Sample records for adhesion molecule-3-grabbing non-integrin

  1. Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Non-integrin (DC-SIGN) Recognizes a Novel Ligand, Mac-2-binding Protein, Characteristically Expressed on Human Colorectal Carcinomas*

    PubMed Central

    Nonaka, Motohiro; Ma, Bruce Yong; Imaeda, Hirotsugu; Kawabe, Keiko; Kawasaki, Nobuko; Hodohara, Keiko; Kawasaki, Nana; Andoh, Akira; Fujiyama, Yoshihide; Kawasaki, Toshisuke

    2011-01-01

    Dendritic cell (DC)-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a type II transmembrane C-type lectin expressed on DCs such as myeloid DCs and monocyte-derived DCs (MoDCs). Recently, we have reported that DC-SIGN interacts with carcinoembryonic antigen (CEA) expressed on colorectal carcinoma cells. CEA is one of the most widely used tumor markers for gastrointestinal cancers such as colorectal cancer. On the other hand, other groups have reported that the level of Mac-2-binding protein (Mac-2BP) increases in patients with pancreatic, breast, and lung cancers, virus infections such as human immunodeficiency virus and hepatitis C virus, and autoimmune diseases. Here, we first identified Mac-2BP expressed on several colorectal carcinoma cell lines as a novel DC-SIGN ligand through affinity chromatography and mass spectrometry. Interestingly, we found that DC-SIGN selectively recognizes Mac-2BP derived from some colorectal carcinomas but not from the other ones. Furthermore, we found that the α1-3,4-fucose moieties of Le glycans expressed on DC-SIGN-binding Mac-2BP were important for recognition. DC-SIGN-dependent cellular interactions between immature MoDCs and colorectal carcinoma cells significantly inhibited MoDC functional maturation, suggesting that Mac-2BP may provide a tolerogenic microenvironment for colorectal carcinoma cells through DC-SIGN-dependent recognition. Importantly, Mac-2BP was detected as a predominant DC-SIGN ligand expressed on some primary colorectal cancer tissues from certain parts of patients in comparison with CEA from other parts, suggesting that DC-SIGN-binding Mac-2BP bearing tumor-associated Le glycans may become a novel potential colorectal cancer biomarker for some patients instead of CEA. PMID:21515679

  2. HIV-1 gp120 Glycoprotein Interacting with Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Non-integrin (DC-SIGN) Down-Regulates Tight Junction Proteins to Disrupt the Blood Retinal Barrier and Increase Its Permeability.

    PubMed

    Qian, Yi-Wen; Li, Chuan; Jiang, Ai-Ping; Ge, Shengfang; Gu, Ping; Fan, Xianqun; Li, Tai-Sheng; Jin, Xia; Wang, Jian-Hua; Wang, Zhi-Liang

    2016-10-28

    Approximately 70% of HIV-1 infected patients acquire ocular opportunistic infections and manifest eye disorders during the course of their illness. The mechanisms by which pathogens invade the ocular site, however, are unclear. Under normal circumstances, vascular endothelium and retinal pigment epithelium (RPE), which possess a well developed tight junction complex, form the blood-retinal barrier (BRB) to prevent pathogen invasion. We hypothesize that disruption of the BRB allows pathogen entry into ocular sites. The hypothesis was tested using in vitro models. We discovered that human RPE cells could bind to either HIV-1 gp120 glycoproteins or HIV-1 viral particles. Furthermore, the binding was mediated by dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) expressed on RPE cells. Upon gp120 binding to DC-SIGN, cellular NF-κB signaling was triggered, leading to the induction of matrix metalloproteinases, which subsequently degraded tight junction proteins and disrupted the BRB integrity. DC-SIGN knockdown or prior blocking with a specific antibody abolished gp120-induced matrix metalloproteinase expression and reduced the degradation of tight junction proteins. This study elucidates a novel mechanism by which HIV, type 1 invades ocular tissues and provides additional insights into the translocation or invasion process of ocular complication-associated pathogens. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Fasciola hepatica glycoconjugates immuneregulate dendritic cells through the Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin inducing T cell anergy

    PubMed Central

    Rodríguez, Ernesto; Kalay, Hakan; Noya, Verónica; Brossard, Natalie; Giacomini, Cecilia; van Kooyk, Yvette; García-Vallejo, Juan J.; Freire, Teresa

    2017-01-01

    Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) expressed on a variety of DCs, is a C-type lectin receptor that recognizes glycans on a diverse range of pathogens, including parasites. The interaction of DC-SIGN with pathogens triggers specific signaling events that modulate DC-maturation and activity and regulate T-cell activation by DCs. In this work we evaluate whether F. hepatica glycans can immune modulate DCs via DC-SIGN. We demonstrate that DC-SIGN interacts with F. hepatica glycoconjugates through mannose and fucose residues. We also show that mannose is present in high-mannose structures, hybrid and trimannosyl N-glycans with terminal GlcNAc. Furthermore, we demonstrate that F. hepatica glycans induce DC-SIGN triggering leading to a strong production of TLR-induced IL-10 and IL-27p28. In addition, parasite glycans induced regulatory DCs via DC-SIGN that decrease allogeneic T cell proliferation, via the induction of anergic/regulatory T cells, highlighting the role of DC-SIGN in the regulation of innate and adaptive immune responses by F. hepatica. Our data confirm the immunomodulatory properties of DC-SIGN triggered by pathogen-derived glycans and contribute to the identification of immunomodulatory glyans of helminths that might eventually be useful for the design of vaccines against fasciolosis. PMID:28436457

  4. Fasciola hepatica glycoconjugates immuneregulate dendritic cells through the Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin inducing T cell anergy.

    PubMed

    Rodríguez, Ernesto; Kalay, Hakan; Noya, Verónica; Brossard, Natalie; Giacomini, Cecilia; van Kooyk, Yvette; García-Vallejo, Juan J; Freire, Teresa

    2017-04-24

    Dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) expressed on a variety of DCs, is a C-type lectin receptor that recognizes glycans on a diverse range of pathogens, including parasites. The interaction of DC-SIGN with pathogens triggers specific signaling events that modulate DC-maturation and activity and regulate T-cell activation by DCs. In this work we evaluate whether F. hepatica glycans can immune modulate DCs via DC-SIGN. We demonstrate that DC-SIGN interacts with F. hepatica glycoconjugates through mannose and fucose residues. We also show that mannose is present in high-mannose structures, hybrid and trimannosyl N-glycans with terminal GlcNAc. Furthermore, we demonstrate that F. hepatica glycans induce DC-SIGN triggering leading to a strong production of TLR-induced IL-10 and IL-27p28. In addition, parasite glycans induced regulatory DCs via DC-SIGN that decrease allogeneic T cell proliferation, via the induction of anergic/regulatory T cells, highlighting the role of DC-SIGN in the regulation of innate and adaptive immune responses by F. hepatica. Our data confirm the immunomodulatory properties of DC-SIGN triggered by pathogen-derived glycans and contribute to the identification of immunomodulatory glyans of helminths that might eventually be useful for the design of vaccines against fasciolosis.

  5. Endothelial adhesion molecules and leukocyte integrins in preeclamptic patients.

    PubMed

    Haller, H; Ziegler, E M; Homuth, V; Drab, M; Eichhorn, J; Nagy, Z; Busjahn, A; Vetter, K; Luft, F C

    1997-01-01

    Endothelial cell activation is important in the pathogenesis of preeclampsia; however, the nature of the activation is unknown. We investigated 22 patients with preeclampsia. 29 normotensive pregnancies, and 18 nonpregnant women to test the hypothesis that serum from preeclamptic patients induces expression of intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) and stimulates intracellular free calcium concentrations [Ca2+]i in cultured endothelial cells. We then asked whether the corresponding integrin adhesive counter receptors lymphocyte function-associated antigen-1 (CD11a/CD18), macrophage-1 antigen (CD11b/CD18), p150,95 (CD11c/CD18), and very late activation antigen-4 (CD49/CD29) are increased in patients with preeclampsia. In the pregnant women, the measurements were conducted both before and after delivery. Integrin expression was measured by fluorescent antibody cell sorting analysis using monoclonal antibodies. ICAM-1 and VCAM-1 were analyzed on endothelial cells by enzyme-linked immunosorbent assay. [Ca2+]i was measured with fura 2. Serum from preeclamptic patients increased endothelial cell ICAM-1 expression but not VCAM-1 expression. Preeclamptic patients' serum also increased [Ca2+]i in endothelial cells compared with serum from normal nonpregnant or normal pregnant women. Endothelial cell [Ca2+]i concentrations were correlated with the ICAM-1 expression in preeclamptic patients (r = .80, P < .001) before but not after delivery. Expression of the integrin counter receptors on leukocytes was similarly increased in preclampsia and normal pregnancy compared with the nonpregnant state. The expression decreased significantly after delivery in both groups. Our results demonstrate that serum from preeclamptic women induces increased ICAM-1 surface expression on endothelial cells, while the expression of the integrin counterreceptors was not different. The effect on endothelial cells may be related to an increase in [Ca2+]i

  6. Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses

    PubMed Central

    Navarro-Sanchez, Erika; Altmeyer, Ralf; Amara, Ali; Schwartz, Olivier; Fieschi, Franck; Virelizier, Jean-Louis; Arenzana-Seisdedos, Fernando; Desprès, Philippe

    2003-01-01

    Dengue virus (DV) is a mosquito-borne flavivirus that causes haemorrhagic fever in humans. DV primarily targets immature dendritic cells (DCs) after a bite by an infected mosquito vector. Here, we analysed the interactions between DV and human-monocyte-derived DCs at the level of virus entry. We show that the DC-specific ICAM3-grabbing non-integrin (DC-SIGN) molecule, a cell-surface, mannose-specific, C-type lectin, binds mosquito-cell-derived DVs and allows viral replication. Conclusive evidence for the involvement of DC-SIGN in DV infection was obtained by the inhibition of viral infection by anti-DC-SIGN antibodies and by the soluble tetrameric ectodomain of DC-SIGN. Our data show that DC-SIGN functions as a DV-binding lectin by interacting with the DV envelope glycoprotein. Mosquito-cell-derived DVs may have differential infectivity for DC-SIGN-expressing cells. We suggest that the differential use of DC-SIGN by viral envelope glycoproteins may account for the immunopathogenesis of DVs. PMID:12783086

  7. Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion

    PubMed Central

    Li, Zhenhai; Lee, Hyunjung; Zhu, Cheng

    2016-01-01

    Cell-matrix adhesion complexes are multi-protein structures linking the extracellular matrix (ECM) to the cytoskeleton. They are essential to both cell motility and function by bidirectionally sensing and transmitting mechanical and biochemical stimulations. Several types of cell-matrix adhesions have been identified and they share many key molecular components, such as integrins and actin-integrin linkers. Mechanochemical coupling between ECM molecules and the actin cytoskeleton has been observed from the single cell to the single molecule level and from immune cells to neuronal cells. However, the mechanisms underlying force regulation of integrin-mediated mechanotransduction still need to be elucidated. In this review article, we focus on integrin-mediated adhesions and discuss force regulation of cell-matrix adhesions and key adaptor molecules, three different force-dependent behaviors, and molecular mechanisms for mechanochemical coupling in force regulation. PMID:27720950

  8. Rheostat regulation of integrin-mediated leukocyte adhesion

    PubMed Central

    Douglas, Ivor S.; Dassopoulos, Themistocles

    2007-01-01

    The homing of activated T lymphocytes to the gut in inflammatory bowel diseases is dependent on their coordinated, integrin-mediated adhesion and de-adhesion to substrates and blood vessel walls. In this issue of the JCI, Park and colleagues reveal a key modulatory role of a binding site within β integrins, known as the ADMIDAS domain, in controlling integrin de-adhesion in mice (see the related article beginning on page 2526). These observations add to our growing understanding of how integrin adhesiveness is regulated and raise the notion of the existence of a biological rheostat for lymphocyte homing. Disturbed migratory rheostat tone could account for variations in interindividual immune responses observed in patients with inflammatory bowel disease or other lymphocyte-mediated inflammatory disorders. These findings will inform future strategies to design small molecules for the treatment of a spectrum of chronic inflammatory conditions. PMID:17786236

  9. Tetraspanin CD151 regulates alpha6beta1 integrin adhesion strengthening

    NASA Technical Reports Server (NTRS)

    Lammerding, Jan; Kazarov, Alexander R.; Huang, Hayden; Lee, Richard T.; Hemler, Martin E.

    2003-01-01

    The tetraspanin CD151 molecule associates specifically with laminin-binding integrins, including alpha6beta1. To probe strength of alpha6beta1-dependent adhesion to laminin-1, defined forces (0-1.5 nN) were applied to magnetic laminin-coated microbeads bound to NIH 3T3 cells. For NIH 3T3 cells bearing wild-type CD151, adhesion strengthening was observed, as bead detachment became more difficult over time. In contrast, mutant CD151 (with the C-terminal region replaced) showed impaired adhesion strengthening. Static cell adhesion to laminin-1, and detachment of beads coated with fibronectin or anti-alpha6 antibody were all unaffected by CD151 mutation. Hence, CD151 plays a key role in selectively strengthening alpha6beta1 integrin-mediated adhesion to laminin-1.

  10. Targeting Integrin-Dependent Adhesion and Signaling with 3-Arylquinoline and 3-Aryl-2-Quinolone Derivatives: A new Class of Integrin Antagonists

    PubMed Central

    Fiorucci, Sandrine; Lin, Xiaochen; Sadoul, Karin; Fournet, Guy; Bouvard, Daniel; Vinogradova, Olga; Joseph, Benoît; Block, Marc R.

    2015-01-01

    We previously reported the anti-migratory function of 3-aryl-2-quinolone derivatives, chemically close to flavonoids (Joseph et al., 2002). Herein we show that 3-arylquinoline or 3-aryl-2-quinolone derivatives disrupt cell adhesion in a dose dependent and reversible manner yet antagonized by artificial integrin activation such as manganese. Relying on this anti-adhesive activity, a Structure-Activity Relationship (SAR) study was established on 20 different compounds to throw the bases of future optimization strategies. Active drugs efficiently inhibit platelet spreading, aggregation, and clot retraction, processes that rely on αllbβ3 integrin activation and clustering. In vitro these derivatives interfere with β3 cytoplasmic tail interaction with kindlin-2 in pulldown assays albeit little effect was observed with pure proteins suggesting that the drugs may block an alternative integrin activation process that may not be directly related to kindlin recruitment. Ex vivo, these drugs blunt integrin signaling assayed using focal adhesion kinase auto-phosphorylation as a read-out. Hence, 3-arylquinoline and 3-aryl-2-quinolone series are a novel class of integrin activation and signaling antagonists. PMID:26509443

  11. Reelin promotes the adhesion and drug resistance of multiple myeloma cells via integrin β1 signaling and STAT3.

    PubMed

    Lin, Liang; Yan, Fan; Zhao, Dandan; Lv, Meng; Liang, Xiaodong; Dai, Hui; Qin, Xiaodan; Zhang, Yan; Hao, Jie; Sun, Xiuyuan; Yin, Yanhui; Huang, Xiaojun; Zhang, Jun; Lu, Jin; Ge, Qing

    2016-03-01

    Reelin is an extracellular matrix (ECM) protein that is essential for neuron migration and positioning. The expression of reelin in multiple myeloma (MM) cells and its association with cell adhesion and survival were investigated. Overexpression, siRNA knockdown, and the addition of recombinant protein of reelin were used to examine the function of reelin in MM cells. Clinically, high expression of reelin was negatively associated with progression-free survival and overall survival. Functionally, reelin promoted the adhesion of MM cells to fibronectin via activation of α5β1 integrin. The resulting phosphorylation of Focal Adhesion Kinase (FAK) led to the activation of Src/Syk/STAT3 and Akt, crucial signaling molecules involved in enhancing cell adhesion and protecting cells from drug-induced cell apoptosis. These findings indicate reelin's important role in the activation of integrin-β1 and STAT3/Akt pathways in multiple myeloma and highlight the therapeutic potential of targeting reelin/integrin/FAK axis.

  12. Reelin promotes the adhesion and drug resistance of multiple myeloma cells via integrin β1 signaling and STAT3

    PubMed Central

    Lv, Meng; Liang, Xiaodong; Dai, Hui; Qin, Xiaodan; Zhang, Yan; Hao, Jie; Sun, Xiuyuan; Yin, Yanhui; Huang, Xiaojun; Zhang, Jun; Lu, Jin; Ge, Qing

    2016-01-01

    Reelin is an extracellular matrix (ECM) protein that is essential for neuron migration and positioning. The expression of reelin in multiple myeloma (MM) cells and its association with cell adhesion and survival were investigated. Overexpression, siRNA knockdown, and the addition of recombinant protein of reelin were used to examine the function of reelin in MM cells. Clinically, high expression of reelin was negatively associated with progression-free survival and overall survival. Functionally, reelin promoted the adhesion of MM cells to fibronectin via activation of α5β1 integrin. The resulting phosphorylation of Focal Adhesion Kinase (FAK) led to the activation of Src/Syk/STAT3 and Akt, crucial signaling molecules involved in enhancing cell adhesion and protecting cells from drug-induced cell apoptosis. These findings indicate reelin's important role in the activation of integrin-β1 and STAT3/Akt pathways in multiple myeloma and highlight the therapeutic potential of targeting reelin/integrin/FAK axis. PMID:26848618

  13. EMMPRIN regulates β1 integrin-mediated adhesion through Kindlin-3 in human melanoma cells.

    PubMed

    Delyon, Julie; Khayati, Farah; Djaafri, Ibtissem; Podgorniak, Marie-Pierre; Sadoux, Aurélie; Setterblad, Niclas; Boutalbi, Zineb; Maouche, Kamel; Maskos, Uwe; Menashi, Suzanne; Lebbé, Céleste; Mourah, Samia

    2015-06-01

    EMMPRIN is known to promote tumor invasion through extracellular matrix (ECM) degradation. Here we report that EMMPRIN can regulate melanoma cell adhesion to the ECM through an interaction with β1 integrin involving kindlin-3. In this study, EMMPRIN knockdown in the human melanoma cell line M10 using siRNA decreased cell invasion and significantly increased cell adhesion and spreading. A morphological change from a round to a spread shape was observed associated with enhanced phalloidin-labelled actin staining. In situ proximity ligation assay and co-immunoprecipitation revealed that EMMPRIN silencing increased the interaction of β1 integrin with kindlin-3, a focal adhesion protein. This was associated with an increase in β1 integrin activation and a decrease in the phosphorylation of the downstream integrin kinase FAK. Moreover, the expression at both the transcript and protein level of kindlin-3 and of β1 integrin was inversely regulated by EMMPRIN. EMMPRIN did not regulate either talin expression or its interaction with β1 integrin. These results are consistent with our in vivo demonstration that EMMPRIN inhibition increased β1 integrin activation and its interaction with kindlin-3. To conclude, these findings reveal a new role of EMMPRIN in tumor cell migration through ß1 integrin/kindlin-3-mediated adhesion pathway. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Connective tissue growth factor inhibits gastric cancer peritoneal metastasis by blocking integrin α3β1-dependent adhesion.

    PubMed

    Chen, Chiung-Nien; Chang, Cheng-Chi; Lai, Hong-Shiee; Jeng, Yung-Ming; Chen, Chia-I; Chang, King-Jeng; Lee, Po-Huang; Lee, Hsinyu

    2015-07-01

    Connective tissue growth factor (CTGF) plays important roles in normal and pathological conditions. The aim of this study was to investigate the role of CTGF in peritoneal metastasis as well as the underlying mechanism in gastric cancer progression. CTGF expression levels for wild-type and stable overexpression clones were determined by Western blotting and quantitative polymerase chain reaction (Q-PCR). Univariate and multivariate analyses, immunohistochemistry, and survival probability analyses were performed on gastric cancer patients. The extracellular matrix components involved in CTGF-regulated adhesion were determined. Recombinant CTGF was added to cells or coinoculated with gastric cancer cells into mice to evaluate its therapeutic potential. CTGF overexpression and treatment with the recombinant protein significantly inhibited cell adhesion. In vivo peritoneal metastasis demonstrated that CTGF-stable transfectants markedly decreased the number and size of tumor nodules in the mesentery. Statistical analysis of gastric cancer patient data showed that patients expressing higher CTGF levels had earlier TNM staging and a higher survival probability after the surgery. Integrin α3β1 was the cell adhesion molecule mediating gastric cancer cell adhesion to laminin, and blocking of integrin α3β1 prevented gastric cancer cell adhesion to recombinant CTGF. Coimmunoprecipitation results indicated that CTGF binds to integrin α3. Coinoculation of recombinant CTGF and gastric cancer cell lines in mice showed effective inhibition of peritoneal dissemination. Our results suggested that gastric cancer peritoneal metastasis is mediated through integrin α3β1 binding to laminin, and CTGF effectively blocks the interaction by binding to integrin α3β1, thus demonstrating the therapeutic potential of recombinant CTGF in gastric cancer patients.

  15. αMβ2-integrin-intercellular adhesion molecule-1 interactions drive the flow-dependent trafficking of Guillain-Barré syndrome patient derived mononuclear leukocytes at the blood-nerve barrier in vitro

    PubMed Central

    Yosef, Nejla; Ubogu, Eroboghene E.

    2012-01-01

    The mechanisms of hematogenous leukocyte trafficking at the human blood-nerve barrier (BNB) are largely unknown. Intercellular adhesion molecule-1 (ICAM-1) has been implicated in the pathogenesis of Guillain-Barré syndrome (GBS). We developed a cytokine-activated human in vitro BNB model using primary endoneurial endothelial cells. Endothelial treatment with 10 U/mL tissue necrosis factor-α and 20 U/mL interferon-γ resulted in de novo expression of proinflammatory chemokines CCL2, CXCL9, CXCL11 and CCL20, with increased expression of CXCL2-3, CXCL8 and CXCL10 relative to basal levels. Cytokine treatment induced/ enhanced ICAM-1, E- and P-selectin, vascular cell adhesion molecule-1 and the alternatively spliced pro-adhesive fibronectin variant, fibronectin connecting segment-1 expression in a time-dependent manner, without alterations in junctional adhesion molecule-A expression. Lymphocytes and monocytes from untreated GBS patients express ICAM-1 counterligands, αM- and αL-integrin, with differential regulation of αM-integrin expression compared to healthy controls. Under flow conditions that mimic capillary hemodynamics in vivo, there was a >3-fold increase in total GBS patient and healthy control mononuclear leukocyte adhesion/ migration at the BNB following cytokine treatment relative to the untreated state. Function neutralizing monoclonal antibodies against human αM-integrin (CD11b) and ICAM-1 reduced untreated GBS patient mononuclear leukocyte trafficking at the BNB by 59% and 64.2% respectively. Monoclonal antibodies against αL-integrin (CD11a) and human intravenous immunoglobulin reduced total leukocyte adhesion/migration by 22.8% and 17.6% respectively. This study demonstrates differential regulation of αM-integrin on circulating mononuclear cells in GBS, as well as an important role for αM-integrin-ICAM-1 interactions in pathogenic GBS patient leukocyte trafficking at the human BNB in vitro. PMID:22552879

  16. Active and inactive β1 integrins segregate into distinct nanoclusters in focal adhesions.

    PubMed

    Spiess, Matthias; Hernandez-Varas, Pablo; Oddone, Anna; Olofsson, Helene; Blom, Hans; Waithe, Dominic; Lock, John G; Lakadamyali, Melike; Strömblad, Staffan

    2018-06-04

    Integrins are the core constituents of cell-matrix adhesion complexes such as focal adhesions (FAs) and play key roles in physiology and disease. Integrins fluctuate between active and inactive conformations, yet whether the activity state influences the spatial organization of integrins within FAs has remained unclear. In this study, we address this question and also ask whether integrin activity may be regulated either independently for each integrin molecule or through locally coordinated mechanisms. We used two distinct superresolution microscopy techniques, stochastic optical reconstruction microscopy (STORM) and stimulated emission depletion microscopy (STED), to visualize active versus inactive β1 integrins. We first reveal a spatial hierarchy of integrin organization with integrin molecules arranged in nanoclusters, which align to form linear substructures that in turn build FAs. Remarkably, within FAs, active and inactive β1 integrins segregate into distinct nanoclusters, with active integrin nanoclusters being more organized. This unexpected segregation indicates synchronization of integrin activities within nanoclusters, implying the existence of a coordinate mechanism of integrin activity regulation. © 2018 Spiess et al.

  17. Adhesive F-actin Waves: A Novel Integrin-Mediated Adhesion Complex Coupled to Ventral Actin Polymerization

    PubMed Central

    Case, Lindsay B.; Waterman, Clare M.

    2011-01-01

    At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in “ventral F-actin waves” that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the extracellular matrix downstream of ventral F-actin waves in several mammalian cell lines as well as in primary mouse embryonic fibroblasts. These “adhesive F-actin waves” require a cycle of integrin engagement and disengagement to the extracellular matrix for their formation and propagation, and exhibit morphometry and a hierarchical assembly and disassembly mechanism distinct from other integrin-containing structures. After Arp2/3-mediated actin polymerization, zyxin and VASP are co-recruited to adhesive F-actin waves, followed by paxillin and vinculin, and finally talin and integrin. Adhesive F-actin waves thus represent a previously uncharacterized integrin-based adhesion complex associated with Arp2/3-mediated actin polymerization. PMID:22069459

  18. Beyond the Matrix: The Many Non-ECM Ligands for Integrins

    PubMed Central

    LaFoya, Bryce; Munroe, Jordan A.; Miyamoto, Alison; Detweiler, Michael A.; Crow, Jacob J.; Gazdik, Tana

    2018-01-01

    The traditional view of integrins portrays these highly conserved cell surface receptors as mediators of cellular attachment to the extracellular matrix (ECM), and to a lesser degree, as coordinators of leukocyte adhesion to the endothelium. These canonical activities are indispensable; however, there is also a wide variety of integrin functions mediated by non-ECM ligands that transcend the traditional roles of integrins. Some of these unorthodox roles involve cell-cell interactions and are engaged to support immune functions such as leukocyte transmigration, recognition of opsonization factors, and stimulation of neutrophil extracellular traps. Other cell-cell interactions mediated by integrins include hematopoietic stem cell and tumor cell homing to target tissues. Integrins also serve as cell-surface receptors for various growth factors, hormones, and small molecules. Interestingly, integrins have also been exploited by a wide variety of organisms including viruses and bacteria to support infectious activities such as cellular adhesion and/or cellular internalization. Additionally, the disruption of integrin function through the use of soluble integrin ligands is a common strategy adopted by several parasites in order to inhibit blood clotting during hematophagy, or by venomous snakes to kill prey. In this review, we strive to go beyond the matrix and summarize non-ECM ligands that interact with integrins in order to highlight these non-traditional functions of integrins. PMID:29393909

  19. Deficiency of bone marrow beta3-integrin enhances non-functional neovascularization.

    PubMed

    Watson, Alan R; Pitchford, Simon C; Reynolds, Louise E; Direkze, Natalie; Brittan, Mairi; Alison, Malcolm R; Rankin, Sara; Wright, Nicholas A; Hodivala-Dilke, Kairbaan M

    2010-03-01

    beta3-Integrin is a cell surface adhesion and signalling molecule important in the regulation of tumour angiogenesis. Mice with a global deficiency in beta3-integrin show increased pathological angiogenesis, most likely due to increased vascular endothelial growth factor receptor 2 expression on beta3-null endothelial cells. Here we transplanted beta3-null bone marrow (BM) into wild-type (WT) mice to dissect the role of BM beta3-integrin deficiency in pathological angiogenesis. Mice transplanted with beta3-null bone marrow show significantly enhanced angiogenesis in subcutaneous B16F0 melanoma and Lewis lung carcinoma (LLC) cell models and in B16F0 melanoma lung metastasis when compared with tumours grown in mice transplanted with WT bone marrow. The effect of bone marrow beta3-integrin deficiency was also assessed in the RIPTAg mouse model of pancreatic tumour growth. Again, angiogenesis in mice lacking BM beta3-integrin was enhanced. However, tumour weight between the groups was not significantly altered, suggesting that the enhanced blood vessel density in the mice transplanted with beta3-null bone marrow was not functional. Indeed, we demonstrate that in mice transplanted with beta3-null bone marrow a significant proportion of tumour blood vessels are non-functional when compared with tumour blood vessels in WT-transplanted controls. Furthermore, beta3-null-transplanted mice showed an increased angiogenic response to VEGF in vivo when compared with WT-transplanted animals. BM beta3-integrin deficiency affects the mobilization of progenitor cells to the peripheral circulation. We show that VEGF-induced mobilization of endothelial progenitor cells is enhanced in mice transplanted with beta3-null bone marrow when compared with WT-transplanted controls, suggesting a possible mechanism underlying the increased blood vessel density seen in beta3-null-transplanted mice. In conclusion, although BM beta3-integrin is not required for pathological angiogenesis, our

  20. The N terminus of SKAP55 enables T cell adhesion to TCR and integrin ligands via distinct mechanisms

    PubMed Central

    Ophir, Michael J.; Liu, Beiyun C.

    2013-01-01

    The T cell receptor (TCR) triggers the assembly of “SLP-76 microclusters,” which mediate signals required for T cell activation. In addition to regulating integrin activation, we show that Src kinase–associated phosphoprotein of 55 kD (SKAP55) is required for microcluster persistence and movement, junctional stabilization, and integrin-independent adhesion via the TCR. These functions require the dimerization of SKAP55 and its interaction with the adaptor adhesion and degranulation-promoting adaptor protein (ADAP). A “tandem dimer” containing two ADAP-binding SKAP55 Src homology 3 (SH3) domains stabilized SLP-76 microclusters and promoted T cell adhesion via the TCR, but could not support adhesion to integrin ligands. Finally, the SKAP55 dimerization motif (DM) enabled the coimmunoprecipitation of the Rap1-dependent integrin regulator Rap1-GTP–interacting adaptor molecule (RIAM), the recruitment of talin into TCR-induced adhesive junctions, and “inside-out” signaling to β1 integrins. Our data indicate that SKAP55 dimers stabilize SLP-76 microclusters, couple SLP-76 to the force-generating systems responsible for microcluster movement, and enable adhesion via the TCR by mechanisms independent of RIAM, talin, and β1 integrins. PMID:24368808

  1. The CD157-integrin partnership controls transendothelial migration and adhesion of human monocytes.

    PubMed

    Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada

    2011-05-27

    CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β(1) and β(2) integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes.

  2. Integrin expression and glycosylation patterns regulate cell-matrix adhesion and alter with breast cancer progression.

    PubMed

    Singh, Chandrajeet; Shyanti, Ritis K; Singh, Virendra; Kale, Raosaheb K; Mishra, Jai P N; Singh, Rana P

    2018-05-05

    Integrins are the major cell adhesion glycoproteins involved in cell-extracellular matrix (ECM) interaction and metastasis. Further, glycosylation on integrin is necessary for its proper folding and functionality. Herein, differential expression of integrins viz., αvβ3 and αvβ6 was examined in MDA-MB-231, MDA-MB-468 and MCF-10A cells, which signify three different stages of breast cancer development from highly metastatic to non-tumorigenic stage. The expression of αvβ3 and αvβ6 integrins at mRNA and protein levels was observed in all three cell lines and the results displayed a distinct pattern of expression. Highly metastatic cells showed enhanced expression of αvβ3 than moderate metastatic and non-tumorigenic cells. The scenario was reversed in case of αvβ6 integrin, which was strongly expressed in moderate metastatic and non-tumorigenic cells. N-glycosylation of αvβ3 and αvβ6 integrins is required for the attachment of cells to ECM proteins like fibronectin. The cell adhesion properties were found to be different in these cancer cells with respect to the type of integrins expressed. The results testify that αvβ3 integrin in highly metastatic cells, αvβ6 integrin in both moderate metastatic and non-tumorigenic cells play an important role in cell adhesion. The investigation typify that N-glycosylation on integrins is also necessary for cell-ECM interaction. Further, glycosylation inhibition by Swainsonine is found to be more detrimental to invasive property of moderate metastatic cells. Conclusively, types of integrins expressed as well as their N-glycosylation pattern alter during the course of breast cancer progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Overexpression of adhesion molecules and barrier molecules is associated with differential infiltration of immune cells in non-small cell lung cancer.

    PubMed

    Chae, Young Kwang; Choi, Wooyoung M; Bae, William H; Anker, Jonathan; Davis, Andrew A; Agte, Sarita; Iams, Wade T; Cruz, Marcelo; Matsangou, Maria; Giles, Francis J

    2018-01-18

    Immunotherapy is emerging as a promising option for lung cancer treatment. Various endothelial adhesion molecules, such as integrin and selectin, as well as various cellular barrier molecules such as desmosome and tight junctions, regulate T-cell infiltration in the tumor microenvironment. However, little is known regarding how these molecules affect immune cells in patients with lung cancer. We demonstrated for the first time that overexpression of endothelial adhesion molecules and cellular barrier molecule genes was linked to differential infiltration of particular immune cells in non-small cell lung cancer. Overexpression of endothelial adhesion molecule genes is associated with significantly lower infiltration of activated CD4 and CD8 T-cells, but higher infiltration of activated B-cells and regulatory T-cells. In contrast, overexpression of desmosome genes was correlated with significantly higher infiltration of activated CD4 and CD8 T-cells, but lower infiltration of activated B-cells and regulatory T-cells in lung adenocarcinoma. This inverse relation of immune cells aligns with previous studies of tumor-infiltrating B-cells inhibiting T-cell activation. Although overexpression of endothelial adhesion molecule or cellular barrier molecule genes alone was not predictive of overall survival in our sample, these genetic signatures may serve as biomarkers of immune exclusion, or resistance to T-cell mediated immunotherapy.

  4. αV-class integrins exert dual roles on α5β1 integrins to strengthen adhesion to fibronectin

    PubMed Central

    Bharadwaj, Mitasha; Strohmeyer, Nico; Colo, Georgina P.; Helenius, Jonne; Beerenwinkel, Niko; Schiller, Herbert B.; Fässler, Reinhard; Müller, Daniel J.

    2017-01-01

    Upon binding to the extracellular matrix protein, fibronectin, αV-class and α5β1 integrins trigger the recruitment of large protein assemblies and strengthen cell adhesion. Both integrin classes have been functionally specified, however their specific roles in immediate phases of cell attachment remain uncharacterized. Here, we quantify the adhesion of αV-class and/or α5β1 integrins expressing fibroblasts initiating attachment to fibronectin (≤120 s) by single-cell force spectroscopy. Our data reveals that αV-class integrins outcompete α5β1 integrins. Once engaged, αV-class integrins signal to α5β1 integrins to establish additional adhesion sites to fibronectin, away from those formed by αV-class integrins. This crosstalk, which strengthens cell adhesion, induces α5β1 integrin clustering by RhoA/ROCK/myosin-II and Arp2/3-mediated signalling, whereas overall cell adhesion depends on formins. The dual role of both fibronectin-binding integrin classes commencing with an initial competition followed by a cooperative crosstalk appears to be a basic cellular mechanism in assembling focal adhesions to the extracellular matrix. PMID:28128308

  5. Isolation of integrin-based adhesion complexes.

    PubMed

    Jones, Matthew C; Humphries, Jonathan D; Byron, Adam; Millon-Frémillon, Angélique; Robertson, Joseph; Paul, Nikki R; Ng, Daniel H J; Askari, Janet A; Humphries, Martin J

    2015-03-02

    The integration of cells with their extracellular environment is facilitated by cell surface adhesion receptors, such as integrins, which play important roles in both normal development and the onset of pathologies. Engagement of integrins with their ligands in the extracellular matrix, or counter-receptors on other cells, initiates the intracellular assembly of a wide variety of proteins into adhesion complexes such as focal contacts, focal adhesions, and fibrillar adhesions. The proteins recruited to these complexes mediate bidirectional signaling across the plasma membrane, and, as such, help to coordinate and/or modulate the multitude of physical and chemical signals to which the cell is subjected. The protocols in this unit describe two approaches for the isolation or enrichment of proteins contained within integrin-associated adhesion complexes, together with their local plasma membrane/cytosolic environments, from cells in culture. In the first protocol, integrin-associated adhesion structures are affinity isolated using microbeads coated with extracellular ligands or antibodies. The second protocol describes the isolation of ventral membrane preparations that are enriched for adhesion complex structures. The protocols permit the determination of adhesion complex components via subsequent downstream analysis by western blotting or mass spectrometry. Copyright © 2015 John Wiley & Sons, Inc.

  6. The CD157-Integrin Partnership Controls Transendothelial Migration and Adhesion of Human Monocytes*

    PubMed Central

    Lo Buono, Nicola; Parrotta, Rossella; Morone, Simona; Bovino, Paola; Nacci, Giulia; Ortolan, Erika; Horenstein, Alberto L.; Inzhutova, Alona; Ferrero, Enza; Funaro, Ada

    2011-01-01

    CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β1 and β2 integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes. PMID:21478153

  7. Phorbol esters alter alpha4 and alphad integrin usage during eosinophil adhesion to VCAM-1.

    PubMed

    Kikuchi, Matsuo; Tachimoto, Hiroshi; Nutku, Esra; Hudson, Sherry A; Bochner, Bruce S

    2003-01-01

    We examined the effect of the protein kinase C activator phorbol-12-myristate-13-acetate (PMA) on the human eosinophil adhesion molecule phenotype and attachment to VCAM-1 via alpha4 and alphad integrins under static and flow conditions. PMA increased surface expression of alphad integrins and decreased alpha4 integrin expression. Under static conditions, eosinophils bound well to VCAM-1, primarily via alpha4beta1 integrins, with a minor alphadbeta2 integrin component. Unexpectedly, PMA-stimulated eosinophils bound equally well to VCAM-1 and albumin in a temperature- and divalent cation-dependent manner, yet adhesion was independent of beta1 and beta2 integrins. Under flow conditions, eosinophils readily attached to VCAM-1, and adhesion was inhibited by both alpha4 and alphad mAbs (95 and 50% inhibition, respectively). Many fewer PMA-stimulated eosinophils bound to VCAM-1 under flow conditions, but both alpha4 and alphad mAbs inhibited adhesion equally. Thus, PMA alters eosinophil integrin expression and the relative contributions of alpha4 and alphad integrins during attachment to VCAM-1.

