhan

    With the demanding nature of the technology today, scientists are looking for new materials in order to decrease the cost, increase the efficiency of the use of the materials, and decrease time-consuming steps in order to increase the speed of production. New materials are being studied to decrease the weight of cars, planes and space vehicles; surface properties are being modified to decrease the drag coefficient; new technologies are being introduced for speeding up applications in production and assembly lines. In this research we address the needs of different technological applications from a conductivity perspective. In the first part of the thesis, the synthesis of soluble conducting polymers in order to make them more processable for potential electronic and photovoltaic applications is presented. Soluble conducting polymers of 3-hexylthiophene, 3-octylthiophene, 3-decylthiophene and 3-dodecylthiophene were synthesized electrochemically and thus, doped during synthesis. It was found that the conductivities; molecular weights and degrees of polymerization of the polymers strongly depend on the side chain's length. The substitution of alkyl side chains decreases the reactivity of the growing chain, and with an increasing side-chain length, all of these properties show a decrease. The hexyl substituent, being the shortest of the four side chains, causes the least distortion in the background, has the highest conjugation, and has the highest shift in the UV spectrum when it polymerizes. As the length of the side chain increases, the shift in the UV spectrum decreases, too. Decrease in the pi-stacking, conjugation and delocalization decreases the conductivity. This gives the material an opportunity to be used in photovoltaic applications. In the second part of the thesis, a conducting adhesive formulation that eliminates the need for heat or other expensive and rather bothersome application methods to activate the adhesive is investigated. Using the quick

  14. Magnolol reduced TNF-α-induced vascular cell adhesion molecule-1 expression in endothelial cells via JNK/p38 and NF-κB signaling pathways.

    PubMed

    Liang, Chan-Jung; Lee, Chiang-Wen; Sung, Hsin-Ching; Chen, Yung-Hsiang; Wang, Shu-Huei; Wu, Pei-Jhen; Chiang, Yao-Chang; Tsai, Jaw-Shiun; Wu, Chau-Chung; Li, Chi-Yuan; Chen, Yuh-Lien

    2014-01-01

    Expression of cell adhesion molecules by the endothelium and the attachment of leukocytes to these cells play major roles in inflammation and cardiovascular disorders. Magnolol, a major active component of Magnolia officinalis, has antioxidative and anti-inflammatory properties. In the present study, the effects of magnolol on the expression of vascular cell adhesion molecule-1 (VCAM-1) in human aortic endothelial cells (HAECs) and the related mechanisms were investigated. TNF-α induced VCAM-1 protein expression and mRNA stability were significantly decreased in HAECs pre-treated with magnolol. Magnolol significantly reduced the phosphorylation of ERK, JNK, and p38 in TNF-α-treated HAECs. The decrease in VCAM-1 expression in response to TNF-α treatment was affected by JNK and p38 inhibitors, not by an ERK inhibitor. Magnolol also attenuates NF-κB activation and the translocation of HuR (an RNA binding protein) in TNF-α-stimulated HAECs. The VCAM-1 expression was weaker in the aortas of TNF-α-treated apo-E deficient mice with magnolol treatment. These data demonstrate that magnolol inhibits TNF-α-induced JNK/p38 phosphorylation, HuR translocation, NF-κB activation, and thereby suppresses VCAM-1 expression resulting in reduced leukocyte adhesion. Taken together, these results suggest that magnolol has an anti-inflammatory property and may play an important role in the prevention of atherosclerosis and inflammatory responses.

  15. Amino Acid Sequences Mediating Vascular Cell Adhesion Molecule 1 Binding to Integrin Alpha 4: Homologous DSP Sequence Found for JC Polyoma VP1 Coat Protein

    PubMed Central

    Meyer, Michael Andrew

    2013-01-01

    The JC polyoma viral coat protein VP1 was analyzed for amino acid sequences homologies to the IDSP sequence which mediates binding of VLA-4 (integrin alpha 4) to vascular cell adhesion molecule 1. Although the full sequence was not found, a DSP sequence was located near the critical arginine residue linked to infectivity of the virus and binding to sialic acid containing molecules such as integrins (3). For the JC polyoma virus, a DSP sequence was found at residues 70, 71 and 72 with homology also noted for the mouse polyoma virus and SV40 virus. Three dimensional modeling of the VP1 molecule suggests that the DSP loop has an accessible site for interaction from the external side of the assembled viral capsid pentamer. PMID:24147211

  16. Platelet-endothelial cell adhesion molecule-1 (PECAM-1/CD31) tyrosine phosphorylation state changes during vasculogenesis in the murine conceptus.

    PubMed Central

    Pinter, E.; Barreuther, M.; Lu, T.; Imhof, B. A.; Madri, J. A.

    1997-01-01

    Vasculogenesis, the differentiation of mesodermal cells to angioblasts and the subsequent formation of blood islands and blood vessels by angioblasts in the conceptus, is a dynamic process modulated, in part, by cell-extracellular matrix and cell-cell interactions in the presence of a variety of growth factors and morphogens. In this report we demonstrate differential tyrosine phosphorylation of platelet-endothelial cell adhesion molecule-1 (PECAM-1) during the formation of blood islands and vessels from clusters of extraembryonic and embryonic angioblasts in the murine conceptus. In addition, we identify the phosphorylation of a particular tyrosine residue in the PECAM-1 cytoplasmic domain, Tyr686, which has the potential of mediating binding to Src homology 2 domain-containing proteins, affecting PECAM-1 cellular localization and endothelial cell migration. Images Figure 1 Figure 2 Figure 3 PMID:9137078

  17. Amino Acid Sequences Mediating Vascular Cell Adhesion Molecule 1 Binding to Integrin Alpha 4: Homologous DSP Sequence Found for JC Polyoma VP1 Coat Protein.

    PubMed

    Meyer, Michael Andrew

    2013-01-01

    The JC polyoma viral coat protein VP1 was analyzed for amino acid sequences homologies to the IDSP sequence which mediates binding of VLA-4 (integrin alpha 4) to vascular cell adhesion molecule 1. Although the full sequence was not found, a DSP sequence was located near the critical arginine residue linked to infectivity of the virus and binding to sialic acid containing molecules such as integrins (3). For the JC polyoma virus, a DSP sequence was found at residues 70, 71 and 72 with homology also noted for the mouse polyoma virus and SV40 virus. Three dimensional modeling of the VP1 molecule suggests that the DSP loop has an accessible site for interaction from the external side of the assembled viral capsid pentamer.

  18. Interleukin-6 and intercellular cell adhesion molecule-1 expression remains elevated in revived live endothelial cells following spaceflight.

    PubMed

    Muid, S; Froemming, G R A; Ali, A M; Nawawi, H

    2013-12-01

    The effects of spaceflight on cardiovascular health are not necessarily seen immediately after astronauts have returned but can be delayed. It is important to investigate the long term effects of spaceflight on protein and gene expression of inflammation and endothelial activation as a predictor for the development of atherosclerosis and potential cardiovascular problems. The objectives of this study were to investigate the (a) protein and gene expression of inflammation and endothelial activation, (b) expression of nuclear factor kappa B (NFκB), signal transducer and activator of transcription-3 (STAT-3) and endothelial nitric oxide synthase (eNOS) in human umbilical vein endothelial cells (HUVEC) 3 months post-space flight travel compared to ground controls. HUVEC cultured on microcarriers in fluid processing apparatus were flown to the International Space Station (ISS) by the Soyuz TMA-11 rocket. After landing, the cells were detached from microcarriers and recultured in T-25 cm(2) culture flasks (Revived HUVEC). Soluble protein expression of IL-6, TNF-α, ICAM-1, VCAM-1 and e-selectin were measured by ELISA. Gene expression of these markers and in addition NFκB, STAT-3 and eNOS were measured. Spaceflight induced IL-6 and ICAM-1 remain elevated even after 3 months post spaceflight travel and this is mediated via STAT-3 pathway. The downregulation of eNOS expression in revived HUVEC cells suggests a reduced protection of the cells and the surrounding vessels against future insults that may lead to atherosclerosis. It would be crucial to explore preventive measures, in relation to atherosclerosis and its related complications.

  19. Intercellular adhesion molecule-1 (ICAM-1) in Graves' disease: contrast between in vivo and in vitro results.

    PubMed Central

    Ciampolillo, A; Napolitano, G; Mirakian, R; Miyasaki, A; Giorgino, R; Bottazzo, G F

    1993-01-01

    We have reassessed the possible role of the adhesion molecule ICAM-1 in the pathogenesis of thyroid autoimmunity. In order to do that, we have investigated its expression in eight Graves' thyroids both in vivo (i.e. on cryostat sections and on cell suspensions), and in vitro (i.e. on cells cultured in monolayers for 3 days), and the results were compared with those obtained with similar preparations from four normal glands. On cryostat sections, the expression of ICAM-1, and for comparison that of HLA Class I and Class II molecules, was studied by immunofluorescence (IFL), but the former were also assessed by a distinct immunohistochemical technique. ICAM-1 was not detected in thyrocytes in vivo of both normal and Graves' glands, but solely in endothelial cells and antigen-presenting cells (APC). This selective reaction was confirmed by a four-layer technique using specific markers which identify endothelial cells and thyrocytes. HLA Class II molecules were confirmed to be inappropriately expressed in thyrocytes of Graves' glands, but there was no co-expression of these products and ICAM-1 in the same cells. In contrast, ICAM-1 appeared de novo in a proportion of Graves' and normal thyrocytes soon after the attachment and spreading of these cells in monolayer cultures (36-48 h). Graves' thyrocytes showed a quantitatively higher degree of expression compared with that detected on normal thyroid cells (40-70% versus 12-20%). Under these experimental conditions, the four-layer staining with thyroid microsomal antibodies confirmed that thyrocytes were indeed the positive cells which expressed ICAM-1. Blocking experiments with cultured thyrocytes from two Graves' glands and MoAbs to tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) did not prevent the occurrence of ICAM-1 expression. As a result of our study, we failed to demonstrate that Graves' thyrocytes express ICAM-1 in vivo. The unexpected case of inducing ICAM-1 on thyroid cells under

  20. Green tea polyphenol epigallocatechin-3-gallate attenuates TNF-α-induced intercellular adhesion molecule-1 expression and monocyte adhesion to retinal pigment epithelial cells.

    PubMed

    Thichanpiang, Peeradech; Wongprasert, Kanokpan

    2015-01-01

    Epigallocatechin-3-gallate (EGCG) is a major polyphenol component of green tea (Camellia sinensis) and demonstrates anti-oxidant, anticancer and anti-inflammatory properties. EGCG has been shown to protect retinal pigment epithelium (RPE) against oxidative stress-induced cell death. The pathogenesis of diseases in the retina is usually initiated by local inflammation at the RPE cell layer, and inflammation is mostly associated with leukocyte migration and the secretion of pro-inflammatory cytokines. Whether EGCG can modulate the cytokine-induced inflammatory response of RPE, particularly leukocyte migration, has not been clearly elucidated, and was therefore the objective of this study. ARPE-19 cells were cultured with different concentrations of TNF-α in the presence or absence of EGCG to different time points. Intracellular reactive oxygen species (ROS) levels were determined. Intercellular adhesion molecule (ICAM)-1 and phosphor-NF-κB and IκB expression were determined by Western blot analysis. Phosphor-NF-κB nuclear translocation and monocyte-RPE adhesion were investigated using immunofluorescence confocal laser scanning microscopy. Scanning electron microscopy (SEM) was carried out to further determine the ultrastructure of monocyte-RPE adhesion. The results demonstrated that TNF-α modulated inflammatory effects in ARPE-19 by induction of ROS and up-regulation of ICAM-1 expression. Moreover, TNF-α-induced phosphor-NF-κB nuclear translocation, increased phosphor-NF-κB expression and IκB degradation, and increased the degree of monocyte-RPE adhesion. Pretreating the cells with EGCG ameliorated the inflammatory effects of TNF-α. The results indicated that EGCG significantly exerts anti-inflammatory effects in ARPE-19 cells, partly as a suppressor of TNF-α signaling and that the inhibition was mediated via the NF-κB pathway.

  1. Transfected HEK293 Cells Expressing Functional Recombinant Intercellular Adhesion Molecule 1 (ICAM-1) – A Receptor Associated with Severe Plasmodium falciparum Malaria

    PubMed Central

    Bengtsson, Anja; Joergensen, Louise; Barbati, Zachary R.; Craig, Alister; Hviid, Lars; Jensen, Anja T. R.

    2013-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is a membrane-bound glycoprotein expressed on endothelial cells and cells of the immune system. Human ICAM-1 mediates adhesion and migration of leucocytes, and is implicated in inflammatory pathologies, autoimmune diseases and in many cancer processes. Additionally, ICAM-1 acts as receptor for pathogens like human rhinovirus and Plasmodium falciparum malaria parasites. A group of related P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains, the DBLβ, mediates ICAM-1 binding of P. falciparum-infected erythrocytes. This ICAM‑1-binding phenotype has been suggested to be involved in the development of cerebral malaria. However, more studies identifying cross-reactive antibody and ICAM-1-binding epitopes and the establishment of a clinical link between DBLβ expression and e.g. cerebral malaria are needed before the DBLβ domains can be put forward as vaccine candidates and go into clinical trials. Such studies require availability of functional recombinant ICAM-1 in large quantities. In this study, we compared recombinant ICAM-1 expressed in HEK293 and COS-7 cells with mouse myeloma NS0 ICAM-1 purchased from a commercial vendor in terms of protein purity, yield, fold, ability to bind DBLβ, and relative cost. We present a HEK293 cell-based, high-yield expression and purification scheme for producing inexpensive, functional ICAM‑1. ICAM-1 expressed in HEK293 is applicable to malaria research and can also be useful in other research fields. PMID:23936131

  2. Artemether Combined with shRNA Interference of Vascular Cell Adhesion Molecule-1 Significantly Inhibited the Malignant Biological Behavior of Human Glioma Cells

    PubMed Central

    Wang, Ping; Xue, Yi-Xue; Yao, Yi-Long; Yu, Bo; Liu, Yun-Hui

    2013-01-01

    Artemether is the derivative extracted from Chinese traditional herb and originally used for malaria. Artemether also has potential therapeutic effects against tumors. Vascular cell adhesion molecule-1 (VCAM-1) is an important cell surface adhesion molecule associated with malignancy of gliomas. In this work, we investigated the role and mechanism of artemether combined with shRNA interference of VCAM-1 (shRNA-VCAM-1) on the migration, invasion and apoptosis of glioma cells. U87 human glioma cells were treated with artemether at various concentrations and shRNA interfering technology was employed to silence the expression of VCAM-1. Cell viability, migration, invasiveness and apoptosis were assessed with MTT, wound healing, Transwell and Annexin V-FITC/PI staining. The expression of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and phosphorylated Akt (p-Akt) was checked by Western blot assay. Results showed that artemether and shRNA-VCAM-1 not only significantly inhibited the migration, invasiveness and expression of MMP-2/9 and p-Akt, but also promoted the apoptosis of U87 cells. Combined treatment of both displayed the maximum inhibitory effects on the malignant biological behavior of glioma cells. Our work revealed the potential therapeutic effects of artemether and antiVCAM-1 in the treatments of gliomas. PMID:23593320

  3. Characterization and functional analysis of the expression of intercellular adhesion molecule-1 in human papillomavirus-related disease of cervical keratinocytes.

    PubMed Central

    Coleman, N.; Greenfield, I. M.; Hare, J.; Kruger-Gray, H.; Chain, B. M.; Stanley, M. A.

    1993-01-01

    We have investigated the expression of intercellular adhesion molecule-1 (ICAM-1) in squamous neoplasia of the cervix and have noted a significant induction of the molecule in high-grade intra-epithelial lesions. Using monolayer and organotypic in vitro tissue culture systems, we have shown that there is no constitutive ICAM-1 expression on cervical keratinocytes immortalized but not transformed by human papillomavirus type 16, whereas two human papillomaviruses type 16 containing and fully transformed cervical keratinocyte lines do constitutively express the molecule. All cell types, including human papillomavirus-negative normal cervical keratinocytes, can be induced to up-regulate their expression of ICAM-1 by pro-inflammatory cytokines such as interferon-gamma. In addition, we have used an in vitro adhesion assay to show that ICAM-1:lymphocyte function antigen-1 interaction is functionally important in lymphocyte binding to cervical keratinocytes, suggesting a role for ICAM-1 in retaining and enabling functional activity of lymphocytes in the cervix in intraepithelial neoplasia. Images Figure 1 Figure 2 Figure 5 Figure 9 PMID:8102029

  4. Simple modifications to Methimazole that enhance its inhibitory effect on Tumor Necrosis Factor-α-induced Vascular Cell Adhesion Molecule-1 expression by human endothelial cells

    PubMed Central

    Alapati, Anuja; Deosarkar, Sudhir P.; Lanier, Olivia L.; Qi, Chunyan; Carlson, Grady E.; Burdick, Monica M.; Schwartz, Frank L.; McCall, Kelly D.; Bergmeier, Stephen C.; Goetz, Douglas J.

    2015-01-01

    The expression of vascular cell adhesion molecule-1 (VCAM-1) on the vascular endothelium can be increased by pro-inflammatory cytokines [e.g. tumor necrosis factor – α (TNF-α)]. VCAM-1 contributes to leukocyte adhesion to, and emigration from, the vasculature which is a key aspect of pathological inflammation. As such, a promising therapeutic approach for pathological inflammation is to inhibit the expression of VCAM-1. Methimazole [3-methyl-1, 3 imidazole-2 thione (MMI)] is routinely used for the treatment of Graves’ disease and patients treated with MMI have decreased levels of circulating VCAM-1. In this study we used cultured human umbilical vein endothelial cells (HUVEC) to investigate the effect of MMI structural modifications on TNF-α induced VCAM-1 expression. We found that addition of a phenyl ring at the 4-nitrogen of MMI yields a compound that is significantly more potent than MMI at inhibiting 24 h TNF-α-induced VCAM-1 protein expression. Addition of a para methoxy to the appended phenyl group increases the inhibition while substitution of a thiazole ring for an imidazole ring in the phenyl derivatives yields no clear difference in inhibition. Addition of the phenyl ring to MMI appears to increase toxicity as does substitution of a thiazole ring for an imidazole ring in the phenyl MMI derivatives. Each of the compounds reduced TNF-α-induced VCAM-1 mRNA expression and had a functional inhibitory effect, i.e. each inhibited monocytic cell adhesion to 24 h TNF-α-activated HUVEC under fluid flow conditions. Combined, these studies provide important insights into the design of MMI-related anti-inflammatory compounds. PMID:25641748

  5. Simple modifications to methimazole that enhance its inhibitory effect on tumor necrosis factor-α-induced vascular cell adhesion molecule-1 expression by human endothelial cells.

    PubMed

    Alapati, Anuja; Deosarkar, Sudhir P; Lanier, Olivia L; Qi, Chunyan; Carlson, Grady E; Burdick, Monica M; Schwartz, Frank L; McCall, Kelly D; Bergmeier, Stephen C; Goetz, Douglas J

    2015-03-15

    The expression of vascular cell adhesion molecule-1 (VCAM-1) on the vascular endothelium can be increased by pro-inflammatory cytokines [e.g. tumor necrosis factor-α (TNF-α)]. VCAM-1 contributes to leukocyte adhesion to, and emigration from, the vasculature which is a key aspect of pathological inflammation. As such, a promising therapeutic approach for pathological inflammation is to inhibit the expression of VCAM-1. Methimazole [3-methyl-1, 3 imidazole-2 thione (MMI)] is routinely used for the treatment of Graves׳ disease and patients treated with MMI have decreased levels of circulating VCAM-1. In this study we used cultured human umbilical vein endothelial cells (HUVEC) to investigate the effect of MMI structural modifications on TNF-α induced VCAM-1 expression. We found that addition of a phenyl ring at the 4-nitrogen of MMI yields a compound that is significantly more potent than MMI at inhibiting 24h TNF-α-induced VCAM-1 protein expression. Addition of a para methoxy to the appended phenyl group increases the inhibition while substitution of a thiazole ring for an imidazole ring in the phenyl derivatives yields no clear difference in inhibition. Addition of the phenyl ring to MMI appears to increase toxicity as does substitution of a thiazole ring for an imidazole ring in the phenyl MMI derivatives. Each of the compounds reduced TNF-α-induced VCAM-1 mRNA expression and had a functional inhibitory effect, i.e. each inhibited monocytic cell adhesion to 24h TNF-α-activated HUVEC under fluid flow conditions. Combined, these studies provide important insights into the design of MMI-related anti-inflammatory compounds.

  6. Soluble vascular cell adhesion molecular-1 is a potential biological indicator of hemophilic arthropathy

    PubMed Central

    Tseng, Yu-Hsin; Chiou, Shyh-Shin; Zeng, Yu-Sheng; Tsai, Shih-Pien; Chen, Chun-Shih; Liao, Yu-Mei; Lin, Pei-Chin

    2016-01-01

    Abstract Hemophilic arthropathy is the most common chronic complication in patients with hemophilia. The pathogenesis of hemophilic arthropathy involves the inflammatory processes associated with rheumatoid arthritis (RA). Determining the severity and/or progression of joint damage is crucial when evaluating the effect of treatment modalities. Identifying reliable biomarkers in the peripheral blood of patients with hemophilic arthropathy may be beneficial in clinical practice. Circulating soluble vascular cell adhesion molecule-1 (sVCAM-1), E-selectin, and P-selectin levels are elevated in patients with RA. Our study investigated whether these soluble adhesion molecules can be used as biological indicators in the course of joint damage in patients with hemophilia A. Patients with hemophilia A (mild, moderate, and severe) were enrolled. The plasma levels of sVCAM-1, E-selectin, and P-selectin in patients with hemophilia A and control were measured using specific enzyme-linked immunosorbent assay kits. Joint damages were evaluated using Pettersson scores. No statistically significant differences were observed in E-selectin and P-selectin levels between patients and controls. The sVCAM-1 level was significantly higher in patients with hemophilia A than in controls. The differences remained significant in patients with severe hemophilia A but not in patients with mild or moderate hemophilia A. The degree of hemophilic arthropathy was evaluated using Pettersson scores, and a score higher than 5 indicated marked arthropathy. Patients with more than 1 joint with marked arthropathy showed significantly higher sVCAM-1 levels. sVCAM-1 levels in patients with hemophilia A are associated with the severity of hemophilic arthropathy. PMID:27861372

  7. Bordetella pertussis infection of human respiratory epithelial cells up-regulates intercellular adhesion molecule-1 expression: role of filamentous hemagglutinin and pertussis toxin.

    PubMed

    Ishibashi, Yoshio; Nishikawa, Akemi

    2002-09-01

    Adhesion molecules on respiratory epithelial cells play a critical role in inflammatory cell recruitment and accumulation at sites of inflammation. Bordetella pertussis colonizes the human respiratory tract by infecting epithelial cells, leading to an inflammatory response. In this study, the role of bacterial factors in the expression of intercellular adhesion molecule-1 (ICAM-1) on human respiratory epithelial cells was investigated in response to B. pertussis. Flow cytometry and real time RT-PCR analysis showed that BEAS-2B human bronchial epithelial cells expressed increased levels of ICAM-1 mRNA and surface protein in response to B. pertussis infection. Filamentous hemagglutinin (FHA) played a role in this response because of the impaired capability of a FHA-deficient isogenic strain. A mutant strain in which an Arg-Gly-Asp (RGD) site of FHA had been changed to Arg-Ala-Asp had diminished ability to up-regulate ICAM-1 expression. RGD sequence-associated up-regulation of ICAM-1 expression was also observed in primary normal human bronchial epithelial cells. Pretreatment of cells with integrin antagonists such as RGD-containing peptide and antibody against very late antigen-5 (VLA-5) inhibited the up-regulation of ICAM-1 expression, suggesting the participation of VLA-5 integrin in this response. Pertussis toxin (PT) prevented the up-regulation of ICAM-1 expression because a PT-deficient mutant strain induced higher levels of ICAM-1 mRNA and surface protein than the parental strain. Consistent with this, purified PT suppressed the up-regulation of epithelial ICAM-1 expression. These findings demonstrate that B. pertussis FHA up-regulates ICAM-1 expression on respiratory epithelial cells through interaction of its RGD site with host cell VLA-5 integrin, and that PT impairs this response.

  8. Effects of 17 β-estradiol on lipopolysacharride-induced intracellular adhesion molecule-1 mRNA expression and Ca2+ homeostasis alteration in human endothelial cells

    PubMed Central

    Thor, Der; Zhang, Rui; Anderson, Leigh; Bose, Diptiman; Dubé, Gregory P.; Rahimian, Roshanak

    2010-01-01

    Recent evidence showed that 17 β-estradiol (E2) decreased cytokine-induced expression of cell adhesion molecules (CAM). Changes in intracellular Ca2+ concentration ([Ca2+]i) has been shown to be associated with CAM expression in endothelial cells. Here, the effects of E2 (1 μM, 24 h) on the expression of intracellular adhesion molecule-1 (ICAM-1) and [Ca2+]i were investigated in a lipopolysaccharide (LPS) (100 ng/mL, 18 h)-stimulated human endothelial cell line, EA.hy926, using real-time PCR and spectrofluorometry, respectively. PCR analysis revealed a significant increase in ICAM-1 expression in calcium ionophore A23187 (1 nM)- or LPS-stimulated cells. Pretreatment of cells with E2 significantly inhibited LPS-induced ICAM-1 mRNA expression. [Ca2+]i was monitored in Fura-2 AM-loaded cells in the presence and absence of extracellular Ca2+ with thapsigargin (TG, 1 μM), a sarco/endoplasmic reticulum ATPase inhibitor or ATP (100 μM). The extent of TG- or ATP-induced [Ca2+]i increase was significantly higher in LPS-stimulated cells than in control cells. Pre-treatment of LPS-stimulated cells with E2 limited the Ca2+ response to the same level as in control cells. Furthermore, ICI 182,780, an estrogen receptor antagonist, attenuated the inhibitory actions of E2 on ICAM-1 mRNA expression and Ca2+ responses, suggesting that estrogen receptors mediate, at least in part, the effects of estrogen. These data suggest a potential underlying mechanism for the protective effect of E2 against atherosclerosis. PMID:20843480

  9. An anti-platelet-endothelial cell adhesion molecule-1 antibody inhibits leukocyte extravasation from mesenteric microvessels in vivo by blocking the passage through the basement membrane

    PubMed Central

    1996-01-01

    Platelet-endothelial cell adhesion molecule-1 (PECAM-1, CD31) plays an active role in the process of leukocyte migration through cultured endothelial cells in vitro and anti-PECAM-1 antibodies (Abs) inhibit accumulation of leukocytes into sites of inflammation in vivo. Despite the latter, it is still not clear at which stage of leukocyte emigration in vivo PECAM-1 is involved. To address this point directly, we studied the effect of an anti-PECAM-1 Ab, recognizing rat PECAM-1, on leukocyte responses within rat mesenteric microvessels using intravital microscopy. In mesenteric preparations activated by interleukin (IL)-1 beta, the anti-PECAM-1 Ab had no significant effect on the rolling or adhesion of leukocytes, but inhibited their migration into the surrounding extravascular tissue in a dose-dependent manner. Although in some vessel segments these leukocytes had come to a halt within the vascular lumen, often the leukocytes appeared to be trapped within the vessel wall. Analysis of these sections by electron microscopy revealed that the leukocytes had passed through endothelial cell junctions but not the basement membrane. In contrast to the effect of the Ab in mesenteric preparations treated with IL-1 beta, leukocyte extravasation induced by topical or intraperitoneal administration of the chemotactic peptide formyl-methionyl-leucyl-phenylalanine was not inhibited by the anti-PECAM-1 Ab. These results directly demonstrate a role for PECAM-1 in leukocyte extravasation in vivo and indicate that this involvement is selective for leukocyte extravasation elicited by certain inflammatory mediators. Further, our findings provide the first in vivo indication that PECAM-1 may have an important role in triggering the passage of leukocytes through the perivascular basement membrane. PMID:8691137

  10. Human immunodeficiency virus type 1 induces cellular polarization, intercellular adhesion molecule-1 redistribution, and multinucleated giant cell generation in human primary monocytes but not in monocyte-derived macrophages.

    PubMed

    Fais, S; Borghi, P; Gherardi, G; Logozzi, M; Belardelli, F; Gessani, S

    1996-12-01

    In this study, we evaluated the effects of human immunodeficiency virus type 1 (HIV-1) on some morphologic and functional changes in cultured human monocytes/macrophages at different stages of differentiation. Freshly isolated monocytes infected with HIV-1 24 hours after seeding exhibited marked morphologic changes such as uropod formation, polarization of intercellular adhesion molecule-1 (ICAM-1) on the cytoplasmic projection, the redistribution of alpha-actinin on cell-membrane dots, and an increased release of soluble ICAM-1. These changes preceded the increase in monocyte-monocyte fusion and the formation of multinucleated giant cells. In contrast, HIV-1 infection did not affect monocyte-derived macrophages in terms of either cellular polarization or multinucleated giant cell formation. Immunocytochemistry showed that HIV-1 matrix protein was present mostly in bi- and trinucleated cells, which suggests that multinucleated giant cells may represent a long-lived and highly productive cellular source of HIV. The treatment of the HIV-1-infected monocytes with azidodeoxythymidine virtually abolished all viral-induced morphofunctional changes. On the whole, these results indicate that blood monocytes and differentiated macrophages may be affected differently by HIV infection, as monocytes seem to be much more prone to polarize, undergo homotypic fusion, and form multinucleated giant cells. These changes may confer to HIV-infected monocytes an increased ability to transmigrate through endothelia into tissues, whereas differentiated macrophages may have a predominant role as a widespread reservoir of HIV.

  11. T-lymphocyte responsiveness in murine schistosomiasis mansoni is dependent upon the adhesion molecules intercellular adhesion molecule-1, lymphocyte function-associated antigen-1, and very late antigen-4.

    PubMed Central

    Langley, J G; Boros, D L

    1995-01-01

    Granuloma formation in murine schistosomiasis is dependent on CD4+ Th lymphocytes and requires recruitment and accumulation of inflammatory cells at the site of egg deposition. The present study examined the role of three adhesion molecules, intercellular adhesion molecule-1 (ICAM-1), lymphocyte function-associated antigen-1 (LFA-1), and very late antigen-4 (VLA-4), that participate in cellular recruitment, interaction, and lymphocyte activation during in vitro activation of acutely and chronically infected spleen and liver granuloma lymphocytes. Blockade of ICAM-1, LFA-1, or VLA-4 by rat monoclonal antibody inhibited spleen and granuloma lymphocyte interleukin-2 (IL-2) and IL-4 production as well as lymphoproliferative responses at similar levels (66 to 87%). The down-modulated cytokine and proliferative responses of chronically infected lymphocytes were inhibited to the same extent as their acutely infected counterparts. Cell sorting analysis demonstrated that acutely and chronically infected splenic and granuloma lymphocytes expressed similar levels of LFA-1, ICAM-1, and VLA-4 and that more ICAM-1 was expressed on infected than on uninfected mouse lymphocytes. By exposure of cells to paired monoclonal antibodies at suboptimal doses, it was determined that whereas all three adhesion molecules may participate, only ICAM-1 and LFA-1 showed synergistic interactions in determining lymphocyte responsiveness. These data suggest that spleen and liver granuloma lymphocytes are equally well armed with functional adhesion receptors. Thus, ICAM-1, LFA-1, and VLA-4 play an important accessory role in inflammatory cytokine production and lymphocyte proliferation, and therefore these adhesion molecules may participate in the initiation and maintenance of the granulomatous inflammation. PMID:7558308

  12. Human peripheral blood eosinophils express a functional c-kit receptor for stem cell factor that stimulates very late antigen 4 (VLA-4)-mediated cell adhesion to fibronectin and vascular cell adhesion molecule 1 (VCAM-1).

    PubMed

    Yuan, Q; Austen, K F; Friend, D S; Heidtman, M; Boyce, J A

    1997-07-21

    We evaluated mature peripheral blood eosinophils for their expression of the surface tyrosine kinase, c-kit, the receptor for the stromal cell-derived cytokine, stem cell factor (SCF). Cytofluorographic analysis revealed that c-kit was expressed on the purified peripheral blood eosinophils from 8 of 8 donors (4 nonatopic and 4 atopic) (mean channel fluorescence intensity 2.0- 3. 6-fold, average 2.8 +/- 0.6-fold, greater than the negative control). The uniform and selective expression of c-kit by eosinophils was confirmed by immunohistochemical analysis of peripheral blood buffy coats. The functional integrity of c-kit was demonstrated by the capacity of 100 ng/ml (5 nM) of recombinant human (rh) SCF to increase eosinophil adhesion to 3, 10, and 30 microg/ml of immobilized FN40, a 40-kD chymotryptic fragment of plasma fibronectin, in 15 min by 7.7 +/- 1.4-, 5.3 +/- 3.3-, and 5.4 +/- 0. 2-fold, respectively, and their adhesion to 0.1, 0.5, and 1.0 microg/ml vascular cell adhesion molecule-1 (VCAM-1), by 12.7 +/- 9. 2-, 3.8 +/- 2.5-, and 1.7 +/- 0.6-fold, respectively. The SCF-stimulated adhesion occurred without concomitant changes in surface integrin expression, thereby indicating an avidity-based mechanism. rhSCF (100 ng/ml, 5 nM) was comparable to rh eotaxin (200 ng/ml, 24 nM) in stimulating adhesion. Cell adhesion to FN40 was completely inhibited with antibodies against the alpha4 and beta1 integrin subunits, revealing that the SCF/c-kit adhesion effect was mediated by a single integrin heterodimer, very late antigen 4 (VLA-4). Thus, SCF represents a newly recognized stromal ligand for the activation of eosinophils for VLA-4-mediated adhesion, which could contribute to the exit of these cells from the blood, their tissue localization, and their prominence in inflammatory lesions.

  13. Human Peripheral Blood Eosinophils Express a Functional c-kit Receptor for Stem Cell Factor that Stimulates Very Late Antigen 4 (VLA-4)–mediated Cell Adhesion to Fibronectin and Vascular Cell Adhesion Molecule 1 (VCAM-1)

    PubMed Central

    Yuan, Qian; Austen, K. Frank; Friend, Daniel S.; Heidtman, Matthew; Boyce, Joshua A.

    1997-01-01

    We evaluated mature peripheral blood eosinophils for their expression of the surface tyrosine kinase, c-kit, the receptor for the stromal cell–derived cytokine, stem cell factor (SCF). Cytofluorographic analysis revealed that c-kit was expressed on the purified peripheral blood eosinophils from 8 of 8 donors (4 nonatopic and 4 atopic) (mean channel fluorescence intensity 2.0– 3.6-fold, average 2.8 ± 0.6-fold, greater than the negative control). The uniform and selective expression of c-kit by eosinophils was confirmed by immunohistochemical analysis of peripheral blood buffy coats. The functional integrity of c-kit was demonstrated by the capacity of 100 ng/ml (5 nM) of recombinant human (rh) SCF to increase eosinophil adhesion to 3, 10, and 30 μg/ml of immobilized FN40, a 40-kD chymotryptic fragment of plasma fibronectin, in 15 min by 7.7 ± 1.4-, 5.3 ± 3.3-, and 5.4 ± 0.2-fold, respectively, and their adhesion to 0.1, 0.5, and 1.0 μg/ml vascular cell adhesion molecule-1 (VCAM-1), by 12.7 ± 9.2-, 3.8 ± 2.5-, and 1.7 ± 0.6-fold, respectively. The SCF-stimulated adhesion occurred without concomitant changes in surface integrin expression, thereby indicating an avidity-based mechanism. rhSCF (100 ng/ml, 5 nM) was comparable to rh eotaxin (200 ng/ml, 24 nM) in stimulating adhesion. Cell adhesion to FN40 was completely inhibited with antibodies against the α4 and β1 integrin subunits, revealing that the SCF/c-kit adhesion effect was mediated by a single integrin heterodimer, very late antigen 4 (VLA-4). Thus, SCF represents a newly recognized stromal ligand for the activation of eosinophils for VLA-4–mediated adhesion, which could contribute to the exit of these cells from the blood, their tissue localization, and their prominence in inflammatory lesions. PMID:9221761

  14. Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells

    PubMed Central

    Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell; Brazier, Andrew Jay

    2016-01-01

    ABSTRACT Intercellular adhesion molecule 1 (ICAM-1) and the endothelial protein C receptor (EPCR) are candidate receptors for the deadly complication cerebral malaria. However, it remains unclear if Plasmodium falciparum parasites with dual binding specificity are involved in cytoadhesion or different parasite subpopulations bind in brain microvessels. Here, we investigated this issue by studying different subtypes of ICAM-1-binding parasite lines. We show that two parasite lines expressing domain cassette 13 (DC13) of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family have dual binding specificity for EPCR and ICAM-1 and further mapped ICAM-1 binding to the first DBLβ domain following the PfEMP1 head structure in both proteins. As PfEMP1 head structures have diverged between group A (EPCR binders) and groups B and C (CD36 binders), we also investigated how ICAM-1-binding parasites with different coreceptor binding traits influence P. falciparum-infected erythrocyte binding to endothelial cells. Whereas levels of binding to tumor necrosis factor alpha (TNF-α)-stimulated endothelial cells from the lung and brain by all ICAM-1-binding parasite lines increased, group A (EPCR and ICAM-1) was less dependent than group B (CD36 and ICAM-1) on ICAM-1 upregulation. Furthermore, both group A DC13 parasite lines had higher binding levels to brain endothelial cells (a microvascular niche with limited CD36 expression). This study shows that ICAM-1 is a coreceptor for a subset of EPCR-binding parasites and provides the first evidence of how EPCR and ICAM-1 interact to mediate parasite binding to both resting and TNF-α-activated primary brain and lung endothelial cells. PMID:27406562

  15. Role of nuclear factor-kappa B in the regulation of intercellular adhesion molecule 1 after infection of human bronchial epithelial cells by Bordetella pertussis.

    PubMed

    Ishibashi, Yoshio; Nishikawa, Akemi

    2003-10-01

    Previous work has demonstrated that infection of human bronchial epithelial cells by Bordetella pertussis up-regulates intercellular adhesion molecule-1 (ICAM-1) gene and protein expression. It has also been shown that interaction of the Arg-Gly-Asp (RGD) site of filamentous hemagglutinin (FHA) with host cell very late antigen (VLA)-5 (alpha 5 beta 1 integrin) is required for the up-regulation of epithelial ICAM-1 expression, and that pertussis toxin (PT) impairs this response. We therefore examined the molecular mechanisms leading to B. pertussis-induced ICAM-1 up-regulation in BEAS-2B human bronchial epithelial cells. A colorimetric nuclear factor kappa B (NF-kappa B) activation assay demonstrated that NF-kappa B was activated in response to infection of these cells with B. pertussis. This activation occurred in an FHA(RGD)-dependent manner, and was blocked by an antibody against VLA-5, implying that binding of the RGD to VLA-5 integrin is involved in NF-kappa B activation. Western blot analysis revealed that the activation of NF-kappa B by B. pertussis was preceded by degradation of I kappa B alpha, a major cytoplasmic inhibitor of NF-kappa B. Pretreatment of the BEAS-2B cells with the NF-kappa B inhibitors pyrrolidine dithiocarbamate (PDTC), MG-132, and SN50 resulted in a marked decrease in B. pertussis-induced ICAM-1 expression, implying the involvement of NF-kappa B in ICAM-1 expression. Purified PT abrogated both NF-kappa B activation and I kappa B alpha degradation. These results suggest that ligation of VLA-5 integrin by FHA induces RGD-dependent NF-kappa B activation, thus leading to the up-regulation of epithelial ICAM-1 expression, and that a PT-sensitive G protein may be involved in this signaling pathway.

  16. Effect of Hyperketonemia (Acetoacetate) on Nuclear Factor-κB and p38 Mitogen-Activated Protein Kinase Activation Mediated Intercellular Adhesion Molecule 1 Upregulation in Endothelial Cells

    PubMed Central

    Rains, Justin L.

    2015-01-01

    Abstract Background: Hyperketonemia is a pathological condition observed in patients with type 1 diabetes and ketosis-prone diabetes (KPD), which results in increased blood levels of acetoacetate (AA) and β-hydroxybutyrate (BHB). Frequent episodes of hyperketonemia are associated with a higher incidence of vascular disease. We examined the hypothesis that hyperketonemia activates the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways that regulate intercellular adhesion molecule 1 (ICAM-1) expression in endothelial cells. Methods: Human umbilical vein endothelial cells (HUVECs) were cultured with AA (0–8 mM) or BHB (0–10 mM) for 0–24 hr. Western blotting was used to determine NF-κB activation in whole-cell lysates. ICAM-1 expression was measured using flow cytometry. Results: Results show a 2.4-fold increase in NF-κB activation in cells treated with 8 mM AA compared to the control. BHB had little or no effect on NF-κB activation. Pretreatment with a reactive oxygen species (ROS) inhibitor [N-acetyl-l-cysteine (NAC)] reduced NF-κB to near-control levels. The expression of AA-induced ICAM-1 was significantly reduced when cells were pretreated with either NAC or p38 MAPK inhibitor. Conclusions: These results suggest that NF-κB and p38 MAPK mediate upregulation of ICAM-1 expression in endothelial cells exposed to elevated levels of AA, which may contribute to the development of vascular disease in diabetes. PMID:25489974

  17. Intercellular adhesion molecule 1 is a sensitive and diagnostically useful immunohistochemical marker of papillary thyroid cancer (PTC) and of PTC-like nuclear alterations in Hashimoto's thyroiditis

    PubMed Central

    ZHANG, KE; GE, SHU-JIAN; LIN, XIAO-YAN; LV, BEI-BEI; CAO, ZHI-XIN; LI, JIA-MEI; XU, JIA-WEN; WANG, QIANG-XIU

    2016-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is important in the progression of inflammatory responses. Recently, increased levels of ICAM-1 have been reported in a number of types of malignancy. The present study aimed to investigate ICAM-1 expression in papillary thyroid cancer (PTC) and in Hashimoto's thyroiditis (HT) with PTC-like nuclear alterations, and to assess the predictive value of ICAM-1 in thyroid lesions. ICAM-1 expression was retrospectively investigated in 132 consecutive cases of PTC, 72 cases of HT, 10 of follicular cancer, 15 of follicular adenoma, 16 of nodular goiter and 8 samples of normal thyroid tissue using immunohistochemical analyses, and in 42 PTC patients using western blotting. ICAM-1 expression was not detected in normal follicular cells, follicular lesions (adenoma and cancer) and benign nodular hyperplasia, but was frequently overexpressed in PTC cells. ICAM-1 overexpression was associated with extra-thyroidal invasion and lymph node metastasis; no association was found with age, gender, tumor size, multifocality, pathological stage, recurrence or distant metastasis. ICAM-1 expression in HT patients with PTC-like nuclear alterations was significantly higher than that in HT cases with non-PTC-like features. Compared with antibodies against cytokeratin 19, galectin-3 and Hector Battifora mesothelial-1, ICAM-1 was the most sensitive marker for the detection of PTC-like features in HT. These findings demonstrate that ICAM-1 expression is upregulated in PTC and in HT with PTC-like nuclear alterations. This feature may be an important factor in the progression of cancer of the thyroid gland. PMID:26998068

  18. Cyclic stretching of mesangial cells up-regulates intercellular adhesion molecule-1 and leukocyte adherence: a possible new mechanism for glomerulosclerosis.

    PubMed

    Riser, B L; Varani, J; Cortes, P; Yee, J; Dame, M; Sharba, A K

    2001-01-01

    Intraglomerular hypertension is a primary causal factor in the progressive glomerulosclerosis that characterizes diabetic nephropathy or severe renal ablation. However, inflammation of the glomerular mesangium also participates in at least the early phase of these diseases. In glomerulonephritis, where inflammation is thought to be the predominant causal factor, intraglomerular hypertension is also often present. Mesangial cells (MCs) are critical in orchestrating key functions of the glomerulus including extracellular matrix metabolism, cytokine production, and interaction with leukocytes. Because MCs are subject to increased stretching when intraglomerular hypertension is present, and in glomerulonephritis MC/leukocyte interactions seem to be mediated primarily via the up-regulation of intercellular adhesion molecule-1 (ICAM-1), we examine the possibility that cyclic stretching is a stimulus for increased MC ICAM-1 activity. We demonstrate that the normal low levels of MC ICAM-1 mRNA and protein are dramatically up-regulated by even short intervals of cyclic stretch. This effect is dose- and time-dependent, and requires little amplitude and a brief period of elongation for significant induction. Stretch-induced MC ICAM-1 also leads to a marked elevation in phagocytic leukocyte adherence. This stimulated adherence is equal or greater than that induced by the inflammatory cytokine tumor necrosis factor-alpha, whereas an additive effect occurs when both are applied in combination. Our results indicate that stretch-induced ICAM-1 may provide a direct link between hypertension and inflammation in the progression of injury and glomerulosclerosis in diabetes, renal ablation, and other forms of glomerulonephritis.

  19. Testosterone attenuates expression of vascular cell adhesion molecule-1 by conversion to estradiol by aromatase in endothelial cells: implications in atherosclerosis.

    PubMed

    Mukherjee, Tapan K; Dinh, Hillary; Chaudhuri, Gautam; Nathan, Lauren

    2002-03-19

    We previously reported that testosterone attenuated atherogenesis in LDLR(-/-) male mice, and that this effect of testosterone was most likely caused by its conversion to estradiol. Estradiol inhibits vascular cell adhesion molecule-1 (VCAM-1) expression, and expression of VCAM-1 is one of the early events in atherogenesis. We assessed the cellular mechanism(s) involved by which testosterone attenuates atherogenesis. We evaluated whether testosterone inhibited TNFalpha-induced VCAM-1 expression via its conversion to estradiol by the enzyme aromatase in human umbilical vein endothelial cells (HUVEC). Aromatase mRNA was dedected by reverse transcription-PCR in these cells. Testosterone (30 nM-1 microM) attenuated VCAM-1 mRNA expression in a concentration-dependent manner. The non aromatizable androgen, dihydrotestosterone, had no effect on VCAM-1 mRNA expression. Testosterone was less effective in attenuating VCAM-1 expression in the presence of anastrozole, an inhibitor of aromatase, indicating that testosterone inhibited VCAM-1 via conversion to estradiol. Estradiol also attenuated VCAM-1 mRNA expression, but this action was not abolished in the presence of anastrozole, indicating that anastrozole itself did not modulate VCAM-1 mRNA expression. The effect of testosterone on VCAM-1 mRNA expression was inhibited in the presence of the estrogen receptor antagonist, ICI-182780. Testosterone also attenuated TNFalpha-induced VCAM-1 protein expression, and this attenuation was abolished in the presence of anastrozole. In conclusion, testosterone inhibited VCAM-1 mRNA and protein expression in HUVEC by its conversion to estradiol via the enzyme aromatase present in the endothelial cells. Results from our study may help explain the mechanism by which testosterone may have beneficial effects on the cardiovascular system.

  20. Vascular and extravascular immunoreactivity for Intercellular Adhesion Molecule 1 in the orbitofrontal cortex of subjects with major depression: age-dependent changes

    PubMed Central

    Miguel-Hidalgo, Jose Javier; Overholser, James C.; Jurjus, George J.; Meltzer, Herbert Y.; Dieter, Lesa; Konick, Lisa; Stockmeier, Craig A.; Rajkowska, Grazyna

    2011-01-01

    Background Vascular and immune alterations in the prefrontal cortex may contribute to major depression in elderly subjects. Intercellular adhesion molecule-1 (ICAM-1), major inflammatory mediator in vessels and astrocytes, could be altered in geriatric depression, but little is known about its age-dependent expression in subjects with depression and its relationship to astrocytes identified by the marker glial fibrillary acidic protein (GFAP), found to be reduced in depression. Methods We measured the percentage of gray matter area fraction covered by ICAM-1 immunoreactivity in blood vessels and in extravascular accumulations of ICAM-1 immunoreactivity in 19 non-psychiatric comparison subjects and 18 subjects with major depression, all characterized by postmortem psychological diagnosis. Association of extravascular ICAM-1 to GFAP-positive astrocytes was investigated by double-labeling immunofluorescence. Results Vascular and extravascular fractions of ICAM-1 immunoreactivity were lower in subjects with MDD than in non-psychiatric comparison subjects. Non-psychiatric comparison subjects older than 60 experienced dramatic increase in extravascular ICAM-1 immunoreactivity, but this increase was attenuated in elderly subjects with MDD, particularly in those dying by suicide. Most extracellular ICAM-1 immunoreactivity was coextensive with GFAP-immunoreactive astrocytes in both groups. Limitations Heterogeneity in type and dosage of antidepressant medication. Difficulty in determining the exact onset of depression in subjects older than 60 at the time of death. Routine cerebrovascular pathological screening may miss subtle subcellular and molecular changes. Conclusions There is significant attenuation of extravascular and vascular ICAM-1 immunoreactivity in elderly subjects with major depression suggesting an astrocyte-associated alteration in immune function in the aging orbitofrontal cortex of subjects with MDD. PMID:21536333

  1. The Serum Changes of Neuron-Specific Enolase and Intercellular Adhesion Molecule-1 in Patients With Diffuse Axonal Injury Following Progesterone Administration: A Randomized Clinical Trial

    PubMed Central

    Shahrokhi, Nader; Soltani, Zahra; Khaksari, Mohammad; Karamouzian, Saeid; Mofid, Behshad; Asadikaram, Gholamreza

    2016-01-01

    Background Improvement of neurologic outcome in progesterone-administered patients with diffuse axonal injury (DAI) has been found in a recent study. Also, there has been interest in the importance of serum parameters as predictors of outcome in traumatic brain injury. Objectives The aim of this study was to examine the effect of progesterone administration on serum levels of neuron-specific enolase (NSE), and intercellular adhesion molecule-1 (ICAM-1) in clinical DAI. Patients and Methods In this study, the serum levels of ICAM-1 and NSE of 32 male DAI patients (18 - 60 years of age, a Glasgow coma scale of 12 or less, and admitted within 4 hours after injury) who were randomized for a controlled phase II trial of progesterone were analyzed. The analysis was performed between the control and progesterone groups at admission time, and 24 hours and six days after DAI, respectively. Results A reduction in the serum level of ICAM-1 was noticed in the progesterone group 24 hours after the injury (P < 0.05). There was no significant difference in the serum level of NSE between the study groups during evaluation. At 24 hours after the injury, the level of ICAM-1 in the control group was higher than that at admission time (P < 0.05). The lowest level of NSE in the two groups was seen six days after DAI (P < 0.01). Conclusions In summary, progesterone administration reduced serum ICAM-1, and whereby may attenuate blood brain barrier disruption, the latter needs further investigation for confirmation. PMID:27800469

  2. Human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation mediated by vascular cell adhesion molecule-1: evidence for involvement of cell adhesion molecules in HTLV-1 biology.

    PubMed Central

    Hildreth, J E; Subramanium, A; Hampton, R A

    1997-01-01

    While studying the potential role of vascular cell adhesion molecule-1 (VCAM-1) in infection of endothelial cells by human immunodeficiency virus (HIV), we found that VCAM-1 can mediate human T-cell lymphotropic virus type 1 (HTLV-1)-induced syncytium formation. Both expression-vector-encoded and endogenously expressed VCAM-1 supported fusion of uninfected cells with HTLV-1-infected cells. Fusion was obtained with cell lines carrying the HTLV-1 genome and expressing viral proteins but not with an HTLV-1-transformed cell line that does not express viral proteins. In clones of VCAM-1-transfected cells, the degree of syncytium formation observed directly reflected the level of VCAM-1 expression. Syncytium formation between HTLV-1-expressing cells and VCAM-1+ cells could be blocked with antiserum against HTLV-1 gp46 and with a monoclonal antibody (MAb) against VCAM-1. Fusion was not blocked by antiserum against HIV or a MAb against VLA-4, the physiological counter-receptor for VCAM-1. The results indicate that VCAM-1 can serve as an accessory molecule or potential coreceptor for HTLV-1-induced cell fusion and provide direct evidence of a role for cell adhesion molecules in the biology of HTLV-1. PMID:8995639

  3. Ultraviolet radiation can either suppress or induce expression of intercellular adhesion molecule 1 (ICAM-1) on the surface of cultured human keratinocytes

    SciTech Connect

    Norris, D.A.; Lyons, M.B.; Middleton, M.H.; Yohn, J.J.; Kashihara-Sawami, M. )

    1990-08-01

    Interactions of the ligand/receptor pair LFA-1(CD11a/CD18) and ICAM-1(CD54) initiate and control the cell-cell interactions of leukocytes and interactions of leukocytes with parenchymal cells in all phases of the immune response. Induction of the intercellular adhesion molecule 1 (ICAM-1) on the surface of epidermal keratinocytes has been proposed as an important regulator of contact-dependent aspects of cutaneous inflammation. Ultraviolet radiation (UVR) also modifies cutaneous inflammation, producing both up- and down-regulation of contact hypersensitivity. We have found that UVR has a biphasic effect on the induction of keratinocyte CD54. Using immunofluorescence and FACS techniques to quantitate cell-surface CD54 staining, we have shown that UVR significantly (p less than 0.01) inhibits keratinocyte CD54 induction by gamma interferon 24 h after irradiation. However, at 48, 72, and 96 h after UVR, CD54 expression is significantly induced to levels even greater than are induced by gamma interferon (20 U/ml). In addition, at 48, 72, or 96 h following UVR (30-100 mJ/cm2), the gamma-interferon-induced CD54 expression on human keratinocytes is also strongly (p less than 0.05 to p less than 0.001) enhanced. In this cell-culture system, gamma interferon and TNF-alpha are both strong CD54 inducers and are synergistic, but GM-CSF, TFG-beta, and IL-1 have no direct CD54-inducing effects. Thus the effects of UVR on CD54 induction are biphasic, producing inhibition at 24 h and induction at 48, 72, and 96 h. This effect on CD54 may contribute to the biphasic effects of UVR on delayed hypersensitivity in vivo. The early inhibition of ICAM-1 by UVR may also contribute to the therapeutic effects of UVR. We also speculate that the late induction of ICAM-1 by UVR might be an important step in the induction of photosensitive diseases such as lupus erythematosus.

