Science.gov

Sample records for adhesion molecule-3 grabbing

  1. Vitamin C Attenuates Hemorrhagic Shock-induced Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Nonintegrin Expression in Tubular Epithelial Cells and Renal Injury in Rats

    PubMed Central

    Ma, Li; Fei, Jian; Chen, Ying; Zhao, Bing; Yang, Zhi-Tao; Wang, Lu; Sheng, Hui-Qiu; Chen, Er-Zhen; Mao, En-Qiang

    2016-01-01

    Background: The expression of dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) in renal tubular epithelial cells has been thought to be highly correlated with the occurrence of several kidney diseases, but whether it takes place in renal tissues during hemorrhagic shock (HS) is unknown. The present study aimed to investigate this phenomenon and the inhibitory effect of Vitamin C (VitC). Methods: A Sprague–Dawley rat HS model was established in vivo in this study. The expression level and location of DC-SIGN were observed in kidneys. Also, the degree of histological damage, the concentrations of tumor necrosis factor-α and interleukin-6 in the renal tissues, and the serum concentration of blood urea nitrogen and creatinine at different times (2–24 h) after HS (six rats in each group), with or without VitC treatment before resuscitation, were evaluated. Results: HS induced DC-SIGN expression in rat tubular epithelial cells. The proinflammatory cytokine concentration, histological damage scores, and functional injury of kidneys had increased. All these phenomena induced by HS were relieved when the rats were treated with VitC before resuscitation. Conclusions: The results of the present study illustrated that HS could induce tubular epithelial cells expressing DC-SIGN, and the levels of proinflammatory cytokines in the kidney tissues improved correspondingly. The results also indicated that VitC could suppress the DC-SIGN expression in the tubular epithelial cells induced by HS and alleviate the inflammation and functional injury in the kidney. PMID:27411463

  2. Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) recognizes a novel ligand, Mac-2-binding protein, characteristically expressed on human colorectal carcinomas.

    PubMed

    Nonaka, Motohiro; Ma, Bruce Yong; Imaeda, Hirotsugu; Kawabe, Keiko; Kawasaki, Nobuko; Hodohara, Keiko; Kawasaki, Nana; Andoh, Akira; Fujiyama, Yoshihide; Kawasaki, Toshisuke

    2011-06-24

    Dendritic cell (DC)-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a type II transmembrane C-type lectin expressed on DCs such as myeloid DCs and monocyte-derived DCs (MoDCs). Recently, we have reported that DC-SIGN interacts with carcinoembryonic antigen (CEA) expressed on colorectal carcinoma cells. CEA is one of the most widely used tumor markers for gastrointestinal cancers such as colorectal cancer. On the other hand, other groups have reported that the level of Mac-2-binding protein (Mac-2BP) increases in patients with pancreatic, breast, and lung cancers, virus infections such as human immunodeficiency virus and hepatitis C virus, and autoimmune diseases. Here, we first identified Mac-2BP expressed on several colorectal carcinoma cell lines as a novel DC-SIGN ligand through affinity chromatography and mass spectrometry. Interestingly, we found that DC-SIGN selectively recognizes Mac-2BP derived from some colorectal carcinomas but not from the other ones. Furthermore, we found that the α1-3,4-fucose moieties of Le glycans expressed on DC-SIGN-binding Mac-2BP were important for recognition. DC-SIGN-dependent cellular interactions between immature MoDCs and colorectal carcinoma cells significantly inhibited MoDC functional maturation, suggesting that Mac-2BP may provide a tolerogenic microenvironment for colorectal carcinoma cells through DC-SIGN-dependent recognition. Importantly, Mac-2BP was detected as a predominant DC-SIGN ligand expressed on some primary colorectal cancer tissues from certain parts of patients in comparison with CEA from other parts, suggesting that DC-SIGN-binding Mac-2BP bearing tumor-associated Le glycans may become a novel potential colorectal cancer biomarker for some patients instead of CEA.

  3. The human intercellular adhesion molecule 3 (ICAM3) gene is located in the 19p13.2-p13.3 region, close to the ICAM1 gene

    SciTech Connect

    Bossy, D.; Simmons, D.L.; Mattei, M.G.

    1994-10-01

    The chromosomal location of the intercellular adhesion molecule 3 (ICAM3) gene, coding for a lymphocyte function-associated antigen (LFA)-1 counterreceptor and selectively expressed by human leukocytes, was analyzed by in situ hybridization with the cDNA coding sequence as a probe. This sequence mapped to the p13.2-p13.3 region of chromosome 19, close to the ICAM1 gene chromosomal location. 17 refs., 1 fig.

  4. Characterization of a Distinct Population of Circulating Human Non-Adherent Endothelial Forming Cells and Their Recruitment via Intercellular Adhesion Molecule-3

    PubMed Central

    Thompson, Emma J.; Barrett, Jeffrey M.; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F.; Bonder, Claudine S.

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis. PMID:23144795

  5. Moesin Interacts with the Cytoplasmic Region of Intercellular Adhesion Molecule-3 and Is Redistributed to the Uropod of T Lymphocytes during Cell Polarization

    PubMed Central

    Serrador, Juan M.; Alonso-Lebrero, José L.; Pozo, Miguel A. del; Furthmayr, Heinz; Schwartz-Albiez, Reinhard; Calvo, Javier; Lozano, Francisco; Sánchez-Madrid, Francisco

    1997-01-01

    During activation, T lymphocytes become motile cells, switching from a spherical to a polarized shape. Chemokines and other chemotactic cytokines induce lymphocyte polarization with the formation of a uropod in the rear pole, where the adhesion receptors intercellular adhesion molecule-1 (ICAM-1), ICAM-3, and CD44 redistribute. We have investigated membrane–cytoskeleton interactions that play a key role in the redistribution of adhesion receptors to the uropod. Immunofluorescence analysis showed that the ERM proteins radixin and moesin localized to the uropod of human T lymphoblasts treated with the chemokine RANTES (regulated on activation, normal T cell expressed, and secreted), a polarization-inducing agent; radixin colocalized with arrays of myosin II at the neck of the uropods, whereas moesin decorated the most distal part of the uropod and colocalized with ICAM-1, ICAM-3, and CD44 molecules. Two other cytoskeletal proteins, β-actin and α-tubulin, clustered at the cell leading edge and uropod, respectively, of polarized lymphocytes. Biochemical analysis showed that moesin coimmunoprecipitates with ICAM-3 in T lymphoblasts stimulated with either RANTES or the polarization- inducing anti–ICAM-3 HP2/19 mAb, as well as in the constitutively polarized T cell line HSB-2. In addition, moesin is associated with CD44, but not with ICAM-1, in polarized T lymphocytes. A correlation between the degree of moesin–ICAM-3 interaction and cell polarization was found as determined by immunofluorescence and immunoprecipitation analysis done in parallel. The moesin–ICAM-3 interaction was specifically mediated by the cytoplasmic domain of ICAM-3 as revealed by precipitation of moesin with a GST fusion protein containing the ICAM-3 cytoplasmic tail from metabolically labeled Jurkat T cell lysates. The interaction of moesin with ICAM-3 was greatly diminished when RANTES-stimulated T lymphoblasts were pretreated with the myosin-disrupting drug butanedione monoxime, which

  6. Low expression of dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin-related protein in lung cancer and significant correlations with brain metastasis and natural killer cells.

    PubMed

    Liu, Xiaoli; Zhang, Hua; Su, Lijie; Yang, Peng; Xin, Zhiqiang; Zou, Junwei; Ren, Shuangyi; Zuo, Yunfei

    2015-09-01

    Dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin-related protein (DC-SIGNR) is a type II transmembrane protein which has been reported to bind a variety of pathogens as well as participate in immunoregulation. But the association between the level of DC-SIGNR and lung cancer is unknown. To investigate the clinical diagnostic significance of DC-SIGNR in lung cancer, we investigated serum DC-SIGNR levels in 173 lung cancer patients and 134 healthy individuals using enzyme-linked immunosorbent assay (ELISA). Results showed that serum DC-SIGNR levels in lung cancer patients were lower than that in healthy controls (P = 0.0003). A cut-off value of 3.8998 ng/L for DC-SIGNR predicted the presence of lung cancer with 78.03% sensitivity and 49.25% specificity (area under the curve = 0.6212, P = 0.0003). Strikingly, serum DC-SIGNR levels were significantly higher in lung cancer patients with brain metastasis compared to those without metastasis (P = 0.0283). Moreover, the serum concentrations of DC-SIGNR in lung cancer patients also correlated significantly with serum natural killer cells percentage (P = 0.0017). In addition, immunohistochemistry assay demonstrated that the expression of DC-SIGNR in lung tissues of 31 lung cancer patients and 13 tuberculosis patients was significantly lower than that in 18 normal lung tissues (P = 0.0418, 0.0289), and there is no significant difference between tuberculosis tissues and lung cancer tissues (P = 0.2696). These results suggest that DC-SIGNR maybe a promising biological molecule that has the potential for clinical research of lung cancer, whereas its underlying roles are needed to be investigated in further studies.

  7. Global land and water grabbing

    PubMed Central

    Rulli, Maria Cristina; Saviori, Antonio; D’Odorico, Paolo

    2013-01-01

    Societal pressure on the global land and freshwater resources is increasing as a result of the rising food demand by the growing human population, dietary changes, and the enhancement of biofuel production induced by the rising oil prices and recent changes in United States and European Union bioethanol policies. Many countries and corporations have started to acquire relatively inexpensive and productive agricultural land located in foreign countries, as evidenced by the dramatic increase in the number of transnational land deals between 2005 and 2009. Often known as “land grabbing,” this phenomenon is associated with an appropriation of freshwater resources that has never been assessed before. Here we gather land-grabbing data from multiple sources and use a hydrological model to determine the associated rates of freshwater grabbing. We find that land and water grabbing are occurring at alarming rates in all continents except Antarctica. The per capita volume of grabbed water often exceeds the water requirements for a balanced diet and would be sufficient to improve food security and abate malnourishment in the grabbed countries. It is found that about 0.31 × 1012 m3⋅y−1 of green water (i.e., rainwater) and up to 0.14 × 1012 m3⋅y−1 of blue water (i.e., irrigation water) are appropriated globally for crop and livestock production in 47 × 106 ha of grabbed land worldwide (i.e., in 90% of the reported global grabbed land). PMID:23284174

  8. The Flash Grab Effect

    PubMed Central

    Cavanagh, Patrick; Anstis, Stuart

    2013-01-01

    When an object moves back and forth, its trajectory appears significantly shorter than it actually is. The object appears to stop and reverse well before its actual reversal point, as if there is some averaging of location within a window of about 100 ms (Sinico et al, 2009). Surprisingly, if a bar is flashed at the physical end point of the trajectory, right on top of the object, just as it reverses direction, the flash is also shifted – grabbed by the object – and is seen at the perceived endpoint of the trajectory rather than the physical endpoint. This can shift the perceived location of the flash by as much as 2 or 3 times its physical size and by up to several degrees of visual angle. We first show that the position shift of the flash is generated by the trajectory shortening, as the same shift is seen with or without the flash. The flash itself is only grabbed if it is presented within a small spatiotemporal attraction zone around the physical end point of the trajectory. Any flash falling in that zone is pulled toward the perceived endpoint. The effect scales linearly with speed, up to a maximum, and is independent of the contrast of the moving stimulus once it is above 5%. Finally, we demonstrate that this position shift requires attention. These results reveal a new “flash grab” effect in the family of motion-induced position shifts. Although it most resembles the flash drag effect, it differs from this in the following ways: 1) it has a different temporal profile, 2) it requires attention, 3) it is about 10 times larger. PMID:23872166

  9. Adhesion

    MedlinePlus

    ... as the shoulder Eyes Inside the abdomen or pelvis Adhesions can become larger or tighter over time. ... Other causes of adhesions in the abdomen or pelvis include: Appendicitis , most often when the appendix breaks ...

  10. Water Grabbing analysis at global scale

    NASA Astrophysics Data System (ADS)

    Rulli, M.; Saviori, A.; D'Odorico, P.

    2012-12-01

    "Land grabbing" is the acquisition of agricultural land by foreign governments and corporations, a phenomenon that has greatly intensified over the last few years as a result of the increase in food prices and biofuel demand. Land grabbing is inherently associated with an appropriation of freshwater resources that has never been investigated before. Here we provide a global assessment of the total grabbed land and water resources. Using process-based agro-hydrological models we estimate the rates of freshwater grabbing worldwide. We find that this phenomenon is occurring at alarming rates in all continents except Antarctica. The per capita volume of grabbed water often exceeds the water requirements for a balanced diet and would be sufficient to abate malnourishment in the grabbed countries. High rates of water grabbing are often associated with deforestation and the increase in water withdrawals for irrigation.

  11. Adhesions

    MedlinePlus

    ... surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They might connect the loops of the intestines to each other, to nearby ... can occur anywhere in the body. But they often form after surgery on the ...

  12. Access to Bathtub Grab Bars: Evidence of a Policy Gap

    ERIC Educational Resources Information Center

    Birkett, Nicholas; Nair, Rama; Murphy, Maureen; Roberge, Ginette; Lockett, Donna

    2006-01-01

    This paper examines access to bathtub grab bars in privately and publicly owned apartment buildings and explores the profile of seniors who have access to bathtub grab bars. Results indicate that bathtub grab bars were significantly more prevalent in apartments that were publicly owned (91.3%) as compared to privately owned (37.8%) (p lesser than…

  13. Capillarity driven contact line motion in cyclic bridge-drop grab-release events

    NASA Astrophysics Data System (ADS)

    van Lengerich, Henrik; Steen, Paul

    2009-11-01

    Motivated by a reversible adhesion device which uses capillary forces to adhere to a substrate, we study the mechanical work done in a grab-release cycle. That is, the volume of a drop is increased until it grabs the substrate and forms a bridge and then shrunk until it goes unstable and releases from the substrate and forms a drop again. In the instant that a drop becomes a bridge (or vice versa) no work is done on the system, however, energy is dissipated due to the decrease in interfacial energy. This dissipation can be compared with the mechanical dissipation based on the fluid flow. For viscous fluids, a wedge model shows that most of the dissipation occurs in the vicinity of the contact line. The thermodynamic dissipation is compared with that expected in the fluid without the need of static contact angle or slip length.

  14. Grab a Byte. Courseware Evaluation for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Rosenfeld, Vila M.; And Others

    This courseware evaluation rates the "Grab a Byte" program developed by tne National Dairy Council. (The program--not included in this document--is divided into three sections: Grab-a-Grape uses a quiz-show format to examine students' knowledge of food groups; Nutrition Sleuth reinforces students' nutrient knowledge; and Have-a-Byte analyzes meals…

  15. Capillarity-based switchable adhesion.

    PubMed

    Vogel, Michael J; Steen, Paul H

    2010-02-23

    Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillarity-based adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials.

  16. Capillarity-based switchable adhesion

    PubMed Central

    Vogel, Michael J.; Steen, Paul H.

    2010-01-01

    Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillarity-based adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials. PMID:20133725

  17. 33. REPAIRMEN ARE AT WORK ON THE HULETT'S GRAB BUCKET. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. REPAIRMEN ARE AT WORK ON THE HULETT'S GRAB BUCKET. BUCKET IS SEEN HERE IN ITS FULL OPEN POSITION. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  18. 46 CFR 28.810 - Deck rails, lifelines, storm rails and hand grabs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Deck rails, lifelines, storm rails and hand grabs. 28..., storm rails and hand grabs. (a) Except as otherwise provided in paragraph (d) of this section, deck... bulwark, chain link fencing, wire mesh, or an equivalent. (f) A suitable storm rail or hand grab must...

  19. 46 CFR 28.810 - Deck rails, lifelines, storm rails and hand grabs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Deck rails, lifelines, storm rails and hand grabs. 28..., storm rails and hand grabs. (a) Except as otherwise provided in paragraph (d) of this section, deck... bulwark, chain link fencing, wire mesh, or an equivalent. (f) A suitable storm rail or hand grab must...

  20. 46 CFR 28.810 - Deck rails, lifelines, storm rails and hand grabs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Deck rails, lifelines, storm rails and hand grabs. 28..., storm rails and hand grabs. (a) Except as otherwise provided in paragraph (d) of this section, deck... bulwark, chain link fencing, wire mesh, or an equivalent. (f) A suitable storm rail or hand grab must...

  1. 46 CFR 28.810 - Deck rails, lifelines, storm rails and hand grabs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Deck rails, lifelines, storm rails and hand grabs. 28..., storm rails and hand grabs. (a) Except as otherwise provided in paragraph (d) of this section, deck... bulwark, chain link fencing, wire mesh, or an equivalent. (f) A suitable storm rail or hand grab must...

  2. 46 CFR 28.810 - Deck rails, lifelines, storm rails and hand grabs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Deck rails, lifelines, storm rails and hand grabs. 28..., storm rails and hand grabs. (a) Except as otherwise provided in paragraph (d) of this section, deck... bulwark, chain link fencing, wire mesh, or an equivalent. (f) A suitable storm rail or hand grab must...

  3. Report on Electrochemcial Corrosion Testing of 241-SY-102 Grab Samples from the 2012 Grab Sampling Campaign

    SciTech Connect

    Wyrwas, Richard B.; Lamothe, Margaret E.

    2013-05-30

    This report describes the results of the electrochemical testing performed on tank 241-SY-102 (SY-102) grab samples that were collected in support of corrosion mitigation. The objective of the work presented here was to determine corrosion resistance of tank SY-102 to the grab samples collected using electrochemical methods up to 50°C as well as to satisfy data quality objectives. Grab samples were collected at multiple elevations from Riser 003. The electrochemical corrosion testing was planned to consist of linear polarization resistance testing (LPR) and cyclic potentiodynamic polarization (CPP) testing at 50°C. The temperature would be lowered to 40 °C and the test repeated if the CPP curve indicated pitting corrosion at 50°C. Ifno pitting was indicated by the CPP curve, then a duplicate scan would be repeated at 50°C to confirm the first result. The testing would be complete if the duplicate CPP scan was consistent with the first. This report contains the CPP results of the testing of grab sample 2SY-12-03 and 2SY-12-03DUP composite sample tested under these conditions. There was no indication of pitting at 50°C, and the duplicate scan was in agreement with the first scan. Since no further testing was required, a third scan with a shorter rest time was performed and is present in this report.

  4. Interaction of Helicobacter pylori with C-Type Lectin Dendritic Cell-Specific ICAM Grabbing Nonintegrin

    PubMed Central

    Miszczyk, Eliza; Rudnicka, Karolina; Moran, Anthony P.; Fol, Marek; Kowalewicz-Kulbat, Magdalena; Druszczyńska, Magdalena; Matusiak, Agnieszka; Walencka, Maria; Rudnicka, Wiesława; Chmiela, Magdalena

    2012-01-01

    In this study we asked whether Helicobacter pylori whole cells and lipopolysaccharide (LPS) utilize sugar moieties of Lewis (Le) antigenic determinants to interact with DC-SIGN (dendritic cell specific ICAM grabbing nonintegrin) receptor on dendritic cells (DCs). For this purpose the soluble DC-SIGN/Fc adhesion assay and the THP-1 leukemia cells with induced expression of DC-SIGN were used. We showed that the binding specificity of DC-SIGN with H. pylori LeX/Y positive whole cells and H. pylori LPS of LeX/Y type was fucose dependent, whereas in LeXY negative H. pylori strains and LPS preparations without Lewis determinants, this binding was galactose dependent. The binding of soluble synthetic LeX and LeY to the DC-SIGN-like receptor on THP-1 cells was also observed. In conclusion, the LeXY dependent as well as independent binding of H. pylori whole cells and H. pylori LPS to DC-SIGN was described. Moreover, we demonstrated that THP-1 cells may serve as an in vitro model for the assessment of H. pylori-DC-SIGN interactions mediated by LeX and LeY determinants. PMID:22550396

  5. Grabbed Early by Vocabulary: Nation's Ongoing Contributions to Vocabulary and Reading in a Foreign Language

    ERIC Educational Resources Information Center

    Coxhead, Averil

    2010-01-01

    "I was grabbed early [by vocabulary] and never let go. That's why it's difficult to explain why I enjoy working in this area. I just love doing it," said Paul Nation (in Coxhead, 2005, p. 46). How many people get grabbed by an area of research, teaching, and learning that continues to engage interest and cause excitement after 30 years? In this…

  6. 46 CFR 28.410 - Deck rails, lifelines, storm rails, and hand grabs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Deck rails, lifelines, storm rails, and hand grabs. 28..., lifelines, storm rails, and hand grabs. (a) Except as otherwise provided in paragraph (d) of this section... with a bulwark, chain link fencing, wire mesh, or an equivalent. (f) A suitable storm rail or hand...

  7. 46 CFR 28.410 - Deck rails, lifelines, storm rails, and hand grabs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Deck rails, lifelines, storm rails, and hand grabs. 28..., lifelines, storm rails, and hand grabs. (a) Except as otherwise provided in paragraph (d) of this section... with a bulwark, chain link fencing, wire mesh, or an equivalent. (f) A suitable storm rail or hand...

  8. 46 CFR 28.410 - Deck rails, lifelines, storm rails, and hand grabs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Deck rails, lifelines, storm rails, and hand grabs. 28..., lifelines, storm rails, and hand grabs. (a) Except as otherwise provided in paragraph (d) of this section... with a bulwark, chain link fencing, wire mesh, or an equivalent. (f) A suitable storm rail or hand...

  9. 46 CFR 28.410 - Deck rails, lifelines, storm rails, and hand grabs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Deck rails, lifelines, storm rails, and hand grabs. 28..., lifelines, storm rails, and hand grabs. (a) Except as otherwise provided in paragraph (d) of this section... with a bulwark, chain link fencing, wire mesh, or an equivalent. (f) A suitable storm rail or hand...

  10. 46 CFR 28.410 - Deck rails, lifelines, storm rails, and hand grabs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Deck rails, lifelines, storm rails, and hand grabs. 28..., lifelines, storm rails, and hand grabs. (a) Except as otherwise provided in paragraph (d) of this section... with a bulwark, chain link fencing, wire mesh, or an equivalent. (f) A suitable storm rail or hand...

  11. Waste compatibility safety issues and final results for tank 241-SY-102 grab samples

    SciTech Connect

    Nuzum, J.L.

    1997-08-14

    Three grab samples (2SY-96-1, 2SY-96-2, and 2SY-96-3) were taken from Riser 1A of Tank 241-SY 102 on January 14, 1997, and received by 222-S Laboratory on January 14, 1997. These samples were analyzed in accordance with Compatibility Grab Sampling and Analysis Plan (TSAP) and Data Quality Objectives for Tank Farm Waste Compatibility Program (DQO) in support of the Waste Compatibility Program. No notifications were required based on sample results. Acetone analysis was not performed in accordance with Cancellation of Acetone Analysis for Tank 241-SY-102 Grab Samples.

  12. Effective Swimmer’s Action during the Grab Start Technique

    PubMed Central

    Mourão, Luis; de Jesus, Karla; Roesler, Hélio; Machado, Leandro J.; Fernandes, Ricardo J.; Vilas-Boas, João Paulo; Vaz, Mário A. P.

    2015-01-01

    The external forces applied in swimming starts have been often studied, but using direct analysis and simple interpretation data processes. This study aimed to develop a tool for vertical and horizontal force assessment based on the swimmers’ propulsive and structural forces (passive forces due to dead weight) applied during the block phase. Four methodological pathways were followed: the experimented fall of a rigid body, the swimmers’ inertia effect, the development of a mathematical model to describe the outcome of the rigid body fall and its generalization to include the effects of the inertia, and the experimental swimmers’ starting protocol analysed with the inclusion of the developed mathematical tool. The first three methodological steps resulted in the description and computation of the passive force components. At the fourth step, six well-trained swimmers performed three 15 m maximal grab start trials and three-dimensional (3D) kinetic data were obtained using a six degrees of freedom force plate. The passive force contribution to the start performance obtained from the model was subtracted from the experimental force due to the swimmers resulting in the swimmers’ active forces. As expected, the swimmers’ vertical and horizontal active forces accounted for the maximum variability contribution of the experimental forces. It was found that the active force profile for the vertical and horizontal components resembled one another. These findings should be considered in clarifying the active swimmers’ force variability and the respective geometrical profile as indicators to redefine steering strategies. PMID:25978370

  13. Comparison of grab start between elite and trained swimmers.

    PubMed

    Vantorre, J; Seifert, L; Fernandes, R J; Boas, J P Vilas; Chollet, D

    2010-12-01

    This study analysed motor control during front crawl swimming starts by elite and trained swimmers, based on comparisons of: 1) kinematic and kinetic parameters of the start and 2) variability of these parameters across 3 trials per swimmer. Given that the start time to the 15-m mark is greatly influenced by the swimming phase, the study also compared the stroking and coordinative parameters from water entry to 25-m in the 2 skill groups. The swimmers performed 3 x 25-m at the 50-m race-pace and used their preferential start technique (grab start). The elite swimmers showed better start organization as reflected by higher impulse values in the direction of intended displacement despite similar block phase durations. They then spent more time in the water entry, gliding and leg kicking phases, with shorter swimming phase duration and 15-m start time than the trained swimmers (p<0.05). The trained swimmers showed significantly lower values for stroke length and velocity (p<0.05) during the swimming phase. Analysis revealed low intra-subject variability (across the 3 trials) but high inter-subject variability, indicating that both elite and trained swimmers had mastered distinct, though different, motor patterns.

  14. Color Image Segmentation Based on Different Color Space Models Using Automatic GrabCut

    PubMed Central

    Ebied, Hala Mousher; Hussein, Ashraf Saad; Tolba, Mohamed Fahmy

    2014-01-01

    This paper presents a comparative study using different color spaces to evaluate the performance of color image segmentation using the automatic GrabCut technique. GrabCut is considered as one of the semiautomatic image segmentation techniques, since it requires user interaction for the initialization of the segmentation process. The automation of the GrabCut technique is proposed as a modification of the original semiautomatic one in order to eliminate the user interaction. The automatic GrabCut utilizes the unsupervised Orchard and Bouman clustering technique for the initialization phase. Comparisons with the original GrabCut show the efficiency of the proposed automatic technique in terms of segmentation, quality, and accuracy. As no explicit color space is recommended for every segmentation problem, automatic GrabCut is applied with RGB, HSV, CMY, XYZ, and YUV color spaces. The comparative study and experimental results using different color images show that RGB color space is the best color space representation for the set of the images used. PMID:25254226

  15. Development of a new Global RAdiation Belt model: GRAB

    NASA Astrophysics Data System (ADS)

    Sicard-Piet, Angelica; Lazaro, Didier; Maget, Vincent; Rolland, Guy; Ecoffet, Robert; Bourdarie, Sébastien; Boscher, Daniel; Standarovski, Denis

    2016-07-01

    The well known AP8 and AE8 NASA models are commonly used in the industry to specify the radiation belt environment. Unfortunately, there are some limitations in the use of these models, first due to the covered energy range, but also because in some regions of space, there are discrepancies between the predicted average values and the measurements. Therefore, our aim is to develop a radiation belt model, covering a large region of space and energy, from LEO altitudes to GEO and above, and from plasma to relativistic particles. The aim for the first version is to correct the AP8 and AE8 models where they are deficient or not defined. At geostationary, we developed ten years ago for electrons the IGE-2006 model which was proven to be more accurate than AE8, and used commonly in the industry, covering a broad energy range, from 1keV to 5MeV. From then, a proton model for geostationary orbit was also developed for material applications, followed by the OZONE model covering a narrower energy range but the whole outer electron belt, a SLOT model to asses average electron values for 2GRAB model, as Global Radiation Belt model. We will present first beta version during this conference.

  16. Mass load estimation errors utilizing grab sampling strategies in a karst watershed

    USGS Publications Warehouse

    Fogle, A.W.; Taraba, J.L.; Dinger, J.S.

    2003-01-01

    Developing a mass load estimation method appropriate for a given stream and constituent is difficult due to inconsistencies in hydrologic and constituent characteristics. The difficulty may be increased in flashy flow conditions such as karst. Many projects undertaken are constrained by budget and manpower and do not have the luxury of sophisticated sampling strategies. The objectives of this study were to: (1) examine two grab sampling strategies with varying sampling intervals and determine the error in mass load estimates, and (2) determine the error that can be expected when a grab sample is collected at a time of day when the diurnal variation is most divergent from the daily mean. Results show grab sampling with continuous flow to be a viable data collection method for estimating mass load in the study watershed. Comparing weekly, biweekly, and monthly grab sampling, monthly sampling produces the best results with this method. However, the time of day the sample is collected is important. Failure to account for diurnal variability when collecting a grab sample may produce unacceptable error in mass load estimates. The best time to collect a sample is when the diurnal cycle is nearest the daily mean.

  17. 60-day waste compatibility safety issues and final results for TX-244 grab samples

    SciTech Connect

    Nuzum, J.L., Fluor Daniel Hanford

    1997-02-05

    Three grab samples (244-TX-96-1, 244-TX-96-2, and 244-TX-96-3) were taken from Riser 8 of Tank 241-TX-244 on October 18, 1996, and received by 222-S Laboratory on October 18, 1996. These samples were analyzed in accordance with Compatibility Grab Sampling and Analysis Plan (TSAP) and Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO) in support ofthe Waste Compatibility Program. Notifications were made in accordance with TSAP for pH and OH- analyses. Upon further review, the pH notification was deemed unnecessary, as the notification limit did not apply to this tank.

  18. 60-Day waste compatibility safety issues and final results for AY-102 grab samples

    SciTech Connect

    Nuzum, J.L.

    1997-01-31

    Four grab samples (2AY-96-15, 2AY-96-16, 2AY-96-17, and 2AY-96-18) were taken from Riser 15D of Tank 241-AY-102 on October 8, 1996, and received by 222-S Laboratory on October 8, 1996. These samples were analyzed in accordance with Compatibility Grab Sampling and Analysis Plan (TSAP) and Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO) in support of the Waste Compatibility Program. No notifications were required based on sample results.

  19. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Analysis systems meeting the specifications and requirements of this subpart for dilute sampling may be... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Exhaust gas analytical system; CVS... Procedures § 91.423 Exhaust gas analytical system; CVS grab sample. (a) Schematic drawings. Figure 4...

  20. 40 CFR 90.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Analysis systems meeting the specifications and requirements of this subpart for dilute sampling may be... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Exhaust gas analytical system; CVS... KILOWATTS Gaseous Exhaust Test Procedures § 90.423 Exhaust gas analytical system; CVS grab sample....

  1. Tank 214-AW-105, grab samples, analytical results for the finalreport

    SciTech Connect

    Esch, R.A.

    1997-02-20

    This document is the final report for tank 241-AW-105 grab samples. Twenty grabs samples were collected from risers 10A and 15A on August 20 and 21, 1996, of which eight were designated for the K Basin sludge compatibility and mixing studies. This document presents the analytical results for the remaining twelve samples. Analyses were performed in accordance with the Compatibility Grab Sampling and Analysis Plan (TSAP) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DO). The results for the previous sampling of this tank were reported in WHC-SD-WM-DP-149, Rev. 0, 60-Day Waste Compatibility Safety Issue and Final Results for Tank 241-A W-105, Grab Samples 5A W-95-1, 5A W-95-2 and 5A W-95-3. Three supernate samples exceeded the TOC notification limit (30,000 microg C/g dry weight). Appropriate notifications were made. No immediate notifications were required for any other analyte. The TSAP requested analyses for polychlorinated biphenyls (PCB) for all liquids and centrifuged solid subsamples. The PCB analysis of the liquid samples has been delayed and will be presented in a revision to this document.

  2. Using SPMDs for monitoring hydrophobic organic compounds in urban river water in Korea compared with using conventional water grab samples

    USGS Publications Warehouse

    Kim, Un-Jung; Kim, Hee Young; Alvarez, David A.; Lee, In-Seok; Oh, Jeong-Eun

    2014-01-01

    We aimed to verify the effectiveness of semi-permeablemembrane devices (SPMDs) formonitoring hydrophobic organic compounds, such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), that are not easy to detect using conventional grab samples (because of their low concentrations), in water.We used SPMDs and grab samples to monitor PCBs and PBDEs upstream and downstream of a sewage treatment plant (STP) in the Suyeong River in Busan, Korea. Concentrations in three different phases (freely dissolved, apparently dissolved, and particulate) were measured, to investigate the aquatic fate of PCBs and PBDEs. The freely dissolved (SPMD) concentrations were 2–3 times higher than the apparently dissolved and particulate phase (grab sample) concentrations. No meaningful relationships were found between the total PCB and PBDE concentrations of the grab sample and SPMD sample because of the different partitioning behaviors and detection frequencies of the individual chemicals. However, the summed concentrations of specific PCB and PBDE congeners (that were abundant in all samples) in the grab and SPMD samples correlated well (r2 = 0.7451 for PCBs 28 + 52 + 153, r2 = 0.9987 for PBDEs 28 + 47 + 99). The PBDE concentrations measured using SPMDs decreased with increasing distance from the STP, but no apparent dilution effect was found in the grab samples. Our results show that SPMDs could be used to support grab sampling for specific chemicals, or to trace chemical sources (such as STPs) to the aquatic environment.

  3. Using SPMDs for monitoring hydrophobic organic compounds in urban river water in Korea compared with using conventional water grab samples.

    PubMed

    Kim, Un-Jung; Kim, Hee Young; Alvarez, David; Lee, In-Seok; Oh, Jeong-Eun

    2014-02-01

    We aimed to verify the effectiveness of semi-permeable membrane devices (SPMDs) for monitoring hydrophobic organic compounds, such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), that are not easy to detect using conventional grab samples (because of their low concentrations), in water. We used SPMDs and grab samples to monitor PCBs and PBDEs upstream and downstream of a sewage treatment plant (STP) in the Suyeong River in Busan, Korea. Concentrations in three different phases (freely dissolved, apparently dissolved, and particulate) were measured, to investigate the aquatic fate of PCBs and PBDEs. The freely dissolved (SPMD) concentrations were 2-3 times higher than the apparently dissolved and particulate phase (grab sample) concentrations. No meaningful relationships were found between the total PCB and PBDE concentrations of the grab sample and SPMD sample because of the different partitioning behaviors and detection frequencies of the individual chemicals. However, the summed concentrations of specific PCB and PBDE congeners (that were abundant in all samples) in the grab and SPMD samples correlated well (r(2)=0.7451 for PCBs 28+52+153, r(2)=0.9987 for PBDEs 28+47+99). The PBDE concentrations measured using SPMDs decreased with increasing distance from the STP, but no apparent dilution effect was found in the grab samples. Our results show that SPMDs could be used to support grab sampling for specific chemicals, or to trace chemical sources (such as STPs) to the aquatic environment.

  4. Tank 241-SY-102 January 2000 Compatibility Grab Samples Analytical Results for the Final Report [SEC 1 and 2

    SciTech Connect

    BELL, K.E.

    2000-05-11

    This document is the format IV, final report for the tank 241-SY-102 (SY-102) grab samples taken in January 2000 to address waste compatibility concerns. Chemical, radiochemical, and physical analyses on the tank SY-102 samples were performed as directed in Comparability Grab Sampling and Analysis Plan for Fiscal Year 2000 (Sasaki 1999). No notification limits were exceeded. Preliminary data on samples 2SY-99-5, -6, and -7 were reported in ''Format II Report on Tank 241-SY-102 Waste Compatibility Grab Samples Taken in January 2000'' (Lockrem 2000). The data presented here represent the final results.

  5. Waste compatibility safety issues and final results for Tank 241-AP-103 grab samples

    SciTech Connect

    Nuzum, J.L.

    1997-10-02

    Three grab samples (3AP-97-2, 3AP-97-3, and 3AP-97-4) were taken from Riser 1 of Tank 241-AP-103 on August 21, 1997, and received by 222-S Laboratory on August 22, 1997. These samples were analyzed in accordance with Compatibility Grab Sampling and Analysis Plan for Fiscal Year 1997 (TSAP) (Field, 1997) and Data Quality Objectives for Tank Farms Waste and Compatibility Program (Mulkey et. al., 1995) (DQO) in support of the Waste Compatibility Program. No notifications were required based on sample results. Appearance and Sample Breakdown Attachment 1 illustrates subsamples generated in the laboratory for analyses and identifies their sources. Furthermore, this reference relates tank farm identification numbers to their corresponding 222-S Laboratory Information Management System sample numbers. Table 1 summarizes appearance information and over-the-top (OTR) dose readings performed on each sample. For each sample, two 20 ml subsamples were created for inorganic and radiochemical analyses.

  6. COMPARISON OF FOUR ARTIFICIAL SUBSTRATES AND THE PONAR GRAB FOR BENTHIC INVERTEBRATE COLLECTION.

    USGS Publications Warehouse

    Slack, Keith V.; Ferreira, Rodger F.; Averett, Robert C.

    1986-01-01

    Four different bottom-placed artificial substrates were compared with the Ponar grab for collecting benthic invertebrates. Artificial substrate samples of organisms were larger and more diverse than those of the grab. Barbeque Basket samplers caught the most taxa and individuals and Beak Trays caught the least. Chironomids and crustaceans were dominant in artificial substrate samples. Exposure habitat (left or right bank) determined taxa availability, whereas sampler design determined suitability for colonization by the taxa. Diversity for Beak Tray samples was lower than that for other artificial substrates but higher than for Ponar samples. The Barbeque Basket, Bull Basket, and Multiple Plate samples were taxonomically similar. Ponar samples were different, and Beak Trays were of intermediate similarity. Additional study results are discussed.

  7. A comparison of surface-grab and cross sectionally integrated stream-water-quality sampling methods

    USGS Publications Warehouse

    Martin, G.R.; Smoot, J.L.; White, K.D.

    1992-01-01

    Stream sampling for water quality data has commonly employed simple surface-grab procedures as opposed to more involved, cross sectionally integrated techniques. Paired samples for analysis of selected constituents were collected over various flow conditions at four sites to evaluate differences between the two sampling methods. Concentrations of dissolved constituents were not consistently different. However, concentrations of suspended sediment and the total forms of some sediment-associated constituents, such as phosphorus, iron, and manganese, were significantly lower in the surface-grab samples than in the cross sectionally integrated samples. The largest median percent difference in concentration for a site was 60% (total recoverable manganese). Median percent differences in concentration for sediment-associated constituents considering all sites grouped were in the range of 20-25%. The surface-grab samples underrepresented concentrations of suspended sediment and some sediment-associated constituents, thus limiting the applicability of such data for certain purposes. An association was also demonstrated between site streamflow characteristics and the observed differences.

  8. Adhesive plasters

    DOEpatents

    Holcombe, Jr., Cressie E.; Swain, Ronald L.; Banker, John G.; Edwards, Charlene C.

    1978-01-01

    Adhesive plaster compositions are provided by treating particles of Y.sub.2 O.sub.3, Eu.sub.2 O.sub.3, Gd.sub.2 O.sub.3 or Nd.sub.2 O.sub.3 with dilute acid solutions. The resulting compositions have been found to spontaneously harden into rigid reticulated masses resembling plaster of Paris. Upon heating, the hardened material is decomposed into the oxide, yet retains the reticulated rigid structure.

  9. GRAbB: Selective Assembly of Genomic Regions, a New Niche for Genomic Research.

    PubMed

    Brankovics, Balázs; Zhang, Hao; van Diepeningen, Anne D; van der Lee, Theo A J; Waalwijk, Cees; de Hoog, G Sybren

    2016-06-01

    GRAbB (Genomic Region Assembly by Baiting) is a new program that is dedicated to assemble specific genomic regions from NGS data. This approach is especially useful when dealing with multi copy regions, such as mitochondrial genome and the rDNA repeat region, parts of the genome that are often neglected or poorly assembled, although they contain interesting information from phylogenetic or epidemiologic perspectives, but also single copy regions can be assembled. The program is capable of targeting multiple regions within a single run. Furthermore, GRAbB can be used to extract specific loci from NGS data, based on homology, like sequences that are used for barcoding. To make the assembly specific, a known part of the region, such as the sequence of a PCR amplicon or a homologous sequence from a related species must be specified. By assembling only the region of interest, the assembly process is computationally much less demanding and may lead to assemblies of better quality. In this study the different applications and functionalities of the program are demonstrated such as: exhaustive assembly (rDNA region and mitochondrial genome), extracting homologous regions or genes (IGS, RPB1, RPB2 and TEF1a), as well as extracting multiple regions within a single run. The program is also compared with MITObim, which is meant for the exhaustive assembly of a single target based on a similar query sequence. GRAbB is shown to be more efficient than MITObim in terms of speed, memory and disk usage. The other functionalities (handling multiple targets simultaneously and extracting homologous regions) of the new program are not matched by other programs. The program is available with explanatory documentation at https://github.com/b-brankovics/grabb. GRAbB has been tested on Ubuntu (12.04 and 14.04), Fedora (23), CentOS (7.1.1503) and Mac OS X (10.7). Furthermore, GRAbB is available as a docker repository: brankovics/grabb (https://hub.docker.com/r/brankovics/grabb/).

  10. GRAbB: Selective Assembly of Genomic Regions, a New Niche for Genomic Research.

    PubMed

    Brankovics, Balázs; Zhang, Hao; van Diepeningen, Anne D; van der Lee, Theo A J; Waalwijk, Cees; de Hoog, G Sybren

    2016-06-01

    GRAbB (Genomic Region Assembly by Baiting) is a new program that is dedicated to assemble specific genomic regions from NGS data. This approach is especially useful when dealing with multi copy regions, such as mitochondrial genome and the rDNA repeat region, parts of the genome that are often neglected or poorly assembled, although they contain interesting information from phylogenetic or epidemiologic perspectives, but also single copy regions can be assembled. The program is capable of targeting multiple regions within a single run. Furthermore, GRAbB can be used to extract specific loci from NGS data, based on homology, like sequences that are used for barcoding. To make the assembly specific, a known part of the region, such as the sequence of a PCR amplicon or a homologous sequence from a related species must be specified. By assembling only the region of interest, the assembly process is computationally much less demanding and may lead to assemblies of better quality. In this study the different applications and functionalities of the program are demonstrated such as: exhaustive assembly (rDNA region and mitochondrial genome), extracting homologous regions or genes (IGS, RPB1, RPB2 and TEF1a), as well as extracting multiple regions within a single run. The program is also compared with MITObim, which is meant for the exhaustive assembly of a single target based on a similar query sequence. GRAbB is shown to be more efficient than MITObim in terms of speed, memory and disk usage. The other functionalities (handling multiple targets simultaneously and extracting homologous regions) of the new program are not matched by other programs. The program is available with explanatory documentation at https://github.com/b-brankovics/grabb. GRAbB has been tested on Ubuntu (12.04 and 14.04), Fedora (23), CentOS (7.1.1503) and Mac OS X (10.7). Furthermore, GRAbB is available as a docker repository: brankovics/grabb (https://hub.docker.com/r/brankovics/grabb/). PMID

  11. GRAbB: Selective Assembly of Genomic Regions, a New Niche for Genomic Research

    PubMed Central

    Zhang, Hao; van Diepeningen, Anne D.; van der Lee, Theo A. J.; Waalwijk, Cees; de Hoog, G. Sybren

    2016-01-01

    GRAbB (Genomic Region Assembly by Baiting) is a new program that is dedicated to assemble specific genomic regions from NGS data. This approach is especially useful when dealing with multi copy regions, such as mitochondrial genome and the rDNA repeat region, parts of the genome that are often neglected or poorly assembled, although they contain interesting information from phylogenetic or epidemiologic perspectives, but also single copy regions can be assembled. The program is capable of targeting multiple regions within a single run. Furthermore, GRAbB can be used to extract specific loci from NGS data, based on homology, like sequences that are used for barcoding. To make the assembly specific, a known part of the region, such as the sequence of a PCR amplicon or a homologous sequence from a related species must be specified. By assembling only the region of interest, the assembly process is computationally much less demanding and may lead to assemblies of better quality. In this study the different applications and functionalities of the program are demonstrated such as: exhaustive assembly (rDNA region and mitochondrial genome), extracting homologous regions or genes (IGS, RPB1, RPB2 and TEF1a), as well as extracting multiple regions within a single run. The program is also compared with MITObim, which is meant for the exhaustive assembly of a single target based on a similar query sequence. GRAbB is shown to be more efficient than MITObim in terms of speed, memory and disk usage. The other functionalities (handling multiple targets simultaneously and extracting homologous regions) of the new program are not matched by other programs. The program is available with explanatory documentation at https://github.com/b-brankovics/grabb. GRAbB has been tested on Ubuntu (12.04 and 14.04), Fedora (23), CentOS (7.1.1503) and Mac OS X (10.7). Furthermore, GRAbB is available as a docker repository: brankovics/grabb (https://hub.docker.com/r/brankovics/grabb/). PMID

  12. Power Grab

    ERIC Educational Resources Information Center

    Jacobs, Paula

    2009-01-01

    Peter Pistorino says there is a name for the way he thinks a school district should launch an energy conservation initiative: an "envelope" approach. The term refers to looking at the outside package of a structure to check for inefficiencies: Examine the observable, external sources of energy loss such as the doors, windows, insulation, and…

  13. Grab Bag

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2012

    2012-01-01

    This article presents brief items of interest to counselors and students. It presents a preview of internships and how to build careers for veterans. It also features the Public Service Loan Forgiveness program which helps an individual to repay federal student loans with public service. Lastly, it presents data from the most recent survey for the…

  14. Grab Bag

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2012

    2012-01-01

    This article presents brief items of interest to counselors and students. It introduces the National Student Exchange program that enables students in nearly 200 participating schools to attend classes on another campus in the United States for a semester or a year. It also describes the launching of social network jobs partnership by the U.S.…

  15. Body Composition and Kinematic Analysis of the Grab Start in Youth Swimmers

    PubMed Central

    Alptekin, Ahmet

    2014-01-01

    The purposes of this study were to compare the kinematic variables in youth swimmers during the grab start between sexes and to investigate the relationship between body composition and kinematic variables of the participants. Six female (Mage = 13.71 ± 0.49 yrs) and seven male (Mage = 14.00 ± 1.07 yrs) swimmers participated in this study. All participants were required to perform grab start tests in random order (three trials by each participant), while the best attempt was analyzed. Nineteen kinematic parameters consisting of block time, flight time, flight distance, total time, total distance, horizontal and vertical displacement of the center of mass (CM) at take-off, horizontal and vertical displacement of the CM at entry, height of take-off and entry, relative height of take-off, horizontal and vertical velocity of the CM at take-off, horizontal and vertical velocity of the CM at entry, angle of take-off, angle of entry and angle of knee at block were analyzed. Out of the 19 evaluated kinematic parameters, a statistical difference between the female and male group was found only in the total distance. Therefore, both female and male groups are considered as only one group and merged after analyzing the results. Statistical analysis showed positive and negative correlations between horizontal / vertical velocity of CM at take-off and several kinematic variables (e.g. angle of entry (rhorizontal = −.868, p=.000 / rvertical = .591, p=.02), total distance (rhorizontal = .594, p=.02 / rvertical = .54, p=.04), and height of take-off (rvertical = .888, p=.000), respectively). On the other hand, positive and negative correlations were found between somatotype components and several kinematic variables (e.g. horizontal displacement of CM at entry (rendomorphy = −.626, p=.013), angle of entry (rmesomorphy = −.686, p=.005 / rectomorphy = .52, p=.047), total distance (rendomorphy = −.626, p=.012), and height of take-off (rendomorphy = −.633, p=.011

  16. REPORT ON ELECTROCHEMICAL CORROSION TESTING FOR TANK 241-AN-106 USING 2009 SAMPLING CAMPAIGN GRAB SAMPLES

    SciTech Connect

    WYRWAS RB

    2010-05-11

    Based on an ENRAF waste surface measurement taken February 1, 2009, double-shell tank (DST) 24l-AN-l06 (AN-106) contained approximately 278.98 inches (793 kgal) of waste. A zip cord measurement from the tank on February 1, 2009, indicated a settled solids layer of 9l.7 inches in height (280 kgal). The supernatant layer in February 2009, by difference, was approximately 187 inches deep (514 kgal). Laboratory results from AN-l06 February 1, 2009 (see Table 2) grab samples indicated the supernatant was below the chemistry limit that applied at the time as identified in HNF-SD-WM-TSR-006, 'Tank Farms Technical Safety Requirements', Administrative Control (AC) 5.16, 'Corrosion Mitigation Controls.' The limits have since been removed from the Technical Safety Requirements (TSR) and are captured in OSD-T-15l-00007, 'Operating Specifications for the Double-Shell Storage Tanks.' Problem evaluation request WRPS-PER-2009-0218 was submitted February 9,2009, to document the finding that the supernatant chemistry for grab samples taken from the middle and upper regions of the supernatant was noncompliant with the chemistry control limits. The lab results for the samples taken from the bottom region of the supernatant met AC 5.16 limits.

  17. The effects of unilateral grab rail assistance on the sit-to-stand performance of older aged adults.

    PubMed

    O'Meara, Damien M; Smith, Richard M

    2006-04-01

    This study investigated the effects of unilateral grab rail assistance during the sit-to-stand transfer to develop an understanding of lower limb joint mechanics and whole body movement patterns. External reaction forces at the grab rail and floor interfaces were also investigated to understand the nature of the assistance provided by the introduction of unilateral upper body assistance. While 12 older aged adults performed the sit-to-stand, three-dimensional body segment kinematics were recorded to determine lower body joint motion and whole body centre of mass motion. Grab rail reaction forces and bilateral ground reaction forces were recorded to determine external reaction forces and lower body joint kinetics. Grab rail assisted conditions were compared with unassisted transfers. During grab rail assistance, a systematic asymmetry was introduced to lower limb joint kinetics, without noticeable alterations to peak lower body joint motion and whole body movement patterns. Ipsilateral net joint moments and powers decreased in the ankle and hip and increased in the knee, while the contralateral net joint moments and powers increased in the hip and decreased in the knee. Joint kinetic and kinematic responses suggest a motor control strategy that maintains symmetric sit-to-stand movement patterns by adjusting bilateral muscle control when a unilateral external reaction force is provided. Understanding the mechanical assistance that is generated during the sit-to-stand will facilitate optimal design of grab rails for older aged adults and may contribute to design for specific pathologies. Such design implementation will influence the ability of older aged adults to remain independent in the community.

  18. Thermal Characterization of Adhesive

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.

    1999-01-01

    The current Space Shuttle Reusable Solid Rocket Motor (RSRM) nozzle adhesive bond system is being replaced due to obsolescence. Down-selection and performance testing of the structural adhesives resulted in the selection of two candidate replacement adhesives, Resin Technology Group's Tiga 321 and 3M's EC2615XLW. This paper describes rocket motor testing of these two adhesives. Four forty-pound charge motors were fabricated in configurations that would allow side by side comparison testing of the candidate replacement adhesives and the current RSRM adhesives. The motors provided an environment where the thermal performance of adhesives in flame surface bondlines was compared. Results of the FPC testing show that: 1) The phenolic char depths on radial bond lines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used; 2) The adhesive char depth of the candidate replacement adhesives is less than the char depth of the current adhesives; 3) The heat-affected depth of the candidate replacement adhesives is less than the heat-affected depth of the current adhesives; and 4) The ablation rates for both replacement adhesives are slower than that of the current adhesives.