  8. Tensin stabilizes integrin adhesive contacts in Drosophila.

    PubMed

    Torgler, Catherine N; Narasimha, Maithreyi; Knox, Andrea L; Zervas, Christos G; Vernon, Matthew C; Brown, Nicholas H

    2004-03-01

    We report the functional characterization of the Drosophila ortholog of tensin, a protein implicated in linking integrins to the cytoskeleton and signaling pathways. A tensin null was generated and is viable with wing blisters, a phenotype characteristic of loss of integrin adhesion. In tensin mutants, mechanical abrasion is required during wing expansion to cause wing blisters, suggesting that tensin strengthens integrin adhesion. The localization of tensin requires integrins, talin, and integrin-linked kinase. The N-terminal domain and C-terminal PTB domain of tensin provide essential recruitment signals. The intervening SH2 domain is not localized on its own. We suggest a model where tensin is recruited to sites of integrin adhesion via its PTB and N-terminal domains, localizing the SH2 domain so that it can interact with phosphotyrosine-containing proteins, which stabilize the integrin link to the cytoskeleton.

  9. Signal Regulatory Protein α Negatively Regulates β2 Integrin-Mediated Monocyte Adhesion, Transendothelial Migration and Phagocytosis

    PubMed Central

    Liu, Dan-Qing; Li, Li-Min; Guo, Ya-Lan; Bai, Rui; Wang, Chen; Bian, Zhen; Zhang, Chen-Yu; Zen, Ke

    2008-01-01

    Background Signal regulate protein α (SIRPα) is involved in many functional aspects of monocytes. Here we investigate the role of SIRPα in regulating β2 integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis. Methodology/Principal Findings THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs) resulted in a decrease of SIRPα expression but an increase of β2 integrin cell surface expression and β2 integrin-mediated adhesion to tumor necrosis factor-α (TNFα)–stimulated human microvascular endothelial cell (HMEC-1) monolayers. In contrast, SIRPα overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1)–triggered cell surface expression of β2 integrins, in particular CD11b/CD18. SIRPα overexpression reduced β2 integrin-mediated firm adhesion of THP-1 cells to either TNFα–stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1). SIRPα overexpression also reduced MCP-1–initiated migration of THP-1 cells across TNFα–stimulated HMEC-1 monolayers. Furthermore, β2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPα overexpression. Conclusions/Significance SIRPα negatively regulates β2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis. PMID:18820737

  10. Reduced immunohistochemical expression of adhesion molecules in vitiligo skin biopsies.

    PubMed

    Reichert Faria, Adriane; Jung, Juliana Elizabeth; Silva de Castro, Caio César; de Noronha, Lucia

    2017-03-01

    Because defects in adhesion impairment seem to be involved in the etiopathogenesis of vitiligo, this study aimed to compare the immunohistochemical expression of several adhesion molecules in the epidermis of vitiligo and non lesional vitiligo skin. Sixty-six specimens of lesional and non lesional skin from 33 volunteers with vitiligo were evaluated by immunohistochemistry using anti-beta-catenin, anti-E-cadherin, anti-laminin, anti-beta1 integrin, anti-collagen IV, anti-ICAM-1 and anti-VCAM-1 antibodies. Biopsies of vitiligo skin demonstrated a significant reduction in the expression of laminin and integrin. The average value of the immunohistochemically positive reaction area of the vitiligo specimens was 3053.2μm 2 , compared with the observed value of 3431.8μm 2 in non vitiligo skin (p=0.003) for laminin. The immuno-positive area was 7174.6μm 2 (vitiligo) and 8966.7μm 2 (non lesional skin) for integrin (p=0.042). A reduction in ICAM-1 and VCAM-1 expression in the basal layer of the epidermis in vitiligo samples was also observed (p=0.001 and p<0.001, respectively). However, no significant differences were observed with respect to the expression of beta-catenin, E-cadherin, and collagen IV between vitiligo and non lesional skin. Our results suggest that an impairment in adhesion exists in vitiligo skin, which is supported by the diminished immunohistochemical expression of laminin, beta1 integrin, ICAM-1 and VCAM-1. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Medium-chain, triglyceride-containing lipid emulsions increase human neutrophil beta2 integrin expression, adhesion, and degranulation.

    PubMed

    Wanten, G J; Geijtenbeek, T B; Raymakers, R A; van Kooyk, Y; Roos, D; Jansen, J B; Naber, A H

    2000-01-01

    To test the hypothesis that lipid emulsions with different triglyceride structures have distinct immunomodulatory properties, we analyzed human neutrophil adhesion and degranulation after lipid incubation. Neutrophils, isolated from the blood of 10 healthy volunteers, were incubated in medium or physiologic (2.5 mmol/L) emulsions containing long-chain (LCT), medium-chain (MCT), mixed LCT/MCT, or structured (SL) triglycerides. Expression of adhesion molecules and degranulation markers was evaluated by flow cytometry. Also, functional adhesion was investigated by means of a flow cytometric assay using fluorescent beads coated with the integrin ligand intercellular adhesion molecule (ICAM)-1. Although LCT and SL had no effect, LCT/MCT significantly increased expression of the beta2 integrins lymphocyte-function-associated antigen 1 (+18%), macrophage antigen 1 (+387%), p150,95 (+82%), and (alphaDbeta2 (+230%). Degranulation marker expression for azurophilic (CD63, +210%) and specific granules (CD66b, +370%) also significantly increased, whereas L-selectin (CD62L, -70%) decreased. The effects of LCT/MCT were mimicked by the MCT emulsion. ICAM-1 adhesion (% beads bound) was increased by LCT/MCT (34% +/- 4%), whereas LCT (19% +/-3%) and SL (20% +/- 2%) had no effect compared with medium (17% +/- 3%). LCT/MCT and MCT, contrary to LCT and SL emulsions, increased neutrophil beta2 integrin expression, adhesion, and degranulation. Apart from other emulsion constituents, triglyceride chain length might therefore be a key feature in the interaction of lipid emulsions and the phagocyte immune system.

  12. The Talin Head Domain Reinforces Integrin-Mediated Adhesion by Promoting Adhesion Complex Stability and Clustering

    PubMed Central

    Ellis, Stephanie J.; Lostchuck, Emily; Goult, Benjamin T.; Bouaouina, Mohamed; Fairchild, Michael J.; López-Ceballos, Pablo; Calderwood, David A.; Tanentzapf, Guy

    2014-01-01

    Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development. PMID:25393120

  13. PKD1/PKCmu promotes alphavbeta3 integrin recycling and delivery to nascent focal adhesions.

    PubMed

    Woods, Alison J; White, Dominic P; Caswell, Patrick T; Norman, Jim C

    2004-07-07

    To identify kinases that regulate integrin recycling, we have immunoprecipitated alphavbeta3 integrin from NIH 3T3 fibroblasts in the presence and absence of primaquine (a drug that inhibits receptor recycling and leads to accumulation of integrins in endosomes) and screened for co-precipitating kinases. Primaquine strongly promoted association of alphavbeta3 integrin with PKD1, and fluorescence microscopy indicated that integrin and PKD1 associate at a vesicular compartment that is downstream of a Rab4-dependent transport step. PKD1 association was mediated by the C-terminal region of the beta3 integrin cytodomain, and mutants of beta3 that were unable to recruit PKD1 did not recycle in a PDGF-dependent fashion. Furthermore, suppression of endogenous PKD1 levels by RNAi, or overexpression of catalytically inactive PKD1 inhibited PDGF-dependent recycling of alphavbeta3 from early endosomes to the plasma membrane and blocked recruitment of alphavbeta3 to newly formed focal adhesions during cell spreading. These data indicate that PKD1 influences cell migration by directing vesicular transport of the alphavbeta3 integrin heterodimer.

  14. Simulated Microgravity Alters Actin Cytoskeleton and Integrin-Mediated Focal Adhesions of Cultured Human Mesenchymal Stromal Cells

    NASA Astrophysics Data System (ADS)

    Gershovich, P. M.; Gershovic, J. G.; Buravkova, L. B.

    2008-06-01

    Cytoskeletal alterations occur in several cell types including lymphocytes, glial cells, and osteoblasts, during spaceflight and under simulated microgravity (SMG) (3, 4). One potential mechanism for cytoskeletal gravisensitivity is disruption of extracellular matrix (ECM) and integrin interactions. Focal adhesions are specialized sites of cell-matrix interaction composed of integrins and the diversity of focal adhesion-associated cytoplasmic proteins including vinculin, talin, α-actinin, and actin filaments (4, 5). Integrins produce signals essential for proper cellular function, survival and differentiation. Therefore, we investigated the effects of SMG on F-actin cytoskeleton structure, vinculin focal adhesions, expression of some integrin subtypes and cellular adhesion molecules (CAMs) in mesenchymal stem cells derived from human bone marrow (hMSCs). Simulated microgravity was produced by 3D-clinostat (Dutch Space, Netherlands). Staining of actin fibers with TRITC-phalloidin showed reorganization even after 30 minutes of simulated microgravity. The increasing of cells number with abnormal F-actin was observed after subsequent terms of 3D-clinorotation (6, 24, 48, 120 hours). Randomization of gravity vector altered dimensional structure of stress fibers and resulted in remodeling of actin fibers inside the cells. In addition, we observed vinculin redistribution inside the cells after 6 hours and prolonged terms of clinorotation. Tubulin fibers in a contrast with F-actin and vinculin didn't show any reorganization even after long 3Dclinorotation (120 hours). The expression of integrin α2 increased 1,5-6-fold in clinorotated hMSCs. Also we observed decrease in number of VCAM-1-positive cells and changes in expression of ICAM-1. Taken together, our findings indicate that SMG leads to microfilament and adhesion alterations of hMSCs most probably associated with involvement of some integrin subtypes.

  15. Variation in One Residue Associated with the Metal Ion-Dependent Adhesion Site Regulates αIIbβ3 Integrin Ligand Binding Affinity

    PubMed Central

    Wu, Xue; Xiu, Zhilong; Li, Guohui; Luo, Bing-Hao

    2013-01-01

    The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS) divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala252 and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS) of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala252 to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion. PMID:24116162

  16. Compression force sensing regulates integrin αIIbβ3 adhesive function on diabetic platelets.

    PubMed

    Ju, Lining; McFadyen, James D; Al-Daher, Saheb; Alwis, Imala; Chen, Yunfeng; Tønnesen, Lotte L; Maiocchi, Sophie; Coulter, Brianna; Calkin, Anna C; Felner, Eric I; Cohen, Neale; Yuan, Yuping; Schoenwaelder, Simone M; Cooper, Mark E; Zhu, Cheng; Jackson, Shaun P

    2018-03-14

    Diabetes is associated with an exaggerated platelet thrombotic response at sites of vascular injury. Biomechanical forces regulate platelet activation, although the impact of diabetes on this process remains ill-defined. Using a biomembrane force probe (BFP), we demonstrate that compressive force activates integrin α IIb β 3 on discoid diabetic platelets, increasing its association rate with immobilized fibrinogen. This compressive force-induced integrin activation is calcium and PI 3-kinase dependent, resulting in enhanced integrin affinity maturation and exaggerated shear-dependent platelet adhesion. Analysis of discoid platelet aggregation in the mesenteric circulation of mice confirmed that diabetes leads to a marked enhancement in the formation and stability of discoid platelet aggregates, via a mechanism that is not inhibited by therapeutic doses of aspirin and clopidogrel, but is eliminated by PI 3-kinase inhibition. These studies demonstrate the existence of a compression force sensing mechanism linked to α IIb β 3 adhesive function that leads to a distinct prothrombotic phenotype in diabetes.

  17. A screen to identify Drosophila genes required for integrin-mediated adhesion.

    PubMed Central

    Walsh, E P; Brown, N H

    1998-01-01

    Drosophila integrins have essential adhesive roles during development, including adhesion between the two wing surfaces. Most position-specific integrin mutations cause lethality, and clones of homozygous mutant cells in the wing do not adhere to the apposing surface, causing blisters. We have used FLP-FRT induced mitotic recombination to generate clones of randomly induced mutations in the F1 generation and screened for mutations that cause wing blisters. This phenotype is highly selective, since only 14 lethal complementation groups were identified in screens of the five major chromosome arms. Of the loci identified, 3 are PS integrin genes, 2 are blistered and bloated, and the remaining 9 appear to be newly characterized loci. All 11 nonintegrin loci are required on both sides of the wing, in contrast to integrin alpha subunit genes. Mutations in 8 loci only disrupt adhesion in the wing, similar to integrin mutations, while mutations in the 3 other loci cause additional wing defects. Mutations in 4 loci, like the strongest integrin mutations, cause a "tail-up" embryonic lethal phenotype, and mutant alleles of 1 of these loci strongly enhance an integrin mutation. Thus several of these loci are good candidates for genes encoding cytoplasmic proteins required for integrin function. PMID:9755209

  18. A novel leukocyte adhesion deficiency caused by expressed but nonfunctional β2 integrins Mac-1 and LFA-1

    PubMed Central

    Hogg, Nancy; Stewart, Mairi P.; Scarth, Sarah L.; Newton, Rebecca; Shaw, Jacqueline M.; Law, S.K. Alex; Klein, Nigel

    1999-01-01

    In the leukocyte adhesion deficiency (LAD)-1 syndrome, there is diminished expression of β2(CD18) integrins. This is caused by lesions in the β2-subunit gene and gives rise to recurrent bacterial infections, impaired pus formation, and poor wound healing. We describe a patient with clinical features compatible with a moderately severe phenotype of LAD-1 but who expresses the β2 integrins lymphocyte function– associated molecule (LFA)-1 and Mac-1 at 40%–60% of normal levels. This level of expression should be adequate for normal integrin function, but both the patient's Mac-1 on neutrophils and LFA-1 on T cells failed to bind ligands such as fibrinogen and intercellular adhesion molecule (ICAM)-1, respectively, or to display a β2-integrin activation epitope after adhesion-inducing stimuli. Unexpectedly, divalent cation treatment induced the patient's T cells to bind to ICAM-2 and ICAM-3. Sequencing of the patient's two CD18 alleles revealed the mutations S138P and G273R. Both mutations are in the β2-subunit conserved domain, with S138P a putative divalent cation coordinating residue in the metal ion–dependent adhesion site (MIDAS) motif. After K562 cell transfection with α subunits, the mutated S138P β subunit was coexpressed but did not support function, whereas the G273R mutant was not expressed. In summary, the patient described here exhibits failure of the β2 integrins to function despite adequate levels of cell-surface expression. PMID:9884339

  19. The role of protein disulfide isomerase in the post-ligation phase of β3 integrin-dependent cell adhesion.

    PubMed

    Leader, Avi; Mor-Cohen, Ronit; Ram, Ron; Sheptovitsky, Vera; Seligsohn, Uri; Rosenberg, Nurit; Lahav, Judith

    2015-12-01

    Protein disulfide isomerase (PDI) catalyzes disulfide bond exchange. It is crucial for integrin-mediated platelet adhesion and aggregation and disulfide bond exchange is necessary for αIIbβ3 and αvβ3 activation. However, the role of disulfide bond exchange and PDI in the post-ligation phase of αIIbβ3 and αvβ3 mediated cell adhesion has yet to be determined. To investigate a possible such role, we expressed wild type (WT) human αIIb and either WT human β3, or β3 harboring single or double cysteine to serine substitutions disrupting Cys473-Cys503 or Cys523-Cys544 bonds, in baby hamster kidney (BHK) cells, leading to expression of both human αIIbβ3 and a chimeric hamster/human αvβ3. Adhesion to fibrinogen-coated wells was studied in the presence or absence of bacitracin, a PDI inhibitor, with and without an αvβ3 blocker. Flow cytometry showed WT and mutant αIIbβ3 expression in BHK cells and indicated that mutated αIIbβ3 receptors were constitutively active while WT αIIbβ3 was inactive. Both αIIbβ3 and αvβ3 integrins, WT and mutants, mediated adhesion to fibrinogen as shown by reduced but still substantial adhesion following treatment with the αvβ3 blocker. Mutated αIIbβ3 integrins disrupted in the Cys523-Cys544 bond still depended on PDI for adhesion as shown by the inhibitory effect of bacitracin in the presence of the αvβ3 blocker. Mutated integrins disrupted in the Cys473-Cys503 bond showed a similar trend. PDI-mediated disulfide bond exchange plays a pivotal role in the post-ligation phase of αIIbβ3-mediated adhesion to fibrinogen, while this step in αvβ3-mediated adhesion is independent of disulfide exchange. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The lutheran/basal cell adhesion molecule promotes tumor cell migration by modulating integrin-mediated cell attachment to laminin-511 protein.

    PubMed

    Kikkawa, Yamato; Ogawa, Takaho; Sudo, Ryo; Yamada, Yuji; Katagiri, Fumihiko; Hozumi, Kentaro; Nomizu, Motoyoshi; Miner, Jeffrey H

    2013-10-25

    Cell-matrix interactions are critical for tumor cell migration. Lutheran (Lu), also known as basal cell adhesion molecule (B-CAM), competes with integrins for binding to laminin α5, a subunit of LM-511, a major component of basement membranes. Here we show that the preferential binding of Lu/B-CAM to laminin α5 promotes tumor cell migration. The attachment of Lu/B-CAM transfectants to LM-511 was slightly weaker than that of control cells, and this was because Lu/B-CAM disturbed integrin binding to laminin α5. Lu/B-CAM induced a spindle cell shape with pseudopods and promoted cell migration on LM-511. In addition, blocking with an anti-Lu/B-CAM antibody led to a flat cell shape and inhibited migration on LM-511, similar to the effects of an activating integrin β1 antibody. We conclude that tumor cell migration on LM-511 requires that Lu/B-CAM competitively modulates cell attachment through integrins. We suggest that this competitive interaction is involved in a balance between static and migratory cell behaviors.

  1. Epigenetic Regulation of Galectin-3 Expression by β1 Integrins Promotes Cell Adhesion and Migration*

    PubMed Central

    Margadant, Coert; van den Bout, Iman; van Boxtel, Antonius L.; Thijssen, Victor L.; Sonnenberg, Arnoud

    2012-01-01

    Introduction of the integrin β1- but not the β3-subunit in GE11 cells induces an epithelial-to-mesenchymal-transition (EMT)-like phenomenon that is characterized by the loss of cell-cell contacts, cell scattering, increased cell migration and RhoA activity, and fibronectin fibrillogenesis. Because galactose-binding lectins (galectins) have been implicated in these phenomena, we investigated whether galectins are involved in the β1-induced phenotype. We examined 9 galectins and, intriguingly, found that the expression of galectin-3 (Gal-3) is specifically induced by β1 but not by β3. Using β1-β3 chimeric integrins, we show that the induction of Gal-3 expression requires the hypervariable region in the extracellular domain of β1, but not its cytoplasmic tail. Furthermore, Gal-3 expression does not depend on RhoA signaling, serum factors, or any of the major signal transduction pathways involving protein kinase C (PKC), p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinase-1/-2 (ERK-1/2), phosphatidylinositol-3-OH kinase (PI3-K), or Src kinases. Instead, Gal-3 expression is controlled in an epigenetic manner. Whereas DNA methylation of the Lgals3 promoter maintains Gal-3 silencing in GE11 cells, expression of β1 causes its demethylation, leading to transcriptional activation of the Lgals3 gene. In turn, Gal-3 expression enhances β1 integrin-mediated cell adhesion to fibronectin (FN) and laminin (LN), as well as cell migration. Gal-3 also promotes β1-mediated cell adhesion to LN and Collagen-1 (Col)-1 in cells that endogenously express Gal-3 and β1 integrins. In conclusion, we identify a functional feedback-loop between β1 integrins and Gal-3 that involves the epigenetic induction of Gal-3 expression during integrin-induced EMT and cell scattering. PMID:23118221

  2. Radil controls neutrophil adhesion and motility through β2-integrin activation.

    PubMed

    Liu, Lunhua; Aerbajinai, Wulin; Ahmed, Syed M; Rodgers, Griffin P; Angers, Stephane; Parent, Carole A

    2012-12-01

    Integrin activation is required to facilitate multiple adhesion-dependent functions of neutrophils, such as chemotaxis, which is critical for inflammatory responses to injury and pathogens. However, little is known about the mechanisms that mediate integrin activation in neutrophils. We show that Radil, a novel Rap1 effector, regulates β1- and β2-integrin activation and controls neutrophil chemotaxis. On activation and chemotactic migration of neutrophils, Radil quickly translocates from the cytoplasm to the plasma membrane in a Rap1a-GTP-dependent manner. Cells overexpressing Radil show a substantial increase in cell adhesion, as well as in integrin/focal adhesion kinase (FAK) activation, and exhibit an elongated morphology, with severe tail retraction defects. This phenotype is effectively rescued by treatment with either β2-integrin inhibitory antibodies or FAK inhibitors. Conversely, knockdown of Radil causes severe inhibition of cell adhesion, β2-integrin activation, and chemotaxis. Furthermore, we found that inhibition of Rap activity by RapGAP coexpression inhibits Radil-mediated integrin and FAK activation, decreases cell adhesion, and abrogates the long-tail phenotype of Radil cells. Overall, these studies establish that Radil regulates neutrophil adhesion and motility by linking Rap1 to β2-integrin activation.

  3. Hydrodynamic shear shows distinct roles for LFA-1 and Mac-1 in neutrophil adhesion to intercellular adhesion molecule-1.

    PubMed

    Neelamegham, S; Taylor, A D; Burns, A R; Smith, C W; Simon, S I

    1998-09-01

    The binding of neutrophil beta2 integrin to intercellular adhesion molecule-1 (ICAM-1) expressed on the inflamed endothelium is critical for neutrophil arrest at sites of tissue inflammation. To quantify the strength and kinetics of this interaction, we measured the adhesion between chemotactically stimulated neutrophils and ICAM-1-transfected mouse cells (E3-ICAM) in suspension in a cone-plate viscometer at shear rates typical of venular blood flow (100 s-1 to 500 s-1). The kinetics of aggregation were fit with a mathematical model based on two-body collision theory. This enabled estimation of adhesion efficiency, defined as the probability with which collisions between cells resulted in firm adhesion. The efficiency of beta2-integrin-dependent adhesion was highest ( approximately 0.2) at 100 s-1 and it decreased to approximately zero at 400 s-1. Both LFA-1 and Mac-1 contributed equally to adhesion efficiency over the initial 30 seconds of stimulation, but adhesion was entirely Mac-1-dependent by 120 seconds. Two hydrodynamic parameters were observed to influence integrin-dependent adhesion efficiency: the level of shear stress and the intercellular contact duration. Below a critical shear stress (<2 dyn/cm2), contact duration predominantly limited adhesion efficiency. The estimated minimum contact duration for beta2-integrin binding was approximately 6.5 ms. Above the critical shear stress (>2 dyn/cm2), the efficiency of neutrophil adhesion to E3-ICAM was limited by both the contact duration and the tensile stress. We conclude that at low shear, neutrophil adhesion is modulated independently through either LFA-1 or Mac-1, which initially contribute with equal efficiency, but differ over the duration of chemotactic stimulation. Copyright 1998 by The American Society of Hematology.

  4. Integrin expression and integrin-mediated adhesion in vitro of human multipotent stromal cells (MSCs) to endothelial cells from various blood vessels.

    PubMed

    Semon, Julie A; Nagy, Lauren H; Llamas, Claire B; Tucker, H Alan; Lee, Ryang Hwa; Prockop, Darwin J

    2010-07-01

    Multipotent mesenchymal stromal cells (MSCs) home to damaged tissue by processes partly regulated by integrins. Integrin subunits expressed by MSCs were identified by flow cytometry (FC), immunocytochemistry (IC), and a panel of integrin-binding antibodies. In subconfluent cultures, over 80% of MSCs expressed integrin subunits beta1, beta2, and alpha3, 20%-55% expressed alpha1, alpha2, alpha4, alpha5, alpha6, and alphaV, and about 10% expressed beta3 when assayed by FC. None of the cells expressed significant levels of 13 other integrins as assayed by FC, but seven of the 13 integrins were detected by IC: beta5, alpha7, alpha8, alpha9, alpha11, alphaX, and alphaD. Expression of some integrins changed with MSC confluency: integrins beta3, alpha1, alpha3, alpha5, and alphaV increased, and alpha6 decreased. Furthermore, alpha4 was the only integrin to vary among preparations of MSCs from different donors. The results resolved some discrepancies in the literature concerning integrin expression by MSCs. We also investigated the role of specific integrins in MSC adhesion to endothelial cells (ECs) from the pulmonary artery (HPAEC), cardiac-derived microvasculature (HMVEC-C), and umbilical veins (HUVEC). In experiments with blocking antibodies to beta integrins, anti-beta5 reduced MSC adhesion to all types of ECs, anti-beta1 to both HUVEC and HPAEC, anti-beta3 to HUVEC, and anti-beta2 to HMVEC-C. With blocking antibodies to alpha integrins, anti-alphaX reduced adhesion to HPAEC and HMVEC-C, anti-alphaV to HPAEC, and both anti-alpha7 and anti-alphaD to HMVEC-C. Thus, MSCs use diverse integrins to adhere to EC from various blood vessels in vitro.

  5. Radil controls neutrophil adhesion and motility through β2-integrin activation

    PubMed Central

    Liu, Lunhua; Aerbajinai, Wulin; Ahmed, Syed M.; Rodgers, Griffin P.; Angers, Stephane; Parent, Carole A.

    2012-01-01

    Integrin activation is required to facilitate multiple adhesion-dependent functions of neutrophils, such as chemotaxis, which is critical for inflammatory responses to injury and pathogens. However, little is known about the mechanisms that mediate integrin activation in neutrophils. We show that Radil, a novel Rap1 effector, regulates β1- and β2-integrin activation and controls neutrophil chemotaxis. On activation and chemotactic migration of neutrophils, Radil quickly translocates from the cytoplasm to the plasma membrane in a Rap1a-GTP–dependent manner. Cells overexpressing Radil show a substantial increase in cell adhesion, as well as in integrin/focal adhesion kinase (FAK) activation, and exhibit an elongated morphology, with severe tail retraction defects. This phenotype is effectively rescued by treatment with either β2-integrin inhibitory antibodies or FAK inhibitors. Conversely, knockdown of Radil causes severe inhibition of cell adhesion, β2-integrin activation, and chemotaxis. Furthermore, we found that inhibition of Rap activity by RapGAP coexpression inhibits Radil-mediated integrin and FAK activation, decreases cell adhesion, and abrogates the long-tail phenotype of Radil cells. Overall, these studies establish that Radil regulates neutrophil adhesion and motility by linking Rap1 to β2-integrin activation. PMID:23097489

  6. Estradiol, tamoxifen and ICI 182,780 alter alpha3 and beta1 integrin expression and laminin-1 adhesion in oral squamous cell carcinoma cell cultures.

    PubMed

    Nelson, Katja; Helmstaedter, Victor; Moreau, Cynthia; Lage, Hermann

    2008-01-01

    Adhesion molecules such as integrins and extracellular matrix proteins like laminins have been identified to play an important role in cell proliferation, migration and invasion by regulating cell-extracellular matrix interaction in various cancers including oral squamous cell carcinoma (OSCC). In this study, the effect of estradiol (E2), and the E2 antagonists tamoxifen (TAM) and ICI 182,780 (ICI) on the expression of integrins and adhesion to laminin-1 in different OSCC in vitro models was analyzed. TAM and ICI inhibited growth in all OSCC cell lines. Dependent on estrogen receptor (ER) status E2 displayed a significant influence on growth after long-term administration. ICI reduced laminin-1 adhesion in all cell lines. beta1 Integrin transcription is reduced with TAM and E2 and alpha3 cell surface expression with TAM. This study shows that OSCC is estrogen and SERM sensitive and that these compounds can modulate cell-matrix interaction in part by modulating integrin expression and translation. The investigation also confirms that growth is significantly influenced by these adjuvant therapeutics. These data suggest that a greater understanding of basic biology and mechanisms of the ER and its ligands in oral squamous cells is needed to elucidate the use of specific pharmacological agents as therapeutics of anti-tumorigenic pathways.

  7. Cell Adhesion Molecule and Lymphocyte Activation Marker Expression during Experimental Vaginal Candidiasis

    PubMed Central

    Wormley, Floyd L.; Chaiban, Joseph; Fidel, Paul L.

    2001-01-01

    Cell-mediated immunity by Th1-type CD4+ T cells is the predominant host defense mechanism against mucosal candidiasis. However, studies using an estrogen-dependent murine model of vaginal candidiasis have demonstrated little to no change in resident vaginal T cells during infection and no systemic T-cell infiltration despite the presence of Candida-specific systemic Th1-type responses in infected mice. The present study was designed to further investigate these observations by characterizing T-cell activation and cell adhesion molecule expression during primary and secondary C. albicans vaginal infections. While flow cytometry analysis of activation markers showed some evidence for activation of CD3+ draining lymph node and/or vaginal lymphocytes during both primary and secondary vaginal Candida infection, CD3+ cells expressing the homing receptors and integrins α4β7, αM290β7, and α4β1 in draining lymph nodes of mice with primary and secondary infections were reduced compared to results for uninfected mice. At the local level, few vaginal lymphocytes expressed integrins, with only minor changes observed during both primary and secondary infections. On the other hand, immunohistochemical analysis of vaginal cell adhesion molecule expression showed increases in mucosal addressin cell adhesion molecule 1 and vascular cell adhesion molecule 1 expression during both primary and secondary infections. Altogether, these data suggest that although the vaginal tissue is permissive to cellular infiltration during a vaginal Candida infection, the reduced numbers of systemic cells expressing the reciprocal cellular adhesion molecules may preempt cellular infiltration, thereby limiting Candida-specific T-cell responses against infection. PMID:11447188

  8. Nitric oxide/cGMP pathway signaling actively down-regulates α4β1-integrin affinity: an unexpected mechanism for inducing cell de-adhesion.

    PubMed

    Chigaev, Alexandre; Smagley, Yelena; Sklar, Larry A

    2011-05-17

    Integrin activation in response to inside-out signaling serves as the basis for rapid leukocyte arrest on endothelium, migration, and mobilization of immune cells. Integrin-dependent adhesion is controlled by the conformational state of the molecule, which is regulated by seven-transmembrane Guanine nucleotide binding Protein-Coupled Receptors (GPCRs). α4β1-integrin (CD49d/CD29, Very Late Antigen-4, VLA-4) is expressed on leukocytes, hematopoietic progenitors, stem cells, hematopoietic cancer cells, and others. VLA-4 conformation is rapidly up-regulated by inside-out signaling through Gαi-coupled GPCRs and down-regulated by Gαs-coupled GPCRs. However, other signaling pathways, which include nitric oxide-dependent signaling, have been implicated in the regulation of cell adhesion. The goal of the current report was to study the effect of nitric oxide/cGMP signaling pathway on VLA-4 conformational regulation. Using fluorescent ligand binding to evaluate the integrin activation state on live cells in real-time, we show that several small molecules, which specifically modulate nitric oxide/cGMP signaling pathway, as well as a cell permeable cGMP analog, can rapidly down-modulate binding of a VLA-4 specific ligand on cells pre-activated through three Gαi-coupled receptors: wild type CXCR4, CXCR2 (IL-8RB), and a non-desensitizing mutant of formyl peptide receptor (FPR ΔST). Upon signaling, we detected rapid changes in the ligand dissociation rate. The dissociation rate after inside-out integrin de-activation was similar to the rate for resting cells. In a VLA-4/VCAM-1-specific myeloid cell adhesion system, inhibition of the VLA-4 affinity change by nitric oxide had a statistically significant effect on real-time cell aggregation. We conclude that nitric oxide/cGMP signaling pathway can rapidly down-modulate the affinity state of the VLA-4 binding pocket, especially under the condition of sustained Gαi-coupled GPCR signaling, generated by a non

  9. JAM-C regulates tight junctions and integrin-mediated cell adhesion and migration.

    PubMed

    Mandicourt, Guillaume; Iden, Sandra; Ebnet, Klaus; Aurrand-Lions, Michel; Imhof, Beat A

    2007-01-19

    Junctional Adhesion Molecules (JAMs) have been described as major components of tight junctions in endothelial and epithelial cells. Tight junctions are crucial for the establishment and maintenance of cell polarity. During tumor development, they are remodeled, enabling neoplastic cells to escape from constraints imposed by intercellular junctions and to adopt a migratory behavior. Using a carcinoma cell line we tested whether JAM-C could affect tight junctions and migratory properties of tumor cells. We show that transfection of JAM-C improves the tight junctional barrier in tumor cells devoid of JAM-C expression. This is dependent on serine 281 in the cytoplasmic tail of JAM-C because serine mutation into alanine abolishes the specific localization of JAM-C in tight junctions and establishment of cell polarity. More importantly, the same mutation stimulates integrin-mediated cell migration and adhesion via the modulation of beta1 and beta3 integrin activation. These results highlight an unexpected function for JAM-C in controlling epithelial cell conversion from a static, polarized state to a pro-migratory phenotype.

  10. Aggregatibacter actinomycetemcomitans regulates the expression of integrins and reduces cell adhesion via integrin α5 in human gingival epithelial cells.

    PubMed

    Kochi, Shinsuke; Yamashiro, Keisuke; Hongo, Shoichi; Yamamoto, Tadashi; Ugawa, Yuki; Shimoe, Masayuki; Kawamura, Mari; Hirata-Yoshihara, Chiaki; Ideguchi, Hidetaka; Maeda, Hiroshi; Takashiba, Shogo

    2017-12-01

    Gingival epithelial cells form a physiological barrier against bacterial invasion. Excessive bacterial invasion destroys the attachment between the tooth surface and the epithelium, resulting in periodontitis. Integrins play a significant role in cell attachment; therefore, we hypothesized that bacterial infection might decrease the expressions of these integrins in gingival epithelial cells, resulting in reduced cell adhesion. Immortalized human gingival epithelial cells were co-cultured with Aggregatibacter actinomycetemcomitans Y4 (Aa Y4), and the gene expression levels of IL-8, proliferating cell nuclear antigen (PCNA), and integrins (α2, α3, α5, β4, and β6) were measured using quantitative reverse transcription polymerase chain reaction. Expression of PCNA and integrins, except integrin α5, was significantly downregulated, while expression of IL-8 and integrin α5 was significantly upregulated in the cells co-cultured with Aa Y4. The number of adherent cells significantly decreased when co-cultured with Aa Y4, as determined using cell adhesion assays. In the cells co-cultured with Aa Y4 and an integrin α5 neutralizing antibody, there was no effect on the expression of IL-8 and PCNA, while the expressions of integrins α2, α3, β4, and β6, and the number of adherent cells did not decrease. The number of invading bacteria in the cells was reduced in the presence of the antibody and increased in the presence of TLR2/4 inhibitor. Therefore, integrin α5 might be involved in Aa Y4 invasion into gingival epithelial cells, and the resulting signal transduction cascade reduces cell adhesion by decreasing the expression of integrins, while the TLR2/4 signaling cascade regulates IL-8 expression.

  11. Selective binding and lateral clustering of α5β1 and αvβ3 integrins: Unraveling the spatial requirements for cell spreading and focal adhesion assembly

    PubMed Central

    Schaufler, Viktoria; Czichos-Medda, Helmi; Hirschfeld-Warnecken, Vera; Neubauer, Stefanie; Rechenmacher, Florian; Medda, Rebecca; Kessler, Horst; Geiger, Benjamin; Spatz, Joachim P.; Cavalcanti-Adam, E. Ada

    2016-01-01

    ABSTRACT Coordination of the specific functions of α5β1 and αvβ3 integrins is crucial for the precise regulation of cell adhesion, spreading and migration, yet the contribution of differential integrin-specific crosstalk to these processes remains unclear. To determine the specific functions of αvβ3 and α5β1 integrins, we used nanoarrays of gold particles presenting immobilized, integrin-selective peptidomimetic ligands. Integrin binding to the peptidomimetics is highly selective, and cells can spread on both ligands. However, spreading is faster and the projected cell area is greater on α5β1 ligand; both depend on ligand spacing. Quantitative analysis of adhesion plaques shows that focal adhesion size is increased in cells adhering to αvβ3 ligand at 30 and 60 nm spacings. Analysis of αvβ3 and α5β1 integrin clusters indicates that fibrillar adhesions are more prominent in cells adhering to α5β1 ligand, while clusters are mostly localized at the cell margins in cells adhering to αvβ3 ligand. αvβ3 integrin clusters are more pronounced on αvβ3 ligand, though they can also be detected in cells adhering to α5β1 ligand. Furthermore, α5β1 integrin clusters are present in cells adhering to α5β1 ligand, and often colocalize with αvβ3 clusters. Taken together, these findings indicate that the activation of αvβ3 integrin by ligand binding is dispensable for initial adhesion and spreading, but essential to formation of stable focal adhesions. PMID:27003228

  12. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions

    NASA Technical Reports Server (NTRS)

    Chicurel, M. E.; Singer, R. H.; Meyer, C. J.; Ingber, D. E.