  4. Changes in Water Sorption and Solubility of Dental Adhesive Systems after Cigarette Smoke

    PubMed Central

    Vitória, Lívia Andrade; Aguiar, Thaiane Rodrigues; Santos, Poliana Ramos Braga; Cavalcanti, Andrea Nóbrega

    2013-01-01

    Aim. To evaluate the effect of cigarette smoke on water sorption and solubility of four adhesive systems. Materials and Methods. Sixteen disks of each adhesive system were prepared (Adper Scotchbond Multipurpose Adhesive (SA); Adper Scotchbond Multipurpose Adhesive System (Adhesive + Primer) (SAP); Adper Single Bond Plus (SB); Adper Easy One (EO)). Specimens were desiccated until a constant mass was obtained and divided into two groups (n = 8). One-half of the specimens were immersed in deionized water, while the other half were also immersed, but with daily exposure to tobacco smoke. After 21 days, disks were measured again and stored in desiccators until constant mass was achieved. Data were calculated according to ISO specifications and statistically analyzed. Results. The tobacco smoke only significantly affected the water sorption and solubility of EO. There were significant differences in both analyses among materials tested. The SB exhibited the highest water sorption, followed by EO, which demonstrated significantly higher solubility values than SB. The SA and SAP showed low water sorption and solubility, and there were no significant differences between the two. Conclusion. Regardless of smoke exposure, both simplified adhesive systems presented an inferior performance that could be related to the complex mixture of components in such versions. PMID:23984078

  5. Tumor necrosis factor-alpha enhances neutrophil adhesiveness: induction of vascular cell adhesion molecule-1 via activation of Akt and CaM kinase II and modifications of histone acetyltransferase and histone deacetylase 4 in human tracheal smooth muscle cells.

    PubMed

    Lee, Chiang-Wen; Lin, Chih-Chung; Luo, Shue-Fen; Lee, Hui-Chun; Lee, I-Ta; Aird, William C; Hwang, Tsong-Long; Yang, Chuen-Mao

    2008-05-01

    Up-regulation of vascular cell adhesion molecule-1 (VCAM-1) involves adhesions between both circulating and resident leukocytes and the human tracheal smooth muscle cells (HTSMCs) during airway inflammatory reaction. We have demonstrated previously that tumor necrosis factor (TNF)-alpha-induced VCAM-1 expression is regulated by mitogen-activated protein kinases, nuclear factor-kappaB, and p300 activation in HTSMCs. In addition to this pathway, phosphorylation of Akt and CaM kinase II has been implicated in histone acetyltransferase and histone deacetylase 4 (HDAC4) activation. Here, we investigated whether these different mechanisms participated in TNF-alpha-induced VCAM-1 expression and enhanced neutrophil adhesion. TNF-alpha significantly increased HTSMC-neutrophil adhesions, and this effect was associated with increased expression of VCAM-1 on the HTSMCs and was blocked by the selective inhibitors of Src [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]-pyrimidine (PP1)], epidermal growth factor receptor [EGFR; 4-(3'-chloroanilino)-6,7-dimethoxy-quinazoline, (AG1478)], phosphatidylinositol 3-kinase (PI3K) [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride(LY294002) and wortmannin],calcium[1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester; BAPTA-AM], phosphatidylinositol-phospholipase C (PLC) [1-[6-[[17beta-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122)], protein kinase C (PKC) [12-(2-cyanoethyl)-6,7,12, 13-tetrahydro-13-methyl-5-oxo-5H-indolo(2,3-a)pyrrolo(3,4-c)-carbazole (Gö6976), rottlerin, and 3-1-[3-(amidinothio)propyl-1H-indol-3-yl]-3-(1-methyl-1H-indol-3-yl) maleimide (bisindolylmaleimide IX) (Ro 31-8220)], CaM (calmidazolium chloride), CaM kinase II [(8R(*),9S(*),11S(*))-(-)-9-hydroxy-9-methoxycarbonyl-8-methyl-14-n-propoxy-2,3,9, 10-tetrahydro-8,11-epoxy, 1H,8H, 11H-2,7b,11a-triazadibenzo[a,g]cycloocta[cde]trinden-1-one (KT5926) and 1-[N,O-bis(5-isoquinolinesulfonyl

  6. Soluble plantain fibre blocks adhesion and M-cell translocation of intestinal pathogens.

    PubMed

    Roberts, Carol L; Keita, Asa V; Parsons, Bryony N; Prorok-Hamon, Maelle; Knight, Paul; Winstanley, Craig; O' Kennedy, Niamh; Söderholm, Johan D; Rhodes, Jonathan M; Campbell, Barry J

    2013-01-01

    Dietary fibres may have prebiotic effects mediated by promotion of beneficial bacteria. This study explores the possibility that soluble plant fibre may also improve health by inhibiting epithelial adhesion and translocation by pathogenic bacteria. We have focussed on soluble non-starch polysaccharide (NSP) from plantain bananas (Musa spp.) which previous studies showed to be particularly effective at blocking Escherichia coli epithelial adherence. In vitro and ex vivo studies assessed the ability of plantain NSP to inhibit epithelial cell adhesion and invasion of various bacterial pathogens, and to inhibit their translocation through microfold (M)-cells and human Peyer's patches mounted in Ussing chambers. Plantain NSP showed dose-related inhibition of epithelial adhesion and M-cell translocation by a range of pathogens. At 5mg/ml, a concentration readily achievable in the gut lumen, plantain NSP inhibited adhesion to Caco2 cells by Salmonella Typhimurium (85.0 ± 8.2%, P<.01), Shigella sonnei (46.6 ± 29.3%, P<.01), enterotoxigenic E.coli (56.1 ± 23.7%, P<.05) and Clostridium difficile (67.6 ± 12.3%, P<.001), but did not inhibit adhesion by enteropathogenic E.coli. Plantain NSP also inhibited invasion of Caco2 cells by S. Typhimurium (80.2 ± 9.7%) and Sh. sonnei (46.7 ± 13.4%); P<.01. Plantain NSP, 5mg/ml, also inhibited translocation of S. Typhimurium and Sh. sonnei across M-cells by 73.3 ± 5.2% and 46.4 ± 7.7% respectively (P<.05). Similarly, S. Typhimurium translocation across Peyer's patches was reduced 65.9 ± 8.1% by plantain NSP (P<.01). Soluble plantain fibre can block epithelial adhesion and M-cell translocation of intestinal pathogens. This represents an important novel mechanism by which soluble dietary fibres can promote intestinal health and prevent infective diarrhoea.

  7. Expression and polarization of intercellular adhesion molecule-1 on human intestinal epithelia: consequences for CD11b/CD18-mediated interactions with neutrophils.

    PubMed Central

    Parkos, C. A.; Colgan, S. P.; Diamond, M. S.; Nusrat, A.; Liang, T. W.; Springer, T. A.; Madara, J. L.

    1996-01-01

    BACKGROUND: Epithelial dysfunction and patient symptoms in inflammatory intestinal diseases such as ulcerative colitis and Crohn's disease correlate with migration of neutrophils (PMN) across the intestinal epithelium. In vitro modeling of PMN transepithelial migration has revealed distinct differences from transendothelial migration. By using polarized monolayers of human intestinal epithelia (T84), PMN transepithelial migration has been shown to be dependent on the leukocyte integrin CD11b/CD18 (Mac-1), but not on CD11a/CD18 (LFA-1). Since intercellular adhesion molecule-I (ICAM-1) is an important endothelial counterreceptor for these integrins, its expression in intestinal epithelia and role in PMN-intestinal epithelial interactions was investigated. MATERIALS AND METHODS: A panel of antibodies against different domains of ICAM-1, polarized monolayers of human intestinal epithelia (T84), and natural human colonic epithelia were used to examine the polarity of epithelial ICAM-1 surface expression and the functional role of ICAM-1 in neutrophil-intestinal epithelial adhesive interactions. RESULTS: While no surface expression of ICAM-1 was detected on unstimulated T84 cells, interferon-gamma (IFN gamma) elicited a marked expression of ICAM-1 that selectively polarized to the apical epithelial membrane. Similarly, apically restricted surface expression of ICAM-1 was detected in natural human colonic epithelium only in association with active inflammation. With or without IFN gamma pre-exposure, physiologically directed (basolateral-to-apical) transepithelial migration of PMN was unaffected by blocking monoclonal antibodies (mAbs) to ICAM-1. In contrast, PMN migration across IFN gamma-stimulated monolayers in the reverse (apical-to-basolateral) direction was inhibited by anti-ICAM-1 antibodies. Adhesion studies revealed that T84 cells adhered selectively to purified CD11b/CD18 and such adherence, with or without IFN gamma pre-exposure, was unaffected by ICAM-1 m

  8. Comparative in vitro study for orthodontic adhesives relatively to sorption and solubility

    NASA Astrophysics Data System (ADS)

    Muntean, A.; Mesaros, A.; Festila, D.; Moldovan, M.; Boboia, S.; Mesaros, M.

    2015-12-01

    Water sorption and solubility correspond to undesirable physical characteristics because it may cause micro leakage and dissolution for composite materials used for orthodontic attachment bonding. The aim of this study was to evaluate the performance of four composite materials employed in orthodontic as adhesives, relatively to water and 50% alcoholic solution, by means of in vitro tests of sorption and solubility. We used an experimental composite sealer SO® (ICCRR Cluj Napoca) and 3 commercial products already on the market: Blugloo® (Ormco), Opal Bond MV® (Ultradent) and Bond It® (DB orthodontics). Data were recorded and specific statistic tests were performed, revealing significant differences for all materials relatively to tested solutions. The materials expressed an adequate performance in terms of sorption and solubility, offering various alternatives for orthodontists.

  9. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems

    PubMed Central

    CHIMELI, Talita Baumgratz Cachapuz; D'ALPINO, Paulo Henrique Perlatti; PEREIRA, Patrícia Nóbrega; HILGERT, Leandro Augusto; DI HIPÓLITO, Vinicius; GARCIA, Fernanda Cristina Pimentel

    2014-01-01

    Objective To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake) and nanoleakage of adhesive systems. Material and Methods Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness) were produced (N=48) using the adhesives: Clearfil S3 Bond (CS3)/Kuraray, Clearfil SE Bond - control group (CSE)/Kuraray, Optibond Solo Plus (OS)/Kerr and Scotchbond Universal Adhesive (SBU)/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group), and then photoactivated for 80 s (550 mW/cm2). After desiccation, the specimens were weighed and stored in distilled water (N=12) or mineral oil (N=12) to evaluate the water diffusion over a 7-day period. Net water uptake (%) was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%). The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Results Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05). Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control) presented significantly lower net uptake (5.4%). The nanoleakage was enhanced by the presence of solvent in the adhesives. Conclusions Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated. PMID:25141201

  10. Effects of anti-tumor necrosis factor-alpha and anti-intercellular adhesion molecule-1 antibodies on ischemia/reperfusion lung injury.

    PubMed

    Chiang, Chi-Huei

    2006-10-31

    Inhibition of neutrophil activation and adherence to endothelium by antibodies to tumor necrosis factor-alpha (TNF-alpha) and intercellular adhesion molecules (ICAM-1), respectively, might attenuate ischemia-reperfusion injury (I/R). I/R was conducted in an isolated rat lung model. Anti-TNF-alpha antibody and/or anti-ICAM-1 antibody were added before ischemia or after reperfusion. Hemodynamic changes, lung weight gain (LWG), capillary filtration coefficients (Kfc), and pathologic changes were assessed to evaluate the severity of I/R. The LWG, Kfc, pathological changes and lung injury score of treatment groups with anti-TNF-alpha antibody treatment, either pre-ischemia or during reperfusion, were less than those observed in control groups. Similar findings were found in group treated with anti-ICAM-1 antibody or combination therapy during reperfusion. In contrast, pre-I/R treatment with anti-ICAM-1 antibody induced severe lung edema and failure to complete the experimental procedure. No additional therapeutic effect was found in combination therapy. We conclude that TNF-alpha and ICAM-1 play important roles in I/R. Anti-TNF-alpha antibody has therapeutic and preventive effects on I/R. However, combined therapy with anti-TNF-alpha antibody and anti-ICAM-1 antibody may have no additive effect and need further investigation.

  11. Neisserial outer membrane vesicles bind the coinhibitory receptor carcinoembryonic antigen-related cellular adhesion molecule 1 and suppress CD4+ T lymphocyte function.

    PubMed

    Lee, Hannah S W; Boulton, Ian C; Reddin, Karen; Wong, Henry; Halliwell, Denise; Mandelboim, Ofer; Gorringe, Andrew R; Gray-Owen, Scott D

    2007-09-01

    Pathogenic Neisseria bacteria naturally liberate outer membrane "blebs," which are presumed to contribute to pathology, and the detergent-extracted outer membrane vesicles (OMVs) from Neisseria meningitidis are currently employed as meningococcal vaccines in humans. While the composition of these vesicles reflects the bacteria from which they are derived, the functions of many of their constituent proteins remain unexplored. The neisserial colony opacity-associated Opa proteins function as adhesins, the majority of which mediate bacterial attachment to human carcinoembryonic antigen-related cellular adhesion molecules (CEACAMs). Herein, we demonstrate that the Opa proteins within OMV preparations retain the capacity to bind the immunoreceptor tyrosine-based inhibitory motif-containing coinhibitory receptor CEACAM1. When CD4(+) T lymphocytes were exposed to OMVs from Opa-expressing bacteria, their activation and proliferation in response to a variety of stimuli were effectively halted. This potent immunosuppressive effect suggests that localized infection will generate a "zone of inhibition" resulting from the diffusion of membrane blebs into the surrounding tissues. Moreover, it demonstrates that OMV-based vaccines must be developed from strains that lack CEACAM1-binding Opa variants.

  12. Soluble Forms of Intercellular and Vascular Cell Adhesion Molecules Independently Predict Progression to Type 2 Diabetes in Mexican American Families

    PubMed Central

    Kulkarni, Hemant; Mamtani, Manju; Peralta, Juan; Almeida, Marcio; Dyer, Thomas D.; Goring, Harald H.; Johnson, Matthew P.; Duggirala, Ravindranath; Mahaney, Michael C.; Olvera, Rene L.; Almasy, Laura; Glahn, David C.; Williams-Blangero, Sarah; Curran, Joanne E.; Blangero, John

    2016-01-01

    Objective While the role of type 2 diabetes (T2D) in inducing endothelial dysfunction is fairly well-established the etiological role of endothelial dysfunction in the onset of T2D is still a matter of debate. In the light of conflicting evidence in this regard, we conducted a prospective study to determine the association of circulating levels of soluble intercellular adhesion molecule 1 (sICAM-1) and soluble vessel cell adhesion molecule 1 (sVCAM-1) with incident T2D. Methods Data from this study came from 1,269 Mexican Americans of whom 821 initially T2D-free individuals were longitudinally followed up in the San Antonio Family Heart Study. These individuals were followed for 9752.95 person-years for development of T2D. Prospective association of sICAM-1 and sVCAM-1 with incident T2D was studied using Kaplan-Meier survival plots and mixed effects Cox proportional hazards modeling to account for relatedness among study participants. Incremental value of adhesion molecule biomarkers was studied using integrated discrimination improvement (IDI) and net reclassification improvement (NRI) indexes. Results Decreasing median values for serum concentrations of sICAM-1 and sVCAM-1 were observed in the following groups in this order: individuals with T2D at baseline, individuals who developed T2D during follow-up, individuals with prediabetes at baseline and normal glucose tolerant (NGT) individuals who remained T2D-free during follow-up. Top quartiles for sICAM-1 and sVCAM-1 were strongly and significantly associated with homeostatic model of assessment—insulin resistance (HOMA-IR). Mixed effects Cox proportional hazards modeling revealed that after correcting for important clinical confounders, high sICAM-1 and sVCAM-1 concentrations were associated with 2.52 and 1.99 times faster progression to T2D as compared to low concentrations, respectively. Individuals with high concentrations for both sICAM-1 and sVCAM-1 progressed to T2D 3.42 times faster than those with low

  13. Triamcinolone acetonide modulates permeability and intercellular adhesion molecule-1 (ICAM-1) expression of the ECV304 cell line: implications for macular degeneration.

    PubMed

    Penfold, P L; Wen, L; Madigan, M C; Gillies, M C; King, N J; Provis, J M

    2000-09-01

    Whilst animal studies and a pilot clinical trial suggest that intravitreal triamcinolone acetonide (TA) may be useful in the treatment of age-related macular degeneration (AMD), its mode of action remains to be fully elucidated. The present study has investigated the capacity of TA to modulate the expression of adhesion molecules and permeability using a human epithelial cell line (ECV304) as a model of the outer blood-retinal barrier (BRB). The influence of TA on the expression of ICAM-1 and MHC-I was studied on resting and phorbol myristate acetate (PMA)- or interferon-gamma (IFN-gamma)- and/or tumour necrosis factor-alpha (TNF-alpha)-activated cells using flow cytometry and immunocytochemistry. Additionally, ECV304 cells were grown to confluence in uncoated Transwell chambers; transepithelial resistance (TER) across resting and PMA-activated cells was monitored. TA significantly decreased the paracellular permeability of ECV304 cells and down-regulated ICAM-1 expression, consistent with immunocytochemical observations. PMA-induced permeability changes were dose-dependent and TA decreased permeability of both resting and PMA-activated monolayers. MHC-I expression by ECV304 cells however, was not significantly affected by TA treatment. The modulation of TER and ICAM-1 expression in vitro correlate with clinical observations, suggesting re-establishment of the BRB and down-regulation of inflammatory markers are the principal effects of intravitreal TA in vivo. The results further indicate that TA has the potential to influence cellular permeability, including the barrier function of the retinal pigment epithelium (RPE) in AMD-affected retinae.

  14. Combined Treatment with Amlodipine and Atorvastatin Calcium Reduces Circulating Levels of Intercellular Adhesion Molecule-1 and Tumor Necrosis Factor-α in Hypertensive Patients with Prediabetes

    PubMed Central

    Huang, Zhouqing; Chen, Chen; Li, Sheng; Kong, Fanqi; Shan, Peiren; Huang, Weijian

    2016-01-01

    Objective: To assess the effect of amlodipine and atorvastatin on intercellular adhesion molecule (ICAM)-1 and tumor necrosis factor (TNF)-α expression, as endothelial function and inflammation indicators, respectively, in hypertensive patients with and without prediabetes. Methods: Forty-five consecutive patients with hypertension, diagnosed according to JNC7, were divided into two groups based on the presence (HD group, n = 23) or absence (H group, n = 22) of prediabetes, diagnosed according to 2010 ADA criteria, including impaired glucose tolerance (IGT) and fasting glucose tests. All patients simultaneously underwent 12-week treatment with daily single-pill amlodipine besylate/atorvastatin calcium combination (5/10 mg; Hisun-Pfizer Pharmaceuticals Co. Ltd). Serum isolated before and after treatment from overnight fasting blood samples was analyzed by ELISA. Results: In the HD and H groups after vs. before 12-week amlodipine/atorvastatin treatment, there were significantly (all P < 0.01) lower levels of ICAM-1 (3.06 ± 0.34 vs. 4.07 ± 0.70 pg/ml; 3.26 ± 0.32 vs. 3.81 ± 0.60 pg/ml, respectively) and TNF-α (78.71 ± 9.19 vs. 110.94 ± 10.71 pg/ml; 80.95 ± 9.33 vs. 101.79 ± 11.72 pg/ml, respectively), with more pronounced reductions in HD vs. H group (ICAM-1Δ: 1.01 ± 0.80 vs. 0.55 ± 0.64 pg/ml, respectively, P = 0.037; TNF-αΔ: 32.23 ± 14.33 vs. 20.84 ± 14.89 pg/ml, respectively, P = 0.011), independent of the blood pressure (BP) and cholesterol level reduction. Conclusions: Amlodipine/atorvastatin improved endothelial function and inflammation, as reflected by lower circulating levels of ICAM-1 and TNF-α, more prominently in hypertensives with than without prediabetes. Starting statin treatment before overt diabetes in hypertensives might thus improve cardiovascular outcomes. PMID:27610083

  15. Effect of agitation and storage temperature on water sorption and solubility of adhesive systems.

    PubMed

    Argolo, Saryta; Mathias, Paula; Aguiar, Thaiane; Lima, Adriano; Santos, Sara; Foxton, Richard; Cavalcanti, Andrea

    2015-01-01

    The purpose of this study was to evaluate the influence of storage temperature and flask agitation on the water sorption (WS) and solubility (SL) of simplified adhesive systems. Seventy-two disc-shaped specimens were prepared according to the adhesive system (water/ethanol-based: Adper Single Bond 2; and water-based: One Coat Bond SL) and experimental conditions tested (mechanical agitation and storage temperature). Statistical analysis (3-way ANOVA, alpha=5%) found significantly greater WS and SL means for the water/ethanol-based system when compared to the water-based. Irrespective of factors studied, significant differences in WS and SL were noted between cold and room temperatures, with greater values been obtained at 1°C, and lower ones at 20°C. Agitation provided increased WS for both materials at all temperatures, but did not affect their SL. The mechanical agitation of the flask may negatively affect the dynamics of diffusion of simplified adhesive systems, even at extremely cold or warm temperatures.

  16. Small GTPase Rho signaling is involved in {beta}1 integrin-mediated up-regulation of intercellular adhesion molecule 1 and receptor activator of nuclear factor {kappa}B ligand on osteoblasts and osteoclast maturation

    SciTech Connect

    Hirai, Fumihiko; Nakayamada, Shingo; Okada, Yosuke; Saito, Kazuyoshi; Kurose, Hitoshi; Mogami, Akira; Tanaka, Yoshiya . E-mail: tanaka@med.uoeh-u.ac.jp

    2007-04-27

    We assessed the characteristics of human osteoblasts, focusing on small GTPase Rho signaling. {beta}1 Integrin were highly expressed on osteoblasts. Engagement of {beta}1 integrins by type I collagen augmented expression of intercellular adhesion molecule 1 (ICAM-1) and receptor activator of nuclear factor {kappa}B ligand (RANKL) on osteoblasts. Rho was activated by {beta}1 stimulation in osteoblasts. {beta}1 Integrin-induced up-regulation of ICAM-1 and RANKL was inhibited by transfection with adenoviruses encoding C3 transferase or pretreated with Y-27632, specific Rho and Rho-kinase inhibitors. Engagement of {beta}1 integrin on osteoblasts induced formation of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNC) in a coculture system of osteoblasts and peripheral monocytes, but this action was completely abrogated by transfection of C3 transferase. Our results indicate the direct involvement of Rho-mediated signaling in {beta}1 integrin-induced up-regulation of ICAM-1 and RANKL and RANKL-dependent osteoclast maturation. Thus, Rho-mediated signaling in osteoblasts seems to introduce major biases to bone resorption.

  17. A single-arm, open-label, phase 2 clinical trial evaluating disease response following treatment with BI-505, a human anti-intercellular adhesion molecule-1 monoclonal antibody, in patients with smoldering multiple myeloma

    PubMed Central

    Wichert, Stina; Juliusson, Gunnar; Johansson, Åsa; Sonesson, Elisabeth; Teige, Ingrid; Wickenberg, Anna Teige; Frendeus, Björn; Korsgren, Magnus; Hansson, Markus

    2017-01-01

    Background Smoldering multiple myeloma (SMM) is an indolent disease stage, considered to represent the transition phase from the premalignant MGUS (Monoclonal Gammopathy of Undetermined Significance) state towards symptomatic multiple myeloma (MM). Even though this diagnosis provides an opportunity for early intervention, few treatment studies have been done and the current standard of care is observation until progression. BI-505, a monoclonal antibody directed against intercellular adhesion molecule 1 (ICAM-1) with promising anti-myeloma activity in preclinical trials, is a possible treatment approach for this patient category with potential to eliminate tumor cells with minimal long-term side effects. BI-505 was well tolerated in an earlier phase 1 trial. Methods and findings In this phase 2 trial the effects of BI-505 in patients with SMM were studied. Four patients were enrolled and three of them completed the first cycle of treatment defined as 5 doses of BI-505, a total of 43 mg/kg BW, over a 7-week period. In the three evaluable patients, BI-505 showed a benign safety profile. None of the patients achieved a response as defined per protocol. EudraCT number: 2012-004884-29. Conclusions The study was conducted to assess the efficacy, safety and pharmacodynamics of BI-505 in patients with SMM. BI-505 showed no clinically relevant efficacy on disease activity in these patients with SMM, even if well tolerated. Trial registration ClinicalTrials.gov Identifier: NCT01838369. PMID:28158311

  18. Fer and Fps/Fes participate in a Lyn-dependent pathway from FcepsilonRI to platelet-endothelial cell adhesion molecule 1 to limit mast cell activation.

    PubMed

    Udell, Christian M; Samayawardhena, Lionel A; Kawakami, Yuko; Kawakami, Toshiaki; Craig, Andrew W B

    2006-07-28

    Mast cells express the high affinity IgE receptor FcepsilonRI, which upon aggregation by multivalent antigens elicits signals that cause rapid changes within the mast cell and in the surrounding tissue. We previously showed that FcepsilonRI aggregation caused a rapid increase in phosphorylation of both Fer and Fps/Fes kinases in bone marrow-derived mast cells. In this study, we report that FcepsilonRI aggregation leads to increased Fer/Fps kinase activities and that Fer phosphorylation downstream of FcepsilonRI is independent of Syk, Fyn, and Gab2 but requires Lyn. Activated Fer/Fps readily phosphorylate the C terminus of platelet-endothelial cell adhesion molecule 1 (Pecam-1) on immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and a non-ITIM residue (Tyr(700)) in vitro and in transfected cells. Mast cells devoid of Fer/Fps kinase activities display a reduction in FcepsilonRI aggregation-induced tyrosine phosphorylation of Pecam-1, with no defects in recruitment of Shp1/Shp2 phosphatases observed. Lyn-deficient mast cells display a dramatic reduction in Pecam-1 phosphorylation at Tyr(685) and a complete loss of Shp2 recruitment, suggesting a role as an initiator kinase for Pecam-1. Consistent with previous studies of Pecam-1-deficient mast cells, we observe an exaggerated degranulation response in mast cells lacking Fer/Fps kinases at low antigen dosages. Thus, Lyn and Fer/Fps kinases cooperate to phosphorylate Pecam-1 and activate Shp1/Shp2 phosphatases that function in part to limit mast cell activation.

  19. The Effect of Dexmedetomidine on Oxidative Stress Response Following Cerebral Ischemia-Reperfusion in Rats and the Expression of Intracellular Adhesion Molecule-1 (ICAM-1) and S100B

    PubMed Central

    Li, Yanwen; Liu, Shikun

    2017-01-01

    Background Ischemia-reperfusion injury of whole brain involves a complicated pathophysiology mechanism. Dexmedetomidine (Dex) has been shown to have neuro protective functions. This study observed the effect of Dex on serum S100B and cerebral intracellular adhesion molecule-1 (ICAM-1) in a rat model of cerebral ischemia-reperfusion. Material/Methods Healthy Sprague Dawley (SD) rats (males, 7 weeks old) were randomly divided into sham, model, and Dex groups (n=20 each). A cerebral ischemia-reperfusion model was prepared by clipping of the bilateral common carotid artery combined with hypotension. Dex (9 μg/kg) was infused intravenously immediately after reperfusion in the Dex group, while the other two groups received an equal volume of saline. Neural defect score (NDS) was measured at 6 hours, 24 hours, and 72 hours after surgery, with pathological observation of brain tissues. ELISA was then used to test serum S100B protein level. Malondialdehyde (MDA) and superoxide dismutase (SOD) were assayed by spectrometry. Nuclear factor-kappa B (NF-κB) and ICAM-1 levels were determined by real-time (RT)-PCR. Results Model rats had significant injury in the hippocampal CA1 region as shown by elevated NDS, S100B, and MDA levels, higher NF-κB and ICAM-1 mRNA expression, and lower SOD levels (p<0.05). Dex treatment improved pathological injury, decreased NDS, S100B, and MDA levels, decreased expression of mRNA of NF-κB and ICAM-1, and increased SOD levels. Conclusions Dex alleviated ischemia-reperfusion damage to rat brains, and inhibited NF-κB and ICAM-1 expression in brain tissues, possibly via inhibiting oxidative stress and inflammatory response. PMID:28212354

  20. The Effect of Dexmedetomidine on Oxidative Stress Response Following Cerebral Ischemia-Reperfusion in Rats and the Expression of Intracellular Adhesion Molecule-1 (ICAM-1) and S100B.

    PubMed

    Li, Yanwen; Liu, Shikun

    2017-02-17

    BACKGROUND Ischemia-reperfusion injury of whole brain involves a complicated pathophysiology mechanism. Dexmedetomidine (Dex) has been shown to have neuro protective functions. This study observed the effect of Dex on serum S100B and cerebral intracellular adhesion molecule-1 (ICAM-1) in a rat model of cerebral ischemia-reperfusion. MATERIAL AND METHODS Healthy Sprague Dawley (SD) rats (males, 7 weeks old) were randomly divided into sham, model, and Dex groups (n=20 each). A cerebral ischemia-reperfusion model was prepared by clipping of the bilateral common carotid artery combined with hypotension. Dex (9 μg/kg) was infused intravenously immediately after reperfusion in the Dex group, while the other two groups received an equal volume of saline. Neural defect score (NDS) was measured at 6 hours, 24 hours, and 72 hours after surgery, with pathological observation of brain tissues. ELISA was then used to test serum S100B protein level. Malondialdehyde (MDA) and superoxide dismutase (SOD) were assayed by spectrometry. Nuclear factor-kappa B (NF-kB) and ICAM-1 levels were determined by real-time (RT)-PCR. RESULTS Model rats had significant injury in the hippocampal CA1 region as shown by elevated NDS, S100B, and MDA levels, higher NF-κB and ICAM-1 mRNA expression, and lower SOD levels (p<0.05). Dex treatment improved pathological injury, decreased NDS, S100B, and MDA levels, decreased expression of mRNA of NF-κB and ICAM-1, and increased SOD levels. CONCLUSIONS Dex alleviated ischemia-reperfusion damage to rat brains, and inhibited NF-κB and ICAM-1 expression in brain tissues, possibly via inhibiting oxidative stress and inflammatory response.

  1. Mechanistic Control of Carcinoembryonic Antigen-related Cell Adhesion Molecule-1 (CEACAM1) Splice Isoforms by the Heterogeneous Nuclear Ribonuclear Proteins hnRNP L, hnRNP A1, and hnRNP M*

    PubMed Central

    Dery, Kenneth J.; Gaur, Shikha; Gencheva, Marieta; Yen, Yun; Shively, John E.; Gaur, Rajesh K.

    2011-01-01

    Carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) is expressed in a variety of cell types and is implicated in carcinogenesis. Alternative splicing of CEACAM1 pre-mRNA generates two cytoplasmic domain splice variants characterized by the inclusion (L-isoform) or exclusion (S-isoform) of exon 7. Here we show that the alternative splicing of CEACAM1 pre-mRNA is regulated by novel cis elements residing in exon 7. We report the presence of three exon regulatory elements that lead to the inclusion or exclusion of exon 7 CEACAM1 mRNA in ZR75 breast cancer cells. Heterologous splicing reporter assays demonstrated that the maintenance of authentic alternative splicing mechanisms were independent of the CEACAM1 intron sequence context. We show that forced expression of these exon regulatory elements could alter CEACAM1 splicing in HEK-293 cells. Using RNA affinity chromatography, three members of the heterogeneous nuclear ribonucleoprotein family (hnRNP L, hnRNP A1, and hnRNP M) were identified. RNA immunoprecipitation of hnRNP L and hnRNP A1 revealed a binding motif located central and 3′ to exon 7, respectively. Depletion of hnRNP A1 or L by RNAi in HEK-293 cells promoted exon 7 inclusion, whereas overexpression led to exclusion of the variable exon. By contrast, overexpression of hnRNP M showed exon 7 inclusion and production of CEACAM1-L mRNA. Finally, stress-induced cytoplasmic accumulation of hnRNP A1 in MDA-MB-468 cells dynamically alters the CEACAM1-S:CEACAM1:L ratio in favor of the l-isoform. Thus, we have elucidated the molecular factors that control the mechanism of splice-site recognition in the alternative splicing regulation of CEACAM1. PMID:21398516

  2. Design of a new dental adhesive--effect of a water-soluble sodium acylphosphine oxide with crown ether on adhesion to dental hard tissues.

    PubMed

    Ikemura, Kunio; Ichizawa, Kensuke; Fuchigami, Kiyomi; Ito, So; Endo, Takeshi

    2009-05-01

    The behavior of water-soluble photoinitiators with crown ethers in dental adhesives is unknown. This study investigated the effect of sodium acylphosphine oxide (APO-Na) with crown ether in a hydrophobic adhesive on adhesion to teeth. Sodium 2,4,6-trimethylbenzoyl-phenylphosphine oxide (TMPO-Na = APO-Na) was synthesized in 67.1% yield and identified by 1H NMR. APO-Na was dissolved in hydrophobic resins in the presence of a crown ether (ionophore effect). Thirty kinds of experimental single-step adhesives comprising APO-Na, CE, Bis-GMA, 6-methacryloyloxyhexyl phosphonoacetate (6-MHPA), and 4-methacryloyloxyethyl trimellitic acid (4-MET) were thereby prepared. Shear bond strength to unetched ground teeth was measured at a crosshead speed of 1.0 mm/min, and the data were analyzed by ANOVA. The shear bond strength results of bonding resins containing APO-Na with 18-crown-6-ether (CE-6) were significantly higher than that without CE-6 (control) (p<0.05). Higher bond strength values [for enamel: BR24 at 19.3 (3.2) MPa; for dentin: BR29 at 20.2 (4.7) MPa] were achieved with the adhesives containing APO-Na, CE-6, 6-MHPA, and 4-MET. Therefore, it was found that APO-Na with CE-6 contributed to the efficient bonding performance of single-step adhesive to teeth. However, in view of the biosafety hazard posed by crown ethers, the search is still on for reagents that are biologically safer than crown ethers--but with ionophor effects--to be used in dental adhesives.

  3. The Effect of Light Exposure on Water Sorption and Solubility of Self-Adhesive Resin Cements

    PubMed Central

    Aguiar, Thaiane Rodrigues; André, Carolina Bosso; Ambrosano, Gláucia Maria Boni; Giannini, Marcelo

    2014-01-01

    Purpose. To investigate the effect of light activation on the water sorption (WS) and solubility (SL) of resin cements after 24 h and 7 days. Methods. Disk-shaped specimens were prepared using five dual-polymerized cements (four self-adhesive [RelyX Unicem, MaxCem, SeT and G-Cem] and one conventional [Panavia F 2.0]) and divided according to the curing mode (direct light exposure or self-cure) and water immersion period (24 h or 7 days). Specimens were dry-stored and weighed daily until a constant mass was recorded (M1). Then, specimens were stored in water for either 24 h or 7 days and immediately weighed (M2). After desiccation, specimens were weighed again until a constant mass was achieved (M3). WS and SL were calculated and statistically analyzed by Kruskal-Wallis, Dunn and Mann-Whitney U tests (α = 0.05%). Results. There was a significant increase in WS for all products after one-week immersion in water. The highest water uptake was observed for autopolymerized groups. Extended water immersion significantly affected the SL for most of autopolymerized cements. Significant differences between products were observed in both tests. Conclusions. The curing mode and the water immersion period may affect the mechanical stability of the resin cements, and these differences appear to be product-dependent. PMID:27379329

  4. Negative Association of Circulating MicroRNA-126 with High-sensitive C-reactive Protein and Vascular Cell Adhesion Molecule-1 in Patients with Coronary Artery Disease Following Percutaneous Coronary Intervention

    PubMed Central

    Wang, Jun-Nan; Yan, You-You; Guo, Zi-Yuan; Jiang, Ya-Juan; Liu, Lu-Lu; Liu, Bin

    2016-01-01

    Background: Percutaneous coronary intervention (PCI) causes endothelial damage, resulting in an inflammatory response with elevation of markers such as high-sensitive C-reactive protein (hs-CRP) and vascular cell adhesion molecule-1 (VCAM-1), which are associated with restenosis after PCI. Evidence suggests that microRNA-126 (miR-126) plays an important role in vascular inflammation, but its correlation with PCI-mediated inflammation has not been investigated. In this study, we investigated the effect of PCI on circulating miR-126 and inflammation markers such as hs-CRP and VCAM-1. Methods: We enrolled 130 patients with coronary artery disease (CAD) in the Second Hospital of Jilin University from October 2015 to December 2015. Among them, 82 patients with CAD, defined as at least one major epicardial vessel with >70% stenosis who planned to undergo PCI, were divided into acute coronary syndrome (ACS) group (46 patients) and stable angina (SA) group (36 patients). Forty-eight patients confirmed by coronary angiography without PCI were used as controls. The plasmas of all patients were collected prior to PCI and at 30 min, 24 h, and 72 h after PCI. The plasma VCAM-1 and hs-CRP were detected by enzyme-linked immunosorbent assay, and the miR-126 was evaluated by quantitative reverse transcription-polymerase chain reaction. Results: Plasma concentrations of hs-CRP and VCAM-1 in patients with either ACS (n = 46) or SA (n = 36) were significantly higher than in controls (n = 48) (P < 0.01) prior to PCI, and increased further at 24 h and 72 h after PCI, compared with prior PCI. Moreover, VCAM-1 was positively correlated with balloon time and pressure. In contrast, the plasma concentration of miR-126 was significantly lower in patients with CAD than in controls, and further decreased with time post-PCI. A negative correlation was observed between miR-126 and hs-CRP and VCAM-1 at 72 h after PCI. Conclusion: There was a negative correlation of miR-126 with the PCI

  5. [Inhibition of Staphylococcus epidermidis adhesion on titanium surface with bioactive water-soluble copolymers bearing sulfonate, phosphate or carboxylate functions].

    PubMed

    Poussard, L; Ouédraogo, C P; Pavon-Djavid, G; Migonney, V

    2012-04-01

    Implanted prostheses are sometimes subject to bacterial infections, which can threat their benefit rule on a long-term basis. Various methods are studied to fight against these infections. Among them, the grafting of bioactive polymers onto the prosthesis surface shows up as a promising way to the problem of infections. This work presents the influence of various water-soluble bioactive polymers on the inhibition of the Staphylococcus epidermidis adhesion on the titanium samples surfaces initially preadsorbed with various proteins. Whatever the studied protein is, it is shown that the bioactive polymer containing sulfonate functions generates an inhibition of the adhesion of Staphylococcus epidermidis. For a plasma preadsorption, the inhibition rate rises up to 68% when the concentration of sulfonate function is 2.5μmol/L. Titanium surfaces grafted with the bioactive polymer were also tested. We find an inhibitive activity of the adhesion close to that of the previous case. These preliminary results can point up a clinical interest in the fight against the medical devices infection, because they highlight a clear local effect of S. epidermidis adhesion inhibition. Copolymers containing other functional groups (phosphate or carboxylate) were dissolved in a bacterial suspension to monitor the influence of the composition on the adhesion inhibition. Their inhibition rates are not significantly lower than those of pNaSS homopolymers, as much as the sulfonate function proportion remains higher than 50%. Thus, the sulfonate function is the main responsible for the inhibition of the S. epidermidis adhesion.

  6. Adhesions

    MedlinePlus

    Adhesions are bands of scar-like tissue. Normally, internal tissues and organs have slippery surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They ...

  7. Adhesion

    MedlinePlus

    ... the intestines, adhesions can cause partial or complete bowel obstruction . Adhesions inside the uterine cavity, called Asherman syndrome , ... 1. Read More Appendicitis Asherman syndrome Glaucoma Infertility Intestinal obstruction Review Date 4/5/2016 Updated by: Irina ...

  8. Water soluble/dispersible and easy removable cationic adhesives and coating for paper recycling

    DOEpatents

    Deng, Yulin; Yan, Zegui

    2005-11-29

    The present invention is an adhesive or coating composition that is dispersible or dissolvable in water, making it useful in as a coating or adhesive in paper intended for recycling. The composition of the present invention is cationically charged thereby binding with the fibers of the paper slurry and thus, resulting in reduced deposition of adhesives on equipment during the recycling process. The presence of the composition of the present invention results in stronger interfiber bonding in products produced from the recycled fibers.

  9. Soluble adhesion molecules (sICAM-1, sVCAM-1) and selectins (sE selectin, sP selectin, sL selectin) levels in children and adolescents with obesity, hypertension, and diabetes.

    PubMed

    Glowinska, Barbara; Urban, Miroslawa; Peczynska, Jadwiga; Florys, Bozena

    2005-08-01

    The attachment of monocytes and lymphocytes to endothelial cells, which initiates atherosclerosis, arises under the influence of adhesion molecules. The preclinical phase of this disease lasts many decades, and this provides an opportunity for the presymptomatic detection of high-risk subjects. We evaluated levels of the adhesion molecules: sICAM-1 (soluble intercellular adhesion molecule 1), sVCAM-1 (soluble vascular adhesion molecule 1), sE selectin, sP selectin, and sL selectin in children with atherosclerosis risk factors (n = 123, mean age 15.1 years) (obese [n = 17], hypertensive [n = 25], obese with hypertension [n = 30], type 1 diabetic [n = 51]). Twenty-seven healthy children formed the control group, mean age 15.2 years. sICAM-1 was higher in the study group compared with control (314.1 +/- 61 vs 264.9 +/- 55 ng/mL, P < .01). The same was found for sVCAM-1 (513.7 +/- 187 vs 407.9 +/- 76 ng/mL, P < .05) and E selectin (86.04 +/- 33.6 vs 62.1 +/- 20.3 ng/mL, P < .01). sP-selectin and sL-selectin levels were not different compared with controls. E selectin correlated with body mass index (BMI; r = 0.18, P = .03), total cholesterol (r = 0.2, P = .016), and triglycerides (r = 0.22, P = .008). sICAM-1 correlated with BMI (r = 0.19, P = .019) and systolic blood pressure (r = 0.13, P = .045). In multiple linear regression analysis, sE selectin was found to be associated with triglycerides (R2 = 0.29, P = .045), sICAM-1 dependent on BMI (R2 = 0.58, P = .047), and sVCAM-1 dependent on total cholesterol (R2 = 0.51, P = .006). Elevated concentrations of sICAM-1, sVCAM-1, and E selectin were found in obese, hypertensive, and diabetic children. We conclude that endothelial activation appears in these children, and adhesion molecules are related to the earliest stages of atherosclerosis.

  10. Focal Adhesion Kinase-Dependent Role of the Soluble Form of Neurotensin Receptor-3/Sortilin in Colorectal Cancer Cell Dissociation

    PubMed Central

    Béraud-Dufour, Sophie; Devader, Christelle; Massa, Fabienne; Roulot, Morgane; Coppola, Thierry; Mazella, Jean

    2016-01-01

    The aim of the present review is to unravel the mechanisms of action of the soluble form of the neurotensin (NT) receptor-3 (NTSR3), also called Sortilin, in numerous physiopathological processes including cancer development, cardiovascular diseases and depression. Sortilin/NTSR3 is a transmembrane protein thought to exert multiple functions both intracellularly and at the level of the plasma membrane. The Sortilin/NTSR3 extracellular domain is released by shedding from all the cells expressing the protein. Although the existence of the soluble form of Sortilin/NTSR3 (sSortilin/NTSR3) has been evidenced for more than 10 years, the studies focusing on the role of this soluble protein at the mechanistic level remain rare. Numerous cancer cells, including colonic cancer cells, express the receptor family of neurotensin (NT), and particularly Sortilin/NTSR3. This review aims to summarize the functional role of sSortilin/NTSR3 characterized in the colonic cancer cell line HT29. This includes mechanisms involving signaling cascades through focal adhesion kinase (FAK), a key pathway leading to the weakening of cell–cell and cell–extracellular matrix adhesions, a series of events which could be responsible for cancer metastasis. Finally, some future approaches targeting the release of sNTSR3 through the inhibition of matrix metalloproteases (MMPs) are suggested. PMID:27834811

  11. Biocompatible Adhesives

    DTIC Science & Technology

    1991-03-01

    pressure sensitive elastomer, polyisobutylene. with water soluble adhesives such as carboxy methyl ceiiulose, pectin and gelatin for adhesion to... cellulose and nylon films, were most often used in 180 peel adhesion tests on the adhesives. Films were cast on one substrate and the other was moistened...irritation. 4. Peel adhesion to hydrated cellulose , nylon and cotton cloth substrates was satisfactory. So too was the peel adhesion as a function of

  12. Resistance to cerebral malaria in tumor necrosis factor-alpha/beta-deficient mice is associated with a reduction of intercellular adhesion molecule-1 up-regulation and T helper type 1 response.

    PubMed Central

    Rudin, W.; Eugster, H. P.; Bordmann, G.; Bonato, J.; Müller, M.; Yamage, M.; Ryffel, B.

    1997-01-01

    Tumor necrosis factor (TNF) induced by Plasmodium berghei ANKA (PbA) infection was suggested to play an important role in the development of cerebral malaria (CM). We asked whether TNF-alpha/beta double-deficient mice, which have a complete disruption of the TNF-signaling pathways, are protected from CM and what might be the possible mechanisms of protection. PbA infection induces fatal CM in wild-type mice, which die within 5 to 8 days with severe neurological signs. In contrast, TNF-alpha/beta-deficient mice are completely resistant to PbA-induced CM. As PbA-induced up-regulation of endothelial intercellular adhesion molecule (ICAM)-1 expression as well as the systemic release of nitric oxide is found only in wild-type mice, TNF is apparently central for the recruitment of mononuclear cells and microvascular damage. Mononuclear cell adhesion to the endothelium, vascular leak and, perivascular hemorrhage are found only in the brain of wild-type mice. By contrast, the development of parasitemia and anemia is independent of TNF. Resistance to CM in TNF-alpha/beta-deficient mice is associated with reduced interferon-gamma and interleukin-12 expression in the brain, in the absence of increased T helper type 2 cytokines. In conclusion, TNF apparently is required for PbA-induced endothelial ICAM-1 up-regulation and subsequent microvascular pathology resulting in fatal CM. In the absence of TNF, ICAM-1 and nitric oxide up-regulation are reduced, and PbA infection fails to cause fatal CM. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:9006341

  13. Could both vitamin D and geomagnetic activity impact serum levels of soluble cell adhesion molecules in young men?

    NASA Astrophysics Data System (ADS)

    Bleizgys, Andrius; Šapoka, Virginijus

    2016-07-01

    Vitamin D might have a role in diminishing endothelial dysfunction (ED). The initial aim was to test the hypothesis of reciprocity between levels of 25-hydroxyvitamin D (25(OH)D) and levels of soluble endothelial cell adhesion molecules (CAMs) that could serve as biomarkers of ED. Randomly selected men of age 20-39 were examined at February or March (cold season) and reexamined at August or September (warm season). Some lifestyle and anthropometrical data were recorded. Laboratory measurements, including those for serum levels of soluble CAMs—sICAM-1, sVCAM-1, sE-selectin and sP-selectin—were also performed. As some of the results were rather unexpected, indices of geomagnetic activity (GMA), obtained from the online database, were included in further analysis as a confounder. In 2012-2013, 130 men were examined in cold season, and 125 of them were reexamined in warm season. 25(OH)D levels were found to be significantly negatively associated with sVCAM-1 levels ( β = -0.15, p = 0.043 in warm season; β = -0.19, p = 0.007 for changes). Levels of sVCAM-1 and sICAM-1 from the same seasons were notably different between years and have changed in an opposite manner. Soluble P-selectin levels were higher at warm season in both years. GMA was positively associated with sVCAM-1 ( β = 0.17, p = 0.039 in cold season; β = 0.22, p = 0.002 for changes) and negatively with sICAM-1 ( β = -0.30. p < 0.001 in cold season) levels. Vitamin D might play a role in diminishing sVCAM-1 levels. Levels of sVCAM-1 and sICAM-1 were associated with the GMA; this implies a need for further research.

  14. Soluble Adhesion Molecules in Patients Coinfected with HIV and HCV: A Predictor of Outcome

    PubMed Central

    Aldámiz-Echevarría, Teresa; Berenguer, Juan; Miralles, Pilar; Jiménez-Sousa, María A.; Carrero, Ana; Pineda-Tenor, Daniel; Díez, Cristina; Tejerina, Francisco; Pérez-Latorre, Leire; Bellón, José M.; Resino, Salvador

    2016-01-01

    Background Higher serum levels of adhesion molecules (sICAM-1 and sVCAM-1) are associated with advanced liver fibrosis in patients coinfected with human immunodeficiency virus and hepatitis C virus. We assessed the relationship between serum levels of adhesion molecules and liver-related events (LRE) or death, in coinfected patients. Methods We studied clinical characteristics and outcomes of 182 coinfected patients with a baseline liver biopsy (58 with advanced fibrosis) and simultaneous plasma samples who were followed for median of 9 years. We used receiver-operating characteristic (ROC) curves to calculate optimized cutoff values (OCV) of sICAM-1 and sVCAM-1, defined as the values with the highest combination of sensitivity and specificity for LRE. We used multivariate regression analysis to test the association between OCVs of sICAM-1 and sVCAM-1 and outcomes. The variables for adjustment were age, HIV transmission category, liver fibrosis, baseline CD4+ T-cell counts, antiretroviral therapy, and sustained virologic response (SVR). Results During the study period 51 patients had SVR, 19 had LRE, and 16 died. The OCVs for LRE were 5.68 Log pg/mL for sICAM-1 and 6.25 Log pg/mL for sVCAM-1, respectively. The adjusted subhazard ratio (aSHR) (95% confidence interval [CI]) of death or LRE, whichever occurred first, for sICAM-1 and sVCAM-1 > OCV were 3.98 ([1.14; 13.89], P = 0.030) and 2.81 ([1.10; 7.19], respectively (P = 0.030). Conclusions Serum levels of sICAM-1 and sVCAM-1 can serve as markers of outcome in HIV/HCV-coinfected patients. Therapies targeting necroinflammatory damage and fibrogenesis may have a role in the management chronic hepatitis C. PMID:26849641

  15. Synthesis, Characterization, to application of water soluble and easily removable cationic pressure sensitive adhesives

    SciTech Connect

    Institute of Paper Science Technology

    2004-01-30

    In recent years, the world has expressed an increasing interest in the recycling of waste paper to supplement the use of virgin fiber as a way to protect the environment. Statistics show that major countries are increasing their use of recycled paper. For example, in 1991 to 1996, the U.S. increased its recovered paper utilization rate from 31% to 39%, Germany went from 50% to 60%, the UK went from 60% to 70%, France increased from 46% to 49%, and China went from 32% to 35% [1]. As recycled fiber levels and water system closures both increase, recycled product quality will need to improve in order for recycled products to compete with products made from virgin fiber [2]. The use of recycled fiber has introduced an increasing level of metal, plastic, and adhesive contamination into the papermaking process which has added to the complexity of the already overwhelming task of providing a uniform and clean recycle furnish. The most harmful of these contaminates is a mixture of adhesives and polymeric substances that are commonly known as stickies. Stickies, which enter the mill with the pulp furnish, are not easily removed from the repulper and become more difficult the further down the system they get. This can be detrimental to the final product quality. Stickies are hydrophobic, tacky, polymeric materials that are introduced into the papermaking system from a mixture of recycled fiber sources. Properties of stickies are very similar to the fibers used in papermaking, viz. size, density, hydrophobicity, and electrokinetic charge. This reduces the probability of their removal by conventional separation processes, such as screening and cleaning, which are based on such properties. Also, their physical and chemical structure allows for them to extrude through screens, attach to fibers, process equipment, wires and felts. Stickies can break down and then reagglomerate and appear at seemingly any place in the mill. When subjected to a number of factors including changes

  16. Circulating concentrations of monocyte chemoattranctant protein-1, plasminogen activator inhibitor-1, & soluble leukocyte adhesion molecule-1 in overweight/obese men/women consuming fructose-or glucose-sweetened beverages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Results from animal studies suggest that consumption of large amounts of fructose can promote inflammation and impair fibrinolysis. Data describing the effects of fructose consumption on levels of pro-inflammatory and pro-thrombotic markers in humans are unavailable. The objective of this study was ...

  17. Effect of soy nuts on adhesion molecules and markers of inflammation in hypertensive and normotensive postmenopausal women.

    PubMed

    Nasca, Melita M; Zhou, Jin-Rong; Welty, Francine K

    2008-07-01

    Recently, it was shown that substituting soy nuts for nonsoy protein in a therapeutic lifestyle change (TLC) diet lowered systolic and diastolic blood pressure by 9.9% and 6.8%, respectively, in postmenopausal women with hypertension and by 5.2% and 2.9%, respectively, in normotensive postmenopausal women. In this study, to examine mechanisms for these reductions, markers of inflammation were measured, including soluble vascular cell adhesion molecule-1, soluble intercellular adhesion molecule-1, C-reactive protein, interleukin-6, and matrix metalloproteinase-9. Sixty healthy postmenopausal women (48 normotensive and 12 with hypertension) were randomized in a crossover design to a TLC diet alone or a TLC diet in which 0.5 cups of soy nuts (25 g soy protein and 101 mg aglycone isoflavones) replaced 25 g of nonsoy protein daily. Each diet was followed for 8 weeks. Compared with the TLC diet alone, levels of soluble vascular cell adhesion molecule-1 were significantly lower on the soy diet in women with hypertension (623.6 +/- 153.8 vs 553.8 +/- 114.4 ng/ml, respectively, p = 0.003), whereas no significant differences were observed in normotensive women. Soy nuts were associated with a trend toward reduction in C-reactive protein in normotensive women. No effect on levels of soluble intercellular adhesion molecule-1, interleukin-6, or matrix metalloproteinase-9 was observed. In conclusion, the reduction in soluble vascular cell adhesion molecule-1 with soy nuts in women with hypertension suggests an improvement in endothelial function that may reflect an overall improvement in the underlying inflammatory process underlying atherosclerosis.