  19. Uncertainty in predictions of seabed sediment classes based on grab samples and acoustic data

    NASA Astrophysics Data System (ADS)

    Lark, Murray; Dove, Dayton; Green, Sophie; Stewart, Heather; Marchant, Ben; Diesing, Markus

    2016-04-01

    Mapping seabed habitats is an essential prerequisite to policy and management decisions. The texture of the seabed sediments, defined with respect to the proportions of gravel, sand and mud size fractions, is a basic property that distinguishes sedimentary seabed habitats under the EUNIS habitat classification scheme. EUNIS sediment habitats are defined on this 2-D texture triangle. The composition of the seabed sediments at an unsampled site can be predicted by additive log-ratio cokriging from grab samples, and it is possible to include acoustic backscatter and bathymetry data to improve the precision of these predictions. In this presentation we shall show how this is achieved. The prediction distribution on the texture triangle can be summarized to express the uncertainty of these kriging predictions. Probabilities can be computed for each EUNIS texture class, and the uncertainty expressed with respect either to the probability of the most probable class, or the information content of the set of class probabilities summarized by their entropy.

  20. "Grab" and good science: writing up the results of qualitative research.

    PubMed

    Gilgun, Jane F

    2005-02-01

    Qualitative researchers have an array of choices in how to write up their research. Yet many write in distanced, third-person voices and give short shrift to the voices of informants, as if neither they nor their informants were part of the research. In doing so, they might believe that their writing style is scientific. Unfortunately, such styles of writing not only silence their informants and themselves, but many times they also contradict the philosophies of science on which many forms of qualitative research are based. If our philosophies of science are science, then how we write up our research, when it is consistent with our science, must logically be scientific. "Grab," or writing that is both interesting and memorable, goes hand in hand with good science.

  1. RECOMMENDED OPERATING PROCEDURE NO. 56: COLLECTION OF GASEOUS GRAB SAMPLES FROM COMBUSTION SOURCES FOR NITROUS OXIDE MEASUREMENT

    EPA Science Inventory

    The document is a recommended operating procedure, prepare or use in research activities conducted by EPA's Air and Energy Engineering Research Laboratory (AEERL). The procedure applies to the collection of gaseous grab samples from fossil fuel combustion sources for subsequent a...

  2. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  3. Understanding Marine Mussel Adhesion

    SciTech Connect

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  4. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  5. Comparison of Grab, Air, and Surface Results for Radiation Site Characterization

    NASA Astrophysics Data System (ADS)

    Glassford, Eric Keith

    2011-12-01

    The use of proper sampling methods and sample types for evaluating sites believed to be contaminated with radioactive materials is necessary to avoid misrepresenting conditions at the site. This study was designed to investigate if the site characterization, based upon uranium contamination measured in different types of samples, is dependent upon the mass of the sample collected. A bulk sample of potentially contaminated interior dirt was collected from an abandoned metal processing mill that rolled uranium between 1948 and 1956. The original mill dates from 1910 and has a dirt floor. The bulk sample was a mixture of dirt, black and yellow particles of metal dust, and small fragments of natural debris. Small mass (approximately 0.75 grams (g)) and large mass (approximately 70g) grab samples were prepared from the bulk sample material to simulate collection of a "grab" type sample. Air sampling was performed by re-suspending a portion of the bulk sample material using a vibration table to simulate airborne contamination that might be present during site remediation. Additionally, samples of removable contaminated surface dust were collected on 47 mm diameter filter paper by wiping the surfaces of the exposure chamber used to resuspend the bulk material. Certified reference materials, one containing a precisely known quantity of U 3O8 and one containing a known quantity of natural uranium, were utilized to calibrate the gamma spectrometry measurement system. Non-destructive gamma spectrometry measurements were used to determine the content of uranium-235 (235U) at 185 keV and 143 keV, thorium-234 (234Th) at 63 keV, and protactinium-234m (234mPa) at 1001 keV in each sample. Measurement of natural uranium in small, 1 g samples is usually accomplished by radiochemical analysis in order to measure alpha particles emitted by 238U, 235U, and 234U. However, uranium in larger bulk samples can also be measured non-destructively using gamma spectrometry to detect the low

  6. Tank 241-S-304, Grab samples, 304S-98-1, 304S-98-2 and 304S-98-3 analytical results for the final report

    SciTech Connect

    STEEN, F.H.

    1999-02-23

    This document is the final report for tank 241-S-304 grab samples. Four grab samples were collected from riser 4 on July 30, 1998. Analyses were performed in accordance with the Compatibility Grab Sampling and Analysis Plan (TSAP) (Sasaki, 1998) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO). The analytical results are presented in the data summary report (Table 1). None of the subsamples submitted for differential scanning calorimetry (DSC), total organic carbon (TOC) and plutonium 239 (Pu239) analyses exceeded the notification limits as stated in TSAP (Saaaki, 1998).

  7. Tank 241-U-103, grab samples 3U-99-1, 3u-99-2 and 3U-99-3

    SciTech Connect

    STEEN, F.H.

    1999-08-25

    This document is the final report for tank 241-U-103 grab samples. Three grab samples were collected from riser 13 on March 12, 1999 and received by the 222-S laboratory on March 15, 1999. Analyses were performed in accordance with the Compatibility Grab Sampling and Analysis Plan for Fiscal year 1999 (TSAP) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO). The analytical results are presented in the data summary report. None of the subsamples submitted for differential scanning calorimetry (DSC), total organic carbon (TOC) and plutonium 239 (Pu239) analyses exceeded the notification limits as stated in TSAP.

  8. Tank 241-AN-101, grab samples, 1AN-98-1, 1AN-98-2 and 1AN-98-3 analytical results for the final report

    SciTech Connect

    FULLER, R.K.

    1999-02-24

    This document is the final report for tank 241-AN-101 grab samples. Three grab samples 1AN-98-1, 1AN-98-2 and 1AN-98-3 were taken from riser 16 of tank 241-AN-101 on April 8, 1998 and received by the 222-S Laboratory on April 9, 1998. Analyses were performed in accordance with the ''Compatability Grab Sampling and Analysis Plan'' (TSAP) and the ''Data Quality Objectives for Tank Farms Waste Compatability Program'' (DQO). The analytical results are presented in the data summary report. No notification limits were exceeded.

  9. Tank 241-ER-311, grab samples, ER311-98-1, ER311-98-2, ER311-98-3 analytical results for the final report

    SciTech Connect

    FULLER, R.K.

    1999-02-24

    This document is the final report for catch tank 241-ER-311 grab samples. Three grab samples ER311-98-1, ER311-98-2 and ER311-98-3 were taken from East riser of tank 241-ER-311 on August 4, 1998 and received by the 222-S Laboratory on August 4, 1998. Analyses were performed in accordance with the Compatibility Grab Sampling and Analysis Plan (TSAP) (Sasaki, 1998)and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO) (Mulkey and Miller, 1997). The analytical results are presented in the data summary report (Table 1). No notification limits were exceeded.

  10. Mini-review: barnacle adhesives and adhesion.

    PubMed

    Kamino, Kei

    2013-01-01

    Barnacles are intriguing, not only with respect to their importance as fouling organisms, but also in terms of the mechanism of underwater adhesion, which provides a platform for biomimetic and bioinspired research. These aspects have prompted questions regarding how adult barnacles attach to surfaces under water. The multidisciplinary and interdisciplinary nature of the studies makes an overview covering all aspects challenging. This mini-review, therefore, attempts to bring together aspects of the adhesion of adult barnacles by looking at the achievements of research focused on both fouling and adhesion. Biological and biochemical studies, which have been motivated mainly by understanding the nature of the adhesion, indicate that the molecular characteristics of barnacle adhesive are unique. However, it is apparent from recent advances in molecular techniques that much remains undiscovered regarding the complex event of underwater attachment. Barnacles attached to silicone-based elastomeric coatings have been studied widely, particularly with respect to fouling-release technology. The fact that barnacles fail to attach tenaciously to silicone coatings, combined with the fact that the mode of attachment to these substrata is different to that for most other materials, indicates that knowledge about the natural mechanism of barnacle attachment is still incomplete. Further research on barnacles will enable a more comprehensive understanding of both the process of attachment and the adhesives used. Results from such studies will have a strong impact on technology aimed at fouling prevention as well as adhesion science and engineering.

  11. Visualisation of fingermarks and grab impressions on dark fabrics using silver vacuum metal deposition.

    PubMed

    Knighting, Susan; Fraser, Joanna; Sturrock, Keith; Deacon, Paul; Bleay, Stephen; Bremner, David H

    2013-09-01

    Vacuum metal deposition (VMD) involves the thermal evaporation of metal (silver) in a vacuum, resulting in a uniform layer being deposited on the specimen being treated. This paper examines the use of silver on dark fabrics, thus offering a simpler operation and more obvious colouration to that of the traditional use of gold and zinc metals which must be evaporated separately. The aim of this study was to investigate the effect of fabric type, donor, mark age and method of fingermark deposition on the quality of marks visualised using silver VMD. This was achieved by collecting fingermark deposits from fifteen donors, of both sexes and various ages, by a grab or a press method. Four different fabrics: satin, polyester, polycotton and cotton were studied over a 10day timeline of 1, 2, 3, 4, 5, 6, 7, 14, 21 and 28+ days. It was found that satin and polyester gave the most positive results, with polyester often producing excellent ridge detail. Cotton and polycotton were less successful with no ridge detail being observed. The donors also had an observable effect on the results obtained probably due to variations in secretions produced or pressures applied during specimen collection. The age of the mark or the method of mark deposition had little influence on the results obtained. Silver VMD is a viable process for visualising marks on certain dark fabrics and has the advantage over gold/zinc VMD in that the marks visualised are light in colour which contrasts well against the dark background.

  12. Land grabbing: a preliminary quantification of economic impacts on rural livelihoods.

    PubMed

    Davis, Kyle F; D'Odorico, Paolo; Rulli, Maria Cristina

    2014-01-01

    Global demands on agricultural land are increasing due to population growth, dietary changes and the use of biofuels. Their effect on food security is to reduce humans' ability to cope with the uncertainties of global climate change. In light of the 2008 food crisis, to secure reliable future access to sufficient agricultural land, many nations and corporations have begun purchasing large tracts of land in the global South, a phenomenon deemed "land grabbing" by popular media. Because land investors frequently export crops without providing adequate employment, this represents an effective income loss for local communities. We study 28 countries targeted by large-scale land acquisitions [comprising 87 % of reported cases and 27 million hectares (ha)] and estimate the effects of such investments on local communities' incomes. We find that this phenomenon can potentially affect the incomes of ~12 million people globally with implications for food security, poverty levels and urbanization. While it is important to note that our study incorporates a number of assumptions and limitations, it provides a much needed initial quantification of the economic impacts of large-scale land acquisitions on rural livelihoods. PMID:25400309

  13. Land grabbing: a preliminary quantification of economic impacts on rural livelihoods.

    PubMed

    Davis, Kyle F; D'Odorico, Paolo; Rulli, Maria Cristina

    2014-01-01

    Global demands on agricultural land are increasing due to population growth, dietary changes and the use of biofuels. Their effect on food security is to reduce humans' ability to cope with the uncertainties of global climate change. In light of the 2008 food crisis, to secure reliable future access to sufficient agricultural land, many nations and corporations have begun purchasing large tracts of land in the global South, a phenomenon deemed "land grabbing" by popular media. Because land investors frequently export crops without providing adequate employment, this represents an effective income loss for local communities. We study 28 countries targeted by large-scale land acquisitions [comprising 87 % of reported cases and 27 million hectares (ha)] and estimate the effects of such investments on local communities' incomes. We find that this phenomenon can potentially affect the incomes of ~12 million people globally with implications for food security, poverty levels and urbanization. While it is important to note that our study incorporates a number of assumptions and limitations, it provides a much needed initial quantification of the economic impacts of large-scale land acquisitions on rural livelihoods.

  14. Seasonal and Temporal Variation in Release of Antibiotics in Hospital Wastewater: Estimation Using Continuous and Grab Sampling

    PubMed Central

    Diwan, Vishal; Stålsby Lundborg, Cecilia; Tamhankar, Ashok J.

    2013-01-01

    The presence of antibiotics in the environment and their subsequent impact on resistance development has raised concerns globally. Hospitals are a major source of antibiotics released into the environment. To reduce these residues, research to improve knowledge of the dynamics of antibiotic release from hospitals is essential. Therefore, we undertook a study to estimate seasonal and temporal variation in antibiotic release from two hospitals in India over a period of two years. For this, 6 sampling sessions of 24 hours each were conducted in the three prominent seasons of India, at all wastewater outlets of the two hospitals, using continuous and grab sampling methods. An in-house wastewater sampler was designed for continuous sampling. Eight antibiotics from four major antibiotic groups were selected for the study. To understand the temporal pattern of antibiotic release, each of the 24-hour sessions were divided in three sub-sampling sessions of 8 hours each. Solid phase extraction followed by liquid chromatography/tandem mass spectrometry (LC-MS/MS) was used to determine the antibiotic residues. Six of the eight antibiotics studied were detected in the wastewater samples. Both continuous and grab sampling methods indicated that the highest quantities of fluoroquinolones were released in winter followed by the rainy season and the summer. No temporal pattern in antibiotic release was detected. In general, in a common timeframe, continuous sampling showed less concentration of antibiotics in wastewater as compared to grab sampling. It is suggested that continuous sampling should be the method of choice as grab sampling gives erroneous results, it being indicative of the quantities of antibiotics present in wastewater only at the time of sampling. Based on our studies, calculations indicate that from hospitals in India, an estimated 89, 1 and 25 ng/L/day of fluroquinolones, metronidazole and sulfamethoxazole respectively, might be getting released into the

  15. Tank 241-AP-103 08/1999 Compatibility Grab Samples and Analytical Results for the Final Report

    SciTech Connect

    BELL, K.E.

    1999-12-09

    This document is the format IV, final report for the tank 241-AP-103 (AP-103) grab samples taken in August 1999 to address waste compatibility concerns. Chemical, radiochemical, and physical analyses on the tank AP-103 samples were performed as directed in ''Compatibility Grub Sampling and Analysis Plan for Fiscal Year 1999'' (Sasaki 1999a). Any deviations from the instructions provided in the tank sampling and analysis plan (TSAP) were discussed in this narrative. No notification limits were exceeded.

  16. Waste compatibility and final report for Tank 241-A-101, Grab Samples 1A-96-1, 1A-96-2, and 1A-96-3

    SciTech Connect

    Steen, F.H., Westinghouse Hanford

    1996-07-25

    This document is the final report deliverable for tank 241-A- 101 grab samples. Three grab samples (IA-96-1, IA-96-2 and IA-96-3) were taken from riser 4 of tank 241-A-101. Samples were collected on April 3, 1996 and received by the 222-S Laboratory on April 4, 1996. Analyses were performed in accordance with the Compatibility Grab Sampling and Analysis Plan (TSAP) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO). The samples were subsampled and analyzed in accordance with the TSAP. Two of the three grab samples contained a significant amount of solids and special analyses were requested. None of the samples exceeded notification limits. No similarities in sample appearance were noted; this could be an explanation for the varying analytical results. Quality control issues are discussed in each analytical subheading. The raw data for all analyses are included in this report.

  17. Differences in the Efficiency Between the Grab and Track Starts for Both Genders in Greek Young Swimmers

    PubMed Central

    Thanopoulos, Vassilios; Rozi, Georgia; Okičić, Tomislav; Dopsaj, Milivoj; Jorgić, Bojan; Madić, Dejan; Veličković, Saša; Milanović, Zoran; Spanou, Fani; Batis, Emilios

    2012-01-01

    The aim of this study was to determine the differences in the kinematic parameters between the grab and track starts and the differences in these two starts between genders. A total of 27 swimmers at the competitive level participated in the study, 13 boys (mean ± SD: age 15.8 ± 0.8 years, body mass 67.7 ± 7.7 kg and body height 178.6 ± 5.7 cm) and 14 girls (mean ± SD: age 16 ± 0.8 years, body mass 59.2 ± 6.6 kg and body height 166.2 ± 6.7 cm). Each swimmer performed three attempts for both start techniques. The best attempt of the grab start and the track start was taken for further analysis. The following kinematic parameters were analysed: flight distance, flight time, flight velocity, entry angle and reaction time. The males had greater numeric values for the results in all kinematic parameters for the grab start compared with the track start, except for flight velocity and entry angle (flight time 0.42 vs. 0.41 s, flight distance 3.21 vs. 3.14 m, flight velocity 7.76 vs. 7.83 m/s, entry angle 44.22 vs. 43.85 degrees and reaction time 0.86 vs. 0.81 s). The females also had greater numeric values for the results in all kinematic parameters for the grab start compared with the track start, except for flight time (flight time 0.38 vs. 0.38 s, flight distance 2.82 vs. 2.73 m, flight velocity 7.47 vs. 7.31 m/s, entry angle 45.18 vs. 44.79 degrees and reaction time 0.88 vs. 0.82 s). These results indicate that the males had significantly better results for flight time and flight distance compared with the females for the grab start (flight time 0.42 vs. 0.38 s, flight distance 3.21 vs. 2.82 m). In the case of the track start, the males had significantly better results for flight distance (3.14 vs. 2.73 m). Exploring the characteristics of the two starts did not lead to any significant kinematic differences. Therefore, a conclusion that demonstrates the superiority of one of the techniques cannot be reached. The coach, together with each swimmer individually

  18. Adhesion at metal interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1991-01-01

    A basic adhesion process is defined, the theory of the properties influencing metallic adhesion is outlined, and theoretical approaches to the interface problem are presented, with emphasis on first-principle calculations as well as jellium-model calculations. The computation of the energies of adhesion as a function of the interfacial separation is performed; fully three-dimensional calculations are presented, and universality in the shapes of the binding energy curves is considered. An embedded-atom method and equivalent-crystal theory are covered in the framework of issues involved in practical adhesion.

  19. Gecko adhesion: evolutionary nanotechnology.

    PubMed

    Autumn, Kellar; Gravish, Nick

    2008-05-13

    If geckos had not evolved, it is possible that humans would never have invented adhesive nanostructures. Geckos use millions of adhesive setae on their toes to climb vertical surfaces at speeds of over 1ms-1. Climbing presents a significant challenge for an adhesive in requiring both strong attachment and easy rapid removal. Conventional pressure-sensitive adhesives (PSAs) are either strong and difficult to remove (e.g. duct tape) or weak and easy to remove (e.g. sticky notes). The gecko adhesive differs dramatically from conventional adhesives. Conventional PSAs are soft viscoelastic polymers that degrade, foul, self-adhere and attach accidentally to inappropriate surfaces. In contrast, gecko toes bear angled arrays of branched, hair-like setae formed from stiff, hydrophobic keratin that act as a bed of angled springs with similar effective elastic modulus to that of PSAs. Setae are self-cleaning and maintain function for months during repeated use in dirty conditions. Setae are an anisotropic 'frictional adhesive' in that adhesion requires maintenance of a proximally directed shear load, enabling either a tough bond or spontaneous detachment. Gecko-like synthetic adhesives may become the glue of the future-and perhaps the screw of the future as well.

  20. Electro-dry-adhesion.

    PubMed

    Krahn, Jeffrey; Menon, Carlo

    2012-03-27

    This work presents novel conductive bioinspired dry adhesives with mushroom caps that enable the use of a synergistic combination of electrostatic and van der Waals forces (electro-dry-adhesion). An increase in shear adhesion bond strength of up to 2046% on a wide range of materials is measured when a maximum electrical field of 36.4 V μm(-1) is applied. A suction effect, due to the shape of the dry adhesive fibers, on overall adhesion was not noted for electro-dry-adhesives when testing was performed at both atmospheric and reduced pressure. Utilization of electrostatics to apply a preloading force to dry adhesive fiber arrays allows increased adhesion even after electrostatic force generation has been halted by ensuring the close contact necessary for van der Waals forces to be effective. A comparison is made between self-preloading of the electro-dry-adhesives and the direct application of a normal preloading pressure resulting in nearly the same shear bond strength with an applied voltage of 3.33 kV on the same sample.

  1. Electro-dry-adhesion.

    PubMed

    Krahn, Jeffrey; Menon, Carlo

    2012-03-27

    This work presents novel conductive bioinspired dry adhesives with mushroom caps that enable the use of a synergistic combination of electrostatic and van der Waals forces (electro-dry-adhesion). An increase in shear adhesion bond strength of up to 2046% on a wide range of materials is measured when a maximum electrical field of 36.4 V μm(-1) is applied. A suction effect, due to the shape of the dry adhesive fibers, on overall adhesion was not noted for electro-dry-adhesives when testing was performed at both atmospheric and reduced pressure. Utilization of electrostatics to apply a preloading force to dry adhesive fiber arrays allows increased adhesion even after electrostatic force generation has been halted by ensuring the close contact necessary for van der Waals forces to be effective. A comparison is made between self-preloading of the electro-dry-adhesives and the direct application of a normal preloading pressure resulting in nearly the same shear bond strength with an applied voltage of 3.33 kV on the same sample. PMID:22397643

  2. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  3. Neuron adhesion and strengthening

    NASA Astrophysics Data System (ADS)

    Rocha, Aracely; Jian, Kuihuan; Ko, Gladys; Liang, Hong

    2010-07-01

    Understanding the neuron/material adhesion is important for neuron stimulation and growth. The current challenges remain in the lack of precision of measuring techniques and understanding the behavior of neuron. Here, we report a fluid shear method to investigate adhesion at the neuron/poly-D-lysine interface. In this study, the adhesion of 12-day-old chick embryo-retina neurons cultured on poly-D-lysine coated glass coverslips was measured via parallel disk rotational flow. The shear stress experienced by the cells increases with the disk radius. There is a critical point along the radius (Rc) where the stress experienced by the neurons equals their adhesion. The measured Rc can be used to calculate the neuron adhesion. Our results demonstrate that neurons adhered to the poly-D-lysine had a strain hardening effect. The adhesive shear stress of the neuron-material increased with applied shear (τa). When the τa reached or exceeded the value of 40 dyn/cm2, the adhesion remained constant at approximately 30 dyn/cm2. The present work allowed us not only to quantify the adhesive strength and force but also to evaluate the value of strain hardening at the neuron/poly-D-lysine interface.

  4. Postoperative Peritoneal Adhesions

    PubMed Central

    Ryan, Graeme B.; Grobéty, Jocelyne; Majno, Guido

    1971-01-01

    This paper describes an experimental model of peritoneal adhesions, in the rat, based on two relatively minor accidents that may occur during abdominal surgery in man: drying of the serosa, and bleeding. Drying alone had little effect; drying plus bleeding consistently produced adhesions to the dried area. Fresh blood alone produced adhesions between the three membranous structures [omentum and pelvic fat bodies (PFBs)]. The formation of persistent adhesions required whole blood. Preformed clots above a critical size induced adhesions even without previous serosal injury; they were usually captured by the omentum and PFBs. If all three membranous structures were excised, the clots caused visceral adhesions. The protective role of the omentum, its structure, and the mechanism of omental adhesions, are discussed. These findings are relevant to the pathogenesis of post-operative adhesions in man. ImagesFig 3Fig 4Fig 5Fig 6Fig 7Fig 12Fig 13Fig 1Fig 2Fig 14Fig 15Fig 8Fig 9Fig 10Fig 11 PMID:5315369

  5. Instant acting adhesive system

    NASA Technical Reports Server (NTRS)

    Davis, T. R.; Haines, R. C.

    1971-01-01

    Adhesive developes 80 percent of minimum bond strength of 250 psi less than 30 sec after activation is required. Adhesive is stable, handles easily, is a low toxic hazard, and is useful in industrial and domestic prototype bonding and clamping operations.

  6. Adhesives in larynx repair.

    PubMed

    Lyons, M B; Lyons, G D; Webster, D; Wheeler, V R

    1989-04-01

    Guinea pig laryngeal fractures were used as a model to compare the ease of application and effectiveness of the fibrinogen-adhesive system with the ease of application and effectiveness of cyanoacrylate glue and control fractures stinted with contralateral gelatin film. Seven fibrin adhesive-treated and two cyanoacrylate glue-treated guinea pigs were perfused after 60 and 35 days, respectively. The larynges were serial sectioned, and the wound sites were compared. The fibrinogen adhesive system was easier to dispense than cyanoacrylate glue, did not require a completely dry surface, and stabilized within 3 minutes. Cartilage segment alignment with focal, complete fracture healing and symmetrical chondrocyte proliferation were seen in fibrogen adhesive-stinted larynges. In the cyanoacrylate glue-treated larynges, there was no alignment and minimal, asymmetrical chondrocyte proliferation. Gelatin film-stinted controls exhibited similar features. Thus, fibrogen adhesive was easier to apply and more effectively bound laryngeal fractures than cyanoacrylate glue or gelatin film.

  7. Controls on Bacterial Concentrations in Sediment Grab Samples from the Hudson River Estuary

    NASA Astrophysics Data System (ADS)

    Batta, J.; Mailloux, B. J.; Nitsche, F. O.; Kenna, T. C.; Ferguson, A. S.; Cheung, J.; Layton, A.

    2010-12-01

    High levels of fecal bacteria resulting from sewage-related pollution are often present in the Hudson River Estuary. Die-off of the fecal bacteria in surface waters is relatively rapid but the fecal bacteria can also attach to particles and settle. It is known that fecal bacteria are present in the shallow sediments but controls on their distribution have not been closely examined. The goal of this work is to examine the relationship between the concentration of fecal indicator bacteria and sediment properties including estimates of sediment age. Forty sediment surface grabs were obtained from the Hudson River Estuary. Twenty samples were collected from near the George Washington Bridge (GWB) and twenty samples from a 15 mile transect near Hudson New York. Concentrations of fecal indicator bacteria were determined by the cultured based Enterolert and Colilert tests (Idexx Laboratories) and molecular based techniques for E. coli and Bacteroides. Sediments were analyzed for total metals, total organic carbon, grain size, and gamma emitting radionuclides including Beryllium-7, Lead-210, and Cesium-137. Enterococcus was present in the samples with a geometric mean of 88 cells/g and a range of 4 to 817 cells /g. Culturable E. Coli was present in the samples with a geometric mean of 168 cells /g and a range of 5 to 2247 cells /g. Enterococcus concentrations were significantly higher (p<0.05) in the northern transect. Molecular based concentrations were determined for the GWB samples and were significantly higher than culture based concentrations. Bacteroides was present in the samples with a geometric mean of 1.1x106 copies/g and a range of 3.9x104 to 4.7x106 copies /g. Molecular E. Coli was present in the samples with a geometric mean of 3.0x106 copies/g and a range of 8.7x104 to 8.9x107 copies /g. The results clearly show that a significant amount of fecal bacteria are present in the sediments. Simple linear correlations between bacterial concentrations and sediment

  8. Cytotoxicity of denture adhesives.

    PubMed

    de Gomes, Pedro Sousa; Figueiral, Maria Helena; Fernandes, Maria Helena R; Scully, Crispian

    2011-12-01

    Ten commercially available denture adhesives, nine soluble formulations (six creams, three powders) and one insoluble product (pad), were analyzed regarding the cytotoxicity profile in direct and indirect assays using L929 fibroblast cells. In the direct assay, fibroblasts were seeded over the surface of a thick adhesive gel (5%, creams; 2.5%, powders and pad). In the indirect assay, cells were cultured in the presence of adhesive extracts prepared in static and dynamic conditions (0.5-2%, creams; 0.25-1%, powders and pad). Cell toxicity was assessed for cell viability/proliferation (MTT assay) and cell morphology (observation of the F-actin cytoskeleton organization by confocal laser scanning microscopy). Direct contact of the L929 fibroblasts with the thick adhesive gels caused no, or only a slight, decrease in cell viability/proliferation. The adhesive extracts (especially those prepared in dynamic conditions) caused significantly higher growth inhibition of fibroblasts and, in addition, caused dose- and time-dependent effects, throughout the 6-72 h exposure time. Also, dose-dependent effects on cell morphology, with evident disruption of the F-actin cytoskeleton organization, were seen in the presence of most adhesives. In conclusion, the adhesives possessed different degrees of cytotoxicity, but similar dose- and time-dependent biological profiles.

  9. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  10. Focal adhesions in osteoneogenesis

    PubMed Central

    Biggs, M.J.P; Dalby, M.J

    2010-01-01

    As materials technology and the field of tissue engineering advances, the role of cellular adhesive mechanisms, in particular the interactions with implantable devices, becomes more relevant in both research and clinical practice. A key tenet of medical device technology is to use the exquisite ability of biological systems to respond to the material surface or chemical stimuli in order to help develop next-generation biomaterials. The focus of this review is on recent studies and developments concerning focal adhesion formation in osteoneogenesis, with an emphasis on the influence of synthetic constructs on integrin mediated cellular adhesion and function. PMID:21287830

  11. Cell adhesion force microscopy

    PubMed Central

    Sagvolden, G.; Giaever, I.; Pettersen, E. O.; Feder, J.

    1999-01-01

    The adhesion forces of cervical carcinoma cells in tissue culture were measured by using the manipulation force microscope, a novel atomic force microscope. The forces were studied as a function of time and temperature for cells cultured on hydrophilic and hydrophobic polystyrene substrates with preadsorbed proteins. The cells attached faster and stronger at 37°C than at 23°C and better on hydrophilic than on hydrophobic substrates, even though proteins adsorb much better to the hydrophobic substrates. Because cell adhesion serves to control several stages in the cell cycle, we anticipate that the manipulation force microscope can help clarify some cell-adhesion related issues. PMID:9892657

  12. Adhesive Contact Sweeper

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.

    1993-01-01

    Adhesive contact sweeper removes hair and particles vacuum cleaner leaves behind, without stirring up dust. Also cleans loose rugs. Sweeper holds commercially available spools of inverted adhesive tape. Suitable for use in environments in which air kept free of dust; optics laboratories, computer rooms, and areas inhabited by people allergic to dust. For carpets, best used in tandem with vacuum cleaner; first pass with vacuum cleaner removes coarse particles, and second pass with sweeper extracts fine particles. This practice extends useful life of adhesive spools.

  13. Optical adhesive property study

    SciTech Connect

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  14. Adhesion of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.

    2007-01-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  15. Adhesives for Aerospace

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1985-01-01

    The industry is hereby challenged to integrate adhesive technology with the total structure requirements in light of today's drive into automation/mechanization. The state of the art of adhesive technology is fairly well meeting the needs of the structural designers, the processing engineer, and the inspector, each on an individual basis. The total integration of these needs into the factory of the future is the next collective hurdle to be achieved. Improved processing parameters to fit the needs of automation/mechanization will necessitate some changes in the adhesive forms, formulations, and chemistries. Adhesives have, for the most part, kept up with the needs of the aerospace industry, normally leading the rest of the industry in developments. The wants of the aerospace industry still present a challenge to encompass all elements, achieving a totally integrated joined and sealed structural system. Better toughness with hot-wet strength improvements is desired. Lower cure temperatures, longer out times, and improved corrosion inhibition are desired.

  16. Tank 241-AP-106, Grab samples, 6AP-98-1, 6AP-98-2 and 6AP-98-3 Analytical results for the final report

    SciTech Connect

    FULLER, R.K.

    1999-02-23

    This document is the final report for tank 241-AP-106 grab samples. Three grab samples 6AP-98-1, 6AP-98-2 and 6AP-98-3 were taken from riser 1 of tank 241-AP-106 on May 28, 1998 and received by the 222-S Laboratory on May 28, 1998. Analyses were performed in accordance with the ''Compatability Grab Sampling and Analysis Plan'' (TSAP) (Sasaki, 1998) and the ''Data Quality Objectives for Tank Farms Waste Compatability Program (DQO). The analytical results are presented in the data summary report. No notification limits were exceeded. The request for sample analysis received for AP-106 indicated that the samples were polychlorinated biphenyl (PCB) suspects. The results of this analysis indicated that no PCBs were present at the Toxic Substance Control Act (TSCA) regulated limit of 50 ppm. The results and raw data for the PCB analysis are included in this document.

  17. Tank 241-S-111 08/1999 Compatibility Grab Samples and Analytical Results for the Final Report [SEC 1 and SEC 2

    SciTech Connect

    STEEN, F.H.

    1999-12-01

    This document is the format IV, final report for the tank 241-S-111 (S-111) grab samples taken in August 1999 to address waste compatibility concerns. Chemical, radiochemical, and physical analyses on the tank S-111 samples were performed as directed in Compatibility Grab Sampling and Analysis Plan for Fiscal Year 1999 (Sasaki 1999a,b). Any deviations from the instructions provided in the tank sampling and analysis plan (TSAP) were discussed in this narrative. The notification limit for {sup 137}Cs was exceeded on two samples. Results are discussed in Section 5.3.2. No other notification limits were exceeded.

  18. Tank 241-AP-107, grab samples, 7AP-99-1, 7AP-99-3 and 7AP-99-4 analytical results for the final report

    SciTech Connect

    BELL, K.E.

    1999-08-12

    This document is the format IV, final report for the tank 241-AP-107 (AP-107) grab samples taken in May 1999 to address waste compatibility concerns. Chemical, radiochemical, and physical analyses on the tank AP-107 samples were performed as directed in Compatibility Grab Sampling and Analysis Plan for Fiscal year 1999. Any deviations from the instructions provided in the tank sampling and analysis plan (TSAP) were discussed in this narrative. Interim data were provided earlier to River Protection Project (RPP) personnel, however, the data presented here represent the official results. No notification limits were exceeded.

  19. Tank 241-AP-106, grab samples, 6AP-96-1 through 6AP-96-3 analytical results for the final report

    SciTech Connect

    Esch, R.A., Westinghouse Hanford

    1996-12-11

    This document is the final report for tank 241-AP-106 grab samples. This document presents the analytical results for three samples (6AP-96-1, 6AP-96-2 and 6AP-96-3) taken from riser 1 @ 150{degrees} of tank 241-AP-1 06 on September 12, 1996. Analyses were performed in accordance with the Compatibility Grab Sampling and Analysis Plan (TSAP) (Sasaki, 1996) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO) (Fowler, 1995).

  20. Dry adhesives with sensing features

    NASA Astrophysics Data System (ADS)

    Krahn, J.; Menon, C.

    2013-08-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.

  1. Magnetic field switchable dry adhesives.

    PubMed

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-01

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  2. Concentration comparison of selected constituents between groundwater samples collected within the Missouri River alluvial aquifer using purge and pump and grab-sampling methods, near the city of Independence, Missouri, 2013

    USGS Publications Warehouse

    Krempa, Heather M.

    2015-01-01

    Relative percent differences between methods were greater than 10 percent for most analyzed trace elements. Barium, cobalt, manganese, and boron had concentrations that were significantly different between sampling methods. Barium, molybdenum, boron, and uranium method concentrations indicate a close association between pump and grab samples based on bivariate plots and simple linear regressions. Grab sample concentrations were generally larger than pump concentrations for these elements and may be because of using a larger pore sized filter for grab samples. Analysis of zinc blank samples suggests zinc contamination in filtered grab samples. Variations of analyzed trace elements between pump and grab samples could reduce the ability to monitor temporal changes and potential groundwater contamination threats. The degree of precision necessary for monitoring potential groundwater threats and application objectives need to be considered when determining acceptable variation amounts.

  3. Concentration comparison of selected constituents between groundwater samples collected within the Missouri River alluvial aquifer using purge and pump and grab-sampling methods, near the city of Independence, Missouri, 2013

    USGS Publications Warehouse

    Krempa, Heather M.

    2015-10-29

    Relative percent differences between methods were greater than 10 percent for most analyzed trace elements. Barium, cobalt, manganese, and boron had concentrations that were significantly different between sampling methods. Barium, molybdenum, boron, and uranium method concentrations indicate a close association between pump and grab samples based on bivariate plots and simple linear regressions. Grab sample concentrations were generally larger than pump concentrations for these elements and may be because of using a larger pore sized filter for grab samples. Analysis of zinc blank samples suggests zinc contamination in filtered grab samples. Variations of analyzed trace elements between pump and grab samples could reduce the ability to monitor temporal changes and potential groundwater contamination threats. The degree of precision necessary for monitoring potential groundwater threats and application objectives need to be considered when determining acceptable variation amounts.

  4. Regulation of Cell Adhesion Strength by Peripheral Focal Adhesion Distribution

    PubMed Central

    Elineni, Kranthi Kumar; Gallant, Nathan D.

    2011-01-01

    Cell adhesion to extracellular matrices is a tightly regulated process that involves the complex interplay between biochemical and mechanical events at the cell-adhesive interface. Previous work established the spatiotemporal contributions of adhesive components to adhesion strength and identified a nonlinear dependence on cell spreading. This study was designed to investigate the regulation of cell-adhesion strength by the size and position of focal adhesions (FA). The cell-adhesive interface was engineered to direct FA assembly to the periphery of the cell-spreading area to delineate the cell-adhesive area from the cell-spreading area. It was observed that redistributing the same adhesive area over a larger cell-spreading area significantly enhanced cell-adhesion strength, but only up to a threshold area. Moreover, the size of the peripheral FAs, which was interpreted as an adhesive patch, did not directly govern the adhesion strength. Interestingly, this is in contrast to the previously reported functional role of FAs in regulating cellular traction where sizes of the peripheral FAs play a critical role. These findings demonstrate, to our knowledge for the first time, that two spatial regimes in cell-spreading area exist that uniquely govern the structure-function role of FAs in regulating cell-adhesion strength. PMID:22208188

  5. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  6. Natural Underwater Adhesives

    PubMed Central

    Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

    2011-01-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  7. Revised final report for tank 241-AN-101, grab samples 1AN-95-1 through 1AN-95-7. Revision 1

    SciTech Connect

    Esch, R.A.

    1996-01-17

    Six supernate grab samples and one field blank were taken from tank 241-AN-101. This report documents analyses performed in support of the Safety Screening program: differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), density by specific gravity (Sp.G.), and total alpha activity (AT).

  8. Elastomer toughened polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L. (Inventor)

    1983-01-01

    A rubber-toughened addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state, and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride was mixed, and utilizing solvent or mixture of solvents for the reaction.

  9. Adhesion in hydrogel contacts

    NASA Astrophysics Data System (ADS)

    Torres, J. R.; Jay, G. D.; Kim, K.-S.; Bothun, G. D.

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  10. Switchable bio-inspired adhesives

    NASA Astrophysics Data System (ADS)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  11. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  12. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    PubMed Central

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  13. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  14. Results of a detailed infill lake-sediment survey in the Snow Lake area: Evaluation and comparison of grab sample and short core data

    USGS Publications Warehouse

    Friske, P.W.B.

    1996-01-01

    As part of the Exploration Science and Technology Initiative (EXTECH) program a detailed infill lake-sediment and water survey was undertaken in the Snow Lake area during the fall of 1991. This involved the collection of 346 lake sediment grab samples and concomitant waters. In 1993, additional work was undertaken involving the collection of 23 short cores from selected grab sample sites. The primary objectives of the infill survey and short core work were to: 1) evaluate the effectiveness of lake sediment geochemistry in detecting known mineralization in the Snow Lake area; 2) evaluate and develop new approaches in the use of lake sediment geochemistry; and, 3) define, if possible, new exploration targets. At most sites, data from the cores verify the original grab sample results. However, at a few sites the original anomalous grab sample results are interpreted as being related to contamination as opposed to naturally elevated levels. An unusually thick sequence of contaminated surface sediments with extremely high concentrations of trace metals is a likely contributing factor, a condition which is restricted to lakes in the immediate vicinity of local anthropogenic activity. Collection of lake cores provides a useful new approach to the follow-up of grab sample data and to the application of lake sediment geochemistry, particularly in areas with significant local contamination. Much of the known mineralization in the area is clearly reflected by the lake sediment data. Character of the anomalies mirror the composition of the nearby mineralization. The lake sediment data also identify a number of areas that warrant further investigation, several of which are discussed.

  15. Wood Composite Adhesives

    NASA Astrophysics Data System (ADS)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  16. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  17. Resistance heating releases structural adhesive

    NASA Technical Reports Server (NTRS)

    Glemser, N. N.

    1967-01-01

    Composite adhesive package bonds components together for testing and enables separation when testing is completed. The composite of adhesives, insulation and a heating element separate easily when an electrical current is applied.

  18. 3-D foam adhesive deposition

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.; Salmassy, O. K.

    1976-01-01

    Bonding method, which reduces amount and weight of adhesive, is applicable to foam-filled honeycomb constructions. Novel features of process include temperature-viscosity control and removal of excess adhesive by transfer to cellophane film.

  19. Coating Reduces Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  20. Adhesion behaviors on superhydrophobic surfaces.

    PubMed

    Zhu, Huan; Guo, Zhiguang; Liu, Weimin

    2014-04-18

    The adhesion behaviors of superhydrophobic surfaces have become an emerging topic to researchers in various fields as a vital step in the interactions between materials and organisms/materials. Controlling the chemical compositions and topological structures via various methods or technologies is essential to fabricate and modulate different adhesion properties, such as low-adhesion, high-adhesion and anisotropic adhesion on superhydrophobic surfaces. We summarize the recent developments in both natural superhydrophobic surfaces and artificial superhydrophobic surfaces with various adhesions and also pay attention to superhydrophobic surfaces switching between low- and high-adhesion. The methods to regulate or translate the adhesion of superhydrophobic surfaces can be considered from two perspectives. One is to control the chemical composition and change the surface geometric structure on the surfaces, respectively or simultaneously. The other is to provide external stimulations to induce transitions, which is the most common method for obtaining switchable adhesions. Additionally, adhesion behaviors on solid-solid interfaces, such as the behaviors of cells, bacteria, biomolecules and icing on superhydrophobic surfaces are also noticeable and controversial. This review is aimed at giving a brief and crucial overview of adhesion behaviors on superhydrophobic surfaces.

  1. Environmentally compliant adhesive joining technology

    SciTech Connect

    Tira, J.S.

    1996-08-01

    Adhesive joining offers one method of assembling products. Advantages of adhesive joining/assembly include distribution of applied forces, lighter weight, appealing appearance, etc. Selecting environmentally safe adhesive materials and accompanying processes is paramount in today`s business climate if a company wants to be environmentally conscious and stay in business. Four areas of adhesive joining (adhesive formulation and selection, surface preparation, adhesive bonding process, waste and pollution generation/cleanup/management) all need to be carefully evaluated before adhesive joining is selected for commercial as well as military products. Designing for six sigma quality must also be addressed in today`s global economy. This requires material suppliers and product manufacturers to work even closer together.

  2. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1985-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  3. Development of phosphorylated adhesives

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Giants, T. W.; Jenkins, R. K.; Campbell, P. L.

    1983-01-01

    The synthesis of epoxy prepolymers containing phosphorus was carried out in such a manner as to provide adhesives containing at least 5 percent of this element. The purpose of this was to impart fire retardant properties to the adhesive. The two epoxy derivatives, bis(4-glycidyl-oxyphenyl)phenylphosphine oxide and bis(4-glycidyl-2-methoxyphenyl)phenylphosphonate, and a curing agent, bis(3-aminophenyl)methylphosphine oxide, were used in conjunction with one another and along with conventional epoxy resins and curing agents to bond Tedlar and Polyphenylethersulfone films to Kerimid-glass syntactic foam-filled honeycomb structures. Elevated temperatures are required to cure the epoxy resins with the phosphorus-contaning diamine; however, when Tedlar is being bonded, lower curing temperatures must be used to avoid shrinkage and the concomitant formation of surface defects. Thus, the phosphorus-containing aromatic amine curing agent cannot be used alone, although it is possible to use it in conjunction with an aliphatic amine which would allow lower cure temperatures to be used. The experimental epoxy resins have not provided adhesive bonds quite as strong as those provided by Epon 828 when compared in peel tests, but the differences are not very significant. It should be noted, if optimum properties are to be realized. In any case the fire retardant characteristics of the neat resin systems obtained are quite pronounced, since in most cases the self-extinguishing properties are evident almost instantly when specimens are removed from a flame.

  4. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  5. Adhesion barrier reduces postoperative adhesions after cardiac surgery.

    PubMed

    Kaneko, Yukihiro; Hirata, Yasutaka; Achiwa, Ikuya; Morishita, Hiroyuki; Soto, Hajime; Kobayahsi, Jotaro

    2012-06-01

    Reoperation in cardiac surgery is associated with increased risk due to surgical adhesions. Application of a bioresorbable material could theoretically reduce adhesions and allow later development of a free dissection plane for cardiac reoperation. Twenty-one patients in whom a bioresorbable hyaluronic acid-carboxymethylcellulose adhesion barrier had been applied in a preceding surgery underwent reoperations, while 23 patients underwent reoperations during the same period without a prior adhesion barrier. Blinded observers graded the tenacity of the adhesions from surgical video recordings of the reoperations. No excessive bleeding requiring wound reexploration, mediastinal infection, or other complication attributable to the adhesion barrier occurred. Multiple regression analysis showed that shorter duration of the preceding surgery, non-use of cardiopulmonary bypass in the preceding surgery, and use of the adhesion barrier were significantly associated with less tenacious surgical adhesions. The use of a bioresorbable material in cardiac surgery reduced postoperative adhesions, facilitated reoperation, and did not promote complications. The use of adhesion barrier is recommended in planned staged procedures and those in which future reoperation is likely.

  6. Investigation into the mechanism(s) of antithrombotic effects of carbon monoxide releasing molecule-3 (CORM-3).

    PubMed

    Soni, Hitesh; Jain, Mukul; Mehta, Anita A

    2011-06-01

    Carbon monoxide (CO) like nitric oxide (NO) has been recognized as activator of soluble guanylate cyclase (sGC) in many physiological functions. Studies, which demonstrate the mechanisms by which CO inhibits platelet aggregation in in vivo models, are few. Here we investigated the possible involvement of sGC, NO, plasminogen activator inhibitor (PAI-1) and p38 MAP Kinase in antithrombotic effects of CO released by a novel, water-soluble, CO releasing molecule-3 (CORM-3) using rat. The effects of CORM-3 on in vitro and ex vivo platelet aggregation induced by thrombin as well as in in vivo thrombosis models were studied. When added to rat washed platelets in in vitro study, CORM-3 (100 and 200 μM) inhibited thrombin-induced platelet aggregation. Similarly, antiplatelet effect was also observed when 3mg/kg i.v. infusion of CORM-3 administered for 10 minutes in ex vivo study using rat. Interestingly, in presence of inhibitor of sGC (ODQ, 10mg/kg,i.p.) and inhibitor of nitric oxide synthase (L-NAME, 30 mg/kg,i.p.), inhibition of thrombin-induced aggregation by CORM-3 was significantly blocked. Notably, in presence of inhibitor of K(ATP) channel (glibenclamide, 10mg/kg,i.p.) and p38 MAP Kinase (SCIO-469, 1mg/kg, i.p.), inhibition of aggregation by CORM-3 was not blocked. In in vivo studies using animal models of thrombosis, we found that CORM-3-mediated antithrombotic effect was dependent on activation of sGC, NO and suppression of PAI-1 in arterial thrombosis and Arterio-Venous (A-V) shunt models. Therefore, we concluded that antithrombotic activity of CORM-3 may be mediated by activation of sGC, NO and inhibition of PAI-1.

  7. A Framework for Applying Point Clouds Grabbed by Multi-Beam LIDAR in Perceiving the Driving Environment.

    PubMed

    Liu, Jian; Liang, Huawei; Wang, Zhiling; Chen, Xiangcheng

    2015-08-31

    The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc., is critical for developing intelligent vehicles. The road elements included in this work are road curbs and dynamic road obstacles that directly affect the drivable area. A framework for the online modeling of the driving environment using a multi-beam LIDAR, i.e., a Velodyne HDL-64E LIDAR, which describes the 3D environment in the form of a point cloud, is reported in this article. First, ground segmentation is performed via multi-feature extraction of the raw data grabbed by the Velodyne LIDAR to satisfy the requirement of online environment modeling. Curbs and dynamic road obstacles are detected and tracked in different manners. Curves are fitted for curb points, and points are clustered into bundles whose form and kinematics parameters are calculated. The Kalman filter is used to track dynamic obstacles, whereas the snake model is employed for curbs. Results indicate that the proposed framework is robust under various environments and satisfies the requirements for online processing.

  8. A Framework for Applying Point Clouds Grabbed by Multi-Beam LIDAR in Perceiving the Driving Environment

    PubMed Central

    Liu, Jian; Liang, Huawei; Wang, Zhiling; Chen, Xiangcheng

    2015-01-01

    The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc., is critical for developing intelligent vehicles. The road elements included in this work are road curbs and dynamic road obstacles that directly affect the drivable area. A framework for the online modeling of the driving environment using a multi-beam LIDAR, i.e., a Velodyne HDL-64E LIDAR, which describes the 3D environment in the form of a point cloud, is reported in this article. First, ground segmentation is performed via multi-feature extraction of the raw data grabbed by the Velodyne LIDAR to satisfy the requirement of online environment modeling. Curbs and dynamic road obstacles are detected and tracked in different manners. Curves are fitted for curb points, and points are clustered into bundles whose form and kinematics parameters are calculated. The Kalman filter is used to track dynamic obstacles, whereas the snake model is employed for curbs. Results indicate that the proposed framework is robust under various environments and satisfies the requirements for online processing. PMID:26404290

  9. Influence of angles of attack, frequency and kick amplitude on swimmer's horizontal velocity during underwater phase of a grab start.

    PubMed

    Houel, Nicolas; Elipot, Marc; André, Frédéric; Hellard, Philippe

    2013-02-01

    The underwater phase of starts represents an important part of the performance in sprint swimming's events. Kinematics variables that swimmers have to take into account to improve their underwater phase of starts are unknown. The aim of this study was to determine the kinematics variables that improve performance during the underwater phase of grab starts. A three-dimensional analysis of the underwater phase of ten swimmers of national level was conducted. Stepwise multiple linear regressions identified the main kinematics variables that influence the horizontal velocity of the swimmer each 0.5 m in the range of 5 to 7.5 m. The results show that the kinematics parameters change during the range of 5 to 7.5 m of the underwater phase of the starts. For this population of swimmers, the results enable proposals of four principles to improve the underwater phase: i) to be streamlined at the beginning of the underwater gliding phase, ii) to start the dolphin kicking after 6 m, iii) to generate propulsive forces using only feet and legs during underwater undulatory swimming, iv) to improve the frequency of underwater undulatory swimming.

  10. Final report for tank 241-AP-108, grab samples 8AP-96-1, 8AP-96-2 and 8AP-96-FB

    SciTech Connect

    Esch, R.A.

    1996-04-19

    This document is the final report deliverable for the tank 241-AP-108 grab samples. The samples were subsampled and analyzed in accordance with the TSAP. Included in this report are the results for the Waste Compatibility analyses, with the exception of DSC and thermogravimetric analysis (TGA) results which were presented in the 45 Day report (Part 2 of this document). The raw data for all analyses, with the exception of DSC and TGA, are also included in this report.

  11. Spatial and temporal distribution of Au and other trace elements in an estuary using the diffusive gradients in thin films technique and grab sampling

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew R.; Salmon, S. Ursula; Rate, Andrew W.; Larsen, Sarah; Kilminster, Kieryn

    2015-12-01

    This study reports the first surface water evaluation of the temporal and spatial variability of Au in an estuary, using recently developed modifications to the diffusive gradients in thin films (DGT) and grab sampling techniques. At the two study sites in the Swan River estuary that were more marine in character, the DGT-measured concentrations of Au (26.3 and 31.3 ng/L) were within the range of total concentrations measured on individual days (13.2-30.6 ng/L and 11.2-37.2 ng/L, respectively). In contrast, at an upstream site, Au concentrations measured by DGT were significantly lower than totals (3.9 ng/L for DGT, compared with 13.2-28.8 ng/L for grab sampling), likely due to either size exclusion of colloids (>70 nm) by DGT or formation of a dissolved, non-DGT-labile Au species (<0.45 μm). DGT-measured concentrations of other metals (Cu, Co, Cr, U, V, Mo and As) were also lower than total concentrations, although in contrast to DGT-measured Au, this phenomenon occurred at all sites. Furthermore, daily grab samples for Au, taken over the 10-day deployment (which included a rain event), showed that Au concentrations could spike substantially (from 15.1 ng/L to 37.2 ng/L) over intervals as short as one day. The combination of simultaneous deployment of different DGT devices and grab sampling represents a new development in efforts to understand the transport and fate of Au together with other elements in dynamic environments such as estuaries.