    1998-01-01

    The extracellular matrix (ECM) activates signalling pathways that control cell behaviour by binding to cell-surface integrin receptors and inducing the formation of focal adhesion complexes (FACs). In addition to clustered integrins, FACs contain proteins that mechanically couple the integrins to the cytoskeleton and to immobilized signal-transducing molecules. Cell adhesion to the ECM also induces a rapid increase in the translation of preexisting messenger RNAs. Gene expression can be controlled locally by targeting mRNAs to specialized cytoskeletal domains. Here we investigate whether cell binding to the ECM promotes formation of a cytoskeletal microcompartment specialized for translational control at the site of integrin binding. High-resolution in situ hybridization revealed that mRNA and ribosomes rapidly and specifically localized to FACs that form when cells bind to ECM-coated microbeads. Relocation of these protein synthesis components to the FAC depended on the ability of integrins to mechanically couple the ECM to the contractile cytoskeleton and on associated tension-moulding of the actin lattice. Our results suggest a new type of gene regulation by integrins and by mechanical stress which may involve translation of mRNAs into proteins near the sites of signal reception.

  13. Very late antigen integrins are involved in the adhesive interaction of lymphoid cells to human gingival fibroblasts.

    PubMed Central

    Murakami, S; Saho, T; Shimabukuro, Y; Isoda, R; Miki, Y; Okada, H

    1993-01-01

    To date, it is still unclear how the trafficking and retention of activated lymphocytes in periodontal lesions are regulated. In this study, we investigated the molecular basis for the adhesive interactions between lymphocytes and human gingival fibroblasts (HGF). Peripheral blood T lymphocytes (PBT) exhibited binding ability, but only when the calls were activated with phorbol 12-myristate 13-acetate (PMA). Among several human cell lines tested, PMA-stimulated Molt-4, a human T-cell leukaemia line, also displayed significant binding ability to HGF. In order to clarify the molecule(s) involved in this cell-cell interaction, a panel of monoclonal antibodies (mAb) was prepared to PMA-activated Molt-4 and one clone, 4-145, was selected on the basis of its ability to block the binding of PMA-activated Molt-4 to HGF. Moreover, 4-145 inhibited the binding of not only activated Molt-4 but also activated PBT and other cell types to HGF. Biochemical and flow cytometric analyses revealed that 4-145 probably recognizes the beta 1 chain of very late antigen (VLA) integrins. Blocking experiments using mAb specific for the alpha-chain of VLA integrins demonstrated the involvement of alpha 4 (VLA-4) and, to a lesser extent, alpha 5 (VLA-5) chains in the adhesive interactions between T cells and HGF. Despite the significant involvement of VLA integrins in the adhesive interaction between PBT and HGF, the binding of PBT to human dermal fibroblasts (HDF) was not abrogated by 4-145, suggesting that HGF and HDF differ in their requirement of VLA integrins for adhesion to activated PBT. Furthermore, the fact that vascular cell adhesion molecule-1 (VCAM-1), one of the ligands of VLA-4, was not detected on HGF by flow cytometry and anti-fibronectin (FN) Ab did not block the adhesive interaction to HGF suggests that not-yet-identified ligand(s) for VLA-4 might be present on HGF. Images Figure 4 PMID:8406571

  14. The adaptor molecule RIAM integrates signaling events critical for integrin-mediated control of immune function and cancer progression.

    PubMed

    Patsoukis, Nikolaos; Bardhan, Kankana; Weaver, Jessica D; Sari, Duygu; Torres-Gomez, Alvaro; Li, Lequn; Strauss, Laura; Lafuente, Esther M; Boussiotis, Vassiliki A

    2017-08-22

    Lymphocyte activation requires adhesion to antigen-presenting cells. This is a critical event linking innate and adaptive immunity. Lymphocyte adhesion is accomplished through LFA-1, which must be activated by a process referred to as inside-out integrin signaling. Among the few signaling molecules that have been implicated in inside-out integrin activation in hematopoietic cells are the small guanosine triphosphatase (GTPase) Rap1 and its downstream effector Rap1-interacting molecule (RIAM), a multidomain protein that defined the Mig10-RIAM-lamellipodin (MRL) class of adaptor molecules. Through its various domains, RIAM is a critical node of signal integration for activation of T cells, recruits monomeric and polymerized actin to drive actin remodeling and cytoskeletal reorganization, and promotes inside-out integrin signaling in T cells. As a regulator of inside-out integrin activation, RIAM affects multiple functions of innate and adaptive immunity. The effects of RIAM on cytoskeletal reorganization and integrin activation have implications in cell migration and trafficking of cancer cells. We provide an overview of the structure and interactions of RIAM, and we discuss the implications of RIAM functions in innate and adaptive immunity and cancer. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. Essential roles of integrin-mediated signaling for the enhancement of malignant properties of melanomas based on the expression of GD3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohkawa, Yuki; Miyazaki, Sayaka; Miyata, Maiko

    2008-08-15

    We reported that ganglioside GD3 enhances cell proliferation and invasion of melanomas causing stronger tyrosine-phosphorylation of p130Cas and paxillin after stimulation with fetal calf serum. Besides signals via growth factor/receptor, adhesion signals via integrin might be also enhanced by GD3. Here, roles of integrin-mediated signaling in the cell proliferation and invasion, and in the activation of adaptor molecules were examined, showing that integrin was also important for the cell growth and invasion. p130Cas and paxillin underwent stronger tyrosine-phosphorylation in GD3+ cells than in GD3- cells during the adhesion in the absence of serum. On the other hand, no proteins underwentmore » tyrosine phosphorylation in GD3+ and GD3- cells in a suspension state when stimulated with fetal calf serum. These results suggested that integrin-mediated signaling is essential in the effects of GD3 on the malignant properties of melanomas. Co-localization of GD3 and integrin at the focal adhesion supported these results.« less

  16. Modulation of focal adhesion constituents and their down-stream events by EGF: On the cross-talk of integrins and growth factor receptors.

    PubMed

    Eberwein, Philipp; Laird, Dougal; Schulz, Simon; Reinhard, Thomas; Steinberg, Thorsten; Tomakidi, Pascal

    2015-10-01

    Within the concept of integrin growth factor receptor (GFR) cross-talk, little is known about the effects of GFRs on focal adhesions (FAs). Therefore, we tested the hypothesis whether EGF can modulate constituents of FAs and subsequent down-stream events. To this end, EGF-treated keratinocytes were subjected to combined fluorescence imaging and western blotting, to quantify expression and/or activation of molecules, involved in integrin GFR cross-talk, and receptor proximal and distal signaling events. Generally, EGF response revealed an amplified redistribution or activation of molecules under study, which will be explained in detail from the plasma membrane to the cell interior. In addition to significant activation of EGF receptor (EGFR) at tyrosine Tyr845, a remarkable redistribution was detectable for the focal adhesion constituents, integrin ß1 and ß3, and zyxin. Increased activation also applied to focal adhesion kinase (FAK) by phosphorylation at Tyr397, Tyr576, and Src at Tyr418, while total FAK remained unchanged. Risen activity was seen as well for the analyzed distal down-stream events, p190RhoGAP and MAP kinases p42/44. Intriguingly, Src-specific inhibitor Herbimycin A abrogated the entire EGF response except FAK Tyr397 phosphorylation, independent of EGF presence. Mechanistically, our results show that EGF modulates adhesion in a dual fashion, by firstly redistributing focal adhesion constituents to adhesion sites, but also by amplifying levels of activated RhoA antagonist p190RhoGAP, important for cell motility. Further, the findings suggest that the observed EGF response underlies an EGFR integrin cross-talk under recruitment of receptor proximal FAK and Src, and MAP kinase and p190RhoGAP as receptor distal events. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. PDGF-regulated rab4-dependent recycling of alphavbeta3 integrin from early endosomes is necessary for cell adhesion and spreading.

    PubMed

    Roberts, M; Barry, S; Woods, A; van der Sluijs, P; Norman, J

    2001-09-18

    It has been postulated that the regulation of integrin vesicular traffic facilitates cell migration by internalizing integrins at the rear of the cell and transporting them forward within vesicles for exocytosis at the leading edge to form new contacts with the extracellular matrix. The rab family of GTPases control key targeting events in the endo/exocytic pathway; therefore, these GTPases may be involved in the regulation of cell-matrix contact assembly. The endo/exocytic cycle of alphavbeta3 and alpha5beta1 integrins was studied using mouse 3T3 fibroblast cell lines. In serum-starved cells, internalized integrins were transported through rab4-positive, early endosomes and arrived at the rab11-positive, perinuclear recycling compartment approximately 30 min after endocytosis. From the recycling compartment, integrins were recycled to the plasma membrane in a rab11-dependent fashion. Following treatment with PDGF, alphavbeta3 integrin, but not alpha5beta1, was rapidly recycled directly back to the plasma membrane from the early endosomes via a rab4-dependent mechanism without the involvement of rab11. This rapid recycling pathway directed alphavbeta3 to numerous small puncta distributed evenly across the dorsal surface of the cell, and the integrin only became localized into focal complexes at later times following PDGF addition. Interestingly, inhibition of PDGF-stimulated alphavbeta3 recycling using dominant-negative rab4 mutants compromised cell adhesion and spreading on vitronectin (a ligand for alphavbeta3), but adhesion to fibronectin (a ligand for alpha5beta1 and alphavbeta3) was unchanged. We propose that growth factor-regulated, rab4-dependent recycling of alphavbeta3 integrin from early endosomes to the plasma membrane is a critical upstream event in the assembly of cell-matrix contacts.

  18. Human mesenchymal stem cells target adhesion molecules and receptors involved in T cell extravasation.

    PubMed

    Benvenuto, Federica; Voci, Adriana; Carminati, Enrico; Gualandi, Francesca; Mancardi, Gianluigi; Uccelli, Antonio; Vergani, Laura

    2015-12-10

    Systemic delivery of bone marrow-derived mesenchymal stem cells (MSC) seems to be of benefit in the treatment of multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS) sustained by migration of T cells across the brain blood barrier (BBB) and subsequent induction of inflammatory lesions into CNS. MSC have been found to modulate several effector functions of T cells. In this study, we investigated the effects of MSC on adhesion molecules and receptors on T cell surface that sustain their transendothelial migration. We used different co-culture methods combined with real-time PCR and flow cytometry to evaluate the expression both at the mRNA and at the plasma-membrane level of α4 integrin, β2 integrin, ICAM-1 and CXCR3. In parallel, we assessed if MSC are able to modulate expression of adhesion molecules on the endothelial cells that interact with T cells during their transendothelial migration. Our in vitro analyses revealed that MSC: (i) inhibit proliferation and activation of both peripheral blood mononuclear cells (PBMC) and CD3(+)-selected lymphocytes through the release of soluble factors; (ii) exert suppressive effects on those surface molecules highly expressed by activated lymphocytes and involved in transendothelial migration; (iii) inhibit CXCL10-driven chemotaxis of CD3(+) cells; (iv) down-regulated expression of adhesion molecules on endothelial cells. Taken together, these data demonstrate that the immunosuppressive effect of MSC does not exclusively depends on their anti-proliferative activity on T cells, but also on the impairment of leukocyte migratory potential through the inhibition of the adhesion molecules and receptors that are responsible for T cell trafficking across BBB. This could suggest a new mechanism through which MSC modulate T cell responses.

  19. Bcr-Abl induces abnormal cytoskeleton remodeling, beta1 integrin clustering and increased cell adhesion to fibronectin through the Abl interactor 1 pathway.

    PubMed

    Li, Yingzhu; Clough, Nancy; Sun, Xiaolin; Yu, Weidong; Abbott, Brian L; Hogan, Christopher J; Dai, Zonghan

    2007-04-15

    Hematopoietic cells isolated from patients with Bcr-Abl-positive leukemia exhibit multiple abnormalities of cytoskeletal and integrin function. These abnormalities are thought to play a role in the pathogenesis of leukemia; however, the molecular events leading to these abnormalities are not fully understood. We show here that the Abi1 pathway is required for Bcr-Abl to stimulate actin cytoskeleton remodeling, integrin clustering and cell adhesion. Expression of Bcr-Abl induces tyrosine phosphorylation of Abi1. This is accompanied by a subcellular translocation of Abi1/WAVE2 to a site adjacent to membrane, where an F-actin-enriched structure containing the adhesion molecules such as beta1-integrin, paxillin and vinculin is assembled. Bcr-Abl-induced membrane translocation of Abi1/WAVE2 requires direct interaction between Abi1 and Bcr-Abl, but is independent of the phosphoinositide 3-kinase pathway. Formation of the F-actin-rich complex correlates with an increased cell adhesion to fibronectin. More importantly, disruption of the interaction between Bcr-Abl and Abi1 by mutations either in Bcr-Abl or Abi1 not only abolished tyrosine phosphorylation of Abi1 and membrane translocation of Abi1/WAVE2, but also inhibited Bcr-Abl-stimulated actin cytoskeleton remodeling, integrin clustering and cell adhesion to fibronectin. Together, these data define Abi1/WAVE2 as a downstream pathway that contributes to Bcr-Abl-induced abnormalities of cytoskeletal and integrin function.

  20. Adhesive interactions of human multiple myeloma cell lines with different extracellular matrix molecules.

    PubMed

    Kibler, C; Schermutzki, F; Waller, H D; Timpl, R; Müller, C A; Klein, G

    1998-06-01

    Multiple myeloma represents a human B cell malignancy which is characterized by a predominant localization of the malignant cell clone within the bone marrow. With the exception of the terminal stage of the disease the myeloma tumor cells do not circulate in the peripheral blood. The bone marrow microenvironment is believed to play an important role in homing, proliferation and terminal differentiation of myeloma cells. Here we have studied the expression of several extracellular matrix (ECM) molecules in the bone marrow of multiple myeloma patients and analyzed their adhesive capacities with four different human myeloma-derived cell lines. All ECM molecules analyzed (tenascin, laminin, fibronectin, collagen types I, III, V and VI) could be detected in bone marrow cryostat sections of multiple myeloma patients. Adhesion assays showed that only laminin, the microfibrillar collagen type VI and fibronectin were strong adhesive components for the myeloma cell lines U266, IM-9, OPM-2 and NCI-H929. Tenascin and collagen type I were only weak adhesive substrates for these myeloma cells. Adhesion to laminin and fibronectin was beta 1-integrin-mediated since addition of anti-beta 1-integrin antibodies could inhibit the binding of the four different cell types to both matrix molecules. In contrast, integrins do not seem to be involved in binding of the myeloma cells to collagen type VI. Instead, inhibition of binding by heparin suggested that membrane-bound heparan sulfate proteoglycans are responsible ligands for binding to collagen type VI. Adhesion assays with several B-cell lines resembling earlier differentiation stages revealed only weak interactions with tenascin and no interactions with collagen type VI, laminin or fibronectin. In summary, the interactions of human myeloma cells with the extracellular matrix may explain the specific retention of the plasma cells within the bone marrow.

  1. Actin retrograde flow actively aligns and orients ligand-engaged integrins in focal adhesions

    PubMed Central

    Swaminathan, Vinay; Kalappurakkal, Joseph Mathew; Moore, Travis I.; Koga, Nobuyasu; Baker, David A.; Oldenbourg, Rudolf; Tani, Tomomi; Springer, Timothy A.; Waterman, Clare M.

    2017-01-01

    Integrins are transmembrane receptors that, upon activation, bind extracellular ligands and link them to the actin filament (F-actin) cytoskeleton to mediate cell adhesion and migration. Cytoskeletal forces in migrating cells generated by polymerization- or contractility-driven “retrograde flow” of F-actin from the cell leading edge have been hypothesized to mediate integrin activation for ligand binding. This predicts that these forces should align and orient activated, ligand-bound integrins at the leading edge. Here, polarization-sensitive fluorescence microscopy of GFP-αVβ3 integrins in fibroblasts shows that integrins are coaligned in a specific orientation within focal adhesions (FAs) in a manner dependent on binding immobilized ligand and a talin-mediated linkage to the F-actin cytoskeleton. These findings, together with Rosetta modeling, suggest that integrins in FA are coaligned and may be highly tilted by cytoskeletal forces. Thus, the F-actin cytoskeleton sculpts an anisotropic molecular scaffold in FAs, and this feature may underlie the ability of migrating cells to sense directional extracellular cues. PMID:29073038

  2. 9-cis-Retinoic Acid Promotes Cell Adhesion Through Integrin Dependent and Independent Mechanisms Across Immune Lineages

    PubMed Central

    Whelan, Jarrett T.; Chen, Jianming; Miller, Jabin; Morrow, Rebekah L.; Lingo, Joshuah D.; Merrell, Kaitlin; Shaikh, Saame Raza; Bridges, Lance C.

    2012-01-01

    Retinoids are essential in the proper establishment and maintenance of immunity. Although retinoids are implicated in immune related processes, their role in immune cell adhesion has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) on human hematopoietic cell adhesion was investigated. 9-cis-RA treatment specifically induced cell adhesion of the human immune cell lines HuT-78, NB4, RPMI 8866, and U937. Due to the prominent role of integrin receptors in mediating immune cell adhesion, we sought to evaluate if cell adhesion was integrin-dependent. By employing a variety of integrin antagonist including function-blocking antibodies and EDTA, we establish that 9-cis-RA prompts immune cell adhesion through established integrin receptors in addition to a novel integrin-independent process. The novel integrin-independent adhesion required the presence of retinoid and was attenuated by treatment with synthetic corticosteroids. Finally, we demonstrate that 9-cis-RA treatment of primary murine B-cells induces ex vivo adhesion that persists in the absence of integrin function. Our study is the first to demonstrate that 9-cis-retinoic acid influences immune cell adhesion through at least two functionally distinct mechanisms. PMID:22925918

  3. Dynamin2 controls Rap1 activation and integrin clustering in human T lymphocyte adhesion

    PubMed Central

    Eppler, Felix J.

    2017-01-01

    Leukocyte trafficking is crucial to facilitate efficient immune responses. Here, we report that the large GTPase dynamin2, which is generally considered to have a key role in endocytosis and membrane remodeling, is an essential regulator of integrin-dependent human T lymphocyte adhesion and migration. Chemical inhibition or knockdown of dynamin2 expression significantly reduced integrin-dependent T cell adhesion in vitro. This phenotype was not observed when T cells were treated with various chemical inhibitors which abrogate endocytosis or actin polymerization. We furthermore detected dynamin2 in signaling complexes and propose that it controls T cell adhesion via FAK/Pyk2- and RapGEF1-mediated Rap1 activation. In addition, the dynamin2 inhibitor-induced reduction of lymphocyte adhesion can be rescued by Rap1a overexpression. We demonstrate that the dynamin2 effect on T cell adhesion does not involve integrin affinity regulation but instead relies on its ability to modulate integrin valency. Taken together, we suggest a previously unidentified role of dynamin2 in the regulation of integrin-mediated lymphocyte adhesion via a Rap1 signaling pathway. PMID:28273099

  4. Cbl Associates with Pyk2 and Src to Regulate Src Kinase Activity, αvβ3 Integrin-Mediated Signaling, Cell Adhesion, and Osteoclast Motility

    PubMed Central

    Sanjay, Archana; Houghton, Adam; Neff, Lynn; DiDomenico, Emilia; Bardelay, Chantal; Antoine, Evelyne; Levy, Joan; Gailit, James; Bowtell, David; Horne, William C.; Baron, Roland

    2001-01-01

    The signaling events downstream of integrins that regulate cell attachment and motility are only partially understood. Using osteoclasts and transfected 293 cells, we find that a molecular complex comprising Src, Pyk2, and Cbl functions to regulate cell adhesion and motility. The activation of integrin αvβ3 induces the [Ca2+]i-dependent phosphorylation of Pyk2 Y402, its association with Src SH2, Src activation, and the Src SH3-dependent recruitment and phosphorylation of c-Cbl. Furthermore, the PTB domain of Cbl is shown to bind to phosphorylated Tyr-416 in the activation loop of Src, the autophosphorylation site of Src, inhibiting Src kinase activity and integrin-mediated adhesion. Finally, we show that deletion of c Src or c-Cbl leads to a decrease in osteoclast migration. Thus, binding of αvβ3 integrin induces the formation of a Pyk2/Src/Cbl complex in which Cbl is a key regulator of Src kinase activity and of cell adhesion and migration. These findings may explain the osteopetrotic phenotype in the Src−/− mice. PMID:11149930

  5. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase.

    PubMed

    Schlaepfer, D D; Hanks, S K; Hunter, T; van der Geer, P

    The cytoplasmic focal adhesion protein-tyrosine kinase (FAK) localizes with surface integrin receptors at sites where cells attach to the extracellular matrix. Increased FAK tyrosine phosphorylation occurs upon integrin engagement with fibronectin. Here we show that adhesion of murine NIH3T3 fibroblasts to fibronectin promotes SH2-domain-mediated association of the GRB2 adaptor protein and the c-Src protein-tyrosine kinase (PTK) with FAK in vivo, and also results in activation of mitogen-activated protein kinase (MAPK). In v-Src-transformed NIH3T3, the association of v-Src, GRB2 and Sos with FAK is independent of cell adhesion to fibronectin. The GRB2 SH2 domain binds directly to tyrosine-phosphorylated FAK. Mutation of tyrosine residue 925 of FAK (YENV motif) to phenylalanine blocks GRB2 SH2-domain binding to FAK in vitro. Our results show that fibronectin binding to integrins on NIH3T3 fibroblasts promotes c-Src and FAK association and formation of an integrin-activated signalling complex. Phosphorylation of FAK at Tyr 925 upon fibronectin stimulation creates an SH2-binding site for GRB2 which may link integrin engagement to the activation of the Ras/MAPK signal transduction pathway.

  6. Cell adhesion molecules, the extracellular matrix and oral squamous carcinoma.

    PubMed

    Lyons, A J; Jones, J

    2007-08-01

    Carcinomas are characterized by invasion of malignant cells into the underlying connective tissue and migration of malignant cells to form metastases at distant sites. These processes require alterations in cell-cell and cell-extracellular matrix interactions. As cell adhesion molecules play a role in cell-cell and cell-extracellular matrix adhesion and interactions they are involved in the process of tumour invasion and metastases. In epithelial tissues, receptors of the integrin family mediate adhesion to the adjacent matrix whereas cadherins largely mediate intercellular adhesion. These and other cell adhesion molecules such as intercellular adhesion molecule-1, CD44, dystroglycans and selectins, are involved and undergo changes in carcinomas, which provide possible targets for anti-cancer drug treatments. In the extracellular matrix that is associated with tumours, laminin 5, oncofetal fibronectin and tenascin C appear. The degree of expression of some of these moieties indicates prognosis in oral cancer and offer targets for antibody-directed radiotherapy. Metalloproteases which degrade the extracellular matrix are increased in carcinomas, and their activity is necessary for tumour angiogenesis and consequent invasion and metastases. Metalloprotease inhibitors have begun to produce decreases in mortality in clinical trials. This report provides a brief overview of our current understanding of cell adhesion molecules, the extracellular matrix, tumour invasion and metastasis.

  7. The integrin expression profile modulates orientation and dynamics of force transmission at cell-matrix adhesions.

    PubMed

    Balcioglu, Hayri E; van Hoorn, Hedde; Donato, Dominique M; Schmidt, Thomas; Danen, Erik H J

    2015-04-01

    Integrin adhesion receptors connect the extracellular matrix (ECM) to the cytoskeleton and serve as bidirectional mechanotransducers. During development, angiogenesis, wound healing and cancer progression, the relative abundance of fibronectin receptors, including integrins α5β1 and αvβ3, changes, thus altering the integrin composition of cell-matrix adhesions. Here, we show that enhanced αvβ3 expression can fully compensate for loss of α5β1 and other β1 integrins to support outside-in and inside-out force transmission. α5β1 and αvβ3 each mediate actin cytoskeletal remodeling in response to stiffening or cyclic stretching of the ECM. Likewise, α5β1 and αvβ3 support cellular traction forces of comparable magnitudes and similarly increase these forces in response to ECM stiffening. However, cells using αvβ3 respond to lower stiffness ranges, reorganize their actin cytoskeleton more substantially in response to stretch, and show more randomly oriented traction forces. Centripetal traction force orientation requires long stress fibers that are formed through the action of Rho kinase (ROCK) and myosin II, and that are supported by α5β1. Thus, altering the relative abundance of fibronectin-binding integrins in cell-matrix adhesions affects the spatiotemporal organization of force transmission. © 2015. Published by The Company of Biologists Ltd.

  8. Hypoxia-inducible factor regulates alphavbeta3 integrin cell surface expression.

    PubMed

    Cowden Dahl, Karen D; Robertson, Sarah E; Weaver, Valerie M; Simon, M Celeste

    2005-04-01

    Hypoxia-inducible factor (HIF)-deficient placentas exhibit a number of defects, including changes in cell fate adoption, lack of fetal angiogenesis, hypocellularity, and poor invasion into maternal tissue. HIF is a heterodimeric transcription factor consisting of alpha and beta aryl hydrocarbon receptor nuclear translocator or ARNT) subunits. We used undifferentiated trophoblast stem (TS) cells to characterize HIF-dependent adhesion, migration, and invasion. Arnt(-/-) and Hifalpha(-/-) TS cells exhibit reduced adhesion and migration toward vitronectin compared with wild-type cells. Furthermore, this defect is associated with decreased cell surface expression of integrin alphavbeta3 and significantly decreased expression of this integrin in focal adhesions. Because of the importance of adhesion and migration in tumor progression (in addition to placental development), we examined the affect of culturing B16F0 melanoma cells in 1.5% oxygen (O(2)). Culturing B16F0 melanoma cells at 1.5% O(2) resulted in increased alphavbeta3 integrin surface expression and increased adhesion to and migration toward vitronectin. Together, these data suggest that HIF and O(2) tension influence placental invasion and tumor migration by increasing cell surface expression of alphavbeta3 integrin.

  9. Separation of integrin-dependent adhesion from morphological changes based on differential PLC specificities.

    PubMed

    Wooten, D K; Teague, T K; McIntyre, B W

    1999-01-01

    In normal lymphocytes an inside-out signal up-regulating integrin adhesion is followed by a ligand-mediated outside-in cell spreading signal. Protein kinase C (PKC) inhibition blocks lymphocyte adherence to and spreading on fibronectin. In contrast, putative PLC inhibitors yield distinct differences with respect to adhesion and morphology. The phosphatidylinositol-specific phospholipase C (PLC) inhibitor neomycin blocked spreading of CD3/CD28-activated T cells on fibronectin by disrupting adhesion. Furthermore, when an additional inside-out signal for fibronectin adhesion is unnecessary such as with HPB-ALL T leukemic or phorbol-myristate-acetate-treated normal T cells, neomycin treatment does not alter adhesion or morphology. However, the phosphatidylcholine-specific PLC inhibitor D609 abrogates cell spreading without affecting adhesion to fibronectin in these cells as well as the CD3/CD28-activated T cells. These results strongly suggest that inside-out signaling for the integrin alpha4beta1 in lymphocytes proceeds through phosphatidylinositol-specific PLC and PKC, whereas the outside-in signal utilizes phosphatidylcholine-specific PLC and PKC.

  10. Integrin traffic - the update.

    PubMed

    De Franceschi, Nicola; Hamidi, Hellyeh; Alanko, Jonna; Sahgal, Pranshu; Ivaska, Johanna

    2015-03-01

    Integrins are a family of transmembrane cell surface molecules that constitute the principal adhesion receptors for the extracellular matrix (ECM) and are indispensable for the existence of multicellular organisms. In vertebrates, 24 different integrin heterodimers exist with differing substrate specificity and tissue expression. Integrin-extracellular-ligand interaction provides a physical anchor for the cell and triggers a vast array of intracellular signalling events that determine cell fate. Dynamic remodelling of adhesions, through rapid endocytic and exocytic trafficking of integrin receptors, is an important mechanism employed by cells to regulate integrin-ECM interactions, and thus cellular signalling, during processes such as cell migration, invasion and cytokinesis. The initial concept of integrin traffic as a means to translocate adhesion receptors within the cell has now been expanded with the growing appreciation that traffic is intimately linked to the cell signalling apparatus. Furthermore, endosomal pathways are emerging as crucial regulators of integrin stability and expression in cells. Thus, integrin traffic is relevant in a number of pathological conditions, especially in cancer. Nearly a decade ago we wrote a Commentary in Journal of Cell Science entitled 'Integrin traffic'. With the advances in the field, we felt it would be appropriate to provide the growing number of researchers interested in integrin traffic with an update. © 2015. Published by The Company of Biologists Ltd.

  11. [Value of adhesion molecules for evaluating the efficiency of therapy for ulcerative colitis and Crohn's disease].

    PubMed

    Parfenov, A I; Boldyreva, O N; Ruchkina, I N; Knyazev, O V; Sagynbaeva, V E; Shcherbakov, P L; Khomeriki, S G; Lazebnik, L B; Konoplyannikov, A G

    2014-01-01

    To define the value of adhesion molecules (sVCAM-1 integrin, P-selectin, E-selectin, and L-selectin) for the prediction and evaluation of the efficiency of treatment in patients with ulcerative colitis (UC) and Crohn's disease. Twenty-six patients with UC and 14 patients with CD were examined. Of them, 16 patients took infliximab (INF) in a dose of 5 mg/kg of body weight according to the standard scheme; 14 patients received cultured mesenchymal stem stromal cells (MSSCs) in a quantity of 150 x 10(8) cells, and 10 had azathioprine (AZA) 2 mg/kg and glucocorticosteroids (GCS) 1 mg/kg of body weight. Enzyme immunoassay was used to determine the serum concentration of the adhesion molecules (L-selectin, E-selectin, P-selectin, and sVCAM-1 integrin) before and 2 months after treatment. The signs of bowel inflammatory disease activity and the elevated levels of adhesion molecules whose synthesis did not occur under normal conditions remained in the patients receiving GCS and AZA. INF treatment caused a decrease in P-selectin, E-selectin, and sVCAM-1 levels to 8.9 +/- 1.0, 5.5 +/- 1.7, and 9.5 +/- 4.4 ng/ml, respectively (p < 0.001). Incorporation of MSSCs was followed by a reduction of the concentrations of P-selectin and E-selectin to 6.9 +/- 1.1 and 5.7 +/- 1.3 ng/ml, respectively (p < 0.001). The level of integrin (cVCAM-1) fell to 12.2 +/- 2.2 ng/ml (p > 0.1); that of L-selectin did not drop after MSSC administration and INF induction therapy. P-selectin, E-selectin, L-selectin, and sVCAM-1 integrin are current inflammatory markers and may be used to evaluate the efficiency of standard and biological therapies for inflammatory bowel diseases and to predict disease course.

  12. Intercellular Adhesion Molecule-5 Induces Dendritic Outgrowth by Homophilic Adhesion

    PubMed Central

    Tian, Li; Nyman, Henrietta; Kilgannon, Patrick; Yoshihara, Yoshihiro; Mori, Kensaku; Andersson, Leif C.; Kaukinen, Sami; Rauvala, Heikki; Gallatin, W. Michael; Gahmberg, Carl G.

    2000-01-01

    Intercellular adhesion molecule-5 (ICAM-5) is a dendritically polarized membrane glycoprotein in telencephalic neurons, which shows heterophilic binding to leukocyte β2-integrins. Here, we show that the human ICAM-5 protein interacts in a homophilic manner through the binding of the immunoglobulin domain 1 to domains 4–5. Surface coated ICAM-5-Fc promoted dendritic outgrowth and arborization of ICAM- 5–expressing hippocampal neurons. During dendritogenesis in developing rat brain, ICAM-5 was in monomer form, whereas in mature neurons it migrated as a high molecular weight complex. The findings indicate that its homophilic binding activity was regulated by nonmonomer/monomer transition. Thus, ICAM-5 displays two types of adhesion activity, homophilic binding between neurons and heterophilic binding between neurons and leukocytes. PMID:10893271

  13. The synthesis and biological evaluation of integrin receptor targeting molecules as potential radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Pellegrini, Paul

    This thesis reports on the synthesis, characterisation and biological evaluation of a number of metal complexes designed to interact with the alphavbeta3 integrin receptor, an important biological target that is heavily involved in angiogenesis, and thus cancer related processes. Two approaches were used to synthesise the integrin-avid targets. The first was to attach a variety of bifunctional chelators (BFC's) for the incorporation of different metal centres to a known integrin antagonist, L-748,415, developed by Merck. The BFC's used were the hydrazinonicotinamide (HYNIC) and monoamine monoamide dithiol (MAMA) systems for coordination to Tc-99m and rhenium of which was used as a characterization surrogate for the unstable Tc core. The 1,4,7,10-tetraazacyclotridecanetetraacetic acid (TRITA) BFC was attached for the inclusion of copper and lutetium. This 'conjugate' approach was designed to yield information on how the BFC and the linker length would affect the affinity for the integrin receptor. The second approach was an 'integrated' method where the chelation moiety was integral to the biologically relevant part of the molecule, which in the case of the alphavbeta3 integrin receptor, is the arginine-glycine-aspartic acid (RGD) mimicking sequence. Two complexes were created with a modified MAMA derivative placed between a benzimidazole moiety (arginine mimick) and the aspartic acid mimicking terminal carboxylic acid to see how it would affect binding while keeping the molecular weight relatively low. The molecules were tested in vitro against purified human alphavbeta3 integrin receptor protein in a solid phase receptor binding assay to evaluate their inhibition constants against a molecule of known high affinity and selectivity in [I125]L-775,219, the I125 labelled alphavbeta3 integrin antagonist. The radiolabelled analogues were also tested in vivo against the A375 human melanoma cell line transplanted into balb/c nude mice as well as Fischer rats implanted

  14. Small-molecule inhibitors of FGFR, integrins and FAK selectively decrease L1CAM-stimulated glioblastoma cell motility and proliferation.

    PubMed

    Anderson, Hannah J; Galileo, Deni S

    2016-06-01

    The cell adhesion/recognition protein L1CAM (L1; CD171) has previously been shown to act through integrin, focal adhesion kinase (FAK) and fibroblast growth factor receptor (FGFR) signaling pathways to increase the motility and proliferation of glioblastoma cells in an autocrine/paracrine manner. Here, we investigated the effects of clinically relevant small-molecule inhibitors of the integrin, FAK and FGFR signaling pathways on glioblastoma-derived cells to determine their effectiveness and selectivity for diminishing L1-mediated stimulation. The effects of the FGFR inhibitor PD173074, the FAK inhibitors PF431396 and Y15 and the αvβ3/αvβ5 integrin inhibitor cilengitide were assessed in L1-positive and L1-negative variants of the human glioblastoma-derived cell lines T98G and U-118 MG. Their motility and proliferation were quantified using time-lapse microscopy and DNA content/cell cycle analyses, respectively. The application of all four inhibitors resulted in reductions in L1-mediated motility and proliferation rates of L1-positive glioblastoma-derived cells, down to the level of L1-negative cells when used at nanomolar concentrations, whereas no or much smaller reductions in these rates were obtained in L1-negative cells. In addition, we found that single inhibitor treatment resulted in maximum effects (i.e., combinations of FAK or integrin inhibitors with the FGFR inhibitor were rarely more effective). These results suggest that FAK may act as a point of convergence between the integrin and FGFR signaling pathways stimulated by L1 in these cells. We here show for the first time that small-molecule inhibitors of FGFR, integrins and FAK effectively and selectively abolish L1-stimulated migration and proliferation of glioblastoma-derived cells. Our results suggest that these inhibitors have the potential to reduce the aggressiveness of high-grade gliomas expressing L1.

  15. Integrin Targeted Therapeutics

    PubMed Central

    Millard, Melissa; Odde, Srinivas; Neamati, Nouri

    2011-01-01

    Integrins are heterodimeric, transmembrane receptors that function as mechanosensors, adhesion molecules and signal transduction platforms in a multitude of biological processes. As such, integrins are central to the etiology and pathology of many disease states. Therefore, pharmacological inhibition of integrins is of great interest for the treatment and prevention of disease. In the last two decades several integrin-targeted drugs have made their way into clinical use, many others are in clinical trials and still more are showing promise as they advance through preclinical development. Herein, this review examines and evaluates the various drugs and compounds targeting integrins and the disease states in which they are implicated. PMID:21547158

  16. Alteration of medial-edge epithelium cell adhesion in two Tgf-β3 null mouse strains

    PubMed Central

    Martínez-Sanz, Elena; Del Río, Aurora; Barrio, Carmen; Murillo, Jorge; Maldonado, Estela; Garcillán, Beatriz; Amorós, María; Fuerte, Tamara; Fernández, Álvaro; Trinidad, Eva; Rabadán, M Ángeles; López, Yamila; Martínez, M Luisa; Martínez-Álvarez, Concepción

    2008-01-01

    Although palatal shelf adhesion is a crucial event during palate development, little work has been carried out to determine which molecules are responsible for this process. Furthermore, whether altered palatal shelf adhesion causes the cleft palate presented by Tgf-β3 null mutant mice has not yet been clarified. Here, we study the presence/distribution of some extracellular matrix and cell adhesion molecules at the time of the contact of palatal shelves in both wild-type and Tgf-β3 null mutant palates of two strains of mice (C57/BL/6J (C57), and MF1) that develop cleft palates of different severity. We have performed immunohistochemistry with antibodies against collagens IV and IX, laminin, fibronectin, the α5- and β1-integrins, and ICAM-1; in situ hybridization with a Nectin-1 riboprobe; and palatal shelf cultures treated or untreated with TGF-β3 or neutralizing antibodies against fibronectin or the α5-integrin. Our results show the location of these molecules in the wild-type mouse medial edge epithelium (MEE) of both strains at the time of the contact of palatal shelves; the heavier (C57) and milder (MF1) alteration of their presence in the Tgf-β3 null mutants; the importance of TGF-β3 to restore their normal pattern of expression; and the crucial role of fibronectin and the α5-integrin in palatal shelf adhesion. We thus provide insight into the molecular bases of this important process and the cleft palate presented by Tgf-β3 null mutant mice. PMID:18431835

  17. Substrate engagement of integrins α5β1 and αvβ3 is necessary, but not sufficient, for high directional persistence in migration on fibronectin

    PubMed Central

    Missirlis, Dimitris; Haraszti, Tamás; Scheele, Catharina v. C.; Wiegand, Tina; Diaz, Carolina; Neubauer, Stefanie; Rechenmacher, Florian; Kessler, Horst; Spatz, Joachim P.