  18. Adhesive arachnoiditis following lumbar radiculography with water-soluble contrast agents. A clinical report with special reference to metrizamide.

    PubMed

    Skalpe, I O

    1976-12-01

    The frequency of adhesive arachnoiditis following lumbar radiculography with methiodal sodium (95 patients), methylglucamine iocarmate (20 examinations in 18 patients), and metrizamide (77 examinations in 73 patients) was found to be 29% in patients who were not operated on between methiodal studies and 48% in those who were operated on. With both methylglucamine iocarmate and metrizamide the frequency was very low. No changes indicating adhesive arachnoiditis were seen with these media in patients who were not operated on between radiographic examinations.

  19. Brucella abortus as a potential vaccine candidate: induction of interleukin-12 secretion and enhanced B7.1 and B7.2 and intercellular adhesion molecule 1 surface expression in elutriated human monocytes stimulated by heat-inactivated B. abortus.

    PubMed Central

    Zaitseva, M; Golding, H; Manischewitz, J; Webb, D; Golding, B

    1996-01-01

    Development of a vaccine which is capable of generating a strong cellular immune response associated with gamma interferon (IFN-gamma) production and cytotoxic T-cell development requires that the immunogen be capable of inducing the secretion of interleukin-12 (IL-12), which is a pivotal factor for the differentiation of Th1 or Tc1 cells. We have previously shown that the heat-inactivated gram-negative bacterium Brucella abortus can induce IFN-gamma secretion by T cells. In the present study, we demonstrate that B. abortus and lipopolysaccharide (LPS) from B. abortus can induce IL-12 p40 mRNA expression and protein secretion by human elutriated monocytes (99% pure). p40 mRNA was detected within 4 h, and p40 protein could be measured at 24 h. This induction was abrogated by anti-CD14 monoclonal antibody, suggesting that monocytes recognize B. abortus via their receptor for LPS. The biological activity of IL-12 secreted by B. abortus-stimulated monocytes was demonstrated by its ability to upregulate IFN-gamma mRNA expression in T cells separated from monocytes and B. abortus by a transwell membrane. The B. abortus-induced IL-12 also enhanced NK cytolytic activity against K562 target cells. B. abortus was shown to rapidly increase the expression of the costimulatory molecules B7.1 and B7.2 and intercellular adhesion molecule 1 on human monocytes. Together, these data indicate that B. abortus can directly activate human monocytes and provide the cytokine milieu which would direct the immune response towards Th1-Tc1 differentiation. PMID:8757841

  20. Soluble Lutheran/basal cell adhesion molecule is detectable in plasma of hepatocellular carcinoma patients and modulates cellular interaction with laminin-511 in vitro.

    PubMed

    Kikkawa, Yamato; Miwa, Takahiro; Tanimizu, Naoki; Kadoya, Yuichi; Ogawa, Takaho; Katagiri, Fumihiko; Hozumi, Kentaro; Nomizu, Motoyoshi; Mizuguchi, Toru; Hirata, Koichi; Mitaka, Toshihiro

    2014-10-15

    Lutheran (Lu), an immunoglobulin superfamily transmembrane receptor, is also known as basal cell adhesion molecule (B-CAM). Lu/B-CAM is a specific receptor for laminin α5, a subunit of laminin-511 (LM-511) that is a major component of basement membranes in various tissues. Our previous study showed that Lu/B-CAM was cleaved by MT1-MMP and released from cell surfaces. In this study we examined the soluble Lu/B-CAM in culture media and in plasma of mice bearing HuH-7 hepatocellular carcinoma (HCC) cells and patients with HCC. Two HCC cell lines, HepG2 and HuH-7, released Lu/B-CAM into the culture media. Although Lu/B-CAM was cleaved by MT1-MMP in HuH-7 cells, HepG2 cells released Lu/B-CAM in a MMP-independent manner. The concentration of Lu/B-CAM released into mouse plasma correlated with tumor size. Moreover the soluble Lu/B-CAM in plasma of HCC patients was significantly decreased after resection of the tumor. Immunohistochemical studies showed that although the expression of Lu/B-CAM was observed in most HCCs, MT1-MMP was not always expressed in tumor tissues, suggesting that a part of Lu/B-CAM in plasma of HCC patients was also released in a MMP-independent manner. In vitro studies showed that the soluble Lu/B-CAM released from HCC cells bound to LM-511. Moreover the soluble Lu/B-CAM influenced cell migration on LM-511. These results suggest that soluble Lu/B-CAM serves as not only a novel marker for HCC but also a modulator in tumor progression.

  1. Iron sucrose accelerates early atherogenesis by increasing superoxide production and upregulating adhesion molecules in CKD.

    PubMed

    Kuo, Ko-Lin; Hung, Szu-Chun; Lee, Tzong-Shyuan; Tarng, Der-Cherng

    2014-11-01

    High-dose intravenous iron supplementation is associated with adverse cardiovascular outcomes in patients with CKD, but the underlying mechanism is unknown. Our study investigated the causative role of iron sucrose in leukocyte-endothelium interactions, an index of early atherogenesis, and subsequent atherosclerosis in the mouse remnant kidney model. We found that expression levels of intracellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) and adhesion of U937 cells increased in iron-treated human aortic endothelial cells through upregulated NADPH oxidase (NOx) and NF-κB signaling. We then measured mononuclear-endothelial adhesion and atherosclerotic lesions of the proximal aorta in male C57BL/6 mice with subtotal nephrectomy, male apolipoprotein E-deficient (ApoE(-/-)) mice with uninephrectomy, and sham-operated mice subjected to saline or parenteral iron loading. Iron sucrose significantly increased tissue superoxide production, expression of tissue cell adhesion molecules, and endothelial adhesiveness in mice with subtotal nephrectomy. Moreover, iron sucrose exacerbated atherosclerosis in the aorta of ApoE(-/-) mice with uninephrectomy. In patients with CKD, intravenous iron sucrose increased circulating mononuclear superoxide production, expression of soluble adhesion molecules, and mononuclear-endothelial adhesion compared with healthy subjects or untreated patients. In summary, iron sucrose aggravated endothelial dysfunction through NOx/NF-κB/CAM signaling, increased mononuclear-endothelial adhesion, and exacerbated atherosclerosis in mice with remnant kidneys. These results suggest a novel causative role for therapeutic iron in cardiovascular complications in patients with CKD.

  2. The effect of dietary walnuts compared to fatty fish on eicosanoids, cytokines, soluble endothelial adhesion molecules and lymphocyte subsets: a randomized, controlled crossover trial.

    PubMed

    Chiang, Yu-Lan; Haddad, Ella; Rajaram, Sujatha; Shavlik, David; Sabaté, Joan

    2012-01-01

    We tested the hypothesis that walnut consumption can exert effects on markers of inflammation and endothelial activation similar to those produced by fish consumption. In a crossover dietary intervention trial, 25 normal to mildly hyperlipidemic men and women were randomly assigned to one of three isoenergetic diets: a walnut diet incorporating 42.5 g of walnuts per 10.1 mJ 6 times per week (1.8% of energy n-3 fat); a fish diet providing 113 g of fatty fish per 10.1 mJ 2 times per week (0.8% of energy n-3 fat), or a control diet (no nuts or fish, 0.4% of energy n-3 fat) for 4 weeks on each diet. Both the walnut and fish diets inhibited circulating concentrations of prostaglandin E metabolite (PGEM) and 11-dehydro thromboxane B2, but demonstrated no effect on blood interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α¯ (TNF-α¯), and C-reactive protein (CRP) or the number of circulating lymphocyte subsets. On the walnut diet the proportion of plasma phospholipid α¯-linolenic acid (ALA) increased 140% and arachidonic acid (AA) decreased 7% compared to both the control and fish diets. The proportion of plasma phospholipid eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increased about 200% and 900% respectively on the fish diet relative to either the control or walnut diet. The walnut diet inhibited E-selectin by 12.7% relative to the fish diet, and the fish diet inhibited secretory intercellular adhesion molecule-1 (s-ICAM-1) by 4.5% relative to the control diet. Both walnuts and fish in commonly consumed amounts may have modest albeit distinct effects on circulating adhesion molecules.

  3. Retrograde inflammatory signaling from neutrophils to endothelial cells by soluble interleukin-6 receptor alpha.

    PubMed Central

    Modur, V; Li, Y; Zimmerman, G A; Prescott, S M; McIntyre, T M

    1997-01-01

    Endothelial cells initiate the inflammatory response by recruiting and activating leukocytes. IL-6 is not an agonist for this, but we found soluble IL-6 receptor alpha-subunit (IL-6Ralpha), with their constitutive IL-6 synthesis, stimulated endothelial cells to synthesize E-selectin, intracellular adhesion molecule-1, vascular cellular adhesion molecule-1, IL-6, and IL-8, and to bind neutrophils. Neutrophils express significant amounts of IL-6Ralpha and upon stimulation shed it: this material activates endothelial cells through a newly constituted IL-6 receptor. Retrograde signaling from PMN activated in the extravascular compartment to surrounding endothelial cells will recruit more and a wider variety of leukocytes. The limiting signal is a soluble receptor, not a cytokine. PMID:9389739

  4. Crosslinking characteristics of and cell adhesion to an injectable poly(propylene fumarate-co-ethylene glycol) hydrogel using a water-soluble crosslinking system.

    PubMed

    Shung, Albert K; Behravesh, Esfandiar; Jo, Seongbong; Mikos, Antonios G

    2003-04-01

    The crosslinking characteristics of an injectable poly(propylene fumarate-co-ethylene glycol) [P(PF-co-EG)]-based hydrogel were investigated. A water-soluble crosslinking system was used, consisting of poly(ethylene glycol) diacrylate (PEG-DA), ammonium persulfate (APS), and ascorbic acid (AA). The effects of PEG block length of the P(PF-co-EG), APS concentration, AA concentration, and PEG-DA concentration on equilibrium water content, sol fraction, onset of gelation, mechanical properties, and endothelial cell adhesion were studied. The equilibrium water content of the hydrogels ranged from 57.1 +/- 0.3 to 79.7 +/- 0.2% whereas the sol fraction ranged from 2.5 +/- 0.0 to 3.33 +/- 5.4%. The onset of gelation times varied from 1.1 +/- 0.1 to 4.3 +/- 0.2 min. For all hydrogel formulations, the tensile strength fell between 61.7 +/- 18.2 and 401.3 +/- 67.5 kPa and tensile moduli ranged from 0.4 +/- 0.0 to 3.3 +/- 0.3 MPa. Endothelial cells attached to the hydrogels in a range of 3.9 +/- 1.4 to 31.1 +/- 14.1% of cells seeded. These findings suggest that injectable poly(propylene fumarate-co-ethylene glycol) hydrogel formulations in conjunction with a novel water-soluble crosslinking system may be useful for in situ crosslinkable tissue-engineering applications.

  5. Assessment of a five-layer laminate technique to measure the saturation solubility of drug in pressure-sensitive adhesive film.

    PubMed

    Reismann, Simone; Lee, Geoffrey

    2012-07-01

    A five-layer laminate technique is used to determine the saturation solubility of a drug in a thin polymer film, c(p)(s), of pressure-sensitive adhesive (PSA) used to prepare transdermal patches. A drug-loaded donor polymer film is attached via a separating membrane to an initially drug-free acceptor polymer film. Diffusion of drug occurs into the acceptor up to saturation solubility equilibrium. This systematic study of the technique using the drug tamsulosin and the PSA Duro Tak 87-4098 was a kinetic analysis of the diffusion process. It was found that the technique gives an equilibrium value for c(p)(s) in a PSA polymer film in the presence of crystalline phase of the drug in the donor. A highly permeable Perthese-separating membrane caused overshoot in the acceptor, most likely induced by initial supersaturation of the donor. Change to a less-permeable ethylene-vinyl-acetate-separating membrane avoided overshoot, but gave a prolonged time, >300 days, to equilibrium. Preloading the acceptor accelerated the equilibration process to approximately 50 days with the Perthese. Suitable experimental conditions are identified that, if performed correctly, allow the technique to give an equilibrium value for c(p)(s).

  6. Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries.

    PubMed

    Choi, Jaecheol; Kim, Kyuman; Jeong, Jiseon; Cho, Kuk Young; Ryou, Myung-Hyun; Lee, Yong Min

    2015-07-15

    A highly adhesive and thermally stable copolyimide (P84) that is soluble in organic solvents is newly applied to silicon (Si) anodes for high energy density lithium-ion batteries. The Si anodes with the P84 binder deliver not only a little higher initial discharge capacity (2392 mAh g(-1)), but also fairly improved Coulombic efficiency (71.2%) compared with the Si anode using conventional polyvinylidene fluoride binder (2148 mAh g(-1) and 61.2%, respectively), even though P84 is reduced irreversibly during the first charging process. This reduction behavior of P84 was systematically confirmed by cyclic voltammetry and Fourier-transform infrared analysis in attenuated total reflection mode of the Si anodes at differently charged voltages. The Si anode with P84 also shows ultrastable long-term cycle performance of 1313 mAh g(-1) after 300 cycles at 1.2 A g(-1) and 25 °C. From the morphological analysis on the basis of scanning electron microscopy and optical images and of the electrode adhesion properties determined by surface and interfacial cutting analysis system and peel tests, it was found that the P84 binder functions well and maintains the mechanical integrity of Si anodes during hundreds of cycles. As a result, when the loading level of the Si anode is increased from 0.2 to 0.6 mg cm(-2), which is a commercially acceptable level, the Si anode could deliver 647 mAh g(-1) until the 300th cycle, which is still two times higher than the theoretical capacity of graphite at 372 mAh g(-1).

  7. Effect of soluble products from lectin-stimulated lymphocytes on the growth, adhesiveness, and glycosaminoglycan synthesis of cultured synovial fibroblastic cells.

    PubMed Central

    Anastassiades, T P; Wood, A

    1981-01-01

    Human blood mononuclear cells exposed to concanavalin A or phytohemagglutinin secrete a soluble factor that arrests the growth of human synovial fibroblastic cells in culture. Once the growth-inhibitory effect is initiated it cannot be reversed by washing the fibroblastic cells, by refeeding with nonconditioned fresh serum-containing medium, by trypsinization, EDTA treatment, or a combination of these procedures. Media from nonstimulated mononuclear cells, fibroblastic cells, or the lectins themselves do not contain similar inhibitory activity that can be detected by the present culture systems. This lectin-dependent, growth-inhibitory activity does not have a cytotoxic effect on the fibroblasts but increases their adhesiveness to plastic or glass surfaces, and the cells tend to assume a less fibroblastic morphology. The growth-inhibitory activity is stable in the cold and is nondialyzable or ultrafilterable, but the activity is rapidly lost at temperature between 60 degrees and 70 degrees C and at pH 2.0. The growth-arrested cells secrete more glycosaminoglycan per cell in the medium and synthesize more cell surface glycosaminoglycan than the controls. However, the increased glycosaminoglycan synthesis cannot be explained as being entirely secondary to a cell density effect as it is also observed when adjustments are made for the differences in growth rates. PMID:7276172

  8. Kidney Injury Molecule-1: A Translational Journey

    PubMed Central

    Bonventre, Joseph V.

    2014-01-01

    Kidney injury molecule-1 (KIM-1, also named TIM-1 and HAVCR-1) was identified as the most highly upregulated protein in the proximal tubule of the kidney after injury. This protein is present with injury in multiple species including man, and also after a large number of acute and chronic insults to the kidney. It is a type-1 membrane protein whose ectodomain is released into the lumen of the tubule. The ectodomain is heavily glycosylated and stable and appears in the urine after injury. It has been qualified by the United States Food and Drug Administration and the European Medicines Agency for preclinical assessment of nephrotoxicity and on a case-by-case basis for clinical evaluation. As a biomarker in humans, its utility has been demonstrated in acute and chronic injury and in renal cell carcinoma, a condition similar to injury, where there is dedifferentiation of the epithelial cell. KIM-1 is a phosphatidylserine receptor which recognizes apoptotic cells directing them to lysosomes. It also serves as a receptor for oxidized lipoproteins and hence is important for uptake of components of the tubular lumen which may be immunomodulatory and/or toxic to the cell. KIM-1 is unique in being the first molecule, not also present on myeloid cells, that transforms kidney proximal epithelial cells into semi-professional phagocytes. Data suggest that KIM-1 expression is protective during early injury, whereas in chronic disease states, prolonged KIM-1 expression may be maladaptive and may represent a target for therapy of chronic kidney disease. PMID:25125746

  9. Optimization of intrinsic and extrinsic tendon healing through controllable water-soluble mitomycin-C release from electrospun fibers by mediating adhesion-related gene expression.

    PubMed

    Zhao, Xin; Jiang, Shichao; Liu, Shen; Chen, Shuai; Lin, Zhi Yuan William; Pan, Guoqing; He, Fan; Li, Fengfeng; Fan, Cunyi; Cui, Wenguo

    2015-08-01

    To balance intrinsic and extrinsic healing during tendon repair is challenging in tendon surgery. We hypothesized that by mediating apoptotic gene and collagen synthesis of exogenous fibroblasts, the adhesion formation induced by extrinsic healing could be inhibited. With the maintenance of intrinsic healing, the tendon could be healed with proper function with no adhesion. In this study, we loaded hydrophilic mitomycin-C (MMC) into hyaluronan (HA) hydrosols, which were then encapsulated in poly(L-lactic acid) (PLLA) fibers by micro-sol electrospinning. This strategy successfully provided a controlled release of MMC to inhibit adhesion formations with no detrimental effect on intrinsic healing. We found that micro-sol electrospinning was an effective and facile approach to incorporate and control hydrophilic drug release from hydrophobic polyester fibers. MMC exhibited an initially rapid, and gradually steadier release during 40 days, and the release rates could be tuned by its concentration. In vitro studies revealed that low concentrations of MMC could inhibit fibroblast adhesion and proliferation. When lacerate tendons were healed using the MMC-HA loaded PLLA fibers in vivo, they exhibited comparable mechanical strength to the naturally healed tendons but with no significant presence of adhesion formation. We further identified the up-regulation of apoptotic protein Bax expression and down-regulation of proteins Bcl2, collage I, collagen III and α-SMA during the healing process associated with minimum adhesion formations. This approach presented here leverages new advances in drug delivery and nanotechnology and offers a promising strategy to balance intrinsic and extrinsic tendon healing through modulating genes associated with fibroblast apoptosis and collagen synthesis.

  10. Macrophage migration inhibitory factor is up-regulated in human first-trimester placenta stimulated by soluble antigen of Toxoplasma gondii, resulting in increased monocyte adhesion on villous explants.

    PubMed

    Ferro, Eloisa Amália Vieira; Mineo, José Roberto; Ietta, Francesca; Bechi, Nicoletta; Romagnoli, Roberta; Silva, Deise Aparecida Oliveira; Sorda, Giuseppina; Bevilacqua, Estela; Paulesu, Luana Ricci

    2008-01-01

    Considering the potential role of macrophage migration inhibitory factor (MIF) in the inflammation process in placenta when infected by pathogens, we investigated the production of this cytokine in chorionic villous explants obtained from human first-trimester placentas stimulated with soluble antigen from Toxoplasma gondii (STAg). Parallel cultures were performed with villous explants stimulated with STAg, interferon-gamma (IFN-gamma), or STAg plus IFN-gamma. To assess the role of placental MIF on monocyte adhesiveness to human trophoblast, explants were co-cultured with human myelomonocytic THP-1 cells in the presence or absence of supernatant from cultures treated with STAg (SPN), SPN plus anti-MIF antibodies, or recombinant MIF. A significantly higher concentration of MIF was produced and secreted by villous explants treated with STAg or STAg plus IFN-gamma after 24-hour culture. Addition of SPN or recombinant MIF was able to increase THP-1 adhesion, which was inhibited after treatment with anti-MIF antibodies. This phenomenon was associated with intercellular adhesion molecule expression by villous explants. Considering that the processes leading to vertical dissemination of T. gondii remain widely unknown, our results demonstrate that MIF production by human first-trimester placenta is up-regulated by parasite antigen and may play an essential role as an autocrine/paracrine mediator in placental infection by T. gondii.

  11. Kindlin-3 Is Essential for the Resting α4β1 Integrin-mediated Firm Cell Adhesion under Shear Flow Conditions.

    PubMed

    Lu, Ling; Lin, ChangDong; Yan, ZhanJun; Wang, Shu; Zhang, YouHua; Wang, ShiHui; Wang, JunLei; Liu, Cui; Chen, JianFeng

    2016-05-06

    Integrin-mediated rolling and firm cell adhesion are two critical steps in leukocyte trafficking. Integrin α4β1 mediates a mixture of rolling and firm cell adhesion on vascular cell adhesion molecule-1 (VCAM-1) when in its resting state but only supports firm cell adhesion upon activation. The transition from rolling to firm cell adhesion is controlled by integrin activation. Kindlin-3 has been shown to bind to integrin β tails and trigger integrin activation via inside-out signaling. However, the role of kindlin-3 in regulating resting α4β1-mediated cell adhesion is not well characterized. Herein we demonstrate that kindlin-3 was required for the resting α4β1-mediated firm cell adhesion but not rolling adhesion. Knockdown of kindlin-3 significantly decreased the binding of kindlin-3 to β1 and down-regulated the binding affinity of the resting α4β1 to soluble VCAM-1. Notably, it converted the resting α4β1-mediated firm cell adhesion to rolling adhesion on VCAM-1 substrates, increased cell rolling velocity, and impaired the stability of cell adhesion. By contrast, firm cell adhesion mediated by Mn(2+)-activated α4β1 was barely affected by knockdown of kindlin-3. Structurally, lack of kindlin-3 led to a more bent conformation of the resting α4β1. Thus, kindlin-3 plays an important role in maintaining a proper conformation of the resting α4β1 to mediate both rolling and firm cell adhesion. Defective kindlin-3 binding to the resting α4β1 leads to a transition from firm to rolling cell adhesion on VCAM-1, implying its potential role in regulating the transition between integrin-mediated rolling and firm cell adhesion.

  12. Adhesion molecules in vernal keratoconjunctivitis

    PubMed Central

    El-Asrar, A.; Geboes, K.; Al-Kharashi, S.; Tabbara, K.; Missotten, L.; Desmet, V.

    1997-01-01

    AIMS/BACKGROUND—Adhesion molecules play a key role in the selective recruitment of different leucocyte population to inflammatory sites. The purpose of the present study was to investigate the presence and distribution of adhesion molecules in the conjunctiva of patients with vernal keratoconjunctivitis (VKC).
METHODS—The presence and distribution of adhesion molecules were studied in 14 conjunctival biopsy specimens from seven patients with active VKC and in four normal conjunctival biopsy specimens. We used a panel of specific monoclonal antibodies (mAbs) directed against intercellular adhesion molecule-1 (ICAM-1), intercellular adhesion molecule-3 (ICAM-3), lymphocyte function associated antigen-1 (LFA-1), very late activation antigen-4 (VLA-4), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leucocyte adhesion molecule-1 (ELAM-1). In addition, a panel of mAbs were used to characterise the composition of the inflammatory infiltrate.
RESULTS—In the normal conjunctiva, ICAM-1 was expressed on the vascular endothelium only, LFA-1 and ICAM-3 on epithelial and stromal mononuclear cells , and VLA-4 on stromal mononuclear cells. The expression of VCAM-1 and ELAM-1 was absent. The number of cells expressing adhesion molecules was found to be markedly increased in all VKC specimens. This was concurrent with a heavy inflammatory infiltrate. Strong ICAM-1 expression was induced on the basal epithelial cells, and vascular endothelial cells. Furthermore, ICAM-1 was expressed on stromal mononuclear cells. LFA-1 and ICAM-3 were expressed on the majority of epithelial and stromal infiltrating mononuclear cells. VLA-4 expression was noted on stromal mononuclear cells. Compared with controls, VKC specimens showed significantly more ICAM-3+, LFA-1+, and VLA-4+ cells. VCAM-1 and ELAM-1 were induced on the vascular endothelial cells.
CONCLUSIONS—Increased expression of adhesion molecules may play an important role in the pathogenesis of VKC.

 PMID

  13. Comparison of the cohesion-adhesion balance approach to colloidal probe atomic force microscopy and the measurement of Hansen partial solubility parameters by inverse gas chromatography for the prediction of dry powder inhalation performance.

    PubMed

    Jones, Matthew D; Buckton, Graham

    2016-07-25

    The abilities of the cohesive-adhesive balance approach to atomic force microscopy (AFM) and the measurement of Hansen partial solubility parameters by inverse gas chromatography (IGC) to predict the performance of carrier-based dry powder inhaler (DPI) formulations were compared. Five model drugs (beclometasone dipropionate, budesonide, salbutamol sulphate, terbutaline sulphate and triamcinolone acetonide) and three model carriers (erythritol, α-lactose monohydrate and d-mannitol) were chosen, giving fifteen drug-carrier combinations. Comparison of the AFM and IGC interparticulate adhesion data suggested that they did not produce equivalent results. Comparison of the AFM data with the in vitro fine particle delivery of appropriate DPI formulations normalised to account for particle size differences revealed a previously observed pattern for the AFM measurements, with a slightly cohesive AFM CAB ratio being associated with the highest fine particle fraction. However, no consistent relationship between formulation performance and the IGC data was observed. The results as a whole highlight the complexity of the many interacting variables that can affect the behaviour of DPIs and suggest that the prediction of their performance from a single measurement is unlikely to be successful in every case.

  14. Adult Schistosoma mansoni worms positively modulate soluble egg antigen-induced inflammatory hepatic granuloma formation in vivo. Stereological analysis and immunophenotyping of extracellular matrix proteins, adhesion molecules, and chemokines.

    PubMed Central

    Jacobs, W.; Bogers, J.; Deelder, A.; Wéry, M.; Van Marck, E.

    1997-01-01

    Synchronized liver granulomas were induced by injecting Sepharose beads to which SEA soluble egg antigen (SEA) or the concanavalin A binding fraction of SEA had been coupled into a mesenteric vein in naive, single-sex (35 days) and bisexually (28 days) Schistosoma mansoni-infected and Plasmodium berghei-immunized mice. Stereological analysis revealed that peak granuloma formation was already reached 8 days after injection in single-sex infected mice compared with 16 days in naive animals. No difference in granuloma formation between naive and P. berghei-immunized animals and between unisexually and bisexually S. mansoni-infected mice was observed. This suggests that the positive immunomodulatory effect on the granulomogenesis is worm specific and not likely to be due to arousal of the immune system by unrelated factors, nor is it influenced by the gender or degree of maturation of female worms. At all stages in time, the concanavalin A binding-fraction-induced granulomas reached only 65 to 70% of the volume of SEA-induced granulomas. Immunophenotyping of extracellular matrix proteins around deposited heads revealed that fibronectin was the dominant extracellular matrix protein and that also type I and IV collagen and laminin were deposited. Temporal analysis of the expression of the adhesion molecules ICAM-1, LFA-1, VLA-4, and VLA-6 was performed. Morphological evidence is presented for the role of adhesion molecules in the initiation and maintenance of hepatic granuloma formation. The chemokine monocyte chemoattractant protein-1 was expressed in the granuloma and in hepatic artery branches. From these data, it is concluded that adult S. mansoni worms positively modulate schistosomal hepatic granuloma formation in vivo. Adhesion molecules and chemokines play important roles in schistosomal granuloma formation. Images Figure 1 Figure 2 Figure 3 PMID:9176396

  15. The soluble form of LR11 protein is a regulator of hypoxia-induced, urokinase-type plasminogen activator receptor (uPAR)-mediated adhesion of immature hematological cells.

    PubMed

    Nishii, Keigo; Nakaseko, Chiaki; Jiang, Meizi; Shimizu, Naomi; Takeuchi, Masahiro; Schneider, Wolfgang J; Bujo, Hideaki

    2013-04-26

    A key property of hematopoietic stem and progenitor cells (HSPCs) regarding differentiation from the self-renewing quiescent to the proliferating stage is their adhesion to the bone marrow (BM) niche. An important molecule involved in proliferation and pool size of HSPCs in the BM is the hypoxia-induced urokinase-type plasminogen activator receptor (uPAR). Here, we show that the soluble form (sLR11) of LR11 (also called SorLA or SORL1) modulates the uPAR-mediated attachment of HSPCs under hypoxic conditions. Immunohistochemical and mRNA expression analyses revealed that hypoxia increased LR11 expression in hematological c-Kit(+) Lin(-) cells. In U937 cells, hypoxia induced a transient rise in LR11 transcription, production of cellular protein, and release of sLR11. Attachment to stromal cells of c-Kit(+) Lin(-) cells of lr11(-/-) mice was reduced by hypoxia much more than of lr11(+/+) animals. sLR11 induced the adhesion of U937 and c-Kit(+) Lin(-) cells to stromal cells. Cell attachment was increased by sLR11 and reduced in the presence of anti-uPAR antibodies. Furthermore, the fraction of uPAR co-immunoprecipitated with LR11 in membrane extracts of U937 cells was increased by hypoxia. CoCl2, a chemical inducer of HIF-1α, enhanced the levels of LR11 and sLR11 in U937 cells. The decrease in hypoxia-induced attachment of HIF-1α-knockdown cells was largely prevented by exogenously added sLR11. Finally, hypoxia induced HIF-1α binding to a consensus binding site in the LR11 promoter. Thus, we conclude that sLR11 regulates the hypoxia-enhanced adhesion of HSPCs via an uPAR-mediated pathway that stabilizes the hematological pool size by controlling cell attachment to the BM niche.

  16. Intercellular adhesion molecule-1 (ICAM-1) deficiency protects mice against severe forms of experimentally induced colitis

    PubMed Central

    Bendjelloul, F; Malý, P; Mandys, V; Jirkovská, M; Prokešová, L; Tučková, L; Tlaskalová-Hogenová, H

    2000-01-01

    ICAM-1 (CD54), the ligand for LFA-1 and Mac-1, is up-regulated during inflammatory reaction on the activated vascular endothelium. To determine its role in intestinal inflammation, we induced acute experimental colitis in mice with a deleted ICAM-1 gene, by feeding them with 3% dextran sodium sulphate (DSS) in drinking water for 7 days. Chronic colitis was elicited by DSS similarly, followed by 2 weeks with water. In the acute phase of inflammation, ICAM-1-deficient mice exhibited a significantly lower mortality rate (5%) than control C57Bl/6J mice (35%). Control animals, but not the ICAM-1-deficient mice, exhibited diarrhoea and rectal bleeding. Histological examination of large-bowel samples evaluated the intensity of inflammatory changes, and type and extent of mucosal lesions. In the acute phase, 33.3% of samples from ICAM-1-deficient mice exhibited mucosal defects (flat and fissural ulcers), predominantly mild to moderate inflammatory infiltrate within the lamina propria mucosae and lower grades of mucosal lesions. Much stronger inflammatory changes were present in control animals, flat ulcers (sometimes multiple) and fissural ulcers being observed in 62.5% of samples. Mucosal inflammatory infiltrate was moderate to severe, typically with higher grades of mucosal lesions. In chronic colitis, smaller inflammatory changes were found in the large bowel. The two mouse strains differed, the chronic colitis being accompanied by an increased serum level of anti-epithelial IgA autoantibodies in C57Bl/6 control mice but not in ICAM-1-deficient mice. These findings provide direct evidence of the participation of ICAM-1 molecule in the development of experimentally induced intestinal inflammation. PMID:10606964

  17. Numerical solution for 5-layer laminate technique to determine saturation solubility of a drug in a thin film of pressure sensitive adhesive.

    PubMed

    Bänsch, Eberhard; Reismann, Simone; Lee, Geoffrey

    2014-08-01

    A numerical solution of the one-dimensional diffusion equation is presented to describe the 5-layer laminate technique for estimating the saturation solubility of a drug in a thin polymer film. The boundary and initial conditions encompass a donor layer, a separating membrane, and an acceptor layer. Alteration of the drug's partition coefficient between donor and separating membrane has little influence on drug accumulation with the acceptor. The diffusivity in the separating membrane should be high to promote a short experimental time to achieve saturation equilibrium in the acceptor layer. The essential parameter to give rapid equilibrium is the thickness of the acceptor polymer film. For values of diffusivity typical for drugs of molecular weight around 500 an acceptor layer thickness of 10 µm-20 µm is required to achieve equilibrium within less than 10 d. These simulations allow the selection of suitable experimental conditions to make the 5-layer laminate technique a viable method for routine use.

  18. Soluble forms of NCAM and F3 neuronal cell adhesion molecules promote Schwann cell migration: identification of protein tyrosine phosphatases zeta/beta as the putative F3 receptors on Schwann cells.

    PubMed

    Thomaidou, D; Coquillat, D; Meintanis, S; Noda, M; Rougon, G; Matsas, R

    2001-08-01

    Neural cell adhesion molecule (NCAM) and F3 are both axonal adhesion molecules which display homophilic (NCAM) or heterophilic (NCAM, F3) binding activities and participate in bidirectional exchange of information between neurones and glial cells. Engineered Fc chimeric molecules are fusion proteins that contain the extracellular part of NCAM or F3 and the Fc region of human IgG1. Here, we investigated the effect of NCAM-Fc and F3-Fc chimeras on Schwann cell (SC) migration. Binding sites were identified at the surface of cultured SCs by chimera coated fluorospheres. The functional effect of NCAM-Fc and F3-Fc binding was studied in two different SC migration models. In the first, migration is monitored at specific time intervals inside a 1-mm gap produced in a monolayer culture of SCs. In the second, SCs from a dorsal root ganglion explant migrate on a sciatic nerve cryosection. In both systems addition of the chimeras significantly increased the extent of SC migration and this effect could be prevented by the corresponding anti-NCAM or anti-F3 blocking antibodies. Furthermore, antiproteoglycan-type protein tyrosine phosphatase zeta/beta (RPTPzeta/beta) antibodies identified the presence of RPTPzeta/beta on SCs and prevented the enhancing effect of soluble F3 on SC motility by 95%. The F3-Fc coated Sepharose beads precipitated RPTPzeta/beta from SC lysates. Altogether these data point to RPTPzeta/beta is the putative F3 receptor on SCs. These results identify F3 and NCAM receptors on SC as potential mediators of signalling occurring between axons and glial cells during peripheral nerve development and regeneration.

  19. Severe adhesive small bowel obstruction.

    PubMed

    Di Saverio, Salomone; Catena, Fausto; Kelly, Michael D; Tugnoli, Gregorio; Ansaloni, Luca

    2012-12-01

    Adhesive small bowel obstruction is a frequent cause of hospital admission. Water soluble contrast studies may have diagnostic and therapeutic value and avoid challenging demanding surgical operations, but if bowel ischemia is suspected, prompt surgical intervention is mandatory. A 58-year-old patient was operated for extensive adhesive small bowel obstruction after having had two previous laparotomies for colorectal surgery, and had a complex clinical course with multiple operations and several complications. Different strategies of management have been adopted, including non-operative management with the use of hyperosmolar water soluble contrast medium, multiple surgical procedures, total parenteral nutrition (TPN) support, and finally use of antiadherences icodextrin solution. After 2 years follow-up the patient was doing well without presenting recurrent episodes of adhesive small bowel obstruction. For patients admitted several times for adhesive small bowel obstruction, the relative risk of recurring obstruction increases in relation to the number of prior episodes. Several strategies for non-operative conservative management of adhesive small bowel obstruction have already addressed diagnostic and therapeutic value of hyperosmolar water soluble contrast. According to the most recent evidence-based guidelines, open surgery is the preferred method for surgical treatment of strangulating adhesive small bowel obstruction as well as after failed conservative management. Research interest and clinical evidence are increasing in adhesions prevention. Hyaluronic acid-carboxycellulose membrane and icodextrin may reduce incidence of adhesions.

  20. The Soluble Form of LR11 Protein Is a Regulator of Hypoxia-induced, Urokinase-type Plasminogen Activator Receptor (uPAR)-mediated Adhesion of Immature Hematological Cells*

    PubMed Central

    Nishii, Keigo; Nakaseko, Chiaki; Jiang, Meizi; Shimizu, Naomi; Takeuchi, Masahiro; Schneider, Wolfgang J.; Bujo, Hideaki

    2013-01-01

    A key property of hematopoietic stem and progenitor cells (HSPCs) regarding differentiation from the self-renewing quiescent to the proliferating stage is their adhesion to the bone marrow (BM) niche. An important molecule involved in proliferation and pool size of HSPCs in the BM is the hypoxia-induced urokinase-type plasminogen activator receptor (uPAR). Here, we show that the soluble form (sLR11) of LR11 (also called SorLA or SORL1) modulates the uPAR-mediated attachment of HSPCs under hypoxic conditions. Immunohistochemical and mRNA expression analyses revealed that hypoxia increased LR11 expression in hematological c-Kit+ Lin− cells. In U937 cells, hypoxia induced a transient rise in LR11 transcription, production of cellular protein, and release of sLR11. Attachment to stromal cells of c-Kit+ Lin− cells of lr11−/− mice was reduced by hypoxia much more than of lr11+/+ animals. sLR11 induced the adhesion of U937 and c-Kit+ Lin− cells to stromal cells. Cell attachment was increased by sLR11 and reduced in the presence of anti-uPAR antibodies. Furthermore, the fraction of uPAR co-immunoprecipitated with LR11 in membrane extracts of U937 cells was increased by hypoxia. CoCl2, a chemical inducer of HIF-1α, enhanced the levels of LR11 and sLR11 in U937 cells. The decrease in hypoxia-induced attachment of HIF-1α-knockdown cells was largely prevented by exogenously added sLR11. Finally, hypoxia induced HIF-1α binding to a consensus binding site in the LR11 promoter. Thus, we conclude that sLR11 regulates the hypoxia-enhanced adhesion of HSPCs via an uPAR-mediated pathway that stabilizes the hematological pool size by controlling cell attachment to the BM niche. PMID:23486467

  1. Cytotoxicity of denture adhesives.

    PubMed

    de Gomes, Pedro Sousa; Figueiral, Maria Helena; Fernandes, Maria Helena R; Scully, Crispian

    2011-12-01

    Ten commercially available denture adhesives, nine soluble formulations (six creams, three powders) and one insoluble product (pad), were analyzed regarding the cytotoxicity profile in direct and indirect assays using L929 fibroblast cells. In the direct assay, fibroblasts were seeded over the surface of a thick adhesive gel (5%, creams; 2.5%, powders and pad). In the indirect assay, cells were cultured in the presence of adhesive extracts prepared in static and dynamic conditions (0.5-2%, creams; 0.25-1%, powders and pad). Cell toxicity was assessed for cell viability/proliferation (MTT assay) and cell morphology (observation of the F-actin cytoskeleton organization by confocal laser scanning microscopy). Direct contact of the L929 fibroblasts with the thick adhesive gels caused no, or only a slight, decrease in cell viability/proliferation. The adhesive extracts (especially those prepared in dynamic conditions) caused significantly higher growth inhibition of fibroblasts and, in addition, caused dose- and time-dependent effects, throughout the 6-72 h exposure time. Also, dose-dependent effects on cell morphology, with evident disruption of the F-actin cytoskeleton organization, were seen in the presence of most adhesives. In conclusion, the adhesives possessed different degrees of cytotoxicity, but similar dose- and time-dependent biological profiles.

  2. Endothelial Lu/BCAM glycoproteins are novel ligands for red blood cell alpha4beta1 integrin: role in adhesion of sickle red blood cells to endothelial cells.

    PubMed

    El Nemer, Wassim; Wautier, Marie-Paule; Rahuel, Cécile; Gane, Pierre; Hermand, Patricia; Galactéros, Frédéric; Wautier, Jean-Luc; Cartron, Jean-Pierre; Colin, Yves; Le Van Kim, Caroline

    2007-04-15

    The Lutheran (Lu) blood group and basal cell adhesion molecule (BCAM) antigens are both carried by 2 glycoprotein isoforms of the immunoglobulin superfamily representing receptors for the laminin alpha(5) chain. In addition to red blood cells, Lu/BCAM proteins are highly expressed in endothelial cells. Abnormal adhesion of red blood cells to the endothelium could potentially contribute to the vaso-occlusive episodes in sickle cell disease. Considering the presence of integrin consensus-binding sites in Lu/BCAM proteins, we investigated their potential interaction with integrin alpha(4)beta(1), the unique integrin expressed on immature circulating sickle red cells. Using cell adhesion assays under static and flow conditions, we demonstrated that integrin alpha(4)beta(1) expressed on transfected cells bound to chimeric Lu-Fc protein. We showed that epinephrine-stimulated sickle cells, but not control red cells, adhered to Lu-Fc via integrin alpha(4)beta(1) under flow conditions. Antibody-mediated activation of integrin alpha(4)beta(1) induced adhesion of sickle red cells to primary human umbilical vein endothelial cells; this adhesion was inhibited by soluble Lu-Fc and vascular cell adhesion molecule-1 (VCAM-1)-Fc proteins. This novel interaction between integrin alpha(4)beta(1) in sickle red cells and endothelial Lu/BCAM proteins could participate in sickle cell adhesion to endothelium and potentially play a role in vaso-occlusive episodes.

  3. Proton Pump Inhibitors Decrease Soluble fms-Like Tyrosine Kinase-1 and Soluble Endoglin Secretion, Decrease Hypertension, and Rescue Endothelial Dysfunction.

    PubMed

    Onda, Kenji; Tong, Stephen; Beard, Sally; Binder, Natalie; Muto, Masanaga; Senadheera, Sevvandi N; Parry, Laura; Dilworth, Mark; Renshall, Lewis; Brownfoot, Fiona; Hastie, Roxanne; Tuohey, Laura; Palmer, Kirsten; Hirano, Toshihiko; Ikawa, Masahito; Kaitu'u-Lino, Tu'uhevaha; Hannan, Natalie J

    2017-03-01

    Preeclampsia is a severe complication of pregnancy. Antiangiogenic factors soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin are secreted in excess from the placenta, causing hypertension, endothelial dysfunction, and multiorgan injury. Oxidative stress and vascular inflammation exacerbate the endothelial injury. A drug that can block these pathophysiological steps would be an attractive treatment option. Proton pump inhibitors (PPIs) are safe in pregnancy where they are prescribed for gastric reflux. We performed functional studies on primary human tissues and animal models to examine the effects of PPIs on sFlt-1 and soluble endoglin secretion, vessel dilatation, blood pressure, and endothelial dysfunction. PPIs decreased sFlt-1 and soluble endoglin secretion from trophoblast, placental explants from preeclamptic pregnancies, and endothelial cells. They also mitigated tumor necrosis factor-α-induced endothelial dysfunction: PPIs blocked endothelial vascular cell adhesion molecule-1 expression, leukocyte adhesion to endothelium, and disruption of endothelial tube formation. PPIs decreased endothelin-1 secretion and enhanced endothelial cell migration. Interestingly, the PPI esomeprazole vasodilated maternal blood vessels from normal pregnancies and cases of preterm preeclampsia, but its vasodilatory effects were lost when the vessels were denuded of their endothelium. Esomeprazole decreased blood pressure in a transgenic mouse model where human sFlt-1 was overexpressed in placenta. PPIs upregulated endogenous antioxidant defenses and decreased cytokine secretion from placental tissue and endothelial cells. We have found that PPIs decrease sFlt-1 and soluble endoglin secretion and endothelial dysfunction, dilate blood vessels, decrease blood pressure, and have antioxidant and anti-inflammatory properties. They have therapeutic potential for preeclampsia and other diseases where endothelial dysfunction is involved.

  4. Intrauterine Adhesions

    MedlinePlus

    ... adhesion formation are infections of the uterine lining (endometritis), removal of fibroids in the cavity of the ... to prevent adhesions from reforming. Hormonal treatment with estrogen and NSAIDs are frequently prescribed after surgery to ...

  5. Influence of composition on the adhesive strength and initial viscosity of denture adhesives.

    PubMed

    Han, Jian-min; Hong, Guang; Hayashida, Kentaro; Maeda, Takeshi; Murata, Hiroshi; Sasaki, Keiichi

    2014-01-01

    To investigate the effect of composition on the initial viscosity and adhesive strength between denture adhesives and the denture base. Two types of water-soluble polymers (methoxy ethylene maleic anhydride copolymer [PVM-MA] and sodium carboxymethyl cellulose [CMC]) were used. Samples were divided into three groups. Group 1 contained only PVM-MA; Group 2 contained only CMC; and Group 3 contained PVM-MA and CMC. The initial viscosity and adhesive strength were measured. For Group 1, the initial viscosity increased significantly as PVM-MA content increased. The adhesive strength of Group 1 lasted longer than Group 2. The adhesive strength of Group 3 varied greatly. The ratio of CMC and PVM-MA has a significant effect on the initial viscosity and adhesive strength of denture adhesives. Our results suggest that it is possible to improve the durability of a denture adhesive by combining different water-soluble polymers.

  6. Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation.

    PubMed

    Barreiro, Olga; Yáñez-Mó, María; Sala-Valdés, Mónica; Gutiérrez-López, María Dolores; Ovalle, Susana; Higginbottom, Adrian; Monk, Peter N; Cabañas, Carlos; Sánchez-Madrid, Francisco

    2005-04-01

    Tetraspanins associate with several transmembrane proteins forming microdomains involved in intercellular adhesion and migration. Here, we show that endothelial tetraspanins relocalize to the contact site with transmigrating leukocytes and associate laterally with both intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Alteration of endothelial tetraspanin microdomains by CD9-large extracellular loop (LEL)-glutathione S-transferase (GST) peptides or CD9/CD151 siRNA oligonucleotides interfered with ICAM-1 and VCAM-1 function, preventing lymphocyte transendothelial migration and increasing lymphocyte detachment under shear flow. Heterotypic intercellular adhesion mediated by VCAM-1 or ICAM-1 was augmented when expressed exogenously in the appropriate tetraspanin environment. Therefore, tetraspanin microdomains have a crucial role in the proper adhesive function of ICAM-1 and VCAM-1 during leukocyte adhesion and transendothelial migration.

  7. Cell adhesion to proteins separated by lithium dodecyl sulfate-polyacrylamide gel electrophoresis and blotted onto a polyvinylidene difluoride membrane: a new cell-blotting technique.

    PubMed

    Seshi, B

    1994-12-02

    Cell blotting, although conceptually simple, has failed to achieve wide practical application. Described here is a new cell-blotting technique which involves cell adhesion to protein bands after separation by lithium dodecyl sulfate-polyacrylamide gel electrophoresis (LDS-PAGE) and blotting onto polyvinylidene difluoride (PVDF) membrane at 4 degrees C. Cell bands adherent on PVDF are detected using hematoxylin, or propidium iodide (PI) staining followed by viewing under ultraviolet (UV) light. The technique allows quick microscopic visualization of adherent cells composing the bands, without requiring clearing of the membrane. Representative cell adhesion proteins from different sources, i.e., plant lectins (e.g., phytohemagglutinin, PHA; concanavalin A, ConA; and wheat germ agglutinin, WGA); extracellular matrix (ECM) proteins; and integral membrane proteins (e.g., recombinant soluble vascular cell adhesion molecule-1, rs VCAM-1) were tested for cell binding by the new cell-blotting technique using human lymphoid progenitor (NALM-6) and myeloid progenitor (KG1a) cell lines. Cell adhesion proteins retained their adhesion function in all cases tested. Specificity of cell binding on PVDF blot was demonstrated by inhibition of cell adhesion to WGA protein bands using an appropriate sugar, i.e., N-acetyl D-glucosamine. The cell blotting assay was comparable in sensitivity to Coomassie blue staining of protein bands. The ability to conduct protein extraction, separation and blotting at low temperature avoids thermal denaturation, thereby preserving the adhesion properties of the proteins. The electrophoretic/blotting system has unique detergent removal/protein renaturation properties and the ability to preserve functionally active adhesion protein complexes. The cell-blotting technique described is sufficiently robust for routine application in the investigation of novel cell adhesion proteins.

  8. Solubility Database

    National Institute of Standards and Technology Data Gateway

    SRD 106 IUPAC-NIST Solubility Database (Web, free access)   These solubilities are compiled from 18 volumes (Click here for List) of the International Union for Pure and Applied Chemistry(IUPAC)-NIST Solubility Data Series. The database includes liquid-liquid, solid-liquid, and gas-liquid systems. Typical solvents and solutes include water, seawater, heavy water, inorganic compounds, and a variety of organic compounds such as hydrocarbons, halogenated hydrocarbons, alcohols, acids, esters and nitrogen compounds. There are over 67,500 solubility measurements and over 1800 references.

  9. Modulation of integrin α4β1 by ADAM28 promotes lymphocyte adhesion and transendothelial migration.

    PubMed

    McGinn, Owen J; English, William R; Roberts, Stephanie; Ager, Ann; Newham, Peter; Murphy, Gillian

    2011-10-01

    ADAMs (a disintegrin and metalloproteinase) are a family of type I transmembrane glycoproteins related to snake venom metalloproteases and disintegrins. They are regulatory proteins that modulate intercellular adhesion and the bioavailability of growth factors, and have been implicated in many disease states, including cancer, immunity and inflammation. One member of the ADAM family, ADAM28, has been reported to bind to the integrin α4β1 in humans; however, the distribution of ADAM28 and the biological consequences of ADAM28-α4β1 interactions are yet to be fully elucidated. The expression of ADAM28 in human and murine tissues was examined by multiple Affymetrix microarray analyses, real-time RT-PCR (reverse transcription-PCR) and immunohistochemical staining. We found that ADAM28 has a relatively restricted expression pattern in mouse and human and is highly expressed in the B-lymphocyte lineage, including chronic lymphocytic leukaemic B-cells. The murine B-lymphoma line L1-2 and recombinant soluble murine ADAM28 were used to investigate ADAM28-α4β1 interactions. Our data reveal that ADAM28 binding to α4β1 is typical of integrin-ligand interactions, since it is attenuated by anti-functional integrin antibodies, and is enhanced by Mn2+ and the integrin mAb (monoclonal antibody) 9EG7. However, a key finding was that soluble ADAM28 unexpectedly enhanced α4β1-dependent cell adhesion to VCAM-1 (vascular cell adhesion molecule-1). In so doing ADAM28 was able to influence lymphocyte adhesion to, and migration through, endothelial monolayers, suggesting a physiological role for ADAM28 in regulating the specific spatial and temporal transendothelial migration of lymphocytes.

  10. Abdominal Adhesions

    MedlinePlus

    ... Adhesions 1 Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. Journal of Surgical Research. 2011;165(1):91–111. Seek Help for ... and how to participate, visit the NIH Clinical Research Trials and You website ... Foundation for Functional Gastrointestinal Disorders 700 West Virginia ...

  11. Adhesive arachnoiditis following lumbar myelography.

    PubMed

    Skalpe, I O

    1978-03-01

    Late sequelae (adhesive arachnoiditis) have been reported following myelography with the oily contrast medium (Pantopaque) and with the ionic water-soluble contrast media methiodal sodium (Abrodil, Conturex, Kontrast U) meglumine iothalamate (Conray Meglumine) and meglumine iocarmate (Bis-Conray, Dimer-X). Adhesive arachnoiditis has not yet been reported after the use of the nonionic water-soluble contrast medium metrizamide (Amipaque). Thus, this is considered the contrast medium of choice for lumbar myelography. Using the recommended dose of 10 ml with an iodine concentration of 170 mg/ml for this examination, adhesive arachnoiditis is unlikely to occur. Increased osmolality of spinal fluid after injection of contrast medium is related to increased frequency of arachnoiditis.

  12. The effect of iron treatment on adhesion molecules in patients with iron deficiency anemia.

    PubMed

    Yuksel, Arif; Kebapcilar, Levent; Erdur, Erkan; Bozkaya, Giray; Sari, Ismail; Alacacioglu, Ahmet; Kebapcilar, Ayse Gul; Sop, Gulten

    2010-12-01

    The present study was aimed to determine the effect of iron supplementation on levels of soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) in patients with iron deficiency anemia (IDA). In this study, 26 female patients diagnosed with iron deficiency were treated approximately 3 months of oral iron supplementation (99 ± 10 days; ferrous glycine sulfate; 100 mg/day of elemental iron). Levels of sICAM-1 and sVCAM-1 were assessed prior to treatment and after approximately 3 months of treatment and compared with 26 healthy female subjects. A significant increase in sVCAM levels was found in the patients with iron deficiency at the end of the treatment relative to pretreatment levels compared to controls, whereas no significant differences were determined in sICAM levels. In the posttreatment period, no significant change was observed in sICAM levels compared to the pretreatment levels, whereas sVCAM levels decreased. However, after the treatment period, the sVCAM, hemoglobin, mean corpuscular volume (MCV), and serum ferritin levels did not return to the normal range compared to the controls. Pretreatment sVCAM-1 levels were inversely correlated with levels of hemoglobin, hemotocrit, MCV, serum iron, and ferritin. After treatment, the sVCAM-1 levels were negatively correlated with ferritin levels. Levels of sVCAM were significantly higher in patients with IDA than controls. After the treatment period, the sVCAM levels were not completely normalized in patients with IDA compared to controls, regardless of the presence of inadequate levels of hemoglobin, MCV, and serum ferritin. Thus, iron supplementation not only ameliorates anemia, but may also reduce the inflammation markers in cases with IDA.

  13. Elevation of serum soluble E- and P-selectin in patients with hypertension is reversed by benidipine, a long-acting calcium channel blocker.