  12. [Adhesive cutaneous pharmaceutical forms].

    PubMed

    Gafiţanu, E; Matei, I; Mungiu, O C; Pavelescu, M; Mîndreci, I; Apostol, I; Ionescu, G

    1989-01-01

    The adhesive cutaneous pharmaceutical forms aimed to local action release the drug substance in view of a dermatological, traumatological, antirheumatic, cosmetic action. Two such preparations were obtained and their stability, consistency and pH were determined. The "in vitro" tests of their bioavailability revealed the dynamics of calcium ions release according to the associations of each preparation. The bioavailability determined by evaluating the pharmacological response demonstrated the antiinflammatory action obtained by the association of calcium ions with the components extracted from poplar muds. The therapeutical efficiency of the studied preparations has proved in the treatment of some sport injuries.

  13. Puerperal endometritis and intrauterine adhesions.

    PubMed

    Polishuk, W Z; Anteby, S O; Weinstein, D

    1975-08-01

    The role of puerperal endometritis in intrauterine adhesion formation was studied by hysterography in 171 women who had cesarean sections. Of 28 patients who developed significant endometritis, only one developed intracervical adhesions. In the control group of 143 cases, there was also only one such case. Endometritis alone apparently does not play a significant role in intrauterine and endocervical adhesion formation. The possible role of placental fibroblasts in preventing endometrial regeneration is discussed. PMID:1158622

  14. Adhesion properties of gecko setae

    NASA Astrophysics Data System (ADS)

    Hill, Ginel; Peattie, Anne; Daniels, Roxanne; Full, Robert; Kenny, Thomas

    2005-03-01

    Millions of keratin hairs on gecko feet, called setae, act as a spectacular dry adhesive. Each seta branches into hundreds of smaller fibers that terminate in spatula-shaped ends. Morphological differences between the setae from different gecko species are suspected to affect both single-seta and whole-animal adhesion properties. Single-seta adhesive force measurements made using a MEMS piezoresistive cantilever capable of two-axis measurements are presented.

  15. Topographically Tuning Polymer Adhesion

    NASA Astrophysics Data System (ADS)

    Crosby, Alfred

    2003-03-01

    Nature often uses geometry on micro and nano length scales to systematically tailor performance in multivariable environments. A great example, which has received much attention recently, is the foot of a gecko. The gecko's foot is covered with hundreds of thousands of "hair"-like protrusions which dictate a gecko's precise control of adhesion through van der Waals forces.(1) In our research, we fabricate controlled structures ranging from the nano to micro length scales on elastomeric surfaces. Our initial results are based on the topography of spherical caps and high-aspect ratio posts that decorate the surface of polydimethylsiloxane layers. Based on initial calculations, we demonstrate how the aspect ratio and inter-feature spacing greatly affects the near-surface compliance, thus impacting the processes of interface formation. The density and shape of the features are also shown to enhance the prevention of interfacial failure. These results are relevant for the refinement of the soft lithography processing technique, the development of smart adhesives, and the fabrication of bonding sites for biological implants. (1) Autumn, K.; Liang, Y.A.; Hsieh, S.T.; Zesch, W.; Chan, W.P.; Kenny,T.W.; Fearing, R.; Full, R.J. Nature 2000, 405, 681-685.

  16. Principles of adhesion.

    PubMed

    Baier, R E

    1992-01-01

    Understanding interfacial phenomena has been of direct relevance and practical benefit to extending the use of dental adhesives. Both surface physics, which describes properties of the inorganic materials' interfacial zones from their actual phase boundaries toward the bulk phases of the solids, and surface chemistry, which describes phenomena at the solid/biological interface and beyond it into the variable organic environment, have been important. High-energy materials include solids that are very hard, have high melting points, strong intermolecular forces, and basically crystalline structures, such as dental enamel. Low-energy materials, such as dentinal collagen, salivary films, and the organic resins of restorative materials, are softer, lower melting, and have weaker intermolecular forces, poorer crystallinity, and surface energies generally less than 100 ergs/cm. It has been a properly renewed emphasis on wetting of dental surfaces and their modification by primer coats, displacing or mixing with water and adsorbed proteinaceous films, that has promoted the success of many recently developed fourth-generation dentin adhesives. Their improved wettability for biological phases correlates directly with their better infiltration and anchoring of composites.

  17. Analysis and testing of adhesive bonds

    NASA Technical Reports Server (NTRS)

    Anderson, G. P.; Bennett, S. J.; Devries, K. L.

    1977-01-01

    An adhesive fracture mechanics approach is described with reference to the identification and design of the best tests for evaluating a given adhesive, the definition of the most meaningful fundamental parameters by which adhesives might be characterized, and the application of these parameters to the design of joints and to the prediction of their performance. Topics include standard adhesive test techniques, the theory of adhesive fracture, and adhesive fracture energy tests. Analytical methods and computer techniques for adhesive bonding, chemical and physical aspects of adhesive fracture, and specific applications and aspects of adhesive fracture mechanics are discussed.

  18. Stickiness--some fundamentals of adhesion.

    PubMed

    Gay, Cyprien

    2002-12-01

    We review some adhesion mechanisms that have been understood in the field of synthetic adhesives, and more precisely for adhesives that adhere instantaneously (a property named tackiness) and whose adhesive strength usually depends on the applied pressure (pressure-sensitive adhesives). The discussion includes effects of surface roughness, elasticity, cavitation, viscous and elastic fingering, substrate flexibility. PMID:21680396

  19. Stickiness--some fundamentals of adhesion.

    PubMed

    Gay, Cyprien

    2002-12-01

    We review some adhesion mechanisms that have been understood in the field of synthetic adhesives, and more precisely for adhesives that adhere instantaneously (a property named tackiness) and whose adhesive strength usually depends on the applied pressure (pressure-sensitive adhesives). The discussion includes effects of surface roughness, elasticity, cavitation, viscous and elastic fingering, substrate flexibility.

  20. Effect of adhesive thickness on adhesively bonded T-joint

    NASA Astrophysics Data System (ADS)

    Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul

    2013-12-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.

  1. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    PubMed

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-01

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  2. Stretchable, adhesion-tunable dry adhesive by surface wrinkling.

    PubMed

    Jeong, Hoon Eui; Kwak, Moon Kyu; Suh, Kahp Y

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (approximately 10.8 N/cm(2)) and shear adhesion (approximately 14.7 N/cm(2)) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of approximately 3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of approximately 0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment.

  3. Use of continuous and grab sample data for calculating total maximum daily load (TMDL) in agricultural watersheds.

    PubMed

    Gulati, Shelly; Stubblefield, Ashley A; Hanlon, Jeremy S; Spier, Chelsea L; Stringfellow, William T

    2014-03-01

    Measuring the discharge of diffuse pollution from agricultural watersheds presents unique challenges. Flows in agricultural watersheds, particularly in Mediterranean climates, can be predominately irrigation runoff and exhibit large diurnal fluctuation in both volume and concentration. Flow and pollutant concentrations in these smaller watersheds dominated by human activity do not conform to a normal distribution and it is not clear if parametric methods are appropriate or accurate for load calculations. The objective of this study was to compare the accuracy of five load estimation methods to calculate pollutant loads from agricultural watersheds. Calculation of loads using results from discrete (grab) samples was compared with the true-load computed using in situ continuous monitoring measurements. A new method is introduced that uses a non-parametric measure of central tendency (the median) to calculate loads (median-load). The median-load method was compared to more commonly used parametric estimation methods which rely on using the mean as a measure of central tendency (mean-load and daily-load), a method that utilizes the total flow volume (volume-load), and a method that uses measure of flow at the time of sampling (instantaneous-load). Using measurements from ten watersheds in the San Joaquin Valley of California, the average percent error compared to the true-load for total dissolved solids (TDS) was 7.3% for the median-load, 6.9% for the mean-load, 6.9% for the volume-load, 16.9% for the instantaneous-load, and 18.7% for the daily-load methods of calculation. The results of this study show that parametric methods are surprisingly accurate, even for data that have starkly non-normal distributions and are highly skewed.

  4. Fire-Retardant Epoxy Adhesives

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Giants, T. W.

    1982-01-01

    Phosphorus-containing epoxy is fire-retardant and translucent. Intended as adhesive for laminated plastic sheets, new material bonds well to titanium dioxide-filled plastic film, which ordinarily shows little surface interaction with adhesives. Fire retardancy has been demonstrated, and smoke density is low enough to avoid smoke obscuration.

  5. Platelet adhesiveness in diabetes mellitus

    PubMed Central

    Shaw, S.; Pegrum, G. D.; Wolff, Sylvia; Ashton, W. L.

    1967-01-01

    Platelet adhesiveness has been assessed on whole blood from a series of 34 diabetics and 50 control subjects using adenosine diphosphate (A.D.P.) and by adherence to glass microspherules (ballotini). Using both techniques it was possible to demonstrate a significant increase in platelet adhesiveness in the diabetic patients. PMID:5614070

  6. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  7. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  8. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  9. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  10. Epidural Lysis of Adhesions

    PubMed Central

    Lee, Frank; Jamison, David E.; Hurley, Robert W.

    2014-01-01

    As our population ages and the rate of spine surgery continues to rise, the use epidural lysis of adhesions (LOA) has emerged as a popular treatment to treat spinal stenosis and failed back surgery syndrome. There is moderate evidence that percutaneous LOA is more effective than conventional ESI for both failed back surgery syndrome, spinal stenosis, and lumbar radiculopathy. For cervical HNP, cervical stenosis and mechanical pain not associated with nerve root involvement, the evidence is anecdotal. The benefits of LOA stem from a combination of factors to include the high volumes administered and the use of hypertonic saline. Hyaluronidase has been shown in most, but not all studies to improve treatment outcomes. Although infrequent, complications are more likely to occur after epidural LOA than after conventional epidural steroid injections. PMID:24478895

  11. Adhesion testing device

    NASA Technical Reports Server (NTRS)

    LaPeyronnie, Glenn M. (Inventor); Huff, Charles M. (Inventor)

    2010-01-01

    The present invention provides a testing apparatus and method for testing the adhesion of a coating to a surface. The invention also includes an improved testing button or dolly for use with the testing apparatus and a self aligning button hook or dolly interface on the testing apparatus. According to preferred forms, the apparatus and method of the present invention are simple, portable, battery operated rugged, and inexpensive to manufacture and use, are readily adaptable to a wide variety of uses, and provide effective and accurate testing results. The device includes a linear actuator driven by an electric motor coupled to the actuator through a gearbox and a rotatable shaft. The electronics for the device are contained in the head section of the device. At the contact end of the device, is positioned a self aligning button hook, attached below the load cell located on the actuator shaft.

  12. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, R.A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe with an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough. 4 figs.

  13. Biological adhesives and fastening devices

    NASA Astrophysics Data System (ADS)

    Wolpert, H. D.

    2012-04-01

    Sea creatures are a leading source to some of the more interesting discoveries in adhesives. Because sea water naturally breaks down even the strongest conventional adhesive, an alternative is important that could be used in repairing or fabricating anything that might have regular contact with moisture such as: Repairing broken and shattered bones, developing a surgical adhesive, use in the dental work, repairing and building ships, and manufacturing plywood. Some of nature's prototypes include the common mussel, limpet, some bacteria and abalone. As we learn more about these adhesives we are also developing non adhesive fasteners, such as mimicked after studying the octopus, burdock burrs (i.e. Velcro®) and the gecko.

  14. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, Ray A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe within an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough.

  15. Neutrophil adhesion in leukocyte adhesion deficiency syndrome type 2.

    PubMed Central

    Phillips, M L; Schwartz, B R; Etzioni, A; Bayer, R; Ochs, H D; Paulson, J C; Harlan, J M

    1995-01-01

    We have previously reported a newly discovered congenital disorder of neutrophil adhesion, leukocyte adhesion deficiency syndrome type 2 (LAD II). The clinical manifestations of this syndrome are similar to those seen in the classic leukocyte adhesion deficiency syndrome, now designated type 1 (LAD I), but the two syndromes differ in the molecular basis of their adhesion defects. LAD I is caused by a deficiency in the CD18 integrin adhesion molecules while LAD II patients are deficient in expression of sialyl-Lewis X (SLeX), a carbohydrate ligand for selectins. In this report we demonstrate that neutrophils from a LAD II patient bind minimally or not at all to recombinant E-selectin, purified platelet P-selectin, or P-selectin expressed on histamine-activated human umbilical vein endothelial cells, but have normal levels of L-selectin and CD11b/CD18 integrin, and adhere to and migrate across endothelium when CD11b/CD18 is activated. We compare LAD I and LAD II patient neutrophil function in vitro, demonstrating that integrin and selectin adhesion molecules have distinct but interdependent roles in neutrophil adhesion during an inflammatory response. Images PMID:8675661

  16. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives.

    PubMed

    Murphy, Michael P; Kim, Seok; Sitti, Metin

    2009-04-01

    The complex structures that allow geckos to repeatably adhere to surfaces consist of multilevel branching fibers with specialized tips. We present a novel technique for fabricating similar multilevel structures from polymer materials and demonstrate the fabrication of arrays of two- and three-level structures, wherein each level terminates in flat mushroom-type tips. Adhesion experiments are conducted on two-level fiber arrays on a 12-mm-diameter glass hemisphere, which exhibit both increased adhesion and interface toughness over one-level fiber samples and unstructured control samples. These adhesion enhancements are the result of increased surface conformation as well as increased extension during detachment.

  17. Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces

    PubMed Central

    Shirtcliffe, Neil J.; McHale, Glen; Newton, Michael I.

    2012-01-01

    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces. PMID:22693563

  18. Marine Bioinspired Underwater Contact Adhesion.

    PubMed

    Clancy, Sean K; Sodano, Antonio; Cunningham, Dylan J; Huang, Sharon S; Zalicki, Piotr J; Shin, Seunghan; Ahn, B Kollbe

    2016-05-01

    Marine mussels and barnacles are sessile biofouling organisms that adhere to a number of surfaces in wet environments and maintain remarkably strong bonds. Previous synthetic approaches to mimic biological wet adhesive properties have focused mainly on the catechol moiety, present in mussel foot proteins (mfps), and especially rich in the interfacial mfps, for example, mfp-3 and -5, found at the interface between the mussel plaque and substrate. Barnacles, however, do not use Dopa for their wet adhesion, but are instead rich in noncatecholic aromatic residues. Due to this anomaly, we were intrigued to study the initial contact adhesion properties of copolymerized acrylate films containing the key functionalities of barnacle cement proteins and interfacial mfps, for example, aromatic (catecholic or noncatecholic), cationic, anionic, and nonpolar residues. The initial wet contact adhesion of the copolymers was measured using a probe tack testing apparatus with a flat-punch contact geometry. The wet contact adhesion of an optimized, bioinspired copolymer film was ∼15.0 N/cm(2) in deionized water and ∼9.0 N/cm(2) in artificial seawater, up to 150 times greater than commercial pressure-sensitive adhesive (PSA) tapes (∼0.1 N/cm(2)). Furthermore, maximum wet contact adhesion was obtained at ∼pH 7, suggesting viability for biomedical applications. PMID:27046671

  19. Osteoblast adhesion on nanophase ceramics.

    PubMed

    Webster, T J; Siegel, R W; Bizios, R

    1999-07-01

    Osteoblast adhesion on nanophase alumina (Al2O3) and titania (TiO2) was investigated in vitro. Osteoblast adhesion to nanophase alumina and titania in the absence of serum from Dulbecco's modified Eagle medium (DMEM) was significantly (P < 0.01) less than osteoblast adhesion to alumina and titania in the presence of serum. In the presence of 10% fetal bovine serum in DMEM osteoblast adhesion on nanophase alumina (23 nm grain size) and titania (32 nm grain size) was significantly (P < 0.05) greater than on conventional alumina (177 nm grain size) and titania (2.12 microm grain size), respectively, after 1, 2, and 4 h. Further investigation of the dependence of osteoblast adhesion on alumina and titania grain size indicated the presence of a critical grain size for osteoblast adhesion between 49 and 67 nm for alumina and 32 and 56 nm for titania. The present study provides evidence of the ability of nanophase alumina and titania to simulate material characteristics (such as surface grain size) of physiological bone that enhance protein interactions (such as adsorption, configuration, bioactivity, etc.) and subsequent osteoblast adhesion.

  20. FINAL REPORT FOR THE INITIAL SOLID PHASE CHARACTERIZATION OF THE 2011 GRAB SAMPLES AND COMPOSITE FOR THE C-109 HARD HEEL STUDY

    SciTech Connect

    PAGE JS; COOKE G; PESTOVICH JA

    2011-12-01

    On May 3, 2011, solid phase characterization subsamples were taken from six of the eight grab samples that had been collected from tank 241-C-109 in April, 2011 and delivered to the 222-S Laboratory. These subsamples were characterized in order to guide the creation of the composite for the C-109 hard heel study. Visual observation showed that there was a large variability in the physical characteristics of the eight individual grab samples. Several of the grab samples consisted of 'stone-like' cobbles (several > 25 mm in diameter) while the other grab samples were of a finer granular composition referred to as 'bulk material'. Half of the six subsamples taken for this initial SPC were of crushed cobbles and half were of the bulk material. Scanning electron microscopy was performed on all six subsamples, and X-ray diffraction was performed on all three of the 'bulk material' samples and one of the crushed cobble samples. The crushed cobbles were found to be composed primarily of gibbsite (Al[OHh]{sub 3}). Analysis by X-ray diffraction indicated gibbsite to be the only crystalline phase detected, and scanning electron microscopy showed the crushed cobbles to consist primarily of aggregates of euhedral to subhedral gibbsite crystals that were 20 to 100 {mu}m in size. The aggregates, having a moderate amount of pore space, were cemented primarily by recrystallized gibbsite making them resistant to crushing. The bulk material consisted of coarse to fine-grained pebble-sized (2 to 20 mm) particles. The X-ray diffraction analysis showed them to be a mixture of natrophosphate (Na{sub 7}[PO{sub 4}]{sub 2}F{center_dot}19[H{sub 2}O]) and gibbsite crystals in varying amounts in each of the three subsamples (i.e., some grab samples were primarily natrophosphate while others were mixed with gibbsite). The scanning electron microscopy analysis of the bulk material showed the crystals to be euhedral to anhedral (rounded) in shape. Trace phases, too minor to be detected by XRD

  1. Antarctica: up for grabs

    SciTech Connect

    Shapley, D.

    1982-11-01

    Antarctica is viewed as a special area, requiring meticulous diplomacy to develop international agreements for exploiting its resources. Little exploration has been accomplished, but oil, gas, and marine krill resources are protected by a 14-nation treaty dating from 1961. The treaty fixed national claims on specific territories and launched scientific activities that reflect national interests. Studies of meteorology, climatology, oceanography, upper-atmospheric physics, and territorial biology have revealed Antarctica's resource potential for krill, minerals, and even ice. 4 figures. (DCK)

  2. The Administrative Power Grab

    ERIC Educational Resources Information Center

    Sorenson, Richard D.

    2007-01-01

    Administrative power for some school teachers can be an aphrodisiac that can be applied negatively, especially when a leader has devastating instinct for the weaknesses of others. A leader's intellect and heart closes shop and ceases to function when drunk on power. In this article, the author describes how the use of administrative power can be…

  3. Adhesives from modified soy protein

    DOEpatents

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  4. Foreign material in postoperative adhesions.

    PubMed Central

    Luijendijk, R W; de Lange, D C; Wauters, C C; Hop, W C; Duron, J J; Pailler, J L; Camprodon, B R; Holmdahl, L; van Geldorp, H J; Jeekel, J

    1996-01-01

    OBJECTIVE: The authors determined the prevalence of foreign body granulomas in intra-abdominal adhesions in patients with a history of abdominal surgery. PATIENTS AND METHODS: In a cross-sectional, multicenter, multinational study, adult patients with a history of one or more previous abdominal operations and scheduled for laparotomy between 1991 and 1993 were examined during surgery. Patients in whom adhesions were present were selected for study. Quantity, distribution, and quality of adhesions were scored, and adhesion samples were taken for histologic examination. RESULTS: In 448 studied patients, the adhesions were most frequently attached to the omentum (68%) and the small bowel (67%). The amount of adhesions was significantly smaller in patients with a history of only one minor operation or one major operation, compared with those with multiple laparotomies (p < 0.001). Significantly more adhesions were found in patients with a history of adhesions at previous laparotomy (p < 0.001), with presence of abdominal abscess, hematoma, and intestinal leakage as complications after former surgery (p = 0.01, p = 0.002, and p < 0.001, respectively), and with a history of an unoperated inflammatory process (p = 0.04). Granulomas were found in 26% of all patients. Suture granulomas were found in 25% of the patients. Starch granulomas were present in 5% of the operated patients whose surgeons wore starch-containing gloves. When suture granulomas were present, the median interval between the present and the most recent previous laparotomy was 13 months. When suture granulomas were absent, this interval was significantly longer--i.e., 30 months (p = 0.002). The percentage of patients with suture granulomas decreased gradually from 37% if the previous laparotomy had occurred up to 6 months before the present operation, to 18% if the previous laparotomy had occurred more than 2 years ago (p < 0.001). CONCLUSIONS: The number of adhesions found at laparotomy was significantly

  5. Interfacial adhesion of carbon fibers

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.

    1987-01-01

    Relative adhesion strengths between AS4, AS1, and XAS carbon fibers and thermoplastic polymers were determined using the embedded single filament test. Polymers studied included polycarbonate, polyphenylene oxide, polyetherimide, polysulfone, polyphenylene oxide blends with polystyrene, and polycarbonate blends with a polycarbonate polysiloxane block copolymer. Fiber surface treatments and sizings improved adhesion somewhat, but adhesion remained well below levels obtained with epoxy matrices. An explanation for the differences between the Hercules and Grafil fibers was sought using X ray photon spectroscopy, wetting, scanning electron microscopy and thermal desorption analysis.

  6. Notch-Mediated Cell Adhesion

    PubMed Central

    Murata, Akihiko; Hayashi, Shin-Ichi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms. PMID:26784245

  7. Photovoltaic module with adhesion promoter

    DOEpatents

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  8. Advances in light curing adhesives

    NASA Astrophysics Data System (ADS)

    Bachmann, Andy

    2001-11-01

    This paper describes the development of a new family of light curing adhesives containing a new reactive additive previously not used in optical grade light curing adhesives are obtained with the addition of functionalized cellulositics. Outgassing as low as 10-6 grams/gram has been observed based on headspace sampling. Other additives have lowered the shrinkage rates of positioning adhesives from near 1 percent to less than 0.1 percent with fractional, percentage movements over thermal range of -40 degrees C to +200 degrees C.

  9. Wear mechanism based on adhesion

    NASA Technical Reports Server (NTRS)

    Yamamoto, T.; Buckley, D. H.

    1982-01-01

    Various concepts concerning wear mechanisms and deformation behavior observed in the sliding wear track are surveyed. The mechanisms for wear fragment formation is discussed on the basis of adhesion. The wear process under unlubricated sliding conditions is explained in relation to the concept of adhesion at the interface during the sliding process. The mechanism for tearing away the surface layer from the contact area and forming the sliding track contour is explained by assuming the simplified process of material removal based on the adhesion theory.

  10. Tank 241-AX-101 grab samples 1AX-97-1 through 1AX-97-3 analytical results for the final report

    SciTech Connect

    Esch, R.A.

    1997-11-13

    This document is the final report for tank 241-AX-101 grab samples. Four grab samples were collected from riser 5B on July 29, 1997. Analyses were performed on samples 1AX-97-1, 1AX-97-2 and 1AX-97-3 in accordance with the Compatibility Grab Sampling and Analysis Plan (TSAP) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO) (Rev. 1: Fowler, 1995; Rev. 2: Mulkey and Miller, 1997). The analytical results are presented in Table 1. No notification limits were exceeded. All four samples contained settled solids that appeared to be large salt crystals that precipitated upon cooling to ambient temperature. Less than 25 % settled solids were present in the first three samples, therefore only the supernate was sampled and analyzed. Sample 1AX-97-4 contained approximately 25.3 % settled solids. Compatibility analyses were not performed on this sample. Attachment 1 is provided as a cross-reference for relating the tank farm customer identification numbers with the 222-S Laboratory sample numbers and the portion of sample analyzed. Table 2 provides the appearance information. All four samples contained settled solids that appeared to be large salt crystal that precipitated upon cooling to ambient temperature. The settled solids in samples 1AX-97-1, 1AX-97-2 and 1AX-97-3 were less than 25% by volume. Therefore, for these three samples, two 15-mL subsamples were pipetted to the surface of the liquid and submitted to the laboratory for analysis. In addition, a portion of the liquid was taken from each of the these three samples to perform an acidified ammonia analysis. No analysis was performed on the settled solid portion of the samples. Sample 1AX-97-4 was reserved for the Process Chemistry group to perform boil down and dissolution testing in accordance with Letter of Instruction for Non-Routine Analysis of Single-Shell Tank 241-AX-101 Grab Samples (Field, 1997) (Correspondence 1). However, prior to the analysis, the sample was inadvertently

  11. 60-day waste compatibility safety issue and final results for 244-TX DCRT, grab samples TX-95-1, TX-95-2, and TX-95-3

    SciTech Connect

    Esch, R.A.

    1996-01-01

    Three grab samples (TX-95-1, TX-95-2, and TX-95-3) were taken from tank 241- TX-244 riser 8 on November 7, 1995 and received by the 222-S Laboratory on that same day. Samples TX-95-1 and TX-95-2 were designated as supernate liquids, and sample TX-95-3 was designated as a supernate/sludge. These samples were analyzed to support the waste compatibility safety program. Accuracy and precision criteria were met for all analyses. No notifications were required based on sample results. This document provides the analysis to support the waste compatibility safety program.

  12. Reversing Adhesion: A Triggered Release Self‐Reporting Adhesive

    PubMed Central

    Schenzel, Alexander M.; Klein, Christopher; Rist, Kai; Moszner, Norbert

    2016-01-01

    Here, the development of an adhesive is reported – generated via free radical polymerization – which can be degraded upon thermal impact within minutes. The degradation is based on a stimuli responsive moiety (SRM) that is incorporated into the network. The selected SRM is a hetero Diels‐Alder (HDA) moiety that features three key properties. First, the adhesive can be degraded at relatively low temperatures (≈80 °C), second the degradation occurs very rapidly (less than 3 min), and third, the degradation of the network can readily be analyzed and quantified due to its self‐reporting nature. The new reversible self‐reporting adhesion system is characterized in detail starting from molecular studies of the retro HDA reaction. Moreover, the mechanical properties of the network, as well as the adhesion forces, are investigated in detail and compared to common methacrylate‐based systems, demonstrating a significant decrease in mechanic stability at elevated temperatures. The current study thus represents a significant advance of the current state of the art for debonding on demand adhesives, making the system interesting for several fields of application including dental adhesives. PMID:27812461

  13. Adhesion in vascular biology

    PubMed Central

    de Rooij, Johan

    2014-01-01

    The vasculature delivers vital support for all other tissues by supplying oxygen and nutrients for growth and by transporting the immune cells that protect and cure them. Therefore, the microvasculature developed a special barrier that is permissive for gasses like oxygen and carbon dioxide, while fluids are kept inside and pathogens are kept out. While maintaining this tight barrier, the vascular wall also allows immune cells to exit at sites of inflammation or damage, a process that is called transmigration. The endothelial cell layer that forms the inner lining of the vasculature is crucial for the vascular barrier function as well as the regulation of transmigration. Therefore, adhesions between vascular endothelial cells are both tight and dynamic and the mechanisms by which they are established, and the mechanisms by which they are controlled have been extensively studied over the past decades. Because of our fundamental strive to understand biology, but also because defects in vascular barrier control cause a variety of clinical problems and treatment strategies may evolve from our detailed understanding of its mechanisms. This special focus issue features a collection of articles that review key components of the development and control of the endothelial cell-cell junction that is central to endothelial barrier function. PMID:25422845

  14. Seafood delicacy makes great adhesive

    ScienceCinema

    Idaho National Laboratory - Frank Roberto, Heather Silverman

    2016-07-12

    Technology from Mother Nature is often hard to beat, so Idaho National Laboratory scientistsgenetically analyzed the adhesive proteins produced by blue mussels, a seafood delicacy. Afterobtaining full-length DNA sequences encoding these proteins, reprod

  15. Seafood delicacy makes great adhesive

    SciTech Connect

    Idaho National Laboratory - Frank Roberto, Heather Silverman

    2008-03-26

    Technology from Mother Nature is often hard to beat, so Idaho National Laboratory scientistsgenetically analyzed the adhesive proteins produced by blue mussels, a seafood delicacy. Afterobtaining full-length DNA sequences encoding these proteins, reprod

  16. Adhesive interactions between vesicles in the strong adhesion limit

    PubMed Central

    Ramachandran, Arun; Anderson, Travers H.; Leal, L. Gary; Israelachvili, Jacob N.

    2010-01-01

    We consider the adhesive interaction energy between a pair of vesicles in the strong adhesion limit, in which bending forces play a negligible role in determining vesicle shape compared to forces due to membrane stretching. Although force-distance or energy distance relationships characterizing adhesive interactions between fluid bilayers are routinely measured using the surface forces apparatus, the atomic force microscope and the biomembrane force probe, the interacting bilayers in these methods are supported on surfaces (e.g. mica sheet) and cannot be deformed. However, it is known that in a suspension, vesicles composed of the same bilayer can deform by stretching or bending, and can also undergo changes in volume. Adhesively interacting vesicles can thus form flat regions in the contact zone, which will result in an enhanced interaction energy as compared to rigid vesicles. The focus of this paper is to examine the magnitude of the interaction energy between adhesively interacting, deformed vesicles relative to free, undeformed vesicles as a function of the intervesicle separation. The modification of the intervesicle interaction energy due to vesicle deformability can be calculated knowing the undeformed radius of the vesicles, R0, the bending modulus kb, the area expansion modulus Ka, and the adhesive minimum WP(0) and separation DP(0) in the energy of interaction between two flat bilayers, which can be obtained from the force-distance measurements made using the above supported-bilayer methods. For vesicles with constant volumes, we show that adhesive potentials between non-deforming bilayers such as ∣WP(0)∣∼5×10−4mJ/m2, which are ordinarily considered weak in colloidal physics literature, can result in significantly deep (>10×) energy minima due to increase in vesicle area and flattening in the contact region. If the osmotic expulsion of water across the vesicles driven by the tense, stretched membrane in the presence of an osmotically active

  17. Adhesive interactions between vesicles in the strong adhesion limit.

    PubMed

    Ramachandran, Arun; Anderson, Travers H; Leal, L Gary; Israelachvili, Jacob N

    2011-01-01

    We consider the adhesive interaction energy between a pair of vesicles in the strong adhesion limit, in which bending forces play a negligible role in determining vesicle shape compared to forces due to membrane stretching. Although force−distance or energy−distance relationships characterizing adhesive interactions between fluid bilayers are routinely measured using the surface forces apparatus, the atomic force microscope, and the biomembrane force probe, the interacting bilayers in these methods are supported on surfaces (e.g., mica sheet) and cannot be deformed. However, it is known that, in a suspension, vesicles composed of the same bilayer can deform by stretching or bending, and can also undergo changes in volume. Adhesively interacting vesicles can thus form flat regions in the contact zone, which will result in an enhanced interaction energy as compared to rigid vesicles. The focus of this paper is to examine the magnitude of the interaction energy between adhesively interacting, deformed vesicles relative to free, undeformed vesicles as a function of the intervesicle separation. The modification of the intervesicle interaction energy due to vesicle deformability can be calculated knowing the undeformed radius of the vesicles, R0, the bending modulus, k(b), the area expansion modulus, k(a), and the adhesive minimum, W(P)(0), and separation, D(P)(0), in the energy of interaction between two flat bilayers, which can be obtained from the force−distance measurements made using the above supported-bilayer methods. For vesicles with constant volumes, we show that adhesive potentials between nondeforming bilayers such as |W(P)(0)| 5 × 10(−4) mJ/m2, which are ordinarily considered weak in the colloidal physics literature, can result in significantly deep (>10×) energy minima due to increase in vesicle area and flattening in the contact region. If the osmotic expulsion of water across the vesicles driven by the tense, stretched membrane in the presence

  18. Mechanisms of adhesion in geckos.

    PubMed

    Autumn, Kellar; Peattie, Anne M

    2002-12-01

    The extraordinary adhesive capabilities of geckos have challenged explanation for millennia, since Aristotle first recorded his observations. We have discovered many of the secrets of gecko adhesion, yet the millions of dry, adhesive setae on the toes of geckos continue to generate puzzling new questions and valuable answers. Each epidermally-derived, keratinous seta ends in hundreds of 200 nm spatular tips, permitting intimate contact with rough and smooth surfaces alike. Prior studies suggested that adhesive force in gecko setae was directly proportional to the water droplet contact angle (θ) , an indicator of the free surface energy of a substrate. In contrast, new theory suggests that adhesion energy between a gecko seta and a surface (W(GS)) is in fact proportional to (1 + cosθ), and only for θ > 60°. A reanalysis of prior data, in combination with our recent study, support the van der Waals hypothesis of gecko adhesion, and contradict surface hydrophobicity as a predictor of adhesion force. Previously, we and our collaborators measured the force production of a single seta. Initial efforts to attach a seta failed because of improper 3D orientation. However, by simulating the dynamics of gecko limbs during climbing (based on force plate data) we discovered that, in single setae, a small normal preload, combined with a 5 μm displacement yielded a very large adhesive force of 200 microNewton (μN), 10 times that predicted by whole-animal measurements. 6.5 million setae of a single tokay gecko attached maximally could generate 130 kg force. This raises the question of how geckos manage to detach their feet in just 15 ms. We discovered that simply increasing the angle that the setal shaft makes with the substrate to 30° causes detachment. Understanding how simultaneous attachment and release of millions of setae are controlled will require an approach that integrates levels ranging from molecules to lizards.

  19. Silorane adhesive system: a case report.

    PubMed

    Ruschel, Vanessa Carla; Baratieri, Luiz Narciso; Monteiro Júnior, Sylvio; Andrada, Mauro Amaral Caldeira de

    2014-01-01

    Silorane-based composite resin requires a specific adhesive system: a 2-step self-etching adhesive. Clinical protocols are well established and are based on the principles of adhesion to mineralized dental tissues. In this paper, we present a clinical application of the silorane adhesive system in a class-II restoration using silorane-based composite resin.

  20. Fibrillar Adhesive for Climbing Robots

    NASA Technical Reports Server (NTRS)

    Pamess, Aaron; White, Victor E.

    2013-01-01

    A climbing robot needs to use its adhesive patches over and over again as it scales a slope. Replacing the adhesive at each step is generally impractical. If the adhesive or attachment mechanism cannot be used repeatedly, then the robot must carry an extra load of this adhesive to apply a fresh layer with each move. Common failure modes include tearing, contamination by dirt, plastic deformation of fibers, and damage from loading/ unloading. A gecko-like fibrillar adhesive has been developed that has been shown useful for climbing robots, and may later prove useful for grasping, anchoring, and medical applications. The material consists of a hierarchical fibrillar structure that currently contains two levels, but may be extended to three or four levels in continuing work. The contacting level has tens of thousands of microscopic fibers made from a rubberlike material that bend over and create intimate contact with a surface to achieve maximum van der Waals forces. By maximizing the real area of contact that these fibers make and minimizing the bending energy necessary to achieve that contact, the net amount of adhesion has been improved dramatically.

  1. Focal adhesion kinase

    PubMed Central

    Stone, Rebecca L; Baggerly, Keith A; Armaiz-Pena, Guillermo N; Kang, Yu; Sanguino, Angela M; Thanapprapasr, Duangmani; Dalton, Heather J; Bottsford-Miller, Justin; Zand, Behrouz; Akbani, Rehan; Diao, Lixia; Nick, Alpa M; DeGeest, Koen; Lopez-Berestein, Gabriel; Coleman, Robert L; Lutgendorf, Susan; Sood, Anil K

    2014-01-01

    This investigation describes the clinical significance of phosphorylated focal adhesion kinase (FAK) at the major activating tyrosine site (Y397) in epithelial ovarian cancer (EOC) cells and tumor-associated endothelial cells. FAK gene amplification as a mechanism for FAK overexpression and the effects of FAK tyrosine kinase inhibitor VS-6062 on tumor growth, metastasis, and angiogenesis were examined. FAK and phospho-FAKY397 were quantified in tumor (FAK-T; pFAK-T) and tumor-associated endothelial (FAK-endo; pFAK-endo) cell compartments of EOCs using immunostaining and qRT-PCR. Associations between expression levels and clinical variables were evaluated. Data from The Cancer Genome Atlas were used to correlate FAK gene copy number and expression levels in EOC specimens. The in vitro and in vivo effects of VS-6062 were assayed in preclinical models. FAK-T and pFAK-T overexpression was significantly associated with advanced stage disease and increased microvessel density (MVD). High MVD was observed in tumors with elevated endothelial cell FAK (59%) and pFAK (44%). Survival was adversely affected by FAK-T overexpression (3.03 vs 2.06 y, P = 0.004), pFAK-T (2.83 vs 1.78 y, P < 0.001), and pFAK-endo (2.33 vs 2.17 y, P = 0.005). FAK gene copy number was increased in 34% of tumors and correlated with expression levels (P < 0.001). VS-6062 significantly blocked EOC and endothelial cell migration as well as endothelial cell tube formation in vitro. VS-6062 reduced mean tumor weight by 56% (P = 0.005), tumor MVD by 40% (P = 0.0001), and extraovarian metastasis (P < 0.01) in orthotopic EOC mouse models. FAK may be a unique therapeutic target in EOC given the dual anti-angiogenic and anti-metastatic potential of FAK inhibitors. PMID:24755674

  2. Investigation of organic adhesives for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1975-01-01

    The properties of organic adhesives were investigated to acquire information for a guideline document regarding the selection of adhesives for use in high reliability hybrid microcircuits. Specifically, investigations were made of (1) alternate methods for determining the outgassing of cured adhesives, (2) effects of long term aging at 150 C on the electrical properties of conductive adhesives, (3) effects of shelf life age on adhesive characteristics, (4) bond strengths of electrically conductive adhesives on thick film gold metallization, (5) a copper filled adhesive, (6) effects of products outgassed from cured adhesives on device electrical parameters, (7) metal migration from electrically conductive adhesives, and (8) ionic content of electrically insulative adhesives. The tests performed during these investigations are described, and the results obtained are discussed.

  3. Intermediates in the Guanine Nucleotide Exchange Reaction of Rab8 Protein Catalyzed by Guanine Nucleotide Exchange Factors Rabin8 and GRAB*

    PubMed Central

    Guo, Zhong; Hou, Xiaomin; Goody, Roger S.; Itzen, Aymelt

    2013-01-01

    Small G-proteins of the Ras superfamily control the temporal and spatial coordination of intracellular signaling networks by acting as molecular on/off switches. Guanine nucleotide exchange factors (GEFs) regulate the activation of these G-proteins through catalytic replacement of GDP by GTP. During nucleotide exchange, three distinct substrate·enzyme complexes occur: a ternary complex with GDP at the start of the reaction (G-protein·GEF·GDP), an intermediary nucleotide-free binary complex (G-protein·GEF), and a ternary GTP complex after productive G-protein activation (G-protein·GEF·GTP). Here, we show structural snapshots of the full nucleotide exchange reaction sequence together with the G-protein substrates and products using Rabin8/GRAB (GEF) and Rab8 (G-protein) as a model system. Together with a thorough enzymatic characterization, our data provide a detailed view into the mechanism of Rabin8/GRAB-mediated nucleotide exchange. PMID:24072714

  4. Tank 241U102 Grab Samples 2U-99-1 and 2U-99-2 and 2U-99-3 Analytical Results for the Final Report

    SciTech Connect

    STEEN, F.H.

    1999-08-03

    This document is the final report for tank 241-U-102 grab samples. Five grab samples were collected from riser 13 on May 26, 1999 and received by the 222-S laboratory on May 26 and May 27, 1999. Samples 2U-99-3 and 2U-99-4 were submitted to the Process Chemistry Laboratory for special studies. Samples 2U-99-1, 2U-99-2 and 2U-99-5 were submitted to the laboratory for analyses. Analyses were performed in accordance with the Compatibility Grab Sampling and Analysis Plan for Fiscal year 1999 (TSAP) (Sasaki, 1999) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO) (Fowler 1995, Mulkey and Miller 1998). The analytical results are presented in the data summary report. None of the subsamples submitted for differential scanning calorimetry (DSC), total organic carbon (TOC) and plutonium 239 (Pu239) analyses exceeded the notification limits as stated in TSAP.

  5. Tank 241S109 Grab Samples 9S-99-1 and 9S-99-2 and 9S-99-3 Analytical Results for the Final Report

    SciTech Connect

    STEEN, F.H.

    1999-11-23

    This document is the final report for tank 2414-109 grab samples. Three grab samples were collected from riser 13 on July 28, 1999 and received by the 222-S laboratory on July 28, 1999. Analyses were performed in accordance with the Compatibility Grab Sampling and Analysis Plan for Fiscal Year 1999 (TSAP) (Sasaki, 1999) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO) (Fowler 1995, Mulkey and Miller 1998). The analytical results are presented in the data summary report (Table 1). None of the subsamples submitted for differential scanning calorimetry (DSC), total organic carbon (TOC) and plutonium 239 (Pu239) analyses exceeded the notification limits as stated in TSAP (Sasaki, 1999).

  6. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  7. Optimizing Adhesive Design by Understanding Compliance.

    PubMed

    King, Daniel R; Crosby, Alfred J

    2015-12-23

    Adhesives have long been designed around a trade-off between adhesive strength and releasability. Geckos are of interest because they are the largest organisms which are able to climb utilizing adhesive toepads, yet can controllably release from surfaces and perform this action over and over again. Attempting to replicate the hierarchical, nanoscopic features which cover their toepads has been the primary focus of the adhesives field until recently. A new approach based on a scaling relation which states that reversible adhesive force capacity scales with (A/C)(1/2), where A is the area of contact and C is the compliance of the adhesive, has enabled the creation of high strength, reversible adhesives without requiring high aspect ratio, fibrillar features. Here we introduce an equation to calculate the compliance of adhesives, and utilize this equation to predict the shear adhesive force capacity of the adhesive based on the material components and geometric properties. Using this equation, we have investigated important geometric parameters which control force capacity and have shown that by controlling adhesive shape, adhesive force capacity can be increased by over 50% without varying pad size. Furthermore, we have demonstrated that compliance of the adhesive far from the interface still influences shear adhesive force capacity. Utilizing this equation will allow for the production of adhesives which are optimized for specific applications in commercial and industrial settings. PMID:26618537

  8. Optimizing Adhesive Design by Understanding Compliance.

    PubMed

    King, Daniel R; Crosby, Alfred J

    2015-12-23

    Adhesives have long been designed around a trade-off between adhesive strength and releasability. Geckos are of interest because they are the largest organisms which are able to climb utilizing adhesive toepads, yet can controllably release from surfaces and perform this action over and over again. Attempting to replicate the hierarchical, nanoscopic features which cover their toepads has been the primary focus of the adhesives field until recently. A new approach based on a scaling relation which states that reversible adhesive force capacity scales with (A/C)(1/2), where A is the area of contact and C is the compliance of the adhesive, has enabled the creation of high strength, reversible adhesives without requiring high aspect ratio, fibrillar features. Here we introduce an equation to calculate the compliance of adhesives, and utilize this equation to predict the shear adhesive force capacity of the adhesive based on the material components and geometric properties. Using this equation, we have investigated important geometric parameters which control force capacity and have shown that by controlling adhesive shape, adhesive force capacity can be increased by over 50% without varying pad size. Furthermore, we have demonstrated that compliance of the adhesive far from the interface still influences shear adhesive force capacity. Utilizing this equation will allow for the production of adhesives which are optimized for specific applications in commercial and industrial settings.

  9. Innovative Electrostatic Adhesion Technologies

    NASA Astrophysics Data System (ADS)

    Gagliano, L.; Bryan, T.; Williams, S.; McCoy, B.; MacLeod, T.

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and development

  10. Innovative Electrostatic Adhesion Technologies

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  11. Elastocapilllarity in insect adhesion: the case of beetle adhesive hair

    NASA Astrophysics Data System (ADS)

    Gernay, Sophie; Gilet, Tristan; Lambert, Pierre; Federle, Walter

    2014-11-01

    The feet of many insects are covered with dense arrays of hair-like structures called setae. Liquid capillary bridges at the tip of these micrometric structures are responsible for the controlled adhesion of the insect on a large variety of substrates. The resulting adhesion force can exceed several times the body weight of the insect. The high aspect-ratio of setae suggests that flexibility is a key ingredient in this capillary-based adhesion mechanism. There is indeed a strong coupling between their elastic deformation and the shape of the liquid meniscus. In this experimental work, we observe and quantify the local deflection of dock beetle seta tips under perpendicular loading using interference microscopy. Our results are then interpreted in the light of an analytic model of elastocapillarity. This research has been funded by the FRIA/FNRS and the Interuniversity Attraction Poles Programme (IAP 7/38 MicroMAST) initiated by the Belgian Science Policy Office.

  12. High performance Cu adhesion coating

    SciTech Connect

    Lee, K.W.; Viehbeck, A.; Chen, W.R.; Ree, M.

    1996-12-31

    Poly(arylene ether benzimidazole) (PAEBI) is a high performance thermoplastic polymer with imidazole functional groups forming the polymer backbone structure. It is proposed that upon coating PAEBI onto a copper surface the imidazole groups of PAEBI form a bond with or chelate to the copper surface resulting in strong adhesion between the copper and polymer. Adhesion of PAEBI to other polymers such as poly(biphenyl dianhydride-p-phenylene diamine) (BPDA-PDA) polyimide is also quite good and stable. The resulting locus of failure as studied by XPS and IR indicates that PAEBI gives strong cohesive adhesion to copper. Due to its good adhesion and mechanical properties, PAEBI can be used in fabricating thin film semiconductor packages such as multichip module dielectric (MCM-D) structures. In these applications, a thin PAEBI coating is applied directly to a wiring layer for enhancing adhesion to both the copper wiring and the polymer dielectric surface. In addition, a thin layer of PAEBI can also function as a protection layer for the copper wiring, eliminating the need for Cr or Ni barrier metallurgies and thus significantly reducing the number of process steps.

  13. Interfacial adhesion: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Bozzolo, Guillermo H.; Finley, Clarence W.; Banerjea, Amitava

    1988-01-01

    Adhesion, the binding of different materials at an interface, is of general interest to many branches of technology, e.g., microelectronics, tribology, manufacturing, construction, etc. However, there is a lack of fundamental understanding of such diverse interfaces. In addition, experimental techniques generally have practical objectives, such as the achievement of sufficient strength to sustain mechanical or thermal effects and/or have the proper electronic properties. In addition, the theoretical description of binding at interfaces is quite limited, and a proper data base for such theoretical analysis does not exist. This presentation will review both experimental and theoretical aspects of adhesion in nonpolymer materials. The objective will be to delineate the critical parameters needed, governing adhesion testing along with an outline of testing objectives. A distinction will be made between practical and fundamental objectives. Examples are given where interfacial bonding may govern experimental consideration. The present status of theory is presented along wiith recommendations for future progress and needs.

  14. Interfacial adhesion - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Banerjea, Amitava; Bozzolo, Guillermo H.; Finley, Clarence W.

    1988-01-01

    Adhesion, the binding of different materials at an interface, is of general interest to many branches of technology, e.g., microelectronics, tribology, manufacturing, construction, etc. However, there is a lack of fundamental understanding of such diverse interfaces. In addition, experimental techniques generally have practical objectives, such as the achievement of sufficient strength to sustain mechanical or thermal effects and/or have the proper electronic properties. In addition, the theoretical description of binding at interfaces is quite limited, and a proper data base for such theoretical analysis does not exist. This presentation will review both experimental and theoretical aspects of adhesion in nonpolymer materials. The objective will be to delineate the critical parameters needed, governing adhesion testing along with an outline of testing objectives. A distinction will be made between practical and fundamental objectives. Examples are given where interfacial bonding may govern experimental consideration. The present status of theory is presented along with recommendations for future progress and needs.

  15. Platelet adhesiveness after blood donation.

    PubMed

    Pegrum, G D; Harrison, K M; Shaw, S

    1971-03-13

    Platelet adhesiveness to glass was measured in healthy blood donors at the time of and eight days after donating 500 ml of blood. By a whole blood method a highly significant increase was found whereas by a method using platelet-rich plasma with added adenosine diphosphate there was only a slightly significant increase. The discrepancy suggested that changes in the red cell population might influence the results. Packed red cells from 19 blood donors obtained at the time of donation and eight days later were mixed with fresh pooled platelets from the same independent persons on each occasion. The whole blood platelet adhesiveness on this mixture showed an increase in every case after blood donation. It is postulated that the increased adhesiveness is influenced by the presence of young red cells.

  16. UV curable pressure sensitive adhesives

    SciTech Connect

    Glotfelter, C.A.

    1995-12-01

    Pressure sensitive adhesives (PSA`s) have become a ubiquitous element in our society, so much so, that the relative status of a society can be determined by the per capita consumption of PSA`s. We discuss new monomers as components of PSA formulations which enable adhesion to be achieved on a variety of substrates. Since solventless coating systems are desirable, the UV PSA market is of utmost importance to meeting the strict environmental guidelines now being imposed worldwide. In addition, highly ethoxylated monomers have shown promise in water dispersed PSA formulations, and a self-emulsifying acrylate monomer has been developed to offer dispersive abilities without using traditional emulsifying agents. This talk will focus on the effects of the materials described on properties of adhesive strength and shear strength in UV PSA formulations.

  17. Adhesive capsulitis: a case report

    PubMed Central

    Kazemi, Mohsen

    2000-01-01

    Adhesive capsulitis or frozen shoulder is an uncommon entity in athletes. However, it is a common cause of shoulder pain and disability in the general population. Although it is a self limiting ailment, its rather long, restrictive and painful course forces the affected person to seek treatment. Conservative management remains the mainstay treatment of adhesive capsulitis. This includes chiropractic manipulation of the shoulder, therapeutic modalities, mobilization, exercise, soft tissue therapy, nonsteroidal anti-inflammatory drugs, and steroid injections. Manipulation under anesthesia is advocated when the conservative treatment fails. A case of secondary adhesive capsulitis in a forty-seven-year-old female recreational squash player is presented to illustrate clinical presentation, diagnosis, radiographic assessment and conservative chiropractic management. The patient’s shoulder range of motion was full and pain free with four months of conservative chiropractic care. ImagesFigure 1Figure 2Figure 3

  18. A novel addition polyimide adhesive

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Progar, D. J.