    2016-01-01

    The interplay between specific integrin-mediated matrix adhesion and directional persistence in cell migration is not well understood. Here, we characterized fibroblast adhesion and migration on the extracellular matrix glycoproteins fibronectin and vitronectin, focusing on the role of α5β1 and αvβ3 integrins. Fibroblasts manifested high directional persistence in migration on fibronectin-, but not vitronectin-coated substrates, in a ligand density-dependent manner. Fibronectin stimulated α5β1-dependent organization of the actin cytoskeleton into oriented, ventral stress fibers, and assembly of dynamic, polarized protrusions, characterized as regions free of stress fibers and rich in nascent adhesions at their edge. Such protrusions correlated with persistent, local leading edge advancement, but were not sufficient, nor necessary for directional migration over longer times. Selective blocking of αvβ3 or α5β1 integrins using small molecule integrin antagonists reduced directional persistence on fibronectin, indicating integrin cooperativity in maintaining directionality. On the other hand, patterned substrates, designed to selectively engage either integrin, or their combination, were not sufficient to establish directional migration. Overall, our study demonstrates adhesive coating-dependent regulation of directional persistence in fibroblast migration and challenges the generality of the previously suggested role of β1 and β3 integrins in directional migration. PMID:26987342

  18. Reinforcement of integrin-mediated T-Lymphocyte adhesion by TNF-induced Inside-out Signaling

    NASA Astrophysics Data System (ADS)

    Li, Qian; Huth, Steven; Adam, Dieter; Selhuber-Unkel, Christine

    2016-07-01

    Integrin-mediated leukocyte adhesion to endothelial cells is a crucial step in immunity against pathogens. Whereas the outside-in signaling pathway in response to the pro-inflammatory cytokine tumour necrosis factor (TNF) has already been studied in detail, little knowledge exists about a supposed TNF-mediated inside-out signaling pathway. In contrast to the outside-in signaling pathway, which relies on the TNF-induced upregulation of surface molecules on endothelium, inside-out signaling should also be present in an endothelium-free environment. Using single-cell force spectroscopy, we show here that stimulating Jurkat cells with TNF significantly reinforces their adhesion to fibronectin in a biomimetic in vitro assay for cell-surface contact times of about 1.5 seconds, whereas for larger contact times the effect disappears. Analysis of single-molecule ruptures further demonstrates that TNF strengthens sub-cellular single rupture events at short cell-surface contact times. Hence, our results provide quantitative evidence for the significant impact of TNF-induced inside-out signaling in the T-lymphocyte initial adhesion machinery.

  19. Protein expression and purification of integrin I domains and IgSF ligands for crystallography.

    PubMed

    Zhang, Hongmin; Wang, Jia-Huai

    2012-01-01

    Cell adhesion depends on combinational expression and interactions of a large number of adhesion molecules at cell-to-cell or cell-to-matrix contact sites. Integrins and their immunoglobulin superfamily (IgSF) ligands represent foremost classes of cell adhesion molecules in immune system. Structural study is critical for a better understanding of the interactions between integrins and their IgSF ligands. Here we describe protocols for protein expression of integrin αL I domain and its IgSF ligand ICAM-5 D1D2 fragment for crystallography.

  20. The opposing roles of laminin-binding integrins in cancer.

    PubMed

    Ramovs, Veronika; Te Molder, Lisa; Sonnenberg, Arnoud

    2017-01-01

    Integrins play an important role in cell adhesion by linking the cytoskeleton of cells to components in the extracellular matrix. In this capacity, integrins cooperate with different cell surface receptors, including growth factor receptors and G-protein coupled receptors, to regulate intracellular signaling pathways that control cell polarization, spreading, migration, survival, and gene expression. A distinct subfamily of molecules in the integrin family of adhesion receptors is formed by receptors that mediate cell adhesion to laminins, major components of the basement membrane that lie under clusters of cells or surround them, separating them from other cells and/or adjacent connective tissue. During the past decades, many studies have provided evidence for a role of laminin-binding integrins in tumorigenesis, and both tumor-promoting and suppressive activities have been identified. In this review we discuss the dual role of the laminin-binding integrins α3β1 and α6β4 in tumor development and progression, and examine the factors and mechanisms involved in these opposing effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Human severe sepsis cytokine mixture increases β2-integrin-dependent polymorphonuclear leukocyte adhesion to cerebral microvascular endothelial cells in vitro.

    PubMed

    Blom, Chris; Deller, Brittany L; Fraser, Douglas D; Patterson, Eric K; Martin, Claudio M; Young, Bryan; Liaw, Patricia C; Yazdan-Ashoori, Payam; Ortiz, Angelica; Webb, Brian; Kilmer, Greg; Carter, David E; Cepinskas, Gediminas

    2015-04-07

    Sepsis-associated encephalopathy (SAE) is a state of acute brain dysfunction in response to a systemic infection. We propose that systemic inflammation during sepsis causes increased adhesion of leukocytes to the brain microvasculature, resulting in blood-brain barrier dysfunction. Thus, our objectives were to measure inflammatory analytes in plasma of severe sepsis patients to create an experimental cytokine mixture (CM), and to use this CM to investigate the activation and interactions of polymorphonuclear leukocytes (PMN) and human cerebrovascular endothelial cells (hCMEC/D3) in vitro. The concentrations of 41 inflammatory analytes were quantified in plasma obtained from 20 severe sepsis patients and 20 age- and sex-matched healthy controls employing an antibody microarray. Two CMs were prepared to mimic severe sepsis (SSCM) and control (CCM), and these CMs were then used for PMN and hCMEC/D3 stimulation in vitro. PMN adhesion to hCMEC/D3 was assessed under conditions of flow (shear stress 0.7 dyn/cm(2)). Eight inflammatory analytes elevated in plasma obtained from severe sepsis patients were used to prepare SSCM and CCM. Stimulation of PMN with SSCM led to a marked increase in PMN adhesion to hCMEC/D3, as compared to CCM. PMN adhesion was abolished with neutralizing antibodies to either β2 (CD18), αL/β2 (CD11α/CD18; LFA-1) or αM/β2 (CD11β/CD18; Mac-1) integrins. In addition, immune-neutralization of the endothelial (hCMEC/D3) cell adhesion molecule, ICAM-1 (CD54) also suppressed PMN adhesion. Human SSCM up-regulates PMN pro-adhesive phenotype and promotes PMN adhesion to cerebrovascular endothelial cells through a β2-integrin-ICAM-1-dependent mechanism. PMN adhesion to the brain microvasculature may contribute to SAE.

  2. Comparative evaluation of several docking tools for docking small molecule ligands to DC-SIGN.

    PubMed

    Jug, Gregor; Anderluh, Marko; Tomašič, Tihomir

    2015-06-01

    Five docking tools, namely AutoDock, FRED, CDOCKER, FlexX and GOLD, have been critically examined, with the aim of selecting those most appropriate for use as docking tools for docking molecules to the lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN). This lectin has been selected for its rather non-druggable binding site, which enables complex interactions that guide the binding of the core monosaccharide. Since optimal orientation is crucial for forming coordination bonds, it was important to assess whether the selected docking tools could reproduce the optimal binding conformation for several oligosaccharides that are known to bind DC-SIGN. Our results show that even widely used docking programs have certain limitations when faced with a rather shallow and featureless binding site, as is the case of DC-SIGN. The FRED docking software (OpenEye Scientific Software, Inc.) was found to score as the best tool for docking ligands to DC-SIGN. The performance of FRED was further assessed on another lectin, Langerin. We have demonstrated that this validated docking protocol could be used for docking to other lectins similar to DC-SIGN.

  3. Targeting of adhesion molecules as a therapeutic strategy in multiple myeloma.

    PubMed

    Neri, Paola; Bahlis, Nizar J

    2012-09-01

    Multiple myeloma (MM) is a clonal disorder of plasma cells that remains, for the most part, incurable despite the advent of several novel therapeutic agents. Tumor cells in this disease are cradled within the bone marrow (BM) microenvironment by an array of adhesive interactions between the BM cellular residents, the surrounding extracellular matrix (ECM) components such as fibronectin (FN), laminin, vascular cell adhesion molecule-1 (VCAM-1), proteoglycans, collagens and hyaluronan, and a variety of adhesion molecules on the surface of MM cells including integrins, hyaluronan receptors (CD44 and RHAMM) and heparan sulfate proteoglycans. Several signaling responses are activated by these interactions, affecting the survival, proliferation and migration of MM cells. An important consequence of these direct adhesive interactions between the BM/ECM and MM cells is the development of drug resistance. This phenomenon is termed "cell adhesion-mediated drug resistance" (CAM-DR) and it is thought to be one of the major mechanisms by which MM cells escape the cytotoxic effects of therapeutic agents. This review will focus on the adhesion molecules involved in the cross-talk between MM cells and components of the BM microenvironment. The complex signaling networks downstream of these adhesive molecules mediated by direct ligand binding or inside-out soluble factors signaling will also be reviewed. Finally, novel therapeutic strategies targeting these molecules will be discussed. Identification of the mediators of MM-BM interaction is essential to understand MM biology and to elucidate novel therapeutic targets for this disease.

  4. Hypoxia-inducible Factor Regulates αvβ3 Integrin Cell Surface Expression

    PubMed Central

    Cowden Dahl, Karen D.; Robertson, Sarah E.; Weaver, Valerie M.; Simon, M. Celeste

    2005-01-01

    Hypoxia-inducible factor (HIF)-deficient placentas exhibit a number of defects, including changes in cell fate adoption, lack of fetal angiogenesis, hypocellularity, and poor invasion into maternal tissue. HIF is a heterodimeric transcription factor consisting of α and β aryl hydrocarbon receptor nuclear translocator or ARNT) subunits. We used undifferentiated trophoblast stem (TS) cells to characterize HIF-dependent adhesion, migration, and invasion. Arnt-/- and Hifα-/- TS cells exhibit reduced adhesion and migration toward vitronectin compared with wild-type cells. Furthermore, this defect is associated with decreased cell surface expression of integrin αvβ3 and significantly decreased expression of this integrin in focal adhesions. Because of the importance of adhesion and migration in tumor progression (in addition to placental development), we examined the affect of culturing B16F0 melanoma cells in 1.5% oxygen (O2). Culturing B16F0 melanoma cells at 1.5% O2 resulted in increased αvβ3 integrin surface expression and increased adhesion to and migration toward vitronectin. Together, these data suggest that HIF and O2 tension influence placental invasion and tumor migration by increasing cell surface expression of αvβ3 integrin. PMID:15689487

  5. Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix

    PubMed Central

    Mekhdjian, Armen H.; Kai, FuiBoon; Rubashkin, Matthew G.; Prahl, Louis S.; Przybyla, Laralynne M.; McGregor, Alexandra L.; Bell, Emily S.; Barnes, J. Matthew; DuFort, Christopher C.; Ou, Guanqing; Chang, Alice C.; Cassereau, Luke; Tan, Steven J.; Pickup, Michael W.; Lakins, Jonathan N.; Ye, Xin; Davidson, Michael W.; Lammerding, Jan; Odde, David J.; Dunn, Alexander R.; Weaver, Valerie M.

    2017-01-01

    Metastasis requires tumor cells to navigate through a stiff stroma and squeeze through confined microenvironments. Whether tumors exploit unique biophysical properties to metastasize remains unclear. Data show that invading mammary tumor cells, when cultured in a stiffened three-dimensional extracellular matrix that recapitulates the primary tumor stroma, adopt a basal-like phenotype. Metastatic tumor cells and basal-like tumor cells exert higher integrin-mediated traction forces at the bulk and molecular levels, consistent with a motor-clutch model in which motors and clutches are both increased. Basal-like nonmalignant mammary epithelial cells also display an altered integrin adhesion molecular organization at the nanoscale and recruit a suite of paxillin-associated proteins implicated in invasion and metastasis. Phosphorylation of paxillin by Src family kinases, which regulates adhesion turnover, is similarly enhanced in the metastatic and basal-like tumor cells, fostered by a stiff matrix, and critical for tumor cell invasion in our assays. Bioinformatics reveals an unappreciated relationship between Src kinases, paxillin, and survival of breast cancer patients. Thus adoption of the basal-like adhesion phenotype may favor the recruitment of molecules that facilitate tumor metastasis to integrin-based adhesions. Analysis of the physical properties of tumor cells and integrin adhesion composition in biopsies may be predictive of patient outcome. PMID:28381423

  6. The fibronectin synergy site re-enforces cell adhesion and mediates a crosstalk between integrin classes

    PubMed Central

    Benito-Jardón, Maria; Klapproth, Sarah; Gimeno-LLuch, Irene; Petzold, Tobias; Bharadwaj, Mitasha; Müller, Daniel J; Zuchtriegel, Gabriele; Reichel, Christoph A; Costell, Mercedes

    2017-01-01

    Fibronectin (FN), a major extracellular matrix component, enables integrin-mediated cell adhesion via binding of α5β1, αIIbβ3 and αv-class integrins to an RGD-motif. An additional linkage for α5 and αIIb is the synergy site located in close proximity to the RGD motif. We report that mice with a dysfunctional FN-synergy motif (Fn1syn/syn) suffer from surprisingly mild platelet adhesion and bleeding defects due to delayed thrombus formation after vessel injury. Additional loss of β3 integrins dramatically aggravates the bleedings and severely compromises smooth muscle cell coverage of the vasculature leading to embryonic lethality. Cell-based studies revealed that the synergy site is dispensable for the initial contact of α5β1 with the RGD, but essential to re-enforce the binding of α5β1/αIIbβ3 to FN. Our findings demonstrate a critical role for the FN synergy site when external forces exceed a certain threshold or when αvβ3 integrin levels decrease below a critical level. DOI: http://dx.doi.org/10.7554/eLife.22264.001 PMID:28092265

  7. Distinct Effects of RGD-glycoproteins on Integrin-Mediated Adhesion and Osteogenic Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Schwab, Elisabeth H.; Halbig, Maria; Glenske, Kristina; Wagner, Alena-Svenja; Wenisch, Sabine; Cavalcanti-Adam, Elisabetta A.

    2013-01-01

    The detailed interactions of mesenchymal stem cells (MSCs) with their extracellular matrix (ECM) and the resulting effects on MSC differentiation are still largely unknown. Integrins are the main mediators of cell-ECM interaction. In this study, we investigated the adhesion of human MSCs to fibronectin, vitronectin and osteopontin, three ECM glycoproteins which contain an integrin-binding sequence, the RGD motif. We then assayed MSCs for their osteogenic commitment in the presence of the different ECM proteins. As early as 2 hours after seeding, human MSCs displayed increased adhesion when plated on fibronectin, whereas no significant difference was observed when adhering either to vitronectin or osteopontin. Over a 10-day observation period, cell proliferation was increased when cells were cultured on fibronectin and osteopontin, albeit after 5 days in culture. The adhesive role of fibronectin was further confirmed by measurements of cell area, which was significantly increased on this type of substrate. However, integrin-mediated clusters, namely focal adhesions, were larger and more mature in MSCs adhering to vitronectin and osteopontin. Adhesion to fibronectin induced elevated expression of α5-integrin, which was further upregulated under osteogenic conditions also for vitronectin and osteopontin. In contrast, during osteogenic differentiation the expression level of β3-integrin was decreased in MSCs adhering to the different ECM proteins. When MSCs were cultured under osteogenic conditions, their commitment to the osteoblast lineage and their ability to form a mineralized matrix in vitro was increased in presence of fibronectin and osteopontin. Taken together these results indicate a distinct role of ECM proteins in regulating cell adhesion, lineage commitment and phenotype of MSCs, which is due to the modulation of the expression of specific integrin subunits during growth or osteogenic differentiation. PMID:24324361

  8. ß3 integrin modulates transforming growth factor beta induced (TGFBI) function and paclitaxel response in ovarian cancer cells.

    PubMed

    Tumbarello, David A; Temple, Jillian; Brenton, James D

    2012-05-28

    The extracellular matrix (ECM) has a key role in facilitating the progression of ovarian cancer and we have shown recently that the secreted ECM protein TGFBI modulates the response of ovarian cancer to paclitaxel-induced cell death. We have determined TGFBI signaling from the extracellular environment is preferential for the cell surface αvß3 integrin heterodimer, in contrast to periostin, a TGFBI paralogue, which signals primarily via a ß1 integrin-mediated pathway. We demonstrate that suppression of ß1 integrin expression, in ß3 integrin-expressing ovarian cancer cells, increases adhesion to rTGFBI. In addition, Syndecan-1 and -4 expression is dispensable for adhesion to rTGFBI and loss of Syndecan-1 cooperates with the loss of ß1 integrin to further enhance adhesion to rTGFBI. The RGD motif present in the carboxy-terminus of TGFBI is necessary, but not sufficient, for SKOV3 cell adhesion and is dispensable for adhesion of ovarian cancer cells lacking ß3 integrin expression. In contrast to TGFBI, the carboxy-terminus of periostin, lacking a RGD motif, is unable to support adhesion of ovarian cancer cells. Suppression of ß3 integrin in SKOV3 cells increases resistance to paclitaxel-induced cell death while suppression of ß1 integrin has no effect. Furthermore, suppression of TGFBI expression stimulates a paclitaxel resistant phenotype while suppression of fibronectin expression, which primarily signals through a ß1 integrin-mediated pathway, increases paclitaxel sensitivity. Therefore, different ECM components use distinct signaling mechanisms in ovarian cancer cells and in particular, TGFBI preferentially interacts through a ß3 integrin receptor mediated mechanism to regulate the response of cells to paclitaxel-induced cell death.

  9. A distinct profile of serum levels of soluble intercellular adhesion molecule-1 and intercellular adhesion molecule-3 in mycosis fungoides and Sézary syndrome.

    PubMed

    López-Lerma, Ingrid; Estrach, Maria Teresa

    2009-08-01

    Cell adhesion molecules (CAMs) play a pivotal role in cutaneous localization of T cells. Tissue-selective localization of T lymphocytes to the skin is crucial for immune surveillance and in the pathogenesis of skin disorders. To detect the profile of soluble CAMs in patients with cutaneous T-cell lymphoma (CTCL), we investigated the levels of intercellular adhesion molecule-1 (ICAM-1, soluble ICAM-1 [sICAM-1]); intercellular adhesion molecule-3 (sICAM-3); vascular cell adhesion molecule-1 (sVCAM-1); and E-selectin (sE-selectin) in sera from patients with T-cell-mediated skin diseases. Serum levels of the 4 CAMs were measured by enzyme-linked immunosorbent assay in 42 participants including 11 patients with early stages of CTCL; 7 with advanced stages of CTCL including Sézary syndrome; 12 with inflammatory skin diseases (psoriasis and atopic dermatitis); 8 with skin diseases that may evolve into CTCL; and healthy individuals. Levels were correlated with biological parameters known as prognostic factors in non-Hodgkin lymphomas. In patients with CTCL, significantly increased levels of sICAM-1 and sICAM-3 were found when compared with healthy individuals and patients with inflammatory dermatosis. Soluble E-selectin and sVCAM-1 levels were not increased. There were significant positive correlations between sICAM-1 and sICAM-3 levels and each of them with beta2-microglobulin levels. Limited number of patients was a limitation. There is a distinct profile of soluble CAMs in patients with CTCL. However, future studies with a larger group of patients are needed to confirm these findings. We propose that high sICAM-1 and sICAM-3 levels have important implications in the context of immune response and immune surveillance in these patients.

  10. ATP release due to Thy-1–integrin binding induces P2X7-mediated calcium entry required for focal adhesion formation

    PubMed Central

    Henríquez, Mauricio; Herrera-Molina, Rodrigo; Valdivia, Alejandra; Alvarez, Alvaro; Kong, Milene; Muñoz, Nicolás; Eisner, Verónica; Jaimovich, Enrique; Schneider, Pascal; Quest, Andrew F. G.; Leyton, Lisette

    2011-01-01

    Thy-1, an abundant mammalian glycoprotein, interacts with αvβ3 integrin and syndecan-4 in astrocytes and thus triggers signaling events that involve RhoA and its effector p160ROCK, thereby increasing astrocyte adhesion to the extracellular matrix. The signaling cascade includes calcium-dependent activation of protein kinase Cα upstream of Rho; however, what causes the intracellular calcium transients required to promote adhesion remains unclear. Purinergic P2X7 receptors are important for astrocyte function and form large non-selective cation pores upon binding to their ligand, ATP. Thus, we evaluated whether the intracellular calcium required for Thy-1-induced cell adhesion stems from influx mediated by ATP-activated P2X7 receptors. Results show that adhesion induced by the fusion protein Thy-1-Fc was preceded by both ATP release and sustained intracellular calcium elevation. Elimination of extracellular ATP with Apyrase, chelation of extracellular calcium with EGTA, or inhibition of P2X7 with oxidized ATP, all individually blocked intracellular calcium increase and Thy-1-stimulated adhesion. Moreover, Thy-1 mutated in the integrin-binding site did not trigger ATP release, and silencing of P2X7 with specific siRNA blocked Thy-1-induced adhesion. This study is the first to demonstrate a functional link between αvβ3 integrin and P2X7 receptors, and to reveal an important, hitherto unanticipated, role for P2X7 in calcium-dependent signaling required for Thy-1-stimulated astrocyte adhesion. PMID:21502139

  11. A non-canonical role for Rgnef in promoting integrin-stimulated focal adhesion kinase activation

    PubMed Central

    Miller, Nichol L. G.; Lawson, Christine; Kleinschmidt, Elizabeth G.; Tancioni, Isabelle; Uryu, Sean; Schlaepfer, David D.

    2013-01-01

    Summary Rgnef (also known as p190RhoGEF or ARHGEF28) is a Rho guanine-nucleotide-exchange factor (GEF) that binds focal adhesion kinase (FAK). FAK is recruited to adhesions and activated by integrin receptors binding to matrix proteins, such as fibronectin (FN). Canonical models place Rgnef downstream of integrin–FAK signaling in regulating Rho GTPase activity and cell movement. Herein, we establish a new, upstream role for Rgnef in enhancing FAK localization to early peripheral adhesions and promoting FAK activation upon FN binding. Rgnef-null mouse embryo fibroblasts (MEFs) exhibit defects in adhesion formation, levels of FAK phosphotyrosine (pY)-397 and FAK localization to peripheral adhesions upon re-plating on FN. Rgnef re-expression rescues these defects, but requires Rgnef–FAK binding. A mutation in the Rgnef pleckstrin homology (PH) domain inhibits adhesion formation, FAK localization, and FAK-Y397 and paxillin-Y118 phosphorylation without disrupting the Rgnef–FAK interaction. A GEF-inactive Rgnef mutant rescues FAK-Y397 phosphorylation and early adhesion localization, but not paxillin-Y118 phosphorylation. This suggests that, downstream of FN binding, paxillin-pY118 requires Rgnef GEF activity through a mechanism distinct from adhesion formation and FAK activation. These results support a scaffolding role for Rgnef in FAK localization and activation at early adhesions in a PH-domain-dependent but GEF-activity-independent manner. PMID:24006257

  12. Retinoids induce integrin-independent lymphocyte adhesion through RAR-α nuclear receptor activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, Jarrett T.; Wang, Lei; Chen, Jianming

    2014-11-28

    Highlights: • Transcription and translation are required for retinoid-induced lymphocyte adhesion. • RAR activation is sufficient to induced lymphocyte cell adhesion. • Vitamin D derivatives inhibit RAR-prompted lymphocyte adhesion. • Adhesion occurs through a novel binding site within ADAM disintegrin domains. • RARα is a key nuclear receptor for retinoid-dependent lymphocyte cell adhesion. - Abstract: Oxidative metabolites of vitamin A, in particular all-trans-retinoic acid (atRA), have emerged as key factors in immunity by specifying the localization of immune cells to the gut. Although it is appreciated that isomers of retinoic acid activate the retinoic acid receptor (RAR) and retinoid Xmore » receptor (RXR) family of nuclear receptors to elicit cellular changes, the molecular details of retinoic acid action remain poorly defined in immune processes. Here we employ a battery of agonists and antagonists to delineate the specific nuclear receptors utilized by retinoids to evoke lymphocyte cell adhesion to ADAM (adisintegrin and metalloprotease) protein family members. We report that RAR agonism is sufficient to promote immune cell adhesion in both immortal and primary immune cells. Interestingly, adhesion occurs independent of integrin function, and mutant studies demonstrate that atRA-induced adhesion to ADAM members required a distinct binding interface(s) as compared to integrin recognition. Anti-inflammatory corticosteroids as well as 1,25-(OH){sub 2}D{sub 3}, a vitamin D metabolite that prompts immune cell trafficking to the skin, potently inhibited the observed adhesion. Finally, our data establish that induced adhesion was specifically attributable to the RAR-α receptor isotype. The current study provides novel molecular resolution as to which nuclear receptors transduce retinoid exposure into immune cell adhesion.« less

  13. Dependence of corneal keratocyte adhesion, spreading, and integrin β1 expression on deacetylated chitosan coating.

    PubMed

    Sun, Chi-Chin; Chou, Shih-Feng; Lai, Jui-Yang; Cho, Ching-Hsien; Lee, Chih-Hung

    2016-06-01

    This study reports, for the first time, the regulation of corneal keratocyte adhesion, spreading, morphology, and integrin gene expression on chitosan coating due to the effects of deacetylation. The degree of deacetylation (DD) in chitosan materials was confirmed by elemental analysis, gel permeation chromatography, and Fourier transform infrared spectroscopy. In this study, chitosan samples with the same molecular weight level but varying DD (74.1 ± 0.5%, 84.4 ± 0.7%, and 94.2 ± 0.5%) were obtained by heat-alkaline treatment under a nitrogen atmosphere. For higher DD groups, the biopolymer carried abundant amino groups since the deacetylation process removed larger amount of acetyl groups from the chitosan molecules. Results showed that the mechanical stability and crystallinity of the chitosan coatings significantly increased with increasing DD value. Fibronectin adsorption, keratocyte adhesion, and cell spreading exhibited a positive correlation with DD due to the chemical functionality of polysaccharides (bearing acetyl and amino groups) and increase of substrate stiffness and crystallinity. In particular, when adhered to chitosan coatings with a DD value of 74.1%, the keratocytes appeared to be fibroblastic, elongated, and spindle shape, indicating a loss of their characteristic dendritic morphology. Furthermore, the gene expression of integrin β1 (i.e., a cell-matrix adhesion molecule) was significantly up-regulated on the chitosan coatings with higher DD, which supports favorable attachment of corneal keratocytes. Our findings suggest that DD-mediated physicochemical properties of chitosan coatings greatly affect cell-substrate crosstalk during corneal keratocyte cultivation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Evidence that activation of ASIC1a by acidosis increases osteoclast migration and adhesion by modulating integrin/Pyk2/Src signaling pathway.

    PubMed

    Li, X; Ye, J-X; Xu, M-H; Zhao, M-D; Yuan, F-L

    2017-07-01

    Activated acid-sensing ion channel 1a (ASIC1a) is involved in acid-induced osteoclastogenesis by regulating activation of the transcription factor NFATc1. These results indicated that ASIC1a activation by extracellular acid may cause osteoclast migration and adhesion through Ca 2+ -dependent integrin/Pyk2/Src signaling pathway. Osteoclast adhesion and migration are responsible for osteoporotic bone loss. Acidic conditions promote osteoclastogenesis. ASIC1a in osteoclasts is associated with acid-induced osteoclastogenesis through modulating transcription factor NFATc1 activation. However, the influence and the detailed mechanism of ASIC1a in regulating osteoclast adhesion and migration, in response to extracellular acid, are not well characterized. In this study, knockdown of ASIC1a was achieved in bone marrow macrophage cells using small interfering RNA (siRNA). The adhesion and migration abilities of osteoclast precursors and osteoclasts were determined by adhesion and migration assays, in vitro. Bone resorption was performed to measure osteoclast function. Cytoskeletal changes were assessed by F-actin ring formation. αvβ3 integrin expression in osteoclasts was measured by flow cytometry. Western blotting and co-immunoprecipitation were performed to measure alterations in integrin/Pyk2/Src signaling pathway. Our results showed that blockade of ASIC1a using ASIC1a-siRNA inhibited acid-induced osteoclast precursor migration and adhesion, as well as osteoclast adhesion and bone resorption; we also demonstrated that inhibition of ASIC1a decreased the cell surface αvβ3 integrin and β3 protein expression. Moreover, blocking of ASIC1a inhibited acidosis-induced actin ring formation and reduced Pyk2 and Src phosphorylation in osteoclasts and also inhibited the acid-induced association of the αvβ3 integrin/Src/Pyk2. Together, these results highlight a key functional role of ASIC1a/αvβ3 integrin/Pyk2/Src signaling pathway in migration and adhesion of osteoclasts.

  15. High-Throughput Screening based Identification of Small Molecule Antagonists of Integrin CD11b/CD18 Ligand Binding

    PubMed Central

    Faridi, Mohd Hafeez; Maiguel, Dony; Brown, Brock T.; Suyama, Eigo; Barth, Constantinos J.; Hedrick, Michael; Vasile, Stefan; Sergienko, Eduard; Schürer, Stephan; Gupta, Vineet

    2010-01-01

    Binding of leukocyte specific integrin CD11b/CD18 to its physiologic ligands is important for the development of normal immune response in vivo. Integrin CD11b/CD18 is also a key cellular effector of various inflammatory and autoimmune diseases. However, small molecules selectively inhibiting the function of integrin CD11b/CD18 are currently lacking. We used a newly described cell-based high throughput screening assay to identify a number of highly potent antagonists of integrin CD11b/CD18 from chemical libraries containing >100,000 unique compounds. Computational analyses suggest that the identified compounds cluster into several different chemical classes. A number of the newly identified compounds blocked adhesion of wild-type mouse neutrophils to CD11b/CD18 ligand fibrinogen. Mapping the most active compounds against chemical fingerprints of known antagonists of related integrin CD11a/CD18 shows little structural similarity, suggesting that the newly identified compounds are novel and unique. PMID:20188705

  16. Expression of Selected Integrins and Selectins in Bullous Pemphigoid

    PubMed Central

    Żebrowska, Agnieszka; Sysa-Jędrzejowska, Anna; Wągrowska-Danilewicz, Małgorzata; Joss-Wichman, Ewa; Erkiert-Polguj, Anna; Waszczykowska, Elżbieta

    2007-01-01

    Blister development in bullous pemphigoid (BP) results from destruction of hemidesmosomes and basement membrane components within the dermoepidermal junction by autoantibodies. Adhesion molecules can take part in pathogenesis of this disease. The aim of the study was to determine the localization and expression of L- and E-selectins and β1, β3, and β4 integrins by immunohistochemistry in skin lesions of 21 patients with BP, compared with 10 healthy subjects. Expression of L and E selectins and β1, β3 integrins was detected mainly in basal keratinocytes and in inflammatory infiltrates in the dermis, expression of β4 integrin was irregular and was detected mainly in dermal part of the blister, while in the control group only weak and single expression of the examined molecules was detected in basal keratinocytes and endothelium cells. The obtained results reveal the important role of selected selectins and integrins in development of skin lesions in BP. PMID:17515951

  17. Peptide ligands targeting integrin alpha3beta1 in non-small cell lung cancer.

    PubMed

    Lau, Derick; Guo, Linlang; Liu, Ruiwu; Marik, Jan; Lam, Kit

    2006-06-01

    Lung cancer is one of the most common cancers and is the leading cause of cancer death. We wish to identify peptide ligands for unique cell surface receptors of non-small lung cancer with the hope of developing these ligands as diagnostic and therapeutic agents. Using the method of 'one-bead one-peptide' combinatorial chemistry, a library of random cyclic octapeptides was synthesized on polystyrene beads. This library was used to screen for peptides that promoted attachment of lung adenocarcinoma cells employing a 'cell-growth-on-bead' assay. Consensus peptide sequences of cNGXGXXc were identified. These peptides promoted cell adhesion by targeting integrin alpha3beta1 over-expressed in non-small lung cancer cells. These peptide beads can be applied to capture cancer cells in malignant pleural fluid for purpose of diagnosis of lung cancer.

  18. Epigenetic regulation of integrin-linked kinase expression depending on adhesion of gastric carcinoma cells.

    PubMed

    Kim, Yong-Bae; Lee, Sung-Yul; Ye, Sang-Kyu; Lee, Jung Weon

    2007-02-01

    Cell adhesion to the extracellular matrix (ECM) regulates gene expressions in diverse dynamic environments. However, the manner in which gene expressions are regulated by extracellular cues is largely unknown. In this study, suspended gastric carcinoma cells showed higher basal and transforming growth factor-beta1 (TGFbeta1)-mediated acetylations of histone 3 (H3) and Lys(9) of H3 and levels of integrin-linked kinase (ILK) mRNA and protein than did fibronectin-adherent cells did. Moreover, the insignificant acetylation and ILK expression in adherent cells were recovered by alterations of integrin signaling and actin organization, indicating a connection between cytoplasmic and nuclear changes. Higher acetylations in suspended cells were correlated with associations between Smad4, p300/CBP, and Lys(9)-acetylated H3. Meanwhile, adherent cells showed more associations between HDAC3, Ski, and MeCP2. Chromatin immunoprecipitations with anti-acetylated H3, Lys(9)-acetylated H3, or p300/CBP antibody resulted in more coprecipitated ILK promoter, correlated with enhanced ILK mRNA and protein levels, in suspended cells. Moreover, ILK expression inversely regulated cell adhesion to ECM proteins, and its overexpression enhanced cell growth in soft agar. These observations indicate that cell adhesion and/or its related molecular basis regulate epigenetic mechanisms leading to a loss of ILK transcription, which in turn regulates cell adhesion property in a feedback linkage.

  19. Soluble adhesion molecules in human cancers: sources and fates.

    PubMed

    van Kilsdonk, Jeroen W J; van Kempen, Léon C L T; van Muijen, Goos N P; Ruiter, Dirk J; Swart, Guido W M

    2010-06-01

    Adhesion molecules endow tumor cells with the necessary cell-cell contacts and cell-matrix interactions. As such, adhesion molecules are involved in cell signalling, proliferation and tumor growth. Rearrangements in the adhesion repertoire allow tumor cells to migrate, invade and form metastases. Besides these membrane-bound adhesion molecules several soluble adhesion molecules are detected in the supernatant of tumor cell lines and patient body fluids. Truncated soluble adhesion molecules can be generated by several conventional mechanisms, including alternative splicing of mRNA transcripts, chromosomal translocation, and extracellular proteolytic ectodomain shedding. Secretion of vesicles (ectosomes and exosomes) is an alternative mechanism mediating the release of full-length adhesion molecules. Soluble adhesion molecules function as modulators of cell adhesion, induce proteolytic activity and facilitate cell signalling. Additionally, adhesion molecules present on secreted vesicles might be involved in the vesicle-target cell interaction. Based on currently available data, released soluble adhesion molecules contribute to cancer progression and therefore should not be regarded as unrelated and non-functional side products of tumor progression. 2010 Elsevier GmbH. All rights reserved.

  20. Requirement of Vascular Integrin α_vβ_3 for Angiogenesis

    NASA Astrophysics Data System (ADS)

    Brooks, Peter C.; Clark, Richard A. F.; Cheresh, David A.

    1994-04-01

    Angiogenesis depends on the adhesive interactions of vascular cells. The adhesion receptor integrin α_vβ_3 was identified as a marker of angiogenic vascular tissue. Integrin α_vβ_3 was expressed on blood vessels in human wound granulation tissue but not in normal skin, and it showed a fourfold increase in expression during angiogenesis on the chick chorioallantoic membrane. In the latter assay, a monoclonal antibody to α_vβ_3 blocked angiogenesis induced by basic fibroblast growth factor, tumor necrosis factor-α, and human melanoma fragments but had no effect on preexisting vessels. These findings suggest that α_vβ_3 may be a useful therapeutic target for diseases characterized by neovascularization.

  1. Probing the acidic residue within the integrin binding site of laminin-511 that interacts with the metal ion-dependent adhesion site of α6β1 integrin.