    PubMed

    Sanada, Hironobu; Midorikawa, Sanae; Yatabe, Junichi; Yatabe, Midori Sasaki; Katoh, Tetsuo; Baba, Tsuneharu; Hashimoto, Shigeatsu; Watanabe, Tsuyoshi

    2005-11-01

    Hypertension is a major risk factor for atherosclerotic cardiovascular disease. Selectins, cell-surface adhesion molecules involved in leukocyte rolling and attachment to the vascular endothelium, play a role in the initiation of atherosclerosis. We investigated whether or not serum levels of soluble adhesion molecules are elevated in patients with essential hypertension (EH) and examined whether antihypertensive therapy lowers such levels. Twenty-one patients who had untreated mild to moderate EH without diabetes mellitus, hyperlipidemia, or obesity were recruited at a clinic for hypertensive patients. Blood pressure was measured, and the serum levels of soluble E-selectin, P-selectin, L-selectin, intercellular adhesion molecule 1 (ICAM-1), and vascular-cell adhesion molecule 1 (VCAM-1) were determined by enzyme-linked immunosorbent assays before and after 12, 24, and 53 weeks of antihypertensive treatment with benidipine, a long-acting calcium channel blocker, given at a dose of 6 mg/day for 53 weeks. As a control, 21 age- and sex-matched patients without hypertension were studied. Serum E- and P-selectin levels were significantly higher in the subjects with EH than in the controls (p < 0.01). There were no differences in serum levels of soluble L-selectin, VCAM-1, or ICAM-1 levels between the patients with EH and the controls. Treatment with benidipine decreased the elevated blood pressure over a 53-week study period (mean blood pressure: 119.8 +/- 6.5 mmHg at baseline, 101.0 +/- 5.9 mmHg at 12 weeks, 98.6 +/- 7.3 mmHg at 24 weeks, and 93.9 +/- 5.5 mmHg at 53 weeks). Serum levels of soluble E- and P-selectin decreased after the initiation of benidipine treatment and correlated with diastolic blood pressure. Serum levels of soluble L-selectin, VCAM-1, and ICAM-1 did not change significantly during the period of benidipine treatment. Benidipine treatment reduced the content of P-selectin in the platelets from patients with EH, as determined by Western blot

  14. [Adhesion molecules and diabetes mellitus].

    PubMed

    Urso, C; Hopps, E; Caimi, G

    2010-01-01

    Adhesion molecules play a significant role in leukocyte migration across the endothelium and are also involved in regulating immune system. It is shown that diabetic patients have an increase of soluble adhesion molecules (sICAM-1, sICAM-2, sVCAM-1, sE-selectin, sL-selectin, sP-selectin) considered an integral part of inflammatory state. This inflammation is responsible for the increased cardiovascular risk of these patients. There is a close link between hyperglycemia, oxidative stress, coagulopathy and inflammation and between these factors and the vascular damage. Various studies have showed the potential role of adhesion molecules in the pathogenesis of diabetic vasculopathy. They promote leukocyte recruitment, which is one of the initial steps in the genesis of atherosclerotic plaque. Adhesion molecules are also involved in the pathogenesis of diabetes mellitus type 1; sICAM-1 would have a particular immunomodulatory role in the process of destroying beta-cells and could be used as a subclinical marker of insulitis. Plasma levels of soluble adhesion molecules correlate with hyperglycemia, insulin resistance, dyslipidemia and obesity; they are associated with the development of nephropathy, retinopathy, myocardial infarction, stroke and obliterant peripheral arterial disease in diabetic type 1 and 2. Given the role of these molecules in endothelial dysfunction genesis and tissue damage associated with diabetes, they could constitute a therapeutic target for the prevention of genesis and progression of chronic complications of diabetic disease.

  15. Adhesive plasters

    DOEpatents

    Holcombe, Jr., Cressie E.; Swain, Ronald L.; Banker, John G.; Edwards, Charlene C.

    1978-01-01

    Adhesive plaster compositions are provided by treating particles of Y.sub.2 O.sub.3, Eu.sub.2 O.sub.3, Gd.sub.2 O.sub.3 or Nd.sub.2 O.sub.3 with dilute acid solutions. The resulting compositions have been found to spontaneously harden into rigid reticulated masses resembling plaster of Paris. Upon heating, the hardened material is decomposed into the oxide, yet retains the reticulated rigid structure.

  16. Synthetic Polypeptide Mimics of Marine Adhesives.

    PubMed

    Yu; Deming

    1998-07-28

    Water soluble copolypeptides containing l-dihydroxyphenylalanine (DOPA) and l-lysine were prepared by ring-opening polymerization of alpha-amino acid N-carboxyanhydride (NCA) monomers. We have prepared a range of different copolymers to probe the effects of functional group composition on adhesive and cross-linking behavior. Aqueous solutions of these copolymers, when mixed with a suitable oxidizing agent (e.g., O2, mushroom tyrosinase, Fe3+, H2O2, or IO4-), formed cross-linked networks that were found to form moisture-resistant adhesive bonds to a variety of substrates (e.g., aluminum, steel, glass, and plastics). It was found that successful adhesive formation was dependent on oxidation conditions, with chemical oxidants giving the best results. Optimized systems were found to form adhesive bonds that rival in strength those formed by natural marine adhesive proteins. Our synthetic systems are readily prepared in large quantities and require no enzymes or other biological components.

  17. P-selectin cross-links PSGL-1 and enhances neutrophil adhesion to fibrinogen and ICAM-1 in a Src kinase-dependent, but GPCR-independent mechanism.

    PubMed

    Xu, Tao; Zhang, Lei; Geng, Zhen H; Wang, Hai-Bo; Wang, Jin-Tao; Chen, Ming; Geng, Jian-Guo

    2007-01-01

    Endothelial and platelet P-selectin (CD62P) and leukocyte integrin alpha(M)beta(2) (CD11bCD18, Mac-1) are cell adhesion molecules essential for host defense and innate immunity. Upon inflammatory challenges, P-selectin binds to PSGL-1 (P-selectin glycoprotein ligand-1, CD162) to mediate neutrophil rolling, during which integrins become activated by extracellular stimuli for their firm adhesion in a G-protein coupled receptor (GPCR)-dependent mechanism. Here we show that cross-linking of PSGL-1 by dimeric or multimeric forms of platelet P-selectin, P-selectin receptor-globulin, anti-PSGL-1 mAb and its F(ab')2 induced adhesion of human neutrophils to fibrinogen (Fg) and intercellular cell adhesion molecule-1 (ICAM-1, CD54) and triggered a moderate clustering of alpha(M)beta(2), but monomeric forms of soluble P-selectin and anti-PSGL-1 Fab did not. Interestingly, P-selectin did not induce a detectable interleukine-8 (IL-8) secretion (<0.1 ng/ml) in 30 minutes, whereas a high concentration of IL-8 (>50 ng/ml) was required to increase neutrophil adhesion to Fg. P-selectin-induced neutrophil adhesion was significantly inhibited by PP2 (a Src kinase inhibitor), but not by pertussis toxin (PTX; a GPCR inhibitor). Activated platelets also increased neutrophil binding to fibrinogen and triggered tyrosine phosphorylation of cellular proteins. Our results indicate that P-selectin-induced integrin activation (Src kinase-dependent) is distinct from that elicited by cytokines, chemokines, chemoattractants (GPCR-dependent), suggesting that these two signal transduction pathways may cooperate for maximal activation of leukocyte integrins.

  18. Adhesion and Cohesion

    PubMed Central

    von Fraunhofer, J. Anthony

    2012-01-01

    The phenomena of adhesion and cohesion are reviewed and discussed with particular reference to dentistry. This review considers the forces involved in cohesion and adhesion together with the mechanisms of adhesion and the underlying molecular processes involved in bonding of dissimilar materials. The forces involved in surface tension, surface wetting, chemical adhesion, dispersive adhesion, diffusive adhesion, and mechanical adhesion are reviewed in detail and examples relevant to adhesive dentistry and bonding are given. Substrate surface chemistry and its influence on adhesion, together with the properties of adhesive materials, are evaluated. The underlying mechanisms involved in adhesion failure are covered. The relevance of the adhesion zone and its importance with regard to adhesive dentistry and bonding to enamel and dentin is discussed. PMID:22505913

  19. Eimeria bovis modulates adhesion molecule gene transcription in and PMN adhesion to infected bovine endothelial cells.

    PubMed

    Hermosilla, Carlos; Zahner, Horst; Taubert, Anja

    2006-04-01

    Eimeria bovis is an important coccidian parasite of cattle causing severe diarrhea in young animals. Its first schizogony takes place in endothelial cells of the ileum resulting in the formation of macroschizonts 14-18 days p.i. This longlasting development suggests a particular immune evasion strategy of the parasite. Here, we analyse early innate immune reactions to E. bovis by determining the adhesion of polymorphonuclear neutrophils (PMN) to infected endothelial cell layers under flow conditions and the transcription of adhesion molecule genes in infected host cells. Bovine umbilical vein endothelial cells (BUVEC) were infected with E. bovis sporozoites. Sporozoites invaded BUVEC within 1h and the first mature macroschizonts occurred 14 days p.i. PMN adhesion was enhanced in E. bovis-infected BUVEC layers as early as 8h p.i.; maximum adhesion occurred 48 h p.i. Increased adhesion rates persisted until the end of the observation period at 14 days p.i. PMN adhered to both infected and uninfected cells within monolayers, suggesting paracrine cell activation. E. bovis infection upregulated the transcription of genes encoding for P-selectin, E-selectin, vascular cellular adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1). Most marked effects concerned E-selectin followed by P-selectin, VCAM-1 and ICAM-1. Increased transcript levels were found beginning 30 min p.i. and maximum values occurred 1-2h p.i. (P-selectin) and 2-4h p.i. (E-selectin, VCAM-1, ICAM-1). By 12-24h p.i. levels had decreased to those of uninfected controls. Tumor necrosis factor alpha (TNFalpha)-induced PMN adhesion was significantly reduced in infected vs. uninfected BUVEC. Eimeria bovis also had suppressive effects on TNFalpha-mediated upregulation of adhesion molecule gene transcription. The data presented here suggest that infection of BUVEC with E. bovis on one hand induces proinflammatory reactions resulting in enhanced PMN adhesion mediated by upregulated adhesion

  20. Chinese Herbal Cardiotonic Pill Stabilizes Vulnerable Plaques in Rabbits by Decreasing the Expression of Adhesion Molecules

    PubMed Central

    Chen, Liang; Li, Xiaonan; Li, Changjiang; Rong, Yuanyuan; Xiao, Yawei; Xu, Xinsheng; Yao, Guihua; Jiang, Guihua

    2016-01-01

    Abstract: The cardiotonic pill (CP), consisting of a mixture of Radix Salviae Miltiorrhizae, Radix Notoginseng, and Borneolum Syntheticum, has been widely used in the prevention and treatment of cardiovascular disease. Adhesion molecules, including intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1, are involved in the development of vulnerable plaque. We investigated the effect of the CP in a rabbit model of vulnerable plaque established by local transfection with p53 gene. Compared with the control group, rabbits with vulnerable plaque showed a significantly lower intima-media thickness and plaque burden after CP treatment for 12 weeks. Moreover, the reduction in rate of plaque rupture and vulnerability index was similar. On enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunohistochemistry analysis, the expression of intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 was inhibited with CP treatment. CP treatment could postpone atherosclerotic plaque development and stabilize vulnerable plaque by inhibiting the expression of adhesion molecules in treatment of cardiovascular disease. PMID:27110743

  1. Single-Phase Photo-Cross-Linkable Bioinspired Adhesive for Precise Control of Adhesion Strength.

    PubMed

    Harper, Tristan; Slegeris, Rimantas; Pramudya, Irawan; Chung, Hoyong

    2017-01-18

    A bioinspired, modular terpolymer adhesive, poly(N-methacryloyl-3,4-dihydroxyl-l-phenylalanine-co-9-(acryloyloxy)butyl anthracene-9-carboxylate-co-acrylic acid), has been synthesized containing three different functionalities: a photo-cross-linking segment, a wet interfacial adhesion segment, and a water-soluble segment. The synthesized adhesive polymer is the first example of a single-phase, photo-cross-linkable adhesive which does not require additional photoinitiator or other cross-linking agents. The terpolymer demonstrates strong adhesion when it swells in water and/or ethanol. The terpolymer is composed of three repeating units: N-methacryloyl-3,4-dihydroxyl-l-phenylalanine (MDOPA), which has been known to generate strong adhesion under wet conditions, poly(acrylic acid), which has been known to increase water solubility of polymers, and a photo-cross-linking segment consisting of an anthracene-based monomer used for enhancement of cohesion properties via UV irradiation (352 nm). A photomediated [4 + 4] cycloaddition reaction of anthracene results in the cross-linking of individual polymer chains after interfacial adhesion between substrates and adhesive polymers. Chemically, the covalent photo-cross-linking was confirmed by UV-vis, (1)H NMR, and gel permeation chromatography (GPC). The cross-linking-fortified cohesion of the adhesive polymer network yields strengthened cohesion properties of the bulk material. The photoreaction was conveniently controlled via the duration of UV-irradiation. The adhesion properties of new adhesives were characterized by lap shear strength on transparent Mylar film and glasses after the adhesive was swollen in biologically friendly solvents including water and ethanol. The adhesion strength (J/m(2)) was enhanced by 850% under 352 nm UV-irradiation. Multiple application variables were tested to determine the optimal conditions, such as solvent, concentration, polymer composition, and substrate. The best adhesion properties were

  2. Strengthening of dental adhesives via particle reinforcement.

    PubMed

    Belli, Renan; Kreppel, Stefan; Petschelt, Anselm; Hornberger, Helga; Boccaccini, Aldo R; Lohbauer, Ulrich

    2014-09-01

    The bond between methacrylic polymer adhesives and dental restoratives is not perfect and may fail either in the short or in the long term. This study aims to evaluate the effects of particle incorporation in a self-etch model adhesive on mechanical and physical properties that are relevant during application and service. Filled adhesives containing 5, 10, 15 or 25wt% glass fillers were compared to their unfilled counterpart in terms of water sorption and solubility; viscosity and dynamic viscosity during polymerization were recorded using rheological measurements and compared to FTIR analysis of the real-time degree of cure. Elastic modulus and ultimate tensile strength measurements were performed in uniaxial tension; the energy to fracture was used to calculate the fracture toughness of the adhesives. Finally, the experimental adhesives were applied on dentin substrate to test the bond strength using the microtensile test. Results showed that the incorporation of 5-10wt% nanofiller to self-etching dental adhesives is efficient in accelerating the polymerization reaction and increasing the degree of cure without compromising the film viscosity for good wettability or water sorption and solubility. Fillers increased the elastic modulus, tensile strength and fracture toughness to a plateau between 5 and 15wt% filler concentration, and despite the tendency to form agglomerations, active crack pinning/deflection toughening mechanisms have been observed. The bond strength between resin composite and dentin was also improved when adhesives with up to 10wt% fillers were used, with no additional improvements with further packing. The use of fillers to reinforce dental adhesives may therefore be of great practical benefit by improving curing and mechanical properties.

  3. Soluble vs. insoluble fiber

    MedlinePlus

    ... soluble and insoluble. Both are important for health, digestion, and preventing diseases. Soluble fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  4. [Adhesive lumbar arachnoiditis].

    PubMed

    Ribeiro, C; Reis, F C

    1998-01-01

    Spinal arachnoiditis, an inflammatory process involving all three meningeal layers as well as the nerve roots, is a cause of persistent symptoms in 6% to 16% of postoperative patients. Although spinal surgery is the most common antecedent associated with arachnoiditis, multiple causes have been reported, including infection, intrathecal steroids or anesthetic agents, trauma, subarachnoid hemorrhage and ionic myelographic contrast material--both oil soluble and water soluble. In the past, oil-based intrathecal contrast agents (Pantopaque) were associated with arachnoiditis especially when this material was introduced into the thecal sac and mixed with blood. Arachnoiditis is apparently rarely idiopathic. The pathogenesis of spinal arachnoiditis is similar to the repair process of serous membranes, such as the peritoneum, with a negligible inflammatory cellular exudate and a prominent fibrinous exudate. Chronic adhesive arachnoiditis of the lower spine is a myelographic diagnosis. The myelographic findings of arachnoiditis were divided into two types by Jorgensen et al. In type 1, "the empty thecal sac" appearance, there is homogeneous filling of the thecal sac with either absence of or defects involving nerve root sleeve filling. In type 2 arachnoiditis, there are localized or diffuse filling defects within the contrast column. MRI has demonstrated a sensitivity of 92% and a specificity of 100% in the diagnosis of arachnoiditis. The appearance of arachnoiditis on MRI can be assigned to three main groups. The MRI findings in group I are a conglomeration of adherent roots positioned centrally in the thecal sac. Patients in group II show roots peripherally adherent to the meninges--the so called empty sac. MRI findings in group III are a soft tissue mass within the subarachnoid space. It corresponds to the type 2 categorization defined by Jorgensen et al, where as the MRI imaging types I and II correspond to the myelographic type 1.

  5. Complement activation and kidney injury molecule-1-associated proximal tubule injury in severe preeclampsia.

    PubMed

    Burwick, Richard M; Easter, Sarah Rae; Dawood, Hassan Y; Yamamoto, Hidemi S; Fichorova, Raina N; Feinberg, Bruce B

    2014-10-01

    Kidney injury with proteinuria is a characteristic feature of preeclampsia, yet the nature of injury in specific regions of the nephron is incompletely understood. Our study aimed to use existing urinary biomarkers to describe the pattern of kidney injury and proteinuria in pregnancies affected by severe preeclampsia. We performed a case-control study of pregnant women from Brigham and Women's Hospital from 2012 to 2013. We matched cases of severe preeclampsia (n=25) 1:1 by parity and gestational age to 2 control groups with and without chronic hypertension. Urinary levels of kidney injury molecule-1 and complement components (C3a, C5a, and C5b-9) were measured by enzyme-linked immunosorbent assay, and other markers (albumin, β2 microglobulin, cystatin C, epithelial growth factor, neutrophil gelatinase-associated lipocalin, osteopontin, and uromodulin) were measured simultaneously with a multiplex electrochemiluminescence assay. Median values between groups were compared with the Wilcoxon signed-rank test and correlations with Spearman correlation coefficient. Analysis of urinary markers revealed higher excretion of albumin and kidney injury molecule-1 and lower excretion of neutrophil gelatinase-associated lipocalin and epithelial growth factor in severe preeclampsia compared with chronic hypertension and healthy controls. Among subjects with severe preeclampsia, urinary excretion of complement activation products correlated most closely with kidney injury molecule-1, a specific marker of proximal tubule injury (C5a: r=0.60; P=0.001; and C5b-9: r=0.75; P<0.0001). Taken together, we describe a pattern of kidney injury in severe preeclampsia that is characterized by glomerular impairment and complement-mediated inflammation and injury, possibly localized to the proximal tubule in association with kidney injury molecule-1.

  6. Signaling during platelet adhesion and activation

    PubMed Central

    Li, Zhenyu; Delaney, M. Keegan; O’Brien, Kelly A.; Du, Xiaoping

    2011-01-01

    Upon vascular injury, platelets are activated by adhesion to adhesive proteins like von Willebrand factor and collagen, or by soluble platelet agonists like ADP, thrombin, and thromboxane A2. These adhesive proteins and soluble agonists induce signal transduction via their respective receptors. The various receptor-specific platelet activation signaling pathways converge into common signaling events, which stimulate platelet shape change, granule secretion, and ultimately induce the “inside-out” signaling process leading to activation of the ligand binding function of integrin αIIbβ3. Ligand binding to integrin αIIbβ3 mediates platelet adhesion and aggregation and triggers “outside-in” signaling, resulting in platelet spreading, additional granule secretion, stabilization of platelet adhesion and aggregation, and clot retraction. It has become increasingly evident that agonist-induced platelet activation signals also crosstalk with integrin “outside-in” signals to regulate platelet responses. Platelet activation involves a series of rapid positive feedback loops that greatly amplify initial activation signals, and enable robust platelet recruitment and thrombus stabilization. Recent studies have provided novel insight into the molecular mechanisms of these processes. PMID:21071698

  7. Thermal Characterization of Adhesive

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.

    1999-01-01

    The current Space Shuttle Reusable Solid Rocket Motor (RSRM) nozzle adhesive bond system is being replaced due to obsolescence. Down-selection and performance testing of the structural adhesives resulted in the selection of two candidate replacement adhesives, Resin Technology Group's Tiga 321 and 3M's EC2615XLW. This paper describes rocket motor testing of these two adhesives. Four forty-pound charge motors were fabricated in configurations that would allow side by side comparison testing of the candidate replacement adhesives and the current RSRM adhesives. The motors provided an environment where the thermal performance of adhesives in flame surface bondlines was compared. Results of the FPC testing show that: 1) The phenolic char depths on radial bond lines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used; 2) The adhesive char depth of the candidate replacement adhesives is less than the char depth of the current adhesives; 3) The heat-affected depth of the candidate replacement adhesives is less than the heat-affected depth of the current adhesives; and 4) The ablation rates for both replacement adhesives are slower than that of the current adhesives.

  8. Addition polyimide adhesives containing various end groups

    NASA Technical Reports Server (NTRS)

    Saint Clair, A. K.; Saint Clair, T. L.

    1982-01-01

    Addition polyimode oligomers have been synthesized from 3,3 prime, 4,4 prime-benzophenone tetracarboxylic acid dianhydride and 3,3 prime-methylenedianiline using a variety of latent crosslinking groups as end-caps. The nominal 1300 molecular weight imide prepolymers were isolated and characterized for solubility in amide, chlorinated and ether solvents, melt-flow and cure properties, glass transition temperature, and thermal stability on heating in an air atmosphere. Adhesive strengths of the polyimides were obtained both at ambient and elevated temperatures before and after aging at 232 C. Properties of the novel addition polyimides were compared to a known nadic end-capped adhesive, LARC-13.

  9. Understanding Marine Mussel Adhesion

    SciTech Connect

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  10. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  11. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction

    PubMed Central

    Hulsmans, Maarten; Courties, Gabriel; Sun, Yuan; Heidt, Timo; Vinegoni, Claudio; Borodovsky, Anna; Fitzgerald, Kevin; Wojtkiewicz, Gregory R.; Iwamoto, Yoshiko; Tricot, Benoit; Khan, Omar F.; Kauffman, Kevin J.; Xing, Yiping; Shaw, Taylor E.; Libby, Peter; Langer, Robert; Weissleder, Ralph; Swirski, Filip K.

    2016-01-01

    Myocardial infarction (MI) leads to a systemic surge of vascular inflammation in mice and humans, resulting in secondary ischemic complications and high mortality. We show that, in ApoE−/− mice with coronary ligation, increased sympathetic tone up-regulates not only hematopoietic leukocyte production but also plaque endothelial expression of adhesion molecules. To counteract the resulting arterial leukocyte recruitment, we developed nanoparticle-based RNA interference (RNAi) that effectively silences five key adhesion molecules. Simultaneously encapsulating small interfering RNA (siRNA)–targeting intercellular cell adhesion molecules 1 and 2 (Icam1 and Icam2), vascular cell adhesion molecule 1 (Vcam1), and E- and P-selectins (Sele and Selp) into polymeric endothelial-avid nanoparticles reduced post-MI neutrophil and monocyte recruitment into atherosclerotic lesions and decreased matrix-degrading plaque protease activity. Five-gene combination RNAi also curtailed leukocyte recruitment to ischemic myocardium. Therefore, targeted multigene silencing may prevent complications after acute MI. PMID:27280687

  12. Tocotrienol is the most effective vitamin E for reducing endothelial expression of adhesion molecules and adhesion to monocytes.

    PubMed

    Theriault, Andre; Chao, Jun-Tzo; Gapor, Abdul; Chao, Jun Tzo; Gapor, Abeli

    2002-01-01

    Alpha-tocopherol and its esterified derivatives have been shown to be effective in reducing monocytic-endothelial cell adhesion. However, the effect of alpha-tocotrienol (alpha-T3) has not been characterized. In the present study, using human umbilical vein endothelial cells (HUVEC) as the model system, we examined the relative inhibitory effects of alpha-T3 and other vitamin E derivatives on cell surface adhesion molecule expression under TNF-alpha stimulation. Using enzyme-linked immunosorbent assay, we demonstrated that alpha-T3 markedly inhibited the surface expression of vascular cell adhesion molecule-1 in TNF-alpha activated HUVEC in a dose- and time-dependent manner. The optimal inhibition was observed at 25 micromol/l alpha-T3 within 24 h (77+/-5%) without cytotoxicity. In addition, the surface expression of intercellular adhesion molecule-1 and E-selectin were also reduced by 40+/-7 and 42+/-5%, respectively. In order to further evaluate the effects of alpha-T3 on the vascular endothelium, we investigated the ability of monocytes to adhere to endothelial cells. Interestingly, a 63+/-3% decrease in monocytic cell adherence was observed. Compared to alpha-tocopherol and alpha-tocopheryl succinate, alpha-T3 displayed a more profound inhibitory effect on adhesion molecule expression and monocytic cell adherence. This inhibitory action by alpha-T3 on TNF-alpha-induced monocyte adhesion was shown to be NF-kappaB dependent and was interestingly reversed with co-incubation with farnesol and geranylgeraniol, suggesting a role for prenylated proteins in the regulation of adhesion molecule expression. In summary, the above results suggest that alpha-T3 is a potent and effective agent in the reduction of cellular adhesion molecule expression and monocytic cell adherence.

  13. Homocysteine, circulating vascular cell adhesion molecule and carotid atherosclerosis in postmenopausal vegetarian women and omnivores.

    PubMed

    Su, Ta-Chen; Jeng, Jiann-Shing; Wang, Jung-Der; Torng, Pao-Ling; Chang, Sue-Joan; Chen, Chen-Fang; Liau, Chiau-Suong

    2006-02-01

    Since the adoption of vegetarian diets as a healthy lifestyle has become popular, the cardiovascular effects of long-term vegetarianism need to be explored. The present study aimed to compare the presence and severity of carotid atherosclerosis (CA), and the blood levels of Vitamin B12, homocysteine (Hcy) and soluble vascular cell adhesion molecule-1 (sVCAM-1) between 57 healthy postmenopausal vegetarians and 61 age-matched omnivores. Carotid atherosclerosis, as measured by ultrasound, was found to be of no significant difference between the two groups. Yet, fasting blood glucose, low-density lipoprotein cholesterol, and Vitamin B12 were significantly lower, while Hcy and sVCAM-1 were higher in the vegetarians as comparing with the omnivores. Multivariate regression analysis showed that the level of Vitamin B12 was negatively associated with the level of Hcy. Vegetarianism itself and Hcy level were significantly associated with sVCAM-1 level in univariate analysis; however, after adjustment for covariates, we identified age but not vegetarianism as the determinant of sVCAM-1 level. Multiple linear regression analysis identified age and systolic blood pressure, but not vegetarianism, as determinants of common carotid artery IMT. In conclusion, there was no significant difference in CA between apparently healthy postmenopausal vegetarians and omnivores. The findings of elevated Hcy in vegetarians indicate the importance of prevention of Vitamin B12 deficiency.

  14. Dietary carbohydrate restriction improves insulin sensitivity, blood pressure, microvascular function, and cellular adhesion markers in individuals taking statins.

    PubMed

    Ballard, Kevin D; Quann, Erin E; Kupchak, Brian R; Volk, Brittanie M; Kawiecki, Diana M; Fernandez, Maria Luz; Seip, Richard L; Maresh, Carl M; Kraemer, William J; Volek, Jeff S

    2013-11-01

    Statins positively impact plasma low-density lipoprotein cholesterol, inflammation and vascular endothelial function (VEF). Carbohydrate restricted diets (CRD) improve atherogenic dyslipidemia, and similar to statins, have been shown to favorably affect markers of inflammation and VEF. No studies have examined whether a CRD provides additional benefit beyond that achieved by habitual statin use. We hypothesized that a CRD (<50 g carbohydrate/d) for 6 weeks would improve lipid profiles and insulin sensitivity, reduce blood pressure, decrease cellular adhesion and inflammatory biomarkers, and augment VEF (flow-mediated dilation and forearm blood flow) in statin users. Participants (n = 21; 59.3 ± 9.3 y, 29.5 ± 3.0 kg/m(2)) decreased total caloric intake by approximately 415 kcal at 6 weeks (P < .001). Daily nutrient intakes at baseline (46/36/17% carb/fat/pro) and averaged across the intervention (11/58/28% carb/fat/pro) demonstrated dietary compliance, with carbohydrate intake at baseline nearly 5-fold greater than during the intervention (P < .001). Compared to baseline, both systolic and diastolic blood pressure decreased after 3 and 6 weeks (P < .01). Peak forearm blood flow, but not flow-mediated dilation, increased at week 6 compared to baseline and week 3 (P ≤ .03). Serum triglyceride, insulin, soluble E-Selectin and intracellular adhesion molecule-1 decreased (P < .01) from baseline at week 3, and this effect was maintained at week 6. In conclusion, these findings demonstrate that individuals undergoing statin therapy experience additional improvements in metabolic and vascular health from a 6 weeks CRD as evidenced by increased insulin sensitivity and resistance vessel endothelial function, and decreased blood pressure, triglycerides, and adhesion molecules.

  15. Functionally Graded Adhesives

    DTIC Science & Technology

    2009-11-01

    ASTM 907-05. Standard Terminology of Adhesives. West Conshohocken, PA, May 2005. 4. 3M Scotch-Grip Nitrile High Performance Rubber & Gasket Adhesive...distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this project was to increase rubber to metal adhesion in Army materials using...1 Figure 2. Steel and rubber

  16. PH dependent adhesive peptides

    SciTech Connect

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  17. Optimizing Scale Adhesion on Single Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Pint, Bruce A.

    2000-01-01

    To improve scale adhesion, single crystal superalloys have been desulfurized to levels below 1 ppmw by hydrogen annealing. A transition to fully adherent behavior has been shown to occur at a sulfur level of about 0.2 ppmw, as demonstrated for PWA 1480, PWA 1484, and Rene N5 single crystal superalloys in 1100-1150 C cyclic oxidation tests up to 2000 h. Small additions of yttrium (15 ppmw) also have been effective in producing adhesion for sulfur contents of about 5 ppmw. Thus the critical Y/S ratio required for adhesion was on the order of 3-to-1 by weight (1-to-1 atomic), in agreement with values estimated from solubility products for yttrium sulfides. While hydrogen annealing greatly improved an undoped alloy, yielding <= 0.01 ppmw S, it also produced benefits for Y-doped alloys without measurably reducing the sulfur content.

  18. Poly(ester urea)-Based Adhesives: Improved Deployment and Adhesion by Incorporation of Poly(propylene glycol) Segments.

    PubMed

    Zhou, Jinjun; Bhagat, Vrushali; Becker, Matthew L

    2016-12-14

    The adhesive nature of mussels arises from the catechol moiety in the 3,4-dihydroxyphenylalanine (DOPA) amino acid, one of the many proteins that contribute to the unique adhesion properties of mussels. Inspired by these properties, many biomimetic adhesives have been developed over the past few years in an attempt to replace adhesives such as fibrin, cyanoacrylate, and epoxy glues. In the present work, we synthesized ethanol soluble but water insoluble catechol functionalized poly(ester urea) random copolymers that help facilitate delivery and adhesion in wet environments. Poly(propylene glycol) units incorporated into the polymer backbone impart ethanol solubility to these polymers, making them clinically relevant. A catechol to cross-linker ratio of 10:1 with a curing time of 4 h exceeded the performance of commercial fibrin glue (4.8 ± 1.4 kPa) with adhesion strength of 10.6 ± 2.1 kPa. These adhesion strengths are significant with the consideration that the adhesion studies were performed under wet conditions.

  19. Discovery of low mucus adhesion surfaces.

    PubMed

    Gu, Minghao; Yildiz, Hasan; Carrier, Rebecca; Belfort, Georges

    2013-02-01

    Mucus secretion from the body is ubiquitous, and finding materials that resist mucus adhesion is a major technological challenge. Here, using a high throughput platform with photo-induced graft polymerization, we first rapidly synthesized, screened and tested a library of 55 different surfaces from six functional monomer classes to discover porcine intestinal low mucus adhesion surfaces using a 1h static mucus adsorption protocol. From this preliminary screen, two chemistries, a zwitterionic ([2-(acryloyloxy)ethyl] trimethylammonium chloride) and a multiple hydroxyl (N-[tris(hydroxymethyl)methyl]acrylamide) surface, exhibited significantly low mucus adhesion from a Langmuir-type isotherm when exposed to increasing concentrations of mucus for 24 h. Apolar or hydrophobic interactions were likely the dominant attractive forces during mucus binding since many polar or hydrophilic monomers reduced mucus adhesion. Hansen solubility parameters were used to illustrate the importance of monomer polarity and hydrogen bonding in reducing mucus adsorption. For a series of polyethylene glycol (PEG) monomers with changing molecular weight from 144 g mol⁻¹ to 1100 g mol⁻¹, we observed an excellent linear correlation (R²=0.998) between relative amount adsorbed and the distance from a water point in a specialized Hansen solubility parameter plot, emphasizing the role of surface-water interactions for PEG modified surfaces.

  20. Development of a Nonchromate Structural Adhesive Bond Primer

    DTIC Science & Technology

    2014-11-01

    Prevent corrosion of base metal • Applied to porous anodized surface • Overcoated with non-inhibited epoxy adhesive • High adhesive bond strength...primers •Long-running surveillance of chromate-free alternatives by UTC companies shows weak corrosion inhibition • (A) strontium chromate...solubility of multiple inhibitors 7705 Al / EcoTuff™ After corrosion test Bright deposits: 50 wt% W + Zn mixed oxide 3M Commercial EW5000AS(P) 3M Lab

  1. Mini-review: barnacle adhesives and adhesion.

    PubMed

    Kamino, Kei

    2013-01-01

    Barnacles are intriguing, not only with respect to their importance as fouling organisms, but also in terms of the mechanism of underwater adhesion, which provides a platform for biomimetic and bioinspired research. These aspects have prompted questions regarding how adult barnacles attach to surfaces under water. The multidisciplinary and interdisciplinary nature of the studies makes an overview covering all aspects challenging. This mini-review, therefore, attempts to bring together aspects of the adhesion of adult barnacles by looking at the achievements of research focused on both fouling and adhesion. Biological and biochemical studies, which have been motivated mainly by understanding the nature of the adhesion, indicate that the molecular characteristics of barnacle adhesive are unique. However, it is apparent from recent advances in molecular techniques that much remains undiscovered regarding the complex event of underwater attachment. Barnacles attached to silicone-based elastomeric coatings have been studied widely, particularly with respect to fouling-release technology. The fact that barnacles fail to attach tenaciously to silicone coatings, combined with the fact that the mode of attachment to these substrata is different to that for most other materials, indicates that knowledge about the natural mechanism of barnacle attachment is still incomplete. Further research on barnacles will enable a more comprehensive understanding of both the process of attachment and the adhesives used. Results from such studies will have a strong impact on technology aimed at fouling prevention as well as adhesion science and engineering.

  2. Critical roles of co-activation receptor DNAX accessory molecule-1 in natural killer cell immunity

    PubMed Central

    Xiong, Peng; Sang, Hai-Wei; Zhu, Min

    2015-01-01

    Natural killer (NK) cells, which can exert early and powerful anti-tumour and anti-viral responses, are important components of the innate immune system. DNAX accessory molecule-1 (DNAM-1) is an activating receptor molecule expressed on the surface of NK cells. Recent findings suggest that DNAM-1 is a critical regulator of NK cell biology. DNAM-1 is involved in NK cell education and differentiation, and also plays a pivotal role in the development of cancer, viral infections and immune-related diseases. However, tumours and viruses have developed multiple mechanisms to evade the immune system. They are able to impair DNAM-1 activity by targeting the DNAM-1 receptor–ligand system. We have reviewed the roles of DNAM-1, and its biological functions, with respect to NK cell biology and DNAM-1 chimeric antigen receptor-based immunotherapy. PMID:26235210

  3. MORPHEUS' MOLECULE1 is required to prevent aberrant RNA transcriptional read-through in Arabidopsis.

    PubMed

    Zhou, Yue; Zhang, Jun; Lin, Huixin; Guo, Guangqin; Guo, Yan

    2010-11-01

    Several pathways function to remove aberrant mRNA in eukaryotic cells; however, the exact mechanisms underlying the restriction of aberrant mRNA transcription are poorly understood. In this study, we found that MORPHEUS' MOLECULE1 (MOM1) is a key component of this regulatory machinery. The Arabidopsis (Arabidopsis thaliana) mom1-44 mutation was identified by luciferase imaging in transgenic plants harboring a cauliflower mosaic virus 35S promoter-LUCIFERASE transgene lacking the 3'-untranslated region. In the mom1-44 mutant, transcriptional read-though occurred in genes with an aberrant RNA structure. Analysis of an RNA-dependent RNA polymerase2 mom1 double mutant revealed that the RNA-directed DNA methylation pathway is not involved in this regulatory process. Moreover, the prevention of aberrant mRNA transcriptional read-through by MOM1 is gene locus and transgene copy number independent.

  4. Adhesive arachnoiditis after lumbar myelography.

    PubMed

    Suolanen, J

    1977-08-01

    Of 1500 myelographies, 99 patients had subsequent myelographies from which the prevalence of adhesive arachnoiditis caused by the initial investigation could be calculated. Three different water-soluble contrast agents had been used in the initial study: Kontrast U (800 patients), Dimer-X (400 patients), and Conray (300 patients) and the subsets of patients restudied represented 6%, 8% and 8% respectively of the whole series. After the first myelography 68 patients had no operation, 31 patients had hemilaminectomy. Conray produced arachnoid changes in 71% of the nonoperated patients. This differed significantly from the 43% caused by Kontrast U, and the 27% evoked by Dimer-X. The same trend was evident in the operated subset. The severity of the arachnoid changes was greater after Conray. Analysis of the iodine content of the different contrast media and comparison with similar series suggested that hyperosmolarity of the agent was responsible for the changes.

  5. Amyloid Fibril Solubility.

    PubMed

    Rizzi, L G; Auer, S

    2015-11-19

    It is well established that amyloid fibril solubility is protein specific, but how solubility depends on the interactions between the fibril building blocks is not clear. Here we use a simple protein model and perform Monte Carlo simulations to directly measure the solubility of amyloid fibrils as a function of the interaction between the fibril building blocks. Our simulations confirms that the fibril solubility depends on the fibril thickness and that the relationship between the interactions and the solubility can be described by a simple analytical formula. The results presented in this study reveal general rules how side-chain-side-chain interactions, backbone hydrogen bonding, and temperature affect amyloid fibril solubility, which might prove to be a powerful tool to design protein fibrils with desired solubility and aggregation properties in general.

  6. Desmosomal adhesion in vivo.

    PubMed

    Berika, Mohamed; Garrod, David

    2014-02-01

    Desmosomes are intercellular junctions that provide strong adhesion or hyper-adhesion in tissues. Here, we discuss the molecular and structural basis of this with particular reference to the desmosomal cadherins (DCs), their isoforms and evolution. We also assess the role of DCs as regulators of epithelial differentiation. New data on the role of desmosomes in development and human disease, especially wound healing and pemphigus, are briefly discussed, and the importance of regulation of the adhesiveness of desmosomes in tissue dynamics is considered.

  7. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  8. Adhesion at metal interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1991-01-01

    A basic adhesion process is defined, the theory of the properties influencing metallic adhesion is outlined, and theoretical approaches to the interface problem are presented, with emphasis on first-principle calculations as well as jellium-model calculations. The computation of the energies of adhesion as a function of the interfacial separation is performed; fully three-dimensional calculations are presented, and universality in the shapes of the binding energy curves is considered. An embedded-atom method and equivalent-crystal theory are covered in the framework of issues involved in practical adhesion.

  9. Adhesives, silver amalgam.

    PubMed

    1995-09-01

    The most recent advancement in silver amalgam is use of resin formulations to bond metal to tooth both chemically &/or physically, Since, historically, amalgam has been used successfully without adhesion to tooth, obvious clinical question is: Why is bonding now desirable? Two major clinical reasons to bond are: (1) Adhesive can increase fracture resistance of amalgam restored teeth & decrease cusp fractures; & (2) Seal provided by adhesive can greatly decrease, & often eliminate post-operative sensitivity. Following report summarizes CRA laboratory study of shear bond strength & sealing capability of 23 commercial adhesives used to bond 2 types of silver amalgam to tooth structure.

  10. Kidney injury molecule-1 is an early biomarker of cadmium nephrotoxicity

    PubMed Central

    Prozialeck, WC; Vaidya, VS; Liu, J; Waalkes, MP; Edwards, JR; Lamar, PC; Bernard, AM; Dumont, X; Bonventre, JV

    2009-01-01

    Cadmium (Cd) exposure results in injury to the proximal tubule characterized by polyuria and proteinuria. Kidney injury molecule-1 (Kim-1) is a transmembrane glycoprotein not normally detected in the mature kidney, but is upregulated and shed into the urine following nephrotoxic injury. In this study, we determine if Kim-1 might be a useful early biomarker of Cd nephrotoxicity. Male Sprague-Dawley rats were given daily injections of Cd for up to 12 weeks. Weekly urine samples were analyzed for Kim-1, protein, creatinine, metallothionein, and Clara cell protein CC-16. Significant levels of Kim-1 were detected in the urine by 6 weeks and continued to increase throughout the treatment period. This appearance of Kim-1 occurred 4-5 weeks before the onset of proteinuria, and 1-3 weeks before the appearance of metallothionein and CC-16. Higher doses of Cd gave rise to higher Kim-1 excretion. Reverse transcriptase-polymerase chain reaction (RT-PCR) expression analysis showed that Kim-1 transcript levels were increased after 6 weeks at the low dose of Cd. Immunohistochemical analysis showed that Kim-1 was present in proximal tubule cells of the Cd-treated rats. Our results suggest that Kim-1 may be a useful biomarker of early stages of Cd-induced proximal tubule injury. PMID:17687258

  11. Kidney Injury Molecule-1 and Cardiovascular Diseases: From Basic Science to Clinical Practice

    PubMed Central

    Medić, Branislava; Rovčanin, Branislav; Basta Jovanović, Gordana; Radojević-Škodrić, Sanja; Prostran, Milica

    2015-01-01

    Despite the recent findings concerning pathogenesis and novel therapeutic strategies, cardiovascular disease (CVD) still stays the leading cause of morbidity and mortality in patients with renal dysfunction, especially acute kidney injury (AKI). Early detection of patients with impaired renal function with cardiovascular risk may help ensure more aggressive treatment and improve clinical outcome. Kidney injury molecule-1 (KIM-1) is a new, promising marker of kidney damage which is currently the focus of countless studies worldwide. Some recent animal and human studies established KIM-1 as an important marker of acute tubular necrosis (ATN) and reliable predictor of development and prognosis of AKI. Food and Drug Administration (FDA) in USA acclaimed KIM-1 as an AKI biomarker for preclinical drug development. Recent data suggest the importance of monitoring of KIM-1 for early diagnosis and clinical course not only in patients with various forms of AKI and other renal diseases but also in patients with cardiorenal syndrome, heart failure, cardiopulmonary bypass, cardiothoracic surgical interventions in the pediatric emergency setting, and so forth. The aim of this review article is to summarize the literature data concerning KIM-1 as a potential novel marker in the early diagnosis and prediction of clinical outcome of certain cardiovascular diseases. PMID:26697493

  12. Kidney injury molecule-1: more than just an injury marker of tubular epithelial cells?

    PubMed

    Lim, Ai Ing; Tang, Sydney C W; Lai, Kar Neng; Leung, Joseph C K

    2013-05-01

    Regardless of the original causes and etiology, the progression to renal function declines follows a final common pathway associated with tubulointerstitial injury, in which the proximal tubular epithelial cells (PTEC) are instrumental. Kidney injury molecule-1 (KIM-1) is an emerging biomarker, and its expression and release are induced in PTEC upon injury. KIM-1 plays the role as a double-edged sword and implicates in the process of kidney injury and healing. Expression of KIM-1 is also associated with tubulointerstitial inflammation and fibrosis. More importantly, KIM-1 expressing PTEC play the role as the residential phagocytes, contribute to the removal of apoptotic cells and facilitate the regeneration of injured tubules. The precise mechanism of KIM-1 and its sheded ectodomain on restoration of tubular integrity after injury is not fully understood. Other than PTEC, macrophages (Mø) also implicate in tubular repair. Understanding the crosstalk between Mø and the injured PTEC is essential for designing appropriate methods for controlling the sophisticated machinery in tubular regeneration and healing. This article will review the current findings of KIM-1, beginning with its basic structure, utility as a biomarker, and possible functions, with focus on the role of KIM-1 in regeneration and healing of injured PTEC.

  13. Stromal interaction molecule 1 regulates growth, cell cycle, and apoptosis of human tongue squamous carcinoma cells.

    PubMed

    Cui, Xiaobo; Song, Laixiao; Bai, Yunfei; Wang, Yaping; Wang, Boqian; Wang, Wei

    2017-04-30

    Oral tongue squamous cell carcinoma (OTSCC) is the most common type of oral carcinomas. However, the molecular mechanism by which OTSCC developed is not fully identified. Stromal interaction molecule 1 (STIM1) is a transmembrane protein, mainly located in the endoplasmic reticulum (ER). STIM1 is involved in several types of cancers. Here, we report that STIM1 contributes to the development of human OTSCC. We knocked down STIM1 in OTSCC cell line Tca-8113 with lentivirus-mediated shRNA and found that STIM1 knockdown repressed the proliferation of Tca-8113 cells. In addition, we also showed that STIM1 deficiency reduced colony number of Tca-8113 cells. Knockdown of STIM1 repressed cells to enter M phase of cell cycle and induced cellular apoptosis. Furthermore, we performed microarray and bioinformatics analysis and found that STIM1 was associated with p53 and MAPK pathways, which may contribute to the effects of STIM1 on cell growth, cell cycle, and apoptosis. Finally, we confirmed that STIM1 controlled the expression of MDM2, cyclin-dependent kinase 4 (CDK4), and growth arrest and DNA damage inducible α (GADD45A) in OTSCC cells. In conclusion, we provide evidence that STIM1 contributes to the development of OTSCC partially through regulating p53 and MAPK pathways to promote cell cycle and survival.

  14. Epigenetic silencing of endogenous repetitive sequences by MORPHEUS' MOLECULE1 in Arabidopsis thaliana.

    PubMed

    Habu, Yoshiki

    2010-10-01

    Morpheus' molecule1 (MOM1) is a plant-specific epigenetic regulator of transcriptional gene silencing. Mutants of MOM1 release silencing of subsets of endogenous repetitive elements and transgenes without affecting their cytosine methylation status. Although MOM1 is evolutionarily related to chromodomain helicase DNA binding protein3 (CHD3), a family of chromatin remodeling proteins involved in repression of gene expression, MOM1 does not carry the functional ATPase/helicase domain essential for chromatin remodeling activity, and therefore, its mode of action is unknown. We recently performed a genome-wide survey for endogenous targets silenced by MOM1 and identified loci that are concentrated around centromeres and rich in sequences homologous to the 24-nt small interfering RNAs (siRNAs) that accumulate in wild type plants. Further and independent analyses indicated that the degree of contribution of MOM1 to maintenance of the silent states varies in different loci and that other silencing machineries, including those in the RNA-directed DNA methylation (RdDM) pathway, interact genetically with MOM1. In this short article, I review what we know about MOM1 and discuss its possible functions in silencing through examination of other silencing factors that interact genetically with MOM1.

  15. Instant acting adhesive system

    NASA Technical Reports Server (NTRS)

    Davis, T. R.; Haines, R. C.

    1971-01-01

    Adhesive developes 80 percent of minimum bond strength of 250 psi less than 30 sec after activation is required. Adhesive is stable, handles easily, is a low toxic hazard, and is useful in industrial and domestic prototype bonding and clamping operations.

  16. LARC-13 adhesive development

    NASA Technical Reports Server (NTRS)

    Hill, S. G.; Sheppard, C. H.; Johnson, J. C.

    1980-01-01

    A LARC-13 type adhesive system was developed and property data obtained that demonstrated improved thermomechanical properties superior to base LARC-13 adhesive. An improved adhesive for 589 K (600 F) use was developed by physical or chemical modification of LARC-13. The adhesive was optimized for titanium and composite bonding, and a compatible surface preparation for titanium and composite substrates was identified. The data obtained with the improved adhesive system indicated it would meet the 589 K (600 F) properties desired for application on space shuttle components. Average titanium lap shear data were: (1) 21.1 MPa (3355 psi) at RT, (2) 13.0 MPa (1881 psi) at 600 F, and (3) 16.4 MPa (2335) after aging 125 hours at 600 F and tested at 600 F.

  17. Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1.

    PubMed

    Cárdenas-González, M; Osorio-Yáñez, C; Gaspar-Ramírez, O; Pavković, M; Ochoa-Martínez, A; López-Ventura, D; Medeiros, M; Barbier, O C; Pérez-Maldonado, I N; Sabbisetti, V S; Bonventre, J V; Vaidya, V S

    2016-10-01

    Environmental hazards from natural or anthropological sources are widespread, especially in the north-central region of Mexico. Children represent a susceptible population due to their unique routes of exposure and special vulnerabilities. In this study we evaluated the association of exposure to environmental kidney toxicants with kidney injury biomarkers in children living in San Luis Potosi (SLP), Mexico. A cross-sectional study was conducted with 83 children (5-12 years of age) residents of Villa de Reyes, SLP. Exposure to arsenic, cadmium, chromium, fluoride and lead was assessed in urine, blood and drinking water samples. Almost all tap and well water samples had levels of arsenic (81.5%) and fluoride (100%) above the permissible levels recommended by the World Health Organization. Mean urine arsenic (45.6ppb) and chromium (61.7ppb) were higher than the biological exposure index, a reference value in occupational settings. Using multivariate adjusted models, we found a dose-dependent association between kidney injury molecule-1 (KIM-1) across chromium exposure tertiles [(T1: reference, T2: 467pg/mL; T3: 615pg/mL) (p-trend=0.001)]. Chromium upper tertile was also associated with higher urinary miR-200c (500 copies/μl) and miR-423 (189 copies/μL). Arsenic upper tertile was also associated with higher urinary KIM-1 (372pg/mL). Other kidney injury/functional biomarkers such as serum creatinine, glomerular filtration rate, albuminuria, neutrophil gelatinase-associated lipocalin and miR-21 did not show any association with arsenic, chromium or any of the other toxicants evaluated. We conclude that KIM-1 might serve as a sensitive biomarker to screen children for kidney damage induced by environmental toxic agents.

  18. What Variables Affect Solubility?

    ERIC Educational Resources Information Center

    Baker, William P.; Leyva, Kathryn

    2003-01-01

    Helps middle school students understand the concept of solubility through hands-on experience with a variety of liquids and solids. As they explore factors that affect solubility and saturation, students gain content mastery and an understanding of the inquiry process. Also enables teachers to authentically assess student performance on several…

  19. Applications of Solubility Data

    ERIC Educational Resources Information Center

    Tomkins, Reginald P. T.

    2008-01-01

    This article describes several applications of the use of solubility data. It is not meant to be exhaustive but rather to show that knowledge of solubility data is required in a variety of technical applications that assist in the design of chemical processes. (Contains 3 figures and 1 table.)

  20. Cyanoacrylate Adhesives in Eye Wounds.

    DTIC Science & Technology

    EYE, *WOUNDS AND INJURIES), (*ADHESIVES, EYE), (*ACRYLIC RESINS, ADHESIVES), CORNEA , HEALING, TISSUES(BIOLOGY), TOLERANCES(PHYSIOLOGY), NECROSIS, SURGICAL SUPPLIES, STRENGTH(PHYSIOLOGY), SURGERY, THERAPY

  1. Absence of Platelet Endothelial Cell Adhesion Molecule 1, PECAM-1/CD31, In Vivo Increases Resistance to Salmonella enterica Serovar Typhimurium in Mice

    PubMed Central

    Lovelace, Michael D.; Yap, May Lin; Yip, Jana; Muller, William; Wijburg, Odilia

    2013-01-01

    PECAM-1/CD31 is known to regulate inflammatory responses and exhibit pro- and anti-inflammatory functions. This study was designed to determine the functional role of PECAM-1 in susceptibility to murine primary in vivo infection with Salmonella enterica serovar Typhimurium and in in vitro inflammatory responses of peritoneal macrophages. Lectin profiling showed that cellular PECAM-1 and recombinant human PECAM-1-Ig chimera contain high levels of mannose sugars and N-acetylglucosamine. Consistent with this carbohydrate pattern, both recombinant human and murine PECAM-1-Ig chimeras were shown to bind S. Typhimurium in a dose-dependent manner in vitro. Using oral and fecal-oral transmission models of S. Typhimurium SL1344 infection, PECAM-1−/− mice were found to be more resistant to S. Typhimurium infection than wild-type (WT) C57BL/6 mice. While fecal shedding of S. Typhimurium was comparable in wild-type and PECAM-1−/− mice, the PECAM-1-deficient mice had lower bacterial loads in systemic organs such as liver, spleen, and mesenteric lymph nodes than WT mice, suggesting that extraintestinal dissemination was reduced in the absence of PECAM-1. This reduced bacterial load correlated with reduced tumor necrosis factor (TNF), interleukin-6 (IL-6), and monocyte chemoattractant protein (MCP) levels in sera of PECAM-1−/− mice. Following in vitro stimulation of macrophages with either whole S. Typhimurium, lipopolysaccharide (LPS) (Toll-like receptor 4 [TLR4] ligand), or poly(I·C) (TLR3 ligand), production of TNF and IL-6 by PECAM-1−/− macrophages was reduced. Together, these results suggest that PECAM-1 may have multiple functions in resistance to infection with S. Typhimurium, including binding to host cells, extraintestinal spread to deeper tissues, and regulation of inflammatory cytokine production by infected macrophages. PMID:23509149

  2. Leu125Val polymorphism of platelet endothelial cell adhesion molecule-1 is associated with atherosclerotic cerebral infarction in Chinese Han population.