    1981-01-01

    An addition polyimide adhesive, LARC 13, was developed which shows promise for bonding both titanium and composites for applications which require service temperatures in excess of 533 K. The LARC 13 is based on an oligomeric bis nadimide containing a meta linked aromatic diamine. The adhesive melts prior to polymerization due to its oligomeric nature, thereby allowing it to be processed at 344 kPa or less. Therefore, LARC 13 is ideal for the bonding of honeycomb sandwich structures. After melting, the resin thermosets during the cure of the nadic endcaps to a highly crosslinked system. Few volatiles are evolved, thus allowing large enclosed structures to be bonded. Preparation of the adhesive as well as bonding, aging, and testing of lap shear and honeycomb samples are discussed.

  19. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  20. Dual-Mode Adhesive Pad

    NASA Technical Reports Server (NTRS)

    Hartz, Leslie

    1994-01-01

    Tool helps worker grip and move along large, smooth structure with no handgrips or footholds. Adheres to surface but easily released by actuating simple mechanism. Includes handle and segmented contact-adhesive pad. Bulk of pad made of soft plastic foam conforming to surface of structure. Each segment reinforced with rib. In sticking mode, ribs braced by side catches. In peeling mode, side catches retracted, and segmented adhesive pad loses its stiffness. Modified versions useful in inspecting hulls of ships and scaling walls in rescue operations.

  1. Protein adhesion force dynamics and single adhesion events.

    PubMed Central

    Sagvolden, G

    1999-01-01

    Using the manipulation force microscope, a novel atomic force microscope, the adhesion forces of bovine serum albumin, myoglobin, ferritin, and lysozyme proteins to glass and polystyrene substrates were characterized by following the force necessary to displace an adsorbed protein-covered microsphere over several orders of magnitude in time. This force was consistent with a power law with exponent a = 0.37 +/- 0.03 on polystyrene, indicating that there is no typical time scale for adhesion on this substrate. On glass, the rate of adhesion depended strongly on protein charge. Forces corresponding to single protein adhesion events were identified. The typical rupture force of a single lysozyme, ferritin, bovine serum albumin, and myoglobin protein adhering to glass was estimated to be 90 +/- 10 pN, 115 +/- 13 pN, 277 +/- 44 pN, and 277 +/- 44 pN, respectively, using a model of the experimental system. These forces, as well as the force amplitudes on hydrophobic polystyrene, correlate with protein stiffness. PMID:10388777

  2. [FTIR spectroscopic studies of facial prosthetic adhesives].

    PubMed

    Kang, Biao; Yang, Qing-fang; Liang, Jian-feng; Zhao, Yi-min

    2008-10-01

    According to the composition of the traditional facial prosthetic adhesives, most of adhesives can be classified into two categories: acrylic polymer-based adhesive and silicone-based adhesive. In previous studies, measurements of various mechanical bond strengths were carried out, whereas the functional groups of the adhesives were evaluated seldom during the adhesion. In the present study the analysis of two facial prosthetic adhesives (Epithane and Secure Adhesive) was carried out by using infrared spectroscopy. Two adhesives in the form of fluid or semisolid were submitted to FTIR spectroscopy, respectively. The results showed that water and ammonia residue volatilized during the solidification of Epithane, and absorption peak reduction of carbonyl was due to the volatilization of acetate vinyl from Secure Adhesive. Similar silicone functional groups both in the silicone-based adhesive and in silicone elastomer could be the key to higher bond strength between silicone elastomer and skin with silicone-based adhesive. The position, shape of main absorption peaks of three adhesives didn't change, which showing that their main chemicals and basic structures didn't change during solidification. PMID:19123392

  3. New adhesive withstands temperature extremes

    NASA Technical Reports Server (NTRS)

    Park, J. J.; Seidenberg, B.

    1978-01-01

    Adhesive, developed for high-temperature components aboard satellites, is useful at both high and low temperatures and exhibits low-vacuum volatility and low shrinkage. System uses polyfunctional epoxy with high aromatic content, low equivalent weight, and more compact polymer than conventional bisphenol A tape.

  4. Candida biofilms: is adhesion sexy?

    PubMed

    Soll, David R

    2008-08-26

    The development of Candida albicans biofilms requires two types of adhesion molecule - the Als proteins and Hwp1. Mutational analyses have recently revealed that these molecules play complementary roles, and their characteristics suggest that they may have evolved from primitive mating agglutinins.

  5. Candida biofilms: is adhesion sexy?

    PubMed

    Soll, David R

    2008-08-26

    The development of Candida albicans biofilms requires two types of adhesion molecule - the Als proteins and Hwp1. Mutational analyses have recently revealed that these molecules play complementary roles, and their characteristics suggest that they may have evolved from primitive mating agglutinins. PMID:18727911

  6. Photoresist substrate having robust adhesion

    DOEpatents

    Dentinger, Paul M.

    2005-07-26

    A substrate material for LIGA applications w hose general composition is Ti/Cu/Ti/SiO.sub.2. The SiO.sub.2 is preferably applied to the Ti/Cu/Ti wafer as a sputtered coating, typically about 100 nm thick. This substrate composition provides improved adhesion for epoxy-based photoresist materials, and particularly the photoresist material SU-8.

  7. Unfolding Grammars in Adhesive Categories

    NASA Astrophysics Data System (ADS)

    Baldan, Paolo; Corradini, Andrea; Heindel, Tobias; König, Barbara; Sobociński, Paweł

    We generalize the unfolding semantics, previously developed for concrete formalisms such as Petri nets and graph grammars, to the abstract setting of (single pushout) rewriting over adhesive categories. The unfolding construction is characterized as a coreflection, i.e. the unfolding functor arises as the right adjoint to the embedding of the category of occurrence grammars into the category of grammars.

  8. Fluorescence Reveals Contamination From Adhesives

    NASA Technical Reports Server (NTRS)

    Nikolia, William

    1992-01-01

    Contamination of nearby surfaces from ingredients in some adhesive materials detected by ultraviolet illumination and observation of resulting fluorescence. Identification of contaminants via telltale fluorescence not new; rather, significance lies in method of implementation and potential extension to wider variety of materials and applications.

  9. Computational Chemistry of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Phillips, Donald H.

    1999-01-01

    This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.

  10. Upregulation of capsule enables Streptococcus pyogenes to evade immune recognition by antigen-specific antibodies directed to the G-related alpha2-macroglobulin-binding protein GRAB located on the bacterial surface.

    PubMed

    Dinkla, Katrin; Sastalla, Inka; Godehardt, Antonia W; Janze, Nina; Chhatwal, Gursharan S; Rohde, Manfred; Medina, Eva

    2007-07-01

    One of the major problems associated with the development of a vaccine against Streptococcus pyogenes is the ability of this pathogen to escape recognition by antibodies directed against conserved surface-associated determinants and to establish infection in the setting of an acquired immune response. Identification of the mechanism(s) used by S. pyogenes to avoid recognition by antigen-specific antibodies and escape killing in blood was the focus of this study. We showed here that S. pyogenes was capable of surviving in human blood containing high levels of antibodies directed against the G-related alpha2-macroglobulin-binding protein GRAB, a highly conserved bacterial surface protein. S. pyogenes upregulated the hyaluronic acid capsule production during incubation with human blood, suggesting that the capsule may structurally minimize antibody access to protein GRAB. This hypothesis was confirmed by the ability of anti-GRAB antibodies to promote opsonophagocytosis of a capsule-deficient mutant of S. pyogenes but not of the encapsulated wild-type strain. Capsule upregulation and protection of S. pyogenes from opsonophagocytosis in the presence of anti-GRAB antibodies was also observed in a murine model of streptococcal infection. Thus, masking of surface immunogenic determinants by the hyaluronic acid capsule may constitute a novel mechanism of S. pyogenes for evasion of antigen-specific antibodies.

  11. Final report for tank 241-AP-101, grab samples 1AP-95-1, 1AP-95-2, 1AP-95-3, 1AP-95-4, 1AP-95-5, and 1AP-95-6

    SciTech Connect

    Esch, R.A.

    1996-03-04

    Six supernate grab samples (1AP-95-1 through 6) and one field blank (1AP-95-7) were taken from tank 241-AP-101, on Nov. 10 and 13, 1995. Analyses were performed in support of the Safety Screening and the Waste Compatibility Safety programs. All analytical results were within the action limits stated in the TSAP.

  12. Tackifier Dispersions to Make Pressure Sensitive Adhesives

    SciTech Connect

    2003-02-01

    Development of new processes for tackifier dispersion could improve the production of pressure sensitive adhesives. Pressure sensitive adhesives (PSAs) have the ability to adhere to different surfaces with manual or finger pressure.

  13. 222-S Analytical services final results for Tank 241-U-101, grab samples 1U-96-1 through 1U-96-4

    SciTech Connect

    Miller, G.L., Westinghouse Hanford

    1996-08-23

    This document is the final, format IV, laboratory report for characterization of tank 241-U-101 (U-101) grab samples from risers 1 and 7. It transmits additional analytical data for specific gravity (Sp.G.), and all raw analytical data which were not provided in the 45-day report. The 45-day report is attached to this final report as Part II. Secondary analyses were not performed on any of the U-101 samples. This is because none of the primary analyte limits, which trigger the performance of secondary analyses, were exceeded. Grab samples were taken on May 29, 1996 and May 30, 1996 from risers 1 and 7, respectively, and were received at the 222-S Laboratory on the same days that they were collected. Analyses were performed in accordance with the Tank Sampling and Analysis Plan (TSAP) for this tank and the Safety Screening Data Quality Objective (DQO). The samples were analyzed for differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), total alpha activity (AT), visual appearance, bulk density, and specific gravity. A sample data summary table, includes sample analytical data accompanied by quality control data (for example, duplicate, spike, blank and standard results and detection limits and counting efforts). The table includes data for DSC, TGA, AT, bulk density, volume percent solids and Sp.G. analyses. Data regarding the visual appearance of samples, volume percent solids and density of the solids are provided in tabular form of the 45-day report (attached as Part II). The table of the 45-day report also associates the original customer sample number with corresponding laboratory sample numbers. The TSAP specified notification limits for only DSC and total alpha. Notification limits were not exceeded for DSC or total alpha analyses for any of the samples, consequently immediate notifications were not necessary and were not made.

  14. Self-Adjustable Adhesion of Polyampholyte Hydrogels.

    PubMed

    Roy, Chanchal Kumar; Guo, Hong Lei; Sun, Tao Lin; Ihsan, Abu Bin; Kurokawa, Takayuki; Takahata, Masakazu; Nonoyama, Takayuki; Nakajima, Tasuku; Gong, Jian Ping

    2015-12-01

    Developing nonspecific, fast, and strong adhesives that can glue hydrogels and biotissues substantially promotes the application of hydrogels as biomaterials. Inspired by the ubiquitous adhesiveness of bacteria, it is reported that neutral polyampholyte hydrogels, through their self-adjustable surface, can show rapid, strong, and reversible adhesion to charged hydrogels and biological tissues through the Coulombic interaction.

  15. Nonwoven glass fiber mat reinforces polyurethane adhesive

    NASA Technical Reports Server (NTRS)

    Roseland, L. M.

    1967-01-01

    Nonwoven glass fiber mat reinforces the adhesive properties of a polyurethane adhesive that fastens hardware to exterior surfaces of aluminum tanks. The mat is embedded in the uncured adhesive. It ensures good control of the bond line and increases the peel strength.

  16. Ceramic adhesive restorations and biomimetic dentistry: tissue preservation and adhesion.

    PubMed

    Tirlet, Gil; Crescenzo, Hélène; Crescenzo, Dider; Bazos, Panaghiotis

    2014-01-01

    Thanks to sophisticated adhesive techniques in contemporary dentistry, and the development of composite and ceramic materials, it is possible to reproduce a biomimetic match between substitution materials and natural teeth substrates. Biomimetics or bio-emulation allows for the association of two fundamental parameters at the heart of current therapeutic treatments: tissue preservation and adhesion. This contemporary concept makes the retention of the integrity of the maximum amount of dental tissue possible, while offering exceptional clinical longevity, and maximum esthetic results. It permits the conservation of the biological, esthetic, biomechanical and functional properties of enamel and dentin. Today, it is clearly possible to develop preparations allowing for the conservation of the enamel and dentin in order to bond partial restorations in the anterior and posterior sectors therefore limiting, as Professor Urs Belser from Geneva indicates, "the replacement of previous deficient crowns and devitalized teeth whose conservation are justified but whose residual structural state are insufficient for reliable bonding."1 This article not only addresses ceramic adhesive restoration in the anterior area, the ambassadors of biomimetic dentistry, but also highlights the possibility of occasionally integrating one or two restorations at the heart of the smile as a complement to extensive rehabilitations that require more invasive treatment.

  17. Ceramic adhesive restorations and biomimetic dentistry: tissue preservation and adhesion.

    PubMed

    Tirlet, Gil; Crescenzo, Hélène; Crescenzo, Dider; Bazos, Panaghiotis

    2014-01-01

    Thanks to sophisticated adhesive techniques in contemporary dentistry, and the development of composite and ceramic materials, it is possible to reproduce a biomimetic match between substitution materials and natural teeth substrates. Biomimetics or bio-emulation allows for the association of two fundamental parameters at the heart of current therapeutic treatments: tissue preservation and adhesion. This contemporary concept makes the retention of the integrity of the maximum amount of dental tissue possible, while offering exceptional clinical longevity, and maximum esthetic results. It permits the conservation of the biological, esthetic, biomechanical and functional properties of enamel and dentin. Today, it is clearly possible to develop preparations allowing for the conservation of the enamel and dentin in order to bond partial restorations in the anterior and posterior sectors therefore limiting, as Professor Urs Belser from Geneva indicates, "the replacement of previous deficient crowns and devitalized teeth whose conservation are justified but whose residual structural state are insufficient for reliable bonding."1 This article not only addresses ceramic adhesive restoration in the anterior area, the ambassadors of biomimetic dentistry, but also highlights the possibility of occasionally integrating one or two restorations at the heart of the smile as a complement to extensive rehabilitations that require more invasive treatment. PMID:25126616

  18. Gecko adhesion pad: a smart surface?

    NASA Astrophysics Data System (ADS)

    Pesika, Noshir S.; Zeng, Hongbo; Kristiansen, Kai; Zhao, Boxin; Tian, Yu; Autumn, Kellar; Israelachvili, Jacob

    2009-11-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  19. Gecko adhesion pad: a smart surface?

    PubMed

    Pesika, Noshir S; Zeng, Hongbo; Kristiansen, Kai; Zhao, Boxin; Tian, Yu; Autumn, Kellar; Israelachvili, Jacob

    2009-11-18

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  20. Nanocapillary Adhesion between Parallel Plates.

    PubMed

    Cheng, Shengfeng; Robbins, Mark O

    2016-08-01

    Molecular dynamics simulations are used to study capillary adhesion from a nanometer scale liquid bridge between two parallel flat solid surfaces. The capillary force, Fcap, and the meniscus shape of the bridge are computed as the separation between the solid surfaces, h, is varied. Macroscopic theory predicts the meniscus shape and the contribution of liquid/vapor interfacial tension to Fcap quite accurately for separations as small as two or three molecular diameters (1-2 nm). However, the total capillary force differs in sign and magnitude from macroscopic theory for h ≲ 5 nm (8-10 diameters) because of molecular layering that is not included in macroscopic theory. For these small separations, the pressure tensor in the fluid becomes anisotropic. The components in the plane of the surface vary smoothly and are consistent with theory based on the macroscopic surface tension. Capillary adhesion is affected by only the perpendicular component, which has strong oscillations as the molecular layering changes.

  1. Particle adhesion in powder coating

    SciTech Connect

    Mazumder, M.K.; Wankum, D.L.; Knutson, M.; Williams, S.; Banerjee, S.

    1996-12-31

    Electrostatic powder coating is a widely used industrial painting process. It has three major advantages: (1) it provides high quality durable finish, (2) the process is environmentally friendly and does not require the use of organic solvents, and (3) it is economically competitive. The adhesion of electrostatically deposited polymer paint particles on the grounded conducting substrate depends upon many parameters: (a) particle size and shape distributions, (b) electrostatic charge distributions, (c) electrical resistivity, (d) dielectric strength of the particles, (e) thickness of the powder film, (f) presence and severity of the back corona, and (g) the conductivity and surface properties of the substrate. The authors present a model on the forces of deposition and adhesion of corona charged particles on conducting substrates.

  2. Nanocapillary Adhesion between Parallel Plates.

    PubMed

    Cheng, Shengfeng; Robbins, Mark O

    2016-08-01

    Molecular dynamics simulations are used to study capillary adhesion from a nanometer scale liquid bridge between two parallel flat solid surfaces. The capillary force, Fcap, and the meniscus shape of the bridge are computed as the separation between the solid surfaces, h, is varied. Macroscopic theory predicts the meniscus shape and the contribution of liquid/vapor interfacial tension to Fcap quite accurately for separations as small as two or three molecular diameters (1-2 nm). However, the total capillary force differs in sign and magnitude from macroscopic theory for h ≲ 5 nm (8-10 diameters) because of molecular layering that is not included in macroscopic theory. For these small separations, the pressure tensor in the fluid becomes anisotropic. The components in the plane of the surface vary smoothly and are consistent with theory based on the macroscopic surface tension. Capillary adhesion is affected by only the perpendicular component, which has strong oscillations as the molecular layering changes. PMID:27413872

  3. Host Selection of Microbiota via Differential Adhesion.

    PubMed

    McLoughlin, Kirstie; Schluter, Jonas; Rakoff-Nahoum, Seth; Smith, Adrian L; Foster, Kevin R

    2016-04-13

    The host epithelium is the critical interface with microbial communities, but the mechanisms by which the host regulates these communities are poorly understood. Here we develop the hypothesis that hosts use differential adhesion to select for and against particular members of their microbiota. We use an established computational, individual-based model to study the impact of host factors that regulate adhesion at the epithelial surface. Our simulations predict that host-mediated adhesion can increase the competitive advantage of microbes and create ecological refugia for slow-growing species. We show how positive selection via adhesion can be transformed into negative selection if the host secretes large quantities of a matrix such as mucus. Our work predicts that adhesion is a powerful mechanism for both positive and negative selection within the microbiota. We discuss molecules-mucus glycans and IgA-that affect microbe adhesion and identify testable predictions of the adhesion-as-selection model. PMID:27053168

  4. Theory of adhesion: Role of surface roughness

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.; Scaraggi, M.

    2014-09-01

    We discuss how surface roughness influences the adhesion between elastic solids. We introduce a Tabor number which depends on the length scale or magnification, and which gives information about the nature of the adhesion at different length scales. We consider two limiting cases relevant for (a) elastically hard solids with weak (or long ranged) adhesive interaction (DMT-limit) and (b) elastically soft solids with strong (or short ranged) adhesive interaction (JKR-limit). For the former cases we study the nature of the adhesion using different adhesive force laws (F ˜ u-n, n = 1.5-4, where u is the wall-wall separation). In general, adhesion may switch from DMT-like at short length scales to JKR-like at large (macroscopic) length scale. We compare the theory predictions to results of exact numerical simulations and find good agreement between theory and simulation results.

  5. Adhesive mechanisms in cephalopods: a review.

    PubMed

    von Byern, Janek; Klepal, Waltraud

    2006-01-01

    Several genera of cephalopods (Nautilus, Sepia, Euprymna and Idiosepius) produce adhesive secretions, which are used for attachment to the substratum, for mating and to capture prey. These adhesive structures are located in different parts of the body, viz. in the digital tentacles (Nautilus), in the ventral surface of the mantle and fourth arm pair (Sepia), in the dorsal epidermis (Euprymna), or in the dorsal mantle side and partly on the fins (Idiosepius). Adhesion in Sepia is induced by suction of dermal structures on the mantle, while for Nautilus, Euprymna and Idiosepius adhesion is probably achieved by chemical substances. Histochemical studies indicate that in Nautilus and Idiosepius secretory cells that appear to be involved in adhesion stain for carbohydrates and protein, whilst in Euprymna only carbohydrates are detectable. De-adhesion is either achieved by muscle contraction of the tentacles and mantle (Nautilus and Sepia) or by secretion of substances (Euprymna). The de-adhesive mechanism used by Idiosepius remains unknown. PMID:17110356

  6. Adhesion effects in contact interaction of solids

    NASA Astrophysics Data System (ADS)

    Goryacheva, Irina; Makhovskaya, Yulya

    2008-01-01

    An approach to solving problems of the interaction of axisymmetric elastic bodies in the presence of adhesion is developed. The different natures of adhesion, i.e. capillary adhesion, or molecular adhesion described by the Lennard-Jones potential are examined. The effect of additional loading of the interacting bodies outside the contact zone is also investigated. The approach is based on the representation of the pressure outside the contact zone arising from adhesion by a step function. The analytical solution is obtained and is used to analyze the influence of the form of the adhesion interaction potential, of the surface energy of interacting bodies or the films covering the bodies, their shapes (parabolic, higher power exponential function), volume of liquid in the meniscus, density of contact spots, of elastic modulus and the Poisson ratio on the characteristics of the interaction of the bodies in the presence of adhesion. To cite this article: I. Goryacheva, Y. Makhovskaya, C. R. Mecanique 336 (2008).

  7. Adhesive mechanisms in cephalopods: a review.

    PubMed

    von Byern, Janek; Klepal, Waltraud

    2006-01-01

    Several genera of cephalopods (Nautilus, Sepia, Euprymna and Idiosepius) produce adhesive secretions, which are used for attachment to the substratum, for mating and to capture prey. These adhesive structures are located in different parts of the body, viz. in the digital tentacles (Nautilus), in the ventral surface of the mantle and fourth arm pair (Sepia), in the dorsal epidermis (Euprymna), or in the dorsal mantle side and partly on the fins (Idiosepius). Adhesion in Sepia is induced by suction of dermal structures on the mantle, while for Nautilus, Euprymna and Idiosepius adhesion is probably achieved by chemical substances. Histochemical studies indicate that in Nautilus and Idiosepius secretory cells that appear to be involved in adhesion stain for carbohydrates and protein, whilst in Euprymna only carbohydrates are detectable. De-adhesion is either achieved by muscle contraction of the tentacles and mantle (Nautilus and Sepia) or by secretion of substances (Euprymna). The de-adhesive mechanism used by Idiosepius remains unknown.

  8. Approaching improved adhesive bonding repeatability

    NASA Astrophysics Data System (ADS)

    Schlette, Christian; Müller, Tobias; Roβmann, Jürgen; Brecher, Christian

    2016-03-01

    Today, the precision of micro-optics assembly is mostly limited by the accuracy of the bonding process ― and in the case of adhesive bonding by the prediction and compensation of adhesive shrinkage during curing. In this contribution, we present a novel approach to address adhesive bonding based on hybrid control system theory. In hybrid control, dynamic systems are described as "plants" which produce discrete and/or continuous outputs from given discrete and/or continuous inputs, thus yielding a hybrid state space description of the system. The task of hybrid controllers is to observe the plant and to generate a discrete and/or continuous input sequence that guides or holds the plant in a desired target state region while avoiding invalid or unwanted intermediate states. Our approach is based on a series of experiments carried out in order to analyze, define and decouple the dependencies of adhesive shrinkage on multiple parameters, such as application geometries, fixture forces and UV intensities. As some of the dependencies describe continuous effects (e.g. shrinkage from UV intensity) and other dependencies describe discrete state transitions (e.g. fixture removal during curing), the resulting model of the overall bonding process is a hybrid dynamic system in the general case. For this plant model, we then propose a concept of sampling-based parameter search as a basis to design suitable hybrid controllers, which have the potential to optimize process control for a selection of assembly steps, thus improving the repeatability of related production steps like beam-shaping optics or mounting of turning mirrors for fiber coupling.

  9. Polymer nanocarriers for dentin adhesion.

    PubMed

    Osorio, R; Osorio, E; Medina-Castillo, A L; Toledano, M

    2014-12-01

    To obtain more durable adhesion to dentin, and to protect collagen fibrils of the dentin matrix from degradation, calcium- and phosphate-releasing particles have been incorporated into the dental adhesive procedure. The aim of the present study was to incorporate zinc-loaded polymeric nanocarriers into a dental adhesive system to facilitate inhibition of matrix metalloproteinases (MMPs)-mediated collagen degradation and to provide calcium ions for mineral deposition within the resin-dentin bonded interface. PolymP- N : Active nanoparticles (nanoMyP) were zinc-loaded through 30-minute ZnCl2 immersion and tested for bioactivity by means of 7 days' immersion in simulated body fluid solution (the Kokubo test). Zinc-loading and calcium phosphate depositions were examined by scanning and transmission electron microscopy, elemental analysis, and x-ray diffraction. Nanoparticles in ethanol solution infiltrated into phosphoric-acid-etched human dentin and Single Bond (3M/ESPE) were applied to determine whether the nanoparticles interfered with bonding. Debonded sticks were analyzed by scanning electron microscopy. A metalloproteinase collagen degradation assay was also performed in resin-infiltrated dentin with and without nanoparticles, measuring C-terminal telopeptide of type I collagen (ICTP) concentration in supernatants, after 4 wk of immersion in artificial saliva. Numerical data were analyzed by analysis of variance (ANOVA) and Student-Newman-Keuls multiple comparisons tests (p < .05). Nanoparticles were effectively zinc-loaded and were shown to have a chelating effect, retaining calcium regardless of zinc incorporation. Nanoparticles failed to infiltrate demineralized intertubular dentin and remained on top of the hybrid layer, without altering bond strength. Calcium and phosphorus were found covering nanoparticles at the hybrid layer, after 24 h. Nanoparticle application in etched dentin also reduced MMP-mediated collagen degradation. Tested nanoparticles may be

  10. Culinary Medicine-Jalebi Adhesions.

    PubMed

    Kapoor, Vinay K

    2016-02-01

    Culinary terms have been used to describe anatomy (bean-shaped kidneys), pathology (strawberry gall bladder), clinical signs (café-au-lait spots), radiological images (sausage-shaped pancreas), etc. While Indian cuisine is popular all over the world, no Indian dish finds mention in medical terminology. In intra-abdominal adhesions, sometimes, the intestinal loops are so densely adherent that it is difficult to make out proximal from distal and it is impossible to separate them without injuring the bowel resulting in spill of contents-resection is the only option (Fig. 1). Jalebi, an Indian dessert, has a single long tubular strip of fried batter filled with sugary syrup so intertwined that it is impossible to discern its ends; if broken, the syrup spills out-the best way to relish it is to chew the whole piece (Fig. 2). Because of these similarities between them, I propose to name dense intra-abdominal adhesions as 'jalebi adhesions.' PMID:27186047

  11. Adhesive evaluation of new polyimides

    NASA Technical Reports Server (NTRS)

    Stclair, Terry L.; Progar, Donald J.

    1987-01-01

    During the past 10 to 15 years, the Materials Division at NASA Langley Research Center (LaRC) has developed several novel high temperature polyimide adhesives for anticipated needs of the aerospace industry. These developments have resulted from fundamental studies of structure-property relationships in polyimides. Recent research at LaRC has involved the synthesis and evaluation of copolyimides which incorporate both flexibilizing bridging groups and meta-linked benzene rings. The purpose was to develop systems based on low cost, readily available monomers. Two of these copolyimides evaluated as adhesives for bonding titanium alloy, Ti(6Al-4V), are identified as LARC-STPI and STPI-LARC-2. Lap shear strength (LSS) measurements were used to determine the strength and durability of the adhesive materials. LSS results are presented for LARC-TPI and LARC-STPI lap shear specimens thermally exposed in air at 232 C for up to 5000 hrs. LARC-TPI was shown to perform better than the copolymer LARC-STPI which exhibited poor thermooxidative performance possibly due to the amines used which would tend to oxidize easier than the benzophenone system in LARC-TPI.

  12. Increased erythrocyte adhesion to VCAM-1 during pulsatile flow: Application of a microfluidic flow adhesion bioassay

    PubMed Central

    White, Jennell; Lancelot, Moira; Sarnaik, Sharada; Hines, Patrick

    2015-01-01

    Abstract Sickle cell disease (SCD) is characterized by microvascular occlusion mediated by adhesive interactions of sickle erythrocytes (SSRBCs) to the endothelium. Most in vitro flow adhesion assays measure SSRBC adhesion during continuous flow, although in vivo SSRBC adhesive interactions occur during pulsatile flow. Using a well-plate microfluidic flow adhesion system, we demonstrate that isolated SSRBCs adhere to vascular cell adhesion molecule (VCAM-1) at greater levels during pulsatile versus continuous flow. A significant increase in adhesive interactions was observed between all pulse frequencies 1 Hz to 2 Hz (60–120 beats/min) when compared to non-pulsatile flow. Adhesion of isolated SSRBCs and whole blood during pulsatile flow was unaffected by protein kinase A (PKA) inhibition, and exposure of SSRBCs to pulsatile flow did not affect the intrinsic adhesive properties of SSRBCs. The cell type responsible for increased adhesion of whole blood varied from patient to patient. We conclude that low flow periods of the pulse cycle allow more adhesive interactions between sickle erythrocytes and VCAM-1, and sickle erythrocyte adhesion in the context of whole blood may better reflect physiologic cellular interactions. The microfluidic flow adhesion bioassay used in this study may have applications for clinical assessment of sickle erythrocyte adhesion during pulsatile flow. PMID:24898561

  13. Chitosan Adhesive Films for Photochemical Tissue Bonding

    NASA Astrophysics Data System (ADS)

    Lauto, Antonio; Mawad, Damia; Barton, Matthew; Piller, Sabine C.; Longo, Leonardo

    2011-08-01

    Photochemical tissue bonding (PTB) is a promising sutureless technique for tissue repair. PTB is often achieved by applying a solution of rose bengal (RB) between two tissue edges, which are irradiated by a green laser to crosslink collagen fibers with minimal heat production. In this study, RB has been incorporated in chitosan films to create a novel tissue adhesive that is laser-activated. Materials and Methods. Adhesive films, based on chitosan and containing ˜0.1wt% RB were manufactured and bonded to calf intestine by a solid state laser (wavelength = 532 nm, Fluence ˜110 J/cm2, spot size ˜5 mm). A single-column tensiometer, interfaced with a personal computer, tested the bonding strength. K-type thermocouples recorded the temperature (T) at the adhesive-tissue interface during laser irradiation. Human fibroblasts were also seeded on the adhesive and cultured for 48 hours to assess cell growth. Results and Conclusion. The RB-chitosan adhesive bonded firmly to the intestine (15±2 kPa, n = 31). The adhesion strength dropped to 0.5±0.1 kPa (n = 8) when the laser was not applied to the adhesive. The average temperature of the adhesive increased from 26 °C to 32 °C during laser exposure. Fibroblasts grew confluent on the adhesive without morphological changes. A new biocompatible chitosan adhesive has been developed that bonds photochemically to tissue with minimal temperature increase.

  14. Sundew adhesive: a naturally occurring hydrogel

    PubMed Central

    Huang, Yujian; Wang, Yongzhong; Sun, Leming; Agrawal, Richa; Zhang, Mingjun

    2015-01-01

    Bioadhesives have drawn increasing interest in recent years, owing to their eco-friendly, biocompatible and biodegradable nature. As a typical bioadhesive, sticky exudate observed on the stalked glands of sundew plants aids in the capture of insects and this viscoelastic adhesive has triggered extensive interests in revealing the implied adhesion mechanisms. Despite the significant progress that has been made, the structural traits of the sundew adhesive, especially the morphological characteristics in nanoscale, which may give rise to the viscous and elastic properties of this mucilage, remain unclear. Here, we show that the sundew adhesive is a naturally occurring hydrogel, consisting of nano-network architectures assembled with polysaccharides. The assembly process of the polysaccharides in this hydrogel is proposed to be driven by electrostatic interactions mediated with divalent cations. Negatively charged nanoparticles, with an average diameter of 231.9 ± 14.8 nm, are also obtained from this hydrogel and these nanoparticles are presumed to exert vital roles in the assembly of the nano-networks. Further characterization via atomic force microscopy indicates that the stretching deformation of the sundew adhesive is associated with the flexibility of its fibrous architectures. It is also observed that the adhesion strength of the sundew adhesive is susceptible to low temperatures. Both elasticity and adhesion strength of the sundew adhesive reduce in response to lowering the ambient temperature. The feasibility of applying sundew adhesive for tissue engineering is subsequently explored in this study. Results show that the fibrous scaffolds obtained from sundew adhesive are capable of increasing the adhesion of multiple types of cells, including fibroblast cells and smooth muscle cells, a property that results from the enhanced adsorption of serum proteins. In addition, in light of the weak cytotoxic activity exhibited by these scaffolds towards a variety of

  15. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    NASA Astrophysics Data System (ADS)

    Díaz Téllez, J. P.; Harirchian-Saei, S.; Li, Y.; Menon, C.

    2013-10-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet-visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved.

  16. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    PubMed

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  17. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    PubMed

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives. PMID:27182547

  18. A batch fabricated biomimetic dry adhesive

    NASA Astrophysics Data System (ADS)

    Northen, Michael T.; Turner, Kimberly L.

    2005-08-01

    The fine hair adhesive system found in nature is capable of reversibly adhering to just about any surface. This dry adhesive, best demonstrated in the pad of the gecko, makes use of a multilevel conformal structure to greatly increase inelastic surface contact, enhancing short range interactions and producing significant amounts of attractive forces. Recent work has attempted to reproduce and test the terminal submicrometre 'hairs' of the system. Here we report the first batch fabricated multi-scale conformal system to mimic nature's dry adhesive. The approach makes use of massively parallel MEMS processing technology to produce 20-150 µm platforms, supported by single slender pillars, and coated with ~2 µm long, ~200 nm diameter, organic looking polymer nanorods, or 'organorods'. To characterize the structures a new mesoscale nanoindenter adhesion test technique has been developed. Experiments indicate significantly improved adhesion with the multiscale system. Additional processing caused a hydrophilic to hydrophobic transformation of the surface and testing indicated further improvement in adhesion.

  19. Control of vascular permeability by adhesion molecules

    PubMed Central

    Sarelius, Ingrid H; Glading, Angela J

    2014-01-01

    Vascular permeability is a vital function of the circulatory system that is regulated in large part by the limited flux of solutes, water, and cells through the endothelial cell layer. One major pathway through this barrier is via the inter-endothelial junction, which is driven by the regulation of cadherin-based adhesions. The endothelium also forms attachments with surrounding proteins and cells via 2 classes of adhesion molecules, the integrins and IgCAMs. Integrins and IgCAMs propagate activation of multiple downstream signals that potentially impact cadherin adhesion. Here we discuss the known contributions of integrin and IgCAM signaling to the regulation of cadherin adhesion stability, endothelial barrier function, and vascular permeability. Emphasis is placed on known and prospective crosstalk signaling mechanisms between integrins, the IgCAMs- ICAM-1 and PECAM-1, and inter-endothelial cadherin adhesions, as potential strategic signaling nodes for multipartite regulation of cadherin adhesion. PMID:25838987

  20. Functionally Graded Adhesives for Composite Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof of concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint.

  1. Adhesive curing through low-voltage activation

    NASA Astrophysics Data System (ADS)

    Ping, Jianfeng; Gao, Feng; Chen, Jian Lin; Webster, Richard D.; Steele, Terry W. J.

    2015-08-01

    Instant curing adhesives typically fall within three categories, being activated by either light (photocuring), heat (thermocuring) or chemical means. These curing strategies limit applications to specific substrates and can only be activated under certain conditions. Here we present the development of an instant curing adhesive through low-voltage activation. The electrocuring adhesive is synthesized by grafting carbene precursors on polyamidoamine dendrimers and dissolving in aqueous solvents to form viscous gels. The electrocuring adhesives are activated at -2 V versus Ag/AgCl, allowing tunable crosslinking within the dendrimer matrix and on both electrode surfaces. As the applied voltage discontinued, crosslinking immediately terminated. Thus, crosslinking initiation and propagation are observed to be voltage and time dependent, enabling tuning of both material properties and adhesive strength. The electrocuring adhesive has immediate implications in manufacturing and development of implantable bioadhesives.

  2. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    PubMed Central

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  3. Adhesive curing through low-voltage activation

    PubMed Central

    Ping, Jianfeng; Gao, Feng; Chen, Jian Lin; Webster, Richard D.; Steele, Terry W. J.

    2015-01-01

    Instant curing adhesives typically fall within three categories, being activated by either light (photocuring), heat (thermocuring) or chemical means. These curing strategies limit applications to specific substrates and can only be activated under certain conditions. Here we present the development of an instant curing adhesive through low-voltage activation. The electrocuring adhesive is synthesized by grafting carbene precursors on polyamidoamine dendrimers and dissolving in aqueous solvents to form viscous gels. The electrocuring adhesives are activated at −2 V versus Ag/AgCl, allowing tunable crosslinking within the dendrimer matrix and on both electrode surfaces. As the applied voltage discontinued, crosslinking immediately terminated. Thus, crosslinking initiation and propagation are observed to be voltage and time dependent, enabling tuning of both material properties and adhesive strength. The electrocuring adhesive has immediate implications in manufacturing and development of implantable bioadhesives. PMID:26282730

  4. Mussel-Inspired Adhesives and Coatings

    PubMed Central

    Lee, Bruce P.; Messersmith, P.B.; Israelachvili, J.N.; Waite, J.H.

    2011-01-01

    Mussels attach to solid surfaces in the sea. Their adhesion must be rapid, strong, and tough, or else they will be dislodged and dashed to pieces by the next incoming wave. Given the dearth of synthetic adhesives for wet polar surfaces, much effort has been directed to characterizing and mimicking essential features of the adhesive chemistry practiced by mussels. Studies of these organisms have uncovered important adaptive strategies that help to circumvent the high dielectric and solvation properties of water that typically frustrate adhesion. In a chemical vein, the adhesive proteins of mussels are heavily decorated with Dopa, a catecholic functionality. Various synthetic polymers have been functionalized with catechols to provide diverse adhesive, sealant, coating, and anchoring properties, particularly for critical biomedical applications. PMID:22058660

  5. NR-150B2 adhesive development

    NASA Technical Reports Server (NTRS)

    Blatz, P. S.

    1978-01-01

    Adhesive based polyimide solutions which are more easily processed than conventional aromatic polyimide systems and show potential for use for extended times at 589K are discussed. The adhesive system is based on a solution containing diglyme as the solvent and 2,2 bis(3',4'-dicarboxyphenyl)hexafluoropropane, paraphenylenediamine, and oxydianiline. The replacement of N-methylpyrrolidone with diglyme as the solvent was found to improve the adhesive strengths of lap shear samples and simplify the processing conditions for bonding both titanium and graphite fiber/polyimide matrix resin composites. Information was obtained on the effects of various environments including high humidity, immersion in jet fuel and methylethylketone on aluminum filled adhesive bonds. The adhesive was also evaluated in wide area bonds and flatwise tensile specimens using titanium honeycomb and composite face sheets. It was indicated that the developed adhesive system has the potential for use in applications requiring long term exposure to at least 589K (600 F).

  6. Control of vascular permeability by adhesion molecules.

    PubMed

    Sarelius, Ingrid H; Glading, Angela J

    2015-01-01

    Vascular permeability is a vital function of the circulatory system that is regulated in large part by the limited flux of solutes, water, and cells through the endothelial cell layer. One major pathway through this barrier is via the inter-endothelial junction, which is driven by the regulation of cadherin-based adhesions. The endothelium also forms attachments with surrounding proteins and cells via 2 classes of adhesion molecules, the integrins and IgCAMs. Integrins and IgCAMs propagate activation of multiple downstream signals that potentially impact cadherin adhesion. Here we discuss the known contributions of integrin and IgCAM signaling to the regulation of cadherin adhesion stability, endothelial barrier function, and vascular permeability. Emphasis is placed on known and prospective crosstalk signaling mechanisms between integrins, the IgCAMs- ICAM-1 and PECAM-1, and inter-endothelial cadherin adhesions, as potential strategic signaling nodes for multipartite regulation of cadherin adhesion. PMID:25838987

  7. Adhesion and wear resistance of materials

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1986-01-01

    Recent studies into the nature of bonding at the interface between two solids in contact or a solid and deposited film have provided a better understanding of those properties important to the adhesive wear resistance of materials. Analytical and experimental progress are reviewed. For simple metal systems the adhesive bond forces are related to electronic wave function overlap. With metals in contact with nonmetals, molecular-orbital energy, and density of states, respectively can provide insight into adhesion and wear. Experimental results are presented which correlate adhesive forces measured between solids and the electronic surface structures. Orientation, surface reconstruction, surface segregation, adsorption are all shown to influence adhesive interfacial strength. The interrelationship between adhesion and the wear of the various materials as well as the life of coatings applied to substrates are discussed. Metallic systems addressed include simple metals and alloys and these materials in contact with themselves, both oxide and nonoxide ceramics, diamond, polymers, and inorganic coating compounds, h as diamondlike carbon.

  8. Innate Non-Specific Cell Substratum Adhesion

    PubMed Central

    Loomis, William F.; Fuller, Danny; Gutierrez, Edgar; Groisman, Alex; Rappel, Wouter-Jan

    2012-01-01

    Adhesion of motile cells to solid surfaces is necessary to transmit forces required for propulsion. Unlike mammalian cells, Dictyostelium cells do not make integrin mediated focal adhesions. Nevertheless, they can move rapidly on both hydrophobic and hydrophilic surfaces. We have found that adhesion to such surfaces can be inhibited by addition of sugars or amino acids to the buffer. Treating whole cells with αlpha-mannosidase to cleave surface oligosaccharides also reduces adhesion. The results indicate that adhesion of these cells is mediated by van der Waals attraction of their surface glycoproteins to the underlying substratum. Since glycoproteins are prevalent components of the surface of most cells, innate adhesion may be a common cellular property that has been overlooked. PMID:22952588

  9. Bacterial Adhesion at Synthetic Surfaces

    PubMed Central

    Cunliffe, D.; Smart, C. A.; Alexander, C.; Vulfson, E. N.

    1999-01-01

    A systematic investigation into the effect of surface chemistry on bacterial adhesion was carried out. In particular, a number of physicochemical factors important in defining the surface at the molecular level were assessed for their effect on the adhesion of Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus, and Escherichia coli. The primary experiments involved the grafting of groups varying in hydrophilicity, hydrophobicity, chain length, and chemical functionality onto glass substrates such that the surfaces were homogeneous and densely packed with functional groups. All of the surfaces were found to be chemically well defined, and their measured surface energies varied from 15 to 41 mJ · m−2. Protein adsorption experiments were performed with 3H-labelled bovine serum albumin and cytochrome c prior to bacterial attachment studies. Hydrophilic uncharged surfaces showed the greatest resistance to protein adsorption; however, our studies also showed that the effectiveness of poly(ethyleneoxide) (PEO) polymers was not simply a result of its hydrophilicity and molecular weight alone. The adsorption of the two proteins approximately correlated with short-term cell adhesion, and bacterial attachment for L. monocytogenes and E. coli also correlated with the chemistry of the underlying substrate. However, for S. aureus and S. typhimurium a different pattern of attachment occurred, suggesting a dissimilar mechanism of cell attachment, although high-molecular-weight PEO was still the least-cell-adsorbing surface. The implications of this for in vivo attachment of cells suggest that hydrophilic passivating groups may be the best method for preventing cell adsorption to synthetic substrates provided they can be grafted uniformly and in sufficient density at the surface. PMID:10543814

  10. Applicator for cyanoacrylate tissue adhesive.

    PubMed

    Wessels, I F; McNeill, J I

    1989-03-01

    Cyanoacrylate tissue adhesive (CTA) is very useful for emergency treatment of corneal perforations. Lack of Food and Drug Administration approval as well as concerns about toxicity from the application of large amounts of glue, however, have limited its use. It is difficult to apply a sufficiently small amount of glue or to achieve a water tight seal using published techniques of glue application. We have found a commercially available micropipette (used in dental work) to be more effective than other methods of CTA application. With this apparatus, precise and accurate placement of minimal amounts of CTA at the slit lamp is consistently possible.

  11. Influence of composition on the adhesive strength and initial viscosity of denture adhesives.

    PubMed

    Han, Jian-min; Hong, Guang; Hayashida, Kentaro; Maeda, Takeshi; Murata, Hiroshi; Sasaki, Keiichi

    2014-01-01

    To investigate the effect of composition on the initial viscosity and adhesive strength between denture adhesives and the denture base. Two types of water-soluble polymers (methoxy ethylene maleic anhydride copolymer [PVM-MA] and sodium carboxymethyl cellulose [CMC]) were used. Samples were divided into three groups. Group 1 contained only PVM-MA; Group 2 contained only CMC; and Group 3 contained PVM-MA and CMC. The initial viscosity and adhesive strength were measured. For Group 1, the initial viscosity increased significantly as PVM-MA content increased. The adhesive strength of Group 1 lasted longer than Group 2. The adhesive strength of Group 3 varied greatly. The ratio of CMC and PVM-MA has a significant effect on the initial viscosity and adhesive strength of denture adhesives. Our results suggest that it is possible to improve the durability of a denture adhesive by combining different water-soluble polymers.

  12. Final report for tank 241-AN-102, grab samples 2AN-95-1 through 2AN-95-6 and 102-AN-1 through 102-AN-4

    SciTech Connect

    Esch, R.A.

    1996-03-21

    Ten grab samples (2AN-95-1, 2, 3, 4A, 5A; 102-AN-1, 2, 3(A), 3(B), and 4) and one field blank (2AN-95-6) were taken from tank 241-AN-102. In support of the safety screening program, total organic carbon and cyanide were performed as secondary analyses because the differential scanning calorimetry results exceeded the notification limit. These were compared to safety screening limits at a confidence level of 95%. Waste compatibility analyses were performed on the 3 supernate samples and the field blank from the latest sampling event. Results presented in the 45 day and in this report show that the waste in Tank 241-AN-1D2 has energetics greater than 480 J/g (dry) and total organic carbon > 3 wt%; however, with a moisture content > 17 wt%, the tank may be considered ``conditionally`` safe in accordance with the Data Quality Objective to Support Resolution of the Organic Complexant Safety Issue.

  13. Blood glutamate grabbing does not reduce the hematoma in an intracerebral hemorrhage model but it is a safe excitotoxic treatment modality.

    PubMed

    da Silva-Candal, Andrés; Vieites-Prado, Alba; Gutiérrez-Fernández, María; Rey, Ramón I; Argibay, Bárbara; Mirelman, David; Sobrino, Tomás; Rodríguez-Frutos, Berta; Castillo, José; Campos, Francisco

    2015-07-01

    Recent studies have shown that blood glutamate grabbing is an effective strategy to reduce the excitotoxic effect of extracellular glutamate released during ischemic brain injury. The purpose of the study was to investigate the effect of two of the most efficient blood glutamate grabbers (oxaloacetate and recombinant glutamate oxaloacetate transaminase 1: rGOT1) in a rat model of intracerebral hemorrhage (ICH). Intracerebral hemorrhage was produced by injecting collagenase into the basal ganglia. Three treatment groups were developed: a control group treated with saline, a group treated with oxaloacetate, and a final group treated with human rGOT1. Treatments were given 1 hour after hemorrhage. Hematoma volume (analyzed by magnetic resonance imaging (MRI)), neurologic deficit, and blood glutamate and GOT levels were quantified over a period of 14 days after surgery. The results observed showed that the treatments used induced a significant reduction of blood glutamate levels; however, they did not reduce the hematoma, nor did they improve the neurologic deficit. In the present experimental study, we have shown that this novel therapeutic strategy is not effective in case of ICH pathology. More importantly, these findings suggest that blood glutamate grabbers are a safe treatment modality that can be given in cases of suspected ischemic stroke without previous neuroimaging.

  14. Denture Adhesives in Prosthodontics: An Overview

    PubMed Central

    Kumar, P Ranjith; Shajahan, P A; Mathew, Jyothis; Koruthu, Anil; Aravind, Prasad; Ahammed, M Fazeel

    2015-01-01

    The use of denture adhesives is common among denture wearers, and it is also prescribed by many dentists. Prescribing denture adhesives has been viewed by many prosthodontists as a means of compensating for any defects in the fabrication procedures. Denture adhesives add to the retention and thereby improve chewing ability, reduce any instability, provide comfort and eliminate the accumulation of food debris beneath the dentures. Consequently, they increase the patient’s sense of security and satisfaction. However, obtaining the advice of the dental practitioner prior to the use of adhesives is a must. PMID:26225115

  15. Nucleation and growth of cadherin adhesions

    SciTech Connect

    Lambert, Mireille; Thoumine, Olivier; Brevier, Julien; Choquet, Daniel; Riveline, Daniel; Mege, Rene-Marc

    2007-11-15

    Cell-cell contact formation relies on the recruitment of cadherin molecules and their anchoring to actin. However, the precise chronology of events from initial cadherin trans-interactions to adhesion strengthening is unclear, in part due to the lack of access to the distribution of cadherins within adhesion zones. Using N-cadherin expressing cells interacting with N-cadherin coated surfaces, we characterized the formation of cadherin adhesions at the ventral cell surface. TIRF and RIC microscopies revealed streak-like accumulations of cadherin along actin fibers. FRAP analysis indicated that engaged cadherins display a slow turnover at equilibrium, compatible with a continuous addition and removal of cadherin molecules within the adhesive contact. Association of cadherin cytoplasmic tail to actin as well as actin cables and myosin II activity are required for the formation and maintenance of cadherin adhesions. Using time lapse microscopy we deciphered how cadherin adhesions form and grow. As lamellipodia protrude, cadherin foci stochastically formed a few microns away from the cell margin. Neo-formed foci coalesced aligned and coalesced with preformed foci either by rearward sliding or gap filling to form cadherin adhesions. Foci experienced collapse at the rear of cadherin adhesions. Based on these results, we present a model for the nucleation, directional growth and shrinkage of cadherin adhesions.

  16. Investigation of package sealing using organic adhesives

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1977-01-01

    A systematic study was performed to evaluate the suitability of adhesives for sealing hybrid packages. Selected adhesives were screened on the basis of their ability to seal gold-plated Kovar butterfly-type packages that retain their seal integrity after individual exposures to increasingly severe temperature-humidity environments. Tests were also run using thermal shock, temperature cycling, mechanical shock and temperature aging. The four best adhesives were determined and further tested in a 60 C/98% RH environment and continuously monitored in regard to moisture content. Results are given, however, none of the tested adhesives passed all the tests.

  17. Comparison of three work of adhesion measurements

    SciTech Connect

    Emerson, J.A.; O`Toole, E.; Zamora, D.; Poon, B.

    1998-02-01

    Practical work of adhesion measurements are being studied for several types of polymer/metal combinations in order to obtain a better understanding of the adhesive failure mechanisms for systems containing encapsulated and bonded components. The primary question is whether studies of model systems can be extended to systems of technological interest. The authors report on their first attempts to obtain the work of adhesion between a PDMS polymer and stainless steel. The work of adhesion measurements were made using three techniques -- contact angle, adhesive fracture energy at low deformation rates and JKR. Previous work by Whitesides` group show a good correlation between JKR and contact angle measurements for PDMS. Their initial work focused on duplicating the PDMS measurements of Chaudury. In addition, in this paper the authors extend the work of adhesion measurement to third technique -- interfacial failure energy. The ability to determine the reversible work of adhesion for practical adhesive joints allows understanding of several issues that control adhesion: surface preparation, nature of the interphase region, and bond durability.

  18. Adhesion of biocompatible and biodegradable micropatterned surfaces.

    PubMed

    Kaiser, Jessica S; Kamperman, Marleen; de Souza, Emerson J; Schick, Bernhard; Arzt, Eduard

    2011-02-01

    We studied the effects of pillar dimensions and stiffness of biocompatible and biodegradable micropatterned surfaces on adhesion on different compliant substrates. The micropatterned adhesives were based on biocompatible polydimethylsiloxane (PDMS) and biodegradable poly(lactic-co-glycolic) acid (PLGA) polymer systems. Micropatterned and non-patterned compliant PDMS did not show significant differences in adhesion on compliant mice ear skin or on gelatin-glycerin model substrates. However, adhesion measurements for micropatterned stiff PLGA on compliant gelatin-glycerin model substrates showed significant enhancement in pull-off strengths compared to non-patterned controls.