    PubMed

    Taniguchi, Yukimasa; Li, Shaoliang; Takizawa, Mamoru; Oonishi, Eriko; Toga, Junko; Yagi, Emiko; Sekiguchi, Kiyotoshi

    2017-06-03

    Laminins are major cell-adhesive proteins of basement membranes that interact with integrins in a divalent cation-dependent manner. Laminin-511 consists of α5, β1, and γ1 chains, of which three laminin globular domains of the α5 chain (α5/LG1-3) and a Glu residue in the C-terminal tail of chain γ1 (γ1-Glu1607) are required for binding to integrins. However, it remains unsettled whether the Glu residue in the γ1 tail is involved in integrin binding by coordinating the metal ion in the metal ion-dependent adhesion site of β1 integrin (β1-MIDAS), or by stabilizing the conformation of α5/LG1-3. To address this issue, we examined whether α5/LG1-3 contain an acidic residue required for integrin binding that is as critical as the Glu residue in the γ1 tail; to achieve this, we undertook exhaustive alanine substitutions of the 54 acidic residues present in α5/LG1-3 of the E8 fragment of laminin-511 (LM511E8). Most of the alanine mutants possessed α6β1 integrin binding activities comparable with wild-type LM511E8. Alanine substitution for α5-Asp3198 and Asp3219 caused mild reduction in integrin binding activity, and that for α5-Asp3218 caused severe reduction, possibly resulting from conformational perturbation of α5/LG1-3. When α5-Asp3218 was substituted with asparagine, the resulting mutant possessed significant binding activity to α6β1 integrin, indicating that α5-Asp3218 is not directly involved in integrin binding through coordination with the metal ion in β1-MIDAS. Given that substitution of γ1-Glu1607 with glutamine nullified the binding activity to α6β1 integrin, these results, taken together, support the possibility that the critical acidic residue coordinating the metal ion in β1-MIDAS is Glu1607 in the γ1 tail, but no such residue is present in α5/LG1-3. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2

    PubMed Central

    De Franceschi, Nicola; Arjonen, Antti; Elkhatib, Nadia; Denessiouk, Konstantin; Wrobel, Antoni G; Wilson, Thomas A; Pouwels, Jeroen; Montagnac, Guillaume; Owen, David J; Ivaska, Johanna

    2016-01-01

    Integrins are heterodimeric cell-surface adhesion molecules comprising one of possible 18 α-chains and one of possible 8 β-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalised by clathrin-mediated endocytosis (CME) through β subunit-based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of α subunits contain an evolutionarily conserved and functional YxxΦ motif directing integrins to selective internalisation by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin α4-tail motif in complex with AP2 C-µ2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions. PMID:26779610

  3. Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2.

    PubMed

    De Franceschi, Nicola; Arjonen, Antti; Elkhatib, Nadia; Denessiouk, Konstantin; Wrobel, Antoni G; Wilson, Thomas A; Pouwels, Jeroen; Montagnac, Guillaume; Owen, David J; Ivaska, Johanna

    2016-02-01

    Integrins are heterodimeric cell-surface adhesion molecules comprising one of 18 possible α-chains and one of eight possible β-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalized by clathrin-mediated endocytosis (CME) through β subunit-based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of α subunits contain an evolutionarily conserved and functional YxxΦ motif directing integrins to selective internalization by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin α4-tail motif in complex with the AP2 C-μ2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions.

  4. Synchronized cell attachment triggered by photo-activatable adhesive ligands allows QCM-based detection of early integrin binding

    PubMed Central

    Iturri, Jagoba; García-Fernández, Luis; Reuning, Ute; García, Andrés J.; Campo, Aránzazu del; Salierno, Marcelo J.

    2015-01-01

    The Quartz Crystal Microbalance with dissipation (QCM-D) technique was applied to monitor and quantify integrin-RGD recognition during the early stages of cell adhesion. Using QCM-D crystals modified with a photo-activatable RGD peptide, the time point of presentation of adhesive ligand at the surface of the QCM-D crystal could be accurately controlled. This allowed temporal resolution of early integrin-RGD binding and the subsequent cell spreading process, and their separate detection by QCM-D. The specificity of the integrin-RGD binding event was corroborated by performing the experiments in the presence of soluble cyclicRGD as a competitor, and cytochalasin D as inhibitor of cell spreading. Larger frequency change in the QCM-D signal was observed for cells with larger spread area, and for cells overexpressing integrin αvβ3 upon stable transfection. This strategy enables quantification of integrin activity which, in turn, may allow discrimination among different cell types displaying distinct integrin subtypes and expression levels thereof. On the basis of these findings, we believe the strategy can be extended to other photoactivatable ligands to characterize cell membrane receptors activity, a relevant issue for cancer diagnosis (and prognosis) as other several pathologies. PMID:25825012

  5. Kon-tiki enhances PS2 integrin adhesion and localizes its ligand, Thrombospondin, in the myotendinous junction.

    PubMed

    Pérez-Moreno, Juan J; Espina-Zambrano, Agueda G; García-Calderón, Clara B; Estrada, Beatriz

    2017-03-01

    Cell-extracellular-matrix adhesion is mediated by cell receptors, mainly integrins and transmembrane proteoglycans, which can functionally interact. How these receptors are regulated and coordinated is largely unknown. We show that the conserved transmembrane Drosophila proteoglycan Kon-tiki (Kon, also known as Perdido) interacts with the αPS2βPS integrin (αPS2 is encoded by inflated and βPS by myospheroid ) to mediate muscle-tendon adhesion. kon and inflated double mutant embryos show a synergistic increase in muscle detachment. Furthermore, Kon modulates αPS2βPS signaling at the muscle attachment, since phosphorylated Fak is reduced in kon mutants. This reduction in integrin signaling can be rescued by the expression of a truncated Kon protein containing its transmembrane and extracellular domains, suggesting that these domains are sufficient to mediate this signaling. We show that these domains are sufficient to properly localize the αPS2βPS ligand, Thrombospondin, to the muscle attachment, and to partially rescue Kon-dependent muscle-tendon adhesion. We propose that Kon can engage in a protein complex with αPS2βPS and enhance integrin-mediated signaling and adhesion by recruiting its ligand, which would increase integrin-binding affinity to the extracellular matrix, resulting in the consolidation of the myotendinous junction. © 2017. Published by The Company of Biologists Ltd.

  6. EphA2 promotes cell adhesion and spreading of monocyte and monocyte/macrophage cell lines on integrin ligand-coated surfaces.

    PubMed

    Saeki, Noritaka; Nishino, Shingo; Shimizu, Tomohiro; Ogawa, Kazushige

    2015-01-01

    Eph signaling, which arises following stimulation by ephrins, is known to induce opposite cell behaviors such as promoting and inhibiting cell adhesion as well as promoting cell-cell adhesion and repulsion by altering the organization of the actin cytoskeleton and influencing the adhesion activities of integrins. However, crosstalk between Eph/ephrin with integrin signaling has not been fully elucidated in leukocytes, including monocytes and their related cells. Using a cell attachment stripe assay, we have shown that, following stimulation with ephrin-A1, kinase-independent EphA2 promoted cell spreading/elongation as well as adhesion to integrin ligand-coated surfaces in cultured U937 (monocyte) and J774.1 (monocyte/macrophage) cells as well as sublines of these cells expressing dominant negative EphA2 that lacks most of the intracellular region. Moreover, a pull-down assay showed that dominant negative EphA2 is recruited to the β2 integrin/ICAM1 and β2 integrin/VCAM1 molecular complexes in the subline cells following stimulation with ephrin-A1-Fc. Notably, this study is the first comprehensive analysis of the effects of EphA2 receptors on integrin-mediated cell adhesion in monocytic cells. Based on these findings we propose that EphA2 promotes cell adhesion by an unknown signaling pathway that largely depends on the extracellular region of EphA2 and the activation of outside-in integrin signaling.

  7. Distinct effects of RGD-glycoproteins on Integrin-mediated adhesion and osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Schwab, Elisabeth H; Halbig, Maria; Glenske, Kristina; Wagner, Alena-Svenja; Wenisch, Sabine; Cavalcanti-Adam, Elisabetta A

    2013-01-01

    The detailed interactions of mesenchymal stem cells (MSCs) with their extracellular matrix (ECM) and the resulting effects on MSC differentiation are still largely unknown. Integrins are the main mediators of cell-ECM interaction. In this study, we investigated the adhesion of human MSCs to fibronectin, vitronectin and osteopontin, three ECM glycoproteins which contain an integrin-binding sequence, the RGD motif. We then assayed MSCs for their osteogenic commitment in the presence of the different ECM proteins. As early as 2 hours after seeding, human MSCs displayed increased adhesion when plated on fibronectin, whereas no significant difference was observed when adhering either to vitronectin or osteopontin. Over a 10-day observation period, cell proliferation was increased when cells were cultured on fibronectin and osteopontin, albeit after 5 days in culture. The adhesive role of fibronectin was further confirmed by measurements of cell area, which was significantly increased on this type of substrate. However, integrin-mediated clusters, namely focal adhesions, were larger and more mature in MSCs adhering to vitronectin and osteopontin. Adhesion to fibronectin induced elevated expression of α₅-integrin, which was further upregulated under osteogenic conditions also for vitronectin and osteopontin. In contrast, during osteogenic differentiation the expression level of β₃-integrin was decreased in MSCs adhering to the different ECM proteins. When MSCs were cultured under osteogenic conditions, their commitment to the osteoblast lineage and their ability to form a mineralized matrix in vitro was increased in presence of fibronectin and osteopontin. Taken together these results indicate a distinct role of ECM proteins in regulating cell adhesion, lineage commitment and phenotype of MSCs, which is due to the modulation of the expression of specific integrin subunits during growth or osteogenic differentiation.

  8. Phosphoinositide 3-Kinase p110β Regulates Integrin αIIbβ3 Avidity and the Cellular Transmission of Contractile Forces*

    PubMed Central

    Schoenwaelder, Simone M.; Ono, Akiko; Nesbitt, Warwick S.; Lim, Joanna; Jarman, Kate; Jackson, Shaun P.

    2010-01-01

    Phosphoinositide (PI) 3-kinase (PI3K) signaling processes play an important role in regulating the adhesive function of integrin αIIbβ3, necessary for platelet spreading and sustained platelet aggregation. PI3K inhibitors are effective at reducing platelet aggregation and thrombus formation in vivo and as a consequence are currently being evaluated as novel antithrombotic agents. PI3K regulation of integrin αIIbβ3 activation (affinity modulation) primarily occurs downstream of Gi-coupled and tyrosine kinase-linked receptors linked to the activation of Rap1b, AKT, and phospholipase C. In the present study, we demonstrate an important role for PI3Ks in regulating the avidity (strength of adhesion) of high affinity integrin αIIbβ3 bonds, necessary for the cellular transmission of contractile forces. Using knock-out mouse models and isoform-selective PI3K inhibitors, we demonstrate that the Type Ia p110β isoform plays a major role in regulating thrombin-stimulated fibrin clot retraction in vitro. Reduced clot retraction induced by PI3K inhibitors was not associated with defects in integrin αIIbβ3 activation, actin polymerization, or actomyosin contractility but was associated with a defect in integrin αIIbβ3 association with the contractile cytoskeleton. Analysis of integrin αIIbβ3 adhesion contacts using total internal reflection fluorescence microscopy revealed an important role for PI3Ks in regulating the stability of high affinity integrin αIIbβ3 bonds. These studies demonstrate an important role for PI3K p110β in regulating the avidity of high affinity integrin αIIbβ3 receptors, necessary for the cellular transmission of contractile forces. These findings may provide new insight into the potential antithrombotic properties of PI3K p110β inhibitors. PMID:19940148

  9. Colorectal Cancer Metastases Settle in the Hepatic Microenvironment Through α5β1 Integrin.

    PubMed

    Pelillo, Chiara; Bergamo, Alberta; Mollica, Hilaria; Bestagno, Marco; Sava, Gianni

    2015-10-01

    Colorectal cancer (CRC) metastasis dissemination to secondary sites represents the critical point for the patient's survival. The microenvironment is crucial to cancer progression, influencing tumour cell behaviour by modulating the expression and activation of molecules such as integrins, the cell-extracellular matrix interacting proteins participating in different steps of the tumour metastatic process. In this work, we investigated the role of α5β1 integrin and how the microenvironment influences this adhesion molecule, in a model of colon cancer progression to the liver. The culture medium conditioned by the IHH hepatic cell line, and the extracellular matrix (ECM) proteins, modulate the activation of α5β1 integrin in the colon cancer cell line HCT-116, and drives FAK phosphorylation during the process of cell adhesion to fibronectin, one of the main components of liver ECM. In these conditions, α5β1 modulates the expression/activity of another integrin, α2β1, involved in the cell adhesion to collagen I. These results suggest that α5β1 integrin holds a leading role in HCT-116 colorectal cancer cells adhesion to the ECM through the modulation of the intracellular focal adhesion kinase FAK and the α2β1 integrin activity. The driving role of the tumour microenvironment on CRC dissemination, here detected, and described, strengthens and adds new value to the concept that α5β1 integrin can be an appropriate and relevant therapeutic target for the control of CRC metastases. © 2015 Wiley Periodicals, Inc.

  10. Protopine inhibits heterotypic cell adhesion in MDA-MB-231 cells through down-regulation of multi-adhesive factors.

    PubMed

    He, Kai; Gao, Jian-Li

    2014-01-01

    A Chinese herb Corydalis yanhusuo W.T. Wang that showed anticancer and anti-angiogenesis effects in our previous studies was presented for further studies. In the present study, we studied the anticancer proliferation and adhesion effects of five alkaloids which were isolated from Corydalis yanhusuo. MTT dose response curves, cell migration assay, cell invasion assay, as well as three types of cell adhesive assay were performed on MDA-MB-231 human breast cancer cells. The mechanism of the compounds on inhibiting heterotypic cell adhesion were further explored by determining the expression of epidermal growth factor receptor (EGFR), Intercellular adhesion molecule 1 (ICAM-1), αv-integrin, β1-integrin and β5-integrin by western blotting assay. In five tested alkaloids, only protopine exhibited anti-adhesive and anti-invasion effects in MDA-MB-231 cells, which contributed to the anti-metastasis effect of Corydalis yanhusuo. The results showed that after treatment with protopine for 90 min, the expression of EGFR, ICAM-1, αv-integrin, β1-integrin and β5-integrin were remarkably reduced. The present results suggest that protopine seems to inhibit the heterotypic cell adhesion between MDA-MB-231 cells, and human umbilical vein endothelial cells by changing the expression of adhesive factors.

  11. CLIC4 regulates cell adhesion and β1 integrin trafficking.

    PubMed

    Argenzio, Elisabetta; Margadant, Coert; Leyton-Puig, Daniela; Janssen, Hans; Jalink, Kees; Sonnenberg, Arnoud; Moolenaar, Wouter H

    2014-12-15

    Chloride intracellular channel protein 4 (CLIC4) exists in both soluble and membrane-associated forms, and is implicated in diverse cellular processes, ranging from ion channel formation to intracellular membrane remodeling. CLIC4 is rapidly recruited to the plasma membrane by lysophosphatidic acid (LPA) and serum, suggesting a possible role for CLIC4 in exocytic-endocytic trafficking. However, the function and subcellular target(s) of CLIC4 remain elusive. Here, we show that in HeLa and MDA-MB-231 cells, CLIC4 knockdown decreases cell-matrix adhesion, cell spreading and integrin signaling, whereas it increases cell motility. LPA stimulates the recruitment of CLIC4 to β1 integrin at the plasma membrane and in Rab35-positive endosomes. CLIC4 is required for both the internalization and the serum- or LPA-induced recycling of β1 integrin, but not for EGF receptor trafficking. Furthermore, we show that CLIC4 suppresses Rab35 activity and antagonizes Rab35-dependent regulation of β1 integrin trafficking. Our results define CLIC4 as a regulator of Rab35 activity and serum- and LPA-dependent integrin trafficking. © 2014. Published by The Company of Biologists Ltd.

  12. Integrin-specific mechanoresponses to compression and extension probed by cylindrical flat-ended AFM tips in lung cells.

    PubMed

    Acerbi, Irene; Luque, Tomás; Giménez, Alícia; Puig, Marta; Reguart, Noemi; Farré, Ramon; Navajas, Daniel; Alcaraz, Jordi

    2012-01-01

    Cells from lung and other tissues are subjected to forces of opposing directions that are largely transmitted through integrin-mediated adhesions. How cells respond to force bidirectionality remains ill defined. To address this question, we nanofabricated flat-ended cylindrical Atomic Force Microscopy (AFM) tips with ~1 µm(2) cross-section area. Tips were uncoated or coated with either integrin-specific (RGD) or non-specific (RGE/BSA) molecules, brought into contact with lung epithelial cells or fibroblasts for 30 s to form focal adhesion precursors, and used to probe cell resistance to deformation in compression and extension. We found that cell resistance to compression was globally higher than to extension regardless of the tip coating. In contrast, both tip-cell adhesion strength and resistance to compression and extension were the highest when probed at integrin-specific adhesions. These integrin-specific mechanoresponses required an intact actin cytoskeleton, and were dependent on tyrosine phosphatases and Ca(2+) signaling. Cell asymmetric mechanoresponse to compression and extension remained after 5 minutes of tip-cell adhesion, revealing that asymmetric resistance to force directionality is an intrinsic property of lung cells, as in most soft tissues. Our findings provide new insights on how lung cells probe the mechanochemical properties of the microenvironment, an important process for migration, repair and tissue homeostasis.

  13. Phoyunnanin E inhibits migration of non-small cell lung cancer cells via suppression of epithelial-to-mesenchymal transition and integrin αv and integrin β3.

    PubMed

    Petpiroon, Nareerat; Sritularak, Boonchoo; Chanvorachote, Pithi

    2017-12-29

    The conversion of the epithelial phenotype of cancer cells into cells with a mesenchymal phenotype-so-called epithelial-mesenchymal transition (EMT)-has been shown to enhance the capacity of the cells to disseminate throughout the body. EMT is therefore becoming a potential target for anti-cancer drug discovery. Here, we showed that phoyunnanin E, a compound isolated from Dendrobium venustum, possesses anti-migration activity and addressed its mechanism of action. The cytotoxic and proliferative effects of phoyunnanin E on human non-small cell lung cancer-derived H460, H292, and A549 cells and human keratinocyte HaCaT cells were investigated by MTT assay. The effect of phoyunnanin E on EMT was evaluated by determining the colony formation and EMT markers. The migration and invasion of H460, H292, A549 and HaCaT cells was evaluated by wound healing assay and transwell invasion assay, respectively. EMT markers, integrins and migration-associated proteins were examined by western blot analysis. Phoyunnanin E at the concentrations of 5 and 10 μM, which are non-toxic to H460, H292, A549 and HaCaT cells showed good potential to inhibit the migratory activity of three types of human lung cancer cells. The anti-migration effect of phoyunnanin E was shown to relate to the suppressed EMT phenotypes, including growth in anchorage-independent condition, cell motility, and EMT-specific protein markers (N-cadherin, vimentin, slug, and snail). In addition to EMT suppression, we found that phoyunnanin E treatment with 5 and 10 μM could decrease the cellular level of integrin αv and integrin β3, these integrins are frequently up-regulated in highly metastatic tumor cells. We further characterized the regulatory proteins in cell migration and found that the cells treated with phoyunnanin E exhibited a significantly lower level of phosphorylated focal adhesion kinase (p-FAK) and phosphorylated ATP-dependent tyrosine kinase (p-AKT), and their downstream effectors (including

  14. Piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine as orally-active adhesion molecule inhibitors.

    PubMed

    Kaneko, Toshihiko; Clark, Richard S J; Ohi, Norihito; Ozaki, Fumihiro; Kawahara, Tetsuya; Kamada, Atsushi; Okano, Kazuo; Yokohama, Hiromitsu; Ohkuro, Masayoshi; Muramoto, Kenzo; Takenaka, Osamu; Kobayashi, Seiichi

    2004-06-01

    Novel piperidine carboxylic acid derivatives of 10H-pyrazino[2,3-b][1,4]benzothiazine were prepared and evaluated for their inhibitory activity on the upregulation of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1). Replacement of the methanesulfonyl group on the piperidine ring of previously prepared derivatives with a carboxylic acid-containing moiety resulted in a number of potent adhesion molecule inhibitors. Of these, (anti) [3-(10H-pyrazino[2,3-b][1,4]benzothiazin-8-yl)methyl-3-azabicyclo[3.3.1]non-9-yl]acetic acid 2q (ER-49890), showed the most potent oral inhibitory activities against neutrophil migration in an interleukin-1 (IL-1) induced paw inflammation model using mice, and leukocyte accumulation in a carrageenan pleurisy model in the rat, and therapeutic effect on collagen-induced arthritis in rats.

  15. Acidic Extracellular pH Promotes Activation of Integrin αvβ3

    PubMed Central

    Paradise, Ranjani K.; Lauffenburger, Douglas A.; Van Vliet, Krystyn J.

    2011-01-01

    Acidic extracellular pH is characteristic of the cell microenvironment in several important physiological and pathological contexts. Although it is well established that acidic extracellular pH can have profound effects on processes such as cell adhesion and migration, the underlying molecular mechanisms are largely unknown. Integrin receptors physically connect cells to the extracellular matrix, and are thus likely to modulate cell responses to extracellular conditions. Here, we examine the role of acidic extracellular pH in regulating activation of integrin αvβ3. Through computational molecular dynamics simulations, we find that acidic extracellular pH promotes opening of the αvβ3 headpiece, indicating that acidic pH can thereby facilitate integrin activation. This prediction is consistent with our flow cytometry and atomic force microscope-mediated force spectroscopy assays of integrin αvβ3 on live cells, which both demonstrate that acidic pH promotes activation at the intact cell surface. Finally, quantification of cell morphology and migration measurements shows that acidic extracellular pH affects cell behavior in a manner that is consistent with increased integrin activation. Taken together, these computational and experimental results suggest a new and complementary mechanism of integrin activation regulation, with associated implications for cell adhesion and migration in regions of altered pH that are relevant to wound healing and cancer. PMID:21283814

  16. Integrin alphaIIb-subunit cytoplasmic domain mutations demonstrate a requirement for tyrosine phosphorylation of beta3-subunits in actin cytoskeletal organization.

    PubMed

    Yamodo, Innocent H; Blystone, Scott D

    2004-01-01

    Using truncated or mutated alphaIIb integrin cytoplasmic domains fused to the alphaV extracellular domain and expressed with the beta3 integrin subunit, we demonstrate that the double mutation of proline residues 998 and 999 to alanine (PP998/999AA), previously shown to disturb the C-terminal conformation of the alphaIIb integrin cytoplasmic domain, prevents tyrosine phosphorylation of beta3 integrin induced by Arg-Gly-Asp peptide ligation. This mutation also inhibits integrin mediated actin assembly and cell adhesion to vitronectin. In contrast, progressive truncation of the alphaIIb-subunit cytoplasmic domain did not reproduce these effects. Interestingly, the PP998/999AA mutations of alphaIIb did not affect beta3 tyrosine phosphorylation, cell adhesion, or actin polymerization induced by manganese. Exogenous addition of manganese was sufficient to rescue beta3 phosphorylation, cell adhesion, and actin assembly in cells expressing the PP998/999AA mutation when presented with a vitronectin substrate. Further, induction of the high affinity conformation of this mutant beta3 integrin by incubation with either Arg-Gly-Asp peptide or exogenous manganese was equivalent. These results suggest that the extracellular structure of beta3 integrins in the high affinity conformation is not directly related to the structure of the cytoplasmic face of the integrin. Moreover, the requirement for beta3 phosphorylation is demonstrated without mutation of the beta3 subunit. In support of our previous hypothesis of a role for beta3 phosphorylation in adhesion, these studies demonstrate a strong correlation between beta3 tyrosine phosphorylation and assembly of a cytoskeleton competent to support firm cell adhesion.

  17. Platelets lacking PIP5KIγ have normal integrin activation but impaired cytoskeletal-membrane integrity and adhesion

    PubMed Central

    Wang, Yanfeng; Zhao, Liang; Suzuki, Aae; Lian, Lurong; Min, Sang H.; Wang, Ziqian; Litvinov, Rustem I.; Stalker, Timothy J.; Yago, Tadayuki; Klopocki, Arkadiusz G.; Schmidtke, David W.; Yin, Helen; Choi, John K.; McEver, Rodger P.; Weisel, John W.; Hartwig, John H.; Abrams, Charles S.

    2013-01-01

    Three isoforms of phosphatidylinositol-4-phosphate 5-kinase (PIP5KIα, PIP5KIβ, and PIP5KIγ) can each catalyze the final step in the synthesis of phosphatidylinositol-4,5-bisphosphate (PIP2), which in turn can be either converted to second messengers or bind directly to and thereby regulate proteins such as talin. A widely quoted model speculates that only p90, a longer splice form of platelet-specific PIP5KIγ, but not the shorter p87 PIP5KIγ, regulates the ligand-binding activity of integrins via talin. However, when we used mice genetically engineered to lack only p90 PIP5KIγ, we found that p90 PIP5KIγ is not critical for integrin activation or platelet adhesion on collagen. However, p90 PIP5KIγ-null platelets do have impaired anchoring of their integrins to the underlying cytoskeleton. Platelets lacking both the p90 and p87 PIP5KIγ isoforms had normal integrin activation and actin dynamics, but impaired anchoring of their integrins to the cytoskeleton. Most importantly, they formed weak shear-resistant adhesions ex vivo and unstable vascular occlusions in vivo. Together, our studies demonstrate that, although PIP5KIγ is essential for normal platelet function, individual isoforms of PIP5KIγ fulfill unique roles for the integrin-dependent integrity of the membrane cytoskeleton and for the stabilization of platelet adhesion. PMID:23372168

  18. VANGL2 interacts with integrin αv to regulate matrix metalloproteinase activity and cell adhesion to the extracellular matrix.

    PubMed

    Jessen, Tammy N; Jessen, Jason R

    2017-12-15

    Planar cell polarity (PCP) proteins are implicated in a variety of morphogenetic processes including embryonic cell migration and potentially cancer progression. During zebrafish gastrulation, the transmembrane protein Vang-like 2 (VANGL2) is required for PCP and directed cell migration. These cell behaviors occur in the context of a fibrillar extracellular matrix (ECM). While it is thought that interactions with the ECM regulate cell migration, it is unclear how PCP proteins such as VANGL2 influence these events. Using an in vitro cell culture model system, we previously showed that human VANGL2 negatively regulates membrane type-1 matrix metalloproteinase (MMP14) and activation of secreted matrix metalloproteinase 2 (MMP2). Here, we investigated the functional relationship between VANGL2, integrin αvβ3, and MMP2 activation. We provide evidence that VANGL2 regulates cell surface integrin αvβ3 expression and adhesion to fibronectin, laminin, and vitronectin. Inhibition of MMP14/MMP2 activity suppressed the cell adhesion defect in VANGL2 knockdown cells. Furthermore, our data show that MMP14 and integrin αv are required for increased proteolysis by VANGL2 knockdown cells. Lastly, we have identified integrin αvβ3 as a novel VANGL2 binding partner. Together, these findings begin to dissect the molecular underpinnings of how VANGL2 regulates MMP activity and cell adhesion to the ECM. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. β1 Integrin is an Adhesion Protein for Sperm Binding to Eggs

    PubMed Central

    Baessler, Keith A.; Lee, Younjoo; Sampson, Nicole S.

    2009-01-01

    We investigated the role of β1 integrin in mammalian fertilization and the mode of inhibition of fertilinβ-derived polymers. We determined that polymers displaying the Glu-Cys-Asp peptide from the fertilinβ disintegrin domain mediate inhibition of mammalian fertilization through a β1 integrin receptor on the egg surface. Inhibition of fertilization is a consequence of competition with sperm binding to the cell surface, not activation of an egg-signaling pathway. The presence of the β1 integrin on the egg surface increases the rate of sperm attachment, but does not alter the total number of sperm that can attach or fuse to the egg. We conclude that the presence of β1 integrin enhances the initial adhesion of sperm to the egg plasma membrane and that subsequent attachment and fusion are mediated by additional egg and sperm proteins present in the β1 integrin complex. Therefore, the mechanisms by which sperm fertilize wild-type and β1 knockout eggs are different. PMID:19338281

  20. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions

    NASA Astrophysics Data System (ADS)

    Doyle, Andrew D.; Carvajal, Nicole; Jin, Albert; Matsumoto, Kazue; Yamada, Kenneth M.

    2015-11-01

    The physical properties of two-dimensional (2D) extracellular matrices (ECMs) modulate cell adhesion dynamics and motility, but little is known about the roles of local microenvironmental differences in three-dimensional (3D) ECMs. Here we generate 3D collagen gels of varying matrix microarchitectures to characterize their regulation of 3D adhesion dynamics and cell migration. ECMs containing bundled fibrils demonstrate enhanced local adhesion-scale stiffness and increased adhesion stability through balanced ECM/adhesion coupling, whereas highly pliable reticular matrices promote adhesion retraction. 3D adhesion dynamics are locally regulated by ECM rigidity together with integrin/ECM association and myosin II contractility. Unlike 2D migration, abrogating contractility stalls 3D migration regardless of ECM pore size. We find force is not required for clustering of activated integrins on 3D native collagen fibrils. We propose that efficient 3D migration requires local balancing of contractility with ECM stiffness to stabilize adhesions, which facilitates the detachment of activated integrins from ECM fibrils.

  1. Activated tumor cell integrin αvβ3 cooperates with platelets to promote extravasation and metastasis from the blood stream

    PubMed Central

    Weber, Martin R.; Zuka, Masahiko; Lorger, Mihaela; Tschan, Mario; Torbett, Bruce E.; Zijlstra, Andries; Quigley, James P.; Staflin, Karin; Eliceiri, Brian P.; Krueger, Joseph S.; Marchese, Patricia; Ruggeri, Zaverio M.; Felding, Brunhilde H.

    2016-01-01

    Metastasis is the main cause of death in cancer patients, and understanding mechanisms that control tumor cell dissemination may lead to improved therapy. Tumor cell adhesion receptors contribute to cancer spreading. We noted earlier that tumor cells can expressing the adhesion receptor integrin αvβ3 in distinct states of activation, and found that cells which metastasize from the blood stream express it in a constitutively high affinity form. Here, we analyzed steps of the metastatic cascade in vivo and asked, when and how the affinity state of integrin αvβ3 confers a critical advantage to cancer spreading. Following tumor cells by real time PCR, non-invasive bioluminescence imaging, intravital microscopy and histology allowed us to identify tumor cell extravasation from the blood stream as a rate-limiting step supported by high affinity αvβ3. Successful transendothelial migration depended on cooperation between tumor cells and platelets involving the high affinity tumor cell integrin and release of platelet granules. Thus, this study identifies the high affinity conformer of integrin αvβ3 and its interaction with platelets as critical for early steps during hematogenous metastasis and target for prevention of metastatic disease. PMID:27067975

  2. Complement C3 participation in monocyte adhesion to different surfaces.

    PubMed Central

    McNally, A K; Anderson, J M

    1994-01-01

    As part of an ongoing investigation into the role of the monocyte/macrophage in biocompatibility, a major goal is to identify the adhesion mechanisms that initiate and promote the observed in vivo morphologic progression of monocyte-to-macrophage-to-foreign body giant cell on biomaterials. We have exploited differently modified polystyrenes, specific component-depleted sera, and monoclonal antibodies (mAbs) to leukocyte integrins to ask what adhesion mechanisms mediate human blood monocyte adhesion to different surfaces in vitro. Preliminary findings are that monocyte interactions with fluorinated, siliconized, nitrogenated, and oxygenated surfaces are reduced by 50-100% when complement component C3-depleted serum is used for adsorption; reductions vary with material surface properties. Adhesion is restored on all surfaces when C3-depleted serum is replenished with purified C3. Monocyte adhesion to serum-adsorbed surfaces is inhibited by mAbs to the leukocyte integrin beta subunit, CD18 (mAbs 60.3 and MHM23), and partially inhibited by a mAb to the alpha subunit, CD11b (mAb 60.1), suggesting adhesive interactions between adsorbed C3bi (the hemolytically inactive form of the C3b fragment) and the leukocyte integrin CD11b/CD18. However, adsorbed fibrinogen reduces the effectiveness of these mAbs, indicating that alternative adhesion mechanisms may operate depending on the propensities of critical adhesion-mediating components to be adsorbed onto different surfaces. Images PMID:7937848

  3. Integrins beta 5, beta 3 and alpha v are apically distributed in endometrial epithelium.

    PubMed

    Aplin, J D; Spanswick, C; Behzad, F; Kimber, S J; Vićovac, L

    1996-07-01

    Several adhesion molecules have been shown to occur at the surface of endometrial cells. One of these is the integrin alpha v subunit which associates with various beta chains including beta 5. We demonstrate the presence of integrin beta 5 polypeptide in human endometrial epithelial cells throughout the menstrual cycle using immunocytochemistry with monospecific antibodies, and at the mRNA level by thermal amplification from endometrial cDNA. Integrin beta 5 is also found in a population of bone marrow-derived cells. A notable feature of the distribution of the beta 5 subunit in the glandular and luminal epithelium is its apical localization, which may suggest an involvement in implantation. However, no evidence was found for regulated expression of epithelial beta 5. In mouse, the beta 5 subunit is found at both the apical and basal surface of epithelial cells and expression is essentially oestrous cycle-independent. Comparisons are made in both species with the distribution of the alpha v and beta 3 subunits which also localize to the apical epithelium.

  4. Monocyte-endothelial adhesion in chronic rheumatoid arthritis. In situ detection of selectin and integrin-dependent interactions.

    PubMed Central

    Grober, J S; Bowen, B L; Ebling, H; Athey, B; Thompson, C B; Fox, D A; Stoolman, L M

    1993-01-01

    Blood monocytes are the principal reservoir for tissue macrophages in rheumatoid synovitis. Receptor-mediated adhesive interactions between circulating cells and the synovial venules initiate recruitment. These interactions have been studied primarily in cultured endothelial cells. Thus the functional activities of specific adhesion receptors, such as the endothelial selectins and the leukocytic integrins, have not been evaluated directly in diseased tissues. We therefore examined monocyte-microvascular interactions in rheumatoid synovitis by modifying the Stamper-Woodruff frozen section binding assay initially developed to study lymphocyte homing. Specific binding of monocytes to venules lined by low or high endothelium occurred at concentrations as low as 5 x 10(5) cells/ml. mAbs specific for P-selectin (CD62, GMP-140/PADGEM) blocked adhesion by > 90% in all synovitis specimens examined. In contrast, P-selectin-mediated adhesion to the microvasculature was either lower or absent in frozen sections of normal foreskin and placenta. mAbs specific for E-selectin (ELAM-1) blocked 20-50% of monocyte attachment in several RA synovial specimens but had no effect in others. mAbs specific for LFA-1, Mo1/Mac 1, the integrin beta 2-chain, and L-selectin individually inhibited 30-40% of adhesion. An mAb specific for the integrin beta 1-chain inhibited the attachment of elutriated monocytes up to 20%. We conclude that P-selectin associated with the synovial microvasculature initiates shear-resistant adhesion of monocytes in the Stamper-Woodruff assay and stabilizes bonds formed by other selectins and the integrins. Thus the frozen section binding assay permits direct evaluation of leukocyte-microvascular adhesive interactions in inflamed tissues and suggests a prominent role for P-selectin in monocyte recruitment in vivo. Images PMID:7685772

  5. Monitoring of integrin-mediated adhesion of human ovarian cancer cells to model protein surfaces by quartz crystal resonators: evaluation in the impedance analysis mode.

    PubMed

    Li, Jing; Thielemann, Christiane; Reuning, Ute; Johannsmann, Diethelm

    2005-01-15

    The quartz crystal microbalance (QCM) was used to monitor specific, integrin-mediated adhesion of human ovarian cancer cells to distinct extracellular matrix (ECM) proteins immobilized on gold-coated quartz crystal resonators. The QCM was operated in the impedance analysis mode, where frequency shift as well as bandwidth are accessible on a broad range of overtones. The increase in bandwidth caused by covering the quartz resonator with cells was reproducible and largely independent of overtone order, whereas the frequency shift displayed some variability. Thus the bandwidth proved to be the more robust parameter for sensing cell adhesive events. The bandwidth increased in proportion to the number of seeded cells to the quartz crystal as long as the number was below 150,000 cells/ml. Comparing the resonance parameters on different harmonics, one finds that viscoelastic modeling with homogeneous layer systems cannot reproduce the results: lateral heterogeneity has to be taken into account. The differences in adhesive strength of human ovarian cancer cells towards selected ECM proteins monitored by QCM was in good agreement with data obtained by conventional cell adhesion assays. Strong cell adhesion was observed to the ECM proteins vitronectin (VN) and fibronectin (FN), while only weak attachment occurred on laminin. In order to prove specific, integrin alphavbeta3-mediated cell adhesion to its ligands FN and VN, the cyclic integrin alphavbeta3-directed peptide c(RGDfV) was used as competitor and significantly reversed cell adhesion. Since integrin interaction with ECM proteins is dependent on the presence of bivalent cations, cell detachment was also seen after treatment of cell monolayers with the chelator ethylene-dinitro-tetra-acetic acid (EDTA). The QCM technique is a reliable method to monitor cell adsorption to ECM-pretreated surfaces in real time. It may be an alternative tool for screening specific and selective antagonists of integrin/ECM interaction.

  6. Ligand-induced adhesion to activated endothelium and to vascular cell adhesion molecule-1 in lymphocytes transfected with the N-formyl peptide receptor.