    PubMed

    Song, Yanmin; Zhao, Ranran; Long, Lili; Zhang, Ning; Liu, Yunhai

    2014-01-01

    A total of 142 Atherosclerotic cerebral infarction (ACI) patients and 116 controls were enrolled in our study. The Leu125Val polymorphism of PECAM-1 was genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The plasma sPECAM-1 level was measured by enzyme-linked immunosorbent assay (ELISA) method. We found a statistically significant difference in Leu125Val genotypic distribution between cases and controls (P < 0.05). The frequencies of the Val allele between ACI group and controls were significantly different (P < 0.05). Logistic regression analysis showed that the genotype Val/Val was associated with increased ACI risk (OR = 2.355, 95% CI = 1.153-4.809, P = 0.019). In both the ACI group and the control group, the plasma PECAM-1 levels of carriers of the Val/Val genotype were higher than those carrying Leu/Leu and Leu/Val genotypes. The plasma sPECAM-1 level is associated with ACI. Our study showed that Leu125Val polymorphism of PECAM-1 may be associated with ACI risk. Carrying the Val/Val genotype showed increased risk for ACI. The Leu125Val polymorphism of PECAM-1 may be associated with the plasma sPECAM-1 level, which is associated with Chinese ACI also. In conclusions, The Leu125Val polymorphism of the PECAM-1 gene is likely to be related to ACI, and the Val/Val genotype may be an independent risk factor for ACI. The plasma sPECAM-1 level may be associated with ACI risk.

  3. BLOOD LEUKOCYTE EXPRESSION OF LFA-1 AND INTRACELLULAR ADHESION MOLECULE-1 (ICAM-1) AFTER INHALATION OF ULTRAFINE CARBON PARTICLES. (R827354C003)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  4. Association of Polymorphisms in Intercellular Adhesion Molecule 1 (ICAM-1) Gene with Cancer Susceptibility: A Meta-Analysis of 14 Case-Control Studies.

    PubMed

    Zhang, Xiaolong; Huang, Junjie; Bai, Jian; Lu, Wei; Zhang, Meng; Mei, Hongbing

    2016-02-21

    BACKGROUND Many epidemiology studies have indicated that polymorphisms in ICAM-1 are associated with a variety of cancers, but published data are contradictory and inconclusive. Therefore, we conducted the current meta-analysis to elaborate the effects of ICAM-1 polymorphisms (rs5491, rs3093030, rs281432, and rs1799969) on cancer susceptibility. MATERIAL AND METHODS We conducted a comprehensive literature search in PubMed, Web of Science, and Google Scholar. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association between ICAM-1 polymorphisms and cancer susceptibility. RESULTS We enrolled 14 published case-control studies including 4608 cancer cases and 4913 controls. We found an increased susceptibility of cancer in polymorphism rs1799969 (C vs. T: OR=1.662, 95%CI=1.288-2.143, p=0141; CT vs. TT: OR=1.860, 95%CI=1.398-2.474, p=0.507; CC+CT vs. TT: OR=1.812, 95%CI=1.373-2.391, p=0.284) of ICAM-1 among the overall population. However, no association between polymorphisms rs5491, rs3093030, or rs281432 of ICAM-1 and cancer susceptibility was identified. In the stratification analysis by ethnicity, we identified an increased susceptibility for Asians in rs3093030 polymorphism (CC vs. TC+TT: OR=1.728, 95% CI=1.234-2.421, p=0.787). CONCLUSIONS Our results suggest that the ICAM-1 polymorphism rs1799969 is significantly associated with increased susceptibility to overall cancer. Further studies (preferably prospective) are warranted to validate these relationships.

  5. Discovery of Low Mucus Adhesion Surfaces

    PubMed Central

    Gu, Minghao; Yildiz, Hasan; Carrier, Rebecca; Belfort, Georges

    2014-01-01

    Mucus secretion from the body is ubiquitous and finding materials that resist mucus adhesion is a major technological challenge of medical and consumer import. Here, using a high throughput platform (HTP) with photo-induced graft polymerization, we first rapidly synthesized, screened and tested a library of 55 different surfaces from six functional monomer classes to discover porcine intestinal low mucus adhesion surfaces using a 1 hr static mucus adsorption protocol. From this preliminary screen, two chemistries, a zwitterionic ([2-(acryloyloxy)ethyl] trimethylammonium chloride) and a multiple hydroxyl (N-[tris(hydroxymethyl)methyl]acrylamide) surface, exhibited the significantly low mucus adhesion from a Langmuir-type isotherm when exposed to increasing concentrations of mucus for 24 hr. Apolar or hydrophobic interactions were likely the dominant attractive forces during mucus binding since many polar or hydrophilic monomers reduced mucus adhesion. Hansen solubility parameters were used to illustrate the importance of monomer polarity and hydrogen-bonding in reducing mucus adsorption. For a series of PEG monomers with changing molecular weight from 144 g/mol to 1100 g/mol, we observed an excellent linear correlation (R2 = 0.998) between relative amount adsorbed and the distance from a water point in a specialized HSP plot, emphasizing the role of surface-water interactions for PEG modified surfaces. PMID:23072828

  6. Adhesive Contact Sweeper

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.

    1993-01-01

    Adhesive contact sweeper removes hair and particles vacuum cleaner leaves behind, without stirring up dust. Also cleans loose rugs. Sweeper holds commercially available spools of inverted adhesive tape. Suitable for use in environments in which air kept free of dust; optics laboratories, computer rooms, and areas inhabited by people allergic to dust. For carpets, best used in tandem with vacuum cleaner; first pass with vacuum cleaner removes coarse particles, and second pass with sweeper extracts fine particles. This practice extends useful life of adhesive spools.

  7. Focal adhesions in osteoneogenesis

    PubMed Central

    Biggs, M.J.P; Dalby, M.J

    2010-01-01

    As materials technology and the field of tissue engineering advances, the role of cellular adhesive mechanisms, in particular the interactions with implantable devices, becomes more relevant in both research and clinical practice. A key tenet of medical device technology is to use the exquisite ability of biological systems to respond to the material surface or chemical stimuli in order to help develop next-generation biomaterials. The focus of this review is on recent studies and developments concerning focal adhesion formation in osteoneogenesis, with an emphasis on the influence of synthetic constructs on integrin mediated cellular adhesion and function. PMID:21287830

  8. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  9. Adhesion of Polymer Vesicles

    NASA Astrophysics Data System (ADS)

    Lin, John J.; Bates, Frank S.; Hammer, Daniel A.; Silas, James A.

    2005-07-01

    The adhesion and bending modulus of polybutadiene-poly(ethylene oxide) block copolymer vesicles made from a bidisperse mixture of polymers is measured using micropipette aspiration. The adhesion energy between biotinylated vesicles and avidin beads is modeled by incorporating the extension of the adhesive ligands above the surface brush of the vesicle according to the blob model of bidisperse polymer mixtures of Komura and Safran assuming the polymer brush at the surface of the vesicle is compact. The same model accurately reproduces the scaling of the bending modulus with polymer composition.

  10. Adhesive Bonding for Shelters

    DTIC Science & Technology

    1980-12-01

    weru uvaluated, the type of etch bath " sweetener " and the type of rinse\\water used. The type of etch bath " sweetener " was found to have a dramatic effect...EA9601NW Adhesives on 50521134 Bare Adherenas 39 13 Stress-Durability Behavior Sun-mary 40 14 Effect of Ltch Bath Sweetening Alloy on Interracial Durability...34"’ -,,• , •’• •"• " ,,,,, 9 Adhesive/Primer/Adherend Alloy/Surface Preparation Combinations Adherend OFPL Sweetening Rinse Adhesive:Primer Alloy Alloy

  11. Purification of adhesive proteins from mussels.

    PubMed

    Pardo, J; Gutierrez, E; Sáez, C; Brito, M; Burzio, L O

    1990-11-01

    The adhesive polyphenolic proteins from the mussels Mytilus chilensis and Choromytilus chorus have been purified based on their solubility in dilute perchloric acid and on differential precipitation with acetone containing about 0.3 N HCl. The specific activity of the proteins obtained was 0.16 mg of 3,4-dihydroxyphenylalanine per milligram of protein, or higher. The proteins have an apparent molecular weight of about 100,000 and they contain a high proportion of 3,4-dihydroxyphenylalanine, lysine, and proline.

  12. Adhesives for Aerospace

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1985-01-01

    The industry is hereby challenged to integrate adhesive technology with the total structure requirements in light of today's drive into automation/mechanization. The state of the art of adhesive technology is fairly well meeting the needs of the structural designers, the processing engineer, and the inspector, each on an individual basis. The total integration of these needs into the factory of the future is the next collective hurdle to be achieved. Improved processing parameters to fit the needs of automation/mechanization will necessitate some changes in the adhesive forms, formulations, and chemistries. Adhesives have, for the most part, kept up with the needs of the aerospace industry, normally leading the rest of the industry in developments. The wants of the aerospace industry still present a challenge to encompass all elements, achieving a totally integrated joined and sealed structural system. Better toughness with hot-wet strength improvements is desired. Lower cure temperatures, longer out times, and improved corrosion inhibition are desired.

  13. Optical adhesive property study

    SciTech Connect

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  14. Adhesion of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.

    2007-01-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  15. What Should We Teach Beginners about Solubility and Solubility Products?

    ERIC Educational Resources Information Center

    Hawkes, Stephen J.

    1998-01-01

    Argues that consideration should be given to whether teaching solubility product calculations is at all useful. Claims that experienced teachers seriously misunderstand and misuse solubility product calculations. (DDR)

  16. Adhesion of leukocytes to dermal endothelial cells is induced after single-dose, but reduced after repeated doses of UVA.

    PubMed

    Heckmann, M; Pirthauer, M; Plewig, G

    1997-12-01

    Approximately 20-50% of ultraviolet A (UVA) irradiation delivered to the skin surface may reach the human dermal microvascular endothelial cells (HDMEC) that play a pivotal role in cellular inflammatory tissue; however, the pathophysiologic role of HDMEC in UVA-induced skin changes is largely unknown. Based on previous in vivo and in vitro studies revealing UVA-induced expression of endothelial adhesion molecules, we studied isolated HDMEC under various conditions in order to further delineate the impact of UVA on these cells. The expression of cell adhesion molecules was determined by flow cytometry and the resulting changes of stable adhesion of leukocytes to endothelial cells were quantitated for granulocytes, lymphocytes, and monocytes using a newly developed multicellular adhesion assay. Additionally, antibody blocking experiments were performed to delineate the role of individual cell adhesion molecules in UVA-induced leukocyte adherence. High-dose polychromatic UVA (25 J per cm2, maximal emission at 375 nm) induced intercellular adhesion molecule-1 and E-selectin with different kinetics but correlating the adhesion of leukocyte subsets. This effect subsided, however, in the course of 3-6 daily applied UVA doses. Moreover, pro-inflammatory cytokine challenge by tumor necrosis factor-alpha and interleukin-1-alpha resulted in significantly weaker induction of intercellular adhesion molecule-1 and E-selectin in repeatedly UVA-exposed HDMEC. Differential quantitation of peripheral blood derived granulocytes, lymphocytes, and monocytes revealed reduced adhesion particularly of lymphocytes followed by monocytes and granulocytes compared with leukocyte adhesion to nonirradiated but cytokine-stimulated HDMEC. It is concluded that UVA substantially influences endothelial cell adhesion molecules expression and thus directly interferes with leukocyte adhesion to endothelial cells. Divergent UVA-induced effects in this respect can be attributed to the mode of UV exposure

  17. Epithelial adhesive junctions

    PubMed Central

    Capaldo, Christopher T.; Farkas, Attila E.

    2014-01-01

    Epithelial adhesive cell-to-cell contacts contain large, plasma membrane-spanning multiprotein aggregates that perform vital structural and signaling functions. Three prominent adhesive contacts are the tight junction, adherens junction, and the desmosome. Each junction type has unique cellular functions and a complex molecular composition. In this review, we comment on recent and exciting advances in our understanding of junction composition and function. PMID:24592313

  18. Alternating-current electrophoretic adhesion of biodegradable hydrogel utilizing intermediate polymers.

    PubMed

    Asoh, Taka-Aki; Kawai, Wataru; Kikuchi, Akihiko

    2014-11-01

    The adhesion of anionic charged biodegradable hydrogels each other utilizing oppositely charged water-soluble polymers as a binder has been achieved by applying alternating-current (AC) electric fields. The two gelatin based dextran sulfate gels (DS gels) were molecularly sutured together by AC electrophoretic adhesion when cationic charged quaternary ammonium chitosan (TMC) was applied between and held in contact with the two DS gels. The adhesive strength of the gels increased with increasing periodicity when a square wave was applied. Hydrogel constructs composed of DS microgels were prepared simply by AC electrophoretic adhesion utilizing intermediate TMC.

  19. Intercellular adhesion molecule-4 and CD36 are implicated in the abnormal adhesiveness of sickle cell SAD mouse erythrocytes to endothelium

    PubMed Central

    Trinh-Trang-Tan, Marie-Marcelle; Vilela-Lamego, Camilo; Picot, Julien; Wautier, Marie-Paule; Cartron, Jean-Pierre

    2010-01-01

    Background Abnormal adhesiveness of red blood cells to endothelium has been implicated in vaso-occlusive crisis of sickle cell disease. The present study examined whether the SAD mouse model exhibits the same abnormalities of red blood cell adhesion as those found in human sickle cell disease. Design and Methods The repertoire of adhesive molecules on murine erythrocytes and bEnd.3 microvascular endothelial cells was determined by flow cytometry using monoclonal antibodies or by western blotting. Adhesion was investigated in dynamic conditions and measured at different shear stresses. Results CD36, CD47 and intercellular adhesion molecular-4, but not Lutheran blood group antigen/basal cell adhesion molecule, are present on mouse mature erythrocytes. α4β1 are not expressed on SAD and wild type reticulocytes. Endothelial bEnd.3 cells express αVβ3, α4β1, CD47, vascular cell adhesion molecule-1, and Lutheran blood group antigen/basal cell adhesion molecule, but not CD36. Adhesion of SAD red cells is: (i) 2- to 3-fold higher than that of wild type red cells; (ii) further increased on platelet activating factor-activated endothelium; (iii) not stimulated by epinephrine; (iv) inhibited after treating the endothelium with a peptide reproducing one of the binding sequences of mouse intercellular adhesion molecular-4, or with mon-oclonal antibody against murine αv integrin; and (v) inhibited after pretreatment of red blood cells with anti-mouse CD36 monoclonal antibodies. The combination of treatments with intercellular adhesion molecular-4 peptide and anti-CD36 monoclonal antibodies eliminates excess adhesion of SAD red cells. The phosphorylation state of intercellular adhesion molecular-4 and CD36 is probably not involved in the over-adhesiveness of SAD erythrocytes. Conclusions Intercellular adhesion molecular-4/αvβ3 and CD36/thrombospondin interactions might contribute to the abnormally high adhesiveness of SAD red cells. The SAD mouse is a valuable animal model

  20. Learning about Solubility

    ERIC Educational Resources Information Center

    Salinas, Dino G.; Reyes, Juan G.

    2015-01-01

    Qualitative questions are proposed to assess the understanding of solubility and some of its applications. To improve those results, a simple quantitative problem on the precipitation of proteins is proposed.

  1. Protein solubility modeling

    NASA Technical Reports Server (NTRS)

    Agena, S. M.; Pusey, M. L.; Bogle, I. D.

    1999-01-01

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.

  2. Optimizing solubility: kinetic versus thermodynamic solubility temptations and risks.

    PubMed

    Saal, Christoph; Petereit, Anna Christine

    2012-10-09

    The aim of this study was to assess the usefulness of kinetic and thermodynamic solubility data in guiding medicinal chemistry during lead optimization. The solubility of 465 research compounds was measured using a kinetic and a thermodynamic solubility assay. In the thermodynamic assay, polarized-light microscopy was used to investigate whether the result referred to the crystalline or to the amorphous compound. From the comparison of kinetic and thermodynamic solubility data it was noted that kinetic solubility measurements frequently yielded results which show considerably higher solubility compared to thermodynamic solubility. This observation is ascribed to the fact that a kinetic solubility assay typically delivers results which refer to the amorphous compound. In contrast, results from thermodynamic solubility determinations more frequently refer to a crystalline phase. Accordingly, thermodynamic solubility data--especially when used together with an assessment of the solid state form--are deemed to be more useful in guiding solubility optimization for research compounds.

  3. Visualizing and quantifying adhesive signals

    PubMed Central

    Sabouri-Ghomi, Mohsen; Wu, Yi; Hahn, Klaus; Danuser, Gaudenz

    2008-01-01

    Understanding the structural adaptation and signaling of adhesion sites in response to mechanical stimuli requires in situ characterization of the dynamic activation of a large number of adhesion components. Here, we review high resolution live cell imaging approaches to measure forces, assembly and interaction of adhesion components, and the activation of adhesion-mediated signals. We conclude by outlining computational multiplexing as a framework for the integration of these data into comprehensive models of adhesion signaling pathways. PMID:18586481

  4. Bio-inspired adhesive catechol-conjugated chitosan for biomedical applications: A mini review.

    PubMed

    Ryu, Ji Hyun; Hong, Seonki; Lee, Haeshin

    2015-11-01

    The development of adhesive materials, such as cyanoacrylate derivatives, fibrin glues, and gelatin-based adhesives, has been an emerging topic in biomaterial science because of the many uses of these materials, including in wound healing patches, tissue sealants, and hemostatic materials. However, most bio-adhesives exhibit poor adhesion to tissue and related surfaces due to the presence of body fluid. For a decade, studies have aimed at addressing this issue by developing wet-resistant adhesives. Mussels demonstrate robust wet-resistant adhesion despite the ceaseless waves at seashores, and mussel adhesive proteins play a key role in this adhesion. Adhesive proteins located at the distal end (i.e., those that directly contact surfaces) are composed of nearly 60% of amino acids called 3,4-dihydroxy-l-phenylalanine (DOPA), lysine, and histidine, which contain side chains of catechol, primary amines, and secondary amines, respectively. Inspired by the abundant catecholamine in mussel adhesive proteins, researchers have developed various types of polymeric mimics, such as polyethylenimine-catechol, chitosan-catechol, and other related catecholic polymers. Among them, chitosan-catechol is a promising adhesive polymer for biomedical applications. The conjugation of catechol onto chitosan dramatically increases its solubility from zero to nearly 60mg/mL (i.e., 6% w/v) in pH 7 aqueous solutions. The enhanced solubility maximizes the ability of catecholamine to behave similar to mussel adhesive proteins. Chitosan-catechol is biocompatible and exhibits excellent hemostatic ability and tissue adhesion, and thus, chitosan-catechol will be widely used in a variety of medical settings in the future. This review focuses on the various aspects of chitosan-catechol, including its (1) preparation methods, (2) physicochemical properties, and (3) current applications.

  5. Platelet Adhesion under Flow

    PubMed Central

    Ruggeri, Zaverio M.

    2011-01-01

    Platelet adhesive mechanisms play a well-defined role in hemostasis and thrombosis, but evidence continues to emerge for a relevant contribution to other pathophysiological processes including inflammation, immune-mediated responses to microbial and viral pathogens, and cancer metastasis. Hemostasis and thrombosis are related aspects of the response to vascular injury, but the former protects from bleeding after trauma while the latter is a disease mechanism. In either situation, adhesive interactions mediated by specific membrane receptors support the initial attachment of single platelets to cellular and extracellular matrix constituents of the vessel wall and tissues. In the subsequent steps of thrombus growth and stabilization, adhesive interactions mediate platelet to platelet cohesion (aggregation) and anchoring to the fibrin clot. A key functional aspect of platelets is their ability to circulate in a quiescent state surveying the integrity of the inner vascular surface, coupled to a prompt reaction wherever alterations are detected. In many respects, therefore, platelet adhesion to vascular wall structures, to one another or to other blood cells are facets of the same fundamental biological process. The adaptation of platelet adhesive functions to the effects of blood flow is the main focus of this review. PMID:19191170

  6. A role for cell adhesion in beryllium-mediated lung disease

    SciTech Connect

    Hong-geller, Elizabeth

    2008-01-01

    Chronic beryllium disease (CBD) is a debilitating lung disorder in which exposure to the lightweight metal beryllium (Be) causes the accumulation of beryllium-specific CD4+ T cells in the lung and formation of noncaseating pulmonary granulomas. Treatment for CBD patients who exhibit progressive pulmonary decline is limited to systemic corticosteroids, which suppress the severe host inflammatory response. Studies in the past several years have begun to highlight cell-cell adhesion interactions in the development of Be hypersensitivity and CBD. In particular, the high binding affinity between intercellular adhesion molecule 1 (I-CAM1) on lung epithelial cells and the {beta}{sub 2} integrin LFA-1 on migrating lymphocytes and macrophages regulates the concerted rolling of immune cells to sites of inflammation in the lung. In this review, we discuss the evidence that implicates cell adhesion processes in onset of Be disease and the potential of cell adhesion as an intervention point for development of novel therapies.

  7. Reduction of postoperative adhesion development.

    PubMed

    Diamond, Michael P

    2016-10-01

    Despite use of meticulous surgical techniques, and regardless of surgical access via laparotomy or laparoscopy, postoperative adhesions develop in the vast majority of women undergoing abdominopelvic surgery. Such adhesions represent not only adhesion reformation at sites of adhesiolysis, but also de novo adhesion formation at sites of surgical procedures. Application of antiadhesion adjuvants compliment the benefits of meticulous surgical techniques, providing an opportunity to further reduce postoperative adhesion development. Improved understanding of the pathophysiology of adhesion development and distinguishing variations in the molecular biologic mechanisms from adhesion-free peritoneal repair represent future opportunities to improve the reduction of postoperative adhesions. Optimization of the reduction of postoperative adhesions will likely require identification of unique, personalized approaches in each individual, representing interindividual variation in peritoneal repair processes.

  8. Magnetic field switchable dry adhesives.

    PubMed

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-04

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  9. Adhesion and wetting: Similarities and differences

    SciTech Connect

    Shanahan, M.E.R. )

    1991-10-01

    This article examines what is understood about adhesion and wetting both from the historical and scientific perspectives. Topics covered include mechanical adhesion, specific adhesion, chemical adhesion, adhesion by diffusion, the adsorption or wetting theory, bulk adhesion, the rheological theory, hysteresis effects in rubber adhesion, and hysteresis of wetting.

  10. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    NASA Astrophysics Data System (ADS)

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-03-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.

  11. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    PubMed Central

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-01-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level. PMID:28290531

  12. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  13. Natural Underwater Adhesives.

    PubMed

    Stewart, Russell J; Ransom, Todd C; Hlady, Vladimir

    2011-06-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)(3) coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  14. Natural Underwater Adhesives

    PubMed Central

    Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

    2011-01-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  15. Elastomer toughened polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L. (Inventor)

    1983-01-01

    A rubber-toughened addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state, and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride was mixed, and utilizing solvent or mixture of solvents for the reaction.

  16. Adhesion in hydrogel contacts.

    PubMed

    Torres, J R; Jay, G D; Kim, K-S; Bothun, G D

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  17. Adhesion in hydrogel contacts

    NASA Astrophysics Data System (ADS)

    Torres, J. R.; Jay, G. D.; Kim, K.-S.; Bothun, G. D.

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  18. Metallic Adhesion and Bonding

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1984-01-01

    Although metallic adhesion has played a central part in much tribological speculation, few quantitative theoretical calculations are available. This is in part because of the difficulties involved in such calculations and in part because the theoretical physics community is not particularly involved with tribology. The calculations currently involved in metallic adhesion are summarized and shown that these can be generalized into a scaled universal relationship. Relationships exist to other types of covalent bonding, such as cohesive, chemisorptive, and molecular bonding. A simple relationship between surface energy and cohesive energy is offered.

  19. Switchable bio-inspired adhesives

    NASA Astrophysics Data System (ADS)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  20. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.

    PubMed

    Burke, Kelly A; Roberts, Dane C; Kaplan, David L

    2016-01-11

    Silk fibroin from the domesticated silkworm Bombyx mori is a naturally occurring biopolymer with charged hydrophilic terminal regions that end-cap a hydrophobic core consisting of repeating sequences of glycine, alanine, and serine residues. Taking inspiration from mussels that produce proteins rich in L-3,4-dihydroxyphenylalanine (DOPA) to adhere to a variety of organic and inorganic surfaces, the silk fibroin was functionalized with catechol groups. Silk fibroin was selected for its high molecular weight, tunable mechanical and degradation properties, aqueous processability, and wide availability. The synthesis of catechol-functionalized silk fibroin polymers containing varying amounts of hydrophilic polyethylene glycol (PEG, 5000 g/mol) side chains was carried out to balance silk hydrophobicity with PEG hydrophilicity. The efficiency of the catechol functionalization reaction did not vary with PEG conjugation over the range studied, although tuning the amount of PEG conjugated was essential for aqueous solubility. Adhesive bonding and cell compatibility of the resulting materials were investigated, where it was found that incorporating as little as 6 wt % PEG prior to catechol functionalization resulted in complete aqueous solubility of the catechol conjugates and increased adhesive strength compared with silk lacking catechol functionalization. Furthermore, PEG-silk fibroin conjugates maintained their ability to form β-sheet secondary structures, which can be exploited to reduce swelling. Human mesenchymal stem cells (hMSCs) proliferated on the silks, regardless of PEG and catechol conjugation. These materials represent a protein-based approach to catechol-based adhesives, which we envision may find applicability as biodegradable adhesives and sealants.

  1. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  2. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    PubMed Central

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  3. Improved dental adhesive formulations based on reactive nanogel additives.

    PubMed

    Morães, R R; Garcia, J W; Wilson, N D; Lewis, S H; Barros, M D; Yang, B; Pfeifer, C S; Stansbury, J W

    2012-02-01

    Current challenges in adhesive dentistry include over-hydrophilic bonding formulations, which facilitate water percolation through the hybrid layer and result in unreliable bonded interfaces. This study introduces nanogel-modified adhesives as a way to control the material's hydrophobic character without changing the basic monomer formulation (keeping water-chasing capacity and operatory techniques unaltered). Nanogel additives of varied hydrophobicity were synthesized in solution, rendering 10- to 100-nm-sized particles. A model BisGMA/HEMA solvated adhesive was prepared (control), to which reactive nanogels were added. The increase in adhesive viscosity did not impair solvent removal by air-thinning. The degree of conversion in the adhesive was similar between control and nanogel-modified materials, while the bulk dry and, particularly, the wet mechanical properties were significantly improved through nanogel-based network reinforcement and reduced water solubility. As preliminary validation of this approach, short-term micro-tensile bond strengths to acid-etched and primed dentin were significantly enhanced by nanogel inclusion in the adhesive resins.

  4. Wood Composite Adhesives

    NASA Astrophysics Data System (ADS)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  5. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  6. 3-D foam adhesive deposition

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.; Salmassy, O. K.

    1976-01-01

    Bonding method, which reduces amount and weight of adhesive, is applicable to foam-filled honeycomb constructions. Novel features of process include temperature-viscosity control and removal of excess adhesive by transfer to cellophane film.

  7. Fluorine (soluble fluoride)

    Integrated Risk Information System (IRIS)

    Fluorine ( soluble fluoride ) ; CASRN 7782 - 41 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for No

  8. Nickel, soluble salts

    Integrated Risk Information System (IRIS)

    Nickel , soluble salts ; CASRN Various Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  9. Uranium, soluble salts

    Integrated Risk Information System (IRIS)

    Uranium , soluble salts ; no CASRN Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  10. Effect of water storage on ultimate tensile strength and mass changes of universal adhesives

    PubMed Central

    Bahrololumi, Nazanin; Najafi-Abrandabadi, Ahmad; Sadr, Alireza; Sheikh-Al-Eslamian, Seyedeh-Mahsa; Ghasemi, Amir

    2017-01-01

    Background The aim of the present study was to evaluate the influence of water storage on micro tensile strength (µTS) and mass changes (MC) of two universal adhesives. Material and Methods 10 disk-shaped specimens were prepared for each adhesive; Scotchbond Universal (SCU) All-Bond Universal (ABU) and Adper Single Bond 2 (SB2). At the baseline and after 1 day and 28 days of water storage, their mass were measured and compared to estimate water sorption and solubility. For µTS test, 20 dumbbell shaped specimens were also prepared for each adhesive in two subgroups of 1 day and 28 days water storage. Results MC was significantly lower for SCU and ABU than SB2 (P < 0.05) at both time intervals. In all three adhesives, the MC was significantly lower at 28 days compared to that at 1 day (P < 0.05). Similarly, µTS was significantly higher for SCU and ABU than SB2 at both storage intervals (P < 0.05). After 28 days, µTS increased significantly for universal adhesives (P < 0.05). Conclusions MC and µTS of adhesives were both material and time dependent when stored in water; both universal adhesives showed less water sorption and higher values of µTS than the control group. Key words:Absorption, dental adhesives, dentin-bonding agents, solubility, tensile strength. PMID:28149468

  11. Coating Reduces Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  12. Drug release and adhesive properties of crospovidone-containing matrix patches based on polyisobutene and acrylic adhesives.

    PubMed

    Schulz, Martin; Fussnegger, Bernhard; Bodmeier, Roland

    2010-12-23

    Ethinyl estradiol and levonorgestrel were insoluble in blends of high:medium:low molecular weight polyisobutene adhesives (ratio: 1:5:0, 1:5:2 and 1:5:4) but soluble in acrylic adhesives (Durotak 87-202A, Durotak 87-2074 and Durotak 87-2677). The incorporation of drug adsorbates onto crospovidone into the polyisobutene blends yielded crystal-free patches. The drug release from these patches was independent of polyisobutene's molecular weight distribution, probably because the drug release occurred mainly through fluid filled channels. By contrast, the drug release from acrylic adhesives was independent of whether the patches contained pure drugs or drug adsorbates onto crospovidone. A higher degree of saturation (or supersaturation) in these systems resulted in a higher thermodynamic activity of the drugs and hence a higher drug release. The crystal-free acrylic and polyisobutene patches did not show drug recrystallization after 3 months at 25°C/60 RH and 40°C/75 RH. The adhesive properties of polyisobutene patches were investigated in vitro and in vivo. The area under the curve of force-distance curves recorded with the texture analyzer correlated well with the in vivo skin adhesion. The elongation at detachment showed the same trend as the in vivo matrix creep. Crospovidone contents ≤ 30% had no detrimental effect on the adhesive properties of the patches.

  13. Ceramic Adhesive for High Temperatures

    NASA Technical Reports Server (NTRS)

    Stevens, Everett G.

    1987-01-01

    Fused-silica/magnesium-phosphate adhesive resists high temperatures and vibrations. New adhesive unaffected by extreme temperatures and vibrations. Assuring direct bonding of gap filters to tile sidewalls, adhesive obviates expensive and time-consuming task of removal, treatment, and replacement of tiles.

  14. Adhesion Casting In Low Gravity

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond J.

    1996-01-01

    Adhesion casting in low gravity proposed as technique for making new and improved materials. Advantages of low-gravity adhesion casting, in comparison with adhesion casting in normal Earth gravity, comes from better control over, and greater uniformity of, thicknesses of liquid films that form on and adhere to solid surfaces during casting.

  15. Gordon Conference on Microbial Adhesion

    DTIC Science & Technology

    1988-07-01

    immunity against certain pathogens, the role of exopolysaccharides in adhesion and the role of lectin-glycolipid interactions in adhesion. Have...pathogenesis? What governs the specificity of p; exopolysaccharides in adhesion to surfaces? This session emphasized the molecular aspects of

  16. Rapid Adhesive Bonding of Composites

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Fox, R. L.; Sterling, S. Elmo, Jr.; Buckley, J. D.; Inge, Spencer V., Jr.; Burcher, L. G.; Wright, Robert E., Jr.

    1986-01-01

    Strong bonds created in less time and with less power than use of conventional bonding methods. Rapid adhesive bonding (RAB) technique for composites uses high-frequency induction heating toroids to quickly heat metallic susceptor impregnated with thermoplastic adhesive or sandwiched between thermoset or thermoplastic adhesive cloths or films. Susceptor steel screen or perforated steel foil.

  17. Decreased cell adhesion promotes angiogenesis in a Pyk2-dependent manner

    SciTech Connect

    Shen, Colette J.; Raghavan, Srivatsan; Xu, Zhe; Baranski, Jan D.; Yu, Xiang; Wozniak, Michele A.; Miller, Jordan S.; Gupta, Mudit; Buckbinder, Leonard; Chen, Christopher S.

    2011-08-01

    Angiogenesis is regulated by both soluble growth factors and cellular interactions with the extracellular matrix (ECM). While cell adhesion via integrins has been shown to be required for angiogenesis, the effects of quantitative changes in cell adhesion and spreading against the ECM remain less clear. Here, we show that angiogenic sprouting in natural and engineered three-dimensional matrices exhibited a biphasic response, with peak sprouting when adhesion to the matrix was limited to intermediate levels. Examining changes in global gene expression to determine a genetic basis for this response, we demonstrate a vascular endothelial growth factor (VEGF)-induced upregulation of genes associated with vascular invasion and remodeling when cell adhesion was limited, whereas cells on highly adhesive surfaces upregulated genes associated with proliferation. To explore a mechanistic basis for this effect, we turned to focal adhesion kinase (FAK), a central player in adhesion signaling previously implicated in angiogenesis, and its homologue, proline-rich tyrosine kinase 2 (Pyk2). While FAK signaling had some impact, our results suggested that Pyk2 can regulate both gene expression and endothelial sprouting through its enhanced activation by VEGF in limited adhesion contexts. We also demonstrate decreased sprouting of tissue explants from Pyk2-null mice as compared to wild type mice as further confirmation of the role of Pyk2 in angiogenic sprouting. These results suggest a surprising finding that limited cell adhesion can enhance endothelial responsiveness to VEGF and demonstrate a novel role for Pyk2 in the adhesive regulation of angiogenesis.

  18. The effect of inhaled sodium cromoglycate on cellular infiltration into the bronchial mucosa and the expression of adhesion molecules in asthmatics.

    PubMed

    Hoshino, M; Nakamura, Y

    1997-04-01

    There is no direct evidence of the anti-inflammatory effect of inhaled sodium cromoglycate (SCG). To investigate whether inhaled SCG has any effect on cellular infiltration into the bronchial mucosa and the expression of adhesion molecules in patients with asthma, biopsies of the bronchial mucosa were taken from nine patients with atopic bronchial asthma before and after treatment with inhaled SCG (8 mg x day(-1)) from a metered-dose inhaler (MDI). Eosinophils were stained with anti-EG2, neutrophils with anti-NP57, mast cells with anti-AA1, T-lymphocytes with anti-CD4, CD8 and CD3, and macrophages with anti-CD68. Intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), endothelial leucocyte adhesion molecule-1 (ELAM-1) and P-selectin were stained at the same time as adhesion molecules expressed in vascular endothelium. The intensity of ICAM-1 expression in the bronchial epithelium was also evaluated. The numbers of eosinophils, mast cells, T-lymphocytes and macrophages were significantly reduced as a result of SCG administration, and the expression of ICAM-1, VCAM-1 and ELAM-1 was also significantly inhibited. A significant correlation was found between ICAM-1 expression and T-lymphocytes and between VCAM-1 expression and eosinophils. It was concluded that sodium cromoglycate does have an effect on the infiltration of the bronchial mucosa by inflammatory cells and also on the expression of adhesion molecules.

  19. Adhesive arachnoiditis after lumbar radiculography with Dimer-X and Depo-Medrol.

    PubMed

    Dullerud, R; Morland, T J

    1976-04-01

    Lumbar radiculographs were obtained in 252 patients with suspected disk herniation. Fifteen patients who underwent previous radiculography with Dimer-X plus Depo-Medrol exhibited adhesive arachnoiditis. This was not observed in 6 patients who received Dimer-X alone. No positive correlation between radiological diagnosis of adhesive arachnoiditis and clinical symptoms can be demonstrated. The authors suggest that steroids not be used intrathecally in combination with water-soluble contrast media.

  20. VLA-4 blockade by natalizumab inhibits sickle reticulocyte and leucocyte adhesion during simulated blood flow.

    PubMed

    White, Jennell; Krishnamoorthy, Sriram; Gupta, Dipti; Lancelot, Moira; Moore, Nancy; Sarnaik, Sharada; Hobbs, William E; Light, David R; Hines, Patrick

    2016-09-01

    Very Late Antigen-4 (VLA-4, α4β1-integrin, ITGA4) orchestrates cell-cell and cell-endothelium adhesion. Given the proposed role of VLA-4 in sickle cell disease (SCD) pathophysiology, we evaluated the ability of the VLA-4 blocking antibody natalizumab to inhibit SCD blood cell adhesion. Natalizumab recognized surface VLA-4 on leucocytes and reticulocytes in whole blood from SCD subjects. SCD reticulocytes were positive for VLA-4, while VLA-4 staining of non-SCD reticulocytes was undetectable. Titrations with natalizumab revealed the presence of saturable levels of VLA-4 on both SCD reticulocytes and leucocytes similar to healthy subject leucocytes. Under physiological flow conditions, the adhesion of SCD whole blood cells and isolated SCD leucocytes to immobilized vascular cell adhesion molecule 1 (VCAM-1) was blocked by natalizumab in a dose-dependent manner, which correlated with cell surface receptor binding. Natalizumab also inhibited >50% of whole blood cell binding to TNF-α activated human umbilical vein endothelial cell monolayers under physiological flow at clinically relevant concentrations (10 to 100 μg/ml). This indicates that VLA-4 is the dominant receptor that drives SCD reticulocyte and mononuclear cell adhesion to VCAM-1 and that the VLA-4 adhesion to VCAM-1 is a significant contributor to SCD blood cell adhesion to endothelium. Thus, VLA-4 blockade may be beneficial in sickle cell disease.

  1. Fulvic Acid Attenuates Resistin-Induced Adhesion of HCT-116 Colorectal Cancer Cells to Endothelial Cells

    PubMed Central

    Huang, Wen-Shih; Yang, Jen-Tsung; Lu, Chien-Chang; Chang, Shun-Fu; Chen, Cheng-Nan; Su, Yu-Ping; Lee, Ko-Chao

    2015-01-01

    A high level of serum resistin has recently been found in patients with a number of cancers, including colorectal cancer (CRC). Hence, resistin may play a role in CRC development. Fulvic acid (FA), a class of humic substances, possesses pharmacological properties. However, the effect of FA on cancer pathophysiology remains unclear. The aim of this study was to investigate the effect of resistin on the endothelial adhesion of CRC and to determine whether FA elicits an antagonistic mechanism to neutralize this resistin effect. Human HCT-116 (p53-negative) and SW-48 (p53-positive) CRC cells and human umbilical vein endothelial cells (HUVECs) were used in the experiments. Treatment of both HCT-116 and SW-48 cells with resistin increases the adhesion of both cells to HUVECs. This result indicated that p53 may not regulate this resistin effect. A mechanistic study in HCT-116 cells further showed that this resistin effect occurs via the activation of NF-κB and the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Co-treating cells with both FA and resistin revealed that FA significantly attenuated the resistin-increased NF-κB activation and ICAM-1/VCAM-1 expression and the consequent adhesion of HCT-116 cells to HUVECs. These results demonstrate the role of resistin in promoting HCT-116 cell adhesion to HUVECs and indicate that FA might be a potential candidate for the inhibition of the endothelial adhesion of CRC in response to resistin. PMID:26690142

  2. Renal cell carcinoma alters endothelial receptor expression responsible for leukocyte adhesion.

    PubMed

    Juengel, Eva; Krueger, Geraldine; Rutz, Jochen; Nelson, Karen; Werner, Isabella; Relja, Borna; Seliger, Barbara; Fisslthaler, Beate; Fleming, Ingrid; Tsaur, Igor; Haferkamp, Axel; Blaheta, Roman A

    2016-04-12

    Renal cell carcinoma (RCC) escapes immune recognition. To elaborate the escape strategy the influence of RCC cells on endothelial receptor expression and endothelial leukocyte adhesion was evaluated. Human umbilical vein endothelial cells (HUVEC) were co-cultured with the RCC cell line, Caki-1, with and without tumor necrosis factor (TNF)-alpha. Intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), endothelial (E)-selectin, standard and variants (V) of CD44 were then analysed in HUVEC, using flow cytometry and Western blot analysis. To determine which components are responsible for HUVEC-Caki-1 interaction causing receptor alteration, Caki-1 membrane fragments versus cell culture supernatant were applied to HUVECS. Adhesion of peripheral blood lymphocytes (PBL) and polymorphonuclear neutrophils (PMN) to endothelium was evaluated by co-culture adhesion assays. Relevance of endothelial receptor expression for adhesion to endothelium was determined by receptor blockage. Co-culture of RCC and HUVECs resulted in a significant increase in endothelial ICAM-1, VCAM-1, E-selectin, CD44 V3 and V7 expression. Previous stimulation of HUVECs with TNF-alpha and co-cultivation with Caki-1 resulted in further elevation of endothelial CD44 V3 and V7 expression, whereas ICAM-1, VCAM-1 and E-selectin expression were significantly diminished. Since Caki-1 membrane fragments also caused these alterations, but cell culture supernatant did not, cell-cell contact may be responsible for this process. Blocking ICAM-1, VCAM-1, E-selectin or CD44 with respective antibodies led to a significant decrease in PBL and PMN adhesion to endothelium. Thus, exposing HUVEC to Caki-1 results in significant alteration of endothelial receptor expression and subsequent endothelial attachment of PBL and PMN.

  3. Soluble and insoluble fiber (image)

    MedlinePlus

    Dietary fiber is the part of food that is not affected by the digestive process in the body. ... of the stool. There are two types of dietary fiber, soluble and insoluble. Soluble fiber retains water and ...

  4. A Perspective on Solubility Rules.

    ERIC Educational Resources Information Center

    Monroe, Manus; Abrams, Karl

    1984-01-01

    Presents four generalizations about solubilities. These generalizations (rules), are useful in introducing the dynamic topics of solubility and in helping high school and introductory college chemistry students make some order out of the tremendous number of facts available. (JN)

  5. Environmentally compliant adhesive joining technology

    SciTech Connect

    Tira, J.S.

    1996-08-01

    Adhesive joining offers one method of assembling products. Advantages of adhesive joining/assembly include distribution of applied forces, lighter weight, appealing appearance, etc. Selecting environmentally safe adhesive materials and accompanying processes is paramount in today`s business climate if a company wants to be environmentally conscious and stay in business. Four areas of adhesive joining (adhesive formulation and selection, surface preparation, adhesive bonding process, waste and pollution generation/cleanup/management) all need to be carefully evaluated before adhesive joining is selected for commercial as well as military products. Designing for six sigma quality must also be addressed in today`s global economy. This requires material suppliers and product manufacturers to work even closer together.

  6. [Fulminant adhesive arachnoiditis].

    PubMed

    Tomczykiewicz, Kazimierz; Stępień, Adam; Staszewski, Jacek; Sadowska, Marta; Bogusławska-Walecka, Romana

    2012-01-01

    Adhesive arachnoiditis is a rare disease with insidious course. It causes damage of the spinal cord and nerve roots. The causes of adhesive arachnoiditis include earlier traumatic injury of the spinal cord, surgery, intrathecal administration of therapeutic substances (e.g. anaesthetics, chemotherapy) or contrast media, bleeding, and inflammation. It can also be idiopathic or iatrogenic. We present the case of a 42-year-old patient with fulminant adhesive arachnoiditis which was provoked by spinal surgery and caused severe neurological disability with profound, progressive, flaccid paraparesis and bladder dysfunction. The electromyography (EMG) showed serious damage of nerves of both lower limbs at the level of motor roots L2-S2 and damage of the motor neuron at the level of Th11-Th12 on the right side. Magnetic resonance imaging of the lumbosacral and thoracic part of the spinal cord demonstrated cystic liquid spaces in the lumen of the dural sac in the bottom part of the cervical spine and at the Th2-Th10 level, modelling the lateral and anterior surface of the cord. Because of the vast lesions, surgery could not be performed. Conservative treatment and rehabilitation brought only a small clinical improvement.

  7. Development of phosphorylated adhesives

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Giants, T. W.; Jenkins, R. K.; Campbell, P. L.

    1983-01-01

    The synthesis of epoxy prepolymers containing phosphorus was carried out in such a manner as to provide adhesives containing at least 5 percent of this element. The purpose of this was to impart fire retardant properties to the adhesive. The two epoxy derivatives, bis(4-glycidyl-oxyphenyl)phenylphosphine oxide and bis(4-glycidyl-2-methoxyphenyl)phenylphosphonate, and a curing agent, bis(3-aminophenyl)methylphosphine oxide, were used in conjunction with one another and along with conventional epoxy resins and curing agents to bond Tedlar and Polyphenylethersulfone films to Kerimid-glass syntactic foam-filled honeycomb structures. Elevated temperatures are required to cure the epoxy resins with the phosphorus-contaning diamine; however, when Tedlar is being bonded, lower curing temperatures must be used to avoid shrinkage and the concomitant formation of surface defects. Thus, the phosphorus-containing aromatic amine curing agent cannot be used alone, although it is possible to use it in conjunction with an aliphatic amine which would allow lower cure temperatures to be used. The experimental epoxy resins have not provided adhesive bonds quite as strong as those provided by Epon 828 when compared in peel tests, but the differences are not very significant. It should be noted, if optimum properties are to be realized. In any case the fire retardant characteristics of the neat resin systems obtained are quite pronounced, since in most cases the self-extinguishing properties are evident almost instantly when specimens are removed from a flame.

  8. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  9. Adhesion barrier reduces postoperative adhesions after cardiac surgery.

    PubMed

    Kaneko, Yukihiro; Hirata, Yasutaka; Achiwa, Ikuya; Morishita, Hiroyuki; Soto, Hajime; Kobayahsi, Jotaro

    2012-06-01

    Reoperation in cardiac surgery is associated with increased risk due to surgical adhesions. Application of a bioresorbable material could theoretically reduce adhesions and allow later development of a free dissection plane for cardiac reoperation. Twenty-one patients in whom a bioresorbable hyaluronic acid-carboxymethylcellulose adhesion barrier had been applied in a preceding surgery underwent reoperations, while 23 patients underwent reoperations during the same period without a prior adhesion barrier. Blinded observers graded the tenacity of the adhesions from surgical video recordings of the reoperations. No excessive bleeding requiring wound reexploration, mediastinal infection, or other complication attributable to the adhesion barrier occurred. Multiple regression analysis showed that shorter duration of the preceding surgery, non-use of cardiopulmonary bypass in the preceding surgery, and use of the adhesion barrier were significantly associated with less tenacious surgical adhesions. The use of a bioresorbable material in cardiac surgery reduced postoperative adhesions, facilitated reoperation, and did not promote complications. The use of adhesion barrier is recommended in planned staged procedures and those in which future reoperation is likely.

  10. Loss of Reelin protects against atherosclerosis by reducing leukocyte-endothelial adhesion and lesion macrophage accumulation

    PubMed Central

    Ding, Yinyuan; Huang, Linzhang; Xian, Xunde; Yuhanna, Ivan S.; Wasser, Catherine R.; Frotscher, Michael; Mineo, Chieko; Shaul, Philip W.; Herz, Joachim

    2016-01-01

    The multimodular glycoprotein Reelin controls neuronal migration and synaptic transmission by binding to Apolipoprotein E receptor-2 (Apoer2) and very low-density lipoprotein receptor (Vldlr) on neurons. In the periphery, Reelin is produced by the liver, circulates in blood and promotes thrombosis and hemostasis. To investigate if Reelin influences atherogenesis we studied atherosclerosis-prone low-density lipoprotein receptor-deficient (Ldlr−/−) mice in which we inducibly deleted Reelin either ubiquitously or only in the liver, thus preventing the production of circulating Reelin. In both types of Reelin-deficient mice, atherosclerosis progression was markedly attenuated, and macrophage content and endothelial cell staining for vascular cell adhesion molecule-1 (VCAM1) and intercellular adhesion molecule-1 (ICAM1) were reduced at the sites of atherosclerotic lesions. Intravital microscopy revealed decreased leukocyte-endothelial adhesion in the Reelin-deficient mice. In cultured human endothelial cells, Reelin enhanced monocyte adhesion and increased ICAM-1, VCAM-1 and E-selectin expression by suppressing endothelial nitric oxide synthase (eNOS) activity and increasing the activity of NF-kB in an Apoer2-dependent manner. These findings suggest that circulating Reelin promotes atherosclerosis by increasing vascular inflammation, and that reducing or inhibiting circulating Reelin may present a novel approach for the prevention of cardiovascular disease. PMID:26980442

  11. Focal Adhesion Kinase Modulates Cell Adhesion Strengthening via Integrin Activation

    PubMed Central

    Michael, Kristin E.; Dumbauld, David W.; Burns, Kellie L.; Hanks, Steven K.

    2009-01-01

    Focal adhesion kinase (FAK) is an essential nonreceptor tyrosine kinase regulating cell migration, adhesive signaling, and mechanosensing. Using FAK-null cells expressing FAK under an inducible promoter, we demonstrate that FAK regulates the time-dependent generation of adhesive forces. During the early stages of adhesion, FAK expression in FAK-null cells enhances integrin activation to promote integrin binding and, hence, the adhesion strengthening rate. Importantly, FAK expression regulated integrin activation, and talin was required for the FAK-dependent effects. A role for FAK in integrin activation was confirmed in human fibroblasts with knocked-down FAK expression. The FAK autophosphorylation Y397 site was required for the enhancements in adhesion strengthening and integrin-binding responses. This work demonstrates a novel role for FAK in integrin activation and the time-dependent generation of cell–ECM forces. PMID:19297531

  12. The conveyor belt hypothesis for thymocyte migration: participation of adhesion and de-adhesion molecules.

    PubMed

    Villa-Verde, D M; Calado, T C; Ocampo, J S; Silva-Monteiro, E; Savino, W

    1999-05-01

    Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble beta-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.

  13. Bioconcentration factors and lipid solubility

    SciTech Connect

    Banerjee, S. ); Baughman, G.L. )

    1991-03-01

    The log-log relationship between bioconcentration and hydrophobicity breaks down for several medium and high molecular weight solutes that bioconcentrate either to a small extent or not at all. Much of the failure is attributed to the relatively low solubility of these compounds in lipid. Inclusion of a term in octanol solubility (in place of lipid solubility, which is generally unavailable) considerably improves the quality of the relationship (r = 0.95). It is speculated that the octanol solubility term compensates for the relatively low solubility of large compounds in lipid.

  14. Phosphonic Acid-Functionalized Polyurethane Dispersions with Improved Adhesion Properties.

    PubMed

    Breucker, Laura; Landfester, Katharina; Taden, Andreas

    2015-11-11

    A facile route to phosphorus-functionalized polyurethane dispersions (P-PUDs) with improved adhesion properties is presented. (Bis)phosphonic acid moieties serve as adhesion promoting sites that are covalently attached via an end-capping reaction to isocyanate-reactive polyurethane particles under aqueous conditions. The synthetic approach circumvents solubility issues, offers great flexibility in terms of polyurethane composition, and allows for the synthesis of semicrystalline systems with thermomechanical response due to reversible physical cross-linking. Differential scanning calorimetry (DSC) is used to investigate the effect of functionalization on the semicrystallinity. The end-capping conversion was determined via inductively-coupled plasma optical emission spectroscopy (ICP-OES) and was surprisingly found to be almost independent of the stoichiometry of reaction, suggesting an adsorption-dominated process. Particle charge detection (PCD) experiments reveal that a dense surface coverage of phosphonic acid groups can be attained and that, at high functionalization degrees, the phosphonic adhesion moieties are partially dragged inside the colloidal P-PUD particle. Quartz crystal microbalance with dissipation (QCMD) investigations conducted with hydroxyapatite (HAP) and stainless steel sensors as model surfaces show a greatly enhanced affinity of the aqueous P-PUDs and furthermore indicate polymer chain rearrangements and autonomous film formation under wet conditions. Due to their facile synthesis, significantly improved adhesion, and variable film properties, P-PUD systems such as the one described here are believed to be of great interest for multiple applications, e.g., adhesives, paints, anticorrosion, or dentistry.

  15. Strong adhesion and cohesion of chitosan in aqueous solutions.

    PubMed

    Lee, Dong Woog; Lim, Chanoong; Israelachvili, Jacob N; Hwang, Dong Soo

    2013-11-19

    Chitosan, a load-bearing biomacromolecule found in the exoskeletons of crustaceans and insects, is a promising biopolymer for the replacement of synthetic plastic compounds. Here, surface interactions mediated by chitosan in aqueous solutions, including the effects of pH and contact time, were investigated using a surface forces apparatus (SFA). Chitosan films showed an adhesion to mica for all tested pH ranges (3.0-8.5), achieving a maximum value at pH 3.0 after a contact time of 1 h (Wad ~ 6.4 mJ/m(2)). We also found weak or no cohesion between two opposing chitosan layers on mica in aqueous buffer until the critical contact time for maximum adhesion (chitosan-mica) was reached. Strong cohesion (Wco ~ 8.5 mJ/m(2)) between the films was measured with increasing contact times up to 1 h at pH 3.0, which is equivalent to ~60% of the strongest, previously reported, mussel underwater adhesion. Such time-dependent adhesion properties are most likely related to molecular or molecular group reorientations and interdigitations. At high pH (8.5), the solubility of chitosan changes drastically, causing the chitosan-chitosan (cohesion) interaction to be repulsive at all separation distances and contact times. The strong contact time and pH-dependent chitosan-chitosan cohesion and adhesion properties provide new insight into the development of chitosan-based load-bearing materials.

  16. Strong adhesion and cohesion of chitosan in aqueous solutions

    PubMed Central

    Lee, Dong Woog; Lim, Chanoong; Israelachvili, Jacob N.; Hwang, Dong Soo

    2014-01-01

    Chitosan, a load-bearing biomacromolecule found in the exoskeletons of crustaceans and insects, is a promising biopolymer for the replacement of synthetic plastic compounds. Here, surface interactions mediated by chitosan in aqueous solutions, including the effects of pH and contact time, were investigated using a surface forces apparatus (SFA). Chitosan films showed an adhesion to mica for all tested pH ranges (3.0–8.5), achieving a maximum value at pH 3.0 after a contact time of 1 hr (Wad ~6.4 mJ/m2). We also found weak or no cohesion between two opposing chitosan layers on mica in aqueous buffer until the critical contact time for maximum adhesion (chitosan-mica) was reached. Strong cohesion (Wco ~8.5 mJ/m2) between the films was measured with increasing contact times up to 1 hr at pH 3.0, which is equivalent to ~60% of the strongest, previously reported, mussel underwater adhesion. Such time-dependent adhesion properties are most likely related to molecular or molecular group reorientations and interdigitations. At high pH (8.5), the solubility of chitosan changes drastically, causing the chitosan-chitosan (cohesion) interaction to be repulsive at all separation distances and contact times. The strong contact time and pH-dependent chitosan-chitosan cohesion and adhesion properties provide new insight into the development of chitosan based load-bearing materials. PMID:24138057

  17. Solubility and Solubility Product Determination of a Sparingly Soluble Salt: A First-Level Laboratory Experiment

    ERIC Educational Resources Information Center

    Bonomo, Raffaele P.; Tabbi, Giovanni; Vagliasindi, Laura I.