  19. The development of aerospace polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1983-01-01

    Few materials are available which can be used as aerospace adhesives at temperatures in the range of 300 C. The Materials Division at NASA-Langley Research Center developed several high temperature polyimide adhesives to fulfill the stringent needs of current aerospace programs. These adhesives are the result of a decade of basic research studies on the structure property relationships of both linear and addition aromatic polyimides. The development of both in house and commercially available polyimides is reviewed with regards to their potential for use as aerospace adhesives.

  20. Mannosyl Glycodendritic Structure Inhibits DC-SIGN-Mediated Ebola Virus Infection in cis and in trans

    PubMed Central

    Lasala, Fátima; Arce, Eva; Otero, Joaquín R.; Rojo, Javier; Delgado, Rafael

    2003-01-01

    We have designed a glycodendritic structure, BH30sucMan, that blocks the interaction between dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and Ebola virus (EBOV) envelope. BH30sucMan inhibits DC-SIGN-mediated EBOV infection at nanomolar concentrations. BH30sucMan may counteract important steps of the infective process of EBOV and, potentially, of microorganisms shown to exploit DC-SIGN for cell entry and infection. PMID:14638512

  1. Tank 241-TX-302C grab samples 302C-TX-97-1A through 302C-TX-97-3B analytical results for the final report

    SciTech Connect

    Esch, R.A.

    1998-03-12

    This document is the final report for tank 241-TX-302C grab samples. Six grabs samples (302C-TX-97-1A, 302C-TX-97-1B, 302C-TX-97-2A, 302C-TX-97-2B, 302C-TX-97-3A, and 302C-TX-97-3B) were collected from the catch tank level gauge riser on December 19, 1997. The ``A`` and ``B`` portions from each sample location were composited and analyses were performed on the composites in accordance with the Compatibility Grab Sampling and Analysis Plan (TSAP) (Sasaki, 1997) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO) (Rev. 1: Fowler, 1995; Rev. 2: Mulkey and Miller, 1997). The analytical results are presented in Table 1. No notification limits were exceeded. Appearance and Sample Handling Attachment 1 is provided as a cross-reference for relating the tank farm customer identification numbers with the 222-S Laboratory sample numbers and the portion of sample analyzed. Table 2 provides the appearance information.

  2. 21 CFR 175.125 - Pressure-sensitive adhesives.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Pressure-sensitive adhesives. 175.125 Section 175... Adhesives § 175.125 Pressure-sensitive adhesives. Pressure-sensitive adhesives may be safely used as the... prescribed conditions: (a) Pressure-sensitive adhesives prepared from one or a mixture of two or more of...

  3. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    NASA Astrophysics Data System (ADS)

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  4. Molecular Adhesion between Cartilage Extracellular Matrix Macromolecules

    PubMed Central

    2015-01-01

    In this study, we investigated the molecular adhesion between the major constituents of cartilage extracellular matrix, namely, the highly negatively charged proteoglycan aggrecan and the type II/IX/XI fibrillar collagen network, in simulated physiological conditions. Colloidal force spectroscopy was applied to measure the maximum adhesion force and total adhesion energy between aggrecan end-attached spherical tips (end radius R ≈ 2.5 μm) and trypsin-treated cartilage disks with undamaged collagen networks. Studies were carried out in various aqueous solutions to reveal the physical factors that govern aggrecan–collagen adhesion. Increasing both ionic strength and [Ca2+] significantly increased adhesion, highlighting the importance of electrostatic repulsion and Ca2+-mediated ion bridging effects. In addition, we probed how partial enzymatic degradation of the collagen network, which simulates osteoarthritic conditions, affects the aggrecan–collagen interactions. Interestingly, we found a significant increase in aggrecan–collagen adhesion even when there were no detectable changes at the macro- or microscales. It is hypothesized that the aggrecan–collagen adhesion, together with aggrecan–aggrecan self-adhesion, works synergistically to determine the local molecular deformability and energy dissipation of the cartilage matrix, in turn, affecting its macroscopic tissue properties. PMID:24491174

  5. Shear adhesion strength of aligned electrospun nanofibers.

    PubMed

    Najem, Johnny F; Wong, Shing-Chung; Ji, Guang

    2014-09-01

    Inspiration from nature such as insects' foot hairs motivates scientists to fabricate nanoscale cylindrical solids that allow tens of millions of contact points per unit area with material substrates. In this paper, we present a simple yet robust method for fabricating directionally sensitive shear adhesive laminates. By using aligned electrospun nylon-6, we create dry adhesives, as a succession of our previous work on measuring adhesion energies between two single free-standing electrospun polymer fibers in cross-cylinder geometry, randomly oriented membranes and substrate, and peel forces between aligned fibers and substrate. The synthetic aligned cylindrical solids in this study are electrically insulating and show a maximal Mode II shear adhesion strength of 27 N/cm(2) on a glass slide. This measured value, for the purpose of comparison, is 270% of that reported from gecko feet. The Mode II shear adhesion strength, based on a commonly known "dead-weight" test, is 97-fold greater than the Mode I (normal) adhesion strength of the same. The data indicate a strong shear binding on and easy normal lifting off. Anisotropic adhesion (Mode II/Mode I) is pronounced. The size and surface boundary effects, crystallinity, and bending stiffness of fibers are used to understand these electrospun nanofibers, which vastly differ from otherwise known adhesive technologies. The anisotropic strength distribution is attributed to a decreasing fiber diameter and an optimized laminate thickness, which, in turn, influences the bending stiffness and solid-state "wettability" of points of contact between nanofibers and surface asperities.

  6. Adhesive loose packings of small dry particles

    NASA Astrophysics Data System (ADS)

    Liu, Wenwei; Li, Shuiqing; Baule, Adrian; Makse, Hernán A.

    We explore adhesive loose packings of dry small spherical particles of micrometer size using 3D discrete-element simulations with adhesive contact mechanics. A dimensionless adhesion parameter ($Ad$) successfully combines the effects of particle velocities, sizes and the work of adhesion, identifying a universal regime of adhesive packings for $Ad>1$. The structural properties of the packings in this regime are well described by an ensemble approach based on a coarse-grained volume function that includes correlations between bulk and contact spheres. Our theoretical and numerical results predict: (i) An equation of state for adhesive loose packings that appears as a continuation from the frictionless random close packing (RCP) point in the jamming phase diagram; (ii) The existence of a maximal loose packing point at the coordination number $Z=2$ and packing fraction $\\phi=1/2^{3}$. Our results highlight that adhesion leads to a universal packing regime at packing fractions much smaller than the random loose packing, which can be described within a statistical mechanical framework. We present a general phase diagram of jammed matter comprising frictionless, frictional, adhesive as well as non-spherical particles, providing a classification of packings in terms of their continuation from the spherical frictionless RCP.

  7. Polyurethane adhesive with improved high temperature properties

    NASA Technical Reports Server (NTRS)

    Stuckey, J. M.

    1977-01-01

    A polyurethane resin with paste activator, capable of providing useful bond strengths over the temperature range of -184 C to 149 C, is described. The adhesive system has a pot life of over one hour. Tensile shear strength ratings are given for various adhesive formulations.

  8. Image analysis of blood platelets adhesion.

    PubMed

    Krízová, P; Rysavá, J; Vanícková, M; Cieslar, P; Dyr, J E

    2003-01-01

    Adhesion of blood platelets is one of the major events in haemostatic and thrombotic processes. We studied adhesion of blood platelets on fibrinogen and fibrin dimer sorbed on solid support material (glass, polystyrene). Adhesion was carried on under static and dynamic conditions and measured as percentage of the surface covered with platelets. Within a range of platelet counts in normal and in thrombocytopenic blood we observed a very significant decrease in platelet adhesion on fibrin dimer with bounded active thrombin with decreasing platelet count. Our results show the imperative use of platelet poor blood preparations as control samples in experiments with thrombocytopenic blood. Experiments carried on adhesive surfaces sorbed on polystyrene showed lower relative inaccuracy than on glass. Markedly different behaviour of platelets adhered on the same adhesive surface, which differed only in support material (glass or polystyrene) suggest that adhesion and mainly spreading of platelets depends on physical quality of the surface. While on polystyrene there were no significant differences between fibrin dimer and fibrinogen, adhesion measured on glass support material markedly differed between fibrin dimer and fibrinogen. We compared two methods of thresholding in image analysis of adhered platelets. Results obtained by image analysis of spreaded platelets showed higher relative inaccuracy than results obtained by image analysis of platelets centres and aggregates.

  9. 21 CFR 878.4380 - Drape adhesive.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification....

  10. 21 CFR 878.4380 - Drape adhesive.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification....

  11. 21 CFR 878.4380 - Drape adhesive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification....

  12. 21 CFR 878.4380 - Drape adhesive.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification....

  13. 21 CFR 878.4380 - Drape adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification....

  14. Sticky fingers: Adhesive properties of human fingertips.

    PubMed

    Spinner, Marlene; Wiechert, Anke B; Gorb, Stanislav N

    2016-02-29

    Fingertip friction is a rather well studied subject. Although the phenomenon of finger stickiness is known as well, the pull-off force and the adhesive strength of human finger tips have never been previously quantified. For the first time, we provided here characterization of adhesive properties of human fingers under natural conditions. Human fingers can generate a maximum adhesive force of 15mN on a smooth surface of epoxy resin. A weak correlation of the adhesive force and the normal force was found on all test surfaces. Up to 300mN load, an increase of the normal force leads to an increase of the adhesive force. On rough surfaces, the adhesive strength is significantly reduced. Our data collected from untreated hands give also an impression of an enormous scattering of digital adhesion depending on a large set of inter-subject variability and time-dependent individual factors (skin texture, moisture level, perspiration). The wide inter- and intra-individual range of digital adhesion should be considered in developing of technical and medical products. PMID:26892897

  15. Adhesion rings surround invadopodia and promote maturation

    PubMed Central

    Branch, Kevin M.; Hoshino, Daisuke; Weaver, Alissa M.

    2012-01-01

    Summary Invasion and metastasis are aggressive cancer phenotypes that are highly related to the ability of cancer cells to degrade extracellular matrix (ECM). At the cellular level, specialized actin-rich structures called invadopodia mediate focal matrix degradation by serving as exocytic sites for ECM-degrading proteinases. Adhesion signaling is likely to be a critical regulatory input to invadopodia, but the mechanism and location of such adhesion signaling events are poorly understood. Here, we report that adhesion rings surround invadopodia shortly after formation and correlate strongly with invadopodium activity on a cell-by-cell basis. By contrast, there was little correlation of focal adhesion number or size with cellular invadopodium activity. Prevention of adhesion ring formation by inhibition of RGD-binding integrins or knockdown (KD) of integrin-linked kinase (ILK) reduced the number of ECM-degrading invadopodia and reduced recruitment of IQGAP to invadopodium actin puncta. Furthermore, live cell imaging revealed that the rate of extracellular MT1-MMP accumulation at invadopodia was greatly reduced in both integrin-inhibited and ILK-KD cells. Conversely, KD of MT1-MMP reduced invadopodium activity and dynamics but not the number of adhesion-ringed invadopodia. These results suggest a model in which adhesion rings are recruited to invadopodia shortly after formation and promote invadopodium maturation by enhancing proteinase secretion. Since adhesion rings are a defining characteristic of podosomes, similar structures formed by normal cells, our data also suggest further similarities between invadopodia and podosomes. PMID:23213464

  16. ISOLATION OF INTEGRIN-BASED ADHESION COMPLEXES

    PubMed Central

    Jones, Matthew C.; Humphries, Jonathan D.; Byron, Adam; Millon-Frémillon, Angelique; Robertson, Joseph; Paul, Nikki R.; Ng, Daniel H. J.; Askari, Janet A.; Humphries, Martin J.

    2015-01-01

    The integration of cells with their extracellular environment is facilitated by cell surface adhesion receptors, such as integrins, which play important roles in both normal development and the onset of pathologies. Engagement of integrins with their ligands in the extracellular matrix, or counter receptors on other cells, initiates the intracellular assembly of a wide variety of proteins into adhesion complexes such as focal contacts, focal adhesions and fibrillar adhesions. The proteins recruited to these complexes mediate bidirectional signalling across the plasma membrane and as such help to coordinate and / or modulate the multitude of physical or chemical signals to which the cell is subjected. The protocols in this unit describe two approaches for the isolation or enrichment of proteins contained within integrin-associated adhesion complexes together with their local plasma membrane / cytosolic environments from cells in culture. In the first protocol integrin-associated adhesion structures are affinity isolated using microbeads coated with extracellular ligands or antibodies. The second protocol describes the isolation of ventral membrane preparations that are enriched for adhesion complex structures. The protocols permit the determination of adhesion complex components by subsequent downstream analysis by Western blotting or mass spectrometry. PMID:25727331

  17. Tensile and shear strength of adhesives

    NASA Technical Reports Server (NTRS)

    Stibolt, Kenneth A.

    1990-01-01

    This experiment is conducted in a freshman-level course: Introduction to Engineering Materials. There are no prerequisites for the course although students should have some knowledge of basic algebra. The objectives are to tension and shear test adhesives and to determine the tensile and shear properties of adhesives. Details of equipment of procedure are given.

  18. The effects of plasticity in adhesive fracture

    NASA Technical Reports Server (NTRS)

    Chang, M. D.; Devries, K. L.; Williams, M. L.

    1973-01-01

    An energy-balance analysis is presented for adhesive failure in end loaded cantilever beams. The analysis includes the effects of input work, stored strain energy, dissipated plastic energy, and specific adhesive surface energy. Experimental results obtained with 6061-T6 aluminum are presented as evidence for the validity of the approach.-

  19. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Yu; Takahashi, Kunio; Sato, Chiaki

    2015-12-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified.

  20. Adhesion through single peptide aptamers

    PubMed Central

    Aubin-Tam, Marie-Eve; Appleyard, David C.; Ferrari, Enrico; Garbin, Valeria; Fadiran, Oluwatimilehin O.; Kunkel, Jacquelyn; Lang, Matthew J.

    2014-01-01

    Aptamer and antibody mediated adhesion is central to biological function and valuable in the engineering of “lab on a chip” devices. Single molecule force spectroscopy using optical tweezers enables direct non-equilibrium measurement of these non-covalent interactions for three peptide aptamers selected for glass, polystyrene, and carbon nanotubes. A comprehensive examination of the strong attachment between anti-fluorescein 4-4-20 and fluorescein was also carried out using the same assay. Bond lifetime, barrier width, and free energy of activation are extracted from unbinding histogram data using three single molecule pulling models. The evaluated aptamers appear to adhere stronger than the fluorescein antibody under no- and low-load conditions, yet weaker than antibodies at loads above ~25pN. Comparison to force spectroscopy data of other biological linkages shows the diversity of load dependent binding and provides insight into linkages used in biological processes and those designed for engineered systems. PMID:20795685

  1. Bioinspired design of a hierarchically structured adhesive.

    PubMed

    Arul, Edward Peter; Ghatak, Animangsu

    2009-01-01

    The mechanism by which many creatures such as geckos can run at ease on a vertical wall and yet remain strongly adhered has been linked to hierarchically patterned microstructures: flexible pads, hairs, and subsurface fluidic vessels at their feet. Despite many advances, how these features of different length scales and the associated physical phenomena couple to engender this "smart" adhesive is yet to be understood and mimicked. In this context, we have designed elastomeric films of poly(dimethylsiloxane) embedded with stacks of planar microchannels, curved and straight, and channels with microscopically patterned walls. We have altered also chemically the adhesive surface including that of the microchannel walls by creating dangling chains. During indentation experiments, deformation and self-adhesion of these structures enhance the effective area of adhesion with a consequent increase in adhesion hysteresis over orders of magnitude. In addition, suitable orientation of these buried channels allows the generation of load dependent hysteresis and its spatial modulation. PMID:19063623

  2. Adhesion of elastomeric impression materials to trays.

    PubMed

    Bindra, B; Heath, J R

    1997-01-01

    The tensile and shear adhesive bond strengths of two addition cured silicones (Provil and Express) and a polyether (Impregum) impression material to brass, poly(methylmethacrylate) and visible light-cured (VLC) tray resin were determined. Adhesive application significantly increased the bond strength; Provil and Express adhered most strongly to brass; whilst the Impregum-VLC combination produced the strongest bond. Indeed, VLC resin generated greater adhesion than acrylic resin. Exchanging the adhesives specified for each silicone material generally resulted in higher bond strengths. No correlation was established between speed of separation of the test surfaces and bond strength. For optimum clinical performance, the impression material (adhesive) tray material giving the highest bond strength should be utilized.

  3. Critical length scale controls adhesive wear mechanisms.

    PubMed

    Aghababaei, Ramin; Warner, Derek H; Molinari, Jean-Francois

    2016-01-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients. PMID:27264270

  4. Adhesion, friction and micromechanical properties of ceramics

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1988-01-01

    The adhesion, friction, and micromechanical properties of ceramics, both in monolithic and coating form, are reviewed. Ceramics are examined in contact with themselves, other harder materials, and metals. For the simplicity of discussion, the tribological properties of concern in the processes are separated into two parts. The first part discusses the pull-off force (adhesion) and the shear force required to break the interfacial junctions between contacting surfaces. The role of chemical bonding in adhesion and friction, and the effects of surface contaminant films and temperature on tribological response with respect to adhesion and friction are discussed. The second part deals with abrasion of ceramics. Elastic, plastic, and fracture behavior of ceramics in solid state contact is discussed. The scratch technique of determining the critical load needed to fracture interfacial adhesive bonds of ceramic deposited on substrates is also addressed.

  5. [Adhesive and hemagglutinating properties of lactobacilli].

    PubMed

    Brilis, V I; Brilene, T A; Lentsner, Kh P; Lentsner, A A

    1982-09-01

    The study of the adhesive and hemagglutinating properties of the strains of different Lactobacillus species isolated from the human digestive tract and sour milk products were carried out. 49 strains of 9 Lactobacillus species were studied; of these, 10 strains had been isolated from saliva, 11 strains from feces, 7 strains from milk and 5 strains from sour cream. 11 collection strains and 2 strains used in the production of lactobacterin served as controls. Adhesion was studied in vitro on human red blood cells used as a model. Red blood cells used in the experiments had been taken from 23 donors aged 25-52 years. Lactobacilli were found to have certain inter and intraspecific differences in their adhesiveness. The adhesiveness of the lactobacilli isolated from human feces was considerably greater than that of the strains isolated from sour milk products and of the collection strains. Only the strains of lactobacilli with low adhesiveness possessed pronounced hemagglutinating properties. PMID:7148229

  6. Coating to enhance metal-polymer adhesion

    SciTech Connect

    Parthasarathi, A.; Mahulikar, D.

    1996-12-31

    An ultra-thin electroplated coating has been developed to enhance adhesion of metals to polymers. The coating was developed for microelectronic packaging applications where it greatly improves adhesion of metal leadframes to plastic molding compounds. Recent tests show that the coating enhances adhesion of different metals to other types of adhesives as well and may thus have wider applicability. Results of adhesion tests with this coating, as well as its other characteristics such as corrosion resistance, are discussed. The coating is a very thin transparent electroplated coating containing zinc and chromium. It has been found to be effective on a variety of metal surfaces including copper alloys, Fe-Ni alloys, Al alloys, stainless steel, silver, nickel, Pd/Ni and Ni-Sn. Contact resistance measurements show that the coating has little or no effect on electrical resistivity.

  7. Fatigue behavior of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Mall, S.

    1983-01-01

    The fatigue damage mechanism of composite to composite adhesively bonded joints was characterized. The mechanics of the possible modes of fatigue damage propagation in these joints when subjected to constant amplitude cyclic mechanical loading were investigated. The possible failure modes in composite bonded joints may be cyclic debonding (i.e., progressive separation of the adhesive), interlaminar damage (delamination), adherend fatigue or a combination of these. Two composite systems - graphite/epoxy adhesively bonded to graphite/epoxy and Kevlar 49/epoxy adhesively bonded to Kevlar 49/epoxy were investigated. Both composite systems consisted of quasi-isotropic lay-ups, i.e., 0 deg/-45 deg/+45 deg/90 degs. The two adhesives, employed in the study were (1) EC 3445 with cure temperature of 250 F for secondary bonding and (2) FM 300 with cure temperature of 350 F for co-cure bonding.

  8. Critical length scale controls adhesive wear mechanisms

    PubMed Central

    Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-Francois

    2016-01-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients. PMID:27264270

  9. Critical length scale controls adhesive wear mechanisms

    NASA Astrophysics Data System (ADS)

    Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-Francois

    2016-06-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients.

  10. Genetics Home Reference: leukocyte adhesion deficiency type 1

    MedlinePlus

    ... adhesion deficiency type 1 leukocyte adhesion deficiency type 1 Enable Javascript to view the expand/collapse boxes. ... All Close All Description Leukocyte adhesion deficiency type 1 is a disorder that causes the immune system ...

  11. GeoMapApp Learning Activities: Grab-and-go inquiry-based geoscience activities that bring cutting-edge technology to the classroom

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.; Kluge, S.

    2011-12-01

    NSF-funded GeoMapApp Learning Activities (http://serc.carleton.edu/geomapapp) provide self-contained learning opportunities that are centred around the principles of guided inquiry. The activities allow students to interact with and analyse research-quality geoscience data to explore and enhance student understanding of underlying geoscience content and concepts. Each activity offers ready-to-use step-by-step student instructions and answer sheets that can be downloaded from the web page. Also provided are annotated teacher versions of the worksheets that include teaching tips, additional content and suggestions for further work. Downloadable pre- and post- quizzes tied to each activity help educators gauge the learning progression of their students. Short multimedia tutorials and details on content alignment with state and national teaching standards round out the package of material that comprises each "grab-and-go" activity. GeoMapApp Learning Activities expose students to content and concepts typically found at the community college, high school and introductory undergraduate levels. The activities are based upon GeoMapApp (http://www.geomapapp.org), a free, easy-to-use map-based data exploration and visualisation tool that allows students to access a wide range of geoscience data sets in a virtual lab-like environment. Activities that have so far been created under this project include student exploration of seafloor spreading rates, a study of mass wasting as revealed through geomorphological evidence, and an analysis of plate motion and hotspot traces. The step-by-step instructions and guided inquiry approach lead students through each activity, thus reducing the need for teacher intervention whilst also boosting the time that students can spend on productive exploration and learning. The activities can be used, for example, in a classroom lab with the educator present and as self-paced assignments in an out-of-class setting. GeoMapApp Learning Activities

  12. Peritoneal adhesions after laparoscopic gastrointestinal surgery

    PubMed Central

    Mais, Valerio

    2014-01-01

    Although laparoscopy has the potential to reduce peritoneal trauma and post-operative peritoneal adhesion formation, only one randomized controlled trial and a few comparative retrospective clinical studies have addressed this issue. Laparoscopy reduces de novo adhesion formation but has no efficacy in reducing adhesion reformation after adhesiolysis. Moreover, several studies have suggested that the reduction of de novo post-operative adhesions does not seem to have a significant clinical impact. Experimental data in animal models have suggested that CO2 pneumoperitoneum can cause acute peritoneal inflammation during laparoscopy depending on the insufflation pressure and the surgery duration. Broad peritoneal cavity protection by the insufflation of a low-temperature humidified gas mixture of CO2, N2O and O2 seems to represent the best approach for reducing peritoneal inflammation due to pneumoperitoneum. However, these experimental data have not had a significant impact on the modification of laparoscopic instrumentation. In contrast, surgeons should train themselves to perform laparoscopy quickly, and they should complete their learning curves before testing chemical anti-adhesive agents and anti-adhesion barriers. Chemical anti-adhesive agents have the potential to exert broad peritoneal cavity protection against adhesion formation, but when these agents are used alone, the concentrations needed to prevent adhesions are too high and could cause major post-operative side effects. Anti-adhesion barriers have been used mainly in open surgery, but some clinical data from laparoscopic surgeries are already available. Sprays, gels, and fluid barriers are easier to apply in laparoscopic surgery than solid barriers. Results have been encouraging with solid barriers, spray barriers, and gel barriers, but they have been ambiguous with fluid barriers. Moreover, when barriers have been used alone, the maximum protection against adhesion formation has been no greater than

  13. Adhesion of cells to polystyrene surfaces

    PubMed Central

    1983-01-01

    The surface treatment of polystyrene, which is required to make polystyrene suitable for cell adhesion and spreading, was investigated. Examination of surfaces treated with sulfuric acid or various oxidizing agents using (a) x-ray photoelectron and attenuated total reflection spectroscopy and (b) measurement of surface carboxyl-, hydroxyl-, and sulfur-containing groups by various radiochemical methods showed that sulfuric acid produces an insignificant number of sulfonic acid groups on polystyrene. This technique together with various oxidation techniques that render surfaces suitable for cell culture generated high surface densities of hydroxyl groups. The importance of surface hydroxyl groups for the adhesion of baby hamster kidney cells or leukocytes was demonstrated by the inhibition of adhesion when these groups were blocked: blocking of carboxyl groups did not inhibit adhesion and may raise the adhesion of a surface. These results applied to cell adhesion in the presence and absence of serum. The relative unimportance of fibronectin for the adhesion and spreading of baby hamster kidney cells to hydroxyl-rich surfaces was concluded when cells spread on such surfaces after protein synthesis was inhibited with cycloheximide, fibronectin was removed by trypsinization, and trypsin activity was stopped with leupeptin. PMID:6355120

  14. Tissue Mechanics and Adhesion during Embryo Development

    PubMed Central

    Shawky, Joseph H.; Davidson, Lance A.

    2014-01-01

    During development cells interact mechanically with their microenvironment through cell-cell and cell-matrix adhesions. Many proteins involved in these adhesions serve both mechanical and signaling roles. In this review we will focus on the mechanical roles of these proteins and their complexes in transmitting force or stress from cell to cell or from cell to the extracellular matrix. As forces operate against tissues they establish tissue architecture, extracellular matrix assembly, and pattern cell shapes. As tissues become more established, adhesions play a major role integrating cells with the mechanics of their local environment. Adhesions may serve as both a molecular-specific glue, holding defined populations of cells together, and as a lubricant, allowing tissues to slide past one another. We review the biophysical principles and experimental tools used to study adhesion so that we may aid efforts to understand how adhesions guide these movements and integrate their signaling functions with mechanical function. As we conclude we review efforts to develop predictive models of adhesion that can be used to interpret experiments and guide future efforts to control and direct the process of tissue self-assembly during development. PMID:25512299

  15. Adhesive switching of membranes: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Bruinsma, Robijn; Behrisch, Almuth; Sackmann, Erich

    2000-04-01

    We report on a study of a model bioadhesion system: giant vesicles in contact with a supported lipid bilayer. Embedded in both membranes are very low concentrations of homophilic recognition molecules (contact site A receptors) competing with higher concentrations of repeller molecules: polyethylene glycol (PEG) lipids. These repellers mimic the inhibiting effect of the cell glycocalyx on adhesion. The effective adhesive interaction between the two membranes is probed by interferometric analysis of thermal fluctuations. We find two competing states of adhesion: initial weak adhesion is followed by slower aggregation of the adhesion molecules into small, tightly bound clusters that coexist with the regions of weak adhesion. We interpret our results in terms of a double-well intermembrane potential, and we present a theoretical analysis of the intermembrane interaction in the presence of mobile repeller molecules at a fixed chemical potential that shows that the interaction potential indeed should have just such a double-well shape. At a fixed repeller concentration we recover a conventional purely repulsive potential. We discuss the implications of our findings in terms of a general amplification mechanism of the action of sparse adhesion molecules by a nonspecific double-well potential. We also discuss the important role of the Helfrich undulation force for the proposed scenario.

  16. Adhesion in ceramics and magnetic media

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1989-01-01

    When a ceramic is brought into contact with a metal or a polymeric material such as a magnetic medium, strong bonds form between the materials. For ceramic-to-metal contacts, adhesion and friction are strongly dependent on the ductility of the metals. Hardness of metals plays a much more important role in adhesion and friction than does the surface energy of metals. Adhesion, friction, surface energy, and hardness of a metal are all related to its Young's modulus and shear modulus, which have a marked dependence on the electron configuration of the metal. An increase in shear modulus results in a decrease in area of contact that is greater than the corresponding increase in surface energy (the fond energy) with shear modulus. Consequently, the adhesion and friction decrease with increasing shear modulus. For ceramics in contact with polymeric magnetic tapes, environment is extremely important. For example, a nitrogen environment reduces adhesion and friction when ferrite contacts polymeric tape, whereas a vacuum environment strengthens the ferrite-to-tape adhesion and increases friction. Adhesion and friction are strongly dependent on the particle loading of the tape. An increase in magnetic particle concentration increases the complex modulus of the tape, and a lower real area of contact and lower friction result.

  17. Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive

    PubMed Central

    Ruffatto, Donald; Parness, Aaron; Spenko, Matthew

    2014-01-01

    This paper describes a novel, controllable adhesive that combines the benefits of electrostatic adhesives with gecko-like directional dry adhesives. When working in combination, the two technologies create a positive feedback cycle whose adhesion, depending on the surface type, is often greater than the sum of its parts. The directional dry adhesive brings the electrostatic adhesive closer to the surface, increasing its effect. Similarly, the electrostatic adhesion helps engage more of the directional dry adhesive fibrillar structures, particularly on rough surfaces. This paper presents the new hybrid adhesive's manufacturing process and compares its performance to three other adhesive technologies manufactured using a similar process: reinforced PDMS, electrostatic and directional dry adhesion. Tests were performed on a set of ceramic tiles with varying roughness to quantify its effect on shear adhesive force. The relative effectiveness of the hybrid adhesive increases as the surface roughness is increased. Experimental data are also presented for different substrate materials to demonstrate the enhanced performance achieved with the hybrid adhesive. Results show that the hybrid adhesive provides up to 5.1× greater adhesion than the electrostatic adhesive or directional dry adhesive technologies alone. PMID:24451392

  18. Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive.

    PubMed

    Ruffatto, Donald; Parness, Aaron; Spenko, Matthew

    2014-04-01

    This paper describes a novel, controllable adhesive that combines the benefits of electrostatic adhesives with gecko-like directional dry adhesives. When working in combination, the two technologies create a positive feedback cycle whose adhesion, depending on the surface type, is often greater than the sum of its parts. The directional dry adhesive brings the electrostatic adhesive closer to the surface, increasing its effect. Similarly, the electrostatic adhesion helps engage more of the directional dry adhesive fibrillar structures, particularly on rough surfaces. This paper presents the new hybrid adhesive's manufacturing process and compares its performance to three other adhesive technologies manufactured using a similar process: reinforced PDMS, electrostatic and directional dry adhesion. Tests were performed on a set of ceramic tiles with varying roughness to quantify its effect on shear adhesive force. The relative effectiveness of the hybrid adhesive increases as the surface roughness is increased. Experimental data are also presented for different substrate materials to demonstrate the enhanced performance achieved with the hybrid adhesive. Results show that the hybrid adhesive provides up to 5.1× greater adhesion than the electrostatic adhesive or directional dry adhesive technologies alone.

  19. Hierarchical bioinspired adhesive surfaces-a review.

    PubMed

    Brodoceanu, D; Bauer, C T; Kroner, E; Arzt, E; Kraus, T

    2016-01-01

    The extraordinary adherence and climbing agility of geckos on rough surfaces has been attributed to the multiscale hierarchical structures on their feet. Hundreds of thousands of elastic hairs called setae, each of which split into several spatulae, create a large number of contact points that generate substantial adhesion through van der Waals interactions. The hierarchical architecture provides increased structural compliance on surfaces with roughness features ranging from micrometers to millimeters. We review synthetic adhesion surfaces that mimic the naturally occurring hierarchy with an emphasis on microfabrication strategies, material choice and the adhesive performance achieved. PMID:27529743

  20. Molecular Architecture and Function of Matrix Adhesions

    PubMed Central

    Geiger, Benjamin; Yamada, Kenneth M.

    2011-01-01

    Cell adhesions mediate important bidirectional interactions between cells and the extracellular matrix. They provide an interactive interface between the extracellular chemical and physical environment and the cellular scaffolding and signaling machinery. This dynamic, reciprocal regulation of intracellular processes and the matrix is mediated by membrane receptors such as the integrins, as well as many other components that comprise the adhesome. Adhesome constituents assemble themselves into different types of cell adhesion structures that vary in molecular complexity and change over time. These cell adhesions play crucial roles in cell migration, proliferation, and determination of cell fate. PMID:21441590

  1. Method of making thermally removable adhesives

    DOEpatents

    Aubert, James H.

    2004-11-30

    A method of making a thermally-removable adhesive is provided where a bismaleimide compound, a monomeric furan compound, containing an oxirane group an amine curative are mixed together at an elevated temperature of greater than approximately 90.degree. C. to form a homogeneous solution, which, when cooled to less than approximately 70.degree. C., simultaneously initiates a Diels-Alder reaction between the furan and the bismaleimide and a epoxy curing reaction between the amine curative and the oxirane group to form a thermally-removable adhesive. Subsequent heating to a temperature greater than approximately 100.degree. C. causes the adhesive to melt and allows separation of adhered pieces.

  2. Weld bonding of titanium with polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Sheppard, C. H.; Orell, M. K.

    1975-01-01

    A conductive adhesive primer and a capillary flow adhesive were developed for weld bonding titanium alloy joints. Both formulations contained ingredients considered to be non-carcinogenic. Lap-shear joint test specimens and stringer-stiffened panels were weld bonded using a capillary flow process to apply the adhesive. Static property information was generated for weld bonded joints over the temperature range of 219K (-65 F) to 561K (550 F). The capillary flow process was demonstrated to produce weld bonded joints of equal strength to the weld through weld bonding process developed previously.

  3. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Paulauskas, Felix L.; Fathi, Zakaryae; Wei, Jianghua

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  4. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-09-08

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  5. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-08-25

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  6. Adhesives and emollients in the preterm infant.

    PubMed

    Hoath, S B; Narendran, V

    2000-11-01

    This chapter focuses on recent advances in preterm infant skin care related to skin adhesion and skin emolliency. Different types of adhesives and hydrating agents are reviewed. Clinical applications are best guided by understanding the biology of epidermal barrier development. The role of xeric stress in accelerating formation of the stratum corneum is discussed along with the effects of occlusive agents and emollients on wound healing and epidermal barrier repair. The principles of skin moisturization are introduced. The concept is advanced that programmatic changes in skin adhesion and water handling occur during the normal ontogeny of superficial biofilms (sebum, sweat, acid mantle).

  7. The development of low temperature curing adhesives

    NASA Technical Reports Server (NTRS)

    Green, H. E.; Sutherland, J. D.; Hom, J. M.; Sheppard, C. H.

    1975-01-01

    An approach for the development of a practical low temperature (293 K-311 K/68 F-100 F) curing adhesive system based on a family of amide/ester resins was studied and demonstrated. The work was conducted on resin optimization and adhesive compounding studies. An improved preparative method was demonstrated which involved the reaction of an amine-alcohol precursor, in a DMF solution with acid chloride. Experimental studies indicated that an adhesive formulation containing aluminum powder provided the best performance when used in conjunction with a commercial primer.

  8. Evaluation of the adhesion of fiber posts cemented using different adhesive approaches.

    PubMed

    Radovic, Ivana; Mazzitelli, Claudia; Chieffi, Nicoletta; Ferrari, Marco

    2008-12-01

    The aim of this study was to investigate the adhesion of fiber posts cemented with luting agents that utilize three currently available adhesive approaches: etch-and-rinse, self-etch, and self-adhesive. Forty-two intact single-rooted human premolars were used in the study. Teeth were divided into six groups. In each group, a different resin cement with its adhesive system (if needed) and a fiber post were used. The groups were classified, according to the adhesive approach, into the following three categories. (i) Etch-and-rinse groups: Calibra resin cement/XPBond adhesive + self-curing activator (SCA)/RadiX Fiber Post (Dentsply Caulk), FluoroCore 2 core build-up material/XPBond + SCA/RadiX Fiber Post (Dentsply Caulk), and MultiCore Flow luting and core build-up material/Excite DSC adhesive/FRC Postec Plus fiber post (Ivoclar Vivadent). (ii) Self-etch group: Panavia F 2.0/ED primer (Kuraray)/RadiX Fiber Post (Dentsply Caulk). (iii) Self-adhesive groups: experimental self-adhesive cement/RadiX Fiber Post (Dentsply Caulk), and RelyX Unicem/RelyX Fiber Post (3M ESPE). The adhesion between the post and the root canal walls was assessed using the 'thin-slice' push-out test. In the test arrangement used, the self-etching approach may offer less favourable adhesion to root canal dentin in comparison with etch-and-rinse and self-adhesive approaches.

  9. Heat-shrinkable film improves adhesive bonds

    NASA Technical Reports Server (NTRS)

    Johns, J. M.; Reed, M. W.

    1980-01-01

    Pressure is applied during adhesive bonding by wrapping parts in heat-shrinkable plastic film. Film eliminates need to vacuum bag or heat parts in expensive autoclave. With procedure, operators are trained quickly, and no special skills are required.

  10. Chemistry technology: Adhesives and plastics: A compilation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Technical information on chemical formulations for improving and/or producing adhesives is presented. Data are also reported on polymeric plastics with special characteristics or those plastics that were produced by innovative means.

  11. Recent Advances in Nanostructured Biomimetic Dry Adhesives

    PubMed Central

    Pattantyus-Abraham, Andras; Krahn, Jeffrey; Menon, Carlo

    2013-01-01

    The relatively large size of the gecko and its ability to climb a multitude of structures with ease has often been cited as the inspiration upon which the field of dry adhesives is based. Since 2010, there have been many advances in the field of dry adhesives with much of the new research focusing on developing nanoscale and hierarchical features in a concentrated effort to develop synthetic gecko-like dry adhesives which are strong, durable, and self-cleaning. A brief overview of the geckos and the hairs which it uses to adhere to many different surfaces is provided before delving into the current methods and materials used to fabricate synthetic gecko hairs. A summary of the recently published literature on bio-inspired, nanostructured dry adhesives is presented with an emphasis being placed on fabrication techniques. PMID:25023409

  12. Diverse evolutionary paths to cell adhesion.

    PubMed

    Abedin, Monika; King, Nicole

    2010-12-01

    The morphological diversity of animals, fungi, plants, and other multicellular organisms stems from the fact that each lineage acquired multicellularity independently. A prerequisite for each origin of multicellularity was the evolution of mechanisms for stable cell-cell adhesion or attachment. Recent advances in comparative genomics and phylogenetics provide critical insights into the evolutionary foundations of cell adhesion. Reconstructing the evolution of cell junction proteins in animals and their unicellular relatives exemplifies the roles of co-option and innovation. Comparative studies of volvocine algae reveal specific molecular changes that accompanied the evolution of multicellularity in Volvox. Comparisons between animals and Dictyostelium show how commonalities and differences in the biology of unicellular ancestors influenced the evolution of adhesive mechanisms. Understanding the unicellular ancestry of cell adhesion helps illuminate the basic cell biology of multicellular development in modern organisms. PMID:20817460

  13. Ins and Outs of Microbial Adhesion

    NASA Astrophysics Data System (ADS)

    Virji, Mumtaz

    Microbial adhesion is generally a complex process, involving multiple adhesins on a single microbe and their respective target receptors on host cells. In some situations, various adhesins of a microbe may co-operate in an apparently hierarchical and sequential manner whereby the first adhesive event triggers the target cell to express receptors for additional microbial adhesins. In other instances, adhesins may act in concert leading to high avidity interactions, often a prelude to cellular invasion and tissue penetration. Mechanisms used to target the host include both lectin-like interactions and protein-protein interactions; the latter are often highly specific for the host or a tissue within the host. This reflective chapter aims to offer a point of view on microbial adhesion by presenting some experiences and thoughts especially related to respiratory pathogens and explore if there can be any future hope of controlling bacterial infections via preventing adhesion or invasion stages of microbial pathogenesis.

  14. Advances in the Pathogenesis of Adhesion Development

    PubMed Central

    Awonuga, Awoniyi O.; Belotte, Jimmy; Abuanzeh, Suleiman; Fletcher, Nicole M.; Diamond, Michael P.

    2014-01-01

    Over the past several years, there has been increasing recognition that pathogenesis of adhesion development includes significant contributions of hypoxia induced at the site of surgery, the resulting oxidative stress, and the subsequent free radical production. Mitochondrial dysfunction generated by surgically induced tissue hypoxia and inflammation can lead to the production of reactive oxygen and nitrogen species as well as antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase which when optimal have the potential to abrogate mitochondrial dysfunction and oxidative stress, preventing the cascade of events leading to the development of adhesions in injured peritoneum. There is a significant cross talk between the several processes leading to whether or not adhesions would eventually develop. Several of these processes present avenues for the development of measures that can help in abrogating adhesion formation or reformation after intraabdominal surgery. PMID:24520085

  15. Ice adhesions in relation to freeze stress.

    PubMed

    Olien, C R; Smith, M N

    1977-10-01

    In freezing, competitive interaction between ice and hydrophilic plant substances causes an energy of adhesion to develop through the interstitial liquid. The thermodynamic basis for the adhesion energy is discussed, with estimates of the energies involved. In this research, effects of adhesion energy were observed microscopically in conjunction with energies of crystallization and frost desiccation. The complex character of ice in intact crown tissue of winter barley (Hordeum vulgare L.) and the problems of sectioning frozen tissue without producing artifacts led to an alternative study of single barley cells in a mesh of ice and cell wall polymers. Adhesions between ice, cell wall polymers, and the plasmalemma form a complexly interacting system in which the pattern of crystallization is a major factor in determination of stress and injury. PMID:16660124

  16. 21 CFR 878.4010 - Tissue adhesive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4010 Tissue adhesive. (a) Tissue... intended for use in the embolization of brain arteriovenous malformation or for use in ophthalmic...

  17. 21 CFR 878.4010 - Tissue adhesive.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4010 Tissue adhesive. (a) Tissue... intended for use in the embolization of brain arteriovenous malformation or for use in ophthalmic...

  18. 21 CFR 878.4010 - Tissue adhesive.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4010 Tissue adhesive. (a) Tissue... intended for use in the embolization of brain arteriovenous malformation or for use in ophthalmic...

  19. 21 CFR 878.4010 - Tissue adhesive.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4010 Tissue adhesive. (a) Tissue... intended for use in the embolization of brain arteriovenous malformation or for use in ophthalmic...

  20. 21 CFR 878.4010 - Tissue adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4010 Tissue adhesive. (a) Tissue... intended for use in the embolization of brain arteriovenous malformation or for use in ophthalmic...

  1. Thread-Pull Test Of Curing Adhesive

    NASA Technical Reports Server (NTRS)

    Johnson, James A.

    1992-01-01

    Hardness (and degree of cure) of adhesive layer measured by pulling previously inserted thread out of layer. Strength of bond measured directly on assembly rather than on samples, which can be misleading.

  2. [Fiber-reinforced adhesive partial dentures].

    PubMed

    Kreulen, C M

    2003-06-01

    Dental applications of fiber-reinforced polymers include adhesive partial dentures. Dental resin composite materials can be reinforced by several types of fibres. Fiber orientation, proper wetting of the fibers by the resin and fiber volume are important. An application of fiber reinforced composites is the composite inlay bridge. This paper deals with some aspects of this type of adhesive partial denture. Advantages include the satisfactory esthetics and the minimally invasive character. Not clear yet is the long-term survival. The adhesive properties of fiber-reinforced adhesive partial dentures require an adaptation of the current dental philosophy, in which direct and indirect restorative techniques can be combined. An increase in knowledge and experience is needed to determine the dental applications. PMID:12852063

  3. Molecular dynamics simulation of interfacial adhesion

    SciTech Connect

    Yarovsky, I.; Chaffee, A.L.

    1996-12-31

    Chromium salts are often used in the pretreatment stages of steel painting processes in order to improve adhesion at the metal oxide/primer interface. Although well established empirically, the chemical basis for the improved adhesion conferred by chromia is not well understood. A molecular level understanding of this behaviour should provide a foundation for the design of materials offering improved adhesion control. Molecular modelling of adhesion involves simulation and analysis of molecular behaviour at the interface between two interacting phases. The present study concerns behaviour at the boundary between the metal coated steel surface (with or without chromium pretreatment) and an organic primer based on a solid epoxide resin produced from bisphenol A and epichlorohydrin. An epoxy resin oligomer of molecular weight 3750 was used as the model for the primer.

  4. Adhesion in hydrogels and model glassy polymers

    NASA Astrophysics Data System (ADS)

    Guvendiren, Murat

    Two main topics are addressed in this dissertation: (1) adhesion in hydrogels; (2) interfacial interactions between model glassy polymers. A self-assembly technique for the formation of hydrogels from acrylic triblock copolymer solutions was developed, based on vapor phase solvent exchange. Structure formation in the gels was characterized by small angle X-ray scattering, and swelling was measured in controlled pH buffer solutions. Strong gels are formed with polymer weight fractions between 0.01 and 0.15, and with shear moduli between 0.6 kPa and 3.5 kPa. Adhesive functionality, based on 3,4-dihydroxy-L-phenylalanine (DOPA) was also incorporated into the triblock copolymers. The effect of DOPA concentration on gel formation and swelling was investigated in detail. The adhesive properties of DOPA-functionalized hydrogels on TiO2 were investigated with an axisymmetric adhesion method. It was shown that the presence of DOPA enhances the adhesive properties of the hydrogels, but that the effect is minimized at pH values below 10, where the DOPA groups are hydrophobic. Thin film membranes were produced in order to study the specific interactions between DOPA and TiO2 and DOPA and tissue, using a membrane inflation method. The presence of DOPA in the membranes enhances the adhesion on TiO 2 and tissue, although adhesion to tissue requires that the DOPA groups be oxidized while in contact with the tissue of interest. Porous hydrogel scaffolds for tissue engineering applications were formed by adding salt crystals to the triblock copolymer solution prior to solvent exchange. Salt was then leached out by immersing the gel into water. Structures of the porous hydrogels were characterized by confocal laser scanning microscopy. These hydrogels were shown to be suitable for tissue regeneration and drug delivery applications. Diffusion-mediated adhesion between two component miscible polymer systems having very different glassy temperatures was also investigated. Axisymmetric

  5. Intercellular adhesion molecule-1 in the heart.

    PubMed

    Niessen, Hans W M; Krijnen, Paul A J; Visser, Cees A; Meijer, Chris J L M; Hack, C Erik

    2002-11-01

    Intercellular adhesion molecule-1 (ICAM-1) belongs to the superfamily of immunoglobulin-like adhesion molecules. Up-regulation of ICAM-1 occurs in many different pathophysiological processes. Also, cardiomyocytes can express ICAM-1-for example, in acute myocardial infarction. Moreover, inhibition of ICAM-1 expression in the heart dramatically reduces infarct size. Hence, inhibitors of ICAM-1 may provide a novel therapeutic option for acute myocardial infarction.

  6. Strengthening of dental adhesives via particle reinforcement.

    PubMed

    Belli, Renan; Kreppel, Stefan; Petschelt, Anselm; Hornberger, Helga; Boccaccini, Aldo R; Lohbauer, Ulrich

    2014-09-01

    The bond between methacrylic polymer adhesives and dental restoratives is not perfect and may fail either in the short or in the long term. This study aims to evaluate the effects of particle incorporation in a self-etch model adhesive on mechanical and physical properties that are relevant during application and service. Filled adhesives containing 5, 10, 15 or 25wt% glass fillers were compared to their unfilled counterpart in terms of water sorption and solubility; viscosity and dynamic viscosity during polymerization were recorded using rheological measurements and compared to FTIR analysis of the real-time degree of cure. Elastic modulus and ultimate tensile strength measurements were performed in uniaxial tension; the energy to fracture was used to calculate the fracture toughness of the adhesives. Finally, the experimental adhesives were applied on dentin substrate to test the bond strength using the microtensile test. Results showed that the incorporation of 5-10wt% nanofiller to self-etching dental adhesives is efficient in accelerating the polymerization reaction and increasing the degree of cure without compromising the film viscosity for good wettability or water sorption and solubility. Fillers increased the elastic modulus, tensile strength and fracture toughness to a plateau between 5 and 15wt% filler concentration, and despite the tendency to form agglomerations, active crack pinning/deflection toughening mechanisms have been observed. The bond strength between resin composite and dentin was also improved when adhesives with up to 10wt% fillers were used, with no additional improvements with further packing. The use of fillers to reinforce dental adhesives may therefore be of great practical benefit by improving curing and mechanical properties.

  7. Influence of surface roughness on gecko adhesion.

    PubMed

    Huber, Gerrit; Gorb, Stanislav N; Hosoda, Naoe; Spolenak, Ralph; Arzt, Eduard

    2007-07-01

    In this study we show the influence of surface roughness on gecko adhesion on both the nano- and macroscales. We present experimental data for the force necessary to pull off single spatulae from hard rough substrates and also detail observations on living geckos clinging to various surfaces. Both experiments consistently show that the effective adhesion shows a minimum for a root mean square roughness ranging from 100 to 300nm.

  8. New pressure-sensitive silicone adhesive

    NASA Technical Reports Server (NTRS)

    Leiffer, J. L.; Stoops, W. E., Jr.; St. Clair, T. L.; Watkins, V. E., Jr.; Kelly, T. P.

    1981-01-01

    Adhesive for high or low temperatures does not stretch severely under load. It is produced by combining intermediate-molecular-weight pressure sensitive adhesive which does not cure with silicone resin that cures with catalyst to rubbery tack-free state. Blend of silicone tackifier and cured rubbery silicone requires no solvents in either atmospheric or vacuum environments. Ratio of ingredients varies for different degrees of tack, creep resistance, and tensile strength.

  9. Cryogenic adhesives and sealants: Abstracted publications

    NASA Technical Reports Server (NTRS)

    Williamson, F. R.; Olien, N. A.

    1977-01-01

    Abstracts of primary documents containing original experimental data on the properties of adhesives and sealants at cryogenic temperatures are presented. The most important references mentioned in each document are cited. In addition, a brief annotation is given for documents considered secondary in nature, such as republications or variations of original reports, progress reports leading to final reports included as primary documents, and experimental data on adhesive properties at temperatures between about 130 K and room temperature.

  10. Processable polyimide adhesive and matrix composite resin

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Progar, Donald J. (Inventor)

    1990-01-01

    A high temperature polyimide composition prepared by reacting 4,4'-isophthaloyldiphthalic anhydride with metaphenylenediamine is employed to prepare matrix resins, adhesives, films, coatings, moldings, and laminates, especially those showing enhanced flow with retention of mechanical and adhesive properties. It can be used in the aerospace industry, for example, in joining metals to metals or metals to composite structures. One area of application is in the manufacture of lighter and stronger aircraft and spacecraft structures.

  11. Black Hole Grabs Starry Snack

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version

    This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end.

    The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light.

    The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.

  12. NTIS: Up for Grabs Again?

    ERIC Educational Resources Information Center

    Crawford, Mark

    1988-01-01

    Discusses a move by the Office of Management and Budget to move the 43-year-old National Technical Information Service (NTIS) out of the government. Describes some of the pros and cons of such a change. (TW)

  13. Analytical cell adhesion chromatography reveals impaired persistence of metastatic cell rolling adhesion to P-selectin.