    PubMed

    Honda, S; Campbell, J J; Andrew, D P; Engelhardt, B; Butcher, B A; Warnock, R A; Ye, R D; Butcher, E C

    1994-04-15

    Binding of FMLP to the neutrophil N-formyl peptide receptor (FPR) transmits signals through pertussis toxin-sensitive G proteins triggering Ca2+ flux, superoxide production, granule exocytosis, and neutrophil aggregation and adhesion involving the beta 2 (CD18) integrins. Expression of the FPR in mouse fibroblasts or human kidney cells has been shown to confer an N-formyl peptide-inducible Ca2+ flux in transfectants. Here we demonstrate that the transfected receptor can also support ligand-induced alterations in cellular adhesion. We established stable transfectants of mouse L1-2 pre-B cells with cDNA for human FPR (L1-2 FPR cells). The transfectants bind N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys-fluorescein with 1.4 x 10(5) sites per cell and a dissociation constant of 3.3 nM. Stimulation with FMLP induces a transient Ca2+ flux. FMLP also triggers adhesion of L1-2 FPR cells to TNF-alpha- or LPS-activated bEnd3 cells (mouse brain-derived endothelial cells) and to purified mouse VCAM-1. Binding is inhibited by Abs to VCAM-1 and to the alpha-chain of its lymphocyte receptor (the alpha 4 beta 1 integrin, VLA-4). Stimulation with FMLP does not induce a change in cell surface expression of alpha 4. Induced adhesion to VCAM-1 is rapid, detectable at the earliest times measurable (30 to 60 s after FMLP addition), and is inhibited by pertussis toxin. We conclude that FPR can mediate integrin activation not only in neutrophils but also in lymphocytes, and can trigger rapid adhesion via lymphocyte alpha 4 beta 1. The adhesion of lymphocytes is critical to their migration and targeting; our results suggest the possibility of manipulating adhesive responses through expression of chemoattractant receptors in lymphoid cells engineered for cellular therapy, allowing targeted adhesion and potentially migration in response to locally administered ligands.

  7. Current Anti-Integrin Therapy for Ocular Disease.

    PubMed

    Gonzalez-Salinas, Roberto; Hernández-Zimbrón, Luis F; Gulias-Cañizo, Rosario; Sánchez-Vela, Mario Alberto; Ochoa-De La Paz, Lenin; Zamora, Ruben; Quiroz-Mercado, Hugo

    2017-10-31

    The integrin family of cell adhesion molecules mediates homeostasis, signal transduction, and various other interactions between the cell and the extracellular matrix. Integrins are type-1 transmembrane glycoproteins located on the cell surface, widely expressed in leukocytes, which play an important role in the inflammatory pathway. The purpose of this review is to summarize the current state of anti-integrin therapy and to assess ongoing clinical trials in ocular disease. We performed a search on PubMed, CINAHL, and Embase for the published literature available using the MeSH terms: "integrin therapy" and "αLβ2," "α4β1" and "α4β7," "αvβ3," "αvβ5," and "αvβ1" and/or "ophthalmology," and "clinical trials." We used no language restrictions. We generated searches to account for synonyms of these keywords and MESH headings as follows: (1) "integrin," "therapy," or "treatment"; (2) "clinical trials," "ophthalmology," or "ocular." In addition, the analysis included phase 2 and phase 3 clinical trials with a minimal follow-up of six months. Integrin antagonists have shown their capacity to improve signs and symptoms of patients with dry eye disease, age-related macular degeneration, diabetic macular edema, and vitreomacular traction.

  8. Identification of integrin heterodimers functioning on the surface of undifferentiated porcine primed embryonic stem cells.

    PubMed

    Kim, Hwa-Young; Baek, Song; Han, Na Rae; Lee, Eunsong; Park, Choon-Keun; Lee, Seung Tae

    2018-05-29

    In vitro expansion of undifferentiated porcine primed embryonic stem (ES) cells is facilitated by use of non-cellular niches that mimic three-dimensional (3D) microenvironments enclosing an inner cell mass of porcine blastocysts. Therefore, we investigated the integrin heterodimers on the surface of undifferentiated porcine primed ES cells for the purpose of developing a non-cellular niche to support in vitro maintenance of the self-renewal ability of porcine primed ES cells. Immunocytochemistry and a fluorescence immunoassay were performed to assess integrin α and β subunit levels, and attachment and antibody inhibition assays were used to evaluate the function of integrin heterodimers. The integrin α 3 , α 5 , α 6 , α 9 , α V , and β 1 subunits, but not the α 1 , α 2 , α 4 , α 7 , and α 8 subunits, were identified on the surface of undifferentiated porcine primed ES cells. Subsequently, significant increase of their adhesion to fibronectin, tenascin C and vitronectin were observed and functional blocking of integrin heterodimer α 5 β 1 , α 9 β 1 , or α V β 1 showed significantly inhibited adhesion to fibronectin, tenascin C, or vitronectin. No integrin α 6 β 1 heterodimer?mediated adhesion to laminin was detected. These results demonstrate that active α 5 β 1 , α 9 β 1 , and α V β 1 integrin heterodimers are present on the surface of undifferentiated porcine primed ES cells, together with inactive integrin α 3 (presumed) and α 6 subunits. This article is protected by copyright. All rights reserved.

  9. Ibrutinib Inhibits Platelet Integrin αIIbβ3 Outside-In Signaling and Thrombus Stability But Not Adhesion to Collagen.

    PubMed

    Bye, Alexander P; Unsworth, Amanda J; Vaiyapuri, Sakthivel; Stainer, Alexander R; Fry, Michael J; Gibbins, Jonathan M

    2015-11-01

    Ibrutinib is an irreversible Bruton tyrosine kinase inhibitor approved for treatment of Waldenstrom macroglobulinemia, chronic lymphocytic leukemia, and mantle cell lymphoma that increases the risk of bleeding among patients. Platelets from ibrutinib-treated patients exhibit deficiencies in collagen-evoked signaling in suspension; however, the significance of this observation and how it relates to bleeding risk is unclear, as platelets encounter immobile collagen in vivo. We sought to clarify the effects of ibrutinib on platelet function to better understand the mechanism underlying bleeding risk. By comparing signaling in suspension and during adhesion to immobilized ligands, we found that the collagen signaling deficiency caused by ibrutinib is milder during adhesion to immobilized collagen. We also found that platelets in whole blood treated with ibrutinib adhered to collagen under arterial shear but formed unstable thrombi, suggesting that the collagen signaling deficiency caused by ibrutinib may not be the predominant cause of bleeding in vivo. However, clot retraction and signaling evoked by platelet adhesion to immobilized fibrinogen were also inhibited by ibrutinib, indicating that integrin αIIbβ3 outside-in signaling is also effected in addition to GPVI signaling. When ibrutinib was combined with the P2Y12 inhibitor, cangrelor, thrombus formation under arterial shear was inhibited additively. These findings suggest that (1) ibrutinib causes GPVI and integrin αIIbβ3 platelet signaling deficiencies that result in formation of unstable thrombi and may contribute toward bleeding observed in vivo and (2) combining ibrutinib with P2Y12 antagonists, which also inhibit thrombus stability, may have a detrimental effect on hemostasis. © 2015 American Heart Association, Inc.

  10. DR-nm23 expression affects neuroblastoma cell differentiation, integrin expression, and adhesion characteristics.

    PubMed

    Amendola, R; Martinez, R; Negroni, A; Venturelli, D; Tanno, B; Calabretta, B; Raschellà, G

    2001-01-01

    Nm23 gene family has been associated with metastasis suppression and differentiation. We studied DR-nm23 during neuroblastoma cells differentiation. DR-nm23 expression increased after retinoic acid induction of differentiation in human cell lines SK-N-SH and LAN-5. In several cell lines, overexpression of DR-nm23 was associated with more differentiated phenotypes. SK-N-SH cells increased vimentin expression, increased deposition of collagen type IV, modulated integrin expression, and underwent growth arrest; the murine neuroblastoma cell line N1E-115 showed neurite outgrowth and a striking enhancement of beta1 integrin expression. Up-regulation of beta1 integrin was specifically responsible for the increase in the adhesion to collagen type I-coated plates. Finally, cells overexpressing DR-nm23 were unable to growth in soft agar. In conclusion, DR-nm23 expression is directly involved in differentiation of neuroblastoma cells, and its ability to affects the adhesion to extracellular substrates and to inhibit growth in soft agar suggests an involvement in the metastatic potential of neuroblastoma.

  11. A recombinant tail-less integrin beta 4 subunit disrupts hemidesmosomes, but does not suppress alpha 6 beta 4-mediated cell adhesion to laminins

    PubMed Central

    1995-01-01

    To examine the function of the alpha 6 beta 4 integrin we have determined its ligand-binding ability and overexpressed two potentially dominant negative mutant beta 4 subunits, lacking either the cytoplasmic or extracellular domain, in bladder epithelial 804G cells. The results of cell adhesion and radioligand-binding assays showed that alpha 6 beta 4 is a receptor for several laminin isoforms, including laminin 1, 2, 4, and 5. Overexpression of the tail-less or head-less mutant beta 4 subunit did not suppress alpha 6 beta 4-mediated adhesion to laminins, as both types of transfectants adhered to these ligands in the presence of blocking anti-beta 1 antibodies as well as the controls. However, immunofluorescence experiments indicated that the endogenous alpha 6 beta 4 integrin and other hemidesmosomal markers were not concentrated in hemidesmosomes in cells overexpressing tail- less beta 4, while the distribution of these molecules was not altered in cells overexpressing the head-less subunit. Electron microscopic studies confirmed that cells overexpressing tail-less beta 4 had a drastically reduced number of hemidesmosomes, while cells expressing the head-less subunit had a normal number of these structures. Thus, expression of a tail-less, but not a head-less mutant beta 4 subunit leads to a dominant negative effect on hemidesmosome assembly without suppressing initial adhesion to laminins. We conclude that the alpha 6 beta 4 integrin binds to several laminins and plays an essential role in the assembly and/or stability of hemidesmosomes, that alpha 6 beta 4- mediated adhesion and hemidesmosome assembly have distinct requirements, and that it is possible to use a dominant negative approach to selectively interfere with a specific function of an integrin. PMID:7721947

  12. Cell adhesion monitoring of human induced pluripotent stem cell based on intrinsic molecular charges

    NASA Astrophysics Data System (ADS)

    Sugimoto, Haruyo; Sakata, Toshiya

    2014-01-01

    We have shown a simple way for real-time, quantitative, non-invasive, and non-label monitoring of human induced pluripotent stem (iPS) cell adhesion by use of a biologically coupled-gate field effect transistor (bio-FET), which is based on detection of molecular charges at cell membrane. The electrical behavior revealed quantitatively the electrical contacts of integrin-receptor at the cell membrane with RGDS peptide immobilized at the gate sensing surface, because that binding site was based on cationic α chain of integrin. The platform based on the bio-FET would provide substantial information to evaluate cell/material bio-interface and elucidate biding mechanism of adhesion molecules, which could not be interpreted by microscopic observation.

  13. ADAP interactions with talin and kindlin promote platelet integrin αIIbβ3 activation and stable fibrinogen binding

    PubMed Central

    Kang, Jian; Kahner, Bryan; Ye, Feng; Ginsberg, Mark H.; Shattil, Sanford J.

    2014-01-01

    ADAP is a hematopoietic-restricted adapter protein that promotes integrin activation and is a carrier for other adapter proteins, Src kinase–associated phosphoprotein 1 (SKAP1) and SKAP2. In T lymphocytes, SKAP1 is the ADAP-associated molecule that activates integrins through direct linkages with Rap1 effectors (regulator of cell adhesion and polarization enriched in lymphoid tissues; Rap1-interacting adapter molecule). ADAP also promotes integrin αIIbβ3 activation in platelets, which lack SKAP1, suggesting an ADAP integrin–regulatory pathway different from those in lymphocytes. Here we characterized a novel association between ADAP and 2 essential integrin-β cytoplasmic tail-binding proteins involved in αIIbβ3 activation, talin and kindlin-3. Glutathione S-transferase pull-downs identified distinct regions in ADAP necessary for association with kindlin or talin. ADAP was physically proximal to talin and kindlin-3 in human platelets, as assessed biochemically, and by immunofluorescence microscopy and proximity ligation. Relative to wild-type mouse platelets, ADAP-deficient platelets exhibited reduced co-localization of talin with αIIbβ3, and reduced irreversible fibrinogen binding in response to a protease activated receptor 4 (PAR4) thrombin receptor agonist. When ADAP was heterologously expressed in Chinese hamster ovary cells co-expressing αIIbβ3, talin, PAR1, and kindlin-3, it associated with an αIIbβ3/talin complex and enabled kindlin-3 to promote agonist-dependent ligand binding to αIIbβ3. Thus, ADAP uniquely promotes activation of and irreversible fibrinogen binding to platelet αIIbβ3 through interactions with talin and kindlin-3. PMID:24523237

  14. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.

    PubMed

    Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V

    2007-09-14

    The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.

  15. Activated tumor cell integrin αvβ3 cooperates with platelets to promote extravasation and metastasis from the blood stream.

    PubMed

    Weber, Martin R; Zuka, Masahiko; Lorger, Mihaela; Tschan, Mario; Torbett, Bruce E; Zijlstra, Andries; Quigley, James P; Staflin, Karin; Eliceiri, Brian P; Krueger, Joseph S; Marchese, Patrizia; Ruggeri, Zaverio M; Felding, Brunhilde H

    2016-04-01

    Metastasis is the main cause of death in cancer patients, and understanding mechanisms that control tumor cell dissemination may lead to improved therapy. Tumor cell adhesion receptors contribute to cancer spreading. We noted earlier that tumor cells can expressing the adhesion receptor integrin αvβ3 in distinct states of activation, and found that cells which metastasize from the blood stream express it in a constitutively high affinity form. Here, we analyzed steps of the metastatic cascade in vivo and asked, when and how the affinity state of integrin αvβ3 confers a critical advantage to cancer spreading. Following tumor cells by real time PCR, non-invasive bioluminescence imaging, intravital microscopy and histology allowed us to identify tumor cell extravasation from the blood stream as a rate-limiting step supported by high affinity αvβ3. Successful transendothelial migration depended on cooperation between tumor cells and platelets involving the high affinity tumor cell integrin and release of platelet granules. Thus, this study identifies the high affinity conformer of integrin αvβ3 and its interaction with platelets as critical for early steps during hematogenous metastasis and target for prevention of metastatic disease. © 2016 Elsevier Ltd. All rights reserved.

  16. Neutrophil recruitment limited by high-affinity bent β2 integrin binding ligand in cis

    PubMed Central

    Fan, Zhichao; McArdle, Sara; Marki, Alex; Mikulski, Zbigniew; Gutierrez, Edgar; Engelhardt, Britta; Deutsch, Urban; Ginsberg, Mark; Groisman, Alex; Ley, Klaus

    2016-01-01

    Neutrophils are essential for innate immunity and inflammation and many neutrophil functions are β2 integrin-dependent. Integrins can extend (E+) and acquire a high-affinity conformation with an ‘open' headpiece (H+). The canonical switchblade model of integrin activation proposes that the E+ conformation precedes H+, and the two are believed to be structurally linked. Here we show, using high-resolution quantitative dynamic footprinting (qDF) microscopy combined with a homogenous conformation-reporter binding assay in a microfluidic device, that a substantial fraction of β2 integrins on human neutrophils acquire an unexpected E−H+ conformation. E−H+ β2 integrins bind intercellular adhesion molecules (ICAMs) in cis, which inhibits leukocyte adhesion in vitro and in vivo. This endogenous anti-inflammatory mechanism inhibits neutrophil aggregation, accumulation and inflammation. PMID:27578049

  17. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4βl integrin

    NASA Astrophysics Data System (ADS)

    Yednock, Ted A.; Cannon, Catherine; Fritz, Lawrence C.; Sanchez-Madrid, Francisco; Steinman, Lawrence; Karin, Nathan

    1992-03-01

    EXPERIMENTAL autoimmune encephalomyelitis (EAE) is an inflammatory condition of the central nervous system with similarities to multiple sclerosis1,2. In both diseases, circulating leukocytes penetrate the blood-brain barrier and damage myelin, resulting in impaired nerve conduction and paralysis3-5. We sought to identify the adhesion receptors that mediate the attachment of circulating leukocytes to inflamed brain endothelium in EAE, because this interaction is the first step in leukocyte entry into the central nervous system. Using an in vitro adhesion assay on tissue sections, we found that lymphocytes and monocytes bound selectively to inflamed EAE brain vessels. Binding was inhibited by antibodies against the integrin molecule α4βl, but not by antibodies against numerous other adhesion receptors. When tested in vivo, anti-α4 integrin effectively prevented the accumulation of leukocytes in the central nervous system and the development of EAE. Thus, therapies designed to interfere with α4βl integrin may be useful in treating inflammatory diseases of the central nervous system, such as multiple sclerosis.

  18. Cyclophilin B induces integrin-mediated cell adhesion by a mechanism involving CD98-dependent activation of protein kinase C-delta and p44/42 mitogen-activated protein kinases.

    PubMed

    Melchior, Aurélie; Denys, Agnès; Deligny, Audrey; Mazurier, Joël; Allain, Fabrice

    2008-02-01

    Initially identified as a cyclosporin-A binding protein, cyclophilin B (CyPB) is an inflammatory mediator that induces adhesion of T lymphocytes to fibronectin, by a mechanism dependent on CD147 and alpha 4 beta 1 integrins. Recent findings have suggested that another cell membrane protein, CD98, may cooperate with CD147 to regulate beta1 integrin functions. Based on these functional relationships, we examined the contribution of CD98 in the pro-adhesive activity of CyPB, by utilizing the responsive promonocyte cell line THP-1. We demonstrated that cross-linking CD98 with CD98-AHN-18 antibody mimicked the responses induced by CyPB, i.e. homotypic aggregation, integrin-mediated adhesion to fibronectin and activation of p44/42 MAPK. Consistent with previous data, immunoprecipitation confirmed the existence of a heterocomplex wherein CD147, CD98 and beta1 integrins were associated. We then demonstrated that CyPB-induced cell adhesion and p44/42 MAPK activation were dependent on the participation of phosphoinositide 3-kinase and subsequent activation of protein kinase C-delta. Finally, silencing the expression of CD98 by RNA interference potently reduced CyPB-induced cell responses, thus confirming the role of CD98 in the pro-adhesive activity of CyPB. Altogether, our results support a model whereby CyPB induces integrin-mediated adhesion via interaction with a multimolecular unit formed by the association between CD147, CD98 and beta1 integrins.

  19. Identification of a novel adhesion molecule involved in the virulence of Legionella pneumophila.

    PubMed

    Chang, Bin; Kura, Fumiaki; Amemura-Maekawa, Junko; Koizumi, Nobuo; Watanabe, Haruo

    2005-07-01

    Legionella pneumophila is an intracellular bacterium, and its successful parasitism in host cells involves two reciprocal phases: transmission and intracellular replication. In this study, we sought genes that are involved in virulence by screening a genomic DNA library of an L. pneumophila strain, 80-045, with convalescent-phase sera of Legionnaires' disease patients. Three antigens that reacted exclusively with the convalescent-phase sera were isolated. One of them, which shared homology with an integrin analogue of Saccharomyces cerevisiae, was named L. pneumophila adhesion molecule homologous with integrin analogue of S. cerevisiae (LaiA). The laiA gene product was involved in L. pneumophila adhesion to and invasion of the human lung alveolar epithelial cell line A549 during in vitro coculture. However, its presence did not affect multiplication of L. pneumophila within a U937 human macrophage cell line. Furthermore, after intranasal infection of A/J mice, the laiA mutant was eliminated from lungs and caused reduced mortality compared to the wild isolate. Thus, we conclude that the laiA gene encodes a virulence factor that is involved in transmission of L. pneumophila 80-045 and may play a role in Legionnaires' disease in humans.

  20. Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins

    PubMed Central

    Jamerson, Melissa; da Rocha-Azevedo, Bruno; Cabral, Guy A.

    2012-01-01

    Naegleria fowleri and Naegleria lovaniensis are closely related free-living amoebae found in the environment. N. fowleri causes primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system, while N. lovaniensis is non-pathogenic. N. fowleri infection occurs when the amoebae access the nasal passages, attach to the nasal mucosa and its epithelial lining, and migrate to the brain. This process involves interaction with components of the host extracellular matrix (ECM). Since the ability to invade tissues can be a characteristic that distinguishes pathogenic from non-pathogenic amoebae, the objective of this study was to assess adhesion to, and invasion of, the ECM by these two related but distinct Naegleria species. N. fowleri exhibited a higher level of adhesion to the ECM components laminin-1, fibronectin and collagen I. Scanning electron microscopy revealed that N. fowleri attached on ECM substrata exhibited a spread-out appearance that included the presence of focal adhesion-like structures. Western immunoblotting revealed two integrin-like proteins for both species, but one of these, with a molecular mass of approximately 70 kDa, was detected at a higher level in N. fowleri. Confocal microscopy indicated that the integrin-like proteins co-localized to the focal adhesion-like structures. Furthermore, anti-integrin antibody decreased adhesion of N. fowleri to ECM components. Finally, N. fowleri disrupted 3D ECM scaffolds, while N. lovaniensis had a minimal effect. Collectively, these results indicate a distinction in adhesion to, and invasion of, ECM proteins between N. fowleri and N. lovaniensis. PMID:22222499

  1. Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins.

    PubMed

    Jamerson, Melissa; da Rocha-Azevedo, Bruno; Cabral, Guy A; Marciano-Cabral, Francine

    2012-03-01

    Naegleria fowleri and Naegleria lovaniensis are closely related free-living amoebae found in the environment. N. fowleri causes primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system, while N. lovaniensis is non-pathogenic. N. fowleri infection occurs when the amoebae access the nasal passages, attach to the nasal mucosa and its epithelial lining, and migrate to the brain. This process involves interaction with components of the host extracellular matrix (ECM). Since the ability to invade tissues can be a characteristic that distinguishes pathogenic from non-pathogenic amoebae, the objective of this study was to assess adhesion to, and invasion of, the ECM by these two related but distinct Naegleria species. N. fowleri exhibited a higher level of adhesion to the ECM components laminin-1, fibronectin and collagen I. Scanning electron microscopy revealed that N. fowleri attached on ECM substrata exhibited a spread-out appearance that included the presence of focal adhesion-like structures. Western immunoblotting revealed two integrin-like proteins for both species, but one of these, with a molecular mass of approximately 70 kDa, was detected at a higher level in N. fowleri. Confocal microscopy indicated that the integrin-like proteins co-localized to the focal adhesion-like structures. Furthermore, anti-integrin antibody decreased adhesion of N. fowleri to ECM components. Finally, N. fowleri disrupted 3D ECM scaffolds, while N. lovaniensis had a minimal effect. Collectively, these results indicate a distinction in adhesion to, and invasion of, ECM proteins between N. fowleri and N. lovaniensis.

  2. SEL1L Regulates Adhesion, Proliferation and Secretion of Insulin by Affecting Integrin Signaling

    PubMed Central

    Diaferia, Giuseppe R.; Cirulli, Vincenzo; Biunno, Ida

    2013-01-01

    SEL1L, a component of the endoplasmic reticulum associated degradation (ERAD) pathway, has been reported to regulate the (i) differentiation of the pancreatic endocrine and exocrine tissue during the second transition of mouse embryonic development, (ii) neural stem cell self-renewal and lineage commitment and (iii) cell cycle progression through regulation of genes related to cell-matrix interaction. Here we show that in the pancreas the expression of SEL1L is developmentally regulated, such that it is readily detected in developing islet cells and in nascent acinar clusters adjacent to basement membranes, and becomes progressively restricted to the islets of Langherans in post-natal life. This peculiar expression pattern and the presence of two inverse RGD motifs in the fibronectin type II domain of SEL1L protein indicate a possible interaction with cell adhesion molecules to regulate islets architecture. Co-immunoprecipitation studies revealed SEL1L and ß1-integrin interaction and, down-modulation of SEL1L in pancreatic ß-cells, negatively influences both cell adhesion on selected matrix components and cell proliferation likely due to altered ERK signaling. Furthermore, the absence of SEL1L protein strongly inhibits glucose-stimulated insulin secretion in isolated mouse pancreatic islets unveiling an important role of SEL1L in insulin trafficking. This phenotype can be rescued by the ectopic expression of the ß1-integrin subunit confirming the close interaction of these two proteins in regulating the cross-talk between extracellular matrix and insulin signalling to create a favourable micro-environment for ß-cell development and function. PMID:24324549

  3. CD147-targeting siRNA inhibits cell-matrix adhesion of human malignant melanoma cells by phosphorylating focal adhesion kinase.

    PubMed

    Nishibaba, Rie; Higashi, Yuko; Su, Juan; Furukawa, Tatsuhiko; Kawai, Kazuhiro; Kanekura, Takuro

    2012-01-01

    CD147/basigin, highly expressed on the surface of malignant tumor cells including malignant melanoma (MM) cells, plays a critical role in the invasiveness and metastasis of MM. Metastasis is an orchestrated process comprised of multiple steps including adhesion and invasion. Integrin, a major adhesion molecule, co-localizes with CD147/basigin on the cell surface. Using the human MM cell line A375 that highly expresses CD147/basigin, we investigated whether CD147/basigin is involved in adhesion in association with integrin. CD147/basigin was knocked-down using siRNA targeting CD147 to elucidate the role of CD147/basigin. Cell adhesion was evaluated by adhesion assay on matrix-coated plates. The localization of integrin was inspected under a confocal microscope and the expression and phosphorylation of focal adhesion kinase (FAK), a downstream kinase of integrin, were examined by western blot analysis. Silencing of CD147/basigin in A375 cells by siRNA induced the phosphorylation of FAK at Y397. Integrin identified on the surface of parental cells was distributed in a speckled fashion in the cytoplasm of CD147 knockdown cells, resulting in morphological changes from a round to a polygonal shape with pseudopodial protrusions. Silencing of CD147/basigin in A375 cells clearly weakened their adhesiveness to collagen I and IV. Our results suggest that CD147/basigin regulates the adhesion of MM cells to extracellular matrices and of integrin β1 signaling via the phosphorylation of FAK. © 2011 Japanese Dermatological Association.

  4. Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 Integrin Mediates Interaction of Melanoma Cells with Platelets

    PubMed Central

    Lonsdorf, Anke S.; Krämer, Björn F.; Fahrleitner, Manuela; Schönberger, Tanja; Gnerlich, Stephan; Ring, Sabine; Gehring, Sarah; Schneider, Stefan W.; Kruhlak, Michael J.; Meuth, Sven G.; Nieswandt, Bernhard; Gawaz, Meinrad; Enk, Alexander H.; Langer, Harald F.

    2012-01-01

    A mutual relationship exists between metastasizing tumor cells and components of the coagulation cascade. The exact mechanisms as to how platelets influence blood-borne metastasis, however, remain poorly understood. Here, we used murine B16 melanoma cells to observe functional aspects of how platelets contribute to the process of hematogenous metastasis. We found that platelets interfere with a distinct step of the metastasis cascade, as they promote adhesion of melanoma cells to the endothelium in vitro under shear conditions. Constitutively active platelet receptor GPIIb/IIIa (integrin αIIbβ3) expressed on Chinese hamster ovary cells promoted melanoma cell adhesion in the presence of fibrinogen, whereas blocking antibodies to aνβ3 integrin on melanoma cells or to GPIIb/IIIa significantly reduced melanoma cell adhesion to platelets. Furthermore, using intravital microscopy, we observed functional platelet-melanoma cell interactions, as platelet depletion resulted in significantly reduced melanoma cell adhesion to the injured vascular wall in vivo. Using a mouse model of hematogenous metastasis to the lung, we observed decreased metastasis of B16 melanoma cells to the lung by treatment with a mAb blocking the aν subunit of aνβ3 integrin. This effect was significantly reduced when platelets were depleted in vivo. Thus, the engagement of GPIIb/IIIa with aνβ3 integrin interaction mediates tumor cell-platelet interactions and highlights how this interaction is involved in hematogenous tumor metastasis. PMID:22102277

  5. Diverse roles of integrin receptors in articular cartilage.

    PubMed

    Shakibaei, M; Csaki, C; Mobasheri, A

    2008-01-01

    Integrins are heterodimeric integral membrane proteins made up of alpha and beta subunits. At least eighteen alpha and eight beta subunit genes have been described in mammals. Integrin family members are plasma membrane receptors involved in cell adhesion and active as intra- and extracellular signalling molecules in a variety of processes including embryogenesis, hemostasis, tissue repair, immune response and metastatic spread of tumour cells. Integrin beta 1 (beta1-integrin), the protein encoded by the ITGB1 gene (also known as CD29 and VLAB), is a multi-functional protein involved in cell-matrix adhesion, cell signalling, cellular defense, cell adhesion, protein binding, protein heterodimerisation and receptor-mediated activity. It is highly expressed in the human body (17.4 times higher than the average gene in the last updated revision of the human genome). The extracellular matrix (ECM) of articular cartilage is a unique environment. Interactions between chondrocytes and the ECM regulate many biological processes important to homeostasis and repair of articular cartilage, including cell attachment, growth, differentiation and survival. The beta1-integrin family of cell surface receptors appears to play a major role in mediating cell-matrix interactions that are important in regulating these fundamental processes. Chondrocyte mechanoreceptors have been proposed to incorporate beta1-integrins and mechanosensitive ion channels which link with key ECM, cytoskeletal and signalling proteins to maintain the chondrocyte phenotype, prevent chondrocyte apoptosis and regulate chondrocyte-specific gene expression. This review focuses on the expression and function of beta1-integrins in articular chondrocytes, its role in the unique biology of these cells and its distribution in cartilage.

  6. Fractalkine and CX3CR1 Mediate a Novel Mechanism of Leukocyte Capture, Firm Adhesion, and Activation under Physiologic Flow

    PubMed Central

    Fong, Alan M.; Robinson, Lisa A.; Steeber, Douglas A.; Tedder, Thomas F.; Yoshie, Osamu; Imai, Toshio; Patel, Dhavalkumar D.

    1998-01-01

    Leukocyte migration into sites of inflammation involves multiple molecular interactions between leukocytes and vascular endothelial cells, mediating sequential leukocyte capture, rolling, and firm adhesion. In this study, we tested the role of molecular interactions between fractalkine (FKN), a transmembrane mucin-chemokine hybrid molecule expressed on activated endothelium, and its receptor (CX3CR1) in leukocyte capture, firm adhesion, and activation under physiologic flow conditions. Immobilized FKN fusion proteins captured resting peripheral blood mononuclear cells at physiologic wall shear stresses and induced firm adhesion of resting monocytes, resting and interleukin (IL)-2–activated CD8+ T lymphocytes and IL-2–activated NK cells. FKN also induced cell shape change in firmly adherent monocytes and IL-2–activated lymphocytes. CX3CR1-transfected K562 cells, but not control K562 cells, firmly adhered to FKN-expressing ECV-304 cells (ECV-FKN) and tumor necrosis factor α–activated human umbilical vein endothelial cells. This firm adhesion was not inhibited by pertussis toxin, EDTA/EGTA, or antiintegrin antibodies, indicating that the firm adhesion was integrin independent. In summary, FKN mediated the rapid capture, integrin-independent firm adhesion, and activation of circulating leukocytes under flow. Thus, FKN and CX3CR1 mediate a novel pathway for leukocyte trafficking. PMID:9782118

  7. The cancer glycocalyx mechanically primes integrin-mediated growth and survival

    PubMed Central

    Paszek, Matthew J.; DuFort, Christopher C.; Rossier, Olivier; Bainer, Russell; Mouw, Janna K.; Godula, Kamil; Hudak, Jason E.; Lakins, Jonathon N.; Wijekoon, Amanda C.; Cassereau, Luke; Rubashkin, Matthew G.; Magbanua, Mark J.; Thorn, Kurt S.; Davidson, Michael W.; Rugo, Hope S.; Park, John W.; Hammer, Daniel A.; Giannone, Grégory; Bertozzi, Carolyn R.; Weaver, Valerie M.

    2015-01-01

    Malignancy is associated with altered expression of glycans and glycoproteins that contribute to the cellular glycocalyx. We constructed a glycoprotein expression signature, which revealed that metastatic tumours upregulate expression of bulky glycoproteins. A computational model predicted that these glycoproteins would influence transmembrane receptor spatial organization and function. We tested this prediction by investigating whether bulky glycoproteins in the glycocalyx promote a tumour phenotype in human cells by increasing integrin adhesion and signalling. Our data revealed that a bulky glycocalyx facilitates integrin clustering by funnelling active integrins into adhesions and altering integrin state by applying tension to matrix-bound integrins, independent of actomyosin contractility. Expression of large tumour-associated glycoproteins in non-transformed mammary cells promoted focal adhesion assembly and facilitated integrin-dependent growth factor signalling to support cell growth and survival. Clinical studies revealed that large glycoproteins are abundantly expressed on circulating tumour cells from patients with advanced disease. Thus, a bulky glycocalyx is a feature of tumour cells that could foster metastasis by mechanically enhancing cell-surface receptor function. PMID:25030168

  8. Glycosylation controls cooperative PECAM-VEGFR2-β3 integrin functions at the endothelial surface for tumor angiogenesis.

    PubMed

    Imamaki, Rie; Ogawa, Kazuko; Kizuka, Yasuhiko; Komi, Yusuke; Kojima, Soichi; Kotani, Norihiro; Honke, Koichi; Honda, Takashi; Taniguchi, Naoyuki; Kitazume, Shinobu

    2018-05-02

    Most of the angiogenesis inhibitors clinically used in cancer treatment target the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathway. However, the current strategies for treating angiogenesis have limited efficacy. The issue of how to treat angiogenesis and endothelial dysfunction in cancer remains a matter of substantial debate. Here we demonstrate a glycosylation-dependent regulatory mechanism for tumor angiogenesis. St6gal1 -/- mice, lacking the α2,6-sialylation enzyme, were shown to exhibit impaired tumor angiogenesis through enhanced endothelial apoptosis. In a previous study, St6gal1 -/- endothelial cells exhibited a reduction in the cell surface residency of platelet endothelial cell adhesion molecule (PECAM). In this study, we found that cooperative functionality of PECAM-VEGFR2-integrin β3 was disturbed in St6gal1 -/- mice. First, cell surface PECAM-VEGFR2 complexes were lost, and both VEGFR2 internalization and the VEGFR-dependent signaling pathway were enhanced. Second, enhanced anoikis was observed, suggesting that the absence of α2,6-sialic acid leads to dysregulated integrin signaling. Notably, ectopic expression of PECAM increased cell surface integrin3, indicating that the reduction of cell surface integrin3 involves loss-of-endothelial PECAM. The results suggest that the cell surface stability of these glycoproteins is significantly reduced by the lack of α2,6-sialic acid, leading to abnormal signal transduction. The present findings highlight that α2,6-sialylation is critically involved in endothelial survival by controlling the cell surface stability and signal transduction of angiogenic molecules, and could be a novel target for anti-angiogenesis therapy.

  9. Characterization of a Distinct Population of Circulating Human Non-Adherent Endothelial Forming Cells and Their Recruitment via Intercellular Adhesion Molecule-3

    PubMed Central

    Thompson, Emma J.; Barrett, Jeffrey M.; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F.; Bonder, Claudine S.

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis. PMID:23144795

  10. Integrin Clustering Matters: A Review of Biomaterials Functionalized with Multivalent Integrin-Binding Ligands to Improve Cell Adhesion, Migration, Differentiation, Angiogenesis, and Biomedical Device Integration.

    PubMed

    Karimi, Fatemeh; O'Connor, Andrea J; Qiao, Greg G; Heath, Daniel E

    2018-03-25

    Material systems that exhibit tailored interactions with cells are a cornerstone of biomaterial and tissue engineering technologies. One method of achieving these tailored interactions is to biofunctionalize materials with peptide ligands that bind integrin receptors present on the cell surface. However, cell biology research has illustrated that both integrin binding and integrin clustering are required to achieve a full adhesion response. This biophysical knowledge has motivated researchers to develop material systems biofunctionalized with nanoscale clusters of ligands that promote both integrin occupancy and clustering of the receptors. These materials have improved a wide variety of biological interactions in vitro including cell adhesion, proliferation, migration speed, gene expression, and stem cell differentiation; and improved in vivo outcomes including increased angiogenesis, tissue healing, and biomedical device integration. This review first introduces the techniques that enable the fabrication of these nanopatterned materials, describes the improved biological effects that have been achieved, and lastly discusses the current limitations of the technology and where future advances may occur. Although this technology is still in its nascency, it will undoubtedly play an important role in the future development of biomaterials and tissue engineering scaffolds for both in vitro and in vivo applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Integrin activation controls metastasis in human breast cancer

    NASA Astrophysics Data System (ADS)

    Felding-Habermann, Brunhilde; O'Toole, Timothy E.; Smith, Jeffrey W.; Fransvea, Emilia; Ruggeri, Zaverio M.; Ginsberg, Mark H.; Hughes, Paul E.; Pampori, Nisar; Shattil, Sanford J.; Saven, Alan; Mueller, Barbara M.

    2001-02-01

    Metastasis is the primary cause of death in human breast cancer. Metastasis to bone, lungs, liver, and brain involves dissemination of breast cancer cells via the bloodstream and requires adhesion within the vasculature. Blood cell adhesion within the vasculature depends on integrins, a family of transmembrane adhesion receptors, and is regulated by integrin activation. Here we show that integrin v3 supports breast cancer cell attachment under blood flow conditions in an activation-dependent manner. Integrin v3 was found in two distinct functional states in human breast cancer cells. The activated, but not the nonactivated, state supported tumor cell arrest during blood flow through interaction with platelets. Importantly, activated αvβ3 was expressed by freshly isolated metastatic human breast cancer cells and variants of the MDA-MB 435 human breast cancer cell line, derived from mammary fat pad tumors or distant metastases in severe combined immunodeficient mice. Expression of constitutively activated mutant αvβ3D723R, but not αvβ3WT, in MDA-MB 435 cells strongly promoted metastasis in the mouse model. Thus breast cancer cells can exhibit a platelet-interactive and metastatic phenotype that is controlled by the activation of integrin αvβ3. Consequently, alterations within tumors that lead to the aberrant control of integrin activation are expected to adversely affect the course of human breast cancer.