    2012-01-01

    A simple experiment was devised to let students determine the solubility and solubility product, "K"[subscript sp], of calcium sulfate dihydrate in a first-level laboratory. The students experimentally work on an intriguing equilibrium law: the constancy of the product of the ion concentrations of a sparingly soluble salt. The determination of…

  18. Soluble porphyrin polymers

    DOEpatents

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  19. Spinal adhesive arachnoiditis.

    PubMed

    Dolan, R A

    1993-06-01

    Forty-one cases of spinal adhesive arachnoiditis are presented. The key points are, first, that lumbar disc lesions, their investigations and surgical treatment and the use of nonabsorbable contrast materials are the most common etiological factors and, secondly, that operation is the best treatment. It is our contention that the majority of patients so treated do experience some improvement in what otherwise can be an unbearable amount of pain and disability. The use of adsorbable, nonirritative contrast materials such as Iohexol Parenteral will result in a marked reduction in the frequency of occurrence of arachnoiditis.

  20. Cutting edge: DNAX accessory molecule 1-deficient CD8+ T cells display immunological synapse defects that impair antitumor immunity.

    PubMed

    Ramsbottom, Kelly M; Hawkins, Edwin D; Shimoni, Raz; McGrath, Mairi; Chan, Christopher J; Russell, Sarah M; Smyth, Mark J; Oliaro, Jane

    2014-01-15

    DNAX accessory molecule 1 (DNAM-1) is expressed on all CD8(+) T cells and promotes their activation and effector function. DNAM-1 interacts with LFA-1, a critical molecule for immunological synapse formation between T cells and APCs, and for cytotoxic killing of target cells. Mice that lack DNAM-1 display abnormal T cell responses and antitumor activity; however, the mechanism involved is unclear. In this article, we show that DNAM-1 deficiency results in reduced proliferation of CD8(+) T cells after Ag presentation and impaired cytotoxic activity. We also demonstrate that DNAM-1-deficient T cells show reduced conjugations with tumor cells and decreased recruitment of both LFA-1 and lipid rafts to the immunological synapse, which correlates with reduced tumor cell killing in vitro. This synapse defect may explain why DNAM-1-deficient mice cannot clear tumors in vivo, and highlights the importance of DNAM-1 and the immunological synapse in T cell-mediated antitumor immunity.

  1. Electrical detection of kidney injury molecule-1 with AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Wang, H. T.; Kang, B. S.; Ren, F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.

    2007-11-26

    AlGaN/GaN high electron mobility transistors (HEMTs) were used to detect kidney injury molecule-1 (KIM-1), an important biomarker for early kidney injury detection. The gate region consisted of 5 nm gold deposited onto the AlGaN surface. The gold was conjugated to highly specific KIM-1 antibodies through a self-assembled monolayer of thioglycolic acid. The HEMT source-drain current showed a clear dependence on the KIM-1 concentration in phosphate-buffered saline solution. The limit of detection was 1 ng/ml using a 20x50 {mu}m{sup 2} gate sensing area. This approach shows potential for both preclinical and clinical kidney injury diagnosis with accurate, rapid, noninvasive, and high throughput capabilities.

  2. Electrical detection of kidney injury molecule-1 with AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, H. T.; Kang, B. S.; Ren, F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.

    2007-11-01

    AlGaN /GaN high electron mobility transistors (HEMTs) were used to detect kidney injury molecule-1 (KIM-1), an important biomarker for early kidney injury detection. The gate region consisted of 5nm gold deposited onto the AlGaN surface. The gold was conjugated to highly specific KIM-1 antibodies through a self-assembled monolayer of thioglycolic acid. The HEMT source-drain current showed a clear dependence on the KIM-1 concentration in phosphate-buffered saline solution. The limit of detection was 1ng/ml using a 20×50μm2 gate sensing area. This approach shows potential for both preclinical and clinical kidney injury diagnosis with accurate, rapid, noninvasive, and high throughput capabilities.

  3. Candida albicans stimulates cytokine production and leukocyte adhesion molecule expression by endothelial cells.

    PubMed Central

    Filler, S G; Pfunder, A S; Spellberg, B J; Spellberg, J P; Edwards, J E

    1996-01-01

    Endothelial cells have the potential to influence significantly the host immune response to blood-borne microbial pathogens, such as Candida albicans. We investigated the ability (of this organism to stimulate endothelial cell responses relevant to host defense in vitro. Infection with C. albicans induced endothelial cells to express mRNAs encoding E-selectin, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, interleukin 6, interleukin 8, monocyte chemoattractant protein 1, and inducible cyclooxygenase (cox2). All three leukocyte adhesion molecule proteins were expressed on the surfaces of the endothelial cells after 8 h of exposure to C. albicans. An increase in secretion of all three cytokines was found after 12 h of infection. Cytochalasin D inhibited accumulation of the endothelial cell cytokine and leukocyte adhesion molecule mRNAs in response to C. albicans, suggesting that endothelial cell phagocytosis of the organism is required to induce this response. Live Candida tropicalis, Candida glabrata, a nongerminating strain of C. albicans, and killed C. albicans did not stimulate the expression of any of the cytokine or leukocyte adhesion molecule mRNAs. These findings indicate that a factor associated with live, germinating C. albicans is required for induction of endothelial cell mRNA expression. Furthermore, since endothelial cells phagocytize killed C. albicans, phagocytosis is likely necessary but not sufficient for this organism to stimulate mRNA accumulation. In conclusion, the secretion of proinflammatory cytokines and expression of leukocyte adhesion molecules by endothelial cells in response to C. albicans could enhance the host defense against this organism by contributing to the recruitment of activated leukocytes to sites of intravascular infection. PMID:8698486

  4. CYANOACRYLATE ADHESIVES IN EYE WOUNDS.

    DTIC Science & Technology

    adhesives. The following adhesives were tested: methyl, isobutyl, n-butyl, n-hexyl, n-heptyl, n-octyl, n-decyl, -trifluoroisopropyl 2- cyanoacrylate , and...Biobond. Of these, methyl and -trifluoroisopropyl cyanoacrylates are not well tolerated by eye tissues. Biobond sets too slowly, and does not seem... cyanoacrylate is the best adhesive found so far when tissue tolerance, tensile strength, and ability to seal eye perforations (alone and with silicone rubber patches) are the criteria. (Author)

  5. Durability of Adhesively Bonded Structure

    DTIC Science & Technology

    1992-08-11

    frequently. Significant technology improvements have occurred In surface treatment, primers, joint analyses, adhesives and process controls. These have...clearly established the Initial cost savings potential for adhesive bonding. While this approach addresses the adequacy of joints early in service, there...processes with those changes which occur as a result of residual stress or cyclic loading in the adhesive joint 074-2R-bh 1 To fill a small part of this

  6. A standardized bamboo leaf extract inhibits monocyte adhesion to endothelial cells by modulating vascular cell adhesion protein-1

    PubMed Central

    Choi, Sunga; Park, Myoung Soo; Lee, Yu Ran; Lee, Young Chul; Kim, Tae Woo; Do, Seon-Gil; Kim, Dong Seon

    2013-01-01

    Bamboo leaves (Phyllostachys pubescens Mazel ex J. Houz (Poacea)) have a long history of food and medical applications in Asia, including Japan and Korea. They have been used as a traditional medicine for centuries. We investigated the mechanism of anti-inflammatory activity of a bamboo leaf extract (BLE) on tumor necrosis factor-alpha (TNF-α)-induced monocyte adhesion in human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to BLE did not inhibit cell viability or cause morphological changes at concentrations ranging from 1 µg/ml to 1 mg/ml. Treatment with 0.1 mg/ml BLE caused 63% inhibition of monocyte adhesion in TNF-α-activated HUVECs, which was associated with 38.4% suppression of vascular cell adhesion molecule-1 expression. Furthermore, TNF-α-induced reactive oxygen species generation was decreased to 47.9% in BLE treated TNF-α-activated HUVECs. BLE (0.05 mg/ml) also caused about 50% inhibition of interleukin-6 secretion from lipopolysaccharide-stimulated monocyte. The results indicate that BLE may be clinically useful as an anti-inflammatory or anti-oxidant for human cardiovascular disease including atherosclerosis. PMID:23422838

  7. Hot melt adhesive attachment pad

    NASA Technical Reports Server (NTRS)

    Fox, R. L.; Frizzill, A. W.; Little, B. D.; Progar, D. J.; Coultrip, R. H.; Couch, R. H.; Gleason, J. R.; Stein, B. A.; Buckley, J. D.; St.clair, T. L. (Inventor)

    1984-01-01

    A hot melt adhesive attachment pad for releasably securing distinct elements together is described which is particularly useful in the construction industry or a spatial vacuum environment. The attachment pad consists primarily of a cloth selectively impregnated with a charge of hot melt adhesive, a thermo-foil heater, and a thermo-cooler. These components are securely mounted in a mounting assembly. In operation, the operator activates the heating cycle transforming the hot melt adhesive to a substantially liquid state, positions the pad against the attachment surface, and activates the cooling cycle solidifying the adhesive and forming a strong, releasable bond.

  8. Eosinophil adhesion under flow conditions activates mechanosensitive signaling pathways in human endothelial cells.

    PubMed

    Cuvelier, Susan L; Paul, Smitha; Shariat, Neda; Colarusso, Pina; Patel, Kamala D

    2005-09-19

    Leukocyte transmigration can be affected by shear stress; however, the mechanisms by which shear stress modulates transmigration are unknown. We found that adhesion of eosinophils or an eosinophilic cell line to intereukin 4-stimulated endothelial cells led to a shear-dependent increase in endothelial cell intracellular calcium and increased phosphorylation of extracellular signal-regulated kinase (ERK) 2, but not c-Jun NH2-terminal kinase or p38 mitogen-activated protein kinase. Latex beads coated with antibodies were used to characterize the role of specific endothelial cell surface molecules in initiating signaling under shear conditions. We found that ligation of either vascular cell adhesion molecule-1 or E-selectin, but not major histocompatibility complex class I, induced a shear-dependent increase in ERK2 phosphorylation in cytokine-stimulated endothelial cells. Disassembly of the actin cytoskeleton with latrunculin A prevented ERK2 phosphorylation after adhesion under flow conditions, supporting a role for the cytoskeleton in mechano-sensing. Rapid phosphorylation of focal adhesion kinase and paxillin occurred under identical conditions, suggesting that focal adhesions were also involved in mechanotransduction. Finally, we found that Rho-associated protein kinase and calpain were both critical in the subsequent transendothelial migration of eosinophils under flow conditions. These data suggest that ligation of leukocyte adhesion molecules under flow conditions leads to mechanotransduction in endothelial cells, which can regulate subsequent leukocyte trafficking.

  9. Experimental and computational analysis of a novel flow channel to assess the adhesion strength of sessile marine organisms

    PubMed Central

    Dimartino, Simone; Mather, Anton V.; Alestra, Tommaso; Nawada, Suhas; Haber, Meir

    2015-01-01

    Bioadhesives produced by marine macroalgae represent a potential source of inspiration for the development of water-resistant adhesives. Assessing their adhesion strength, however, remains difficult owing to low volumes of adhesive material produced, low solubility and rapid curing time. These difficulties can be circumvented by testing the adhesion strength of macroalgae propagules attached to a substrate. In this paper, we present a simple, novel flow channel used to test the adhesion strength of the germlings of the fucalean alga Hormosira banksii to four substrates of biomedical relevance (PMMA, agar, gelatin and gelatin + lipid). The adhesion strength of H. banksii germlings was found to increase in a time-dependent manner, with minimal adhesion success after a settlement period of 6 h and maximum adhesion strength achieved 24 h after initial settlement. Adhesion success increased most dramatically between 6 and 12 h settlement time, while no additional increase in adhesion strength was recorded for settlement times over 24 h. No significant difference in adhesion strength to the various substrates was observed. Computational fluid dynamics (CFD) was used to estimate the influence of fluid velocity and germling density on drag force acting on the settled organisms. CFD modelling showed that, on average, the drag force decreased with increasing germling number, suggesting that germlings would benefit from gregarious settlement behaviour. Collectively, our results contribute to a better understanding of the mechanisms allowing benthic marine organisms to thrive in hydrodynamically stressful environments and provide useful insights for further investigations. PMID:25657838

  10. Experimental and computational analysis of a novel flow channel to assess the adhesion strength of sessile marine organisms.

    PubMed

    Dimartino, Simone; Mather, Anton V; Alestra, Tommaso; Nawada, Suhas; Haber, Meir

    2015-02-06

    Bioadhesives produced by marine macroalgae represent a potential source of inspiration for the development of water-resistant adhesives. Assessing their adhesion strength, however, remains difficult owing to low volumes of adhesive material produced, low solubility and rapid curing time. These difficulties can be circumvented by testing the adhesion strength of macroalgae propagules attached to a substrate. In this paper, we present a simple, novel flow channel used to test the adhesion strength of the germlings of the fucalean alga Hormosira banksii to four substrates of biomedical relevance (PMMA, agar, gelatin and gelatin + lipid). The adhesion strength of H. banksii germlings was found to increase in a time-dependent manner, with minimal adhesion success after a settlement period of 6 h and maximum adhesion strength achieved 24 h after initial settlement. Adhesion success increased most dramatically between 6 and 12 h settlement time, while no additional increase in adhesion strength was recorded for settlement times over 24 h. No significant difference in adhesion strength to the various substrates was observed. Computational fluid dynamics (CFD) was used to estimate the influence of fluid velocity and germling density on drag force acting on the settled organisms. CFD modelling showed that, on average, the drag force decreased with increasing germling number, suggesting that germlings would benefit from gregarious settlement behaviour. Collectively, our results contribute to a better understanding of the mechanisms allowing benthic marine organisms to thrive in hydrodynamically stressful environments and provide useful insights for further investigations.

  11. Neuroprotectant androst-3β, 5α, 6β-triol suppresses TNF-α-induced endothelial adhesion molecules expression and neutrophil adhesion to endothelial cells by attenuation of CYLD-NF-κB pathway.

    PubMed

    Yan, Min; Leng, Tiandong; Tang, Lipeng; Zheng, Xiaoke; Lu, Bingzheng; Li, Yuan; Sheng, Longxiang; Lin, Suizhen; Shi, Haitao; Yan, Guangmei; Yin, Wei

    2017-02-05

    Neuroinflammation is one of key pathologic element in neurological diseases including stroke, traumatic brain injury, Alzheimer' s Disease, Parkinson's Disease, and multiple sclerosis as well. Up-regulation of endothelial adhesion molecules, which facilitate leukocyte adhesion to the endothelium, is the vital process of endothelial cells mediated neuroinflammation. Androst-3β, 5α, 6β-triol (Triol) is a synthetic steroid which has been reported to have neuroprotective effects in hypoxia/re-oxygenation-induced neuronal injury model. In the present study, we firstly investigated whether Triol inhibited the TNF-α-induced inflammatory response in rat brain microvascular endothelial cells (RBMECs). Our data showed that Triol decreased TNF-α-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) and the adhesion of neutrophil to RBMECs. We also found that Triol inhibited TNF-α-induced degradation of IκBα and phosphorylation of NF-κBp65 that are required for NF-κB activation. Furthermore, Triol significantly reversed TNF-α-induced down-expression of CYLD, which is a deubiquitinase that negatively regulates activation of NF-κB. These results suggest that Triol displays an anti-inflammatory effect on TNF-α-induced RBMECs via downregulating of CYLD-NF-κB signaling pathways and might have a potential benefit in therapeutic neuroinflammation related diseases.

  12. Expression of adhesion molecules, chemokines and matrix metallo- proteinases (MMPs) in viable and degenerating stage of Taenia solium metacestode in swine neurocysticercosis.

    PubMed

    Singh, Satyendra K; Singh, Aloukick K; Prasad, Kashi N; Singh, Amrita; Singh, Avinash; Rai, Ravi P; Tripathi, Mukesh; Gupta, Rakesh K; Husain, Nuzhat

    2015-11-30

    Neurocysticercosis (NCC) is a parasitic infection of central nervous system (CNS). Expression of adhesion molecules, chemokines and matrix metalloproteinases (MMPs) were investigated on brain tissues surrounding viable (n=15) and degenerating cysticerci (n=15) of Taenia solium in swine by real-time RT-PCR and ELISA. Gelatin gel zymography was performed for MMPs activity. ICAM-1 (intercellular adhesion molecule-1), E-selectin, MIP-1α (macrophage inflammatory protein-1α), Eotaxin-1 and RANTES (regulated on activation, normal T cell expressed and secreted) were associated with degenerating cysticerci (cysts). However, VCAM-1 (vascular cell adhesion molecule-1), MCP-1 (monocyte chemotactic protein-1), MMP-2 and MMP-9 were associated with both viable and degenerating cysts. In conclusion, viable and degenerating cysticerci have different immune molecule profiles and role of these molecules in disease pathogenesis needs to be investigated.

  13. Prolonged Morphine Exposure Induces Increased Firm Adhesion in an in Vitro Model of the Blood–Brain Barrier

    PubMed Central

    Strazza, Marianne; Pirrone, Vanessa; Wigdahl, Brian; Dampier, Will; Lin, Wei; Feng, Rui; Maubert, Monique E.; Weksler, Babette; Romero, Ignacio A.; Couraud, Pierre-Olivier; Nonnemacher, Michael R.

    2016-01-01

    The blood–brain barrier (BBB) has been defined as a critically important protective barrier that is involved in providing essential biologic, physiologic, and immunologic separation between the central nervous system (CNS) and the periphery. Insults to the BBB can cause overall barrier damage or deregulation of the careful homeostasis maintained between the periphery and the CNS. These insults can, therefore, yield numerous phenotypes including increased overall permeability, interendothelial gap formation, alterations in cytokine and chemokine secretion, and accelerated cellular passage. The current studies expose the human brain microvascular endothelial cell line, hCMEC/D3, to prolonged morphine exposure and aim to uncover the mechanisms underlying alterations in barrier function in vitro. These studies show alterations in the mRNA and protein levels of the cellular adhesion molecules (CAMs) intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and activated leukocyte cell adhesion molecule that correlate with an increased firm adhesion of the CD3+ subpopulation of peripheral blood mononuclear cells (PBMCs). Overall, these studies suggest that prolonged morphine exposure may result in increased cell migration into the CNS, which may accelerate pathological processes in many diseases that involve the BBB. PMID:27294916

  14. Upregulation of endothelial cell adhesion molecules characterizes veins close to granulomatous infiltrates in the renal cortex of cats with feline infectious peritonitis and is indirectly triggered by feline infectious peritonitis virus-infected monocytes in vitro.

    PubMed

    Acar, Delphine D; Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Roukaerts, Inge D M; Baetens, Wendy; Van Bockstael, Sebastiaan; De Gryse, Gaëtan M A; Desmarets, Lowiese M B; Nauwynck, Hans J

    2016-10-01

    One of the most characteristic pathological changes in cats that have succumbed to feline infectious peritonitis (FIP) is a multifocal granulomatous phlebitis. Although it is now well established that leukocyte extravasation elicits the inflammation typically associated with FIP lesions, relatively few studies have aimed at elucidating this key pathogenic event. The upregulation of adhesion molecules on the endothelium is a prerequisite for stable leukocyte-endothelial cell (EC) adhesion that necessarily precedes leukocyte diapedesis. Therefore, the present work focused on the expression of the EC adhesion molecules and possible triggers of EC activation during the development of FIP. Immunofluorescence analysis revealed that the endothelial expression of P-selectin, E-selectin, intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) was elevated in veins close to granulomatous infiltrates in the renal cortex of FIP patients compared to non-infiltrated regions and specimens from healthy cats. Next, we showed that feline venous ECs become activated when exposed to supernatant from feline infectious peritonitis virus (FIPV)-infected monocytes, as indicated by increased adhesion molecule expression. Active viral replication seemed to be required to induce the EC-stimulating activity in monocytes. Finally, adhesion assays revealed an increased adhesion of naive monocytes to ECs treated with supernatant from FIPV-infected monocytes. Taken together, our results strongly indicate that FIPV activates ECs to increase monocyte adhesion by an indirect route, in which proinflammatory factors released from virus-infected monocytes act as key intermediates.

  15. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    PubMed

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-05

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  16. Effect of adhesive thickness on adhesively bonded T-joint

    NASA Astrophysics Data System (ADS)

    Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul

    2013-12-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.

  17. Evaluation of sorghum flour as extender in plywood adhesives for sprayline coaters or foam extrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate sorghum flour as protein extender in plywood adhesive for sprayline coaters or foam extrusion. Defatted sorghum flour, containing 0.2% (dry basis, db) residual oil and 12.0% (db) crude protein, was analyzed for solubility and foaming properties. Sorghum flour pr...

  18. Water soluble laser dyes

    DOEpatents

    Hammond, Peter R.; Feeman, James F.; Field, George F.

    1998-01-01

    Novel water soluble dyes of the formula I are provided ##STR1## wherein R.sup.1 and R.sup.4 are alkyl of 1 to 4 carbon atoms or hydrogen; or R.sup.1 -R.sup.2 or R.sup.2 -R.sup.4 form part of aliphatic heterocyclic rings; R.sup.2 is hydrogen or joined with R.sup.1 or R.sup.4 as described above; R.sup.3 is --(CH.sub.2).sub.m --SO.sub.3.sup.-, where m is 1 to 6; X is N, CH or ##STR2## where Y is 2 --SO.sub.3.sup.- ; Z is 3, 4, 5 or 6 --SO.sub.3.sup.-. The novel dyes are particularly useful as the active media in water solution dye lasers.

  19. Water soluble laser dyes

    DOEpatents

    Hammond, P.R.; Feeman, J.F.; Field, G.F.

    1998-08-11

    Novel water soluble dyes of the formula 1 are provided by the formula described in the paper wherein R{sup 1} and R{sup 4} are alkyl of 1 to 4 carbon atoms or hydrogen; or R{sup 1}--R{sup 2} or R{sup 2}--R{sup 4} form part of aliphatic heterocyclic rings; R{sup 2} is hydrogen or joined with R{sup 1} or R{sup 4} as described above; R{sup 3} is --(CH{sub 2}){sub m}--SO{sub 3}{sup {minus}}, where m is 1 to 6; X is N, CH or formula 2 given in paper where Y is 2 --SO{sub 3}{sup {minus}} ; Z is 3, 4, 5 or 6 --SO{sub 3}{sup {minus}}. The novel dyes are particularly useful as the active media in water solution dye lasers.

  20. Fire-Retardant Epoxy Adhesives

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Giants, T. W.

    1982-01-01

    Phosphorus-containing epoxy is fire-retardant and translucent. Intended as adhesive for laminated plastic sheets, new material bonds well to titanium dioxide-filled plastic film, which ordinarily shows little surface interaction with adhesives. Fire retardancy has been demonstrated, and smoke density is low enough to avoid smoke obscuration.

  1. Measuring Adhesion And Friction Forces

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1991-01-01

    Cavendish balance adapted to new purpose. Apparatus developed which measures forces of adhesion and friction between specimens of solid materials in vacuum at temperatures from ambient to 900 degrees C. Intended primarily for use in studying adhesion properties of ceramics and metals, including silicon carbide, aluminum oxide, and iron-base amorphous alloys.

  2. Polymer Claw: Instant Underwater Adhesive

    DTIC Science & Technology

    2012-10-23

    pressure-activated adhesive is nearly complete. A 2:1 ratio of microcapsules:gorilla glue and a 1.5% dibutyltin diacetate concentration produced adhesion...Table I below. The best performers generally had between 1% and 1.5% dibutyltin diacetate (DBTDA). They also had a 2:1 ratio (vol/wt) of microcapsules

  3. Adhesive capsulitis of the shoulder.

    PubMed

    Neviaser, Andrew S; Neviaser, Robert J

    2011-09-01

    Adhesive capsulitis is characterized by painful, gradual loss of active and passive shoulder motion resulting from fibrosis and contracture of the joint capsule. Other shoulder pathology can produce a similar clinical picture, however, and must be considered. Management is based on the underlying cause of pain and stiffness, and determination of the etiology is essential. Subtle clues in the history and physical examination can help differentiate adhesive capsulitis from other conditions that cause a stiff, painful shoulder. The natural history of adhesive capsulitis is a matter of controversy. Management of true capsular restriction of motion (ie, true adhesive capsulitis) begins with gentle, progressive stretching exercises. Most patients improve with nonsurgical treatment. Indications for surgery should be individualized. Failure to obtain symptomatic improvement and continued functional disability following ≥6 months of physical therapy is a general guideline for surgical intervention. Diligent postoperative therapy to maintain motion is required to minimize recurrence of adhesive capsulitis.

  4. Hyaluronan-mediated cellular adhesion

    NASA Astrophysics Data System (ADS)

    Curtis, Jennifer

    2005-03-01

    Many cells surround themselves with a cushioning halo of polysaccharides that is further strengthened and organized by proteins. In fibroblasts and chrondrocytes, the primary component of this pericellular matrix is hyaluronan, a large linear polyanion. Hyaluronan production is linked to a variety of disease, developmental, and physiological processes. Cells manipulate the concentration of hyaluronan and hyaluronan receptors for numerous activities including modulation of cell adhesion, cell motility, and differentiation. Recent investigations by identify hyaluronan's role in mediating early-stage cell adhesion. An open question is how the cell removes the 0.5-10 micron thick pericellular matrix to allow for further mature adhesion events requiring nanometer scale separations. In this investigation, holographic optical tweezers are used to study the adhesion and viscoelastic properties of chondrocytes' pericellular matrix. Ultimately, we aim to shed further light on the spatial and temporal details of the dramatic transition from micron to nanometer gaps between the cell and its adhesive substrate.

  5. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, R.A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe with an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough. 4 figs.

  6. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, Ray A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe within an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough.

  7. Biological adhesives and fastening devices

    NASA Astrophysics Data System (ADS)

    Wolpert, H. D.

    2012-04-01

    Sea creatures are a leading source to some of the more interesting discoveries in adhesives. Because sea water naturally breaks down even the strongest conventional adhesive, an alternative is important that could be used in repairing or fabricating anything that might have regular contact with moisture such as: Repairing broken and shattered bones, developing a surgical adhesive, use in the dental work, repairing and building ships, and manufacturing plywood. Some of nature's prototypes include the common mussel, limpet, some bacteria and abalone. As we learn more about these adhesives we are also developing non adhesive fasteners, such as mimicked after studying the octopus, burdock burrs (i.e. Velcro®) and the gecko.

  8. Adhesion testing device

    NASA Technical Reports Server (NTRS)

    LaPeyronnie, Glenn M. (Inventor); Huff, Charles M. (Inventor)

    2010-01-01

    The present invention provides a testing apparatus and method for testing the adhesion of a coating to a surface. The invention also includes an improved testing button or dolly for use with the testing apparatus and a self aligning button hook or dolly interface on the testing apparatus. According to preferred forms, the apparatus and method of the present invention are simple, portable, battery operated rugged, and inexpensive to manufacture and use, are readily adaptable to a wide variety of uses, and provide effective and accurate testing results. The device includes a linear actuator driven by an electric motor coupled to the actuator through a gearbox and a rotatable shaft. The electronics for the device are contained in the head section of the device. At the contact end of the device, is positioned a self aligning button hook, attached below the load cell located on the actuator shaft.

  9. Propulsion by directional adhesion

    NASA Astrophysics Data System (ADS)

    Bush, John; Prakash, Manu

    2008-03-01

    The rough, hairy integument of water-walking arthropods is well known to be responsible for their water-repellency; we here consider its additional propulsive role. We demonstrate that the tilted flexible leg hairs of water-walking arthropods render the leg cuticle directionally anisotropic: contact lines advance most readily towards the leg tips. The dynamical role of the resulting unidirectional adhesion is explored, and yields new insight into the manner in which water-walking arthropods generate thrust, glide and leap from the free surface. We thus provide new rationale for the fundamental topological difference in the roughness on plants and insects, and suggest novel directions for biomimetic design of smart, hydrophobic surfaces.

  10. All-trans-retinoic acid induces integrin-independent B-cell adhesion to ADAM disintegrin domains.

    PubMed

    Bridges, Lance C; Lingo, Joshuah D; Grandon, Rachel A; Kelley, Melissa D

    2008-04-15

    Cell adhesion is an integral aspect of immunity facilitating extravasation of immune cells during homing and activation. All -trans-Retinoic acid ( t-RA) regulates leukocyte differentiation, proliferation, and transmigration. However, the role of t-RA in immune cell adhesion is poorly defined. In this study, we evaluated the impact of t-RA and its metabolism on B and T cell adhesion. Specifically, we address the impact of t-RA on the adhesive properties of the human mature B and T cell lines RPMI 8866, Daudi and Jurkats. The effect of t-RA exposure on cell adhesion to vascular cell adhesion molecule-1 (VCAM-1), a well-established integrin counter receptor involved in immunity, and to nonconventional ADAM integrin ligands was assessed. We show for the first time that t-RA potently induces B cell adhesion in an integrin-independent manner to both VCAM-1 and select ADAM disintegrin domains. Using retinoid extraction and reverse-phase HPLC analysis, we identify the retinoid that is functionally responsible for this augmented adhesion. We also provide evidence that this novel t-RA adhesive response is not prototypical of lymphocytes since both Daudi and Jurkats do not alter their adhesive properties upon t-RA treatment. Further, the t-RA metabolic profiles between these lineages is distinct with 9- cis-retinoic acid being exclusively detected in Jurkat media. This study is the first to demonstrate that t-RA directly induces B cell adhesion in an integrin-independent manner and is not contingent upon t-RA metabolism.

  11. Platelet and endothelial adhesion on fluorosurfactant polymers designed for vascular graft modification.

    PubMed

    Tang, Chad; Kligman, Faina; Larsen, Coby C; Kottke-Marchant, Kandice; Marchant, Roger E

    2009-02-01

    A prominent failure mechanism of small diameter expanded polytetrafluoroethylene (ePTFE) vascular grafts is platelet-mediated thrombosis. We have designed a surface modification for ePTFE consisting of a self-assembling fluorosurfactant polymer (FSP) bearing biologically active ligands, including adhesive peptides and polysaccharide moieties. The goal of this biomimetic construct is to improve graft hemocompatibility by promoting rapid surface endothelialization, whereas minimizing platelet adhesion. Here we present a direct comparison of platelet and endothelial cell (EC) adhesion to FSPs containing one of three cell-adhesion peptides: cyclic Arg-Gly-Asp-D-Phe-Glu (cRGD), cyclic *Cys-Arg-Arg-Glu-Thr-Ala-Trp-Ala-Cys* (cRRE, *denotes disulfide bond cyclization), linear Gly-Arg-Gly-Asp-Ser-Pro-Ala (RGD), or a polysaccharide moiety: oligomaltose (M-7), later designed to prevent nonspecific protein adhesion. Measurements of soluble peptide-integrin binding indicated that cRRE exhibits very low affinity for the alpha(IIb)beta(3) platelet fibrinogen receptor. Static and dynamic adhesion of washed, activated platelets on FSP-modified surfaces revealed that M-7 and cRRE promote significantly less platelet adhesion compared to RGD and cRGD FSPs, whereas EC adhesion was similar on all peptide FSPs and minimal on M-7 FSP. These results illustrate the potential for ligands presented in a FSP surface modification to selectively adhere ECs with limited platelet attachment.

  12. Platelet and endothelial adhesion on fluorosurfactant polymers designed for vascular graft modification

    PubMed Central

    Tang, Chad; Kligman, Faina; Larsen, Coby C.; Kottke-Marchant, Kandice; Marchant, Roger E.

    2011-01-01

    A prominent failure mechanism of small-diameter expanded polytetrafluoroethylene (ePTFE) vascular grafts is platelet-mediated thrombosis. We have designed surface modification for ePTFE consisting of a self-assembling fluorosurfactant polymer (FSP) bearing biologically active ligands, including adhesive peptides and polysaccharide moieties. The goal of this biomimetic construct is to improve graft hemocompatibility by promoting rapid surface endothelialization, while minimizing platelet adhesion. Here, we present a direct comparison of platelet and endothelial cell (EC) adhesion to FSPs presenting one of three cell adhesion peptides: cyclic Arg-Gly-Asp-D-Phe-Glu (cRGD), cyclic *Cys-Arg-Arg-Glu-Thr-Ala-Trp-Ala-Cys* (cRRE, *disulfide bond cyclization), linear Gly-Arg-Gly-Asp-Ser-Pro-Ala (RGD) or a polysaccharide moiety: oligomaltose (M-7), the later designed to prevent plasma protein adhesion. Measurements of soluble peptide-integrin binding indicated that cRRE exhibits the least affinity for the αIIbβ3 platelet fibrinogen receptor. Analysis of static and dynamic platelet adhesion on FSP modified surfaces demonstrated that both M-7 and cRRE promote significantly less platelet adhesion compared with RGD and cRGD FSPs, while EC adhesion was similar on all peptide FSPs and minimal on M-7 FSP. These results illustrate the potential for ligands presented in a FSP surface modification to selectively adhere ECs with limited platelet attachment. PMID:18286624

  13. The adhesive properties of coacervated recombinant hybrid mussel adhesive proteins.

    PubMed

    Lim, Seonghye; Choi, Yoo Seong; Kang, Dong Gyun; Song, Young Hoon; Cha, Hyung Joon

    2010-05-01

    Marine mussels attach to substrates using adhesive proteins. It has been suggested that complex coacervation (liquid-liquid phase separation via concentration) might be involved in the highly condensed and non-water dispersed adhesion process of mussel adhesive proteins (MAPs). However, as purified natural MAPs are difficult to obtain, it has not been possible to experimentally validate the coacervation model. In the present work, we demonstrate complex coacervation in a system including recombinant MAPs and hyaluronic acid (HA). Our recombinant hybrid MAPs, fp-151 and fp-131, can be produced in large quantities, and are readily purified. We observed successful complex coacervation using cationic fp-151 or fp-131, and an anionic HA partner. Importantly, we found that highly condensed complex coacervates significantly increased the bulk adhesive strength of MAPs in both dry and wet environments. In addition, oil droplets were successfully engulfed using a MAP-based interfacial coacervation process, to form microencapsulated particles. Collectively, our results indicate that a complex coacervation system based on MAPs shows superior adhesive properties, combined with additional valuable features including liquid/liquid phase separation and appropriate viscoelasticity. Our microencapsulation system could be useful in the development of new adhesive biomaterials, including self-adhesive microencapsulated drug carriers, for use in biotechnological and biomedical applications.

  14. Tunicate-mimetic nanofibrous hydrogel adhesive with improved wet adhesion.

    PubMed

    Oh, Dongyeop X; Kim, Sangsik; Lee, Dohoon; Hwang, Dong Soo

    2015-07-01

    The main impediment to medical application of biomaterial-based adhesives is their poor wet adhesion strength due to hydration-induced softening and dissolution. To solve this problem, we mimicked the wound healing process found in tunicates, which use a nanofiber structure and pyrogallol group to heal any damage on its tunic under sea water. We fabricated a tunicate-mimetic hydrogel adhesive based on a chitin nanofiber/gallic acid (a pyrogallol acid) composite. The pyrogallol group-mediated cross-linking and the nanofibrous structures improved the dissolution resistance and cohesion strength of the hydrogel compared to the amorphous polymeric hydrogels in wet condition. The tunicate-mimetic adhesives showed higher adhesion strength between fully hydrated skin tissues than did fibrin glue and mussel-mimetic adhesives. The tunicate mimetic hydrogels were produced at low cost from recyclable and abundant raw materials. This tunicate-mimetic adhesive system is an example of how natural materials can be engineered for biomedical applications.

  15. Universal adhesives: the next evolution in adhesive dentistry?

    PubMed

    Alex, Gary

    2015-01-01

    Every so often a new material, technique, or technological breakthrough spurs a paradigm shift in the way dentistry is practiced. The development and evolution of reliable enamel and dentin bonding agents is one such example. Indeed, the so-called "cosmetic revolution" in dentistry blossomed in large part due to dramatic advances in adhesive technology. It is the ability to bond various materials in a reasonably predictable fashion to both enamel and dentin substrates that enables dentists to routinely place porcelain veneers, direct and indirect composites, and a plethora of other restorative and esthetic materials. In fact, the longevity and predictability of many (if not most) current restorative procedures is wholly predicated on the dentist's ability to bond various materials to tooth tissues. Adhesive systems have progressed from the largely ineffective systems of the 1970s and early 1980s to the relatively successful total- and self-etching systems of today. The latest players in the adhesive marketplace are the so-called "universal adhesives." In theory, these systems have the potential to significantly simplify and expedite adhesive protocols and may indeed represent the next evolution in adhesive dentistry. But what defines a universal system, and are all these new systems truly "universal" and everything they are claimed to be? This article will examine the origin, chemistry, strengths, weaknesses, and clinical relevance of this new genre of dental adhesives.

  16. Pure Phase Solubility Limits: LANL

    SciTech Connect

    C. Stockman

    2001-01-26

    The natural and engineered system at Yucca Mountain (YM) defines the site-specific conditions under which one must determine to what extent the engineered and the natural geochemical barriers will prevent the release of radioactive material from the repository. Most important mechanisms for retention or enhancement of radionuclide transport include precipitation or co-precipitation of radionuclide-bearing solid phases (solubility limits), complexation in solution, sorption onto surfaces, colloid formation, and diffusion. There may be many scenarios that could affect the near-field environment, creating chemical conditions more aggressive than the conditions presented by the unperturbed system (such as pH changes beyond the range of 6 to 9 or significant changes in the ionic strength of infiltrated waters). For an extended period of time, the near-field water composition may be quite different and more extreme in pH, ionic strength, and CO{sub 2} partial pressure (or carbonate concentration) than waters at some distance from the repository. Reducing conditions, high pH (up to 11), and low carbonate concentration may be present in the near-field after reaction of infiltrating groundwater with engineered barrier systems, such as cementitious materials. In the far-field, conditions are controlled by the rock-mass buffer providing a near-neutral, oxidizing, low-ionic-strength environment that controls radionuclide solubility limits and sorption capacities. There is the need for characterization of variable chemical conditions that affect solubility, speciation, and sorption reactions. Modeling of the groundwater chemistry is required and leads to an understanding of solubility and speciation of the important radionuclides. Because experimental studies cannot be performed under the numerous potential chemical conditions, solubility limitations must rely on geochemical modeling of the radionuclide's chemistry. Fundamental thermodynamic properties, such as solubility

  17. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives.

    PubMed

    Murphy, Michael P; Kim, Seok; Sitti, Metin

    2009-04-01

    The complex structures that allow geckos to repeatably adhere to surfaces consist of multilevel branching fibers with specialized tips. We present a novel technique for fabricating similar multilevel structures from polymer materials and demonstrate the fabrication of arrays of two- and three-level structures, wherein each level terminates in flat mushroom-type tips. Adhesion experiments are conducted on two-level fiber arrays on a 12-mm-diameter glass hemisphere, which exhibit both increased adhesion and interface toughness over one-level fiber samples and unstructured control samples. These adhesion enhancements are the result of increased surface conformation as well as increased extension during detachment.

  18. Novel Wnt Regulator NEL-Like Molecule-1 Antagonizes Adipogenesis and Augments Osteogenesis Induced by Bone Morphogenetic Protein 2

    PubMed Central

    Shen, Jia; James, Aaron W.; Zhang, Xinli; Pang, Shen; Zara, Janette N.; Asatrian, Greg; Chiang, Michael; Lee, Min; Khadarian, Kevork; Nguyen, Alan; Lee, Kevin S.; Siu, Ronald K.; Tetradis, Sotirios; Ting, Kang; Soo, Chia

    2017-01-01

    The differentiation factor NEL-like molecule-1 (NELL-1) has been reported as osteoinductive in multiple in vivo preclinical models. Bone morphogenetic protein (BMP)-2 is used clinically for skeletal repair, but in vivo administration can induce abnormal, adipose-filled, poor-quality bone. We demonstrate that NELL-1 combined with BMP2 significantly optimizes osteogenesis in a rodent femoral segmental defect model by minimizing the formation of BMP2-induced adipose-filled cystlike bone. In vitro studies using the mouse bone marrow stromal cell line M2-10B4 and human primary bone marrow stromal cells have confirmed that NELL-1 enhances BMP2-induced osteogenesis and inhibits BMP2-induced adipogenesis. Importantly, the ability of NELL-1 to direct BMP2-treated cells toward osteogenesis and away from adipogenesis requires intact canonical Wnt signaling. Overall, these studies establish the feasibility of combining NELL-1 with BMP2 to improve clinical bone regeneration and provide mechanistic insight into canonical Wnt pathway activity during NELL-1 and BMP2 osteogenesis. The novel abilities of NELL-1 to stimulate Wnt signaling and to repress adipogenesis may highlight new treatment approaches for bone loss in osteoporosis. PMID:26772960

  19. Stromal interaction molecule 1 (STIM1) silencing inhibits tumor growth and promotes cell cycle arrest and apoptosis in hypopharyngeal carcinoma.

    PubMed

    Sun, Yuanhao; Cui, Xiaobo; Wang, Jun; Wu, Shuai; Bai, Yunfei; Wang, Yaping; Wang, Boqian; Fang, Jugao

    2015-05-01

    As an important pathway maintaining the balance of intracellular calcium (Ca(2+)), store-operated Ca(2+) entry (SOCE) is critical for cellular functions. Stromal interaction molecule 1 (STIM1), a key component of SOCE, plays a dual role as an endoplasmic reticulum Ca(2+) receptor and an SOCE exciter. Aberrant expression of STIM1 could be discovered in several human cancer cells. However, the role of STIM1 in regulating human hypopharyngeal carcinoma still remains unclear. Real-time polymerase chain reaction (PCR) was used to detect expression of STIM1 in human hypopharyngeal carcinoma cell line FaDu. STIM1 on FaDu cells was knocked down by lentiviral transduction method. The biological impacts after knocking down of STIM1 on FaDu cells were investigated in vitro and in vivo. The result of real-time PCR showed that STIM1 was expressed in FaDu cells. Lentiviral transduction efficiently downregulated the expression of STIM1 in FaDu cells at both mRNA and protein levels. Significant downregulation of STIM1 on FaDu cells inhibited cell proliferation, induced cell cycle arrest in G0/G1 phase, promoted cell apoptosis, and restrained cell growth rate. The antigrowth effect of STIM1 silencing was also discovered in FaDu hypopharyngeal tumor model. Our findings indicate that STIM1 is likely to become a new therapeutic target for hypopharyngeal carcinoma treatment.

  20. Kidney Injury Molecule-1 Protects against Gα12 Activation and Tissue Damage in Renal Ischemia-Reperfusion Injury

    PubMed Central

    Ismail, Ola Z.; Zhang, Xizhong; Wei, Junjun; Haig, Aaron; Denker, Bradley M.; Suri, Rita S.; Sener, Alp; Gunaratnam, Lakshman

    2016-01-01

    Ischemic acute kidney injury is a serious untreatable condition. Activation of the G protein α12 (Gα12) subunit by reactive oxygen species is a major cause of tissue damage during renal ischemia-reperfusion injury. Kidney injury molecule-1 (KIM-1) is a transmembrane glycoprotein that is highly up-regulated during acute kidney injury, but the physiologic significance of this up-regulation is unclear. Here, we report for the first time that Kim-1 inhibits Gα12 activation and protects mice against renal ischemia-reperfusion injury. We reveal that Kim-1 physically interacts with and inhibits cellular Gα12 activation after inflammatory stimuli, including reactive oxygen species, by blocking GTP binding to Gα12. Compared with Kim-1+/+ mice, Kim-1−/− mice exhibited greater Gα12 and downstream Src activation both in primary tubular epithelial cells after in vitro stimulation with H2O2 and in whole kidneys after unilateral renal artery clamping. Finally, we show that Kim-1–deficient mice had more severe kidney dysfunction and tissue damage after bilateral renal artery clamping, compared with wild-type mice. Our results suggest that KIM-1 is an endogenous protective mechanism against renal ischemia-reperfusion injury through inhibition of Gα12. PMID:25759266

  1. Association between the levels of urine kidney injury molecule-1 and the progression of acute kidney injury in the elderly

    PubMed Central

    Wang, Chunlin; Che, Xiajing; Shao, Xinghua; Xu, Yao; Ni, Zhaohui; Mou, Shan

    2017-01-01

    Background The factors influencing the prognosis of acute kidney injury (AKI) were analyzed in a group of elderly AKI patients to determine the markers of early prognosis. Methods A total of 258 patients were screened, and 201 patients were enrolled in the study. Eventually, 184 AKI patients were included in the study, including 79 elderly AKI patients (≥60 years old). During one year of follow-up, renal function changes were observed, and the risk factors that influenced the prognosis of AKI were analyzed. Results When AKI occurred, the urine kidney injury molecule-1 (uKIM-1) level was significantly higher in the progressive deterioration of renal function group than in the renal function stable group. The ROC curve analysis revealed that the area under the curve for poor progressive deterioration of renal function as predicted by the uKIM-1 level was 0.681. At a cutoff point of 2.46 ng/mg, the sensitivity was 71.9% and the specificity was 70.0%. In elderly AKI patients, uKIM-1 levels exceeding 2.46 ng/mg were positively associated with poor kidney prognosis. Conclusions Elderly AKI patients are at risk of developing progressive deterioration of renal function. In elderly AKI patients, the high uKIM-1 level may predict the prognosis of kidney function and may be used as an early screening indicator of poor kidney prognosis. PMID:28187124

  2. An ICAM-1 like cell adhesion molecule is responsible for CD34 positive haemopoietic stem cells adhesion to bone-marrow stroma.

    PubMed

    Rao, S G; Chitnis, V S; Deora, A; Tanavde, V; Desai, S S

    1996-04-01

    The microenvironment in the haematopoietic organs plays an important role in regulating and sustaining differentiation and self-renewal of haematopoietic stem cells. Although crucial for stem cell maintenance and homing, the stromal cell-stem cell interactions are poorly understood. Here we show that an ICAM-like molecule is responsible for stem cell adhesion to stromal cells in vitro. The molecule was characterized by a monoclonal antibody 3E10. Immunoblotting results indicated that the molecule had an electrophoretic mobility equal to that of intercellular cell adhesion molecule-1 (ICAM-1). Binding inhibition assays, however, showed that inhibition of binding of enriched CD34 cells by 3E10 was more prominent in comparison with that of ICAM-1.

  3. The Ksp-Solubility Conundrum.

    ERIC Educational Resources Information Center

    Clark, Roy W.; Bonicamp, Judith M.

    1998-01-01

    Argues that there are only a few cases in which solubility and Ksp are related in a simple way. States that illustrations of the solubility product principle for one-to-one salts are adequate for students. Contains 23 references. (DDR)

  4. Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces

    PubMed Central

    Shirtcliffe, Neil J.; McHale, Glen; Newton, Michael I.

    2012-01-01

    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces. PMID:22693563

  5. Contractility Modulates Cell Adhesion Strengthening Through Focal Adhesion Kinase and Assembly of Vinculin-Containing Focal Adhesions

    PubMed Central

    Dumbauld, David W.; Shin, Heungsoo; Gallant, Nathan D.; Michael, Kristin E.; Radhakrishna, Harish; García, Andrés J.

    2010-01-01

    Actin-myosin contractility modulates focal adhesion assembly, stress fiber formation, and cell migration. We analyzed the contributions of contractility to fibroblast adhesion strengthening using a hydrodynamic adhesion assay and micropatterned substrates to control cell shape and adhesive area. Serum addition resulted in adhesion strengthening to levels 30–40% higher than serum-free cultures. Inhibition of myosin light chain kinase or Rho-kinase blocked phosphorylation of myosin light chain to similar extents and eliminated the serum-induced enhancements in strengthening. Blebbistatin-induced inhibition of myosin II reduced serum-induced adhesion strength to similar levels as those obtained by blocking myosin light chain phosphorylation. Reductions in adhesion strengthening by inhibitors of contractility correlated with loss of vinculin and talin from focal adhesions without changes in integrin binding. In vinculin-null cells, inhibition of contractility did not alter adhesive force, whereas controls displayed a 20% reduction in adhesion strength, indicating that the effects of contractility on adhesive force are vinculin-dependent. Furthermore, in cells expressing FAK, inhibitors of contractility reduced serum-induced adhesion strengthening as well as eliminated focal adhesion assembly. In contrast, in the absence of FAK, these inhibitors did not alter adhesion strength or focal adhesion assembly. These results indicate that contractility modulates adhesion strengthening via FAK-dependent, vinculin-containing focal adhesion assembly. PMID:20205236

  6. Compositional design and optimization of dentin adhesive with neutralization capability

    PubMed Central

    Song, Linyong; Ye, Qiang; Ge, Xueping; Spencer, Paulette

    2015-01-01

    Objectives The objective of this work was to investigate the polymerization behavior, neutralization capability, and mechanical properties of dentin adhesive formulations with the addition of the tertiary amine co-monomer, 2-N-morpholinoethyl methacrylate (MEMA). Methods A co-monomer mixture based on HEMA/BisGMA (45/55, w/w) was used as a control adhesive. Compared with the control formulation, the MEMA-containing adhesive formulations were characterized comprehensively with regard to water miscibility of liquid resin, water sorption and solubility of cured polymer, real-time photopolymerization kinetics, dynamic mechanical analysis (DMA), and modulated differential scanning calorimetry (MDSC). The neutralization capacity was characterized by monitoring the pH shift of 1 mM lactic acid (LA) solution, in which the adhesive polymers were soaked. Results With increasing MEMA concentrations, experimental copolymers showed higher water sorption, lower glass transition temperature and lower crosslinking density compared to the control. The pH values of LA solution gradually increased from 3.5 to about 6.0–6.5 after 90 days. With the increase in crosslinking density of the copolymers, the neutralization rate was depressed. The optimal MEMA concentration was between 20 and 40 wt%. Conclusions As compared to the control, the results indicated that the MEMA-functionalized copolymer showed neutralization capability. The crosslinking density of the copolymer networks influenced the neutralization rate. PMID:26144189

  7. Cell adhesion molecules involved in the leukocyte recruitment induced by venom of the snake Bothrops jararaca.

    PubMed Central

    Zamuner, Stella R; Teixeira, Catarina F P

    2002-01-01

    It has been shown that Bothrops jararaca venom (BjV) induces a significant leukocyte accumulation, mainly neutrophils, at the local of tissue damage. Therefore, the role of the adhesion molecules intercellular adhesion molecule-1 (ICAM-1), LECAM-1, CD18, leukocyte function-associated antigen-1 (LFA-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1) on the BjV-induced neutrophil accumulation and the correlation with release of LTB4, TXA2, tumor necrosis factor-alpha, interleukin (IL)-1 and IL-6 have been investigated. Anti-mouse LECAM-1, LFA-1, ICAM-1 and PECAM-1 monoclonal antibody injection resulted in a reduction of 42%, 80%, 66% and 67%, respectively, of neutrophil accumulation induced by BjV (250 microg/kg, intraperitoneal) injection in male mice compared with isotype-matched control injected animals. The anti-mouse CD18 monoclonal antibody had no significant effect on venom-induced neutrophil accumulation. Concentrations of LTB(4), TXA(2), IL-6 and TNF-alpha were significant increased in the peritoneal exudates of animals injected with venom, whereas no increment in IL-1 was detected. This results suggest that ICAM-1, LECAM-1, LFA-1 and PECAM-1, but not CD18, adhesion molecules are involved in the recruitment of neutrophils into the inflammatory site induced by BjV. This is the first in vivo evidence that snake venom is able to up-regulate the expression of adhesion molecules by both leukocytes and endothelial cells. This venom effect may be indirect, probably through the release of the inflammatory mediators evidenced in the present study. PMID:12581499

  8. Recombinant soluble adenovirus receptor

    DOEpatents

    Freimuth, Paul I.

    2002-01-01

    Disclosed are isolated polypeptides from human CAR (coxsackievirus and adenovirus receptor) protein which bind adenovirus. Specifically disclosed are amino acid sequences which corresponds to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2. In other aspects, the disclosure relates to nucleic acid sequences encoding these domains as well as expression vectors which encode the domains and bacterial cells containing such vectors. Also disclosed is an isolated fusion protein comprised of the D1 polypeptide sequence fused to a polypeptide sequence which facilitates folding of D1 into a functional, soluble domain when expressed in bacteria. The functional D1 domain finds application for example in a therapeutic method for treating a patient infected with a virus which binds to D1, and also in a method for identifying an antiviral compound which interferes with viral attachment. Also included is a method for specifically targeting a cell for infection by a virus which binds to D1.

  9. Marine Bioinspired Underwater Contact Adhesion.

    PubMed

    Clancy, Sean K; Sodano, Antonio; Cunningham, Dylan J; Huang, Sharon S; Zalicki, Piotr J; Shin, Seunghan; Ahn, B Kollbe

    2016-05-09

    Marine mussels and barnacles are sessile biofouling organisms that adhere to a number of surfaces in wet environments and maintain remarkably strong bonds. Previous synthetic approaches to mimic biological wet adhesive properties have focused mainly on the catechol moiety, present in mussel foot proteins (mfps), and especially rich in the interfacial mfps, for example, mfp-3 and -5, found at the interface between the mussel plaque and substrate. Barnacles, however, do not use Dopa for their wet adhesion, but are instead rich in noncatecholic aromatic residues. Due to this anomaly, we were intrigued to study the initial contact adhesion properties of copolymerized acrylate films containing the key functionalities of barnacle cement proteins and interfacial mfps, for example, aromatic (catecholic or noncatecholic), cationic, anionic, and nonpolar residues. The initial wet contact adhesion of the copolymers was measured using a probe tack testing apparatus with a flat-punch contact geometry. The wet contact adhesion of an optimized, bioinspired copolymer film was ∼15.0 N/cm(2) in deionized water and ∼9.0 N/cm(2) in artificial seawater, up to 150 times greater than commercial pressure-sensitive adhesive (PSA) tapes (∼0.1 N/cm(2)). Furthermore, maximum wet contact adhesion was obtained at ∼pH 7, suggesting viability for biomedical applications.