    PubMed

    Oh, Jaeho; Edwards, Erin E; McClatchey, P Mason; Thomas, Susan N

    2015-10-15

    Selectins facilitate the recruitment of circulating cells from the bloodstream by mediating rolling adhesion, which initiates the cell-cell signaling that directs extravasation into surrounding tissues. To measure the relative efficiency of cell adhesion in shear flow for in vitro drug screening, we designed and implemented a microfluidic-based analytical cell adhesion chromatography system. The juxtaposition of instantaneous rolling velocities with elution times revealed that human metastatic cancer cells, but not human leukocytes, had a reduced capacity to sustain rolling adhesion with P-selectin. We define a new parameter, termed adhesion persistence, which is conceptually similar to migration persistence in the context of chemotaxis, but instead describes the capacity of cells to resist the influence of shear flow and sustain rolling interactions with an adhesive substrate that might modulate the probability of extravasation. Among cell types assayed, adhesion persistence to P-selectin was specifically reduced in metastatic but not leukocyte-like cells in response to a low dose of heparin. In conclusion, we demonstrate this as an effective methodology to identify selectin adhesion antagonist doses that modulate homing cell adhesion and engraftment in a cell-subtype-selective manner.

  14. 21 CFR 175.125 - Pressure-sensitive adhesives.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Pressure-sensitive adhesives. 175.125 Section 175... Substances for Use Only as Components of Adhesives § 175.125 Pressure-sensitive adhesives. Pressure-sensitive... accordance with the following prescribed conditions: (a) Pressure-sensitive adhesives prepared from one or...

  15. 21 CFR 175.125 - Pressure-sensitive adhesives.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Pressure-sensitive adhesives. 175.125 Section 175... Substances for Use Only as Components of Adhesives § 175.125 Pressure-sensitive adhesives. Pressure-sensitive... accordance with the following prescribed conditions: (a) Pressure-sensitive adhesives prepared from one or...

  16. 21 CFR 175.125 - Pressure-sensitive adhesives.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Pressure-sensitive adhesives. 175.125 Section 175...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use Only as Components of Adhesives § 175.125 Pressure-sensitive adhesives....

  17. Single-molecule mechanics of mussel adhesion

    NASA Astrophysics Data System (ADS)

    Lee, Haeshin; Scherer, Norbert F.; Messersmith, Phillip B.

    2006-08-01

    The glue proteins secreted by marine mussels bind strongly to virtually all inorganic and organic surfaces in aqueous environments in which most adhesives function poorly. Studies of these functionally unique proteins have revealed the presence of the unusual amino acid 3,4-dihydroxy-L-phenylalanine (dopa), which is formed by posttranslational modification of tyrosine. However, the detailed binding mechanisms of dopa remain unknown, and the chemical basis for mussels' ability to adhere to both inorganic and organic surfaces has never been fully explained. Herein, we report a single-molecule study of the substrate and oxidation-dependent adhesive properties of dopa. Atomic force microscopy (AFM) measurements of a single dopa residue contacting a wet metal oxide surface reveal a surprisingly high strength yet fully reversible, noncovalent interaction. The magnitude of the bond dissociation energy as well as the inability to observe this interaction with tyrosine suggests that dopa is critical to adhesion and that the binding mechanism is not hydrogen bond formation. Oxidation of dopa, as occurs during curing of the secreted mussel glue, dramatically reduces the strength of the interaction to metal oxide but results in high strength irreversible covalent bond formation to an organic surface. A new picture of the interfacial adhesive role of dopa emerges from these studies, in which dopa exploits a remarkable combination of high strength and chemical multifunctionality to accomplish adhesion to substrates of widely varying composition from organic to metallic. 3,4-dihydroxylphenylalanine | atomic force microscopy | mussel adhesive protein

  18. Cell-Substrate Adhesion by Amoeboid Cells

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Panta, Krishna

    Amoeboid migration is a rapid (10 μm min-1) mode of migration that some tumor cells exhibit. To permit such rapid movement, the adhesive contacts between the cell and the substrate must be relatively short-lived and weak. In this study, we investigate the basic adhesive character of amoeboid cells (D. discoideum) in contact with silanized glass substrates. We observe the initiation and spreading of the adhesive contacts that these cells establish as they settle under gravity onto the substrate and relax towards mechanical equilibrium. The use of interference reflection microscopy and cellular tethering measurements have allowed us to determine the basic adhesive properties of the cell: the membrane-medium interfacial energy; the bending modulus; the equilibrium contact angle; and the work of adhesion. We find the time scale on which settling occurs to be longer than expected. Implications of these results on adhesion and migration will be discussed. The authors are grateful for support from NSF (CBET-1451903) and NIH (1R21EY026392).

  19. Factors influencing bacterial adhesion to contact lenses

    PubMed Central

    Dutta, Debarun; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria. PMID:22259220

  20. Biomechanism of adhesion in gecko setae.

    PubMed

    Guo, Ce; Sun, Jiurong; Ge, Yingbin; Wang, Wenbo; Wang, Dapeng; Dai, Zhendong

    2012-02-01

    The study of the adhesion of millions of setae on the toes of geckos has been advanced in recent years with the emergence of new technology and measurement methods. The theory of the mechanism of adhesion by van der Waals forces is now accepted and broadly understood. However, this paper presents limitations of this theory and gives a new hypothesis of the biomechanism of gecko adhesion. The findings are obtained through measurements of the magnitude of the adhesion of setae under three different conditions, to show the close relationship between adhesion and status of the setae. They are reinforced by demonstrating two setal structures, follicle cells and hair, the former making the setae capable of producing bioelectrical charges, which play an important role in attachment and detachment processes. It is shown that the abundant muscular tissues at the base of the setae cells, which are controlled by peripheral nerves, are instrumental in producing the foot movement involved in attachment and detachment. Our study will further uncover the adhesion mechanism of geckos, and provide new ideas for designing and fabricating synthetic setae.

  1. Yielding elastic tethers stabilize robust cell adhesion.

    PubMed

    Whitfield, Matt J; Luo, Jonathon P; Thomas, Wendy E

    2014-12-01

    Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds.

  2. Controlled Adhesion of Silicone Elastomer Surfaces

    NASA Astrophysics Data System (ADS)

    Owen, Michael

    2000-03-01

    Opportunities exist for controllably enhancing the adhesion of silicone surfaces, ranging from modest enhancement of release force levels of pressure-sensitive adhesive (PSA) release liners by incorporation of adhesion promoters known as high release additives (HRA), to permanent bonding of silicone elastomers using surface modification techniques such as plasma or corona treatment. Although only a part of the complex interaction of factors contributing to adhesion, surface properties such as wettability are a critical component in the understanding and control of release and adhesion phenomena. Surface characterization studies of low-surface-energy silicones before and after various adhesion modification strategies are reviewed. The silicones include polydimethylsiloxane (PDMS) and fluorosiloxane elastomers and coatings. Techniques used include contact angle, the Johnson, Kendall and Roberts (JKR) contact mechanics approach, scanning electron microscopy (SEM), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS). Topics addressed are: use of HRA in PDMS release liners, the interaction of PDMS PSAs with polytetrafluoroethylene (PTFE), and the effect of plasma treatment on PDMS and fluorosiloxane surfaces.

  3. Design guidelines for hybrid microcircuits; organic adhesives for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1975-01-01

    The properties of organic adhesives were studied to acquire an adequate information base to generate a guideline document for the selection of adhesives for use in high reliability hybrid microcircuits. Specific areas covered include: (1) alternate methods for determining the outgassing of cured adhesives; (2) effects of long term aging at 150C on the electrical properties of conductive adhesives; (3) effects of shelf life age on adhesive characteristics; (4) bond strengths of electrically conductive adhesives on thick film gold metallization, (5) a copper filled adhesive; (6) effects of products outgassed from cured adhesives on device electrical parameters; (7) metal migration from electrically conductive adhesives; and (8) ionic content of electrically insulative adhesives. The tests performed during these investigations are described, and the results obtained are discussed in detail.

  4. Contribution from pressure-sensitive adhesives

    NASA Astrophysics Data System (ADS)

    Cunningham, Gilbert

    1996-03-01

    The successful use of many security papers, foils and films depends on the technology of chemical fastening systems -- especially pressure sensitive adhesives. These are adhesives activated not by heat or by the evaporation of water or some other solvent, but simply by the act of application -- by pressure. These adhesives provide the means whereby laminations, substrates and seals are made effective. In addition to their physical properties these adhesives are often required to possess optical properties to allow the security materials to be visibly active and indeed the adhesive system may itself contribute as a carrier for a variety of security materials. Recent advances in adhesives chemistry have made it possible to achieve virtually all the required physical performance characteristics combined with a choice of optical properties ranging from total opacity to invisibility and including controlled translucency and tinting. The implications for security printing and packaging are important. Opacity is easy to achieve, for example by loading the adhesive with aluminum powder, by the selection of totally opaque materials like metallized film or by various printing processes. But achieving transparency is a different matter, and transparency is mandatory for applications involving the protection of documents, photographs, etc. with a clear film over-laminate. Obvious examples would be for passports, visas and other personal identification. But some security devices may themselves require protection; for example holograms or embossings. And transparency in the test laboratory is not enough. The Australian driving licence is stuck to the windshield, so the transparency of the adhesive must be sustained over long periods without deterioration due to prolonged u/v exposure, climatic conditions or aging. The commercial label market has helped to push the technology forward. There is a strong demand for the 'no-label look' for packaging of clear plastic and glass

  5. Adhesion of latex films. Influence of surfactants

    SciTech Connect

    Charmeau, J.Y.; Kientz, E.; Holl, Y.

    1996-12-31

    In the applications of film forming latexes in paint, paper, coating, adhesive, textile industries, one of the most important property of latex films is adhesion onto a support. From the point of view of adhesion, latex films have two specificities. The first one arises from the particular structure of the film which is usually not homogeneous but retains to a certain extent the memory of the particles it was made from. These structure effects are clearly apparent when one compares mechanical or adhesion properties of pure latex films and of films of the same polymers but prepared from a solution. Latex films show higher Young`s moduli and lower adhesion properties than solution films. The second specificity of latex films comes from the presence of the surfactant which was used in the synthesis and as stabilizer for the latex. Most industrial latexes contain low amounts of surfactant, typically in the range 0.1 to 2-3 wt%. However, being usually incompatible with the polymer, the surfactant is not homogeneously distributed in the film. It tends to segregate towards the film-air or film-support interfaces or to form domains in the bulk of the film. Distribution of surfactants in latex films has been studied by several authors. The influence of the surfactant on adhesion, as well as on other properties, is thus potentially very important. This article presents the results of the authors investigation of surfactant effects on adhesion properties of latex films. To the authors knowledge, there is no other example, in the open literature, of this kind of study.

  6. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    PubMed Central

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-01-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives. PMID:26508080

  7. Cadherin-11 localizes to focal adhesions and promotes cell–substrate adhesion

    PubMed Central

    Langhe, Rahul P.; Gudzenko, Tetyana; Bachmann, Michael; Becker, Sarah F.; Gonnermann, Carina; Winter, Claudia; Abbruzzese, Genevieve; Alfandari, Dominique; Kratzer, Marie-Claire; Franz, Clemens M.; Kashef, Jubin

    2016-01-01

    Cadherin receptors have a well-established role in cell–cell adhesion, cell polarization and differentiation. However, some cadherins also promote cell and tissue movement during embryonic development and tumour progression. In particular, cadherin-11 is upregulated during tumour and inflammatory cell invasion, but the mechanisms underlying cadherin-11 stimulated cell migration are still incompletely understood. Here, we show that cadherin-11 localizes to focal adhesions and promotes adhesion to fibronectin in Xenopus neural crest, a highly migratory embryonic cell population. Transfected cadherin-11 also localizes to focal adhesions in different mammalian cell lines, while endogenous cadherin-11 shows focal adhesion localization in primary human fibroblasts. In focal adhesions, cadherin-11 co-localizes with β1-integrin and paxillin and physically interacts with the fibronectin-binding proteoglycan syndecan-4. Adhesion to fibronectin mediated by cadherin-11/syndecan-4 complexes requires both the extracellular domain of syndecan-4, and the transmembrane and cytoplasmic domains of cadherin-11. These results reveal an unexpected role of a classical cadherin in cell–matrix adhesion during cell migration. PMID:26952325

  8. Cadherin-11 localizes to focal adhesions and promotes cell-substrate adhesion.

    PubMed

    Langhe, Rahul P; Gudzenko, Tetyana; Bachmann, Michael; Becker, Sarah F; Gonnermann, Carina; Winter, Claudia; Abbruzzese, Genevieve; Alfandari, Dominique; Kratzer, Marie-Claire; Franz, Clemens M; Kashef, Jubin

    2016-01-01

    Cadherin receptors have a well-established role in cell-cell adhesion, cell polarization and differentiation. However, some cadherins also promote cell and tissue movement during embryonic development and tumour progression. In particular, cadherin-11 is upregulated during tumour and inflammatory cell invasion, but the mechanisms underlying cadherin-11 stimulated cell migration are still incompletely understood. Here, we show that cadherin-11 localizes to focal adhesions and promotes adhesion to fibronectin in Xenopus neural crest, a highly migratory embryonic cell population. Transfected cadherin-11 also localizes to focal adhesions in different mammalian cell lines, while endogenous cadherin-11 shows focal adhesion localization in primary human fibroblasts. In focal adhesions, cadherin-11 co-localizes with β1-integrin and paxillin and physically interacts with the fibronectin-binding proteoglycan syndecan-4. Adhesion to fibronectin mediated by cadherin-11/syndecan-4 complexes requires both the extracellular domain of syndecan-4, and the transmembrane and cytoplasmic domains of cadherin-11. These results reveal an unexpected role of a classical cadherin in cell-matrix adhesion during cell migration. PMID:26952325

  9. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    NASA Astrophysics Data System (ADS)

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-10-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives.

  10. The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state?

    PubMed

    Murphy-Ullrich, J E

    2001-04-01

    The process of cellular de-adhesion is potentially important for the ability of a cell to participate in morphogenesis and to respond to injurious stimuli. Cellular de-adhesion is induced by the highly regulated matricellular proteins TSP1 and 2, tenascin-C, and SPARC. These proteins induce a rapid transition to an intermediate state of adhesiveness characterized by loss of actin-containing stress fibers and restructuring of the focal adhesion plaque that includes loss of vinculin and alpha-actinin, but not of talin or integrin. This process involves intracellular signaling mediators, which are engaged in response to matrix protein-receptor interactions. Each of these proteins employs different receptors and signaling pathways to achieve this common morphologic endpoint. What is the function of this intermediate adhesive state and what is the physiologic significance of this action of the matricellular proteins? Given that matricellular proteins are expressed in response to injury and during development, one can speculate that the intermediate adhesive state is an adaptive condition that facilitates expression of specific genes that are involved in repair and adaptation. Since cell shape is maintained in weakly adherent cells, this state might induce survival signals to prevent apoptosis due to loss of strong cell adhesion, but yet allow for cell locomotion. The three matricellular proteins considered here might each preferentially facilitate one or more aspects of this adaptive response rather than all of these equally. Currently, we have only preliminary data to support the specific ideas proposed in this article. It will be interesting in the next several years to continue to elucidate the biological roles of the intermediate adhesive state induced by these matricellular proteins. and focal adhesions in a cell that nevertheless maintains a spread, extended morphology and integrin clustering. TSP1, tenascin-C, and SPARC induce the intermediate adhesive state, as

  11. BIOLOGICAL ADHESIVES. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement.

    PubMed

    Maier, Greg P; Rapp, Michael V; Waite, J Herbert; Israelachvili, Jacob N; Butler, Alison

    2015-08-01

    In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is severely limited by high salt, pH, and hydration, yet these conditions have not deterred the evolution of effective adhesion by mussels. Mussel foot proteins provide insights about adhesive adaptations: Notably, the abundance and proximity of catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues hint at a synergistic interplay in adhesion. Certain siderophores—bacterial iron chelators—consist of paired catechol and lysine functionalities, thereby providing a convenient experimental platform to explore molecular synergies in bioadhesion. These siderophores and synthetic analogs exhibit robust adhesion energies (E(ad) ≥-15 millijoules per square meter) to mica in saline pH 3.5 to 7.5 and resist oxidation. The adjacent catechol-lysine placement provides a "one-two punch," whereby lysine evicts hydrated cations from the mineral surface, allowing catechol binding to underlying oxides. PMID:26250681

  12. Role of tilted adhesion fibrils (setae) in the adhesion and locomotion of gecko-like systems.

    PubMed

    Zhao, Boxin; Pesika, Noshir; Zeng, Hongbo; Wei, Zhensong; Chen, Yunfei; Autumn, Kellar; Turner, Kimberly; Israelachvili, Jacob

    2009-03-26

    Geckos are super climbers: they can readily and rapidly stick to almost any surface, whether hydrophilic or hydrophobic, rough or smooth, in dry or wet conditions, and detach with equal rapidity within tens of milliseconds. In this paper, we discuss the rapid switching between the strong adhesion/friction (attached) state and zero adhesion/friction (detached) state, and present a finite element analysis of gecko setae in terms of their adhesion and friction forces. The analysis shows why the asymmetric, naturally curved setae with a directional tilt play a crucial role in the gecko's articulation mechanism, consistent with recent experimental studies of gecko setal arrays. We derive guidelines for designing synthetic versions of gecko adhesive pads, and propose a design for a "gecko-inspired" adhesive surface consisting of arrays of curved, asymmetric, and directionally oriented microfibrils, attached to a semirigid backing, and suggest a method for its actuation.

  13. The effect of polyethylene glycol adhesion barrier (Spray Gel) on preventing peritoneal adhesions.

    PubMed

    Dasiran, F; Eryilmaz, R; Isik, A; Okan, I; Somay, A; Sahin, M

    2015-01-01

    The prominent cells in the late phase of wound healing during proliferation and matrix deposition are fibroblasts. Foreign materials in the operation site like prosthesis prolong the inflammation and induce fibroblast proliferation (8). 3 different prostheses used in this study induced chronic inflammation and fibrosis and provided an effective repair. Dense and thick adhesions due to fibrosis also induced strong adhesions to omentum and small intestine if only polypropylene mesh used for hernia repair. However, there was no difference between SprayGel treated polypropylene mesh and Sepramesh when compared for fibrosis. It also prevents the intraabdominal adhesion formation. It is nontoxic, sticky adherent, non- immigrant and easy to use both in open and laparoscopic surgeries. This experimental study revealed that polyethyleneglycol applied polypropylene mesh accomplishes hernia repair with significantly less adhesion formation than polypropylene mesh alone while securing a remarkable economy than adhesion barrier coated dual meshes (Tab. 6, Fig. 7, Ref. 23). Text in PDF www.elis.sk. PMID:26084740

  14. Shear Strength of Conductive Adhesive Joints on Rigid and Flexible Substrates Depending on Adhesive Quantity

    NASA Astrophysics Data System (ADS)

    Hirman, Martin; Steiner, Frantisek

    2016-05-01

    This article deals with the impact of electrically conductive adhesive quantity on the shear strength of joints glued by adhesives "EPO-TEKⓇ H20S" and "MG8331S" on three types of substrates (FR-4, MELINEXⓇST504, DuPont™ PyraluxⓇAC). These joints were made by gluing chip resistors 1206, 0805 and 0603, with two curing profiles for each adhesive. Different thicknesses of stencil and reductions in the size of the hole in stencils were used for this experiment. These differences have an effect on the quantity of conductive adhesives which must be used on the samples. Samples were measured after the curing process by using a shear strength test applied by the device LabTest 3.030. This article presents the effects of different curing profiles, various types of substrates, and different quantities of adhesives on the mechanical strength of the joint.

  15. Supramolecular adhesives to hard surfaces: adhesion between host hydrogels and guest glass substrates through molecular recognition.

    PubMed

    Takashima, Yoshinori; Sahara, Taiga; Sekine, Tomoko; Kakuta, Takahiro; Nakahata, Masaki; Otsubo, Miyuki; Kobayashi, Yuichiro; Harada, Akira

    2014-10-01

    Supramolecular materials based on host-guest interactions should exhibit high selectivity and external stimuli-responsiveness. Among various stimuli, redox and photo stimuli are useful for its wide application. An external stimuli-responsive adhesive system between CD host-gels (CD gels) and guest molecules modified glass substrates (guest Sub) is focused. Here, the selective adhesion between host gels and guest substrates where adhesion depends on molecular complementarity is reported. Initially, it is thought that adhesion of a gel material onto a hard material might be difficult unless many guest molecules modified linear polymers immobilize on the surface of hard materials. However, reversible adhesion of the CD gels is observed by dissociating and re-forming inclusion complex in response to redox and photo stimuli.

  16. BIOLOGICAL ADHESIVES. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement.

    PubMed

    Maier, Greg P; Rapp, Michael V; Waite, J Herbert; Israelachvili, Jacob N; Butler, Alison

    2015-08-01

    In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is severely limited by high salt, pH, and hydration, yet these conditions have not deterred the evolution of effective adhesion by mussels. Mussel foot proteins provide insights about adhesive adaptations: Notably, the abundance and proximity of catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues hint at a synergistic interplay in adhesion. Certain siderophores—bacterial iron chelators—consist of paired catechol and lysine functionalities, thereby providing a convenient experimental platform to explore molecular synergies in bioadhesion. These siderophores and synthetic analogs exhibit robust adhesion energies (E(ad) ≥-15 millijoules per square meter) to mica in saline pH 3.5 to 7.5 and resist oxidation. The adjacent catechol-lysine placement provides a "one-two punch," whereby lysine evicts hydrated cations from the mineral surface, allowing catechol binding to underlying oxides.

  17. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear

  18. Elasto-capillarity in insect fibrillar adhesion.

    PubMed

    Gernay, Sophie; Federle, Walter; Lambert, Pierre; Gilet, Tristan

    2016-08-01

    The manipulation of microscopic objects is challenging because of high adhesion forces, which render macroscopic gripping strategies unsuitable. Adhesive footpads of climbing insects could reveal principles relevant for micro-grippers, as they are able to attach and detach rapidly during locomotion. However, the underlying mechanisms are still not fully understood. In this work, we characterize the geometry and contact formation of the adhesive setae of dock beetles (Gastrophysa viridula) by interference reflection microscopy. We compare our experimental results to the model of an elastic beam loaded with capillary forces. Fitting the model to experimental data yielded not only estimates for seta adhesion and compliance in agreement with previous direct measurements, but also previously unknown parameters such as the volume of the fluid meniscus and the bending stiffness of the tip. In addition to confirming the primary role of surface tension for insect adhesion, our investigation reveals marked differences in geometry and compliance between the three main kinds of seta tips in leaf beetles. PMID:27488250

  19. Characterizing Cell Adhesion by Using Micropipette Aspiration

    PubMed Central

    Hogan, Brenna; Babataheri, Avin; Hwang, Yongyun; Barakat, Abdul I.; Husson, Julien

    2015-01-01

    We have developed a technique to directly quantify cell-substrate adhesion force using micropipette aspiration. The micropipette is positioned perpendicular to the surface of an adherent cell and a constant-rate aspiration pressure is applied. Since the micropipette diameter and the aspiration pressure are our control parameters, we have direct knowledge of the aspiration force, whereas the cell behavior is monitored either in brightfield or interference reflection microscopy. This setup thus allows us to explore a range of geometric parameters, such as projected cell area, adhesion area, or pipette size, as well as dynamical parameters such as the loading rate. We find that cell detachment is a well-defined event occurring at a critical aspiration pressure, and that the detachment force scales with the cell adhesion area (for a given micropipette diameter and loading rate), which defines a critical stress. Taking into account the cell adhesion area, intrinsic parameters of the adhesion bonds, and the loading rate, a minimal model provides an expression for the critical stress that helps rationalize our experimental results. PMID:26200857

  20. Adhesive curing options for photonic packaging

    NASA Astrophysics Data System (ADS)

    Martin, Steven C.; Hubert, Manfred; Tam, Robin

    2002-06-01

    Varying the intensity of illumination used to cure photoactivated adhesives has been applied in medical and dental applications to improve the performance of polymer materials. For example, it has been observed that dental polymer composite materials express reduced shrinkage, important for durability of non-amalgam restorations, by introducing a phased time-intensity cure schedule. This work identified that curing conditions could influence the final properties of materials, and suggested the possibility of extending the characteristics that could be influenced beyond shrinkage to humidity resistance, Tg, outgassing and other important material properties. Obviously, these results have important ramifications for the photonic industry, with current efforts focused on improved manufacturing techniques. Improvement in low cost packaging solutions, including adhesives, will have to be made to bring the component cost down to address the needs of Metro and similar markets. However, there are perceived problems with the widespread use of adhesives, the most prevalent of these involving long term durability of the bond. Devices are typically aligned to sub-micron precision using active feedback and then must be locked in position to maintain performance. In contrast to traditional fastening methods, adhesive bonding is a highly attractive option due to the ease of deployment, lower equipment costs, and improved flexibility. Moreover, using methods analogous to those employed in dental applications, materials properties of photonic adhesives may be tailored using a programmed cure approach.

  1. Spiders Tune Glue Viscosity to Maximize Adhesion.

    PubMed

    Amarpuri, Gaurav; Zhang, Ci; Diaz, Candido; Opell, Brent D; Blackledge, Todd A; Dhinojwala, Ali

    2015-11-24

    Adhesion in humid conditions is a fundamental challenge to both natural and synthetic adhesives. Yet, glue from most spider species becomes stickier as humidity increases. We find the adhesion of spider glue, from five diverse spider species, maximizes at very different humidities that matches their foraging habitats. By using high-speed imaging and spreading power law, we find that the glue viscosity varies over 5 orders of magnitude with humidity for each species, yet the viscosity at maximal adhesion for each species is nearly identical, 10(5)-10(6) cP. Many natural systems take advantage of viscosity to improve functional response, but spider glue's humidity responsiveness is a novel adaptation that makes the glue stickiest in each species' preferred habitat. This tuning is achieved by a combination of proteins and hygroscopic organic salts that determines water uptake in the glue. We therefore anticipate that manipulation of polymer-salts interaction to control viscosity can provide a simple mechanism to design humidity responsive smart adhesives.

  2. Actin Foci Adhesion of D. discoideum

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Paneru, Govind

    2014-03-01

    Amoeboid migration is a fast (10 μm min-1) integrin-independent mode of migration that is important with D. discoideum, leukocytes, and breast cancer cells. It is poorly understood, but depends on the establishment of adhesive contacts to the substrate where the cell transmits traction forces. In pre-aggregative D. discoideum, a model system for learning about amoeboid migration, these adhesive contacts are discrete complexes that are known as actin-foci. They have an area of ~ 0.5 μm2 and a lifetime of ~ 20 s. This talk will present measurements of the adhesive character of actin foci that have been obtained using a submicron force transducer that was designed for this purpose. Results on the rupture stresses and lifetimes of individual acting foci under nano-newton level forces will be described in the context of a general theory for cellular adhesion. This theory depends on, essentially, three cellular properties: the membrane-medium surface tension, the number density of adhesion receptors in the membrane, and the receptor-substrate potential energy surface. Therefore, the use of the transducer to determine the surface tension will be presented, as well.

  3. Tumorigenic and adhesive properties of heparanase

    PubMed Central

    Levy-Adam, Flonia; Ilan, Neta; Vlodavsky, Israel

    2010-01-01

    Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains presumably at sites of low sulfation, activity that is strongly implicated with cell invasion associated with cancer metastasis, a consequence of structural modification that loosens the extracellular matrix barrier. In addition, heparanase exerts pro-adhesive properties, mediated by clustering of membrane heparan sulfate proteoglycans (i.e., syndecans) and activation of signaling molecules such as Akt, Src, EGFR, and Rac in a heparan sulfate-dependent and -independent manner. Activation of signaling cascades by enzymatically inactive heparanase and by a peptide corresponding to its substrate binding domain not only increases cell adhesion but also facilitates cancer cell growth. This notion is supported by preclinical and clinical settings, encouraging the development of anti-heparanase therapeutics. Here we summarize recent progress in heparanase research emphasizing the molecular mechanisms that govern its pro-tumorigenic and pro-adhesive properties. Pro-adhesive properties of the heparanase homolog, heparanase 2 (Hpa2), are also discussed. Enzymatic activity-independent function of proteases (i.e., matrix metalloproteinases) is discussed in the context of cell adhesion and tumor progression. Collectively, these examples suggest that enzyme function exceeds beyond the enzymatic aspect, thus significantly expanding the scope of the functional proteome. Cross-talk with matrix metalloproteinases and the role of heparanase in pathological settings other than cancer is also described. PMID:20619346

  4. Elasto-capillarity in insect fibrillar adhesion.

    PubMed

    Gernay, Sophie; Federle, Walter; Lambert, Pierre; Gilet, Tristan

    2016-08-01

    The manipulation of microscopic objects is challenging because of high adhesion forces, which render macroscopic gripping strategies unsuitable. Adhesive footpads of climbing insects could reveal principles relevant for micro-grippers, as they are able to attach and detach rapidly during locomotion. However, the underlying mechanisms are still not fully understood. In this work, we characterize the geometry and contact formation of the adhesive setae of dock beetles (Gastrophysa viridula) by interference reflection microscopy. We compare our experimental results to the model of an elastic beam loaded with capillary forces. Fitting the model to experimental data yielded not only estimates for seta adhesion and compliance in agreement with previous direct measurements, but also previously unknown parameters such as the volume of the fluid meniscus and the bending stiffness of the tip. In addition to confirming the primary role of surface tension for insect adhesion, our investigation reveals marked differences in geometry and compliance between the three main kinds of seta tips in leaf beetles.

  5. Spiders Tune Glue Viscosity to Maximize Adhesion.

    PubMed

    Amarpuri, Gaurav; Zhang, Ci; Diaz, Candido; Opell, Brent D; Blackledge, Todd A; Dhinojwala, Ali

    2015-11-24

    Adhesion in humid conditions is a fundamental challenge to both natural and synthetic adhesives. Yet, glue from most spider species becomes stickier as humidity increases. We find the adhesion of spider glue, from five diverse spider species, maximizes at very different humidities that matches their foraging habitats. By using high-speed imaging and spreading power law, we find that the glue viscosity varies over 5 orders of magnitude with humidity for each species, yet the viscosity at maximal adhesion for each species is nearly identical, 10(5)-10(6) cP. Many natural systems take advantage of viscosity to improve functional response, but spider glue's humidity responsiveness is a novel adaptation that makes the glue stickiest in each species' preferred habitat. This tuning is achieved by a combination of proteins and hygroscopic organic salts that determines water uptake in the glue. We therefore anticipate that manipulation of polymer-salts interaction to control viscosity can provide a simple mechanism to design humidity responsive smart adhesives. PMID:26513350

  6. Probing adhesion forces at the molecular scale

    SciTech Connect

    Thomas, R.C.; Houston, J.E.; Michalske, T.A.

    1996-12-31

    Measurements of adhesion forces at the molecular scale, such as those discussed here, are necessary to understand macroscopic boundary-layer behavior such as adhesion, friction, wear, lubrication, and many other important phenomena. The authors` recent interfacial force microscopy (IFM) studies have provided detailed information about the mechanical response of both self-assembled monolayer (SAM) films and the underlying substrates. In addition, they recently demonstrated that the IFM is useful for studying the chemical nature of such films. In this talk, the authors discuss a new method for studying surface interactions and chemical reactions using the IFM. To quantitatively measure the work of adhesion and bond energies between two organic thin films, they modify both a Au substrate and a Au probe with self-assembling organomercaptan molecules having either the same or different end groups (-CH{sub 3}, -NH{sub 2}, and -COOH), and then analyze the force-versus-displacement curves (force profiles) that result from the approach to contact of the two surfaces. Their results show that the magnitude of the adhesive forces measured between methyl-methyl interactions are in excellent agreement with van der Waals calculations using Lifshitz theory and previous experimentally determined values. Moreover, the measured peak adhesive forces scale as expected for van der Waals, hydrogen-bonding, and acid-base interactions.

  7. Dextran and gelatin based photocrosslinkable tissue adhesive.

    PubMed

    Wang, Tao; Nie, Jun; Yang, Dongzhi

    2012-11-01

    A two-component tissue adhesive based on biocompatible and bio-degradable polymers (oxidized urethane dextran (Dex-U-AD) and gelatin) was prepared and photocrosslinked under the ultraviolet (UV) irradiation. The adhesive could adhere to surface of gelatin, which simulated the human tissue steadily. The structures of above Dex-U-AD were characterized by FTIR, (1)H NMR spectroscopy and XRD. The adhesion property of result products was evaluated by lap-shear test. The maximum adhesion strength could reach to 4.16±0.72 MPa which was significantly higher than that of fibrin glue. The photopolymerization process of Dex-U-AD/gelatin was monitored by real time infrared spectroscopy (RTIR). It took less than 5 min to complete the curing process. The cytotoxicity of Dex-U-AD/gelatin also was evaluated which indicated that Dex-U-AD/gelatin gels were nontoxic to L929 cell. The relationship between all the above-mentioned properties and degree of oxidization of Dex-U-AD was assessed. The obtained products have the potential to serve as tissue adhesive in the future.

  8. Human climbing with efficiently scaled gecko-inspired dry adhesives.

    PubMed

    Hawkes, Elliot W; Eason, Eric V; Christensen, David L; Cutkosky, Mark R

    2015-01-01

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A(-1/4). We present a mechanical concept which improves upon the gecko's non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A(-1/50). Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm(2) of adhesive per hand.

  9. Design and fabrication of gecko-inspired adhesives.

    PubMed

    Jin, Kejia; Tian, Yu; Erickson, Jeffrey S; Puthoff, Jonathan; Autumn, Kellar; Pesika, Noshir S

    2012-04-01

    Recently, there has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure-sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties; the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this study, we present an easy, scalable method, relying on conventional and unconventional techniques, to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provides anisotropic adhesion properties. We measured the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function. Consistent with the peel zone model, samples with lower tilt angles yielded larger adhesion forces. The tribological properties of the synthetic arrays were highly anisotropic, reminiscent of the frictional adhesion behavior of gecko setal arrays. When a 60° tilt sample was actuated in the gripping direction, a static adhesion strength of ~1.4 N/cm(2) and a static friction strength of ~5.4 N/cm(2) were obtained. In contrast, when the dry adhesive was actuated in the releasing direction, we measured an initial repulsive normal force and negligible friction.

  10. Human climbing with efficiently scaled gecko-inspired dry adhesives

    PubMed Central

    Hawkes, Elliot W.; Eason, Eric V.; Christensen, David L.; Cutkosky, Mark R.

    2015-01-01

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A−1/4. We present a mechanical concept which improves upon the gecko's non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A−1/50. Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm2 of adhesive per hand. PMID:25411404

  11. Thermal Characterization of Epoxy Adhesive by Hotfire Testing

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.; Haddock, M. Reed; McCool, Alex (Technical Monitor)

    2001-01-01

    This paper describes subscale solid-rocket motor hot-fire testing of epoxy adhesives in flame surface bondlines to evaluate heat-affected depth, char depth and ablation rate. Hot-fire testing is part of an adhesive down-selection program on the Space Shuttle Solid Rocket Motor Nozzle to provide additional confidence in the down-selected adhesives. The current nozzle structural adhesive bond system is being replaced due to obsolescence. Prior to hot-fire testing, adhesives were tested for chemical, physical and mechanical properties, which resulted in the selection of two potential replacement adhesives, Resin Technology Group's TIGA 321 and 3M's EC2615XLW. Hot-fire testing consisted of four forty-pound charge (FPC) motors fabricated in configurations that would allow side-by-side comparison testing of the candidate replacement adhesives with the current RSRM adhesives. Results of the FPC motor testing show that: 1) the phenolic char depths on radial bondlines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used, 2) the replacement candidate adhesive char depths are equivalent to the char depths of the current adhesives, 3) the heat-affected depths of the candidate and current adhesives are equivalent, and 4) the ablation rates for both replacement adhesives were equivalent to the current adhesives.

  12. Surface tension and deformation in soft adhesion

    NASA Astrophysics Data System (ADS)

    Jensen, Katharine

    Modern contact mechanics was originally developed to account for the competition between adhesion and elasticity for relatively stiff deformable materials like rubber, but much softer sticky materials are ubiquitous in biology, engineering, and everyday consumer products. In such soft materials, the solid surface tension can also play an important role in resisting shape change, and significantly modify the physics of contact with soft matter. We report indentation and pull-off experiments that bring small, rigid spheres into adhesive contact with compliant silicone gel substrates, varying both the surface functionalization of the spheres and the bulk elastic properties of the gels. We map the resulting deformation profiles using optical microscopy and image analysis. We examine the substrate geometry in light of capillary and elastic theories in order to explore the interplay of surface tension and bulk elasticity in governing soft adhesion.

  13. Laparoscopic Management of Adhesive Small Bowel Obstruction

    PubMed Central

    Konjic, Ferid; Idrizovic, Enes; Hasukic, Ismar; Jahic, Alen

    2016-01-01

    Introduction: Adhesions are the reason for bowel obstruction in 80% of the cases. In well selected patients the adhesive ileus laparoscopic treatment has multiple advantages which include the shorter hospitalization period, earlier food taking, and less postoperative morbidity rate. Case report: Here we have a patient in the age of 35 hospitalized at the clinic due to occlusive symptoms. Two years before an opened appendectomy had been performed on him. He underwent the treatment of exploration laparoscopy and laparoscopic adhesiolysis. Dilated small bowel loops connected with the anterior abdominal wall in the ileocecal region by adhesions were found intraoperatively and then resected harmonically with scalpel. One strangulation around which a small bowel loop was wrapped around was found and dissected. Postoperative course was normal. PMID:27041815

  14. Optimizing Scale Adhesion on Single Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Pint, Bruce A.

    2000-01-01

    To improve scale adhesion, single crystal superalloys have been desulfurized to levels below 1 ppmw by hydrogen annealing. A transition to fully adherent behavior has been shown to occur at a sulfur level of about 0.2 ppmw, as demonstrated for PWA 1480, PWA 1484, and Rene N5 single crystal superalloys in 1100-1150 C cyclic oxidation tests up to 2000 h. Small additions of yttrium (15 ppmw) also have been effective in producing adhesion for sulfur contents of about 5 ppmw. Thus the critical Y/S ratio required for adhesion was on the order of 3-to-1 by weight (1-to-1 atomic), in agreement with values estimated from solubility products for yttrium sulfides. While hydrogen annealing greatly improved an undoped alloy, yielding <= 0.01 ppmw S, it also produced benefits for Y-doped alloys without measurably reducing the sulfur content.

  15. [Inhibition of neutrophil adhesion by pectic galacturonans].

    PubMed

    Popov, S V; Ovodova, R G; Popova, G Iu; Nikitina, I R; Ovodov, Iu S

    2007-01-01

    The inhibition of the adhesion of neutrophils to fibronectin by the fragments of the main galacturonan chain of the following pectins was demonstrated: comaruman from the marsh cinquefoil Comarum polustre, bergenan from the Siberian tea Bergenia crassifolia, lemnan from the duckweed Lemna minor, zosteran from the seagrass Zostera marina, and citrus pectin. The parent pectins, except for comaruman, did not affect the cell adhesion. Galacturonans prepared from the starting pectins by acidic hydrolysis were shown to reduce the neutrophil adhesion stimulated by phorbol 12-myristate 13-acetate (1.625 microM) and dithiothreitol (0.5 mM) at a concentration of 50-200 microg/ml. The presence of carbohydrate chains with molecular masses higher than 300, from 100 to 300, and from 50 to 100 kDa in the galacturonan fractions was proved by membrane ultrafiltration. PMID:17375675

  16. Biologically Inspired Mushroom-Shaped Adhesive Microstructures

    NASA Astrophysics Data System (ADS)

    Heepe, Lars; Gorb, Stanislav N.

    2014-07-01

    Adhesion is a fundamental phenomenon with great importance in technology, in our everyday life, and in nature. In this article, we review physical interactions that resist the separation of two solids in contact. By using examples of biological attachment systems, we summarize and categorize various principles that contribute to the so-called gecko effect. Emphasis is placed on the contact geometry and in particular on the mushroom-shaped geometry, which is observed in long-term biological adhesive systems. Furthermore, we report on artificial model systems with this bio-inspired geometry and demonstrate that surface microstructures with this geometry are promising candidates for technical applications, in which repeatable, reversible, and residue-free adhesion under different environmental conditions—such as air, fluid, and vacuum—is required. Various applications in robotic systems and in industrial pick-and-place processes are discussed.

  17. Water based adhesive primers on aluminum substrates

    SciTech Connect

    Wightman, J.P.; Mori, S.

    1996-12-31

    The number of aluminum alloy bonding applications has been increasing recently in the automobile industry. Primer coating of aluminum substrates is one of the main processes used to promote bond performance. Solvent based organic primers have been used for a long time but environmental regulations now require the substitution of volatile organic compounds (VOC) by alternate materials such as water based adhesive primers. However, the bond strengths obtained with many water based primers are generally lower than for solvent based ones. Water based primers which have some reactive functional groups have been proposed recently but such primers require special treatment. This paper describes a study conducted to optimize bond strength using a water based adhesive as a primer in the adhesive bonding of anodized aluminum.

  18. Coatings for rubber bonding and paint adhesion

    NASA Astrophysics Data System (ADS)

    Boulos, M. S.; Petschel, M.

    1997-08-01

    Conversion coatings form an important base for the adhesion of paint to metal substrates and for the bonding of rubber to metal parts. Four types of conversion coatings were assessed as base treatments for the bonding of rubber to steel and for the corrosion protection of metal substrates under paint: amorphous iron phosphate, heavy zinc phosphate, and three types of modified zinc phosphates that utilized one or more metal cations in addition to zinc. When applied, these conversion coatings formed a thin film over the metal substrate that was characterized by scanning electron microscopy, x-ray diffraction, and chemical methods. The performance of the coatings was assessed using physical methods such as dry adhesion, conical mandrel, impact, and stress adhesion for the rubber-bonded parts, and by corrosion resistance methods such as humidity, salt spray, and cyclic corrosion. Coating characterization and performance were correlated.

  19. Adhesive bacterial colonization of exposed traumatized tendon.

    PubMed

    Webb, L X; Hobgood, C D; Meredith, J W; Gristina, A G

    1987-05-01

    Recent studies of compromised or damaged tissues, as well as biomaterials, have shown that they provide a particularly fertile substratum for bacterial colonization. Colonization in these environments is mediated by a process of microbial adhesion to surfaces of the substrata. In this report, we present electron microscopic studies of a portion of damaged and infected tendon. These studies demonstrate colonies of bacteria surrounded by a ruthenium red-staining exopolysaccharide biofilm and adhesion to the surface of the tendon by means of an exopolysaccharide polymer. We suggest that this adhesive form of bacterial colonization may partially explain the resistance of exposed tendon to effective debridement by simple mechanical measures and to coverage with granulation tissue, partial-thickness skin grafts, and vascularized tissue grafts.

  20. Fracture of composite-adhesive-composite systems

    NASA Technical Reports Server (NTRS)

    Ripling, E. J.; Santner, J. S.; Crosley, P. B.

    1984-01-01

    This program was undertaken to initiate the development of a test method for testing adhesive joints in metal-adhesive-composite systems. The uniform double cantilever beam (UDCB) and the width tapered beam (WTB) specimen geometries were evaluated for measuring Mode I fracture toughness in these systems. The WTB specimen is the preferred geometry in spite of the fact that it is more costly to machine than the UDCB specimen. The use of loading tabs attached to thin sheets of composites proved to be experimentally unsatisfactory. Consequently, a new system was developed to load thin sheets of adherends. This system allows for the direct measurement of displacement along the load line. In well made joints separation occurred between the plies rather than in the adhesive.

  1. Clinical status of ten dentin adhesive systems.

    PubMed

    Van Meerbeek, B; Peumans, M; Verschueren, M; Gladys, S; Braem, M; Lambrechts, P; Vanherle, G

    1994-11-01

    Laboratory testing of dentin adhesive systems still requires corroboration by long-term clinical trials for their ultimate clinical effectiveness to be validated. The objective of this clinical investigation was to evaluate, retrospectively, the clinical effectiveness of earlier-investigated dentin adhesive systems (Scotchbond, Gluma, Clearfil New Bond, Scotchbond 2, Tenure, and Tripton), and to compare their clinical results with those obtained with four modern total-etch adhesive systems (Bayer exp. 1 and 2, Clearfil Liner Bond System, and Scotchbond Multi-Purpose). In total, 1177 Class V cervical lesions in the teeth of 346 patients were restored following two cavity designs: In Group A, enamel was neither beveled nor intentionally etched, as per ADA guidelines; in Group B, adjacent enamel was beveled and conditioned. Clinical retention rates definitely indicated the improved clinical efficacy of the newest dentin adhesives over the earlier systems. With regard to adhesion strategy, adhesive systems that removed the smear layer and concurrently demineralized the dentin surface layer performed clinically better than systems that modified the disorderly layer of smear debris without complete removal. Hybridization by resin interdiffusion into the exposed dentinal collagen layer, combined with attachment of resin tags into the opened dentin tubules, appeared to be essential for reliable dentin bonding but might be insufficient by itself. The additional formation of an elastic bonding area as a polymerization shrinkage absorber and the use of a microfine restorative composite apparently guaranteed an efficient clinical result. The perfect one-year retention recorded for Clearfil Liner Bond System and Scotchbond Multi-Purpose must be confirmed at later recalls. PMID:7983255

  2. High-Temperature Adhesive Strain Gage Developed

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.

    1997-01-01

    Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.

  3. Molecular mechanics of mussel adhesion proteins

    NASA Astrophysics Data System (ADS)

    Qin, Zhao; Buehler, Markus J.

    2014-01-01

    Mussel foot protein (mfp), a natural glue produced by marine mussel, is an intriguing material because of its superior ability for adhesion in various environments. For example, a very small amount of this material is sufficient to affix a mussel to a substrate in water, providing structural support under extreme forces caused by the dynamic effects of waves. Towards a more complete understanding of its strength and underwater workability, it is necessary to understand the microscropic mechanisms by which the protein structure interacts with various substrates. However, none of the mussel proteins' structure is known, preventing us from directly using atomistic modeling to probe their structural and mechanical properties. Here we use an advanced molecular sampling technique to identify the molecular structures of two mussel foot proteins (mfp-3 and mfp-5) and use those structures to study their mechanics of adhesion, which is then incorporated into a continuum model. We calculate the adhesion energy of the mussel foot protein on a silica substrate, compute the adhesion strength based on results obtained from molecular modeling, and compare with experimental data. Our results show good agreement with experimental measurements, which validates the multiscale model. We find that the molecular structure of the folded mussel foot protein (ultimately defined by its genetic sequence) favors strong adhesion to substrates, where L-3,4-dihydroxyphenylalanine (or DOPA) protein subunits work in a cooperative manner to enhance adhesion. Our experimental data suggests a peak attachment force of 0.4±0.1 N, which compares favorably with the prediction from the multiscale model of Fc=0.21-0.33 N. The principles learnt from those results could guide the fabrication of new interfacial materials (e.g. composites) to integrate organic with inorganic surfaces in an effective manner.

  4. Urokinase does not prevent abdominal adhesion formation in rats.

    PubMed

    Rivkind, A I; Lieberman, N; Durst, A L

    1985-01-01

    Damage to the fibrinolytic system preventing the resolution of temporary fibrinous adhesions was repeatedly mentioned as an etiological factor in the process of adhesion formation. We experimentally induced abdominal adhesions in rats by gentle scraping of the entire small bowel. Severe adhesions, sometimes accompanied by intestinal obstruction, developed in all of the control animals. Urokinase, a commonly used and potent fibrinolytic agent and a known plasminogen activator, was administered intragastrically, intraperitoneally, or intravenously at various doses ranging from 5,000 to 100,000 U/kg. Urokinase had no effect on the prevention of abdominal adhesions, nor did it reduce the severity or frequency of adhesion formation. PMID:4043158

  5. Analysis of adhesively bonded composite lap joints

    SciTech Connect

    Tong, L.; Kuruppu, M.; Kelly, D.

    1994-12-31

    A new nonlinear formulation is developed for the governing equations for the shear and peel stresses in adhesively bonded composite double lap joints. The new formulation allows arbitrary nonlinear stress-strain characteristics in both shear and peel behavior. The equations are numerically integrated using a shooting technique and Newton-Raphson method behind a user friendly interface. The failure loads are predicted by utilizing the maximum stress criterion, interlaminar delamination and the energy density failure criteria. Numerical examples are presented to demonstrate the effect of the nonlinear adhesive behavior on the stress distribution and predict the failure load and the associated mode.

  6. Treatment of adhesive capsulitis: a review

    PubMed Central

    D’Orsi, Giovanni Maria; Via, Alessio Giai; Frizziero, Antonio; Oliva, Francesco

    2012-01-01

    Summary Adhesive capsulitis is a condition “difficult to define, difficult to treat and difficult to explain from the point of view of pathology”. This Codman’s assertion is still actual because of a variable nomenclature, an inconsistent reporting of disease staging and many types of treatment. There is no consensus on how the best way best to manage patients with this condition, so we want to provide an evidence-based overview regarding the effectiveness of conservative and surgical interventions to treat adhesive capsulitis. PMID:23738277

  7. Surgical Adhesives in Facial Plastic Surgery.

    PubMed

    Toriumi, Dean M; Chung, Victor K; Cappelle, Quintin M

    2016-06-01

    In facial plastic surgery, attaining hemostasis may require adjuncts to traditional surgical techniques. Fibrin tissue adhesives have broad applications in surgery and are particularly useful when addressing the soft tissue encountered in facial plastic surgery. Beyond hemostasis, tissue adhesion and enhanced wound healing are reported benefits associated with a decrease in operating time, necessity for drains and pressure dressings, and incidence of wound healing complications. These products are clinically accessible to most physicians who perform facial plastic surgery, including skin grafts, flaps, rhytidectomy, and endoscopic forehead lift. PMID:27267012

  8. [Investigation on bovine leukocyte adhesion deficiency].

    PubMed

    Ma, Jin-Zhu; Cui, Yu-Dong; Zhu, Zhan-Bo; Cao, Hong-Wei; Piao, Fan-Ze

    2006-10-01

    Bovine leukocyte adhesion deficiency (BLAD) is autosomal recessive disease. The pathogeny of BLAD is genic mutation of CD18-integrins on the leukocyte. In order to know the carrier and occurrence of bovine leukocyte adhesion deficiency (BLAD) among cows age from one to six years old in China, 1,000 cows were investigated by means of amplifying a CD18 gene fragment via reverse transcriptase-PCR followed by restriction digestion with Taq I. Results showed that 19 cows were BLAD carriers, indicating that the BLAD carrier rate was 1.9 percent. In addition, one cow was found to have BLAD. PMID:17035180

  9. Method of measuring metal coating adhesion

    DOEpatents

    Roper, John R.

    1985-01-01

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  10. Physics of cell elasticity, shape and adhesion

    NASA Astrophysics Data System (ADS)

    Safran, S. A.; Gov, N.; Nicolas, A.; Schwarz, U. S.; Tlusty, T.