  12. Syndecan-4 Phosphorylation Is a Control Point for Integrin Recycling

    PubMed Central

    Morgan, Mark R.; Hamidi, Hellyeh; Bass, Mark D.; Warwood, Stacey; Ballestrem, Christoph; Humphries, Martin J.

    2013-01-01

    Summary Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of αVβ3 to the plasma membrane at the expense of α5β1. The resultant elevation in αVβ3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of α5β1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration. PMID:23453597

  13. Combating resistance to anti-IGFR antibody by targeting the integrin β3-Src pathway.

    PubMed

    Shin, Dong Hoon; Lee, Hyo-Jong; Min, Hye-Young; Choi, Sun Phil; Lee, Mi-Sook; Lee, Jung Weon; Johnson, Faye M; Mehta, Kapil; Lippman, Scott M; Glisson, Bonnie S; Lee, Ho-Young

    2013-10-16

    Several phase II/III trials of anti-insulin-like growth factor 1 receptor (IGF-1R) monoclonal antibodies (mAbs) have shown limited efficacy. The mechanisms of resistance to IGF-1R mAb-based therapies and clinically applicable strategies for overcoming drug resistance are still undefined. IGF-1R mAb cixutumumab efficacy, alone or in combination with Src inhibitors, was evaluated in 10 human head and neck squamous cell carcinoma (HNSCC) and six non-small cell lung cancer (NSCLC) cell lines in vitro in two- or three-dimensional culture systems and in vivo in cell line- or patient-derived xenograft tumors in athymic nude mice (n = 6-9 per group). Cixutumumab-induced changes in cell signaling and IGF-1 binding to integrin β3 were determined by Western or ligand blotting, immunoprecipitation, immunofluorescence, and cell adhesion analyses and enzyme-linked immunosorbent assay. Data were analyzed by the two-sided Student t test or one-way analysis of variance. Integrin β3-Src signaling cascade was activated by IGF-1 in HNSCC and NSCLC cells, when IGF-1 binding to IGF-1R was hampered by cixutumumab, resulting in Akt activation and cixutumumab resistance. Targeting integrin β3 or Src enhanced antitumor activity of cixutumumab in multiple cixutumumab-resistant cell lines and patient-derived tumors in vitro and in vivo. Mean tumor volume of mice cotreated with cixutumumab and integrin β3 siRNA was 133.7 mm(3) (95% confidence interval [CI] = 57.6 to 209.8 mm(3)) compared with those treated with cixutumumab (1472.5 mm(3); 95% CI = 1150.7 to 1794.3 mm(3); P < .001) or integrin β3 siRNA (903.2 mm(3); 95% CI = 636.1 to 1170.3 mm(3); P < .001) alone. Increased Src activation through integrin ανβ3 confers considerable resistance against anti-IGF-1R mAb-based therapies in HNSCC and NSCLC cells. Dual targeting of the IGF-1R pathway and collateral integrin β3-Src signaling module may override this resistance.

  14. Therapeutic Targeting of Eosinophil Adhesion and Accumulation in Allergic Conjunctivitis

    PubMed Central

    Baiula, Monica; Bedini, Andrea; Carbonari, Gioia; Dattoli, Samantha Deianira; Spampinato, Santi

    2012-01-01

    Considerable evidence indicates that eosinophils are important effectors of ocular allergy. Increased worldwide prevalence of allergic eye pathologies has stimulated the identification of novel drug targets, including eosinophils and adhesion molecules. Accumulation of eosinophils in the eye is a key event in the onset and maintenance of allergic inflammation and is mediated by different adhesion molecules. Antihistamines with multiple mechanisms of action can be effective during the early and late phases of allergic conjunctivitis by blocking the interaction between β1 integrins and vascular cell adhesion molecule (VCAM)-1. Small molecule antagonists that target key elements in the process of eosinophil recruitment have been identified and reinforce the validity of α4β1 integrin as a therapeutic target. Glucocorticoids are among the most effective drugs for ocular allergy, but their use is limited by adverse effects. Novel dissociated glucocorticoids can prevent eosinophil accumulation and induce apoptosis of eosinophils, making them promising candidates for ophthalmic drugs. This article reviews recent understanding of the role of adhesion molecules in eosinophil recruitment in the inflamed conjunctiva along with effective treatments for allergic conjunctivitis. PMID:23271999

  15. Oxidative stress reduces trophoblast FOXO1 and integrin β3 expression that inhibits cell motility.

    PubMed

    Chen, Chie-Pein; Chen, Cheng-Yi; Wu, Yi-Hsin; Chen, Chia-Yu

    2018-06-08

    Preeclampsia is a serious pregnancy complication associated with placental oxidative stress and impaired trophoblast migration. The mechanism of defective trophoblast migration remains unknown. Forkhead box O1 (FOXO1) is a transcription factor. Integrin β3 is involved in cell motility. We hypothesized that FOXO1 mediates expression of trophoblast integrin β3, which could be impaired by oxidative stress and have implications in preeclampsia. The expressions of FOXO1 and integrin β3 were significantly reduced in preeclamptic placentas (n = 15) compared to that of controls (n = 15; p < 0.01). HTR-8/SVneo and JEG-3 trophoblasts were transfected to express wild-type FOXO1-WT or constitutively-expressed nuclear mutant form, FOXO1-AAA. The FOXO1 in HTR-8/SVneo and 3A-Sub-E trophoblasts was silenced by small interfering RNA. AKT-mediated phosphorylation inactivated FOXO1, but FOXO1-AAA was not phosphorylated. The expression of trophoblast integrin β3 was significantly elevated by FOXO1 overexpression and inhibited by FOXO1 knockdown. FOXO1 regulates integrin β3 at the transcriptional level via binding to the putative FOXO1 response element site between position -1154 to -1139 (TGAGATGTTTTGAAAG) in HTR-8/SVneo trophoblasts. The level of phosphorylated FOXO1 was decreased, and the FOXO1 level was increased in trophoblasts treated with AKT inhibitor MK2206, leading to upregulation of integrin β3. The capabilities of trophoblast adhesion and migration were enhanced by FOXO1-overexpression or MK2206, and inhibited by silencing FOXO1 or oxidative stress with H 2 O 2 . These results suggest that FOXO1 enhances trophoblast integrin β3 expression, and mediates cell adhesion and migration. By affecting the expression of FOXO1 and cell motility in trophoblasts, oxidative stress plays a role in the development of preeclampsia. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Inhibition of cell migration by focal adhesion kinase: Time-dependent difference in integrin-induced signaling between endothelial and hepatoblastoma cells.

    PubMed

    Yu, Hongchi; Gao, Min; Ma, Yunlong; Wang, Lijuan; Shen, Yang; Liu, Xiaoheng

    2018-05-01

    angiogenesis plays an important role in the development and progression of tumors, and it involves a series of signaling pathways contributing to the migration of endothelial cells for vascularization and to the invasion of cancer cells for secondary tumor formation. Among these pathways, the focal adhesion kinase (FAK) signaling cascade has been implicated in a variety of human cancers in connection with cell adhesion and migration events leading to tumor angiogenesis, metastasis and invasion. Therefore, the inhibition of FAK in endothelial and/or cancer cells is a potential target for anti‑angiogenic therapy. In the present study, a small‑molecule FAK inhibitor, 1,2,4,5-benzenetetramine tetrahydrochloride (Y15), was used to study the effects of FAK inhibition on the adhesion and migration behaviors of vascular endothelial cells (VECs) and human hepatoblastoma cells. Furthermore, the time-dependent differences in proteins associated with the integrin-mediated FAK/Rho GTPases signaling pathway within 2 h were examined. The results indicated that the inhibition of FAK significantly decreased the migration ability of VECs and human hepatoblastoma cells in a dose-dependent manner. Inhibition of FAK promoted cell detachment by decreasing the expression of focal adhesion components, and blocked cell motility by reducing the level of Rho GTPases. However, the expression of crucial proteins involved in integrin-induced signaling in two cell lines exhibited a time-dependent difference with increased duration of FAK inhibitor treatment, suggesting different mechanisms of FAK-mediated cell migration behavior. These results suggest that the mechanism underlying FAK-mediated adhesion and migration behavior differs among various cells, which is expected to provide evidence for future FAK therapy targeted against tumor angiogenesis.

  17. Multiple alpha subunits of integrin are involved in cell-mediated responses of the Manduca immune system.

    PubMed

    Zhuang, Shufei; Kelo, Lisha; Nardi, James B; Kanost, Michael R

    2008-01-01

    The cell-mediated responses of the insect innate immune system-phagocytosis, nodulation, encapsulation-involve multiple cell adhesion molecules of hemocyte surfaces. A hemocyte-specific (HS) integrin and a member of the immunoglobulin (Ig) superfamily (neuroglian) are involved in the encapsulation response of hemocytes in Manduca sexta. In addition, two new integrin alpha (alpha) subunits have been found on these hemocytes. The alpha2 subunit is mainly expressed in epidermis and Malphigian tubules, whereas the alpha3 subunit is primarily expressed on hemocytes and fat body cells. Of the three known alpha subunits, the alpha1 subunit found in HS integrin is the predominant subunit of hemocytes. Cell adhesion assays indicate that alpha2 belongs to the integrin family with RGD-binding motifs, confirming the phylogenetic analysis of alpha subunits based on the amino-acid sequence alignment of different alpha subunits. Double-stranded RNAs (dsRNAs) targeting each of these three integrin alpha subunits not only specifically decreased transcript expression of each alpha subunit in hemocytes, but also abolished the cell-mediated encapsulation response of hemocytes to foreign surfaces. The individual alpha subunits of M. sexta integrins, like their integrin counterparts in mammalian immune systems, have critical, individual roles in cell-substrate and cell-cell interactions during immune responses.

  18. The CXC-chemokine CXCL4 interacts with integrins implicated in angiogenesis.

    PubMed

    Aidoudi, Sallouha; Bujakowska, Kinga; Kieffer, Nelly; Bikfalvi, Andreas

    2008-07-16

    The human CXC-chemokine CXCL4 is a potent inhibitor of tumor-induced angiogenesis. Considering that CXCL4 is sequestered in platelet alpha-granules and released following platelet activation in the vicinity of vessel wall injury, we tested the hypothesis that CXCL4 might function as a ligand for integrins. Integrins are a family of adhesion receptors that play a crucial role in angiogenesis by regulating early angiogenic processes, such as endothelial cell adhesion and migration. Here, we show that CXCL4 interacts with alphavbeta3 on the surface of alphavbeta3-CHO. More importantly, human umbilical vein endothelial cells adhere to immobilized CXCL4 through alphavbeta3 integrin, and also through other integrins, such as alphavbeta5 and alpha5beta1. We further demonstrate that CXCL4-integrin interaction is of functional significance in vitro, since immobilized CXCL4 supported endothelial cell spreading and migration in an integrin-dependent manner. Soluble CXCL4, in turn, inhibits integrin-dependent endothelial cell adhesion and migration. As a whole, our study identifies integrins as novel receptors for CXCL4 that may contribute to its antiangiogenic effect.

  19. The CXC-Chemokine CXCL4 Interacts with Integrins Implicated in Angiogenesis

    PubMed Central

    Aidoudi, Sallouha; Bujakowska, Kinga; Kieffer, Nelly; Bikfalvi, Andreas

    2008-01-01

    The human CXC-chemokine CXCL4 is a potent inhibitor of tumor-induced angiogenesis. Considering that CXCL4 is sequestered in platelet α-granules and released following platelet activation in the vicinity of vessel wall injury, we tested the hypothesis that CXCL4 might function as a ligand for integrins. Integrins are a family of adhesion receptors that play a crucial role in angiogenesis by regulating early angiogenic processes, such as endothelial cell adhesion and migration. Here, we show that CXCL4 interacts with αvβ3 on the surface of αvβ3-CHO. More importantly, human umbilical vein endothelial cells adhere to immobilized CXCL4 through αvβ3 integrin, and also through other integrins, such as αvβ5 and α5β1. We further demonstrate that CXCL4-integrin interaction is of functional significance in vitro, since immobilized CXCL4 supported endothelial cell spreading and migration in an integrin-dependent manner. Soluble CXCL4, in turn, inhibits integrin-dependent endothelial cell adhesion and migration. As a whole, our study identifies integrins as novel receptors for CXCL4 that may contribute to its antiangiogenic effect. PMID:18648521

  20. Amygdalin blocks the in vitro adhesion and invasion of renal cell carcinoma cells by an integrin-dependent mechanism.

    PubMed

    Juengel, Eva; Afschar, Masud; Makarević, Jasmina; Rutz, Jochen; Tsaur, Igor; Mani, Jens; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A

    2016-03-01

    Information about the natural compound amygdalin, which is employed as an antitumor agent, is sparse and thus its efficacy remains controversial. In this study, to determine whether amygdalin exerts antitumor effects on renal cell carcinoma (RCC) cells, its impact on RCC metastatic activity was investigated. The RCC cell lines, Caki-1, KTC-26 and A498, were exposed to amygdalin from apricot kernels, and adhesion to human vascular endothelium, immobilized collagen or fibronectin was investigated. The influence of amygdalin on chemotactic and invasive activity was also determined, as was the influence of amygdalin on surface and total cellular α and β integrin expression, which are involved in metastasis. We noted that amygdalin caused significant reductions in chemotactic activity, invasion and adhesion to endothelium, collagen and fibronectin. Using FACScan analysis, we noted that amygdalin also induced reductions, particularly in integrins α5 and α6, in all three cell lines. Functional blocking of α5 resulted in significantly diminished adhesion of KTC-26 and A498 to collagen and also in decreased chemotactic behavior in all three cell lines. Blocking α6 integrin significantly reduced chemotactic activity in all three cell lines. Thus, we suggest that exposing RCC cells to amygdalin inhibits metastatic spread and is associated with downregulation of α5 and α6 integrins. Therefore, we posit that amygdalin exerts antitumor activity in vitro, and this may be linked to integrin regulation.

  1. Hydrostatic Compress Force Enhances the Viability and Decreases the Apoptosis of Condylar Chondrocytes through Integrin-FAK-ERK/PI3K Pathway.

    PubMed

    Ma, Dandan; Kou, Xiaoxing; Jin, Jing; Xu, Taotao; Wu, Mengjie; Deng, Liquan; Fu, Lusi; Liu, Yi; Wu, Gang; Lu, Haiping

    2016-11-07

    Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK)-ERK (extracellular signal-regulated kinase)/PI3K (phosphatidylinositol-3-kinase) signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs) of different magnitudes (0, 50, 100, 150, 200, and 250 kPa) for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway.

  2. Hydrostatic Compress Force Enhances the Viability and Decreases the Apoptosis of Condylar Chondrocytes through Integrin-FAK-ERK/PI3K Pathway

    PubMed Central

    Ma, Dandan; Kou, Xiaoxing; Jin, Jing; Xu, Taotao; Wu, Mengjie; Deng, Liquan; Fu, Lusi; Liu, Yi; Wu, Gang; Lu, Haiping

    2016-01-01

    Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK)-ERK (extracellular signal–regulated kinase)/PI3K (phosphatidylinositol-3-kinase) signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs) of different magnitudes (0, 50, 100, 150, 200, and 250 kPa) for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway. PMID:27827993

  3. Self assembling bioactive materials for cell adhesion in tissue repair

    NASA Astrophysics Data System (ADS)

    Hwang, Julia J.

    This work involved the study of biodegradable and biocompatible materials that have the potential to modify tissue engineering scaffolds through self assembly, generating multiple layers that deliver bioactivity. Diblock biomaterials containing cholesteryl moieties and oligomers of lactic acid units were found to form single crystals when precipitated from hot ethanol and smectic liquid crystalline phases when cast as a film. Cell culture experiments on these films with 3T3 and 3T6 fibroblasts indicated that these ordered materials form surfaces with specific chemistries that favored cell adhesion, spreading, and proliferation suggesting the potential of mediating human tissue repair. The author believes the cholesteryl moieties found on the surface play a key role in determining cell behavior. Cholesteryl-(L-lactic acid) diblock molecules were then functionalized with moieties including vitamin Bx, cholesterol, and the anti-inflammatory drug indomethacin. An unstable activated ester between indomethacin and the diblock molecule resulted in the release of indomethacin into the culture medium which inhibited the proliferation of 3T3 fibroblasts. Finally, a series of molecules were designed to incorporate dendrons based on amino acids at the termini of the diblock structures. It was determined that lysine, a basic amino acid, covalently coupled to cholesteryl-(L-lactic acid) can promote cell adhesion and spreading while negatively charged and zwitterionic 2nd generation dendrons based on aspartic acid do not. Incorporation of the well known arginine-glycine-aspartic acid (RGD) sequence, which is found in many adhesive proteins, to the dendrons imparted integrin-mediated cell adhesion as evidenced by the formation of stress fibers. We also explored the capacity of integrin receptors to bind to ligands that are not the linear form of RGD, but have R, G, and D spatially positioned to mimic the linear RGD environments. For this purpose, the arms of the 2 nd generation

  4. A peptide affinity column for the identification of integrin alpha IIb-binding proteins.

    PubMed

    Daxecker, Heide; Raab, Markus; Bernard, Elise; Devocelle, Marc; Treumann, Achim; Moran, Niamh

    2008-03-01

    To understand the regulation of integrin alpha(IIb)beta(3), a critical platelet adhesion molecule, we have developed a peptide affinity chromatography method using the known integrin regulatory motif, LAMWKVGFFKR. Using standard Fmoc chemistry, this peptide was synthesized onto a Toyopearl AF-Amino-650 M resin on a 6-aminohexanoic acid (Ahx) linker. Peptide density was controlled by acetylation of 83% of the Ahx amino groups. Four recombinant human proteins (CIB1, PP1, ICln and RN181), previously identified as binding to this integrin regulatory motif, were specifically retained by the column containing the integrin peptide but not by a column presenting an irrelevant peptide. Hemoglobin, creatine kinase, bovine serum albumin, fibrinogen and alpha-tubulin failed to bind under the chosen conditions. Immunodetection methods confirmed the binding of endogenous platelet proteins, including CIB1, PP1, ICln RN181, AUP-1 and beta3-integrin, from a detergent-free platelet lysate. Thus, we describe a reproducible method that facilitates the reliable extraction of specific integrin-binding proteins from complex biological matrices. This methodology may enable the sensitive and specific identification of proteins that interact with linear, membrane-proximal peptide motifs such as the integrin regulatory motif LAMWKVGFFKR.

  5. CD44-mediated activation of α5β1-integrin, cortactin and paxillin signaling underpins adhesion of basal-like breast cancer cells to endothelium and Fibronectin-enriched matrices

    PubMed Central

    McFarlane, Suzanne; McFarlane, Cheryl; Montgomery, Nicola; Hill, Ashleigh; Waugh, David J.J.

    2015-01-01

    CD44 expression is elevated in basal-like breast cancer (BLBC) tissue, and correlates with increased efficiency of distant metastasis in patients and experimental models. We sought to characterize mechanisms underpinning CD44-promoted adhesion of BLBC cells to vascular endothelial monolayers and extracellular matrix (ECM) substrates. Stimulation with hyaluronan (HA), the native ligand for CD44, increased expression and activation of β1-integrin receptors, and increased α5-integrin subunit expression. Adhesion assays confirmed that CD44-signalling potentiated BLBC cell adhesion to endothelium and Fibronectin in an α5B1-integrin-dependent mechanism. Co-immunoprecipitation experiments confirmed HA-promoted association of CD44 with talin and the β1-integrin chain in BLBC cells. Knockdown of talin inhibited CD44 complexing with β1-integrin and repressed HA-induced, CD44-mediated activation of β1-integrin receptors. Immunoblotting confirmed that HA induced rapid phosphorylation of cortactin and paxillin, through a CD44-dependent and β1-integrin-dependent mechanism. Knockdown of CD44, cortactin or paxillin independently attenuated the adhesion of BL-BCa cells to endothelial monolayers and Fibronectin. Accordingly, we conclude that CD44 induced, integrin-mediated signaling not only underpins efficient adhesion of BLBC cells to BMECs to facilitate extravasation but initiates their adhesion to Fibronectin, enabling penetrant cancer cells to adhere more efficiently to underlying Fibronectin-enriched matrix present within the metastatic niche. PMID:26447611

  6. Redox-Relevant Aspects of the Extracellular Matrix and Its Cellular Contacts via Integrins

    PubMed Central

    de Rezende, Flávia Figueiredo

    2014-01-01

    Abstract Significance: The extracellular matrix (ECM) fulfills essential functions in multicellular organisms. It provides the mechanical scaffold and environmental cues to cells. Upon cell attachment, the ECM signals into the cells. In this process, reactive oxygen species (ROS) are physiologically used as signalizing molecules. Recent Advances: ECM attachment influences the ROS-production of cells. In turn, ROS affect the production, assembly and turnover of the ECM during wound healing and matrix remodeling. Pathological changes of ROS levels lead to excess ECM production and increased tissue contraction in fibrotic disorders and desmoplastic tumors. Integrins are cell adhesion molecules which mediate cell adhesion and force transmission between cells and the ECM. They have been identified as a target of redox-regulation by ROS. Cysteine-based redox-modifications, together with structural data, highlighted particular regions within integrin heterodimers that may be subject to redox-dependent conformational changes along with an alteration of integrin binding activity. Critical Issues: In a molecular model, a long-range disulfide-bridge within the integrin β-subunit and disulfide bridges within the genu and calf-2 domains of the integrin α-subunit may control the transition between the bent/inactive and upright/active conformation of the integrin ectodomain. These thiol-based intramolecular cross-linkages occur in the stalk domain of both integrin subunits, whereas the ligand-binding integrin headpiece is apparently unaffected by redox-regulation. Future Directions: Redox-regulation of the integrin activation state may explain the effect of ROS in physiological processes. A deeper understanding of the underlying mechanism may open new prospects for the treatment of fibrotic disorders. Antioxid. Redox Signal. 20, 1977–1993. PMID:24040997

  7. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins

    NASA Technical Reports Server (NTRS)

    Alenghat, Francis J.; Ingber, Donald E.

    2002-01-01

    Mechanical stresses modulate cell function by either activating or tuning signal transduction pathways. Mechanotransduction, the process by which cells convert mechanical stimuli into a chemical response, occurs both in cells specialized for sensing mechanical cues and in parenchymal cells whose primary function is not mechanosensory. However, common among the various responses to mechanical stress is the importance of direct or indirect connections between the internal cytoskeleton, the extracellular matrix (ECM), and traditional signal transducing molecules. In many instances, these elements converge at focal adhesions, sites of structural attachment between the cytoskeleton and ECM that are anchored by cell surface integrin receptors. Alenghat and Ingber discuss the accumulating evidence for the central role of cytoskeleton, ECM, and integrin-anchored focal adhesions in several mechanotransduction pathways.

  8. Erythroid Adhesion Molecules in Sickle Cell Anaemia Infants: Insights Into Early Pathophysiology.

    PubMed

    Brousse, Valentine; Colin, Yves; Pereira, Catia; Arnaud, Cecile; Odièvre, Marie Helene; Boutemy, Anne; Guitton, Corinne; de Montalembert, Mariane; Lapouméroulie, Claudine; Picot, Julien; Le Van Kim, Caroline; El Nemer, Wassim

    2015-01-01

    Sickle cell anaemia (SCA) results from a single mutation in the β globin gene. It is seldom symptomatic in the first semester of life. We analysed the expression pattern of 9 adhesion molecules on red blood cells, in a cohort of 54 SCA and 17 non-SCA very young infants of comparable age (median 144 days, 81-196). Haemoglobin F (HbF) level was unsurprisingly elevated in SCA infants (41.2% ± 11.2) and 2-4 fold higher than in non-SCA infants, yet SCA infants presented significantly decreased Hb level and increased reticulocytosis. Cytometry analysis evidenced a specific expression profile on reticulocytes of SCA infants, with notably an increased expression of the adhesion molecules Lu/BCAM, ICAM-4 and LFA-3, both in percentage of positive cells and in surface density. No significant difference was found on mature red cells. Our findings demonstrate the very early onset of reticulocyte membrane modifications in SCA asymptomatic infants and allow an insight into the first pathological changes with the release of stress reticulocytes expressing a distinctive profile of adhesion molecules.

  9. NFκB-Induced Periostin Activates Integrin3 Signaling to Promote Renal Injury in GN

    PubMed Central

    Prakoura, Niki; Kavvadas, Panagiotis; Kormann, Raphaёl; Dussaule, Jean-Claude; Chadjichristos, Christos E.

    2017-01-01

    De novo expression in the kidney of periostin, a protein involved in odontogenesis and osteogenesis, has been suggested as a biomarker of renal disease. In this study, we investigated the mechanism(s) of induction and the role of periostin in renal disease. Using a combination of bioinformatics, reporter assay, and chromatin immunoprecipitation analyses, we found that NFκB and other proinflammatory transcription factors induce periostin expression in vitro and that binding of these factors on the periostin promoter is enriched in glomeruli during experimental GN. Mice lacking expression of periostin displayed preserved renal function and structure during GN. Furthermore, delayed administration of periostin antisense oligonucleotides in wild-type animals with GN reversed already established proteinuria, diminished tissue inflammation, and improved renal structure. Lack of periostin expression also blunted the de novo renal expression of integrin3 and phosphorylation of focal adhesion kinase and AKT, known mediators of integrin3 signaling that affect cell motility and survival, observed during GN in wild-type animals. In vitro, recombinant periostin increased the expression of integrin3 and the concomitant phosphorylation of focal adhesion kinase and AKT in podocytes. Notably, periostin and integrin3 were highly colocalized in biopsy specimens from patients with inflammatory GN. These results demonstrate that interplay between periostin and renal inflammation orchestrates inflammatory and fibrotic responses, driving podocyte damage through downstream activation of integrin3 signaling. Targeting periostin may be a novel therapeutic strategy for treating CKD. PMID:27920156

  10. Galectin-3 alters the lateral mobility and clustering of β1-integrin receptors

    PubMed Central

    Yang, Esther H.; Rode, Julia; Howlader, Md. Amran; Eckermann, Marina; Santos, Jobette T.; Hernandez Armada, Daniel; Zheng, Ruixiang; Zou, Chunxia

    2017-01-01

    Glycoprotein receptors are influenced by myriad intermolecular interactions at the cell surface. Specific glycan structures may interact with endogenous lectins that enforce or disrupt receptor-receptor interactions. Glycoproteins bound by multivalent lectins may form extended oligomers or lattices, altering the lateral mobility of the receptor and influencing its function through endocytosis or changes in activation. In this study, we have examined the interaction of Galectin-3 (Gal-3), a human lectin, with adhesion receptors. We measured the effect of recombinant Gal-3 added exogenously on the lateral mobility of the α5β1 integrin on HeLa cells. Using single-particle tracking (SPT) we detected increased lateral mobility of the integrin in the presence of Gal-3, while its truncated C-terminal domain (Gal-3C) showed only minor reductions in lateral mobility. Treatment of cells with Gal-3 increased β1-integrin mediated migration with no apparent changes in viability. In contrast, Gal-3C decreased both cell migration and viability. Fluorescence microscopy allowed us to confirm that exogenous Gal-3 resulted in reorganization of the integrin into larger clusters. We used a proteomics analysis to confirm that cells expressed endogenous Gal-3, and found that addition of competitive oligosaccharide ligands for the lectin altered the lateral mobility of the integrin. Together, our results are consistent with a Gal-3integrin lattice model of binding and confirm that the lateral mobility of integrins is natively regulated, in part, by galectins. PMID:29016609

  11. Cellular Interaction of Integrin α3β1 with Laminin 5 Promotes Gap Junctional Communication

    PubMed Central

    Lampe, Paul D.; Nguyen, Beth P.; Gil, Susana; Usui, Marcia; Olerud, John; Takada, Yoshikazu; Carter, William G.

    1998-01-01

    Wounding of skin activates epidermal cell migration over exposed dermal collagen and fibronectin and over laminin 5 secreted into the provisional basement membrane. Gap junctional intercellular communication (GJIC) has been proposed to integrate the individual motile cells into a synchronized colony. We found that outgrowths of human keratinocytes in wounds or epibole cultures display parallel changes in the expression of laminin 5, integrin α3β1, E-cadherin, and the gap junctional protein connexin 43. Adhesion of keratinocytes on laminin 5, collagen, and fibronectin was found to differentially regulate GJIC. When keratinocytes were adhered on laminin 5, both structural (assembly of connexin 43 in gap junctions) and functional (dye transfer) assays showed a two- to threefold increase compared with collagen and five- to eightfold over fibronectin. Based on studies with immobilized integrin antibody and integrin-transfected Chinese hamster ovary cells, the interaction of integrin α3β1 with laminin 5 was sufficient to promote GJIC. Mapping of intermediate steps in the pathway linking α3β1–laminin 5 interactions to GJIC indicated that protein trafficking and Rho signaling were both required. We suggest that adhesion of epithelial cells to laminin 5 in the basement membrane via α3β1 promotes GJIC that integrates individual cells into synchronized epiboles. PMID:9852164

  12. Increase in the adhesion molecule P-selectin in endothelium overlying atherosclerotic plaques. Coexpression with intercellular adhesion molecule-1.

    PubMed Central

    Johnson-Tidey, R. R.; McGregor, J. L.; Taylor, P. R.; Poston, R. N.

    1994-01-01

    P-selectin (GMP-140) is an adhesion molecule present within endothelial cells that is rapidly translocated to the cell membrane upon activation, where it mediates endothelial-leukocyte interactions. Immunohistochemical analysis of human atherosclerotic plaques has shown strong expression of P-selectin by the endothelium overlying active atherosclerotic plaques. P-selectin is not, however, detected in normal arterial endothelium or in endothelium overlying inactive fibrous plaques. Color image analysis was used to quantitate the degree of P-selectin expression in the endothelium and demonstrates a statistically significant increase in P-selectin expression by atherosclerotic endothelial cells. Double immunofluorescence shows that some of this P-selectin is expressed on the luminal surface of the endothelial cells. Previous work has demonstrated a significant up-regulation in the expression of the intercellular adhesion molecule-1 in atherosclerotic endothelium and a study on the expression of intercellular adhesion molecule-1 and P-selectin in atherosclerosis shows a highly positive correlation. These results suggest that the selective and cooperative expression of P-selectin and intercellular adhesion molecule-1 may be involved in the recruitment of monocytes into sites of atherosclerosis. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:7513951

  13. β4-Integrin/PI3K Signaling Promotes Tumor Progression through the Galectin-3-N-Glycan Complex.

    PubMed

    Kariya, Yukiko; Oyama, Midori; Hashimoto, Yasuhiro; Gu, Jianguo; Kariya, Yoshinobu

    2018-06-01

    Malignant transformation is associated with aberrant N -glycosylation, but the role of protein N -glycosylation in cancer progression remains poorly defined. β4-integrin is a major carrier of N -glycans and is associated with poor prognosis, tumorigenesis, and metastasis. Here, N -glycosylation of β4-integrin contributes to the activation of signaling pathways that promote β4-dependent tumor development and progression. Increased expression of β1,6GlcNAc-branched N -glycans was found to be colocalized with β4-integrin in human cutaneous squamous cell carcinoma tissues, and that the β1,6GlcNAc residue was abundant on β4-integrin in transformed keratinocytes. Interruption of β1,6GlcNAc-branching formation on β4-integrin with the introduction of bisecting GlcNAc by N -acetylglucosaminyltransferase III overexpression was correlated with suppression of cancer cell migration and tumorigenesis. N -Glycan deletion on β4-integrin impaired β4-dependent cancer cell migration, invasion, and growth in vitro and diminished tumorigenesis and proliferation in vivo The reduced abilities of β4-integrin were accompanied with decreased phosphoinositol-3 kinase (PI3K)/Akt signals and were restored by the overexpression of the constitutively active p110 PI3K subunit. Binding of galectin-3 to β4-integrin via β1,6GlcNAc-branched N -glycans promoted β4-integrin-mediated cancer cell adhesion and migration. In contrast, a neutralizing antibody against galectin-3 attenuated β4-integrin N -glycan-mediated PI3K activation and inhibited the ability of β4-integrin to promote cell motility. Furthermore, galectin-3 knockdown by shRNA suppressed β4-integrin N -glycan-mediated tumorigenesis. These findings provide a novel role for N -glycosylation of β4-integrin in tumor development and progression, and the regulatory mechanism for β4-integrin/PI3K signaling via the galectin-3- N -glycan complex. Implications: N -Glycosylation of β4-integrin plays a functional role in promoting

  14. Adhesion- and stress-related adaptation of glioma radiochemoresistance is circumvented by β1 integrin/JNK co-targeting.

    PubMed

    Vehlow, Anne; Klapproth, Erik; Storch, Katja; Dickreuter, Ellen; Seifert, Michael; Dietrich, Antje; Bütof, Rebecca; Temme, Achim; Cordes, Nils

    2017-07-25

    Resistance of cancer stem-like and cancer tumor bulk cells to radiochemotherapy and destructive infiltration of the brain fundamentally influence the treatment efficiency to cure of patients suffering from Glioblastoma (GBM). The interplay of adhesion and stress-related signaling and activation of bypass cascades that counteract therapeutic approaches remain to be identified in GBM cells. We here show that combined inhibition of the adhesion receptor β1 integrin and the stress-mediator c-Jun N-terminal kinase (JNK) induces radiosensitization and blocks invasion in stem-like and patient-derived GBM cultures as well as in GBM cell lines. In vivo, this treatment approach not only significantly delays tumor growth but also increases median survival of orthotopic, radiochemotherapy-treated GBM mice. Both, in vitro and in vivo, effects seen with β1 integrin/JNK co-inhibition are superior to the monotherapy. Mechanistically, the in vitro radiosensitization provoked by β1 integrin/JNK targeting is caused by defective DNA repair associated with chromatin changes, enhanced ATM phosphorylation and prolonged G2/M cell cycle arrest. Our findings identify a β1 integrin/JNK co-dependent bypass signaling for GBM therapy resistance, which might be therapeutically exploitable.

  15. An Integrin from Shrimp Litopenaeus vannamei Mediated Microbial Agglutination and Cell Proliferation

    PubMed Central

    Zhang, Ying; Wang, Leilei; Wang, Lingling; Wu, Ning; Zhou, Zhi; Song, Linsheng

    2012-01-01

    Background Integrins are a family of adhesion receptors which regulate cell proliferation, differentiation, leukocyte migration, and complement receptor-dependent phagocytosis. In invertebrates, as a cell adhesion receptor, β integrins play an important role for the balanced activation of immune defense responses especially during the encounter of infections. The present study attempts to characterize the immune functions of shrimp integrin (LvIntegrin) to have better understanding on the immune system and its regulation mechanisms in shrimps. Methodology A shrimp integrin was identified from the Pacific white shrimp Litopenaeus vannamei (designated as LvIntegrin). Its full-length cDNA was of 2621 bp with an open reading frame (ORF) of 2439 bp encoding a polypeptide of 812 amino acids. The mRNA expression of LvIntegrin was significantly up-regulated at 3, 6 and 12 h after Listonella anguillarum challenge. The cDNA fragment encoding β integrin domains (βA and hybrid domain) of LvIntegrin was recombined and expressed in Escherichia coli BL21(DE3)-pLysS. The recombinant protein (rLvIntegrin) could significantly agglutinate the tested microbe including E. coli JM109, L. anguillarum, Micrococcus luteus and Candida dattiladattila in the presence of divalent cations. Moreover, when NIH3T3 cells were cultured with rLvIntegrin, the proliferation rate increased significantly in a dose-dependent manner. Conclusions LvIntegrin, a shrimp β integrin was identified from L. vannamei, shared several highly conserved features. LvIntegrin exhibited broad-spectrum agglutination activity towards both bacteria and fungi and could improve the proliferation of NIH3T3 cells, indicating that LvIntegrin is involved in the immune response against microbe challenge and regulation of cell proliferation as a cell adhesion receptor in shrimp. PMID:22792387

  16. An integrin from shrimp Litopenaeus vannamei mediated microbial agglutination and cell proliferation.

    PubMed

    Zhang, Ying; Wang, Leilei; Wang, Lingling; Wu, Ning; Zhou, Zhi; Song, Linsheng

    2012-01-01

    Integrins are a family of adhesion receptors which regulate cell proliferation, differentiation, leukocyte migration, and complement receptor-dependent phagocytosis. In invertebrates, as a cell adhesion receptor, β integrins play an important role for the balanced activation of immune defense responses especially during the encounter of infections. The present study attempts to characterize the immune functions of shrimp integrin (LvIntegrin) to have better understanding on the immune system and its regulation mechanisms in shrimps. A shrimp integrin was identified from the Pacific white shrimp Litopenaeus vannamei (designated as LvIntegrin). Its full-length cDNA was of 2621 bp with an open reading frame (ORF) of 2439 bp encoding a polypeptide of 812 amino acids. The mRNA expression of LvIntegrin was significantly up-regulated at 3, 6 and 12 h after Listonella anguillarum challenge. The cDNA fragment encoding β integrin domains (βA and hybrid domain) of LvIntegrin was recombined and expressed in Escherichia coli BL21(DE3)-pLysS. The recombinant protein (rLvIntegrin) could significantly agglutinate the tested microbe including E. coli JM109, L. anguillarum, Micrococcus luteus and Candida dattiladattila in the presence of divalent cations. Moreover, when NIH3T3 cells were cultured with rLvIntegrin, the proliferation rate increased significantly in a dose-dependent manner. LvIntegrin, a shrimp β integrin was identified from L. vannamei, shared several highly conserved features. LvIntegrin exhibited broad-spectrum agglutination activity towards both bacteria and fungi and could improve the proliferation of NIH3T3 cells, indicating that LvIntegrin is involved in the immune response against microbe challenge and regulation of cell proliferation as a cell adhesion receptor in shrimp.