  10. Reduced intracellular oxidative metabolism promotes firm adhesion of human polymorphonuclear leukocytes to vascular endothelium under flow conditions.

    PubMed

    Montoya, M C; Luscinskas, F W; del Pozo, M A; Aragonés, J; de Landázuri, M O

    1997-08-01

    The interaction of polymorphonuclear leukocytes (PMN) with the vascular endothelium and their subsequent extravasation to the tissues is a key step during different physiological and pathological processes. In certain of these pathologies the oxygen tension becomes very low, leading to reduced cellular oxidative status. To evaluate the effect of lowering the intracellular redox status in the interaction of PMN with the endothelium, exposure to hypoxic conditions as well as treatment with different antioxidant agents was carried out. PMN exposure to hypoxia enhanced beta2 integrin-dependent adhesion to intercellular adhesion molecule-1-coated surfaces, concomitant with a decrease in the intracellular redox status of the cell. As occurs with hypoxia, treatment with antioxidants produced a decrease in the oxidation state of PMN. These agents enhanced adhesion of PMN to human umbilical vein endothelial cells stimulated with tumor necrosis factor-alpha (TNF-alpha), and this effect was also mediated by beta2 integrins LFA-1 and Mac-1. Adhesion studies under defined laminar flow conditions showed that the antioxidant treatment induced an enhanced adhesion mediated by beta2 integrins with a decrease in the fraction of PMN rolling on TNF-alpha-activated endothelial cells. The up-regulated PMN adhesion was correlated to an increase in the expression and activation of integrin Mac-1, without loss of L-selectin surface expression. Altogether, these results demonstrate that a reduction in the intracellular oxidative state produces an enhanced beta2 integrin-dependent adhesion of PMN to stimulated endothelial cells under conditions of flow.

  11. Adhesive Performance of Biomimetic Adhesive-Coated Biologic Scaffolds

    PubMed Central

    Murphy, John L.; Vollenweider, Laura; Xu, Fangmin; Lee, Bruce P.

    2010-01-01

    Surgical repair of a discontinuity in traumatized or degenerated soft tissues is traditionally accomplished using sutures. A current trend is to reinforce this primary repair with surgical grafts, meshes, or patches secured with perforating mechanical devices (i.e., sutures, staples, or tacks). These fixation methods frequently lead to chronic pain and mesh detachment. We developed a series of biodegradable adhesive polymers that are synthetic mimics of mussel adhesive proteins (MAPs), composed of 3,4-dihydroxyphenylalanine (DOPA)-derivatives, polyethylene glycol (PEG), and polycaprolactone (PCL). These polymers can be cast into films, and their mechanical properties, extent of swelling, and degradation rate can be tailored through the composition of the polymers as well as blending with additives. When coated onto a biologic mesh used for hernia repair, these adhesive constructs demonstrated adhesive strengths significantly higher than fibrin glue. With further development, a pre-coated bioadhesive mesh may represent a new surgical option for soft tissue repair. PMID:20919699

  12. Artemisinin inhibits monocyte adhesion to HUVECs through the NF-κB and MAPK pathways in vitro

    PubMed Central

    WANG, YUE; CAO, JIATIAN; FAN, YUQI; XIE, YUSHUI; XU, ZUOJUN; YIN, ZHAOFANG; GAO, LIN; WANG, CHANGQIAN

    2016-01-01

    The adhesion of monocytes to human umbilical vein endothelial cells (HUVECs) plays a crucial role in the initiation of atherosclerosis. Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) are two important molecules involved in the adhesion of monocytes to HUVECs. Previous studies have suggested that artemisinin, apart from an anti-malarial agent, also has other effects. In the present study, we found that artemisinin significantly decreased the adhesion of monocytes to tumor necrosis factor-α (TNF-α)-stimulated HUVECs in a dose-dependent manner and suppressed the mRNA and protein level of ICAM-1 and VCAM-1 in the TNF-α-stimulated HUVECs. In addition, the nuclear factor-κB (NF-κB) inhibitor, Bay 11-7082, and mitogen-activated protein kinase (MAPK) inhibitors (SB203580 and U0126) respectively reduced the adhesion of monocytes to TNF-α-stimulated HUVECs, and suppressed ICAM-1 and VCAM-1 expression in TNF-α stimulated HUVECs. Moreover, artemisinin impeded the activation of the NF-κB and MAPK signaling pathways. Furthermore, Bay 11-7082 significantly decreased the phosphorylation of levels extracellular signal-regulated protein kinase (ERK)1/2, p38 and c-Jun N-terminal kinase (JNK). Taken together, the findings of our study indicated that artemisinin blocked monocyte adhesion to TNF-α-stimulated to HUVECs by downregulating ICAM-1 and VCAM-1 expression in the TNF-α-stimulated HUVECs. Artemisinin may thus have potential for use in the protection against the early development of atherosclerotic lesions. PMID:27122190

  13. Green waxes, adhesives and lubricants.

    PubMed

    Li, W; Kong, X H; Ruan, M; Ma, F M; Jiang, Y F; Liu, M Z; Chen, Y; Zuo, X H

    2010-10-28

    General characteristics of waxes, adhesives and lubricants as well as the recent fundamental investigations on their physical and mechanical behaviour are introduced. The current R&D status for new type/generation of waxes, adhesives and lubricants from natural products is reviewed, with an emphasis on their tribological applications. In particular, some crucial issues and challenges relating to technological improvement and materials development are discussed. Based on the current predicted shortage of energy resources and environmental concerns, prospective research on the development of green waxes, adhesives and lubricants is suggested.

  14. Interfacial adhesion of carbon fibers

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.

    1987-01-01

    Relative adhesion strengths between AS4, AS1, and XAS carbon fibers and thermoplastic polymers were determined using the embedded single filament test. Polymers studied included polycarbonate, polyphenylene oxide, polyetherimide, polysulfone, polyphenylene oxide blends with polystyrene, and polycarbonate blends with a polycarbonate polysiloxane block copolymer. Fiber surface treatments and sizings improved adhesion somewhat, but adhesion remained well below levels obtained with epoxy matrices. An explanation for the differences between the Hercules and Grafil fibers was sought using X ray photon spectroscopy, wetting, scanning electron microscopy and thermal desorption analysis.

  15. Adhesives from modified soy protein

    DOEpatents

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  16. Notch-Mediated Cell Adhesion

    PubMed Central

    Murata, Akihiko; Hayashi, Shin-Ichi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms. PMID:26784245

  17. Photovoltaic module with adhesion promoter

    SciTech Connect

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  18. Sargaquinoic Acid Inhibits TNF-α-Induced NF-κB Signaling, Thereby Contributing to Decreased Monocyte Adhesion to Human Umbilical Vein Endothelial Cells (HUVECs).

    PubMed

    Gwon, Wi-Gyeong; Lee, Bonggi; Joung, Eun-Ji; Choi, Min-Woo; Yoon, Nayoung; Shin, Taisun; Oh, Chul-Woong; Kim, Hyeung-Rak

    2015-10-21

    Sargaquinoic acid (SQA) has been known for its antioxidant and anti-inflammatory properties. This study investigated the effects of SQA isolated from Sargassum serratifolium on the inhibition of tumor necrosis factor (TNF)-α-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). SQA decreased the expression of cell adhesion molecules such as intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 as well as chemotactic cytokines such as interleukin-8 and monocyte chemoattractant protein-1 in TNF-α-treated HUVECs. As a result, SQA prevented monocyte adhesion to TNF-α-induced adhesion. SQA also inhibited TNF-α-induced nuclear factor kappa B (NF-κB) translocation into the nucleus by preventing proteolytic degradation of inhibitor κB-α. Overall, SQA protects against TNF-α-induced vascular inflammation through inhibition of the NF-κB pathway in HUVECs. These data suggest that SQA may be used as a therapeutic agent for vascular inflammatory diseases such as atherosclerosis.

  19. Testing Adhesive Bonds to Cloths

    NASA Technical Reports Server (NTRS)

    Thomann, David G.

    1987-01-01

    Nondestructive tool simple and inexpensive. Easy-to-use tool nondestructively tests strength of adhesive bond between cloth and straight rigid edge. Developed for testing advanced flexible reusable surface insulation.

  20. Seafood delicacy makes great adhesive

    ScienceCinema

    Idaho National Laboratory - Frank Roberto, Heather Silverman

    2016-07-12

    Technology from Mother Nature is often hard to beat, so Idaho National Laboratory scientistsgenetically analyzed the adhesive proteins produced by blue mussels, a seafood delicacy. Afterobtaining full-length DNA sequences encoding these proteins, reprod

  1. Seafood delicacy makes great adhesive

    SciTech Connect

    Idaho National Laboratory - Frank Roberto, Heather Silverman

    2008-03-26

    Technology from Mother Nature is often hard to beat, so Idaho National Laboratory scientistsgenetically analyzed the adhesive proteins produced by blue mussels, a seafood delicacy. Afterobtaining full-length DNA sequences encoding these proteins, reprod

  2. Understanding Solubility through Excel Spreadsheets

    NASA Astrophysics Data System (ADS)

    Brown, Pamela

    2001-02-01

    This article describes assignments related to the solubility of inorganic salts that can be given in an introductory general chemistry course. Le Châtelier's principle, solubility, unit conversion, and thermodynamics are tied together to calculate heats of solution by two methods: heats of formation and an application of the van't Hoff equation. These assignments address the need for math, graphing, and computer skills in the chemical technology program by developing skill in the use of Microsoft Excel to prepare spreadsheets and graphs and to perform linear and nonlinear curve-fitting. Background information on the value of understanding and predicting solubility is provided.

  3. Phenylated Polyimides With Greater Solubility

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    1991-01-01

    In experiments, 3,6-diphenylpyromellitic dianhydride monomer prepared and polymerized with several different diamines. Polyimides with pendent phenyl groups along polymer backbones considerably more soluble than PMDA-based materials. Increased solubility eases processing, providing increased potential use in variety of applications. Because most polymers soluble in organic solvents, usable in microelectronics applications. Excellent thermal stabilities and high transition temperatures make them ideally suited. Many polymers extremely rigid and useful as reinforcing polymers in molecular composites. More flexible compositions useful as matrix resins in carbon-reinforced composites.

  4. Adhesive interactions between vesicles in the strong adhesion limit

    PubMed Central

    Ramachandran, Arun; Anderson, Travers H.; Leal, L. Gary; Israelachvili, Jacob N.

    2010-01-01

    We consider the adhesive interaction energy between a pair of vesicles in the strong adhesion limit, in which bending forces play a negligible role in determining vesicle shape compared to forces due to membrane stretching. Although force-distance or energy distance relationships characterizing adhesive interactions between fluid bilayers are routinely measured using the surface forces apparatus, the atomic force microscope and the biomembrane force probe, the interacting bilayers in these methods are supported on surfaces (e.g. mica sheet) and cannot be deformed. However, it is known that in a suspension, vesicles composed of the same bilayer can deform by stretching or bending, and can also undergo changes in volume. Adhesively interacting vesicles can thus form flat regions in the contact zone, which will result in an enhanced interaction energy as compared to rigid vesicles. The focus of this paper is to examine the magnitude of the interaction energy between adhesively interacting, deformed vesicles relative to free, undeformed vesicles as a function of the intervesicle separation. The modification of the intervesicle interaction energy due to vesicle deformability can be calculated knowing the undeformed radius of the vesicles, R0, the bending modulus kb, the area expansion modulus Ka, and the adhesive minimum WP(0) and separation DP(0) in the energy of interaction between two flat bilayers, which can be obtained from the force-distance measurements made using the above supported-bilayer methods. For vesicles with constant volumes, we show that adhesive potentials between non-deforming bilayers such as ∣WP(0)∣∼5×10−4mJ/m2, which are ordinarily considered weak in colloidal physics literature, can result in significantly deep (>10×) energy minima due to increase in vesicle area and flattening in the contact region. If the osmotic expulsion of water across the vesicles driven by the tense, stretched membrane in the presence of an osmotically active

  5. Polymer Claw: Instant Underwater Adhesive

    DTIC Science & Technology

    2012-08-27

    technology is the use of pressure sensitive microcapsules , which release reactive amine crosslinkers into an adhesive putty when pressed against the surface...CLEANING AGENT RHEOLOGY 3 3.3 PRESSURE-ACTIVATED ADHESIVE 5 3.3.1 PROCESSING IMPROVEMENTS 5 3.3.2 MICROCAPSULE DIAMETER 5 3.3.3 MICROCAPSULE /RESIN...to attain a reasonable shelf life (- l wk.). The microcapsule diameter has been halved in order to improve mixing in the pressure-activated

  6. Multi-Scale Biomimetic Adhesives

    DTIC Science & Technology

    2009-02-10

    Objectives: Same as originally stated 3. Status of Effort: Over the life of this grant, significant technical contributions have been made. When this...department of Defense as well, broadening our goals. 4. Accomplishments/New Findings (over the life of the grant): The mechanism of adhesion in the gecko...enabling microrobotics to explore extraterrestrial surfaces or harsh climates otherwise not accessible to man. In contrast to the adhesion seen in a rest

  7. Tumor Specific Regulation of C-CAM Cell Adhesion Molecule in Prostate Cancer Carcinogenesis

    DTIC Science & Technology

    2002-08-01

    692 9. Graff, J. R., Herman, J. G., Lapidus, R. G., Chopra, H., Xu , R., Jarrard, D. F., Isaacs, W. B., Pitha, P. M., Davidson, N. E., and Baylin, S. B...2001) 115-123 www.elsevier.com/locate/mce Androgen regulation of the cell-cell adhesion molecule-1 (Ceacam i) gene Dillon Phan a, Xiaomei Sui b, Dung...Nature Medicine, 1: 686-692, 1995. 27 34. Graff, J. R., Herman, J. G., Lapidus, R. G., Chopra, H., Xu , R., Jarrard, D. F., Isaacs, W. B., Pitha, P. M

  8. Omentin inhibits TNF-α-induced expression of adhesion molecules in endothelial cells via ERK/NF-κB pathway.

    PubMed

    Zhong, Xia; Li, Xiaonan; Liu, Fuli; Tan, Hui; Shang, Deya

    2012-08-24

    In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-α (TNF-α) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-α-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-α-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-α-activated signal pathway of nuclear factor-κB (NF-κB) by preventing NF-κB inhibitory protein (IκBα) degradation and NF-κB/DNA binding activity. Omentin pretreatment significantly inhibited TNF-α-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-α-induced NF-κB activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-α. These results suggest that omentin may inhibit TNF-α-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-κB pathway.

  9. Oncostatin M is a proinflammatory mediator. In vivo effects correlate with endothelial cell expression of inflammatory cytokines and adhesion molecules.

    PubMed Central

    Modur, V; Feldhaus, M J; Weyrich, A S; Jicha, D L; Prescott, S M; Zimmerman, G A; McIntyre, T M

    1997-01-01

    Oncostatin M is a member of the IL-6 family of cytokines that is primarily known for its effects on cell growth. Endothelial cells have an abundance of receptors for oncostatin M, and may be its primary target. We determined if oncostatin M induces a key endothelial cell function, initiation of the inflammatory response. We found that subcutaneous injection of oncostatin M in mice caused an acute inflammatory reaction. Oncostatin M in vitro stimulated: (a) polymorphonuclear leukocyte (PMN) transmigration through confluent monolayers of primary human endothelial cells; (b) biphasic PMN adhesion through rapid P-selectin expression, and delayed adhesion mediated by E-selectin synthesis; (c) intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 accumulation; and (d) the expression of PMN activators IL-6, epithelial neutrophil activating peptide-78, growth-related cytokine alpha and growth-related cytokine beta without concomitant IL-8 synthesis. The nature of the response to oncostatin M varied with concentration, suggesting high and low affinity oncostatin M receptors independently stimulated specific responses. Immunohistochemistry showed that macrophage-like cells infiltrating human aortic aneurysms expressed oncostatin M, so it is present during a chronic inflammatory reaction. Therefore, oncostatin M, but not other IL-6 family members, fulfills Koch's postulates as an inflammatory mediator. Since its effects on endothelial cells differ significantly from established mediators like TNFalpha, it may uniquely contribute to the inflammatory cycle. PMID:9202068

  10. Silorane adhesive system: a case report.

    PubMed

    Ruschel, Vanessa Carla; Baratieri, Luiz Narciso; Monteiro Júnior, Sylvio; Andrada, Mauro Amaral Caldeira de

    2014-01-01

    Silorane-based composite resin requires a specific adhesive system: a 2-step self-etching adhesive. Clinical protocols are well established and are based on the principles of adhesion to mineralized dental tissues. In this paper, we present a clinical application of the silorane adhesive system in a class-II restoration using silorane-based composite resin.

  11. Fibrillar Adhesive for Climbing Robots

    NASA Technical Reports Server (NTRS)

    Pamess, Aaron; White, Victor E.

    2013-01-01

    A climbing robot needs to use its adhesive patches over and over again as it scales a slope. Replacing the adhesive at each step is generally impractical. If the adhesive or attachment mechanism cannot be used repeatedly, then the robot must carry an extra load of this adhesive to apply a fresh layer with each move. Common failure modes include tearing, contamination by dirt, plastic deformation of fibers, and damage from loading/ unloading. A gecko-like fibrillar adhesive has been developed that has been shown useful for climbing robots, and may later prove useful for grasping, anchoring, and medical applications. The material consists of a hierarchical fibrillar structure that currently contains two levels, but may be extended to three or four levels in continuing work. The contacting level has tens of thousands of microscopic fibers made from a rubberlike material that bend over and create intimate contact with a surface to achieve maximum van der Waals forces. By maximizing the real area of contact that these fibers make and minimizing the bending energy necessary to achieve that contact, the net amount of adhesion has been improved dramatically.

  12. Integrin-mediated adhesion complex

    PubMed Central

    Sebé-Pedrós, Arnau

    2010-01-01

    The integrin-mediated adhesion machinery is the primary cell-matrix adhesion mechanism in Metazoa. The integrin adhesion complex, which modulates important aspects of the cell physiology, is composed of integrins (alpha and beta subunits) and several scaffolding and signaling proteins. Integrins appeared to be absent in all non-metazoan eukaryotes so-far analyzed, including fungi, plants and choanoflagellates, the sister-group to Metazoa. Thus, integrins and, therefore, the integrin-mediated adhesion and signaling mechanism was considered a metazoan innovation. Recently, a broad comparative genomic analysis including new genome data from several unicellular organisms closely related to fungi and metazoans shattered previous views. The integrin adhesion and signaling complex is not specific to Metazoa, but rather it is present in apusozoans and holozoan protists. Thus, this important signaling and adhesion system predated the origin of Fungi and Metazoa, and was subsequently lost in fungi and choanoflagellates. This finding suggests that cooption played a more important role in the origin of Metazoa than previously believed. Here, we hypothesize that the integrin adhesome was ancestrally involved in signaling. PMID:21057645

  13. Water-soluble vitamins.

    PubMed

    Konings, Erik J M

    2006-01-01

    Simultaneous Determination of Vitamins.--Klejdus et al. described a simultaneous determination of 10 water- and 10 fat-soluble vitamins in pharmaceutical preparations by liquid chromatography-diode-array detection (LC-DAD). A combined isocratic and linear gradient allowed separation of vitamins in 3 distinct groups: polar, low-polar, and nonpolar. The method was applied to pharmaceutical preparations, fortified powdered drinks, and food samples, for which results were in good agreement with values claimed. Heudi et al. described a separation of 9 water-soluble vitamins by LC-UV. The method was applied for the quantification of vitamins in polyvitaminated premixes used for the fortification of infant nutrition products. The repeatability of the method was evaluated at different concentration levels and coefficients of variation were <6.5%. The concentrations of vitamins found in premixes with the method were comparable to the values declared. A disadvantage of the methods mentioned above is that sample composition has to be known in advance. According to European legislation, for example, foods might be fortified with riboflavin phosphate or thiamin phosphate, vitamers which are not included in the simultaneous separations described. Vitamin B2.--Viñas et al. elaborated an LC analysis of riboflavin vitamers in foods. Vitamin B2 can be found in nature as the free riboflavin, but in most biological materials it occurs predominantly in the form of 2 coenzymes, flavin mononucleotide (FMN) and flavin-adenine dinucleotide (FAD). Several methods usually involve the conversion of these coenzymes into free riboflavin before quantification of total riboflavin. According to the authors, there is growing interest to know flavin composition of foods. The described method separates the individual vitamers isocratically. Accuracy of the method is tested with 2 certified reference materials (CRMs). Vitamin B5.-Methods for the determination of vitamin B5 in foods are limited

  14. Bond strength of adhesive resin cement with different adhesive systems

    PubMed Central

    Lorenzoni e Silva, Fabrizio; Pamato, Saulo; Kuga, Milton-Carlos; Só, Marcus-Vinicius-Reis

    2017-01-01

    Background To assess the immediate bond strength of a dual-cure adhesive resin cement to the hybridized dentin with different bonding systems. Material and Methods Fifty-six healthy human molars were randomly divided into 7 groups (n=8). After 3 longitudinal sections, the central cuts were included in PVC matrix and were submitted to dentin hybridization according to the groups: G1 - etch & rinse system with 3-step (Apder™ Scotchbond™ Multi-Purpose, 3M ESPE), G2 - etch & rinse system with 3-step (Optibond™ FL, Kerr), G3 - etch & rinse system with 3-step (All-Bond 3®, Bisco), G4 - etch & rinse simplified system (Adper™ Single Bond 2, 3M ESPE), G5 - self-etching system with one step (Bond Force, Tokuyama), G6 - universal system in moist dentin (Single Bond Universal, 3M ESPE), G7 - universal system in dry dentin (Single Bond Universal, 3M ESPE). Then all groups received the cementing of a self-adhesive resin cement cylinder (Duo-link, Bisco) made from a polypropylene matrix. In the evaluation of bond strength, the samples were subjected to the microshear test and evaluated according to the fracture pattern by optical microscopy. Results The Kruskal-Wallis test suggests a statistically significant difference between groups (p=0,039), and Tukey for multiple comparisons, indicating a statistically significant difference between G3 and G4 (p<0.05). It was verified high prevalence of adhesive failures, followed by mixed failure and cohesive in dentin. Conclusions The technique and the system used to dentin hybridization are able to affect the immediate bond strength of resin cement dual adhesive. Key words:Adhesion, adhesive resin cement, adhesive systems, microshear. PMID:28149471

  15. A review of the developments of self-etching primers and adhesives -Effects of acidic adhesive monomers and polymerization initiators on bonding to ground, smear layer-covered teeth.

    PubMed

    Ikemura, Kunio; Kadoma, Yoshinori; Endo, Takeshi

    2011-01-01

    This paper reviews the developments of self-etching primers and adhesives, with a special focus on the effect of acidic adhesive monomers and polymerization initiators on bonding to ground, smear layer-covered teeth. Ionized acidic adhesive monomers chemically interact with tooth substrates and facilitate good bonding to ground dentin. Polymerization initiators in self-etching primers further promote effective bonding to ground dentin. To promote bonding to both dentin and enamel, phosphonic acid monomers such as 6-methacryloyloxyhexyl phosphonoacetate (6-MHPA) were developed. These novel adhesive monomers also have a water-soluble nature and are hence endowed with sufficient demineralization capability. A new single-bottle, self-etching, 2-hydroxyethyl methacrylate (HEMA)-free adhesive comprising 6-MHPA and 4-acryloyloxyethoxycarbonylphthalic acid (4-AET) was developed. This novel adhesive enabled strong adhesion to both ground enamel and dentin, but its formulation stability was influenced by pH value of the adhesive. To develop hydrolytically stable, single-bottle, self-etching adhesives, hydrolytically stable, radical-polymerizable acidic monomers with amide or ether linkages have been developed.

  16. Investigation of organic adhesives for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1975-01-01

    The properties of organic adhesives were investigated to acquire information for a guideline document regarding the selection of adhesives for use in high reliability hybrid microcircuits. Specifically, investigations were made of (1) alternate methods for determining the outgassing of cured adhesives, (2) effects of long term aging at 150 C on the electrical properties of conductive adhesives, (3) effects of shelf life age on adhesive characteristics, (4) bond strengths of electrically conductive adhesives on thick film gold metallization, (5) a copper filled adhesive, (6) effects of products outgassed from cured adhesives on device electrical parameters, (7) metal migration from electrically conductive adhesives, and (8) ionic content of electrically insulative adhesives. The tests performed during these investigations are described, and the results obtained are discussed.

  17. Mineral oil soluble borate compositions

    SciTech Connect

    Dulat, J.

    1981-09-15

    Alkali metal borates are reacted with fatty acids or oils in the presence of a low hlb value surfactant to give a stable mineral oil-soluble product. Mineral oil containing the borate can be used as a cutting fluid.

  18. water-soluble fluorocarbon coating

    NASA Technical Reports Server (NTRS)

    Nanelli, P.

    1979-01-01

    Water-soluble fluorocarbon proves durable nonpolluting coating for variety of substrates. Coatings can be used on metals, masonry, textiles, paper, and glass, and have superior hardness and flexibility, strong resistance to chemicals fire, and weather.

  19. Method for estimating solubility parameter

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Ingham, J. D.

    1973-01-01

    Semiempirical correlations have been developed between solubility parameters and refractive indices for series of model hydrocarbon compounds and organic polymers. Measurement of intermolecular forces is useful for assessment of material compatibility, glass-transition temperature, and transport properties.

  20. Effects of plasma treated PET and PTFE on expression of adhesion molecules by human endothelial cells in vitro.

    PubMed

    Pu, F R; Williams, R L; Markkula, T K; Hunt, J A

    2002-06-01

    The aim of this study was to evaluate the expression of adhesion molecules on the surface of human endothelial cells in response to the systematic variation in materials properties by the ammonia plasma modification of polyethylene terephthalate (PET) and polytetrafluorethylene (PTFE). These adhesion molecules act as mediators of cell adhesion, play a role in the modulation of cell adhesion on biomaterials and therefore condition the response of tissues to implants. First and second passage human umbilical vein endothelial cells (HUVECs) were cultured on plasma treated and untreated PET and PTFE. HUVECs grown on polystyrene tissue culture coverslips and HUVECs stimulated with tumour necrosis factor (TNF-alpha) were used as controls. After 1 day and 7 days, the expression of adhesion molecules platelet endothelial cell adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), Integrin alphavbeta3, vascular cell adhesion molecule-1 (VCAM-1), E-selectin, P-selectin and L-selectin were evaluated using flow cytometry and immunohistochemistry. There was a slight increase in positive cell numbers expressing the adhesion molecules ICAM-1 and VCAM-1 on plasma treated PET and PTFE. A significant increase in E-selectin positive cells on untreated PTFE was demonstrated after 7 days. Stimulation with TNF-alpha demonstrated a significant increase in the proportion of ICAM-1. VCAM-1 and E-selectin positive cells. Almost all cells expressed PECAM-1 and integrin alphavbeta3, on both materials and controls but did not express P- and L-selectin on any surface. When second passage cells were used, the expression of the adhesion molecules ICAM-1 and VCAM-1 was markedly increased on all surfaces but not with TNF-alpha. These significant differences were not observed in other adhesion molecules. These results were supported by immunohistochemical studies. The effects of plasma treated PET and PTFE on cell adhesion and proliferation was also studied. There was a 1.3-fold

  1. Tough, Soluble, Aromatic, Thermoplastic Copolyimides

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor)

    1998-01-01

    Tough, soluble, aromatic, thermoplastic copolyimides were prepared by reacting 4,4'-oxydiphthalic anhydride, 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydianiline. These copolyimides were found to be soluble in common amide solvents such as N,N'-dimethyl acetamide, N-methylpyrrolidinone, and dimethylformamide allowing them to be applied as the fully imidized copolymer and to be used to prepare a wide range of articles.

  2. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  3. Rapidly curable chitosan-PEG hydrogels as tissue adhesives for hemostasis and wound healing.

    PubMed

    Lih, Eugene; Lee, Jung Seok; Park, Kyung Min; Park, Ki Dong

    2012-09-01

    Chitosan-poly(ethylene glycol)-tyramine (CPT) hydrogels were rapidly formed in situ using horseradish peroxidase and hydrogen peroxide to explore their performance as efficient tissue adhesives. A poly(ethylene glycol) modified with tyramine was grafted onto a chitosan backbone to enhance the solubility of the chitosan and to crosslink into three-dimensional networks. The elastic modulus of the hydrogels could be controlled by changing the crosslinking conditions, and the mechanical strength influenced the tissue adhesiveness of the hydrogels. The hydrogels showed the adhesiveness ranging from 3- to 20-fold that of fibrin glue (Greenplast®). The hemostatic ability of the hydrogels was evaluated on the basis that bleeding from liver defects was significantly arrested by the combined effect of the adhesiveness of the hydrogels and the hemostatic property of the chitosan materials. The enzymatic crosslinking method enabled the water-soluble chitosan to rapidly form hydrogels within 5s of an incision into the skin of rats. Histological results demonstrated that the CPT hydrogels showed superior healing effects in the skin incision when compared to suture, fibrin glue and cyanoacrylate. By 2weeks post-implantation, the wound was completely recovered, with a newly formed dermis, due to the presence of the CPT hydrogels in the incision. These results suggest that the in situ curable chitosan hydrogels are very interesting and promising tissue adhesive devices for biomedical applications.

  4. Innovative Electrostatic Adhesion Technologies

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  5. Innovative Electrostatic Adhesion Technologies

    NASA Astrophysics Data System (ADS)

    Gagliano, L.; Bryan, T.; Williams, S.; McCoy, B.; MacLeod, T.

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and development

  6. Langley Research Center - Soluble Imide (LaRC-SI)

    NASA Technical Reports Server (NTRS)

    Stang, David

    1995-01-01

    This report is about experimenting and developing uses for the new thermal plastic developed by Dr. Robert Bryant called the 'Langley Research Center - Soluble Imide' (LaRC-SI). The three developments are: the use of the LaRC-SI as a dielectric for thin film sensors, as an adhesive to place diamonds on surfaces to increase thermal conductivity, and as an intermediate layer to allow the placement of metal on aluminum nitride. The LaRC-SI was developed by Dr. Robert G. Bryant, a chemical engineer at NASA Langley Research Center. The unique properties of this material is that it is an amorphous thermoplastic. This means that it can be reformed at elevated temperature and pressures. It can be applied in the form of a spray, spin, dip coating, paint, or spread with a doctors blade. The LaRC-SI has excellent adhesive and dielectric properties. It can also be recycled. Potential applications for this material are resin for mechanical parts such as gears, bearings and valves, advanced composites like carbon fiber, high strength adhesives, thin film circuits, and as a dielectric film for placing electrical components on conductive materials.

  7. A microfluidic device for measuring cell migration towards substrate-bound and soluble chemokine gradients

    PubMed Central

    Schwarz, Jan; Bierbaum, Veronika; Merrin, Jack; Frank, Tino; Hauschild, Robert; Bollenbach, Tobias; Tay, Savaş; Sixt, Michael; Mehling, Matthias

    2016-01-01

    Cellular locomotion is a central hallmark of eukaryotic life. It is governed by cell-extrinsic molecular factors, which can either emerge in the soluble phase or as immobilized, often adhesive ligands. To encode for direction, every cue must be present as a spatial or temporal gradient. Here, we developed a microfluidic chamber that allows measurement of cell migration in combined response to surface immobilized and soluble molecular gradients. As a proof of principle we study the response of dendritic cells to their major guidance cues, chemokines. The majority of data on chemokine gradient sensing is based on in vitro studies employing soluble gradients. Despite evidence suggesting that in vivo chemokines are often immobilized to sugar residues, limited information is available how cells respond to immobilized chemokines. We tracked migration of dendritic cells towards immobilized gradients of the chemokine CCL21 and varying superimposed soluble gradients of CCL19. Differential migratory patterns illustrate the potential of our setup to quantitatively study the competitive response to both types of gradients. Beyond chemokines our approach is broadly applicable to alternative systems of chemo- and haptotaxis such as cells migrating along gradients of adhesion receptor ligands vs. any soluble cue. PMID:27819270

  8. Capillarity-based switchable adhesion.

    PubMed

    Vogel, Michael J; Steen, Paul H

    2010-02-23

    Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillarity-based adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials.

  9. High performance Cu adhesion coating

    SciTech Connect

    Lee, K.W.; Viehbeck, A.; Chen, W.R.; Ree, M.

    1996-12-31

    Poly(arylene ether benzimidazole) (PAEBI) is a high performance thermoplastic polymer with imidazole functional groups forming the polymer backbone structure. It is proposed that upon coating PAEBI onto a copper surface the imidazole groups of PAEBI form a bond with or chelate to the copper surface resulting in strong adhesion between the copper and polymer. Adhesion of PAEBI to other polymers such as poly(biphenyl dianhydride-p-phenylene diamine) (BPDA-PDA) polyimide is also quite good and stable. The resulting locus of failure as studied by XPS and IR indicates that PAEBI gives strong cohesive adhesion to copper. Due to its good adhesion and mechanical properties, PAEBI can be used in fabricating thin film semiconductor packages such as multichip module dielectric (MCM-D) structures. In these applications, a thin PAEBI coating is applied directly to a wiring layer for enhancing adhesion to both the copper wiring and the polymer dielectric surface. In addition, a thin layer of PAEBI can also function as a protection layer for the copper wiring, eliminating the need for Cr or Ni barrier metallurgies and thus significantly reducing the number of process steps.

  10. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St. Clair, Terry L.

    1989-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  11. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St.clair, Terry L.

    1988-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  12. Besnoitia besnoiti infections activate primary bovine endothelial cells and promote PMN adhesion and NET formation under physiological flow condition.

    PubMed

    Maksimov, P; Hermosilla, C; Kleinertz, S; Hirzmann, J; Taubert, A

    2016-05-01

    Besnoitia besnoiti is an obligate intracellular and emerging coccidian parasite of cattle that mainly infects host endothelial cells during acute infection. We here analyzed early innate immune reactions of B. besnoiti-infected primary bovine umbilical vein endothelial cells (BUVEC). B. besnoiti infections significantly activated BUVEC since the gene transcripts of several adhesion molecules (P-selectin, intercellular adhesion molecule 1(ICAM-1)), chemokines (CXCL1, CXCL8, CCL5), and of COX-2 were significantly upregulated during in vitro infection. Overall, the highest upregulation of most transcripts was observed at 24 or 48 h post infection (p.i.). Enhanced adhesion molecule expression in infected host cells was confirmed by PMN adhesion assays being performed under physiological flow conditions revealing a significantly increased PMN adhesion on B. besnoiti-infected BUVEC layers at 24 h p.i. Furthermore, we were able to illustrate neutrophil extracellular traps (NETs) being released by PMN under physiological flow conditions after adhesion to B. besnoiti-infected BUVEC layers. The present study shows that B. besnoiti infections of primary BUVEC induce a cascade of pro-inflammatory reactions and triggers early innate immune responses.

  13. Effects of nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) on melanoma cell adhesion

    SciTech Connect

    Cheng, Huiwen; Mollica, Molly Y.; Lee, Shin Hee; Wang, Lei; Velázquez-Martínez, Carlos A.; Wu, Shiyong

    2012-10-15

    A new class of nitric oxide (NO•)-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) were developed in recent years and have shown promising potential as NSAID substitutes due to their gentle nature on cardiovascular and gastrointestinal systems. Since nitric oxide plays a role in regulation of cell adhesion, we assessed the potential use of NONO-NSAIDs as anti-metastasis drugs. In this regard, we compared the effects of NONO-aspirin and a novel NONO-naproxen to those exerted by their respective parent NSAIDs on avidities of human melanoma M624 cells. Both NONO-NSAIDs, but not the corresponding parent NSAIDs, reduced M624 adhesion on vascular cellular adhesion molecule-1 (VCAM-1) by 20–30% and fibronectin by 25–44% under fluid flow conditions and static conditions, respectively. Only NONO-naproxen reduced (∼ 56%) the activity of β1 integrin, which binds to α4 integrin to form very late antigen-4 (VLA-4), the ligand of VCAM-1. These results indicate that the diazeniumdiolate (NO•)-donor moiety is critical for reducing the adhesion between VLA-4 and its ligands, while the NSAID moiety can impact the regulation mechanism of melanoma cell adhesion. -- Highlights: ► NONO-naproxen, a novel nitric oxide-releasing NSAID, was synthesized. ► NONO-NSAIDs, but not their parent NSAIDs, reduced melanoma adhesion. ► NONO-naproxen, but not NONO-aspirin and NSAIDs, reduced activity of β1 integrin.

  14. Induction of heme oxygenase 1 by arsenite inhibits cytokine-induced monocyte adhesion to human endothelial cells

    SciTech Connect

    Sun Xi; Pi Jingbo; Liu Wenlan; Hudson, Laurie G.; Liu Kejian; Feng Changjian

    2009-04-15

    Heme oxygenase-1 (HO-1) is an oxidative stress responsive gene upregulated by various physiological and exogenous stimuli. Arsenite, as an oxidative stressor, is a potent inducer of HO-1 in human and rodent cells. In this study, we investigated the mechanistic role of arsenite-induced HO-1 in modulating tumor necrosis factor {alpha} (TNF-{alpha}) induced monocyte adhesion to human umbilical vein endothelial cells (HUVEC). Arsenite pretreatment, which upregulated HO-1 in a time- and concentration-dependent manner, inhibited TNF-{alpha}-induced monocyte adhesion to HUVEC and intercellular adhesion molecule 1 protein expression by 50% and 40%, respectively. Importantly, knockdown of HO-1 by small interfering RNA abolished the arsenite-induced inhibitory effects. These results indicate that induction of HO-1 by arsenite inhibits the cytokine-induced monocyte adhesion to HUVEC by suppressing adhesion molecule expression. These findings established an important mechanistic link between the functional monocyte adhesion properties of HUVEC and the induction of HO-1 by arsenite.

  15. Modulation of Sickle Red Blood Cell Adhesion and its Associated Changes in Biomarkers by Sulfated Nonanticoagulant Heparin Derivative.

    PubMed

    Alshaiban, Abdulelah; Muralidharan-Chari, Vandhana; Nepo, Anne; Mousa, Shaker A

    2016-04-01

    Abnormal cellular adhesion is one of the primary causes of vaso-occlusive crisis in sickle cell disease (SCD). Levels of intercellular adhesion molecule 1 (ICAM-1) and P-selectin are upregulated, resulting in increased adhesion of leukocytes and sickle red blood cells (RBCs) to endothelium. This study compares the inhibitory effect of a sulfated nonanticoagulant heparin (S-NACH) derivative with a low-molecular-weight heparin, tinzaparin, on the adhesion of sickle RBCs to endothelium. The S-NACH exhibits minimum effects on hemostasis and bleeding and interferes with the binding of pancreatic cancer cells to endothelial cells via P-selectin. We show by static binding assay that pretreatment of both erythrocytes and endothelial cells with S-NACH significantly inhibits the increased adhesion of sickle RBCs to endothelial cells. The S-NACH treatment also decreases the higher plasma levels of (adhesion biomarkers) ICAM-1 and P-selectin in SCD mice. This investigation signals further research into the potential use of S-NACH in treating vaso-occlusions with minimal bleeding events in patients with SCD.

  16. Transition from rolling to firm adhesion is regulated by the conformation of the I domain of the integrin lymphocyte function-associated antigen-1.

    PubMed

    Salas, Azucena; Shimaoka, Motomu; Chen, Shuqi; Carman, Christopher V; Springer, Timothy

    2002-12-27

    The integrin lymphocyte function-associated antigen-1 (alpha(L)beta(2)), which is known for its ability to mediate firm adhesion and migration, can also contribute to tethering and rolling in shear flow. The alpha(L) I domain can be mutationally locked with disulfide bonds into two distinct conformations, open and closed, which have high and low affinity for the ligand intercellular adhesion molecule 1 (ICAM-1), respectively. The wild type I domain exists primarily in the lower energy closed conformation. We have measured for the first time the effect of conformational change on adhesive behavior in shear flow. We show that wild type and locked open I domains, expressed in alpha(L)beta(2) heterodimers or as isolated domains on the cell surface, mediate rolling adhesion and firm adhesion, respectively. alpha(L)beta(2) is thus poised for the conversion of rolling to firm adhesion upon integrin activation in vivo. Isolated I domains are surprisingly more effective than alpha(L)beta(2) in interactions in shear flow, which may in part be a consequence of the presence of alpha(L)beta(2) in a bent conformation. Furthermore, the force exerted on the C-terminal alpha-helix appears to stabilize the open conformation of the wild type isolated I domain and contribute to its robustness in supporting rolling. An allosteric small molecule antagonist of alpha(L)beta(2) inhibits both rolling adhesion and firm adhesion, which has important implications for its mode of action in vivo.

  17. Inhibitory effect of butein on tumor necrosis factor-α-induced expression of cell adhesion molecules in human lung epithelial cells via inhibition of reactive oxygen species generation, NF-κB activation and Akt phosphorylation.

    PubMed

    Jang, Ji Hoon; Yang, Eun Sun; Min, Kyoung-Jin; Kwon, Taeg Kyu

    2012-12-01

    Cell adhesion molecules play an important role in inflammatory response, angiogenesis and tumor progression. Butein (tetrahydroxychalcone) is a small molecule from natural sources, known to be a potential therapeutic drug with anti-inflammatory, anticancer and antioxidant activities. In the present study, we investigated the inhibitory effect of butein on tumor necrosis factor (TNF)-α-induced adhesion molecule expression and its molecular mechanism of action. Butein significantly decreased TNF-α-induced monocyte (U937) cell adhesion to lung epithelial cells in a dose-dependent manner. Butein also inhibited the protein and mRNA expression of intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-stimulated A549 human lung epithelial cells in a dose-dependent manner. Butein inhibited TNF-α-induced reactive oxygen species (ROS) generation and nuclear factor-κB (NF-κB) activation in A549 cells; it also inhibited the phosphorylation of MAPKs and Akt, suggesting that the MAPK/Akt signaling pathway may be involved in the butein-mediated inhibition of TNF-α-induced leukocyte adhesion to A549 cells. Collectively, our results suggest that butein affects cell adhesion through the inhibition of TNF-α-induced ICAM-1 and VCAM-1 expression by inhibiting the NF-κB/MAPK/Akt signaling pathway and ROS generation, thereby, elucidating the role of butein in the anti-inflammatory response.

  18. Interfacial adhesion - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Banerjea, Amitava; Bozzolo, Guillermo H.; Finley, Clarence W.

    1988-01-01

    Adhesion, the binding of different materials at an interface, is of general interest to many branches of technology, e.g., microelectronics, tribology, manufacturing, construction, etc. However, there is a lack of fundamental understanding of such diverse interfaces. In addition, experimental techniques generally have practical objectives, such as the achievement of sufficient strength to sustain mechanical or thermal effects and/or have the proper electronic properties. In addition, the theoretical description of binding at interfaces is quite limited, and a proper data base for such theoretical analysis does not exist. This presentation will review both experimental and theoretical aspects of adhesion in nonpolymer materials. The objective will be to delineate the critical parameters needed, governing adhesion testing along with an outline of testing objectives. A distinction will be made between practical and fundamental objectives. Examples are given where interfacial bonding may govern experimental consideration. The present status of theory is presented along with recommendations for future progress and needs.

  19. Interfacial adhesion: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Bozzolo, Guillermo H.; Finley, Clarence W.; Banerjea, Amitava

    1988-01-01

    Adhesion, the binding of different materials at an interface, is of general interest to many branches of technology, e.g., microelectronics, tribology, manufacturing, construction, etc. However, there is a lack of fundamental understanding of such diverse interfaces. In addition, experimental techniques generally have practical objectives, such as the achievement of sufficient strength to sustain mechanical or thermal effects and/or have the proper electronic properties. In addition, the theoretical description of binding at interfaces is quite limited, and a proper data base for such theoretical analysis does not exist. This presentation will review both experimental and theoretical aspects of adhesion in nonpolymer materials. The objective will be to delineate the critical parameters needed, governing adhesion testing along with an outline of testing objectives. A distinction will be made between practical and fundamental objectives. Examples are given where interfacial bonding may govern experimental consideration. The present status of theory is presented along wiith recommendations for future progress and needs.

  20. Mechanics of Nascent Cell Adhesions

    NASA Astrophysics Data System (ADS)

    Mejean, Cecile O.; Schaefer, Andrew W.; Forscher, Paul; Dufresne, Eric R.

    2009-03-01

    Cells have the ability to sense and respond to mechanical and biochemical cues from their environment. In neurons, the binding and restraint of transmembrane cell adhesion molecules (CAMs) can trigger acute periods of axon growth. Preceding growth, the cell must create a stiff mechanical linkage between the CAM and the cytoskeleton. Using holographic optical tweezers, we manipulate CAM-coated beads on the membrane of the cell. We investigate the dynamics of the mechanical properties of this linkage as a function of time, applied force, and CAM density. We find that CAM-coated beads exhibit stochastic intermittent binding to the cytoskeleton. In time, we observed that the adhesions stiffen and their mechanical properties depend on the applied force. Treatment of cells with small molecules that alter cytoskeletal dynamics are used to probe the roles of actin filament assembly and myosin motor activity in adhesion formation.

  1. Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions

    PubMed Central

    1996-01-01

    Polymorphonuclear leukocytes (PMN) infiltration into tissues is frequently accompanied by increase in vascular permeability. This suggests that PMN adhesion and transmigration could trigger modifications in the architecture of endothelial cell-to-cell junctions. In the present paper, using indirect immunofluorescence, we found that PMN adhesion to tumor necrosis factor-activated endothelial cells (EC) induced the disappearance from endothelial cell-to-cell contacts of adherens junction (AJ) components: vascular endothelial (VE)-cadherin, alpha-catenin, beta-catenin, and plakoglobin. Immunoprecipitation and Western blot analysis of the VE- cadherin/catenin complex showed that the amount of beta-catenin and plakoglobin was markedly reduced from the complex and from total cell extracts. In contrast, VE-cadherin and alpha-catenin were only partially affected. Disorganization of endothelial AJ by PMN was not accompanied by EC retraction or injury and was specific for VE- cadherin/catenin complex, since platelet/endothelial cell adhesion molecule 1 (PECAM-1) distribution at cellular contacts was unchanged. PMN adhesion to EC seems to be a prerequisite for VE-cadherin/catenin complex disorganization. This phenomenon could be fully inhibited by blocking PMN adhesion with an anti-integrin beta 2 mAb, while it could be reproduced by any condition that induced increase of PMN adhesion, such as addition of PMA or an anti-beta 2-activating mAb. The effect on endothelial AJ was specific for PMN since adherent activated lymphocytes did not induce similar changes. High concentrations of protease inhibitors and oxygen metabolite scavengers were unable to prevent AJ disorganization mediated by PMN. PMN adhesion to EC was accompanied by increase in EC permeability in vitro. This effect was dependent on PMN adhesion, was not mediated by proteases and oxygen- reactive metabolites, and could be reproduced by EC treatment with EGTA. Finally, immunohistochemical analysis showed that VE

  2. NADPH oxidase and lipid raft-associated redox signaling are required for PCB153-induced upregulation of cell adhesion molecules in human brain endothelial cells

    SciTech Connect

    Eum, Sung Yong Andras, Ibolya; Hennig, Bernhard; Toborek, Michal

    2009-10-15

    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS.

  3. Effects of benidipine, a dihydropyridine-Ca2+ channel blocker, on expression of cytokine-induced adhesion molecules and chemoattractants in human aortic endothelial cells.

    PubMed

    Matsubara, Masahiro; Hasegawa, Kazuhide

    2004-09-13

    Benidipine hydrochloride (benidipine) is a dihydropyridine-Ca2+ channel blocker with antioxidant properties. We examined the effects of benidipine on cytokine-induced expression of adhesion molecules and chemokines, which play important roles in the adhesion of monocytes to endothelium. Pretreatment of human aortic endothelial cells (HAECs) with benidipine (0.3-10 micromol/l) for 24 h significantly suppressed cytokine-induced vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) mRNA and protein expression, resulting in reduced adhesion of THP-1 monocytes. Benidipine also suppressed induction of monocyte chemoattractant protein (MCP)-1 and interleukin-8. Benidipine inhibited redox-sensitive transcriptional nuclear factor-kappaB (NF-kappaB) pathway, as determined by Western blotting of inhibitory kappaB (IkappaB) phosphorylation and luciferase reporter assay. Results of analysis using optical isomers of benidipine and antioxidants suggested that these inhibitory effects were dependent on pharmacological effects other than Ca2+ antagonism such as antioxidant effects. Benidipine may thus have anti-inflammatory properties and benefits for in the treatment of atherosclerosis.

  4. Manassantin A and B isolated from Saururus chinensis inhibit TNF-alpha-induced cell adhesion molecule expression of human umbilical vein endothelial cells.

    PubMed

    Kwon, Oh Eok; Lee, Hyun Sun; Lee, Seung Woong; Chung, Mi Yeon; Bae, Ki Hwan; Rho, Mun-Chual; Kim, Young-Kook

    2005-01-01

    Leukocyte adhesion to the vascular endothelium is a critical initiating step in inflammation and atherosclerosis. We have herein studied the effect of manassantin A (1) and B (2), dineolignans, on interaction of THP-1 monocytic cells and human umbilical vein endothelial cells (HUVEC) and expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin in HUVEC. When HUVEC were pretreated with 1 and 2 followed by stimulation with TNF-alpha, adhesion of THP-1 cells to HUVEC decreased in dose-dependent manner with IC50 values of 5 ng/mL and 7 ng/mL, respectively, without cytotoxicity. Also, 1 and 2 inhibited TNF-alpha-induced up-regulation of ICAM-1, VCAM-1 and E-selectin. The present findings suggest that 1 and 2 prevent monocyte adhesion to HUVEC through the inhibition of ICAM-1, VCAM-1 and E-selectin expression stimulated by TNF-alpha, and may imply their usefulness for the prevention of atherosclerosis relevant to endothelial activation.

  5. Interfacial pH during mussel adhesive plaque formation

    PubMed Central

    Rodriguez, Nadine R. Martinez; Das, Saurabh; Kaufman, Yair; Israelachvili, Jacob N.; Waite, J. Herbert

    2015-01-01

    Mussel (Mytilus californianus) adhesion to marine surfaces involves an intricate and adaptive synergy of molecules and spatio-temporal processes. Although the molecules, such as mussel foot proteins (mfps), are well characterized, deposition details remain vague and speculative. Developing methods for the precise surveillance of conditions that apply during mfp deposition would aid both in understanding mussel adhesion and translating this adhesion into useful technologies. To probe the interfacial pH at which mussels buffer the local environment during mfp deposition, a lipid bilayer with tethered pH-sensitive fluorochromes was assembled on mica. The interfacial pH during foot contact with modified mica ranged from 2.2−3.3, which is well below the seawater pH of ~8. The acidic pH serves multiple functions: it limits mfp-Dopa oxidation, thereby enabling the catecholic functionalities to adsorb to surface oxides by H-bonding and metal ion coordination, and provides a solubility switch for mfps, most of which aggregate at pH ≥ 7-8. PMID:25875963

  6. Endoglin regulates mural cell adhesion in the circulatory system.

    PubMed

    Rossi, Elisa; Smadja, David M; Boscolo, Elisa; Langa, Carmen; Arevalo, Miguel A; Pericacho, Miguel; Gamella-Pozuelo, Luis; Kauskot, Alexandre; Botella, Luisa M; Gaussem, Pascale; Bischoff, Joyce; Lopez-Novoa, José M; Bernabeu, Carmelo

    2016-04-01

    The circulatory system is walled off by different cell types, including vascular mural cells and podocytes. The interaction and interplay between endothelial cells (ECs) and mural cells, such as vascular smooth muscle cells or pericytes, play a pivotal role in vascular biology. Endoglin is an RGD-containing counter-receptor for β1 integrins and is highly expressed by ECs during angiogenesis. We find that the adhesion between vascular ECs and mural cells is enhanced by integrin activators and inhibited upon suppression of membrane endoglin or β1-integrin, as well as by addition of soluble endoglin (SolEng), anti-integrin α5β1 antibody or an RGD peptide. Analysis of different endoglin mutants, allowed the mapping of the endoglin RGD motif as involved in the adhesion process. In Eng (+/-) mice, a model for hereditary hemorrhagic telangectasia type 1, endoglin haploinsufficiency induces a pericyte-dependent increase in vascular permeability. Also, transgenic mice overexpressing SolEng, an animal model for preeclampsia, show podocyturia, suggesting that SolEng is responsible for podocytes detachment from glomerular capillaries. These results suggest a critical role for endoglin in integrin-mediated adhesion of mural cells and provide a better understanding on the mechanisms of vessel maturation in normal physiology as well as in pathologies such as preeclampsia or hereditary hemorrhagic telangiectasia.

  7. Interfacial pH during mussel adhesive plaque formation.

    PubMed

    Martinez Rodriguez, Nadine R; Das, Saurabh; Kaufman, Yair; Israelachvili, Jacob N; Waite, J Herbert

    2015-01-01

    Mussel (Mytilus californianus) adhesion to marine surfaces involves an intricate and adaptive synergy of molecules and spatio-temporal processes. Although the molecules, such as mussel foot proteins (mfps), are well characterized, deposition details remain vague and speculative. Developing methods for the precise surveillance of conditions that apply during mfp deposition would aid both in understanding mussel adhesion and translating this adhesion into useful technologies. To probe the interfacial pH at which mussels buffer the local environment during mfp deposition, a lipid bilayer with tethered pH-sensitive fluorochromes was assembled on mica. The interfacial pH during foot contact with modified mica ranged from 2.2 to 3.3, which is well below the seawater pH of ~ 8. The acidic pH serves multiple functions: it limits mfp-Dopa oxidation, thereby enabling the catecholic functionalities to adsorb to surface oxides by H-bonding and metal ion coordination, and provides a solubility switch for mfps, most of which aggregate at pH ≥ 7-8.