    2005-07-01

    We review recent theoretical work that analyzes experimental measurements of the shape, fluctuations and adhesion properties of biological cells. Particular emphasis is placed on the role of the cytoskeleton and cell elasticity and we contrast the shape and adhesion of elastic cells with fluid-filled vesicles. In red blood cells (RBC), the cytoskeleton consists of a two-dimensional network of spectrin proteins. Our analysis of the wavevector and frequency dependence of the fluctuation spectrum of RBC indicates that the spectrin network acts as a confining potential that reduces the fluctuations of the lipid bilayer membrane. However, since the cytoskeleton is only sparsely connected to the bilayer, one cannot regard the composite cytoskeleton-membrane as a polymerized object with a shear modulus. The sensitivity of RBC fluctuations and shapes to ATP concentration may reflect topological defects induced in the cytoskeleton network by ATP. The shapes of cells that adhere to a substrate are strongly determined by the cytoskeletal elasticity that can be varied experimentally by drugs that depolymerize the cytoskeleton. This leads to a tension-driven retraction of the cell body and a pearling instability of the resulting ray-like protrusions. Recent experiments have shown that adhering cells exert polarized forces on substrates. The interactions of such “force dipoles” in either bulk gels or on surfaces can be used to predict the nature of self-assembly of cell aggregates and may be important in the formation of artificial tissues. Finally, we note that cell adhesion strongly depends on the forces exerted on the adhesion sites by the tension of the cytoskeleton. The size and shape of the adhesion regions are strongly modified as the tension is varied and we present an elastic model that relates this tension to deformations that induce the recruitment of new molecules to the adhesion region. In all these examples, cell shape and adhesion differ from vesicle shape and

  11. Friction and adhesion of hierarchical carbon nanotube structures for biomimetic dry adhesives: multiscale modeling.

    PubMed

    Hu, Shihao; Jiang, Haodan; Xia, Zhenhai; Gao, Xiaosheng

    2010-09-01

    With unique hierarchical fibrillar structures on their feet, gecko lizards can walk on vertical walls or even ceilings. Recent experiments have shown that strong binding along the shear direction and easy lifting in the normal direction can be achieved by forming unidirectional carbon nanotube array with laterally distributed tips similar to gecko's feet. In this study, a multiscale modeling approach was developed to analyze friction and adhesion behaviors of this hierarchical fibrillar system. Vertically aligned carbon nanotube array with laterally distributed segments at the end was simulated by coarse grained molecular dynamics. The effects of the laterally distributed segments on friction and adhesion strengths were analyzed, and further adopted as cohesive laws used in finite element analysis at device scale. The results show that the laterally distributed segments play an essential role in achieving high force anisotropy between normal and shear directions in the adhesives. Finite element analysis reveals a new friction-enhanced adhesion mechanism of the carbon nanotube array, which also exists in gecko adhesive system. The multiscale modeling provides an approach to bridge the microlevel structures of the carbon nanotube array with its macrolevel adhesive behaviors, and the predictions from this modeling give an insight into the mechanisms of gecko-mimicking dry adhesives.

  12. A randomized control clinical trial of fissure sealant retention: Self etch adhesive versus total etch adhesive

    PubMed Central

    Aman, Nadia; Khan, Farhan Reza; Salim, Aisha; Farid, Huma

    2015-01-01

    Context: There are limited studies on comparison of Total etch (TE) and Self etch (SE) adhesive for placement of sealants. Aims: The aim of the study was to compare the retention of fissure sealants placed using TE adhesive to those sealants placed using SE (seventh generation) adhesive. Settings and Design: The study was conducted in the dental section, Aga Khan University Hospital. This study was a randomized single blinded trial with a split mouth design. Materials and Methods: The study included 37 patients, 101 teeth were included in both study groups. The intervention arm was treated with SE Adhesive (Adper Easy One, 3M ESPE, US). Control arm received TE adhesive (Adper Single Bond 2, 3M ESPE, US) before sealant application. The patients were followed after 6 months for assessment of sealant retention. Statistical analysis used: Interexaminer agreement for outcome assessment was assessed by Kappa Statistics and outcome in intervention group was assessed by McNemar's test. Results: Ninety-one pairs of molar (90%) were reevaluated for sealant retention. Complete retention was 56% in TE arm and 28% in SE arm with an odds ratio (OR) of 3.7. Conclusions: Sealants applied with TE adhesives show higher rate of complete sealant retention than SE adhesive. PMID:25657521

  13. Differential adhesiveness between blood and marrow leukemic cells having similar pattern of VLA adhesion molecule expression.

    PubMed

    Thomas, X; Anglaret, B; Bailly, M; Maritaz, O; Magaud, J P; Archimbaud, E

    1998-10-01

    Functional adhesion of blood and marrow leukemic cells from 14 acute myeloid leukemia patients presenting with hyperleukocytosis was evaluated by performing cytoadhesion assays on purified (extracellular matrix proteins) and non-purified supports (MRC5 fibroblastic cell line). Results, in 30-min chromium release assay, show a mean +/- S.D. adhesion to fibronectin, collagen, and laminin respectively of 30 +/- 17%, 20 +/- 13%, 25 +/- 17% for blood leukemic cells and 18 +/- 11%, 11 +/- 10%, 11 +/- 8% for marrow leukemic cells. These differences between blood and marrow cells were statistically significant (respectively P = 0.005, P = 0.01 and P = 0.002), while no difference was noted regarding adhesion to non-purified supports. The higher adhesion of blood blast cells to purified supports was observed regardless of CD34 expression. No significant difference was observed in the expression of cell surface VLA-molecules (CD29, CD49b, CD49d, CD49e, CD49f) between blood and marrow blast cells. The addition of GM-CSF or G-CSF induced increased adhesion of marrow blasts and decreased adhesion of blood blasts leading to a loss of the difference between blood and marrow cells. In a 60-min chromium release assay, marrow blasts adhered even more than blood leukemic cells to fibronectin. In contrast, marrow blasts from 'aleukemic' acute myeloid leukemia patients did not show any modification regarding their adhesion to extracellular matrix proteins when co-cultured with growth factors. PMID:9766756

  14. Strong adhesion and friction coupling in hierarchical carbon nanotube arrays for dry adhesive applications.

    PubMed

    Hu, Shihao; Xia, Zhenhai; Gao, Xiaosheng

    2012-04-01

    The adhesion and friction coupling of hierarchical carbon nanotube arrays was investigated with a hierarchical multiscale modeling approach. At device level, vertically aligned carbon nanotube (VA-CNT) arrays with laterally distributed segments on top were analyzed via finite element methods to determine the macroscopic adhesion and friction force coupling. At the nanoscale, molecular dynamics simulation was performed to explore the origin of the adhesion enhancement due to the existence of the laterally distributed CNTs. The results show interfacial adhesion force is drastically promoted by interfacial friction force when a single lateral CNT is being peeled from an amorphous carbon substrate. By fitting with experiments, we find that under shearing loadings the maximum interfacial adhesion force is increased by a factor of ~5, compared to that under normal loadings. Pre-existing surface asperities of the substrate have proven to be the source of generating large interfacial friction, which in turn results in an enhanced adhesion. The critical peeling angles derived from the continuum and nano- levels are comparable to those of geckos and other synthetic adhesives. Our analysis indicates that the adhesion enhancement factor of the hierarchically structured VA-CNT arrays could be further increased by uniformly orienting the laterally distributed CNTs on top. Most importantly, a significant buckling of the lateral CNT at peeling front is captured on the molecular level, which provides a basis for the fundamental understanding of local deformation, and failure mechanisms of nanofibrillar structures. This work gives an insight into the durability issues that prevent the success of artificial dry adhesives.

  15. Nondestructive Evaluation of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Nayeb-Hashemi, Hamid; Rossettos, J. N.

    1997-01-01

    The final report consists of 5 published papers in referred journals and a technical letter to the technical monitor. These papers include the following: (1) Comparison of the effects of debonds and voids in adhesive; (2) On the peak shear stresses in adhesive joints with voids; (3) Nondestructive evaluation of adhesively bonded joints by acousto-ultrasonic technique and acoustic emission; (4) Multiaxial fatigue life evaluation of tubular adhesively bonded joints; (5) Theoretical and experimental evaluation of the bond strength under peeling loads. The letter outlines the progress of the research. Also included is preliminary information on the study of nondestructive evaluation of composite materials subjected to localized heat damage. The investigators studied the effects of localized heat on unidirectional fiber glass epoxy composite panels. Specimens of the fiber glass epoxy composites were subjected to 400 C heat for varying lengths of time. The specimens were subjected to nondestructive tests. The specimens were then pulled to their failure and acoustic emission of these specimens were measured. The analysis of the data was continuing as of the writing of the letter, and includes a finite element stress analysis of the problem.

  16. Wetting and phase separation in soft adhesion

    NASA Astrophysics Data System (ADS)

    Jensen, Katharine; Dufresne, Eric

    2015-11-01

    In the classic theories of solid adhesion, surface energies drive deformation to increase contact area while bulk elasticity opposes it. However, recently solid surface tension has also been shown to play an important role in resisting deformation in soft materials. We explore the consequences for the physics of adhesive contact by performing experiments bringing small, rigid spheres into contact with compliant silicone gel substrates. We measure the quasi-static deformation of the substrate, particularly focusing on its structure near the contact line. In order to satisfy the wetting condition prescribed by surface tension balance while avoiding an elastic singularity at the contact line, we find that the gels undergo an adhesion-induced phase separation. This creates a four-phase contact zone with two additional, hidden contact lines. Our results indicate that accurate theories of adhesion of soft gels need to account both for the compressibility of the gel elastic network and for a non-zero surface stress between the gel and its solvent.

  17. Towards a chemistry of cohesion and adhesion

    NASA Astrophysics Data System (ADS)

    Eberhart, M. E.; Donovan, M. M.; MacLaren, J. M.; Clougherty, D. P.

    Modern chemistry frequently describes the structure and reaction dynamics of molecules in terms of the general principle of “competition for bonds”; consequently, bonding forms the basis of the language of chemistry. The actual models used to represent these bonds are frequently system specific. Organic reactions are described in terms of bonds based on pairs of atomic valence electrons. Reactions of inorganic coordination complexes are described in terms of bonds based on a molecular orbital representation. In analogy to those chemistries, a representation for a bond and bond strength, suitable for describing the cohesive and adhesive properties of all classes of materials, is introduced. This representation proves to yield an explanation for the observed cohesive properties of a specific class of materials (cleavage in bcc metals), and it also provides a framework for exploring and analyzing the more complex phenomena of cohesion and adhesion, such as environmentally-induced embrittlement. A complete chemistry of cohesion and adhesion will require the demonstration that the specific bonding model used can form the basis for consistent interpretations for a wealth of experimental phenomena beyond environmentally-induced embrittlement; thus, as presented, this model does not provide a complete chemistry of cohesion and adhesion, but does embody the first steps in that direction.

  18. Cure-rate data for silicone adhesive

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C.; Fisher, A.

    1978-01-01

    Report describes work with concentrations down to 0.07 percent and is useful when applying adhesives in terrestrial and space applications. Cured Silicone retains low-outgassing properties as well as its snap, elongation, and resilience. Tests for hardness of silicone material also showed good results. No gross hysteresis observable on recovery from stretching nor was there any decrease in hardness.

  19. Non-equilibrium Silk Fibroin Adhesives

    PubMed Central

    Yucel, Tuna; Kojic, Nikola; Leisk, Gary G.; Lo, Tim J.; Kaplan, David L.

    2009-01-01

    Regenerated silkworm silk solutions formed metastable, soft-solid-like materials (e-gels) under weak electric fields, displaying interesting mechanical characteristics such as dynamic adhesion and strain stiffening. Raman spectroscopy, in situ electric field dynamic oscillatory rheology and polarized optical microscopy indicated that silk fibroin electrogelation involved intermolecular self-assembly of silk molecules into amorphous, micron-scale, micellar structures and the formation of relatively long lifetime, intermicellar entanglement crosslinks. Overall, the electrogelation process did not require significant intramolecular β-strand or intermolecular β-sheet formation, unlike silk hydrogels. The kinetics of e-gel formation could be tuned by changing the field strength and assembly conditions, such as silk concentration and solution pH, while e-gel stiffness was partially reversible by removal of the applied field. Transient adhesion testing indicated that the adhesive characteristics of e-gels could at least partially be attributed to a local increase in proton concentration around the positive electrode due to the applied field and surface effects. A working model of electrogelation was described en route to understanding the origins of the adhesive characteristics. PMID:20026216

  20. Microfabricated adhesive mimicking gecko foot-hair

    NASA Astrophysics Data System (ADS)

    Geim, A. K.; Dubonos, S. V.; Grigorieva, I. V.; Novoselov, K. S.; Zhukov, A. A.; Shapoval, S. Yu.

    2003-07-01

    The amazing climbing ability of geckos has attracted the interest of philosophers and scientists alike for centuries. However, only in the past few years has progress been made in understanding the mechanism behind this ability, which relies on submicrometre keratin hairs covering the soles of geckos. Each hair produces a miniscule force ~10-7 N (due to van der Waals and/or capillary interactions) but millions of hairs acting together create a formidable adhesion of ~10 N cm-2: sufficient to keep geckos firmly on their feet, even when upside down on a glass ceiling. It is very tempting to create a new type of adhesive by mimicking the gecko mechanism. Here we report on a prototype of such 'gecko tape' made by microfabrication of dense arrays of flexible plastic pillars, the geometry of which is optimized to ensure their collective adhesion. Our approach shows a way to manufacture self-cleaning, re-attachable dry adhesives, although problems related to their durability and mass production are yet to be resolved.

  1. Adhesive contact of randomly rough surfaces

    NASA Astrophysics Data System (ADS)

    Pastewka, Lars; Robbins, Mark

    2012-02-01

    The contact area, stiffness and adhesion between rigid, randomly rough surfaces and elastic substrates is studied using molecular statics and continuum simulations. The surfaces are self-affine with Hurst exponent 0.3 to 0.8 and different short λs and long λL wavelength cutoffs. The rms surface slope and the range and strength of the adhesive potential are also varied. For parameters typical of most solids, the effect of adhesion decreases as the ratio λL/λs increases. In particular, the pull-off force decreases to zero and the area of contact Ac becomes linear in the applied load L. A simple scaling argument is developed that describes the increase in the ratio Ac/L with increasing adhesion and a corresponding increase in the contact stiffness [1]. The argument also predicts a crossover to finite contact area at zero load when surfaces are exceptionally smooth or the ratio of surface tension to bulk modulus is unusually large, as for elastomers. Results that test this prediction will be presented and related to the Maugis-Dugdale [2] theories for individual asperities and the more recent scaling theory of Persson [3]. [1] Akarapu, Sharp, Robbins, Phys. Rev. Lett. 106, 204301 (2011) [2] Maugis, J. Colloid Interface Sci. 150, 243 (1992) [3] Persson, Phys. Rev. Lett. 74, 75420 (2006)

  2. Si/Cu Interface Structure and Adhesion

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Smith, John

    2006-03-01

    An ab initio investigation of the Si(111)/Cu(111) interfacial atomic structure and adhesion is reported [1]. Misfit dislocations appear naturally, as do hcp interfacial silicide phases that vary with temperature. The silicides form in the interface even at relatively low temperatures. These results are consistent with available experimental data. [1] Xiao-Gang Wang, John Smith, Physical Review Letters 95, 156102 (2005).

  3. Adhesion of D. discoideum on Hydrophobic Substrate

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Ploscariu, Nicoleta

    2015-03-01

    Adhesion by amoeboid cells, such as D. discoideum, is poorly understood but critical for other behaviors such as phagocytosis and migration. Furthermore, both leucocytes and breast cancer cells employ the amoeboid mode of movement at various points in their life-cycles. Hence, improved knowledge of amoeboid adhesion may lead to be new strategies for controlling other important cellular processes. This study regards adhesion by D. discoideum on silanized glass substrates. Reflection interference contrast microscopy is used in conjunction with other methods to determine the contact angle, cell-medium interfacial energy, and adhesion energy of these cells. The contact angle of individual cells settling under gravity onto a substrate is observed to increase as the size of the contact patch increases. This behavior occurs on slower time-scales than expected for the settling of inert vesicles. The implications of this observation on the nature of the underlying forces will be discussed. This work was supported in part by NSF Grant PHY-646966.

  4. Method for making adhesive from biomass

    DOEpatents

    Russell, Janet A.; Riemath, William F.

    1985-01-01

    A method is described for making adhesive from biomass. A liquefaction oil is prepared from lignin-bearing plant material and a phenolic fraction is extracted therefrom. The phenolic fraction is reacted with formaldehyde to yield a phenol-formaldehyde resin.

  5. Method for making adhesive from biomass

    DOEpatents

    Russell, J.A.; Riemath, W.F.

    1984-03-30

    A method is described for making adhesive from biomass. A liquefaction oil is prepared from lignin-bearing plant material and a phenolic fraction is extracted therefrom. The phenolic fraction is reacted with formaldehyde to yield a phenol-formaldehyde resin. 2 figures.

  6. Microfabricated adhesive mimicking gecko foot-hair.

    PubMed

    Geim, A K; Dubonos, S V; Grigorieva, I V; Novoselov, K S; Zhukov, A A; Shapoval, S Yu

    2003-07-01

    The amazing climbing ability of geckos has attracted the interest of philosophers and scientists alike for centuries. However, only in the past few years has progress been made in understanding the mechanism behind this ability, which relies on submicrometre keratin hairs covering the soles of geckos. Each hair produces a miniscule force approximately 10(-7) N (due to van der Waals and/or capillary interactions) but millions of hairs acting together create a formidable adhesion of approximately 10 N x cm(-2): sufficient to keep geckos firmly on their feet, even when upside down on a glass ceiling. It is very tempting to create a new type of adhesive by mimicking the gecko mechanism. Here we report on a prototype of such 'gecko tape' made by microfabrication of dense arrays of flexible plastic pillars, the geometry of which is optimized to ensure their collective adhesion. Our approach shows a way to manufacture self-cleaning, re-attachable dry adhesives, although problems related to their durability and mass production are yet to be resolved.

  7. Guest editorial, special issue on biobased adhesives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article is a preface for a special issue that showcases significant developments on adhesives made with biorenewable materials, such as agricultural crops (soybean, corn), plant extractives (bark, tannins), and marine sources (mussels). This collection of pioneering studies and reviews on bioba...

  8. Microfabricated adhesive mimicking gecko foot-hair.

    PubMed

    Geim, A K; Dubonos, S V; Grigorieva, I V; Novoselov, K S; Zhukov, A A; Shapoval, S Yu

    2003-07-01

    The amazing climbing ability of geckos has attracted the interest of philosophers and scientists alike for centuries. However, only in the past few years has progress been made in understanding the mechanism behind this ability, which relies on submicrometre keratin hairs covering the soles of geckos. Each hair produces a miniscule force approximately 10(-7) N (due to van der Waals and/or capillary interactions) but millions of hairs acting together create a formidable adhesion of approximately 10 N x cm(-2): sufficient to keep geckos firmly on their feet, even when upside down on a glass ceiling. It is very tempting to create a new type of adhesive by mimicking the gecko mechanism. Here we report on a prototype of such 'gecko tape' made by microfabrication of dense arrays of flexible plastic pillars, the geometry of which is optimized to ensure their collective adhesion. Our approach shows a way to manufacture self-cleaning, re-attachable dry adhesives, although problems related to their durability and mass production are yet to be resolved. PMID:12776092

  9. Underwater Adhesives Retrofit Pipelines with Advanced Sensors

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Houston-based Astro Technology Inc. used a partnership with Johnson Space Center to pioneer an advanced fiber-optic monitoring system for offshore oil pipelines. The company's underwater adhesives allow it to retrofit older deepwater systems in order to measure pressure, temperature, strain, and flow properties, giving energy companies crucial data in real time and significantly decreasing the risk of a catastrophe.

  10. The role of material properties in adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When two solid surfaces are brought into contact strong adhesive bond forces can develop between the materials. The magnitude of the forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between solids is addressed from a theoretical consideration of the electronic nature of the surfaces and experimentally relating bond forces to the nature of the interface resulting from solid state contact. Surface properties correlated with adhesion include, atomic or molecular orientation, reconstruction and segregation as well as the chemistry of the surface specie. Where dissimilar solids are in contact the contribution of each is considered as is the role of their interactive chemistry on bond strength. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structure, crystallographic orientation and state. Materials examined with respect to interfacial adhesive interactions include metals, alloys, ceramics, polymers and diamond. They are reviewed both in single and polycrystalline form. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  11. Nitrogen starvation affects bacterial adhesion to soil

    PubMed Central

    Borges, Maria Tereza; Nascimento, Antônio Galvão; Rocha, Ulisses Nunes; Tótola, Marcos Rogério

    2008-01-01

    One of the main factors limiting the bioremediation of subsoil environments based on bioaugmentation is the transport of selected microorganisms to the contaminated zones. The characterization of the physiological responses of the inoculated microorganisms to starvation, especially the evaluation of characteristics that affect the adhesion of the cells to soil particles, is fundamental to anticipate the success or failure of bioaugmentation. The objective of this study was to investigate the effect of nitrogen starvation on cell surface hydrophobicity and cell adhesion to soil particles by bacterial strains previously characterized as able to use benzene, toluene or xilenes as carbon and energy sources. The strains LBBMA 18-T (non-identified), Arthrobacter aurescens LBBMA 98, Arthrobacter oxydans LBBMA 201, and Klebsiella sp. LBBMA 204–1 were used in the experiments. Cultivation of the cells in nitrogen-deficient medium caused a significant reduction of the adhesion to soil particles by all the four strains. Nitrogen starvation also reduced significantly the strength of cell adhesion to the soil particles, except for Klebsiella sp. LBBMA 204–1. Two of the four strains showed significant reduction in cell surface hydrophobicity. It is inferred that the efficiency of bacterial transport through soils might be potentially increased by nitrogen starvation. PMID:24031246

  12. Performance of thermal adhesives in forced convection

    NASA Technical Reports Server (NTRS)

    Kundu, Nikhil K.

    1993-01-01

    Cooling is critical for the life and performance of electronic equipment. In most cases cooling may be achieved by natural convection but forced convection may be necessary for high wattage applications. Use of conventional type heat sinks may not be feasible from the viewpoint of specific applications and the costs involved. In a heat sink, fins can be attached to the well by ultrasonic welding, by soldering, or with a number of industrially available thermal adhesives. In this paper, the author investigates the heat transfer characteristics of several adhesives and compares them with ultrasonic welding and theoretically calculated values. This experiment was conducted in an air flow chamber. Heat was generated by using heaters mounted on the well. Thermstrate foil, Uniset A401, and Aremco 571 adhesives were tested along with an ultrasonically welded sample. Ultrasonic welding performed far better than the adhesives and Thermstrate foil. This type of experiment can be adapted for a laboratory exercise in an upper level heat transfer course. It gives students an exposure to industrial applications that help them appreciate the importance of the course material.

  13. Adhesive Bioactive Coatings Inspired by Sea Life.

    PubMed

    Rego, Sónia J; Vale, Ana C; Luz, Gisela M; Mano, João F; Alves, Natália M

    2016-01-19

    Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan, and hyaluronic acid modified with catechol groups, which are the main components responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The buildup of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring, and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. It was found that the constructed films promote the formation of bonelike apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications. PMID:26653103

  14. Flowmeter determines mix ratio for viscous adhesives

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.

    1967-01-01

    Flowmeter determines mix ratio for continuous flow mixing machine used to produce an adhesive from a high viscosity resin and aliphatic amine hardener pumped through separate lines to a rotary blender. The flowmeter uses strain gages in the two flow paths and monitors their outputs with appropriate instrumentation.

  15. The evolution of adhesiveness as a social adaptation.

    PubMed

    Garcia, Thomas; Doulcier, Guilhem; De Monte, Silvia

    2015-11-27

    Cellular adhesion is a key ingredient to sustain collective functions of microbial aggregates. Here, we investigate the evolutionary origins of adhesion and the emergence of groups of genealogically unrelated cells with a game-theoretical model. The considered adhesiveness trait is costly, continuous and affects both group formation and group-derived benefits. The formalism of adaptive dynamics reveals two evolutionary stable strategies, at each extreme on the axis of adhesiveness. We show that cohesive groups can evolve by small mutational steps, provided the population is already endowed with a minimum adhesiveness level. Assortment between more adhesive types, and in particular differential propensities to leave a fraction of individuals ungrouped at the end of the aggregation process, can compensate for the cost of increased adhesiveness. We also discuss the change in the social nature of more adhesive mutations along evolutionary trajectories, and find that altruism arises before directly beneficial behavior, despite being the most challenging form of cooperation.

  16. Current pharmaceutical design on adhesive based transdermal drug delivery systems.

    PubMed

    Ghosh, Animesh; Banerjee, Subham; Kaity, Santanu; Wong, Tin W

    2015-01-01

    Drug-in-adhesive transdermal drug delivery matrix exploits intimate contact of the carrier with stratum corneum, the principal skin barrier to drug transport, to deliver the actives across the skin and into the systemic circulation. The main application challenges of drug-in-adhesive matrix lie in the physicochemical properties of skin varying with age, gender, ethnicity, health and environmental condition of patients. This in turn poses difficulty to design a universal formulation to meet the intended adhesiveness, drug release and drug permeation performances. This review focuses on pressure-sensitive adhesives, and their adhesiveness and drug release/permeation modulation mechanisms as a function of adhesive molecular structure and formulation attributes. It discusses approaches to modulate adhesive tackiness, strength, elasticity, hydrophilicity, molecular suspension capability and swelling capacity, which contribute to the net effect of adhesive on skin bonding, drug release and drug permeation. PMID:25925119

  17. Current pharmaceutical design on adhesive based transdermal drug delivery systems.

    PubMed

    Ghosh, Animesh; Banerjee, Subham; Kaity, Santanu; Wong, Tin W

    2015-01-01

    Drug-in-adhesive transdermal drug delivery matrix exploits intimate contact of the carrier with stratum corneum, the principal skin barrier to drug transport, to deliver the actives across the skin and into the systemic circulation. The main application challenges of drug-in-adhesive matrix lie in the physicochemical properties of skin varying with age, gender, ethnicity, health and environmental condition of patients. This in turn poses difficulty to design a universal formulation to meet the intended adhesiveness, drug release and drug permeation performances. This review focuses on pressure-sensitive adhesives, and their adhesiveness and drug release/permeation modulation mechanisms as a function of adhesive molecular structure and formulation attributes. It discusses approaches to modulate adhesive tackiness, strength, elasticity, hydrophilicity, molecular suspension capability and swelling capacity, which contribute to the net effect of adhesive on skin bonding, drug release and drug permeation.

  18. Piezoelectric inkjet printing of medical adhesives and sealants

    NASA Astrophysics Data System (ADS)

    Boehm, Ryan D.; Gittard, Shaun D.; Byrne, Jacqueline M. H.; Doraiswamy, Anand; Wilker, Jonathan J.; Dunaway, Timothy M.; Crombez, Rene; Shen, Weidian; Lee, Yuan-Shin; Narayan, Roger J.

    2010-07-01

    Piezoelectric inkjet printing is a noncontact process that enables microscale processing of biological materials. In this research summary, the use of piezoelectric inkjet printing for patterning medical adhesives and sealants, including a two-component polyethylene glycol hydrogel-based medical sealant, an N-butyl cyanoacrylate tissue adhesive, and a mussel adhesive protein biological adhesive, is described The effect of Fe(III) on mussel adhesive protein structure was evaluated by means of atomic force microscopy. The ability to process microscale patterns of medical sealants and adhesives will provide an improvement in tissue joining, including enhanced tissue integrity, reduced bond lines, and decreased adhesive toxicity. Piezoelectric inkjet deposition of medical adhesives and sealants may be used in wound closure, fracture fixation, and microscale vascular surgery.

  19. Environmental and viscoelastic effects on stresses in adhesive joints

    SciTech Connect

    Palazotto, A.N.; Birman, V.

    1995-04-01

    This paper considers the state of the art in several important areas of research on adhesively bonded joints. The paper reviews the studies dealing with environmental and viscoelastic effects on stresses in adhesive joints. Environmental factors that affect stresses include temperature and moisture. These factors are analyzed and practical examples that illustrate their impact on adhesives are given for the solid-rocket motor, which is a structural component paramount to the U.S. space program. The paper deals with viscoelastic effects on adhesive joints, and a number of viscoelastic models used in the analysis of viscoelastic materials, including adhesives, are reviewed. The use of the solid-rocket motor as an example characterizes the circumstances where viscoelastic properties of adhesive layers are essential. Close attention is paid to the fractional derivative model of Bagley and Torvik, which may be a good candidate for an analytical study of adhesive joints. Finally, existing studies on viscoelastic adhesive joints are considered. 54 refs.

  20. Strong, reversible underwater adhesion via gecko-inspired hydrophobic fibers.

    PubMed

    Soltannia, Babak; Sameoto, Dan

    2014-12-24

    Strong, reversible underwater adhesion using gecko-inspired surfaces is achievable through the use of a hydrophobic structural material and does not require surface modification or suction cup effects for this adhesion to be effective. Increased surface energy can aid in dry adhesion in an air environment but strongly degrades wet adhesion via reduction of interfacial energy underwater. A direct comparison of structurally identical but chemically different mushroom shaped fibers shows that strong, reversible adhesion, even in a fully wetted, stable state, is feasible underwater if the structural material of the fibers is hydrophobic and the mating surface is not strongly hydrophilic. The exact adhesion strength will be a function of the underwater interfacial energy between surfaces and the specific failure modes of individual fibers. This underwater adhesion has been calculated to be potentially greater than the dry adhesion for specific combinations of hydrophobic surfaces.

  1. Evaluation of the micro-shear bond strength of four adhesive systems to dentin with and without adhesive area limitation.

    PubMed

    Chai, Yuan; Lin, Hong; Zheng, Gang; Zhang, Xuehui; Niu, Guangliang; Du, Qiao

    2015-01-01

    The purpose of this study was to evaluate the bonding ability of four representative dentin-adhesive systems by applying the micro-shear bond strength (μ-SBS) test method and to evaluate the influence of adhesive area limitation on the bond strength. Two different adhesive application methods were used in the μ-SBS test (with and without adhesives area limitation), and four representative adhesive systems were used in this study. Each dentin surface was treated with one of the four representative adhesive systems, and with twenty samples per group (n=20), each of the four groups underwent a μ-SBS test. The results showed that the bond strength was significantly influenced by the adhesive application method (p<0.05), the adhesive type (p<0.05) and the interaction between the two factors (p<0.05). With regard to the four representative dentin-adhesive systems, 3-E&R has a much better bond quality compared to the other adhesive systems. Furthermore, the micro-shear bond strength test method of restricting the area of both the adhesive and the resin is more reliable for evaluating the bonding property of adhesives to dentin, and it is also adequate for comparing the different adhesives systems. PMID:26406058

  2. Adhesive small bowel adhesions obstruction: Evolutions in diagnosis, management and prevention

    PubMed Central

    Catena, Fausto; Di Saverio, Salomone; Coccolini, Federico; Ansaloni, Luca; De Simone, Belinda; Sartelli, Massimo; Van Goor, Harry

    2016-01-01

    Intra-abdominal adhesions following abdominal surgery represent a major unsolved problem. They are the first cause of small bowel obstruction. Diagnosis is based on clinical evaluation, water-soluble contrast follow-through and computed tomography scan. For patients presenting no signs of strangulation, peritonitis or severe intestinal impairment there is good evidence to support non-operative management. Open surgery is the preferred method for the surgical treatment of adhesive small bowel obstruction, in case of suspected strangulation or after failed conservative management, but laparoscopy is gaining widespread acceptance especially in selected group of patients. "Good" surgical technique and anti-adhesive barriers are the main current concepts of adhesion prevention. We discuss current knowledge in modern diagnosis and evolving strategies for management and prevention that are leading to stratified care for patients. PMID:27022449

  3. TOPICAL REVIEW: Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives

    NASA Astrophysics Data System (ADS)

    Sameoto, D.; Menon, C.

    2010-10-01

    In the past two years, there have been a large number of publications on the topic of biomimetic dry adhesives from modeling, fabrication and testing perspectives. We review and compare the most recent advances in fabrication and testing of these materials. While there is increased convergence and consensus as to what makes a good dry adhesive, the fabrication of these materials is still challenging, particularly for anisotropic or hierarchal designs. Although qualitative comparisons between different adhesive designs can be made, quantifying the exact performance and rating each design is significantly hampered by the lack of standardized testing methods. Manufacturing dry adhesives, which can reliably adhere to rough surfaces, show directional and self-cleaning behavior and are relatively simple to manufacture, is still very challenging—great strides by multiple research groups have however made these goals appear achievable within the next few years.

  4. Measurement of surface adhesion force of adhesion promoter and release layer for UV-nanoimprint lithography.

    PubMed

    Choi, Dae-Geun; Lee, Dong-Il; Kim, Ki-Don; Jeong, Jun-Ho; Choi, Jun-Hyuk; Lee, Eung-Sug

    2009-02-01

    In this work, we investigated the effect of surface treatment as release layer and adhesion promoter for UV-Nanoimprint lithography and measured the surface adhesion force by using tensile separation force of Instron equipment. Several Self-Assembled Monolayers (SAMs) of 3-Acryloxypropyl methyl dichlorosilane (APMDS) 3-Aminopropyl-triethoxysilane (APTS), and 3-Glycidoxypropyltrimethoxysilane (GPTS) as adhesion promoters and (1H,1H,2H,2H-perfluorooctyl)trichlorosilane (FOTS) as release layer were fabricated by vapor deposition method and were compared with oxygen plasma treatment. APMDS could strongly improve the adhesion force between UV-curable acrylate resin and silicon substrate because of strong covalent bonding. Finally, we could successfully fabricate various imprint patterns by using proper surface treatment of SAMs.

  5. Surface pretreatments for medical application of adhesion

    PubMed Central

    Erli, Hans J; Marx, Rudolf; Paar, Othmar; Niethard, Fritz U; Weber, Michael; Wirtz, Dieter C

    2003-01-01

    Medical implants and prostheses (artificial hips, tendono- and ligament plasties) usually are multi-component systems that may be machined from one of three material classes: metals, plastics and ceramics. Typically, the body-sided bonding element is bone. The purpose of this contribution is to describe developments carried out to optimize the techniques , connecting prosthesis to bone, to be joined by an adhesive bone cement at their interface. Although bonding of organic polymers to inorganic or organic surfaces and to bone has a long history, there remains a serious obstacle in realizing long-term high-bonding strengths in the in vivo body environment of ever present high humidity. Therefore, different pretreatments, individually adapted to the actual combination of materials, are needed to assure long term adhesive strength and stability against hydrolysis. This pretreatment for metal alloys may be silica layering; for PE-plastics, a specific plasma activation; and for bone, amphiphilic layering systems such that the hydrophilic properties of bone become better adapted to the hydrophobic properties of the bone cement. Amphiphilic layering systems are related to those developed in dentistry for dentine bonding. Specific pretreatment can significantly increase bond strengths, particularly after long term immersion in water under conditions similar to those in the human body. The bond strength between bone and plastic for example can be increased by a factor approaching 50 (pealing work increasing from 30 N/m to 1500 N/m). This review article summarizes the multi-disciplined subject of adhesion and adhesives, considering the technology involved in the formation and mechanical performance of adhesives joints inside the human body. PMID:14561228

  6. Assessment of piezoelectric sensor adhesive bonding

    NASA Astrophysics Data System (ADS)

    Wandowski, T.; Moll, J.; Malinowski, P.; Opoka, S.; Ostachowicz, W.

    2015-07-01

    Piezoelectric transducers are widely utilized in Structural Health Monitoring (SHM). They are used both in guided wave-based and electromechanical impedance-based methods. Transducer debonding or unevenly distributed glue underneath the transducer reduce the performance and reliability of the SHM system. Therefore, quality assessment methods for glue layer need to be developed. In this paper, the authors present results obtained from two methods that allow the quality assessment of adhesive bonds of piezoelectric transducers. The electromechanical impedance method is utilized to analyze transducer adhesive bonding. An improperly prepared bonding layer is a source for changes in the electromechanical impedance characteristics in comparison to a perfectly bonded transducer. In the resistance characteristics of the properly bonded transducer the resonance peaks of the structure were clearly visible. In the case when adhesive layer is not equally distributed under sensor, the amplitudes of structural resonance peaks are reduced. In the case of completely detached transducer, the structural resonance peaks disappear and only resonance peaks of the transducer itself are visible. These peaks (peaks of free transducer hanging on wires) are significantly larger than the resonance peaks of the investigated structure in the considered frequency interval. The bonding layer shape is also analyzed using time-domain terahertz spectroscopy in reflection mode. This method allows to visualize the adhesive layer distribution based on C-scan analysis. C-scans of signals or envelope-detected signals can be used to estimate the area of proper adhesion between bonding agent and transducer and hence provides a more quantitative approach towards transducer inspection.

  7. An adhesive protein capsule of Escherichia coli.

    PubMed Central

    Orskov, I; Birch-Andersen, A; Duguid, J P; Stenderup, J; Orskov, F

    1985-01-01

    The nature of the adhesive capacity of three hemagglutinating Escherichia coli strains that had earlier been described as nonfimbriated was studied. The strains that were isolated from human disease adhered to human buccal and urinary tract epithelial cells, an adhesion that was not inhibited by D-mannose. By crossed immunoelectrophoresis it was shown that the three strains produced a common antigen, Z1, developed after growth at 37 degrees C but not 18 degrees C. One of the strains produced an additional antigen, Z2, of almost the same electrophoretic mobility in crossed immunoelectrophoresis. A mutant of this strain deficient of its polysaccharide K antigen had maintained the adhesive capacity, indicating that the K antigen was not responsible for adhesion. A further mutant of the acapsular mutant produced a strongly reduced amount of the Z antigens and had lost the ability to adhere. The Z1 (and Z2?) antigens were therefore deemed to be responsible for adhesion. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis of extracts of cells of the three strains, a heavy Coomassie-blue stained line was seen, indicating the presence of a protein subunit of molecular weight slightly above 14,400. By immunoblotting with absorbed antiserum, it was shown that this protein was the same as that detected by crossed immunoelectrophoresis. Protease from Streptomyces griseus, but not trypsin, digested the protein. Heating to 100 degrees C did not affect it. By immunoelectron microscopy of embedded and sectioned bacteria that had first been treated with specific antisera and ferritin-labeled antirabbit immunoglobulin, the protein adhesin-antibody complex was found to surround the bacteria as a heavy capsule. After negative staining with uranylacetate (pH approximately 4), the capsule appeared as a mesh of very fine filaments. The possible role of this capsule in the pathogenesis of disease is discussed. Images PMID:2856913

  8. Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing

    PubMed Central

    Labonte, David; Clemente, Christofer J.; Dittrich, Alex; Kuo, Chi-Yun; Crosby, Alfred J.; Irschick, Duncan J.; Federle, Walter

    2016-01-01

    Organismal functions are size-dependent whenever body surfaces supply body volumes. Larger organisms can develop strongly folded internal surfaces for enhanced diffusion, but in many cases areas cannot be folded so that their enlargement is constrained by anatomy, presenting a problem for larger animals. Here, we study the allometry of adhesive pad area in 225 climbing animal species, covering more than seven orders of magnitude in weight. Across all taxa, adhesive pad area showed extreme positive allometry and scaled with weight, implying a 200-fold increase of relative pad area from mites to geckos. However, allometric scaling coefficients for pad area systematically decreased with taxonomic level and were close to isometry when evolutionary history was accounted for, indicating that the substantial anatomical changes required to achieve this increase in relative pad area are limited by phylogenetic constraints. Using a comparative phylogenetic approach, we found that the departure from isometry is almost exclusively caused by large differences in size-corrected pad area between arthropods and vertebrates. To mitigate the expected decrease of weight-specific adhesion within closely related taxa where pad area scaled close to isometry, data for several taxa suggest that the pads’ adhesive strength increased for larger animals. The combination of adjustments in relative pad area for distantly related taxa and changes in adhesive strength for closely related groups helps explain how climbing with adhesive pads has evolved in animals varying over seven orders of magnitude in body weight. Our results illustrate the size limits of adhesion-based climbing, with profound implications for large-scale bio-inspired adhesives. PMID:26787862

  9. Alterations in Adhesion, Transport, and Membrane Characteristics in an Adhesion-Deficient Pseudomonad

    PubMed Central

    DeFlaun, M. F.; Oppenheimer, S. R.; Streger, S.; Condee, C. W.; Fletcher, M.

    1999-01-01

    A stable adhesion-deficient mutant of Burkholderia cepacia G4, a soil pseudomonad, was selected in a sand column assay. This mutant (ENV435) was compared to the wild-type strain by examining the adhesion of the organisms to silica sand and their transport through two aquifer sediments that differed in their sand, silt, and clay contents. We compared the longitudinal transport of the wild type and the adhesion mutant to the transport of a conservative chloride tracer in 25-cm-long glass columns. The transport of the wild-type strain was severely retarded compared to the transport of the conservative tracer in a variety of aquifer sediments, while the adhesion mutant and the conservative tracer traveled at similar rates. An intact sediment core study produced similar results; ENV435 was transported at a faster rate and in much greater numbers than G4. The results of hydrophobic interaction chromatography revealed that G4 was significantly more hydrophobic than ENV435, and polyacrylamide gel electrophoresis revealed significant differences in the lipopolysaccharide O-antigens of the adhesion mutant and the wild type. Differences in this cell surface polymer may explain the decreased adhesion of strain ENV435. PMID:9925613

  10. Rheology and adhesion of poly(acrylic acid)/laponite nanocomposite hydrogels as biocompatible adhesives.

    PubMed

    Shen, Muxian; Li, Li; Sun, Yimin; Xu, Jun; Guo, Xuhong; Prud'homme, Robert K

    2014-02-18

    Biocompatible nanocomposite hydrogels (NC gels) consisting of poly(acrylic acid) (PAA) and nanosized clay (Laponite) were successfully synthesized by in situ free-radical polymerization of acrylic acid (AA) in aqueous solutions of Laponite. The obtained NC gels were uniform and transparent. Their viscosity, storage modulus G', and loss modulus G″ increased significantly upon increasing the content of Laponite and the dose of AA, while exhibiting a maximum with increasing the neutralization degree of AA. They showed tunable adhesion by changing the dose of Laponite and monomer as well as the neutralization degree of AA, as determined by 180° peel strength measurement. The maximal adhesion was shown when reaching a balance between cohesion and fluidity. A homemade Johnson-Kendall-Roberts (JKR) instrument was employed to study the surface adhesion behavior of the NC gels. The combination of peel strength, rheology, and JKR measurements offers the opportunity of insight into the mechanism of adhesion of hydrogels. The NC gels with tunable adhesion should be ideal candidates for dental adhesive, wound dressing, and tissue engineering. PMID:24460239

  11. Hierarchical macroscopic fibrillar adhesives: in situ study of buckling and adhesion mechanisms on wavy substrates.

    PubMed

    Bauer, Christina T; Kroner, Elmar; Fleck, Norman A; Arzt, Eduard

    2015-10-23

    Nature uses hierarchical fibrillar structures to mediate temporary adhesion to arbitrary substrates. Such structures provide high compliance such that the flat fibril tips can be better positioned with respect to asperities of a wavy rough substrate. We investigated the buckling and adhesion of hierarchically structured adhesives in contact with flat smooth, flat rough and wavy rough substrates. A macroscopic model for the structural adhesive was fabricated by molding polydimethylsiloxane into pillars of diameter in the range of 0.3-4.8 mm, with up to three different hierarchy levels. Both flat-ended and mushroom-shaped hierarchical samples buckled at preloads one quarter that of the single level structures. We explain this behavior by a change in the buckling mode; buckling leads to a loss of contact and diminishes adhesion. Our results indicate that hierarchical structures can have a strong influence on the degree of adhesion on both flat and wavy substrates. Strategies are discussed that achieve highly compliant substrates which adhere to rough substrates.

  12. Polymer adhesion at surfaces: biological adhesive proteins and their synthetic mimics

    NASA Astrophysics Data System (ADS)

    Messersmith, Phillip

    2008-03-01

    Mussels are famous for their ability to permanently adhere to a wide variety of wet surfaces, such as rocks, metal and polymer ship hulls, and wood structures. They accomplish this through specialized proteins collectively referred to as mussel adhesive proteins (MAPs). The biophysical aspects of MAP adhesion is being revealed through the use of single molecule force measurements. The results provide insight into the adhesive roles of key amino acids found in these proteins, including the magnitude of adhesive forces, cooperative effects, and their self-healing properties. This molecular-level information is being incorporated into designs of biomimetic polymer coatings for a variety of applications. Our biomimetic approach to polymer design will be illustrated by a few examples where adhesive constituents found in MAPs are exploited to make wet-adhesive polymer coatings. In addition, small molecule analogs of MAPs can be used to apply thin functional films onto virtually any material surface using a facile approach. These coatings have a variety of potential uses in microelectronics, water treatment, prevention of environmental biofouling, and for control of biointerfacial phenomena at the surfaces of medical/diagnostic devices.

  13. The Talin Head Domain Reinforces Integrin-Mediated Adhesion by Promoting Adhesion Complex Stability and Clustering

    PubMed Central

    Ellis, Stephanie J.; Lostchuck, Emily; Goult, Benjamin T.; Bouaouina, Mohamed; Fairchild, Michael J.; López-Ceballos, Pablo; Calderwood, David A.; Tanentzapf, Guy

    2014-01-01

    Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development. PMID:25393120

  14. Rapid Development of Wet Adhesion between Carboxymethylcellulose Modified Cellulose Surfaces Laminated with Polyvinylamine Adhesive.

    PubMed

    Gustafsson, Emil; Pelton, Robert; Wågberg, Lars

    2016-09-14

    The surface of regenerated cellulose membranes was modified by irreversible adsorption of carboxymethylcellulose (CMC). Pairs of wet CMC-modified membranes were laminated with polyvinylamine (PVAm) at room temperature, and the delamination force for wet membranes was measured for both dried and never-dried laminates. The wet adhesion was studied as a function of PVAm molecular weight, amine content, and deposition pH of the polyelectrolyte. Surprisingly the PVAm-CMC system gave substantial wet adhesion that exceeded that of TEMPO-oxidized membranes with PVAm for both dried and never-dried laminates. The greatest wet adhesion was achieved for fully hydrolyzed high molecular weight PVAm. Bulk carboxymethylation of cellulose membranes gave inferior wet adhesion combined with PVAm as compared to CMC adsorption which indicates that a CMC layer of the order of 10 nm was necessary. There are no obvious covalent cross-linking reactions between CMC and PVAm at room temperature, and on the basis of our results, we are instead attributing the wet adhesion to complex formation between the PVAm and the irreversibly adsorbed CMC at the cellulose surface. We propose that interdigitation of PVAm chains into the CMC layer is responsible for the high wet adhesion values. PMID:27552256

  15. Intercellular adhesion molecule 1 is the major adhesion molecule expressed during schistosome granuloma formation.

    PubMed Central

    Ritter, D M; McKerrow, J H

    1996-01-01

    Endothelial cell adhesion molecules play a key role in inflammation by initiating leukocyte trafficking. One of the most complex inflammatory responses is the formation of a cellular granuloma. Expression of adhesion molecules during granuloma formation was investigated by using the murine host reaction to schistosome parasite eggs deposited in the liver as a model. By both immunohistochemistry and lymphocyte adhesion assays, the predominant interaction identified was between intercellular adhesion molecule 1 (ICAM-1) and its cognate integrin, leukocyte functional antigen 1 (LFA-1). ICAM-1 expression on sinusoidal endothelium was induced when eggs were first deposited in the liver, peaked in parallel with granuloma size, and was downregulated with modulation of the granuloma. Polyacrylamide beads coated with soluble parasite egg antigens could induce ICAM-1 expression on endothelial cells in vitro only in the presence of tumor necrosis factor alpha, a cytokine previously shown to be key to granuloma formation. A role for ICAM-1 in recruiting lymphocytes to the hepatic granuloma was also supported by the observation that lymphocytes preincubated with anti-LFA-1 antibody did not bind to granulomas in tissue sections. While ICAM-1 is the predominant adhesion molecule in schistosome egg granuloma formation in wild-type mice, when the ICAM-1 gene is knocked out, vascular cell adhesion molecule 1 is upregulated and granuloma formation is preserved. PMID:8890229

  16. Cell adhesion in zebrafish myogenesis: distribution of intermediate filaments, microfilaments, intracellular adhesion structures and extracellular matrix.

    PubMed

    Costa, Manoel L; Escaleira, Roberta C; Jazenko, Fernanda; Mermelstein, Claudia S

    2008-10-01

    To overcome the limitations of in vitro studies, we have been studying myogenesis in situ in zebrafish embryos, at a sub-cellular level. While in previous works we focused on myofibrillogenesis and some aspects of adhesion structures, here we describe in more detail cell adhesion structures and interactions among cytoskeletal components, membrane and extracellular matrix during zebrafish muscle development. We studied the intermediate filaments, and we describe the full range of desmin distribution in zebrafish development, from perinuclear to striated, until its deposition around the intersomite septa of older somites. This adhesion structure, positive for desmin and actin, has not been previously observed in myogenesis in vitro. We also show that actin is initially located in the intersomite septum region whereas it is confined to the myofibrils later on. While actin localization changes during development, the adhesion complex proteins vinculin, paxillin, talin, dystrophin, laminin and fibronectin always appear exclusively at the intersomite septa, and appear to be co-distributed, even though the extracellular proteins accumulates before the intracellular ones. Contrary to the adhesion proteins, that are continuously distributed, desmin and sarcomeric actin form triangular aggregates among the septa and the cytoskeleton. We studied the cytoskeletal linker plectin as well, and we show that it has a distribution similar to desmin and not to actin. We conclude that the in situ adhesion structures differ from their in vitro counterparts, and that the actual zebrafish embryo myogenesis is quite different than that which occurs in in vitro systems.

  17. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    NASA Technical Reports Server (NTRS)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  18. Alterations in adhesion, transport, and membrane characteristics in an adhesion-deficient pseudomonad

    SciTech Connect

    DeFlaun, M.F.; Streger, S.; Condee, C.W.; Oppenheimer, S.R.; Fletcher, M.

    1999-02-01

    A stable adhesion-deficient mutant of Burkholderia cepacia G4, a soil pseudomonad, was selected in a sand column assay. This mutant (ENV435) was compared to the wild-type strain by examining the adhesion of the organisms to silica sand and their transport through two aquifer sediments that differed in their sand, silt, and clay contents. The authors compared the longitudinal transport of the wild type and the adhesion mutant to the transport of a conservative chloride tracer in 25-cm-long glass columns. The transport of the wild-type strain was severely retarded compared to the transport of the conservative tracer in a variety of aquifer sediments, while the adhesion mutant and the conservative tracer traveled at similar rates. An intact sediment core study produced similar results; ENV435 was transported at a faster rate and in much greater numbers than G4. The results of hydrophobic interaction chromatography revealed that G4 was significantly more hydrophobic than ENV435, and polyacrylamide gel electrophoresis revealed significant differences in the lipopolysaccharide O-antigens of the adhesion mutant and the wild type. Differences in this cell surface polymer may explain the decreased adhesion of strain ENV435.

  19. Humidity-enhanced wet adhesion on insect-inspired fibrillar adhesive pads

    PubMed Central

    Xue, Longjian; Kovalev, Alexander; Eichler-Volf, Anna; Steinhart, Martin; Gorb, Stanislav N.

    2015-01-01

    Many insect species reversibly adhere to surfaces by combining contact splitting (contact formation via fibrillar contact elements) and wet adhesion (supply of liquid secretion via pores in the insects’ feet). Here, we fabricate insect-inspired fibrillar pads for wet adhesion containing continuous pore systems through which liquid is supplied to the contact interfaces. Synergistic interaction of capillarity and humidity-induced pad softening increases the pull-off force and the work of adhesion by two orders of magnitude. This increase and the independence of pull-off force on the applied load are caused by the capillarity-supported formation of solid–solid contact between pad and the surface. Solid–solid contact dominates adhesion at high humidity and capillarity at low humidity. At low humidity, the work of adhesion strongly depends on the amount of liquid deposited on the surface and, therefore, on contact duration. These results may pave the way for the design of insect-inspired adhesive pads. PMID:25791574

  20. Soy and cottonseed protein blends as wood adhesives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As an environmentally friendlier alternative to adhesives from petroleum feedstock, soy proteins are currently being formulated as wood adhesives. Cottonseed proteins have also been found to provide good adhesive properties. In at least some cases, cottonseed proteins appear to form greater shear ...

  1. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  2. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  3. 7 CFR 3201.16 - Adhesive and mastic removers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Adhesive and mastic removers. 3201.16 Section 3201.16... Designated Items § 3201.16 Adhesive and mastic removers. (a) Definition. Solvent products formulated for use in removing asbestos, carpet, and tile mastics as well as adhesive materials, including glue,...

  4. 7 CFR 3201.16 - Adhesive and mastic removers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Adhesive and mastic removers. 3201.16 Section 3201.16... Designated Items § 3201.16 Adhesive and mastic removers. (a) Definition. Solvent products formulated for use in removing asbestos, carpet, and tile mastics as well as adhesive materials, including glue,...

  5. 7 CFR 3201.16 - Adhesive and mastic removers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Adhesive and mastic removers. 3201.16 Section 3201.16... Designated Items § 3201.16 Adhesive and mastic removers. (a) Definition. Solvent products formulated for use in removing asbestos, carpet, and tile mastics as well as adhesive materials, including glue,...

  6. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  7. 7 CFR 2902.16 - Adhesive and mastic removers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Adhesive and mastic removers. 2902.16 Section 2902.16... Items § 2902.16 Adhesive and mastic removers. (a) Definition. Solvent products formulated for use in removing asbestos, carpet, and tile mastics as well as adhesive materials, including glue, tape, and...

  8. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  9. 7 CFR 2902.16 - Adhesive and mastic removers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Adhesive and mastic removers. 2902.16 Section 2902.16... Items § 2902.16 Adhesive and mastic removers. (a) Definition. Solvent products formulated for use in removing asbestos, carpet, and tile mastics as well as adhesive materials, including glue, tape, and...

  10. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  11. Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces.

    PubMed

    Lee, Hyungoo; Bhushan, Bharat

    2012-04-15

    The mechanics of fibrillar adhesive surfaces of biological systems such as a Lotus leaf and a gecko are widely studied due to their unique surface properties. The Lotus leaf is a model for superhydrophobic surfaces, self-cleaning properties, and low adhesion. Gecko feet have high adhesion due to the high micro/nanofibrillar hierarchical structures. A nanostructured surface may exhibit low adhesion or high adhesion depending upon fibrillar density, and it presents the possibility of realizing eco-friendly surface structures with desirable adhesion. The current research, for the first time uses a patterning technique to fabricate smart adhesion surfaces: single- and two-level hierarchical synthetic adhesive structure surfaces with various fibrillar densities and diameters that allows the observation of either the Lotus or gecko adhesion effects. Contact angles of the fabricated structured samples were measured to characterize their wettability, and contamination experiments were performed to study for self-cleaning ability. A conventional and a glass ball attached to an atomic force microscope (AFM) tip were used to obtain the adhesive forces via force-distance curves to study scale effect. A further increase of the adhesive forces on the samples was achieved by applying an adhesive to the surfaces.

  12. Mechanical properties of Hysol EA-9394 structural adhesive

    SciTech Connect

    Guess, T.R.; Reedy, E.D.; Stavig, M.E.

    1995-02-01

    Dextor`s Hysol EA-9394 is a room temperature curable paste adhesive representative of the adhesives used in wind turbine blade joints. A mechanical testing program has been performed to characterize this adhesive. Tension, compression stress relaxation, flexural, butt tensile, and fracture toughness test results are reported.

  13. A plastic relationship between vinculin-mediated tension and adhesion complex area defines adhesion size and lifetime

    NASA Astrophysics Data System (ADS)

    Hernández-Varas, Pablo; Berge, Ulrich; Lock, John G.; Strömblad, Staffan

    2015-06-01

    Cell-matrix adhesions are central mediators of mechanotransduction, yet the interplay between force and adhesion regulation remains unclear. Here we use live cell imaging to map time-dependent cross-correlations between vinculin-mediated tension and adhesion complex area, revealing a plastic, context-dependent relationship. Interestingly, while an expected positive cross-correlation dominated in mid-sized adhesions, small and large adhesions display negative cross-correlation. Furthermore, although large changes in adhesion complex area follow vinculin-mediated tension alterations, small increases in area precede vinculin-mediated tension dynamics. Modelling based on this mapping of the vinculin-mediated tension-adhesion complex area relationship confirms its biological validity, and indicates that this relationship explains adhesion size and lifetime limits, keeping adhesions focal and transient. We also identify a subpopulation of steady-state adhesions whose size and vinculin-mediated tension become stabilized, and whose disassembly may be selectively microtubule-mediated. In conclusion, we define a plastic relationship between vinculin-mediated tension and adhesion complex area that controls fundamental cell-matrix adhesion properties.

  14. Universal adhesive (glue composition) for electrical porcelain products

    SciTech Connect

    Khristoforov, K.K.; Belen'kaya, E.S.; Omel'chenko, Y.A.; Vinogradova, T.K.

    1986-05-01

    The aim of this work is to develop an adhesive for porcelain insulators that exhibits high physicomechanical properties and increased resistance to the simultaneous action of heat and moisture. One method of solving this problem is to introduce special additives possessing hydrophobic (waterrepelling) properties into the adhesive composition during the process of its preparation. The adhesive based on the ED-20 epoxy resin and TEA hardened with 5 parts of AF-2 additive possesses higher resistance to the action of heat and moisture as compared to the adhesive used at the present time for assembling insulators. The improved and stable physiomechanical properties of the developed adhesive permit its use in any climactic conditions.

  15. Comparative biomorphologic analysis about three dentinal adhesives of last generations.

    PubMed

    Carini, F; Varia, P; Valenza, V

    2001-01-01

    The aim of this work consists in a comparative biomorphological analysis of the properties of infiltration and of adhesion to dental tissues of three among the more used enamel dentinal adhesives of the last generation known with the commercial name of Syntac, Excite and Prompt. The results have given evidence that Syntac has got short adhesion, Excite has got good capacity of infiltration and moderate adhesion, Prompt seems to possess a capacity of infiltration equal to Excite's one, but a better adhesion besides an easier modality of use.

  16. The effect of bending on the stresses in adhesive joints

    NASA Technical Reports Server (NTRS)

    Yuceoglu, U.; Updike, D. P.

    1975-01-01

    The problem of stress distribution in adhesive joints where two orthotropic plates are bonded through a flexible adhesive layer is analyzed. It is shown that the effect of bending of the adherends on the stresses in the adhesive layer is very significant. The transverse shear deformations of the adherends appear to have little influence on the adhesive layer stresses. The maximum transverse normal stress in the adhesive is shown to be larger than the maximum longitudinal shear stress. The method of solution is applied to several examples of specific joint geometries and material combinations, and is proven to be applicable to other related problems.

  17. Effect of Linomide on adhesion molecules, TNF-alpha, nitrogen oxide, and cell adhesion.

    PubMed

    Abdul-Hai, A; Hershkoviz, R; Weiss, L; Lider, O; Slavin, S

    2005-02-01

    Linomide (quinoline-3-carboxamide) is an immunomodulator with anti-inflammatory effects in rodents with autoimmune diseases. Its mode of action still remains to be elucidated. We hypothesized that an investigation of T cell interactions with the extracellular matrix (ECM), composed of glycoproteins such as fibronectin (FN) and laminin (LN), might provide better understanding of their in vivo mode of action in extravascular inflammatory sites. We examined the effect of Linomide on T cell adhesion to intact ECM, and separately to LN, and FN, and on the release and production of tumor necrosis factor (TNFalpha) and nitrogen oxide (NO) in relation to adhesive molecules in non-obese diabetic (NOD) female spleen cells, focusing on intracellular adhesion molecule-1 (ICAM-1) and CD44. NOD female mice that developed spontaneous autoimmune insulitis, which destroys pancreatic islets and subsequently leads to insulin-deficient diabetes mellitus, were studied. Linomide, given in the drinking water or added to tissue cultures in vitro, inhibited the beta1 integrin-mediated adhesion of T cells to ECM, FN and LN, as well as the production and release of TNFalpha and NO, which play a major role in the induction and propagation of T cell-mediated insulitis. In addition, exposure of T cells to Linomide resulted in increased expression of CD44 and ICAM-1 molecules on spleen cells of Linomide-treated mice; such an increase in adhesion molecule expression may lead to more effective arrest of T cell migration in vivo. The regulation of T-cell adhesion, adhesion receptor expression, and inhibition of TNFalpha and NO secretion by Linomide may explain its beneficial role and provide a new tool for suppressing self-reactive T cell-dependent autoimmune diseases. PMID:15652754

  18. Quantitative methods for analyzing cell-cell adhesion in development.

    PubMed

    Kashef, Jubin; Franz, Clemens M

    2015-05-01

    During development cell-cell adhesion is not only crucial to maintain tissue morphogenesis and homeostasis, it also activates signalling pathways important for the regulation of different cellular processes including cell survival, gene expression, collective cell migration and differentiation. Importantly, gene mutations of adhesion receptors can cause developmental disorders and different diseases. Quantitative methods to measure cell adhesion are therefore necessary to understand how cells regulate cell-cell adhesion during development and how aberrations in cell-cell adhesion contribute to disease. Different in vitro adhesion assays have been developed in the past, but not all of them are suitable to study developmentally-related cell-cell adhesion processes, which usually requires working with low numbers of primary cells. In this review, we provide an overview of different in vitro techniques to study cell-cell adhesion during development, including a semi-quantitative cell flipping assay, and quantitative single-cell methods based on atomic force microscopy (AFM)-based single-cell force spectroscopy (SCFS) or dual micropipette aspiration (DPA). Furthermore, we review applications of Förster resonance energy transfer (FRET)-based molecular tension sensors to visualize intracellular mechanical forces acting on cell adhesion sites. Finally, we describe a recently introduced method to quantitate cell-generated forces directly in living tissues based on the deformation of oil microdroplets functionalized with adhesion receptor ligands. Together, these techniques provide a comprehensive toolbox to characterize different cell-cell adhesion phenomena during development.

  19. On coating adhesion during impulse plasma deposition

    NASA Astrophysics Data System (ADS)

    Nowakowska-Langier, Katarzyna; Zdunek, Krzysztof; Chodun, Rafal; Okrasa, Sebastian; Kwiatkowski, Roch; Malinowski, Karol; Składnik-Sadowska, Elzbieta; Sadowski, Marek J.

    2014-05-01

    The impulse plasma deposition (IPD) technique is the only method of plasma surface engineering (among plasma-based technologies) that allows a synthesis of layers upon a cold unheated substrate and which ensures a good adhesion. This paper presents a study of plasma impacts upon a copper substrate surface during the IPD process. The substrate was exposed to pulsed N2/Al plasma streams during the synthesis of AlN layers. For plasma-material interaction diagnostics, the optical emission spectroscopy method was used. Our results show that interactions of plasma lead to sputtering of the substrate material. It seems that the obtained adhesion of the layers is the result of a complex surface mechanism combined with the effects of pulsed plasma energy impacts upon the unheated substrate. An example of such a result is the value of the critical load for the Al2O3 layer, which was measured by the scratch-test method to be above 40 N.

  20. Three Functions of Cadherins in Cell Adhesion

    PubMed Central

    Maître, Jean-Léon; Heisenberg, Carl-Philipp

    2013-01-01

    Cadherins are transmembrane proteins that mediate cell–cell adhesion in animals. By regulating contact formation and stability, cadherins play a crucial role in tissue morphogenesis and homeostasis. Here, we review the three major functions of cadherins in cell–cell contact formation and stability. Two of those functions lead to a decrease in interfacial tension at the forming cell–cell contact, thereby promoting contact expansion — first, by providing adhesion tension that lowers interfacial tension at the cell–cell contact, and second, by signaling to the actomyosin cytoskeleton in order to reduce cortex tension and thus interfacial tension at the contact. The third function of cadherins in cell–cell contact formation is to stabilize the contact by resisting mechanical forces that pull on the contact. PMID:23885883

  1. Adhesion determinants of the Streptococcus species

    PubMed Central

    Moschioni, Monica; Pansegrau, Werner; Barocchi, Michèle A.

    2010-01-01

    Summary Streptococci are clinically important Gram‐positive bacteria that are capable to cause a wide variety of diseases in humans and animals. Phylogenetic analyses based on 16S rRNA sequences of the streptococcal species reveal a clustering pattern, reflecting, with a few exceptions, their pathogenic potential and ecological preferences. Microbial adhesion to host tissues is the initial critical event in the pathogenesis of most infections. Streptococci use multiple adhesins to attach to the epithelium, and their expression is regulated in response to environmental and growth conditions. Bacterial adhesins recognize and bind cell surface molecules and extracellular matrix components through specific domains that for certain adhesin families have been well defined and found conserved across the streptococcal species. In this review, we present the different streptococcal adhesin families categorized on the basis of their adhesive properties and structural characteristics, and, when available, we focus the attention on conserved functional domains. PMID:21255337

  2. Adhesive joint and composites modeling in SIERRA.

    SciTech Connect

    Ohashi, Yuki; Brown, Arthur A.; Hammerand, Daniel Carl; Adolf, Douglas Brian; Chambers, Robert S.; Foulk, James W., III

    2005-11-01

    Polymers and fiber-reinforced polymer matrix composites play an important role in many Defense Program applications. Recently an advanced nonlinear viscoelastic model for polymers has been developed and incorporated into ADAGIO, Sandia's SIERRA-based quasi-static analysis code. Standard linear elastic shell and continuum models for fiber-reinforced polymer-matrix composites have also been added to ADAGIO. This report details the use of these models for advanced adhesive joint and composites simulations carried out as part of an Advanced Simulation and Computing Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical response of an adhesive joint when loaded during repeated thermal cycling is simulated, the response of some composite rings under internal pressurization is calculated, and the performance of a composite container subjected to internal pressurization, thermal loading, and distributed mechanical loading is determined. Finally, general comparisons between the continuum and shell element approaches for modeling composites using ADAGIO are given.

  3. Cyclic debonding of adhesively bonded composites

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.; Everett, R. A., Jr.

    1982-01-01

    The fatigue behavior of a simple composite to composite bonded joint was analyzed. The cracked lap shear specimen subjected to constant amplitude cyclic loading was studied. Two specimen geometries were tested for each bonded system: (1) a strap adherend of 16 plies bonded to a lap adherend of 8 plies; and (2) a strap adherend of 8 plies bonded to a lap adherend of 16 plies. In all specimens the fatigue failure was in the form of cyclic debonding with some 0 deg fiber pull off from the strap adherend. The debond always grew in the region of adhesive that had the highest mode (peel) loading and that region was close to the adhesive strap interface.

  4. Verification of surface preparation for adhesive bonding

    NASA Technical Reports Server (NTRS)

    Myers, Rodney S.

    1995-01-01

    A survey of solid rocket booster (SRB) production operations identified potential contaminants which might adversely affect bonding operations. Lap shear tests quantified these contaminants' effects on adhesive strength. The most potent contaminants were selected for additional studies on SRB thermal protection system (TPS) bonding processes. Test panels were prepared with predetermined levels of contamination, visually inspected using white and black light, then bonded with three different TPS materials over the unremoved contamination. Bond test data showed that white and black light inspections are adequate inspection methods for TPS bonding operations. Extreme levels of contamination (higher than expected on flight hardware) had an insignificant effect on TPS bond strengths because of the apparent insensitivity of the adhesive system to contamination effects, and the comparatively weak cohesive strength of the TPS materials.

  5. Light-Curing Adhesive Repair Tapes

    NASA Technical Reports Server (NTRS)

    Allred, Ronald; Haight, Andrea Hoyt

    2009-01-01

    Adhesive tapes, the adhesive resins of which can be cured (and thereby rigidized) by exposure to ultraviolet and/or visible light, are being developed as repair patch materials. The tapes, including their resin components, consist entirely of solid, low-outgassing, nonhazardous or minimally hazardous materials. They can be used in air or in vacuum and can be cured rapidly, even at temperatures as low as -20 C. Although these tapes were originally intended for use in repairing structures in outer space, they can also be used on Earth for quickly repairing a wide variety of structures. They can be expected to be especially useful in situations in which it is necessary to rigidize tapes after wrapping them around or pressing them onto the parts to be repaired.

  6. Adhesion and friction of thin metal films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    Sliding friction experiments were conducted in vacuum with thin films of titanium, chromium, iron, and platinum sputter deposited on quartz or mica substrates. A single crystal hemispherically tipped gold slider was used in contact with the films at loads of 1.0 to 30.0 and at a sliding velocity of 0.7 mm/min at 23 C. Test results indicate that the friction coefficient is dependent on the adhesion of two interfaces, that between the film and its substrate and the slider and the film. There exists a relationship between the percent d bond character of metals in bulk and in thin film form and the friction coefficient. Oxygen can increase adhesive bonding of a metal film (platinum) to a substrate.

  7. Surface Modifications in Adhesion and Wetting

    NASA Astrophysics Data System (ADS)

    Longley, Jonathan

    Advances in surface modification are changing the world. Changing surface properties of bulk materials with nanometer scale coatings enables inventions ranging from the familiar non-stick frying pan to advanced composite aircraft. Nanometer or monolayer coatings used to modify a surface affect the macro-scale properties of a system; for example, composite adhesive joints between the fuselage and internal frame of Boeing's 787 Dreamliner play a vital role in the structural stability of the aircraft. This dissertation focuses on a collection of surface modification techniques that are used in the areas of adhesion and wetting. Adhesive joints are rapidly replacing the familiar bolt and rivet assemblies used by the aerospace and automotive industries. This transition is fueled by the incorporation of composite materials into aircraft and high performance road vehicles. Adhesive joints have several advantages over the traditional rivet, including, significant weight reduction and efficient stress transfer between bonded materials. As fuel costs continue to rise, the weight reduction is accelerating this transition. Traditional surface pretreatments designed to improve the adhesion of polymeric materials to metallic surfaces are extremely toxic. Replacement adhesive technologies must be compatible with the environment without sacrificing adhesive performance. Silane-coupling agents have emerged as ideal surface modifications for improving composite joint strength. As these coatings are generally applied as very thin layers (<50 nm), it is challenging to characterize their material properties for correlation to adhesive performance. We circumvent this problem by estimating the elastic modulus of the silane-based coatings using the buckling instability formed between two materials of a large elastic mismatch. The elastic modulus is found to effectively predict the joint strength of an epoxy/aluminum joint that has been reinforced with silane coupling agents. This buckling

  8. The effects of leaf roughness, surface free energy and work of adhesion on leaf water drop adhesion.

    PubMed

    Wang, Huixia; Shi, Hui; Li, Yangyang; Wang, Yanhui

    2014-01-01

    The adhesion of water droplets to leaves is important in controlling rainfall interception, and affects a variety of hydrological processes. Leaf water drop adhesion (hereinafter, adhesion) depends not only on droplet formulation and parameters but also on the physical (leaf roughness) and physico-chemical (surface free energy, its components, and work-of-adhesion) properties of the leaf surface. We selected 60 plant species from Shaanxi Province, NW China, as experimental materials with the goal of gaining insight into leaf physical and physico-chemical properties in relation to the adhesion of water droplets on leaves. Adhesion covered a wide range of area, from 4.09 to 88.87 g/m(2) on adaxial surfaces and 0.72 to 93.35 g/m(2) on abaxial surfaces. Distinct patterns of adhesion were observed among species, between adaxial and abaxial surfaces, and between leaves with wax films and wax crystals. Adhesion decreased as leaf roughness increased (r =  -0.615, p = 0.000), but there were some outliers, such as Salix psammophila and Populus simonii with low roughness and low adhesion, and the abaxial surface of Hyoscyamus pusillus and the adaxial surface of Vitex negundo with high roughness and high adhesion. Meanwhile, adhesion was positively correlated with surface free energy (r = 0.535, p = 0.000), its dispersive component (r = 0.526, p = 0.000), and work of adhesion for water (r = 0.698, p = 0.000). However, a significant power correlation was observed between adhesion and the polar component of surface free energy (p = 0.000). These results indicated that leaf roughness, surface free energy, its components, and work-of-adhesion for water played important roles in hydrological characteristics, especially work-of-adhesion for water.

  9. The Effects of Leaf Roughness, Surface Free Energy and Work of Adhesion on Leaf Water Drop Adhesion

    PubMed Central

    Wang, Huixia; Shi, Hui; Li, Yangyang; Wang, Yanhui

    2014-01-01

    The adhesion of water droplets to leaves is important in controlling rainfall interception, and affects a variety of hydrological processes. Leaf water drop adhesion (hereinafter, adhesion) depends not only on droplet formulation and parameters but also on the physical (leaf roughness) and physico-chemical (surface free energy, its components, and work-of-adhesion) properties of the leaf surface. We selected 60 plant species from Shaanxi Province, NW China, as experimental materials with the goal of gaining insight into leaf physical and physico-chemical properties in relation to the adhesion of water droplets on leaves. Adhesion covered a wide range of area, from 4.09 to 88.87 g/m2 on adaxial surfaces and 0.72 to 93.35 g/m2 on abaxial surfaces. Distinct patterns of adhesion were observed among species, between adaxial and abaxial surfaces, and between leaves with wax films and wax crystals. Adhesion decreased as leaf roughness increased (r =  −0.615, p = 0.000), but there were some outliers, such as Salix psammophila and Populus simonii with low roughness and low adhesion, and the abaxial surface of Hyoscyamus pusillus and the adaxial surface of Vitex negundo with high roughness and high adhesion. Meanwhile, adhesion was positively correlated with surface free energy (r = 0.535, p = 0.000), its dispersive component (r = 0.526, p = 0.000), and work of adhesion for water (r = 0.698, p = 0.000). However, a significant power correlation was observed between adhesion and the polar component of surface free energy (p = 0.000). These results indicated that leaf roughness, surface free energy, its components, and work-of-adhesion for water played important roles in hydrological characteristics, especially work-of-adhesion for water. PMID:25198355

  10. High-performance mussel-inspired adhesives of reduced complexity

    PubMed Central

    Ahn, B. Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R.; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H.; Israelachvili, Jacob N.; Waite, J. Herbert

    2015-01-01

    Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m−2) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule. PMID:26478273

  11. High-performance mussel-inspired adhesives of reduced complexity

    NASA Astrophysics Data System (ADS)

    Ahn, B. Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R.; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H.; Israelachvili, Jacob N.; Waite, J. Herbert

    2015-10-01

    Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (~50 mJ m-2) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.

  12. Isolation and biochemical characterization of underwater adhesives from diatoms.

    PubMed

    Poulsen, Nicole; Kröger, Nils; Harrington, Matthew J; Brunner, Eike; Paasch, Silvia; Buhmann, Matthias T

    2014-01-01

    Many aquatic organisms are able to colonize surfaces through the secretion of underwater adhesives. Diatoms are unicellular algae that have the capability to colonize any natural and man-made submerged surfaces. There is great technological interest in both mimicking and preventing diatom adhesion, yet the biomolecules responsible have so far remained unidentified. A new method for the isolation of diatom adhesive material is described and its amino acid and carbohydrate composition determined. The adhesive materials from two model diatoms show differences in their amino acid and carbohydrate compositions, but also share characteristic features including a high content of uronic acids, the predominance of hydrophilic amino acid residues, and the presence of 3,4-dihydroxyproline, an extremely rare amino acid. Proteins containing dihydroxyphenylalanine, which mediate underwater adhesion of mussels, are absent. The data on the composition of diatom adhesives are consistent with an adhesion mechanism based on complex coacervation of polyelectrolyte-like biomolecules.

  13. High-performance mussel-inspired adhesives of reduced complexity.

    PubMed

    Ahn, B Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H; Israelachvili, Jacob N; Waite, J Herbert

    2015-10-19

    Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m(-2)) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.

  14. Orientation angle and the adhesion of single gecko setae.

    PubMed

    Hill, Ginel C; Soto, Daniel R; Peattie, Anne M; Full, Robert J; Kenny, T W

    2011-07-01

    We investigated the effects of orientation angle on the adhesion of single gecko setae using dual-axis microelectromechanical systems force sensors to simultaneously detect normal and shear force components. Adhesion was highly sensitive to the pitch angle between the substrate and the seta's stalk. Maximum lateral adhesive force was observed with the stalk parallel to the substrate, and adhesion decreased smoothly with increasing pitch. The roll orientation angle only needed to be roughly correct with the spatular tuft of the seta oriented grossly towards the substrate for high adhesion. Also, detailed measurements were made to control for the effect of normal preload forces. Higher normal preload forces caused modest enhancement of the observed lateral adhesive force, provided that adequate contact was made between the seta and the substrate. These results should be useful in the design and manufacture of gecko-inspired synthetic adhesives with anisotropic properties, an area of substantial recent research efforts.

  15. Orientation angle and the adhesion of single gecko setae

    PubMed Central

    Hill, Ginel C.; Soto, Daniel R.; Peattie, Anne M.; Full, Robert J.; Kenny, T. W.

    2011-01-01

    We investigated the effects of orientation angle on the adhesion of single gecko setae using dual-axis microelectromechanical systems force sensors to simultaneously detect normal and shear force components. Adhesion was highly sensitive to the pitch angle between the substrate and the seta's stalk. Maximum lateral adhesive force was observed with the stalk parallel to the substrate, and adhesion decreased smoothly with increasing pitch. The roll orientation angle only needed to be roughly correct with the spatular tuft of the seta oriented grossly towards the substrate for high adhesion. Also, detailed measurements were made to control for the effect of normal preload forces. Higher normal preload forces caused modest enhancement of the observed lateral adhesive force, provided that adequate contact was made between the seta and the substrate. These results should be useful in the design and manufacture of gecko-inspired synthetic adhesives with anisotropic properties, an area of substantial recent research efforts. PMID:21288955

  16. Tongue adhesion in the horned frog Ceratophrys sp.

    NASA Astrophysics Data System (ADS)

    Kleinteich, Thomas; Gorb, Stanislav N.

    2014-06-01

    Frogs are well-known to capture elusive prey with their protrusible and adhesive tongues. However, the adhesive performance of frog tongues and the mechanism of the contact formation with the prey item remain unknown. Here we measured for the first time adhesive forces and tongue contact areas in living individuals of a horned frog (Ceratophrys sp.) against glass. We found that Ceratophrys sp. generates adhesive forces well beyond its own body weight. Surprisingly, we found that the tongues adhered stronger in feeding trials in which the coverage of the tongue contact area with mucus was relatively low. Thus, besides the presence of mucus, other features of the frog tongue (surface profile, material properties) are important to generate sufficient adhesive forces. Overall, the experimental data shows that frog tongues can be best compared to pressure sensitive adhesives (PSAs) that are of common technical use as adhesive tapes or labels.

  17. Characterization of canine platelet adhesion to extracellular matrix proteins.

    PubMed

    Pelagalli, Alessandra; Pero, Maria Elena; Mastellone, Vincenzo; Cestaro, Anna; Signoriello, Simona; Lombardi, Pietro; Avallone, Luigi

    2011-07-01

    Canine platelets have been extensively studied but little is known about specific aspects such as adhesion. Platelet adhesion is a critical step during haemostasis and thrombosis as well as during inflammatory and immunopathogenic responses. The aim of this study was to evaluate the adhesive properties of canine platelets using fibrinogen and collagen as substrates immobilized on plates. Adhesion was monitored for 120 min and the effect of adenosine 5'-diphosphate (ADP) was assayed. The results showed that canine platelets displayed good adhesion activity that was significantly time-dependent. Moreover, ADP was able to enhance platelet adhesion in a dose-dependent manner. The findings aid knowledge of the adhesion process and suggest a specific role of surface platelet receptors in mediating the interaction with extracellular matrix proteins.

  18. Universal aspects of brittle fracture, adhesion, and atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1989-01-01

    This universal relation between binding energy and interatomic separation was originally discovered for adhesion at bimetallic interfaces involving the simple metals Al, Zn, Mg, and Na. It is shown here that the same universal relation extends to adhesion at transition-metal interfaces. Adhesive energies have been computed for the low-index interfaces of Al, Ni, Cu, Ag, Fe, and W, using the equivalent-crystal theory (ECT) and keeping the atoms in each semiinfinite slab fixed rigidly in their equilibrium positions. These adhesive energy curves can be scaled onto each other and onto the universal adhesion curve. The effect of tip shape on the adhesive forces in the atomic-force microscope (AFM) is studied by computing energies and forces using the ECT. While the details of the energy-distance and force-distance curves are sensitive to tip shape, all of these curves can be scaled onto the universal adhesion curve.

  19. Light-induced Adhesion of Spirogyra Cells to Glass.

    PubMed

    Nagata, Y

    1977-04-01

    Adhesion of Spirogyra (tentatively, Spirogyra fluviatilis) cells to glass is described. The cells of an algal filament can adhere to a substrate only when they are located at the end of the filament. Rapid adhesion is induced by blue-violet light (blue adhesion) as well as by temperature shift (about 6 C --> about 22 C) or shaking (dark adhesion). Adherent cells detach in 1 hour in the absence of one of these stimuli. Slow adhesion is induced by red light (red adhesion) 1 hour after irradiation, and may be controlled by phytochrome. A cell once caused to adhere by red light does not release from the glass.Adhesion seems to be maintained by a cementing substance, probably qa mucoprotein. A transparent material which appears around the tip of the cell may be the cementing substance.

  20. Quantifying adhesion energy of mechanical coatings at atomistic scale

    NASA Astrophysics Data System (ADS)

    Yin, Deqiang; Peng, Xianghe; Qin, Yi; Feng, Jiling; Wang, Zhongchang

    2011-12-01

    Coatings of transition metal compounds find widespread technological applications where adhesion is known to influence or control functionality. Here, we, by first-principles calculations, propose a new way to assess adhesion in coatings and apply it to analyze the TiN coating. We find that the calculated adhesion energies of both the (1 1 1) and (0 0 1) orientations are small under no residual stress, yet increase linearly once the stress is imposed, suggesting that the residual stress is key to affecting adhesion. The strengthened adhesion is found to be attributed to the stress-induced shrinkage of neighbouring bonds, which results in stronger interactions between bonds in TiN coatings. Further finite elements simulation (FEM) based on calculated adhesion energy reproduces well the initial cracking process observed in nano-indentation experiments, thereby validating the application of this approach in quantifying adhesion energy of surface coating systems.

  1. Prevention of peritoneal adhesions: A promising role for gene therapy

    PubMed Central

    Atta, Hussein M

    2011-01-01

    Adhesions are the most frequent complication of abdominopelvic surgery, yet the extent of the problem, and its serious consequences, has not been adequately recognized. Adhesions evolved as a life-saving mechanism to limit the spread of intraperitoneal inflammatory conditions. Three different pathophysiological mechanisms can independently trigger adhesion formation. Mesothelial cell injury and loss during operations, tissue hypoxia and inflammation each promotes adhesion formation separately, and potentiate the effect of each other. Studies have repeatedly demonstrated that interruption of a single pathway does not completely prevent adhesion formation. This review summarizes the pathogenesis of adhesion formation and the results of single gene therapy interventions. It explores the promising role of combinatorial gene therapy and vector modifications for the prevention of adhesion formation in order to stimulate new ideas and encourage rapid advancements in this field. PMID:22171139

  2. Understanding Surface Adhesion in Nature: A Peeling Model

    PubMed Central

    Gu, Zhen; Li, Siheng; Zhang, Feilong

    2016-01-01

    Nature often exhibits various interesting and unique adhesive surfaces. The attempt to understand the natural adhesion phenomena can continuously guide the design of artificial adhesive surfaces by proposing simplified models of surface adhesion. Among those models, a peeling model can often effectively reflect the adhesive property between two surfaces during their attachment and detachment processes. In the context, this review summarizes the recent advances about the peeling model in understanding unique adhesive properties on natural and artificial surfaces. It mainly includes four parts: a brief introduction to natural surface adhesion, the theoretical basis and progress of the peeling model, application of the peeling model, and finally, conclusions. It is believed that this review is helpful to various fields, such as surface engineering, biomedicine, microelectronics, and so on. PMID:27812476

  3. Allergic contact dermatitis to adhesive bandages.

    PubMed

    Norris, P; Storrs, F J

    1990-01-01

    More than two billion Band-Aid Brand Sheer Strips are used in the United States yearly, yet allergic contact dermatitis resulting from their use is nearly nonexistent. We report four patients with allergic reactions to these strips. One patient reacted to tricresyl phosphate, the plasticizer in the vinyl backing; another patient was allergic to 2,5-di(tertiary-amyl)hydroquinone, the antioxidant in the adhesive. In the other two patients, the allergic contact dermatitis remains unexplained.

  4. Nonlinear viscoelastic characterization of structural adhesives

    NASA Technical Reports Server (NTRS)

    Rochefort, M. A.; Brinson, H. F.

    1983-01-01

    Measurements of the nonliner viscoelastic behavior of two adhesives, FM-73 and FM-300, are presented and discussed. Analytical methods to quantify the measurements are given and fitted into a framework of an accelerated testing and analysis procedure. The single integral model used is shown to function well and is analogous to a time-temperature stress-superposition procedure (TTSSP). Advantages and disadvantages of the creep power law method used in this study are given.

  5. L1CAM: Cell adhesion and more.

    PubMed

    Samatov, Timur R; Wicklein, Daniel; Tonevitsky, Alexander G

    2016-08-01

    L1CAM is a cell adhesion molecule of the immunoglobulin superfamily which was originally discovered as a major player in the development of the nervous system. L1CAM was demonstrated to have prognostic value in different cancers and to be a promising target for anti-cancer therapy. Here we overview the present data on L1CAM structure and function, regulation of its expression, role in cancer and therapeutic potential. PMID:27267927

  6. Enhanced adhesion by high energy bombardment

    NASA Technical Reports Server (NTRS)

    Griffith, Joseph E. (Inventor); Qiu, Yuanxun (Inventor); Tombrello, Thomas A. (Inventor)

    1984-01-01

    Films (12) of gold, copper, silicon nitride, or other materials are firmly bonded to insulator substrates (12) such as silica, a ferrite, or Teflon (polytetrafluorethylene) by irradiating the interface with high energy ions. Apparently, track forming processes in the electronic stopping region cause intermixing in a thin surface layer resulting in improved adhesion without excessive doping. Thick layers can be bonded by depositing or doping the interfacial surfaces with fissionable elements or alpha emitters.

  7. Superhydrophobic nanocomposite surface topography and ice adhesion.

    PubMed

    Davis, Alexander; Yeong, Yong Han; Steele, Adam; Bayer, Ilker S; Loth, Eric

    2014-06-25

    A method to reduce the surface roughness of a spray-casted polyurethane/silica/fluoroacrylic superhydrophobic nanocomposite coating was demonstrated. By changing the main slurry carrier fluid, fluoropolymer medium, surface pretreatment, and spray parameters, we achieved arithmetic surface roughness values of 8.7, 2.7, and 1.6 μm on three test surfaces. The three surfaces displayed superhydrophobic performance with modest variations in skewness and kurtosis. The arithmetic roughness level of 1.6 μm is the smoothest superhydrophobic surface yet produced with these spray-based techniques. These three nanocomposite surfaces, along with a polished aluminum surface, were impacted with a supercooled water spray in icing conditions, and after ice accretion occurred, each was subjected to a pressurized tensile test to measure ice-adhesion. All three superhydrophobic surfaces showed lower ice adhesion than that of the polished aluminum surface. Interestingly, the intermediate roughness surface yielded the best performance, which suggests that high kurtosis and shorter autocorrelation lengths improve performance. The most ice-phobic nanocomposite showed a 60% reduction in ice-adhesion strength when compared to polished aluminum.

  8. An experimental analysis of elliptical adhesive contact

    NASA Astrophysics Data System (ADS)

    Sümer, Bilsay; Onal, Cagdas D.; Aksak, Burak; Sitti, Metin

    2010-06-01

    The elliptical adhesive contact is studied experimentally utilizing two hemicylinders of elastomeric poly(dimethylsiloxane) (PDMS). Experimental results are compared with the recent approximate Johnson-Kendall-Roberts (JKR) theory for elliptical contacts, and the deviation of the experiments from this theory is discussed in detail. To do this, the cylinders are placed with different skew angles with respect to each other in order to emulate the effect of orientation. The maximum adhesion force and the size of the contact zone are determined experimentally under the action of surface energy. The difference of the maximum adhesion force between experiments and theory is found to increase as the contact area goes from mildly elliptical to slim elliptical contact. Similarly, it is observed that the contact area can be approximated to have elliptical geometry for a wide range of skew angles while a deviation is observed for slim elliptical contacts. Moreover, the reduction in the contact area is observed to be nonself-similar during detachment from an elliptical shape to a circular one.

  9. Adhesion enhancement in a biomimetic fibrillar interface.

    PubMed

    Glassmaker, Nicholas J; Jagota, Anand; Hui, Chung-Yuen

    2005-07-01

    Two important putative functions of the fibrillar contact interfaces commonly found in lizards and insects are to provide contact compliance and enhanced adhesion. To explore the question of whether a fibrillar architecture inherently enhances adhesion, we constructed model structures consisting of thin sheets of poly(vinyl butyral) (PVB) bonded on one of their thin sides to glass plates. The PVB samples had two flat, unstructured regions interrupted by a central fibrillar region along the bonded interface. The effect of the fibrillar geometry on the performance of the adhesive bond was tested using a tensile pull-off test, in which failure occurred by interfacial crack propagation, starting at an end where a crack initiator was introduced. We observed that fibrils in all samples fail consistently at the same critical stress, which is consistent with a previous theoretical result we have determined for flaw insensitivity during fibrillar pull-off. In addition, we measured the energy release rate required to fail the interface in the fibrillar region to be about an order of magnitude greater than that in the non-fibrillar region. We present experimental evidence demonstrating that this increase results partly from dissipation of strain energy stored in the fibrils.

  10. Development of Screenable Pressure Sensitive Adhesives

    SciTech Connect

    Steven J. Severtson

    2003-11-29

    An industrial research area of high activity in recent years has been the development of pressure sensitive adhesive (PSA) products that do not interfere with the processing of post-consumer waste. The problem of PSA contamination is arguably the most important technical challenge in expanding the use of recycled fiber. The presence of PSAs in recovered paper creates problems that reduce the efficiency of recycling and papermaking operations and diminish product quality. The widespread use of PSAs engineered to avoid these problems, often referred to as environmentally benign PSAs, could greatly increase the commercial viability of utilizing secondary fiber. Much of the research efforts in this area have focused on the development of PSAs that are designed for enhanced removal with cleaning equipment currently utilized by recycling plants. Most removal occurs at the pressure screens with the size and shape of residual contaminants in the process being the primary criteria for their separation. A viable approach for developing environmentally benign PSAs is their reformulation to inhibit fragmentation. The reduction of adhesives to small particles occurs almost exclusively during repulping; a process in which water and mechanical energy are used to swell and reduce paper products to their constituent fiber. Engineering PSA products to promote the formation of larger adhesive particles during repulping will greatly enhance their removal and reduce or eliminate their impact on the recycling process.

  11. Adhesion of Pseudomonas fluorescens onto nanophase materials

    NASA Astrophysics Data System (ADS)

    Webster, Thomas J.; Tong, Zonghua; Liu, Jin; Banks, M. Katherine

    2005-07-01

    Nanobiotechnology is a growing area of research, primarily due to the potentially numerous applications of new synthetic nanomaterials in engineering/science. Although various definitions have been given for the word 'nanomaterials' by many different experts, the commonly accepted one refers to nanomaterials as those materials which possess grains, particles, fibres, or other constituent components that have one dimension specifically less than 100 nm. In biological applications, most of the research to date has focused on the interactions between mammalian cells and synthetic nanophase surfaces for the creation of better tissue engineering materials. Although mammalian cells have shown a definite positive response to nanophase materials, information on bacterial interactions with nanophase materials remains elusive. For this reason, this study was designed to assess the adhesion of Pseudomonas fluorescens on nanophase compared to conventional grain size alumina substrates. Results provide the first evidence of increased adhesion of Pseudomonas fluorescens on alumina with nanometre compared to conventional grain sizes. To understand more about the process, polymer (specifically, poly-lactic-co-glycolic acid or PLGA) casts were made of the conventional and nanostructured alumina surfaces. Results showed similar increased Pseudomonas fluorescens capture on PLGA casts of nanostructured compared to conventional alumina as on the alumina itself. For these reasons, a key material property shown to enhance bacterial adhesion was elucidated in this study for both polymers and ceramics: nanostructured surface features.

  12. White blood cell deformation and firm adhesion

    NASA Astrophysics Data System (ADS)

    Szatmary, Alex; Eggleton, Charles

    2011-11-01

    For a white blood cell (WBC) to arrive at infection sites, it forms chemical attachments with activated endothelial cells. First, it bonds with P-selectin, which holds it to the wall, but weakly; this allows the WBC to roll under the shear flow of the blood around it. Later, the WBCs bond with the stronger intracellular adhesion molecule-1 (ICAM-1); it is these ICAM bonds that allow the WBCs to fully resist the flow and stop rolling, allowing them to crawl through the endothelial wall. We model this numerically. Our model uses the immersed boundary method to represent the interaction of the shear flow with the deformable cell membrane. Receptors are on the tips of microvilli-little fingers sticking off of the cell membrane. The microvilli also deform. The receptors stochastically form and break bonds with molecules on the wall. Using this method, the history of each microvillus and its bonds can be found, as well as the distribution of the adhesion traction forces and how all of these vary with the deformability of the white blood cell. At higher shear rates, the white blood cell membrane deforms more, increasing its contact area with the surface; this effect is larger for softer membranes. We investigate how the deformability of the WBC affects the ease with which it forms firm adhesion.

  13. In vitro quality testing of dentin adhesives.

    PubMed

    Oilo, G; Austrheim, E K

    1993-08-01

    A tensile and a shear bond strength test are compared, using two well-known and two more recently marketed dentin adhesive systems: Gluma (Bayer), Scotchbond 2 (3M), Scotchbond Multi-Purpose (3M), and Syntac (Vivadent). The adhesives were used to bond composite resins to the buccal surface of human third molars. Specimens stored for 24 h before testing did not show significant differences between bond strength values obtained by either the tensile or the shear test method for any of the materials. The bond strength of thermocycled specimens did not differ for Gluma, was significantly lower for Scotchbond 2, and significantly higher for Scotchbond Multi-Purpose and Syntac. SEM observations showed increasing amounts of cohesive failure in resin with increasing bond strength values. Cohesive fractures in dentin were also observed. It is concluded that either the tensile or the shear test method can be used for quality testing of dentin adhesives. Thermocycling may provide interesting information about the quality of a bond.

  14. Bovine leukocyte adhesion deficiency (BLAD): a review.

    PubMed

    Nagahata, Hajime

    2004-12-01

    Bovine leukocyte adhesion deficiency (BLAD) in Holstein cattle is an autosomal recessive congenital disease characterized by recurrent bacterial infections, delayed wound healing and stunted growth, and is also associated with persistent marked neutrophilia. The molecular basis of BLAD is a single point mutation (adenine to guanine) at position 383 of the CD18 gene, which caused an aspartic acid to glycine substitution at amino acid 128 (D128G) in the adhesion molecule CD18. Neutrophils from BLAD cattle have impaired expression of the beta2 integrin (CD11a,b,c/CD18) of the leukocyte adhesion molecule. Abnormalities in a wide spectrum of adherence dependent functions of leukocytes have been fully characterized. Cattle affected with BLAD have severe ulcers on oral mucous membranes, severe periodontitis, loss of teeth, chronic pneumonia and recurrent or chronic diarrhea. Affected cattle die at an early age due to the infectious complications. Holstein bulls, including carrier sires that had a mutant BLAD gene in heterozygote were controlled from dairy cattle for a decade. The control of BLAD in Holstein cattle by publishing the genotypes and avoiding the mating between BLAD carriers was found to be successful. This paper provides an overview of the genetic disease BLAD with reference to the disease in Holstein cattle. PMID:15644595

  15. Control cell adhesion with dynamic bilayer films

    NASA Astrophysics Data System (ADS)

    Kourouklis, Andreas; Lerum, Ronald; Bermudez, Harry

    2012-02-01

    Interfacially-directed assembly of amphiphilic block copolymers was employed to create ultrathin films having the potential to correlate the dynamics of ECM cues with cell adhesion and cytoskeletally-generated forces. The mobility of the polymeric bilayer films were tuned by the incorporation of hydrophobic homopolymer chains, which are thought to reduce interlayer friction. Labeling of the block copolymer chains with an adhesive peptide ligand (RGD) provided a specific means to study integrin-mediated cellular processes and the corresponding mechanotransduction. By seeding anchorage-dependent cells on ``dynamic'' (laterally mobile) and ``static'' films that display the same amount of RGD, we have found that cells recognize the difference in RGD diffusivity and develop distinct responses over time. We intend to examine changes in cell response by controlling the extent of cytoskeletally-generated forces and the assembly dynamics of focal adhesion complexes. Such films provide a unique platform to unveil the biomechanical signals related with ECM dynamics, and may ultimately facilitate a deeper understanding of cellular processes.

  16. Functionalized block copolymers as adhesion promoters

    SciTech Connect

    Kent, M.S.; Saunders, R.

    1995-03-01

    The goal of this work is to develop novel functionalized block copolymers to promote adhesion at inorganic substrate/polymer interfaces. We envision several potential advantages of functionalized block copolymers over small molecule coupling agents. Greater control over the structure of the interphase region should result through careful design of the backbone of the copolymer. The number of chains per area, the degree of entanglement between the copolymer and the polymer matrix, the number of sites per chain able to attach to the substrate, and the hydrophobicity of the interphase region can all be strongly affected by the choice of block lengths and the monomer sequence. In addition, entanglement between the copolymer and the polymer matrix, if achieved, should contribute significantly to adhesive strength. Our program involves four key elements: the synthesis of suitable functionalized block copolymers, characterization of the conformation of the copolymers at the interface by neutron reflectivity and atomic force microscopy, characterization of the degree of bonding by spectroscopy, and measurement of the mechanical properties of the interface. In this paper we discuss block copolymers designed as adhesion promoters for the copper/epoxy interface. We have synthesized a diblock with one block containing imidazole groups to bond to copper and a second block containing secondary amines to react with the epoxy matrix. We have also prepared a triblock copolymer containing a hydrophobic middle block. Below we describe the synthesis of the block copolymers by living, ring-opening metathesis polymerization (ROMP) and the first characterization data obtained by neutron reflectivity.

  17. Use of cyanoacrylate adhesives in general surgery.

    PubMed

    García Cerdá, David; Ballester, Antonio Martín; Aliena-Valero, Alicia; Carabén-Redaño, Anna; Lloris, José M

    2015-08-01

    This paper presents a review of the use of cyanoacrylate adhesives (CA) in general surgery and digestive surgery, studies the mechanisms of action and interactions of CAs in adherent tissues, and compiles data on the latest experimental and clinical applications. More than seven million traumatic injuries are estimated to occur every year, and between 26 and 90 million surgical procedures using different techniques are performed to close the resulting wounds. Traditional methods not only are both useful and effective, but also have some drawbacks. This review covers a considerable number of surgical procedures for which CAs had satisfactory results. The adhesive facilitated the healing of very diverse tissues, such as solid organs, vascular tissue or the abdominal wall. In other cases, no significant differences were found when CA was compared to traditional methods, with the adhesive standing out as a simple and reliable solution. The number of procedures in which CA was detrimental was very low. This review also collects and describes these. In conclusion, the surgical fields and procedures in which CA was successfully used are highly diverse. This review will allow physicians to determine which techniques were first used experimentally, but finally settled in clinical practice as feasible alternatives to standard treatments.

  18. Wetting and phase separation in soft adhesion

    PubMed Central

    Jensen, Katharine E.; Sarfati, Raphael; Style, Robert W.; Boltyanskiy, Rostislav; Chakrabarti, Aditi; Chaudhury, Manoj K.; Dufresne, Eric R.

    2015-01-01

    In the classic theory of solid adhesion, surface energy drives deformation to increase contact area whereas bulk elasticity opposes it. Recently, solid surface stress has been shown also to play an important role in opposing deformation of soft materials. This suggests that the contact line in soft adhesion should mimic that of a liquid droplet, with a contact angle determined by surface tensions. Consistent with this hypothesis, we observe a contact angle of a soft silicone substrate on rigid silica spheres that depends on the surface functionalization but not the sphere size. However, to satisfy this wetting condition without a divergent elastic stress, the gel phase separates from its solvent near the contact line. This creates a four-phase contact zone with two additional contact lines hidden below the surface of the substrate. Whereas the geometries of these contact lines are independent of the size of the sphere, the volume of the phase-separated region is not, but rather depends on the indentation volume. These results indicate that theories of adhesion of soft gels need to account for both the compressibility of the gel network and a nonzero surface stress between the gel and its solvent. PMID:26553989

  19. Mechanism of Focal Adhesion Kinase Mechanosensing

    PubMed Central

    Sturm, Sebastian; Bullerjahn, Jakob Tómas; Bronowska, Agnieszka; Gräter, Frauke

    2015-01-01

    Mechanosensing at focal adhesions regulates vital cellular processes. Here, we present results from molecular dynamics (MD) and mechano-biochemical network simulations that suggest a direct role of Focal Adhesion Kinase (FAK) as a mechano-sensor. Tensile forces, propagating from the membrane through the PIP2 binding site of the FERM domain and from the cytoskeleton-anchored FAT domain, activate FAK by unlocking its central phosphorylation site (Tyr576/577) from the autoinhibitory FERM domain. Varying loading rates, pulling directions, and membrane PIP2 concentrations corroborate the specific opening of the FERM-kinase domain interface, due to its remarkably lower mechanical stability compared to the individual alpha-helical domains and the PIP2-FERM link. Analyzing downstream signaling networks provides further evidence for an intrinsic mechano-signaling role of FAK in broadcasting force signals through Ras to the nucleus. This distinguishes FAK from hitherto identified focal adhesion mechano-responsive molecules, allowing a new interpretation of cell stretching experiments. PMID:26544178

  20. Cyclic debonding of adhesively bonded composites

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.; Everett, R. A., Jr.

    1984-01-01

    To analyze the fatigue behavior of a simple composite-to-composite bonded joint, a combined experimental and analytical study of the cracked-lap-shear specimen subjected to constant-amplitude cyclic loading was undertaken. Two bonded systems were studied: T300/5208 graphite/epoxy adherends bonded with adhesives EC 3445 and with FM-300. For each bonded system, two specimen geometries were tested: (1) a strap adherend of 16 plies bonded to a lap adherend of 8 plies, and (2) a strap adherend of 8 plies bonded to a lap adherend of 16 plies. In all specimens tested, the fatigue failure was in the form of cyclic debonding with some 0 deg fiber pull-off from the strap adherend. The debond always grew in the region of adhesive that had the highest mode I (peel) loading and that region was close to the adhesive-strap interface. Furthermore, the measured cyclic debond growth rates correlated well with total strain energy release rates G(T) as well as with its components G(I) (peel) and G(II) (shear) for the mixed-mode loading in the present study.