  8. Levels of soluble E-cadherin in breast, gastric, and colorectal cancers.

    PubMed

    Repetto, Ombretta; De Paoli, Paolo; De Re, Valli; Canzonieri, Vincenzo; Cannizzaro, Renato

    2014-01-01

    Soluble E-cadherin is a 80 kDa protein fragment coming from the proteolytic cleavage of the extracellular domain of the full length epithelial cadherin, a molecule involved in cell adhesion/polarity and tissue morphogenesis. In comparison with normal epithelia, cancer cells show a decreased cadherin-mediated intercellular adhesion, and sE-cad levels normally increase in body fluids (blood and urine). This review focuses on soluble E-cadherin in sera of patients affected by three solid cancers (breast, gastric, and colorectal cancers) and how its levels correlate or not with some cancer parameters (e.g., dimension, progression, and localisation). We will describe the main proteomics approaches adopted to measure sE-cad both in vivo and in vitro and the most important findings about its behaviour in cancer dynamics.

  9. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  10. Dual-Mode Adhesive Pad

    NASA Technical Reports Server (NTRS)

    Hartz, Leslie

    1994-01-01

    Tool helps worker grip and move along large, smooth structure with no handgrips or footholds. Adheres to surface but easily released by actuating simple mechanism. Includes handle and segmented contact-adhesive pad. Bulk of pad made of soft plastic foam conforming to surface of structure. Each segment reinforced with rib. In sticking mode, ribs braced by side catches. In peeling mode, side catches retracted, and segmented adhesive pad loses its stiffness. Modified versions useful in inspecting hulls of ships and scaling walls in rescue operations.

  11. Structural Basis for Human PECAM-1-Mediated Trans-homophilic Cell Adhesion

    PubMed Central

    Hu, Menglong; Zhang, Hongmin; Liu, Qun; Hao, Quan

    2016-01-01

    Cell adhesion involved in signal transduction, tissue integrity and pathogen infection is mainly mediated by cell adhesion molecules (CAM). One CAM member, platelet–endothelial-cell adhesion molecule-1 (PECAM-1), plays an important role in tight junction among endothelia cells, leukocyte trafficking, and immune response through its homophilic and heterophilic binding patterns. Both kinds of interactions, which lead to endogenous and exogenous signal transmission, are derived from extracellular immunoglobulin-like (IgL) domains and cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs) of PECAM-1. To date, the mechanism of trans-homophilic interaction of PECAM-1 remains unclear. Here, we present the crystal structure of PECAM-1 IgL1-2 trans-homo dimer. Both IgL 1 and 2 adopt the classical Ig domain conformation comprised of two layers of β-sheets possessing antiparallel β-strands with each being anchored by a pair of cysteines forming a disulfide bond. The dimer interface includes hydrophobic and hydrophilic interactions. The Small-Angle X-ray Scattering (SAXS) envelope of PECAM-1 IgL1-6 supported such a dimer formation in solution. Cell adhesion assays on wildtype and mutant PECAM-1 further characterized the structural determinants in cell junction and communication. PMID:27958302

  12. Structural basis for human PECAM-1-mediated trans-homophilic cell adhesion

    SciTech Connect

    Hu, Menglong; Zhang, Hongmin; Liu, Qun; Hao, Quan

    2016-12-13

    Cell adhesion involved in signal transduction, tissue integrity and pathogen infection is mainly mediated by cell adhesion molecules (CAM). One CAM member, platelet–endothelial-cell adhesion molecule-1 (PECAM-1), plays an important role in tight junction among endothelia cells, leukocyte trafficking, and immune response through its homophilic and heterophilic binding patterns. Both kinds of interactions, which lead to endogenous and exogenous signal transmission, are derived from extracellular immunoglobulin-like (IgL) domains and cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs) of PECAM-1. To date, the mechanism of trans-homophilic interaction of PECAM-1 remains unclear. Here, we present the crystal structure of PECAM-1 IgL1-2 trans-homo dimer. Both IgL 1 and 2 adopt the classical Ig domain conformation comprised of two layers of β-sheets possessing antiparallel β-strands with each being anchored by a pair of cysteines forming a disulfide bond. The dimer interface includes hydrophobic and hydrophilic interactions. The Small-Angle X-ray Scattering (SAXS) envelope of PECAM-1 IgL1-6 supported such a dimer formation in solution. As a result, cell adhesion assays on wildtype and mutant PECAM-1 further characterized the structural determinants in cell junction and communication.

  13. Structural basis for human PECAM-1-mediated trans-homophilic cell adhesion

    DOE PAGES

    Hu, Menglong; Zhang, Hongmin; Liu, Qun; ...

    2016-12-13

    Cell adhesion involved in signal transduction, tissue integrity and pathogen infection is mainly mediated by cell adhesion molecules (CAM). One CAM member, platelet–endothelial-cell adhesion molecule-1 (PECAM-1), plays an important role in tight junction among endothelia cells, leukocyte trafficking, and immune response through its homophilic and heterophilic binding patterns. Both kinds of interactions, which lead to endogenous and exogenous signal transmission, are derived from extracellular immunoglobulin-like (IgL) domains and cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs) of PECAM-1. To date, the mechanism of trans-homophilic interaction of PECAM-1 remains unclear. Here, we present the crystal structure of PECAM-1 IgL1-2 trans-homo dimer. Both IgLmore » 1 and 2 adopt the classical Ig domain conformation comprised of two layers of β-sheets possessing antiparallel β-strands with each being anchored by a pair of cysteines forming a disulfide bond. The dimer interface includes hydrophobic and hydrophilic interactions. The Small-Angle X-ray Scattering (SAXS) envelope of PECAM-1 IgL1-6 supported such a dimer formation in solution. As a result, cell adhesion assays on wildtype and mutant PECAM-1 further characterized the structural determinants in cell junction and communication.« less

  14. The Solubility Rules: Why Are All Acetates Soluble?

    NASA Astrophysics Data System (ADS)

    van der Sluys, William G.

    2001-01-01

    According to the solubility rules presented in many introductory chemistry texts, all (or most) acetate salts are soluble in aqueous solution. The thermodynamic factors that contribute to the solubility of acetates are compared with those of other slightly basic anions. In particular, the hydration enthalpy of acetate is calculated using the Born-Haber approach, from lattice energies, heats of solution, and the hydration energies of several cations. The hydration enthalpy of acetate (-375 kJ/mol) is similar to that of chloride ({355 kJ/mol), nitrite ({383 kJ/mol), and nitrate ({370 kJ/mol), which are all considerably less exothermic than fluoride ({497 kJ/mol). This was somewhat unexpected, since hydration enthalpies generally correlate well with the acid-base properties of an ion, and acetate is more basic than fluoride. Factors influencing the solubility and acid-base properties of acetates, such as the electron donating and hydrophobic nature of the methyl group, are discussed in light of the thermodynamic data.

  15. Preliminary considerations concerning actinide solubilities

    SciTech Connect

    Newton, T.W.; Bayhurst, B.P.; Daniels, W.R.; Erdal, B.R.; Ogard, A.E.

    1980-01-01

    Work at the Los Alamos Scientific Laboratory on the fundamental solution chemistry of the actinides has thus far been confined to preliminary considerations of the problems involved in developing an understanding of the precipitation and dissolution behavior of actinide compounds under environmental conditions. Attempts have been made to calculate solubility as a function of Eh and pH using the appropriate thermodynamic data; results have been presented in terms of contour maps showing lines of constant solubility as a function of Eh and pH. Possible methods of control of the redox potential of rock-groundwater systems by the use of Eh buffers (redox couples) is presented.

  16. Common Phenolic Metabolites of Flavonoids, but Not Their Unmetabolized Precursors, Reduce the Secretion of Vascular Cellular Adhesion Molecules by Human Endothelial Cells123

    PubMed Central

    Warner, Emily F; Zhang, Qingzhi; Raheem, K Saki; O’Hagan, David; O’Connell, Maria A; Kay, Colin D

    2016-01-01

    Background: Flavonoids have been implicated in the prevention of cardiovascular disease; however, their mechanisms of action have yet to be elucidated, possibly because most previous in vitro studies have used supraphysiological concentrations of unmetabolized flavonoids, overlooking their more bioavailable phenolic metabolites. Objective: We aimed to explore the effects of phenolic metabolites and their precursor flavonoids at physiologically achievable concentrations, in isolation and combination, on soluble vascular cellular adhesion molecule-1 (sVCAM-1). Method: Fourteen phenolic acid metabolites and 6 flavonoids were screened at 1 μM for their relative effects on sVCAM-1 secretion by human umbilical vein endothelial cells stimulated with tumor necrosis factor alpha (TNF-α). The active metabolites were further studied for their response at different concentrations (0.01 μM–100 μM), structure-activity relationships, and effect on vascular cellular adhesion molecule (VCAM)-1 mRNA expression. In addition, the additive activity of the metabolites and flavonoids was investigated by screening 25 unique mixtures at cumulative equimolar concentrations of 1 μM. Results: Of the 20 compounds screened at 1 μM, inhibition of sVCAM-1 secretion was elicited by 4 phenolic metabolites, of which protocatechuic acid (PCA) was the most active (−17.2%, P = 0.05). Investigations into their responses at different concentrations showed that PCA significantly reduced sVCAM-1 15.2–36.5% between 1 and 100 μM, protocatechuic acid-3-sulfate and isovanillic acid reduced sVCAM-1 levels 12.2–54.7% between 10 and 100 μM, and protocatechuic acid-4-sulfate and isovanillic acid-3-glucuronide reduced sVCAM-1 secretion 27.6% and 42.8%, respectively, only at 100 μM. PCA demonstrated the strongest protein response and was therefore explored for its effect on VCAM-1 mRNA, where 78.4% inhibition was observed only after treatment with 100 μM PCA. Mixtures of the metabolites showed no

  17. Comparison of drug and cell-based delivery: engineered adult mesenchymal stem cells expressing soluble tumor necrosis factor receptor II prevent arthritis in mouse and rat animal models.

    PubMed

    Liu, Linda N; Wang, Gang; Hendricks, Kyle; Lee, Keunmyoung; Bohnlein, Ernst; Junker, Uwe; Mosca, Joseph D

    2013-05-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease with unknown etiology where tumor necrosis factor-α (TNFα) plays a critical role. Etanercept, a recombinant fusion protein of human soluble tumor necrosis factor receptor II (hsTNFR) linked to the Fc portion of human IgG1, is used to treat RA based on the rationale that sTNFR binds TNFα and blocks TNFα-mediated inflammation. We compared hsTNFR protein delivery from genetically engineered human mesenchymal stem cells (hMSCs) with etanercept. Blocking TNFα-dependent intercellular adhesion molecule-1 expression on transduced hMSCs and inhibition of nitric oxide production from TNFα-treated bovine chondrocytes by conditioned culture media from transduced hMSCs demonstrated the functionality of the hsTNFR construction. Implanted hsTNFR-transduced mesenchymal stem cells (MSCs) reduced mouse serum circulating TNFα generated from either implanted TNFα-expressing cells or lipopolysaccharide induction more effectively than etanercept (TNFα, 100%; interleukin [IL]-1α, 90%; and IL-6, 60% within 6 hours), suggesting faster clearance of the soluble tumor necrosis factor receptor (sTNFR)-TNFα complex from the animals. In vivo efficacy of sTNFR-transduced MSCs was illustrated in two (immune-deficient and immune-competent) arthritic rodent models. In the antibody-induced arthritis BalbC/SCID mouse model, intramuscular injection of hsTNFR-transduced hMSCs reduced joint inflammation by 90% compared with untransduced hMSCs; in the collagen-induced arthritis Fischer rat model, both sTNFR-transduced rat MSCs and etanercept inhibited joint inflammation by 30%. In vitro chondrogenesis assays showed the ability of TNFα and IL1α, but not interferon γ, to inhibit hMSC differentiation to chondrocytes, illustrating an additional negative role for inflammatory cytokines in joint repair. The data support the utility of hMSCs as therapeutic gene delivery vehicles and their potential to be used in alleviating inflammation

  18. Electric impedance sensing during the inhibition of cell-cell adhesion.

    PubMed

    Wiertz, R F; Rutten, W C; Marani, E

    2008-01-01

    Electric cell impedance sensing (ECIS) was used to monitor the change of in vitro neuron-neuron adhesion in response to the blocking of N-Cam, N-Cadherin and L1. ECIS is a method in which cell morphology and cell mobility can be indirectly measured by changes in intercellular resistance. Antibodies and soluble extracellular domains of the cell adhesion molecules N-Cam, N-Cadherin and L1 were used as blockers of these adhesion molecules on the cell surface. In a 96 hour aggregation assay on a low adhesive substrate, the effect of mentioned blockers on the aggregation was investigated. The N-Cadherin antibody showed effective in aggregation inhibition at concentrations of 3 and 10 micrograms/ml. Up to 96 hours no aggregation occurred. A similar effect was achieved by the N-Cadherin protein, although less distinct. Blocking of N-CAM and L1 revealed no inhibition of aggregation. Results from impedance measurements correspond to those of the aggregation assays. The neuron-neuron adhesion in monolayers was inhibited by blocking of cell adhesion molecules and monitored by ECIS. Impedances of neuron covered electrodes were significantly lower in the presence of N-Cadherin antibody and protein at concentrations of 1, 3 and 10 micrograms/ml, indicating a less profound binding between adjacent neuron.The results from both the aggregation assays and the impedance measurements demonstrate the applicability of CAM blocking for the regulation of culture topography.

  19. Water-based adhesives with tailored hydrophobic association: dilution resistance and improved setting behavior.

    PubMed

    Dundua, Alexander; Landfester, Katharina; Taden, Andreas

    2014-11-01

    Hydrophobic association and stimuli-responsiveness is a powerful tool towards water-based adhesives with strongly improved properties, which is demonstrated based on the example of hydrophobically modified alkali-soluble latexes (HASE) with modulated association. Their rheological properties are highly tunable due to the hydrophobic domains that act as physical crosslinking sites of adjustable interaction strength. Ethanol, propanol, and butanol are used as water-soluble model additives with different hydrophobicity in order to specifically target the association sites and impact the viscoelastic properties and stimuli-responsiveness. The rheological and mechanical property response upon dilution with water can be tailored, and dilution-resistant or even dilution-thickening systems are obtained. The investigations are of high importance for water-based adhesives, as our findings provide insight into general structure-property relationships to improve their setting behavior, especially upon contact with wet substrates.

  20. Photoresist substrate having robust adhesion

    DOEpatents

    Dentinger, Paul M.

    2005-07-26

    A substrate material for LIGA applications w hose general composition is Ti/Cu/Ti/SiO.sub.2. The SiO.sub.2 is preferably applied to the Ti/Cu/Ti wafer as a sputtered coating, typically about 100 nm thick. This substrate composition provides improved adhesion for epoxy-based photoresist materials, and particularly the photoresist material SU-8.

  1. Fluorescence Reveals Contamination From Adhesives

    NASA Technical Reports Server (NTRS)

    Nikolia, William

    1992-01-01

    Contamination of nearby surfaces from ingredients in some adhesive materials detected by ultraviolet illumination and observation of resulting fluorescence. Identification of contaminants via telltale fluorescence not new; rather, significance lies in method of implementation and potential extension to wider variety of materials and applications.

  2. Shelf Stable Epoxy Repair Adhesive

    DTIC Science & Technology

    2015-02-01

    Epoxy Resin Adhesive WP-1763 viii FINAL REPORT List of Acronyms ACN Acetonitrile ASTM American Society for Testing and Materials BPA Bisphenol...the oven and immediately cooled to room temperature. Approximately 1.0 mL of acetonitrile ( ACN ) was added to each vial using a glass syringe. The

  3. Computational Chemistry of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Phillips, Donald H.

    1999-01-01

    This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.

  4. Nucleation and Growth of Integrin Adhesions

    PubMed Central

    Atilgan, Erdinç; Ovryn, Ben

    2009-01-01

    We present a model that provides a mechanistic understanding of the processes that govern the formation of the earliest integrin adhesions ex novo from an approximately planar plasma membrane. Using an analytic analysis of the free energy of a dynamically deformable membrane containing freely diffusing receptors molecules and long repeller molecules that inhibit integrins from binding with ligands on the extracellular matrix, we predict that a coalescence of polymerizing actin filaments can deform the membrane toward the extracellular matrix and facilitate integrin binding. Monte Carlo simulations of this system show that thermally induced membrane fluctuations can either zip-up and increase the radius of a nucleated adhesion or unzip and shrink an adhesion, but the fluctuations cannot bend the ventral membrane to nucleate an adhesion. To distinguish this integrin adhesion from more mature adhesions, we refer to this early adhesion as a nouveau adhesion. PMID:19413961

  5. Tape-Smoothing Tool For Adhesion Tests

    NASA Technical Reports Server (NTRS)

    Allen, Peter B.

    1992-01-01

    Small tool smoothes adhesive tape uniformly to ensure consistency and repeatability of tape-peel tests of adhesion of paint to substrate. Includes resilient pad covered with tough, smooth fabric. Internal spring regulates force applied to tape.

  6. Tackifier Dispersions to Make Pressure Sensitive Adhesives

    SciTech Connect

    2003-02-01

    Development of new processes for tackifier dispersion could improve the production of pressure sensitive adhesives. Pressure sensitive adhesives (PSAs) have the ability to adhere to different surfaces with manual or finger pressure.

  7. Microfluidic adhesion induced by subsurface microstructures.

    PubMed

    Majumder, Abhijit; Ghatak, Animangsu; Sharma, Ashutosh

    2007-10-12

    Natural adhesives in the feet of different arthropods and vertebrates show strong adhesion as well as excellent reusability. Whereas the hierarchical structures on the surface are known to have a substantial effect on adhesion, the role of subsurface structures such as the network of microchannels has not been studied. Inspired by these bioadhesives, we generated elastomeric layers with embedded air- or oil-filled microchannels. These adhesives showed remarkable enhancement of adhesion ( approximately 30 times), which results from the crack-arresting properties of the microchannels, together with the surface stresses caused by the capillary force. The importance of the thickness of the adhesive layer, channel diameter, interchannel spacing, and vertical position within the adhesive has been examined for developing an optimal design of this microfluidic adhesive.

  8. Adhesion of Antireflective Coatings in Multijunction Photovoltaics

    SciTech Connect

    Brock, Ryan; Miller, David C.; Dauskardt, Reinhold H.

    2016-11-21

    The development of a new composite dual cantilever beam (cDCB) thin-film adhesion testing method is reported, which allows the measurement of adhesion on the fragile thin substrates used in multijunction photovoltaics. We address the adhesion of several antireflective coating systems on multijunction cells. By varying interface chemistry and morphology, we demonstrate the ensuing effects on adhesion and help to develop an understanding of how high adhesion can be achieved, as adhesion values ranging from 0.5 J/m2 to 10 J/m2 were measured. Damp Heat (85 degrees C/85% RH) was used to invoke degradation of interfacial adhesion. We show that even with germanium substrates that fracture easily, quantitative measurements of adhesion can still be made at high test yield. The cDCB test is discussed as an important new methodology, which can be broadly applied to any system that makes use of thin, brittle, or otherwise fragile substrates.

  9. Transverse Reinforcement of Adhesive Joints

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, S.; Shakirov, A.

    2015-05-01

    The shear of single-lap adhesive joints causes significant peel stresses in the adhesive layer, which is a particularly urgent problem for low-modulus polyurethane compositions. An experimental and computational analysis of various methods for increasing the load-bearing capacity of the joints by their strengthening with metallic z-elements was carried out. This strengthening hinders their delamination by the action of peel stresses, which allows one to reduce the overall dimensions and weight of adhesive joints. Two main strengthening methods were considered: with steel tapping screws (of diameter 2.5 mm) and blind aluminum rivets (of diameter 4.0 mm). The peculiarity of the strengthening lies in the fact that z-elements of minimum available diameter were used for reducing the effect of stress concentrations on the strength of the joints. The test of specimens for each type of strengthening showed an average increase in the ultimate load by 40% for the threaded reinforcements and by 10% for the rivets. During an analysis of stress state of the joints by the FEM, the nonlinear behavior of constituent materials and stress concentration in the region of reinforcing elements were taken into account. The mechanical properties of the adhesive layer and the GFRP covering were determined in separate experiments. The analysis showed that the weight of the reinforced adhesive joints could be lowered by 20-25% relative to that of unreinforced ones without reducing their load-bearing capacity. An additional effect caused by using the threaded reinforcing elements was a more than threefold increase in their rigidity as compared with that of analogous nonreinforced ones.

  10. Solubility limits on radionuclide dissolution

    SciTech Connect

    Kerrisk, J.F.

    1984-12-31

    This paper examines the effects of solubility in limiting dissolution rates of a number of important radionuclides from spent fuel and high-level waste. Two simple dissolution models were used for calculations that would be characteristics of a Yucca Mountain repository. A saturation-limited dissolution model, in which the water flowing through the repository is assumed to be saturated with each waste element, is very conservative in that it overestimates dissolution rates. A diffusion-limited dissolution model, in which element-dissolution rates are limited by diffusion of waste elements into water flowing past the waste, is more realistic, but it is subject to some uncertainty at this time. Dissolution rates of some elements (Pu, Am, Sn, Th, Zr, Sm) are always limited by solubility. Dissolution rates of other elements (Cs, Tc, Np, Sr, C, I) are never solubility limited; their release would be limited by dissolution of the bulk waste form. Still other elements (U, Cm, Ni, Ra) show solubility-limited dissolution under some conditions. 9 references, 3 tables.

  11. Zwitterionic Ligands Bound to CdSe/ZnS Quantum Dots Prevent Adhesion to Mammalian Cells

    PubMed Central

    Landis, Ryan F.; Tang, Rui; Hou, Singyuk; Yazdani, Mahdieh; Lee, Yiwei; Rotello, Vincent M.

    2015-01-01

    Zwitterionic materials are useful tools in material science and biology as they provide high water solubility while preventing non-specific interactions. Quantum dots (QDs) functionalized with zwitterionic and quaternary ammonium ligands were synthesized to investigate their interactions with the outer membrane of HeLa cells. Quaternary ammonium functionalized quantum dots adhered strongly to the cell surface while zwitterionic QDs had no cell adhesion. These results demonstrate that future non-interacting nanoparticles based on this design are possible. PMID:26929589

  12. Expression of adhesion molecules and chemotactic cytokines in cultured human mesothelial cells.

    PubMed

    Jonjić, N; Peri, G; Bernasconi, S; Sciacca, F L; Colotta, F; Pelicci, P; Lanfrancone, L; Mantovani, A

    1992-10-01

    The mesothelium is a flat epithelial lining of serous cavities that could gate the traffic of molecules and cells between the circulation and these body compartments. The present study was designed to elucidate the capacity of mesothelial cells to express adhesion molecules and chemoattractant cytokines, two fundamental mechanisms of regulation of leukocyte recruitment. Cultured human mesothelial cells express appreciable levels of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), and these were increased by in vitro exposure to tumor necrosis factor (TNF), interferon gamma (IFN-gamma), or TNF and IFN-gamma. Interleukin 1 (IL-1) was a less consistent stimulus for adhesion molecule expression in vitro. Unlike endothelial cells, used as a reference cell population, resting or stimulated mesothelial cells did not express E-selectin and ICAM-2, as assessed by flow cytometry. Analysis of VCAM-1 mRNA by reverse transcriptase and polymerase chain reaction using appropriate primers revealed that mesothelial cells expressed both the seven- and the six-Ig domain transcripts, with predominance of the longer species. Monocytes bound appreciably to "resting" and, to a greater extent, to stimulated mesothelial cells. Monocytes exposed to IFN-gamma and lipopolysaccharide, used as prototypic activation signals, showed increased capacity to bind mesothelial cells. Anti-CD18 monoclonal antibody significantly inhibited binding of monocytes to mesothelial cells, and this blocking effect was amplified by anti-very late antigen 4. Mesothelial cells were able to express the chemotactic cytokines IL-8 and monocyte chemotactic protein 1 at the mRNA and protein levels. These results indicate that mesothelial cells can express a set of adhesion molecules (ICAM-1 and VCAM-1) overlapping with, but distinct from, that expressed in vascular endothelium (ICAM-1, ICAM-2, VCAM-1, E-selectin), and that these are functionally relevant for interacting with

  13. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade.

    PubMed

    Phillipson, Mia; Heit, Bryan; Colarusso, Pina; Liu, Lixin; Ballantyne, Christie M; Kubes, Paul

    2006-11-27

    The prevailing view is that the beta2-integrins Mac-1 (alphaMbeta2, CD11b/CD18) and LFA-1 (alphaLbeta2, CD11a/CD18) serve similar biological functions, namely adhesion, in the leukocyte recruitment cascade. Using real-time and time-lapse intravital video-microscopy and confocal microscopy within inflamed microvessels, we systematically evaluated the function of Mac-1 and LFA-1 in the recruitment paradigm. The chemokine macrophage inflammatory protein-2 induced equivalent amounts of adhesion in wild-type and Mac-1-/- mice but very little adhesion in LFA-1-/- mice. Time-lapse video-microscopy within the postcapillary venules revealed that immediately upon adhesion, there is significant intraluminal crawling of all neutrophils to distant emigration sites in wild-type mice. In dramatic contrast, very few Mac-1-/- neutrophils crawled with a 10-fold decrease in displacement and a 95% reduction in velocity. Therefore, Mac-1-/- neutrophils initiated transmigration closer to the initial site of adhesion, which in turn led to delayed transmigration due to movement through nonoptimal emigration sites. Interestingly, the few LFA-1-/- cells that did adhere crawled similarly to wild-type neutrophils. Intercellular adhesion molecule-1 but not intercellular adhesion molecule-2 mediated the Mac-1-dependent crawling. These in vivo results clearly delineate two fundamentally different molecular mechanisms for LFA-1 and Mac-1 in vivo, i.e., LFA-1-dependent adhesion followed by Mac-1-dependent crawling, and both steps ultimately contribute to efficient emigration out of the vasculature.

  14. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade

    PubMed Central

    Phillipson, Mia; Heit, Bryan; Colarusso, Pina; Liu, Lixin; Ballantyne, Christie M.; Kubes, Paul

    2006-01-01

    The prevailing view is that the β2-integrins Mac-1 (αMβ2, CD11b/CD18) and LFA-1 (αLβ2, CD11a/CD18) serve similar biological functions, namely adhesion, in the leukocyte recruitment cascade. Using real-time and time-lapse intravital video-microscopy and confocal microscopy within inflamed microvessels, we systematically evaluated the function of Mac-1 and LFA-1 in the recruitment paradigm. The chemokine macrophage inflammatory protein-2 induced equivalent amounts of adhesion in wild-type and Mac-1−/− mice but very little adhesion in LFA-1−/− mice. Time-lapse video-microscopy within the postcapillary venules revealed that immediately upon adhesion, there is significant intraluminal crawling of all neutrophils to distant emigration sites in wild-type mice. In dramatic contrast, very few Mac-1−/− neutrophils crawled with a 10-fold decrease in displacement and a 95% reduction in velocity. Therefore, Mac-1−/− neutrophils initiated transmigration closer to the initial site of adhesion, which in turn led to delayed transmigration due to movement through nonoptimal emigration sites. Interestingly, the few LFA-1−/− cells that did adhere crawled similarly to wild-type neutrophils. Intercellular adhesion molecule-1 but not intercellular adhesion molecule-2 mediated the Mac-1–dependent crawling. These in vivo results clearly delineate two fundamentally different molecular mechanisms for LFA-1 and Mac-1 in vivo, i.e., LFA-1–dependent adhesion followed by Mac-1–dependent crawling, and both steps ultimately contribute to efficient emigration out of the vasculature. PMID:17116736

  15. Self-Adjustable Adhesion of Polyampholyte Hydrogels.

    PubMed

    Roy, Chanchal Kumar; Guo, Hong Lei; Sun, Tao Lin; Ihsan, Abu Bin; Kurokawa, Takayuki; Takahata, Masakazu; Nonoyama, Takayuki; Nakajima, Tasuku; Gong, Jian Ping

    2015-12-02

    Developing nonspecific, fast, and strong adhesives that can glue hydrogels and biotissues substantially promotes the application of hydrogels as biomaterials. Inspired by the ubiquitous adhesiveness of bacteria, it is reported that neutral polyampholyte hydrogels, through their self-adjustable surface, can show rapid, strong, and reversible adhesion to charged hydrogels and biological tissues through the Coulombic interaction.

  16. Current dental adhesives systems. A narrative review.

    PubMed

    Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe

    2012-01-01

    Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.

  17. 21 CFR 878.4010 - Tissue adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... adhesive for the topical approximation of skin—(1) Identification. A tissue adhesive for the topical approximation of skin is a device intended for topical closure of surgical incisions, including laparoscopic incisions, and simple traumatic lacerations that have easily approximated skin edges. Tissue adhesives...

  18. Nonwoven glass fiber mat reinforces polyurethane adhesive

    NASA Technical Reports Server (NTRS)

    Roseland, L. M.

    1967-01-01

    Nonwoven glass fiber mat reinforces the adhesive properties of a polyurethane adhesive that fastens hardware to exterior surfaces of aluminum tanks. The mat is embedded in the uncured adhesive. It ensures good control of the bond line and increases the peel strength.

  19. Influence of substrate modulus on gecko adhesion

    PubMed Central

    Klittich, Mena R.; Wilson, Michael C.; Bernard, Craig; Rodrigo, Rochelle M.; Keith, Austin J.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2017-01-01

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics). PMID:28287647

  20. Influence of substrate modulus on gecko adhesion

    NASA Astrophysics Data System (ADS)

    Klittich, Mena R.; Wilson, Michael C.; Bernard, Craig; Rodrigo, Rochelle M.; Keith, Austin J.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2017-03-01

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).

  1. Androgens inhibit tumor necrosis factor-α-induced cell adhesion and promote tube formation of human coronary artery endothelial cells.

    PubMed

    Liao, Chun-Hou; Lin, Feng-Yen; Wu, Yi-No; Chiang, Han-Sun

    2012-06-01

    Endothelial cells contribute to the function and integrity of the vascular wall, and a functional aberration may lead to atherogenesis. There is increasing evidence on the atheroprotective role of androgens. Therefore, we studied the effect of the androgens-testosterone and dihydrotestosterone-and estradiol on human coronary artery endothelial cell (HCAEC) function. We found by MTT assay that testosterone is not cytotoxic and enhances HCAEC proliferation. The effect of testosterone (10-50 nM), dihydrotestosterone (5-50 nM), and estradiol (0.1-0.4 nM) on the adhesion of tumor necrosis factor-α (TNF-α)-stimulated HCAECs was determined at different time points (12-96 h) by assessing their binding with human monocytic THP-1 cells. In addition, the expression of adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1), was determined by ELISA and Western blot analysis. Both testosterone and dihydrotestosterone attenuated cell adhesion and the expression of VCAM-1 and ICAM-1 in a dose- and time-dependent manner. Furthermore, androgen treatment for a longer duration inhibited cell migration, as demonstrated by wound-healing assay, and promoted tube formation on a Matrigel. Western blot analysis demonstrated that the expression of phosphorylated endothelial nitric oxide synthase (eNOS) increased, whereas that of inducible nitric oxide synthase (iNOS) decreased following the 96-h steroid treatment of TNF-α-stimulated HCAECs. Our findings suggest that androgens modulate endothelial cell functions by suppressing the inflammatory process and enhancing wound-healing and regenerative angiogenesis, possibly through an androgen receptor (AR)-dependent mechanism.

  2. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    SciTech Connect

    Zhong, Xia; Li, Xiaonan; Liu, Fuli; Tan, Hui; Shang, Deya

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.

  3. Latrophilins Function as Heterophilic Cell-adhesion Molecules by Binding to Teneurins

    PubMed Central

    Boucard, Antony A.; Maxeiner, Stephan; Südhof, Thomas C.

    2014-01-01

    Latrophilin-1, -2, and -3 are adhesion-type G protein-coupled receptors that are auxiliary α-latrotoxin receptors, suggesting that they may have a synaptic function. Using pulldowns, we here identify teneurins, type II transmembrane proteins that are also candidate synaptic cell-adhesion molecules, as interactors for the lectin-like domain of latrophilins. We show that teneurin binds to latrophilins with nanomolar affinity and that this binding mediates cell adhesion, consistent with a role of teneurin binding to latrophilins in trans-synaptic interactions. All latrophilins are subject to alternative splicing at an N-terminal site; in latrophilin-1, this alternative splicing modulates teneurin binding but has no effect on binding of latrophilin-1 to another ligand, FLRT3. Addition to cultured neurons of soluble teneurin-binding fragments of latrophilin-1 decreased synapse density, suggesting that latrophilin binding to teneurin may directly or indirectly influence synapse formation and/or maintenance. These observations are potentially intriguing in view of the proposed role for Drosophila teneurins in determining synapse specificity. However, teneurins in Drosophila were suggested to act as homophilic cell-adhesion molecules, whereas our findings suggest a heterophilic interaction mechanism. Thus, we tested whether mammalian teneurins also are homophilic cell-adhesion molecules, in addition to binding to latrophilins as heterophilic cell-adhesion molecules. Strikingly, we find that although teneurins bind to each other in solution, homophilic teneurin-teneurin binding is unable to support stable cell adhesion, different from heterophilic teneurin-latrophilin binding. Thus, mammalian teneurins act as heterophilic cell-adhesion molecules that may be involved in trans-neuronal interaction processes such as synapse formation or maintenance. PMID:24273166

  4. Inhibition of THP-1 cell adhesion to endothelial cells by alpha-tocopherol and alpha-tocotrienol is dependent on intracellular concentration of the antioxidants.

    PubMed

    Noguchi, Noriko; Hanyu, Ryuhei; Nonaka, Aya; Okimoto, Yuko; Kodama, Tatsuhiko

    2003-06-15

    Vitamin E analogs such as alpha-tocopherol and alpha-tocotrienol have been shown to reduce endothelial expression of adhesion molecules. The reactivity of alpha-tocopherol and alpha-tocotrienol in inhibiting lipid peroxidation in vitro was essentially identical but the inhibition of adhesion of THP-1 cells, a monocytic-"like" cell line, to endothelial cells differs substantially. To determine the mechanism underlying this response, human umbilical vein endothelial cells (HUVECs) were assessed for their ability to accumulate vitamin E analogs. alpha-Tocotrienol accumulated in HUVECs to levels approximately 10-fold greater than that of alpha-tocopherol. The decrease in expression of vascular cell adhesion molecule-1 (VCAM-1) and the adhesion of THP-1 cells to HUVECs by alpha-tocopherol and alpha-tocotrienol was also determined. Both alpha-tocopherol and alpha-tocotrienol suppressed VCAM-1 expression and adhesion of THP-1 cells to HUVECs in a concentration-dependent manner. The efficacy of tocotrienol for reduction of VCAM-1 expression and adhesion of THP-1 cells to HUVECs was also 10-fold higher than that of tocopherol. The inhibitory effects of vitamin E analogs on the adhesiveness of endothelial cells clearly correlated with their intracellular concentrations. The data demonstrated that, in assessing the biological responses of antioxidants, intracellular accumulation and metabolism were additional important factors that must be considered.

  5. Bio-inspired adhesion: local chemical environments impact adhesive stability

    NASA Astrophysics Data System (ADS)

    Gebbie, Matthew A.; Rapp, Michael V.; Yu, Jing; Wei, Wei; Waite, J. Herbert; Israelachvili, Jacob N.

    2014-03-01

    3,4-dihydroxyphenylalanine (Dopa) is an amino acid that is naturally synthesized by marine mussels and exhibits the unique ability to strongly bind to surfaces in aqueous environments. However, the Dopa functional group undergoes auto-oxidation to a non-adhesive quinone form in neutral to basic pH conditions, limiting the utilization of Dopa in biomedical applications. In this work, we performed direct surface force measurements with in situ electrochemical control across a Dopa-rich native mussel foot protein (mfp-5), as well as three simplified model peptide sequences. We find that the neighboring peptide residues can significantly impact the redox stability of Dopa functional groups, with lysine residues imparting a substantial degree of Dopa redox stabilization. Surprisingly, the local chemical environments only minimally impact the magnitude of the adhesion forces measured between molecularly-smooth mica and gold surfaces. Our results provide molecular level insight into approaches that can be used to mitigate the detrimental impact of Dopa auto-oxidation, thus suggesting new molecular design strategies for improving the performance of Dopa-based underwater adhesives.

  6. Priming by chemokines restricts lateral mobility of the adhesion receptor LFA-1 and restores adhesion to ICAM-1 nano-aggregates on human mature dendritic cells.

    PubMed

    Borgman, Kyra J E; van Zanten, Thomas S; Manzo, Carlo; Cabezón, Raquel; Cambi, Alessandra; Benítez-Ribas, Daniel; Garcia-Parajo, Maria F

    2014-01-01

    LFA-1 is a leukocyte specific β2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into the lymph nodes, by transiently switching its molecular conformational state. However, the role of LFA-1 mobility in this process is not yet known, despite that the importance of lateral organization and dynamics for LFA-1-mediated adhesion regulation is broadly recognized. Using single particle tracking approaches we here show that LFA-1 exhibits higher mobility on resting mDCs compared to monocytes. Lymphoid chemokine CCL21 stimulation of the LFA-1 high affinity state on mDCs, led to a significant reduction of mobility and an increase on the fraction of stationary receptors, consistent with re-activation of the receptor. Addition of soluble monomeric ICAM-1 in the presence of CCL21 did not alter the diffusion profile of LFA-1 while soluble ICAM-1 nano-aggregates in the presence of CCL21 further reduced LFA-1 mobility and readily bound to the receptor. Overall, our results emphasize the importance of LFA-1 lateral mobility across the membrane on the regulation of integrin activation and its function as adhesion receptor. Importantly, our data show that chemokines alone are not sufficient to trigger the high affinity state of the integrin based on the strict definition that affinity refers to the adhesion capacity of a single receptor to its ligand in solution. Instead our data indicate that nanoclustering of the receptor, induced by multi-ligand binding, is required to maintain stable cell adhesion once LFA-1 high affinity state is transiently triggered by inside-out signals.

  7. Glossogyne tenuifolia Extract Inhibits TNF-α-Induced Expression of Adhesion Molecules in Human Umbilical Vein Endothelial Cells via Blocking the NF-kB Signaling Pathway.

    PubMed

    Hsuan, Chin-Feng; Hsu, Hsia-Fen; Tseng, Wei-Kung; Lee, Thung-Lip; Wei, Yu-Feng; Hsu, Kwan-Lih; Wu, Chau-Chung; Houng, Jer-Yiing

    2015-09-17

    Chronic inflammation plays a pivotal role in the development of atherosclerosis, where the pro-inflammatory cytokine-induced expression of endothelial adhesion molecules and the recruitment of monocytes are the crucial events leading to its pathogenesis. Glossogyne tenuifolia ethanol extract (GTE) is shown to have potent anti-inflammatory and antioxidant activities. We evaluated the effects of GTE and its major components, luteolin (lut), luteolin-7-glucoside (lut-7-g), and oleanolic acid (OA) on TNF-α-induced expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results demonstrated that GTE, lut, and lut-7-g attenuated the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-activated HUVECs, and inhibited the adhesion of monocytes to TNF-α-activated HUVECs. The TNF-α-induced mRNA expression of ICAM-1 and VCAM-1 was also suppressed, revealing their inhibitory effects at the transcriptional level. Furthermore, GTE, lut, and lut-7-g blocked the TNF-α-induced degradation of nuclear factor-kB inhibitor (IkB), an indicator of the activation of nuclear factor-kB (NF-kB). In summary, GTE and its bioactive components were effective in preventing the adhesion of monocytes to cytokine-activated endothelium by the inhibition of expression of adhesion molecules, which in turn is mediated through blocking the activation and nuclear translocation of NF-kB. The current results reveal the therapeutic potential of GTE in atherosclerosis.

  8. Solubility of sparingly soluble drug derivatives of anthranilic acid.

    PubMed

    Domańska, Urszula; Pobudkowska, Aneta; Pelczarska, Aleksandra

    2011-03-24

    This work is a continuation of our systematic study of the solubility of pharmaceuticals (Pharms). All substances here are derivatives of anthranilic acid, and have an anti-inflammatory direction of action (niflumic acid, flufenamic acid, and diclofenac sodium). The basic thermal properties of pure Pharms, i.e., melting and glass-transition temperatures as well as the enthalpy of melting, have been measured with the differential scanning microcalorimetry technique (DSC). Molar volumes have been calculated with the Barton group contribution method. The equilibrium mole fraction solubilities of three pharmaceuticals were measured in a range of temperatures from 285 to 355 K in three important solvents for Pharm investigations: water, ethanol, and 1-octanol using a dynamic method and spectroscopic UV-vis method. The experimental solubility data have been correlated by means of the commonly known G(E) equation: the NRTL, with the assumption that the systems studied here have revealed simple eutectic mixtures. pK(a) precise measurement values have been investigated with the Bates-Schwarzenbach spectrophotometric method.

  9. A review of high-temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1981-01-01

    The development of high temperature adhesives and polyphenylquinoxalines (PPQ) is reported. Thermoplastic polyimides and linear PPQ adhesive are shown to have potential for bonding both metals and composite structures. A nadic terminated addition polyimide adhesive, LARC-13, and an acetylene terminated phenylquinoxaline (ATPQ) were developed. Both of the addition type adhesives are shown to be more readily processable than linear materials but less thermooxidatively stable and more brittle. It is found that the addition type adhesives are able to perform, at elevated temperatures up to 595 C where linear systems fail thermoplastically.

  10. Overexpression of Soluble Recombinant Human Lysyl Oxidase by Using Solubility Tags: Effects on Activity and Solubility

    PubMed Central

    Smith, Madison A.; Gonzalez, Jesica; Hussain, Anjum; Oldfield, Rachel N.; Johnston, Kathryn A.; Lopez, Karlo M.

    2016-01-01

    Lysyl oxidase is an important extracellular matrix enzyme that has not been fully characterized due to its low solubility. In order to circumvent the low solubility of this enzyme, three solubility tags (Nus-A, Thioredoxin (Trx), and Glutathione-S-Transferase (GST)) were engineered on the N-terminus of mature lysyl oxidase. Total enzyme yields were determined to be 1.5 mg for the Nus-A tagged enzyme (0.75 mg/L of media), 7.84 mg for the Trx tagged enzyme (3.92 mg/L of media), and 9.33 mg for the GST tagged enzyme (4.67 mg/L of media). Enzymatic activity was calculated to be 0.11 U/mg for the Nus-A tagged enzyme and 0.032 U/mg for the Trx tagged enzyme, and no enzymatic activity was detected for the GST tagged enzyme. All three solubility-tagged forms of the enzyme incorporated copper; however, the GST tagged enzyme appears to bind adventitious copper with greater affinity than the other two forms. The catalytic cofactor, lysyl tyrosyl quinone (LTQ), was determined to be 92% for the Nus-A and Trx tagged lysyl oxidase using the previously reported extinction coefficient of 15.4 mM−1 cm−1. No LTQ was detected for the GST tagged lysyl oxidase. Given these data, it appears that Nus-A is the most suitable tag for obtaining soluble and active recombinant lysyl oxidase from E. coli culture. PMID:26942005

  11. The RhoA/ROCK Pathway Ameliorates Adhesion and Inflammatory Infiltration Induced by AGEs in Glomerular Endothelial Cells.

    PubMed

    Rao, Jialing; Ye, Zengchun; Tang, Hua; Wang, Cheng; Peng, Hui; Lai, Weiyan; Li, Yin; Huang, Wanbing; Lou, Tanqi

    2017-01-05

    A recent study demonstrated that advanced glycation end products (AGEs) play a role in monocyte infiltration in mesangial areas in diabetic nephropathy. The Ras homolog gene family, member A Rho kinase (RhoA/ROCK) pathway plays a role in regulating cell migration. We hypothesized that the RhoA/ROCK pathway affects adhesion and inflammation in endothelial cells induced by AGEs. Rat glomerular endothelial cells (rGECs) were cultured with AGEs (80 μg/ml) in vitro. The ROCK inhibitor Y27632 (10 nmol/l) and ROCK1-siRNA were used to inhibit ROCK. We investigated levels of the intercellular adhesion molecule 1 (ICAM-1) and monocyte chemoattractant protein1 (MCP-1) in rGECs. Db/db mice were used as a diabetes model and received Fasudil (10 mg/kg/d, n = 6) via intraperitoneal injection for 12 weeks. We found that AGEs increased the expression of ICAM-1 and MCP-1 in rGECs, and the RhoA/ROCK pathway inhibitor Y27632 depressed the release of adhesion molecules. Moreover, blocking the RhoA/ROCK pathway ameliorated macrophage transfer to the endothelium. Reduced expression of adhesion molecules and amelioration of inflammatory cell infiltration in the glomerulus were observed in db/db mice treated with Fasudil. The RhoA/ROCK pathway plays a role in adhesion molecule expression and inflammatory cell infiltration in glomerular endothelial cells induced by AGEs.

  12. Berberine reduces leukocyte adhesion to LPS-stimulated endothelial cells and VCAM-1 expression both in vivo and in vitro.

    PubMed

    Wu, Y-H; Chuang, S-Y; Hong, W-C; Lai, Y-J; Chang, G-J; Pang, J-H S

    2012-01-01

    Leukocyte adhesion to endothelium plays a critical initiating role in inflammation. Berberine, an anti-inflammatory natural compound, is known to attenuate lipopolysaccharide (LPS)-induced lung injury and improve survival of endotoxemic animals with mechanism not fully clarified. This study investigated the effects of berberine on the LPS-induced leukocyte-endothelial cell adhesion both in vivo and in vitro. We first established an animal model to observe the in vivo LPS-induced adhesion of leukocytes to the endothelium of venules in the lung tissue dose-dependently. Pretreatment of LPS-stimulated rats with berberine for 1 h reduced the leukocyte-endothelium adhesion and vascular cell adhesion molecule-1 (VCAM-1) expression in lung. Pretreatment of LPS-stimulated vascular endothelial cells with berberine also dose-dependently decreased the number of adhered THP-1 cells and VCAM-1 expression at both RNA and protein levels. Berberine was further confirmed to inhibit the nuclear translocation and DNA binding activity of LPS-activated nuclear factor-kappa B (NF-kappa B). These data demonstrated an additional molecular mechanism for the profound anti-inflammatory effect of berberine.

  13. The RhoA/ROCK Pathway Ameliorates Adhesion and Inflammatory Infiltration Induced by AGEs in Glomerular Endothelial Cells

    PubMed Central

    Rao, Jialing; Ye, Zengchun; Tang, Hua; Wang, Cheng; Peng, Hui; Lai, Weiyan; Li, Yin; Huang, Wanbing; Lou, Tanqi

    2017-01-01

    A recent study demonstrated that advanced glycation end products (AGEs) play a role in monocyte infiltration in mesangial areas in diabetic nephropathy. The Ras homolog gene family, member A Rho kinase (RhoA/ROCK) pathway plays a role in regulating cell migration. We hypothesized that the RhoA/ROCK pathway affects adhesion and inflammation in endothelial cells induced by AGEs. Rat glomerular endothelial cells (rGECs) were cultured with AGEs (80 μg/ml) in vitro. The ROCK inhibitor Y27632 (10 nmol/l) and ROCK1-siRNA were used to inhibit ROCK. We investigated levels of the intercellular adhesion molecule 1 (ICAM-1) and monocyte chemoattractant protein1 (MCP-1) in rGECs. Db/db mice were used as a diabetes model and received Fasudil (10 mg/kg/d, n = 6) via intraperitoneal injection for 12 weeks. We found that AGEs increased the expression of ICAM-1 and MCP-1 in rGECs, and the RhoA/ROCK pathway inhibitor Y27632 depressed the release of adhesion molecules. Moreover, blocking the RhoA/ROCK pathway ameliorated macrophage transfer to the endothelium. Reduced expression of adhesion molecules and amelioration of inflammatory cell infiltration in the glomerulus were observed in db/db mice treated with Fasudil. The RhoA/ROCK pathway plays a role in adhesion molecule expression and inflammatory cell infiltration in glomerular endothelial cells induced by AGEs. PMID:28054559

  14. Effects of nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) on melanoma cell adhesion.

    PubMed

    Cheng, Huiwen; Mollica, Molly Y; Lee, Shin Hee; Wang, Lei; Velázquez-Martínez, Carlos A; Wu, Shiyong

    2012-10-15

    A new class of nitric oxide (NO•)-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) were developed in recent years and have shown promising potential as NSAID substitutes due to their gentle nature on cardiovascular and gastrointestinal systems. Since nitric oxide plays a role in regulation of cell adhesion, we assessed the potential use of NONO-NSAIDs as anti-metastasis drugs. In this regard, we compared the effects of NONO-aspirin and a novel NONO-naproxen to those exerted by their respective parent NSAIDs on avidities of human melanoma M624 cells. Both NONO-NSAIDs, but not the corresponding parent NSAIDs, reduced M624 adhesion on vascular cellular adhesion molecule-1 (VCAM-1) by 20-30% and fibronectin by 25-44% under fluid flow conditions and static conditions, respectively. Only NONO-naproxen reduced (~56%) the activity of β1 integrin, which binds to α4 integrin to form very late antigen-4 (VLA-4), the ligand of VCAM-1. These results indicate that the diazeniumdiolate (NO•)-donor moiety is critical for reducing the adhesion between VLA-4 and its ligands, while the NSAID moiety can impact the regulation mechanism of melanoma cell adhesion.

  15. Effect of soluble polymer binder on particle distribution in a drying particulate coating.

    PubMed

    Buss, Felix; Roberts, Christine C; Crawford, Kathleen S; Peters, Katharina; Francis, Lorraine F

    2011-07-01

    Soluble polymer is frequently added to inorganic particle suspensions to provide mechanical strength and adhesiveness to particulate coatings. To engineer coating microstructure, it is essential to understand how drying conditions and dispersion composition influence particle and polymer distribution in a drying coating. Here, a 1D model revealing the transient concentration profiles of particles and soluble polymer in a drying suspension is proposed. Sedimentation, evaporation and diffusion govern particle movement with the presence of soluble polymer influencing the evaporation rate and solution viscosity. Results are summarized in drying regime maps that predict particle accumulation at the free surface or near the substrate as conditions vary. Calculations and experiments based on a model system of poly(vinyl alcohol) (PVA), silica particles and water reveal that the addition of PVA slows the sedimentation and diffusion of the particles during drying such that accumulation of particles at the free surface is more likely.

  16. Nerve growth factor translates stress response and subsequent murine abortion via adhesion molecule-dependent pathways.

    PubMed

    Tometten, Mareike; Blois, Sandra; Kuhlmei, Arne; Stretz, Anna; Klapp, Burghard F; Arck, Petra C

    2006-04-01

    Spontaneous abortion is a frequent threat affecting 10%-25% of human pregnancies. Psychosocial stress has been suggested to be attributable for pregnancy losses by challenging the equilibrium of systems mandatory for pregnancy maintenance, including the nervous, endocrine, and immune system. Strong evidence indicates that stress-triggered abortion is mediated by adhesion molecules, i.e., intercellular adhesion molecule 1 (ICAM1) and leukocyte function associated molecule 1, now being referred to as integrin alpha L (ITGAL), which facilitate recruitment of inflammatory cells to the feto-maternal interface. The neurotrophin beta-nerve growth factor (NGFB), which has been shown to be upregulated in response to stress in multiple experimental settings including in the uterine lining (decidua) during pregnancy, increases ICAM1 expression on endothelial cells. Here, we investigated whether and how NGFB neutralization has a preventive effect on stress-triggered abortion in the murine CBA/J x DBA/2J model. We provide experimental evidence that stress exposure upregulates the frequency of abortion and the expression of uterine NGFB. Further, adhesion molecules ICAM1 and selectin platelet (SELP, formerly P-Selectin) and their ligands ITGAL and SELP ligand (SELPL, formerly P selectin glycoprotein ligand 1) respectively increase in murine deciduas in response to stress. Subsequently, decidual cytokines are biased toward a proinflammatory and abortogenic cytokine profile. Additionally, a decrease of pregnancy protective CD8alpha(+) decidual cells is present. Strikingly, all such uterine stress responses are abrogated by NGFB neutralization. Hence, NGFB acts as a proximal mediator in the hierarchical network of immune rejection by mediating an abortogenic environment comprised of classical signs of neurogenic inflammation.

  17. Ocular surface sealants and adhesives.

    PubMed

    Bhatia, Subir Singh

    2006-07-01

    Tissue adhesives, both synthetic and biologic, have a long history of use in ophthalmology. Cyanoacrylate-based glues have traditionally been the most widely used glues for various purposes. They have been specially useful for treating corneal perforations and have had significantly improved long-term outcomes. More recently, fibrin-based glues have gained a major role as a suture substitute for attaching biologic tissues and as surface sealants. The literature supports expanded use of fibrin glue in this fashion. Other new agents, such as polyethyelene glycols, have been underutilized and hold promise, especially as surface protectants. Numerous other glues are being developed and show promise as ocular surface sealants and protective membranes. Advances in knowledge about tissue adhesives are leading to more effective and efficient ophthalmic care.

  18. Particle adhesion in powder coating

    SciTech Connect

    Mazumder, M.K.; Wankum, D.L.; Knutson, M.; Williams, S.; Banerjee, S.

    1996-12-31

    Electrostatic powder coating is a widely used industrial painting process. It has three major advantages: (1) it provides high quality durable finish, (2) the process is environmentally friendly and does not require the use of organic solvents, and (3) it is economically competitive. The adhesion of electrostatically deposited polymer paint particles on the grounded conducting substrate depends upon many parameters: (a) particle size and shape distributions, (b) electrostati