  17. Biomechanics of P-selectin PSGL-1 bonds: Shear threshold and integrin-independent cell adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Zhihua; Goldsmith, Harry L.; MacIntosh, Fiona A.

    2006-03-01

    Platelet-leukocyte adhesion may contribute to thrombosis and inflammation. We examined the heterotypic interaction between unactivated neutrophils and either thrombin receptor activating peptide (TRAP) stimulated platelets or P-selectin bearing beads (Ps-beads) in suspension. Cone-plate viscometers were used to apply controlled shear rates from 14-3000/s. Platelet-neutrophil and bead-neutrophil adhesion analysis was performed using both flow cytometry and high-speed videomicroscopy. We observed that while blocking antibodies against either P-selectin or P-selectin glycoprotein ligand-1 (PSGL-1) alone inhibited platelet-neutrophil adhesion by ~60% at 140/s, these reagents completely blocked adhesion at 3000/s. Anti-Mac-1 alone did not alter platelet-neutrophil adhesion rates at any shear rate, though inmore » synergy with selectin antagonists it abrogated cell binding. Unstimulated neutrophils avidly bound Ps-beads and activated platelets in an integrin-independent manner, suggesting that purely selectin-dependent cell adhesion is possible. In support of this, antagonists against P-selectin or PSGL-1 dissociated previously formed platelet-neutrophil and Ps-bead neutrophil aggregates under shear in a variety of experimental systems, including in assays performed with whole blood. In studies where medium viscosity and shear rate were varied, a subtle shear threshold for P-selectin PSGL-1 binding was also noted at shear rates<100/s and at force loading rates of ~300pN/sec. Results are discussed in light of biophysical computations that characterize the collision between unequal size particles in linear shear flow. Overall, our studies reveal an integrin-independent regime for cell adhesion that may be physiologically relevant.« less

  18. JAM-A protects from thrombosis by suppressing integrin αIIbβ3-dependent outside-in signaling in platelets

    PubMed Central

    Naik, Meghna U.; Stalker, Timothy J.; Brass, Lawrence F.

    2012-01-01

    Mounting evidence suggests that agonist-initiated signaling in platelets is closely regulated to avoid excessive responses to injury. A variety of physiologic agonists induce a cascade of signaling events termed as inside-out signaling that culminate in exposure of high-affinity binding sites on integrin αIIbβ3. Once platelet activation has occurred, integrin αIIbβ3 stabilizes thrombus formation by providing agonist-independent “outside-in” signals mediated in part by contractile signaling. Junctional adhesion molecule A (JAM-A), a member of the cortical thymocyte marker of the Xenopus (CTX) family, was initially identified as a receptor for a platelet stimulatory mAb. Here we show that JAM-A in resting platelets functions as an endogenous inhibitor of platelet function. Genetic ablation of Jam-A in mice enhances thrombotic function of platelets in vivo. The absence of Jam-A results in increase in platelet aggregation ex vivo. This gain of function is not because of enhanced inside-out signaling because granular secretion, Thromboxane A2 (TxA2) generation, as well as fibrinogen receptor activation, are normal in the absence of Jam-A. Interestingly, integrin outside-in signaling such as platelet spreading and clot retraction is augmented in Jam-A–deficient platelets. We conclude that JAM-A normally limits platelet accumulation by inhibiting integrin outside-in signaling thus preventing premature platelet activation. PMID:22271446

  19. Clustering T cell GM1 Lipid Rafts Increases Cellular Resistance to Shear on Fibronectin through Changes in Integrin Affinity and Cytoskeletal Dynamics

    PubMed Central

    Mitchell, Jason S.; Brown, Wells S.; Woodside, Darren G.; Vanderslice, Peter; McIntyre, Bradley W.

    2008-01-01

    Lipid rafts are small laterally mobile microdomains that are highly enriched in lymphocyte signaling molecules. GM1 gangliosides are a common lipid raft component and have been shown to be important in many T cell functions. The aggregation of specific GM1 lipid rafts can control many T cell activation events, including their novel association with T cell integrins. We found that clustering GM1 lipid rafts can regulate β1 integrin function. This was apparent through increased resistance to shear flow dependent detachment of T cells adherent to the α4β1 and α5β1 integrin ligand fibronectin (FN). Adhesion strengthening as a result of clustering GM1 enriched lipid rafts correlated with increased cellular rigidity and morphology through the localization of cortical F-actin, the resistance to shear induced cell stretching, and an increase in the surface area and symmetry of the contact area between the cell surface and adhesive substrate. Furthermore, clustering GM1 lipid rafts could initiate integrin “inside-out” signaling mechanisms. This was seen through increased integrin-cytoskeleton associations and enhanced soluble binding of FN and VCAM-1 suggesting the induction of high affinity integrin conformations. The activation of these adhesion strengthening characteristics appear to be specific for the aggregation of GM1 lipid rafts as the aggregation of the heterogeneous raft associated molecule CD59 failed to activate these functions. These findings indicate a novel mechanism to signal to β1 integrins and to activate adhesion strengthening processes. PMID:19139760

  20. The journey of integrins and partners in a complex interactions landscape studied by super-resolution microscopy and single protein tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossier, Olivier; Giannone, Grégory; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux

    Cells adjust their adhesive and cytoskeletal organizations according to changes in the biochemical and physical nature of their surroundings. In return, by adhering and generating forces on the extracellular matrix (ECM) cells organize their microenvironment. Integrin-dependent focal adhesions (FAs) are the converging zones integrating biochemical and biomechanical signals arising from the ECM and the actin cytoskeleton. Thus, integrin-mediated adhesion and mechanotransduction, the conversion of mechanical forces into biochemical signals, are involved in critical cellular functions such as migration, proliferation and differentiation, and their deregulation contributes to pathologies including cancer. A challenging problem is to decipher how stochastic protein movements andmore » interactions lead to formation of dynamic architecture such as integrin-dependent adhesive structures. In this review, we will describe recent advances made possible by super-resolution microscopies and single molecule tracking approaches that provided new understanding on the organization and the dynamics of integrins and intracellular regulators at the nanoscale in living cells.« less

  1. The journey of integrins and partners in a complex interactions landscape studied by super-resolution microscopy and single protein tracking.

    PubMed

    Rossier, Olivier; Giannone, Grégory

    2016-04-10

    Cells adjust their adhesive and cytoskeletal organizations according to changes in the biochemical and physical nature of their surroundings. In return, by adhering and generating forces on the extracellular matrix (ECM) cells organize their microenvironment. Integrin-dependent focal adhesions (FAs) are the converging zones integrating biochemical and biomechanical signals arising from the ECM and the actin cytoskeleton. Thus, integrin-mediated adhesion and mechanotransduction, the conversion of mechanical forces into biochemical signals, are involved in critical cellular functions such as migration, proliferation and differentiation, and their deregulation contributes to pathologies including cancer. A challenging problem is to decipher how stochastic protein movements and interactions lead to formation of dynamic architecture such as integrin-dependent adhesive structures. In this review, we will describe recent advances made possible by super-resolution microscopies and single molecule tracking approaches that provided new understanding on the organization and the dynamics of integrins and intracellular regulators at the nanoscale in living cells. Copyright © 2015. Published by Elsevier Inc.

  2. Impaired Integrin-mediated Adhesion and Signaling in Fibroblasts Expressing a Dominant-negative Mutant PTP1B

    PubMed Central

    Arregui, Carlos O.; Balsamo, Janne; Lilien, Jack

    1998-01-01

    To investigate the role of nonreceptor protein tyrosine phosphatase 1B (PTP1B) in β1-integrin– mediated adhesion and signaling, we transfected mouse L cells with normal and catalytically inactive forms of the phosphatase. Parental cells and cells expressing the wild-type or mutant PTP1B were assayed for (a) adhesion, (b) spreading, (c) presence of focal adhesions and stress fibers, and (d) tyrosine phosphorylation. Parental cells and cells expressing wild-type PTP1B show similar morphology, are able to attach and spread on fibronectin, and form focal adhesions and stress fibers. In contrast, cells expressing the inactive PTP1B have a spindle-shaped morphology, reduced adhesion and spreading on fibronectin, and almost a complete absence of focal adhesions and stress fibers. Attachment to fibronectin induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in parental cells and cells transfected with the wild-type PTP1B, while in cells transfected with the mutant PTP1B, such induction is not observed. Additionally, in cells expressing the mutant PTP1B, tyrosine phosphorylation of Src is enhanced and activity is reduced. Lysophosphatidic acid temporarily reverses the effects of the mutant PTP1B, suggesting the existence of a signaling pathway triggering focal adhesion assembly that bypasses the need for active PTP1B. PTP1B coimmunoprecipitates with β1-integrin from nonionic detergent extracts and colocalizes with vinculin and the ends of actin stress fibers in focal adhesions. Our data suggest that PTP1B is a critical regulatory component of integrin signaling pathways, which is essential for adhesion, spreading, and formation of focal adhesions. PMID:9813103

  3. Mycophenolate mofetil modulates adhesion receptors of the beta1 integrin family on tumor cells: impact on tumor recurrence and malignancy

    PubMed Central

    Engl, Tobias; Makarević, Jasmina; Relja, Borna; Natsheh, Iyad; Müller, Iris; Beecken, Wolf-Dietrich; Jonas, Dietger; Blaheta, Roman A

    2005-01-01

    Background Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF) on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Methods Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a), alpha2beta1 (CD49b), alpha3beta1 (CD49c), alpha4beta1 (CD49d), alpha5beta1 (CD49e), and alpha6beta1 (CD49f) receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Results Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. Conclusion We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype. PMID:15644133

  4. Increased soluble vascular cell adhesion molecule-1 plasma levels and soluble intercellular adhesion molecule-1 during antiretroviral therapy interruption and retention of elevated soluble vascular cellular adhesion molecule-1 levels following resumption of antiretroviral therapy.

    PubMed

    Papasavvas, Emmanouil; Azzoni, Livio; Pistilli, Maxwell; Hancock, Aidan; Reynolds, Griffin; Gallo, Cecile; Ondercin, Joe; Kostman, Jay R; Mounzer, Karam; Shull, Jane; Montaner, Luis J

    2008-06-19

    We investigated the effect of short viremic episodes on soluble markers associated with endothelial stress and cardiovascular disease risk in chronically HIV-1-infected patients followed during continuous antiretroviral therapy, antiretroviral therapy interruption and antiretroviral therapy resumption. We assessed changes in plasma levels of von Willebrand factor, soluble vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 by enzyme-linked immunosorbent assay, as well as T-cell activation (CD8+/CD38+, CD8+/HLA-DR+ and CD3+/CD95+) by flow cytometry, in 36 chronically HIV-1-infected patients participating in a randomized study. Patients were divided into the following three groups: a, on continuous antiretroviral therapy; b, on a 6-week antiretroviral therapy interruption; or c, on antiretroviral therapy interruption extended to the achievement of viral set point. Although all measurements remained stable over a 40-week follow-up on antiretroviral therapy, plasma levels of soluble vascular cell adhesion molecule-1 (P < 0.0001) and soluble intercellular adhesion molecule-1 (P = 0.003) increased during treatment interruption in correlation with viral rebound and T-cell activation. No significant changes in von Willebrand factor were observed in any of the groups. After resuming antiretroviral therapy, soluble vascular cell adhesion molecule-1 levels remained elevated even after achievement of viral suppression to less than 50 copies/ml. The prompt rise in plasma soluble vascular cell adhesion molecule-1 and soluble intercellular adhesion molecule-1 upon viral rebound suggests an acute increase in endothelial stress upon treatment interruption, which may persists after viral resuppression of virus. Thus, viral replication during short-term treatment interruption may increase the overall cardiovascular risk during and beyond treatment interruption.

  5. Integrins and Integrin-Associated Proteins in the Cardiac Myocyte

    PubMed Central

    Ross, Robert S.

    2014-01-01

    Integrins are heterodimeric, transmembrane receptors that are expressed in all cells, including those in the heart. They participate in multiple critical cellular processes including adhesion, extracellular matrix organization, signaling, survival, and proliferation. Particularly relevant for a contracting muscle cell, integrins are mechanotransducers, translating mechanical to biochemical information. While it is likely that cardiovascular clinicians and scientists have highest recognition of integrins in the cardiovascular system from drugs used to inhibit platelet aggregation, the focus of this article will be on the role of integrins specifically in the cardiac myocyte. Following a general introduction to integrin biology, the manuscript will discuss important work on integrin signaling, mechanotransduction, and lessons learned about integrin function from a range of model organisms. Then we will detail work on integrin-related proteins in the myocyte, how integrins may interact with ion channels and mediate viral uptake into cells, and also play a role in stem cell biology. Finally, we will discuss directions for future study. PMID:24481847

  6. The Novel α4B Murine α4 Integrin Protein Splicing Variant Inhibits α4 Protein-dependent Cell Adhesion*

    PubMed Central

    Kouro, Hitomi; Kon, Shigeyuki; Matsumoto, Naoki; Miyashita, Tomoe; Kakuchi, Ayaka; Ashitomi, Dai; Saitoh, Kodai; Nakatsuru, Takuya; Togi, Sumihito; Muromoto, Ryuta; Matsuda, Tadashi

    2014-01-01

    Integrins affect the motility of multiple cell types to control cell survival, growth, or differentiation, which are mediated by cell-cell and cell-extracellular matrix interactions. We reported previously that the α9 integrin splicing variant, SFα9, promotes WT α9 integrin-dependent adhesion. In this study, we introduced a new murine α4 integrin splicing variant, α4B, which has a novel short cytoplasmic tail. In inflamed tissues, the expression of α4B, as well as WT α4 integrin, was up-regulated. Cells expressing α4B specifically bound to VCAM-1 but not other α4 integrin ligands, such as fibronectin CS1 or osteopontin. The binding of cells expressing WT α4 integrin to α4 integrin ligands is inhibited by coexpression of α4B. Knockdown of α4B in metastatic melanoma cell lines results in a significant increase in lung metastasis. Expression levels of WT α4 integrin are unaltered by α4B, with α4B acting as a regulatory subunit for WT α4 integrin by a dominant-negative effect or inhibiting α4 integrin activation. PMID:24755217

  7. P-selectin, endocan, and some adhesion molecules in obese children and adolescents with non-alcoholic fatty liver disease.

    PubMed

    Ustyol, Ala; Aycan Ustyol, Esra; Gurdol, Figen; Kokali, Funda; Bekpınar, Seldag

    2017-05-01

    There is increasing evidence for a direct relationship between the vascular system and non-alcoholic fatty liver disease (NAFLD). The aim of this study was to investigate endocan and adhesion molecules such as P-selectin derived from the endothelium and platelets in obese children and adolescents with NAFLD. One hundred obese patients and 40 lean controls were enrolled. The obese subjects were divided into two subgroups based on the presence or absence of fatty liver. Blood samples were assayed for endocan, P-selectin, platelet-derived growth factor (PDGF), intercellular cell adhesion molecule (ICAM)-1, and vascular cell adhesion molecule (VCAM)-1. Obese patients with NAFLD presented higher ALT and insulin levels, as well as more profound dyslipidemia when compared with their counterparts without NAFLD. Serum levels of high-sensitivity C-reactive protein, VCAM-1 and ICAM-1 were found increased in both obese groups, regardless of NAFLD. In obese subjects with NAFLD, decreased P-selectin levels (51.6 ± 4.14 ng/mL) were detected as compared with the obese (72.3 ± 4.23) and control (74.2 ± 6.97) subjects. Furthermore, circulating P-selectin levels were closely associated with endocan levels (r = 0.852, p < 0.001). Childhood obesity leads to vascular inflammation and therefore may cause a predisposition to atherosclerosis at an early age. The possible outcome of decreased P-selectin levels with NAFLD development must be further investigated.

  8. Deoxycholic acid promotes development of gastroesophageal reflux disease and Barrett's oesophagus by modulating integrin-αv trafficking.

    PubMed

    Prichard, David O; Byrne, Anne Marie; Murphy, James O; Reynolds, John V; O'Sullivan, Jacintha; Feighery, Ronan; Doyle, Brendan; Eldin, Osama Sharaf; Finn, Stephen P; Maguire, Aoife; Duff, Deirdre; Kelleher, Dermot P; Long, Aideen

    2017-12-01

    The fundamental mechanisms underlying erosive oesophagitis and subsequent development of Barrett's oesophagus (BO) are poorly understood. Here, we investigated the contribution of specific components of the gastric refluxate on adhesion molecules involved in epithelial barrier maintenance. Cell line models of squamous epithelium (HET-1A) and BO (QH) were used to examine the effects of bile acids on cell adhesion to extracellular matrix proteins (Collagen, laminin, vitronectin, fibronectin) and expression of integrin ligands (α 3 , α 4, α 5 , α 6 and α ν ). Experimental findings were validated in human explant oesophageal biopsies, a rat model of gastroesophageal reflux disease (GORD) and in patient tissue microarrays. The bile acid deoxycholic acid (DCA) specifically reduced adhesion of HET-1A cells to vitronectin and reduced cell-surface expression of integrin-α ν via effects on endocytic recycling processes. Increased expression of integrin-α v was observed in ulcerated tissue in a rat model of GORD and in oesophagitis and Barrett's intestinal metaplasia patient tissue compared to normal squamous epithelium. Increased expression of integrin-α ν was observed in QH BO cells compared to HET-1A cells. QH cells were resistant to DCA-mediated loss of adhesion and reduction in cell-surface expression of integrin-α ν . We demonstrated that a specific component of the gastric refluxate, DCA, affects the epithelial barrier through modulation of integrin α ν expression, providing a novel mechanism for bile acid-mediated erosion of oesophageal squamous epithelium and promotion of BO. Strategies aimed at preventing bile acid-mediated erosion should be considered in the clinical management of patients with GORD. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Adhesion molecules and receptors

    USDA-ARS?s Scientific Manuscript database

    Adhesion molecules are necessary for leukocyte trafficking and differentiation. They serve to initiate cell-cell interactions under conditions of shear, and they sustain the cell-cell and cell-matrix interactions needed for cellular locomotion. They also can serve directly as signaling molecules act...

  10. Integrin alpha 3 beta 1 participates in the phagocytosis of extracellular matrix molecules by human breast cancer cells.

    PubMed

    Coopman, P J; Thomas, D M; Gehlsen, K R; Mueller, S C

    1996-11-01

    The mechanisms and receptors involved in phagocytosis by nonhematopoietic cells are not well understood. The involvement of the alpha 3 beta 1 integrin in phagocytosis of the extracellular matrix by human breast cancer cells was studied. The possible role of this integrin was suggested since alpha 3 and beta 1 but not alpha 2 subunits are concentrated at membrane sites where local degradation of fluorescently labeled gelatin occurs. Strikingly, anti-alpha 3 integrin monoclonal antibodies (mAbs) stimulate the phagocytosis of fluorescently labeled gelatin films, gelatin beads, and Matrigel films in a quantitative phagocytosis assay. Stimulation of the gelatin uptake by the anti-alpha 3 mAb is dose responsive, saturable, and time dependent. Antibodies against other integrin subunits have a lower stimulatory effect (anti-beta 1) or no significant effect (anti-alpha 2, -alpha 5, -alpha 6, and -alpha v) on gelatin phagocytosis. The synthetic HGD-6 human laminin peptide that binds specifically the alpha 3 beta 1 integrin, but not the scrambled HSGD-6 control peptide, also markedly stimulates gelatin uptake in a dose-responsive way. Furthermore, the stimulatory effects of the HGD-6 peptide and the anti-alpha 3 mAb are additive, suggesting that they might promote phagocytosis in different ways. Other laminin (YIGSR, IKVAV) and fibronectin (GRGDS) peptides have no effect on gelatin phagocytosis. Immunofluorescence shows that the alpha 3 and the beta 1, but not the alpha 2 integrin subunit, concentrate into patches on the cell surface after treatment with their respective mAbs. And, both gelatin and the alpha 3 beta 1 but not the alpha 2 beta 1 integrin are cointernalized and routed to acidic vesicles such as lysosomes. In conclusion, we demonstrate that human breast cancer cells locally degrade and phagocytose the extracellular matrix and show for the first time that the alpha 3 beta 1 integrin participates in this phagocytosis. We hypothesize that the anti-alpha 3

  11. Investigating single molecule adhesion by atomic force spectroscopy.

    PubMed

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  12. Investigating Single Molecule Adhesion by Atomic Force Spectroscopy

    PubMed Central

    Stetter, Frank W. S.; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-01-01

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment. PMID:25867282

  13. Effect of surface topography and bioactive properties on early adhesion and growth behavior of mouse preosteoblast MC3T3-E1 cells.

    PubMed

    Li, Na; Chen, Gang; Liu, Jue; Xia, Yang; Chen, Hanbang; Tang, Hui; Zhang, Feimin; Gu, Ning

    2014-10-08

    The effects of bioactive properties and surface topography of biomaterials on the adhesion and spreading properties of mouse preosteoblast MC3T3-E1 cells was investigated by preparation of different surfaces. Poly lactic-co-glycolic acid (PLGA) electrospun fibers (ES) were produced as a porous rough surface. In our study, coverslips were used as a substrate for the immobilization of 3,4-dihydroxyphenylalanine (DOPA) and collagen type I (COL I) in the preparation of bioactive surfaces. In addition, COL I was immobilized onto porous electrospun fibers surfaces (E-COL) to investigate the combined effects of bioactive molecules and topography. Untreated coverslips were used as controls. Early adhesion and growth behavior of MC3T3-E1 cells cultured on the different surfaces were studied at 6, 12, and 24 h. Evaluation of cell adhesion and morphological changes showed that the all the surfaces were favorable for promoting the adhesion and spreading of cells. CCK-8 assays and flow cytometry revealed that both topography and bioactive properties were favorable for cell growth. Analysis of β1, α1, α2, α5, α10 and α11 integrin expression levels by immunofluorescence, real-time RT-PCR, and Western blot and indicated that surface topography plays an important role in the early stage of cell adhesion. However, the influence of topography and bioactive properties of surfaces on integrins is variable. Compared with any of the topographic or bioactive properties in isolation, the combined effect of both types of properties provided an advantage for the growth and spreading of MC3T3-E1 cells. This study provides a new insight into the functions and effects of topographic and bioactive modifications of surfaces at the interface between cells and biomaterials for tissue engineering.

  14. Stable coordination of the inhibitory Ca2+ ion at MIDAS in integrin CD11b/CD18 by an antibody-derived ligand aspartate: Implications for integrin regulation and structure-based drug design

    PubMed Central

    Mahalingam, Bhuvaneshwari; Ajroud, Kaouther; Alonso, Jose Luis; Anand, Saurabh; Adair, Brian; Horenstein, Alberto L; Malavasi, Fabio; Xiong, Jian-Ping; Arnaout, M. Amin

    2011-01-01

    A central feature of integrin interaction with physiologic ligands is the monodentate binding of a ligand carboxylate to a Mg2+ ion hexacoordinated at the metal-ion-dependent-adhesion site (MIDAS) in the integrin A-domain. This interaction stabilizes the A-domain in the high-affinity state, which is distinguished from the default low-affinity state by tertiary changes in the domain that culminate in cell adhesion. Small molecule ligand-mimetic integrin antagonists act as partial agonists, eliciting similar activating conformational changes in the A-domain, which has contributed to paradoxical adhesion and increased patient mortality in large clinical trials. As with other ligand-mimetic integrin antagonists, the function-blocking monoclonal antibody (mAb) 107 binds MIDAS of integrin CD11b/CD18 A-domain (CD11bA), but in contrast, it favors the inhibitory Ca2+ ion over Mg2+ at MIDAS. We determined the crystal structures of the Fab fragment of mAb 107 complexed to the low- and high-affinity states of CD11bA. Favored binding of Ca2+ at MIDAS is caused by the unusual symmetric bidentate ligation of a Fab-derived ligand Asp to a heptacoordinated MIDAS Ca2+. Binding of Fab 107 to CD11bA did not trigger the activating tertiary changes in the domain or in the full-length integrin. These data show that denticity of the ligand Asp/Glu can modify divalent cation selectivity at MIDAS and hence integrin function. Stabilizing the Ca2+ ion at MIDAS by bidentate ligation to a ligand Asp/Glu may provide one approach for designing pure integrin antagonists. PMID:22095715

  15. Focal complex formation in adult cardiomyocytes is accompanied by the activation of beta3 integrin and c-Src.

    PubMed

    Willey, Christopher D; Balasubramanian, Sundaravadivel; Rodríguez Rosas, María C; Ross, Robert S; Kuppuswamy, Dhandapani

    2003-06-01

    In pressure-overloaded myocardium, our recent study demonstrated cytoskeletal assembly of c-Src and other signaling proteins which was partially mimicked in vitro using adult feline cardiomyocytes embedded in three-dimensional (3D) collagen matrix and stimulated with an integrin-binding Arg-Gly-Asp (RGD) peptide. In the present study, we improved this model further to activate c-Src and obtain a full assembly of the focal adhesion complex (FAC), and characterized c-Src localization and integrin subtype(s) involved. RGD dose response experiments revealed that c-Src activation occurs subsequent to its cytoskeletal recruitment and is accompanied by p130Cas cytoskeletal binding and focal adhesion kinase (FAK) Tyr925 phosphorylation. When cardiomyocytes expressing hexahistidine-tagged c-Src via adenoviral gene delivery were used for RGD stimulation, the expressed c-Src exhibited relocation: (i) biochemical analysis revealed c-Src movement from the detergent-soluble to the -insoluble cytoskeletal fraction and (ii) confocal microscopic analysis showed c-Src movement from a nuclear/perinuclear to a sarcolemmal region. RGD treatment also caused sarcolemmal co-localization of FAK and vinculin. Characterization of integrin subtypes revealed that beta3, but not beta1, integrin plays a predominant role: (i) expression of cytoplasmic domain of beta1A integrin did not affect the RGD-stimulated FAC formation and (ii) both pressure-overloaded myocardium and RGD-stimulated cardiomyocytes exhibited phosphorylation of beta3 integrin at Tyr773/785 sites but not beta1 integrin at Thr788/789 sites. Together these data indicate that RGD treatment in cardiomyocytes causes beta3 integrin activation and c-Src sarcolemmal localization, that subsequent c-Src activation is accompanied by p130Cas binding and FAK Tyr925 phosphorylation, and that these events might be crucial for growth and remodeling of hypertrophying adult cardiomyocytes.

  16. Biomimetic design of platelet adhesion inhibitors to block integrin α2β1-collagen interactions: I. Construction of an affinity binding model.

    PubMed

    Zhang, Lin; Sun, Yan

    2014-04-29

    Platelet adhesion on a collagen surface through integrin α2β1 has been proven to be significant for the formation of arterial thrombus. However, the molecular determinants mediating the integrin-collagen complex remain unclear. In the present study, the dynamics of integrin-collagen binding and molecular interactions were investigated using molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) analysis. Hydrophobic interaction is identified as the major driving force for the formation of the integrin-collagen complex. On the basis of the MD simulation and MM-PBSA results, an affinity binding model (ABM) of integrin for collagen is constructed; it is composed of five residues, including Y157, N154, S155, R288, and L220. The ABM has been proven to capture the major binding motif contributing 84.8% of the total binding free energy. On the basis of the ABM, we expect to establish a biomimetic design strategy of platelet adhesion inhibitors, which would be beneficial for the development of potent peptide-based drugs for thrombotic diseases.

  17. Expression and Function of αvβ3 and αvβ5 Integrins in the Developing Pancreas

    PubMed Central

    Cirulli, Vincenzo; Beattie, Gillian M.; Klier, George; Ellisman, Mark; Ricordi, Camillo; Quaranta, Vito; Frasier, Francine; Ishii, Jennifer K.; Hayek, Alberto; Salomon, Daniel R.

    2000-01-01

    Cell–cell and cell–matrix interactions play a critical role in tissue morphogenesis and in homeostasis of adult tissues. The integrin family of adhesion receptors regulates cellular interactions with the extracellular matrix, which provides three-dimensional information for tissue organization. It is currently thought that pancreatic islet cells develop from undifferentiated progenitors residing within the ductal epithelium of the fetal pancreas. This process involves cell budding from the duct, migration into the surrounding mesenchyme, differentiation, and clustering into the highly organized islet of Langerhans. Here we report that αvβ3 and αvβ5, two integrins known to coordinate epithelial cell adhesion and movement, are expressed in pancreatic ductal cells and clusters of undifferentiated cells emerging from the ductal epithelium. We show that expression and function of αvβ3 and αvβ5 integrins are developmentally regulated during pancreatic islet ontogeny, and mediate adhesion and migration of putative endocrine progenitor cells both in vitro and in vivo in a model of pancreatic islet development. Moreover, we demonstrate the expression of fibronectin and collagen IV in the basal membrane of pancreatic ducts and of cell clusters budding from the ductal epithelium. Conversely, expression of vitronectin marks a population of epithelial cells adjacent to, or emerging from, pancreatic ducts. Thus, these data provide the first evidence for the contribution of integrins αvβ3 and αvβ5 and their ligands to morphogenetic events in the human endocrine pancreas. PMID:10995448

  18. Transduction of beta3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to gelatin.

    PubMed

    Kubo, Miyoko; Clark, Richard A F; Katz, Anne B; Taichman, Lorne B; Jin, Zaishun; Zhao, Ying; Moriguchi, Takahiko

    2007-04-01

    alphavbeta3 is a multiligand integrin receptor that interacts with fibrinogen (FG), fibrin (FB), fibronectin (FN), vitronectin (VN), and denatured collagen. We previously reported that cultured normal human keratinocytes, like in vivo keratinocytes, do not express alphavbeta3 on the cell surface, and do not adhere to and migrate on FG and FB. Furthermore, we reported that human keratinocytes transduced with beta3 integrin subunit cDNA by a retrovirus-mediated transduction method express alphavbeta3 on the cell surface and adhere to FG, FB, FN, and VN significantly compared with beta-galactosidase (beta-gal) cDNA-transduced keratinocytes (control). In this study, we determined whether these beta3 integrin subunit cDNA-transduced keratinocytes or normal human keratinocytes adhere to denatured collagen (gelatin) using a 1 h cell adhesion assay. beta3 cDNA-transduced keratinocytes adhered to gelatin, whereas no significant adhesion was observed with the control cells (beta-gal cDNA-transduced keratinocytes and normal human keratinocytes). The adhesion to gelatin was inhibited by LM609, a monoclonal antibody to alphavbeta3, and RGD peptides but not by normal mouse IgG1 nor RGE peptides. Thus, transduction of beta3 integrin subunit cDNA confers on human keratinocytes the ability to adhere to denatured collagen (gelatin) as well as to FG, FB, VN, and FN. Otherwise, normal human keratinocytes do not adhere to gelatin. These data support the idea that beta3 cDNA-transduced human keratinocytes can be a good material for cultured epithelium to achieve better take rate with acute or chronic wounds, in which FG, FB, and denatured collagen are abundantly present.

  19. Expression of laminin-5 and integrins in actinic cheilitis and superficially invasive squamous cell carcinomas of the lip.

    PubMed

    Peixoto da-Silva, Janaína; Lourenço, Silvia; Nico, Marcello; Silva, Filomena H; Martins, Marília Trierveiler; Costa-Neves, Adriana

    2012-10-15

    The progression of carcinogenesis entails the detachment of cells, invasion and migration of neoplastic cells. Alterations in epithelial adhesion and basement membrane proteins might mediate the early stages of carcinogenesis. This study investigated the expression of adhesion molecules and the basement membrane protein laminin-5 in actinic cheilitis (AC) and incipient squamous cell carcinoma of the lower lip to understand early photocarcinogenesis. Ln-5γ2 chain as well as α3, β1 subunits of α3β1 heterodimer and β4 subunit of integrin α6β4 were evaluated by immunohistochemistry in 16 cases of AC and 16 cases of superficially invasive squamous cell carcinoma (SISCC). Most AC cases showed reduced expression of β1, β4 and α3 integrins, and SISCCs lacked β1, β4 and α3 integrins in the invasive front. AC cases were negative for the Ln-5γ2 chain. Five cases of SISCC (31%) showed heterogeneous Ln-5γ2 chain expression in the invasive front of the tumor. Integrin β1, β4 and α3 expression is lost during the early stages of lip carcinogenesis. Expression of Ln-5γ2 in the invasive front in cases and its correlation with tumor progression suggest that it mediates the acquisition of the migrating and invading epithelial cell phenotype. Copyright © 2012 Elsevier GmbH. All rights reserved.

  20. Interplay between Rolling and Firm Adhesion Elucidated with a Cell-Free System Engineered with Two Distinct Receptor-Ligand Pairs

    PubMed Central

    Eniola, A. Omolola; Willcox, P. Jeanene; Hammer, Daniel A.

    2003-01-01

    The firm arrest of leukocytes to the endothelium during inflammation is known to be mediated by endothelial intercellular adhesion molecules (ICAMs) binding to activated integrins displayed on leukocyte surface. Selectin-ligand interactions, which mediate rolling, are believed to be important for facilitating firm adhesion, either by activating integrins or by facilitating the transition to firm adhesion by making it easier for integrins to bind. Although leukocytes employ two distinct adhesion molecules that mediate different states of adhesion, the fundamental biophysical mechanisms by which two pairs of adhesion molecules facilitate cell adhesion is not well understood. In this work, we attempt to understand the interaction between two molecular systems using a cell-free system in which polystyrene microspheres functionalized with the selectin ligand, sialyl LewisX (sLeX), and an antibody against ICAM-1, aICAM-1, are perfused over P-selectin/ICAM-1 coated surfaces in a parallel plate flow chamber. Separately, sLeX/P-selectin interactions support rolling and aICAM-1/ICAM-1 interactions mediate firm adhesion. Our results show that sLeX/aICAM-1 microspheres will firmly adhere to P-selectin/ICAM-1 coated surfaces, and that the extent of firm adhesion of microspheres is dependent on wall shear stress within the flow chamber, sLeX/aICAM-1 microsphere site density, and P-selectin/ICAM-1 surface density ratio. We show that P-selectin's interaction with sLeX mechanistically facilitates firm adhesion mediated by antibody binding to ICAM-1: the extent of firm adhesion for the same concentration of aICAM-1/ICAM-1 interaction is greater when sLeX/P-selectin interactions are present. aICAM-1/ICAM-1 interactions also stabilize rolling by increasing pause times and decreasing average rolling velocities. Although aICAM-1 is a surrogate for β2-integrin, the kinetics of association between aICAM-1 and ICAM-1 is within a factor of 1.5 of activated integrin binding ICAM-1

  1. Selectin catch-bonds mechanotransduce integrin activation and neutrophil arrest on inflamed endothelium under shear flow.

    PubMed

    Morikis, Vasilios A; Chase, Shannon; Wun, Ted; Chaikof, Elliot L; Magnani, John L; Simon, Scott I

    2017-11-09

    E-selectin extends from the plasma membrane of inflamed endothelium and serves to capture leukocytes from flowing blood via long-lived catch-bonds that support slow leukocyte rolling under shear stress. Its ligands are glycosylated with the tetrasaccharide sialyl Lewis x (sLe x ), which contributes to bond affinity and specificity. E-selectin-mediated rolling transmits signals into neutrophils that trigger activation of high-affinity β 2 -integrins necessary for transition to shear-resistant adhesion and transendothelial migration. Rivipansel is a glycomimetic drug that inhibits E-selectin-mediated vaso-occlusion induced by integrin-dependent sickle-red blood cell-leukocyte adhesion. How Rivipansel antagonizes ligand recognition by E-selectin and blocks outside-in signaling of integrin-mediated neutrophil arrest while maintaining rolling immune-surveillance is unknown. Here, we demonstrate that sLe x expressed on human L-selectin is preferentially bound by E-selectin and, on ligation, initiates secretion of MRP8/14 that binds TLR4 to elicit the extension of β 2 -integrin to an intermediate affinity state. Neutrophil rolling over E-selectin at precise shear stress transmits tension and catch-bond formation with L-selectin via sLe x , resulting in focal clusters that deliver a distinct signal to upshift β 2 -integrins to a high-affinity state. Rivipansel effectively blocked formation of selectin catch-bonds, revealing a novel mechanotransduction circuit that rapidly converts extended β 2 -integrins to high-affinity shear-resistant bond clusters with intracellular adhesion molecule 1 on inflamed endothelium.

  2. Modulation of lens cell adhesion molecules by particle beams

    NASA Technical Reports Server (NTRS)

    McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  3. HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity.

    PubMed

    Trusolino, L; Cavassa, S; Angelini, P; Andó, M; Bertotti, A; Comoglio, P M; Boccaccio, C

    2000-08-01

    Hepatocyte growth factor/scatter factor (HGF/SF) controls a genetic program known as 'invasive growth', which involves as critical steps cell adhesion, migration, and trespassing of basement membranes. We show here that in MDA-MB-231 carcinoma cells, these steps are elicited by HGF/SF but not by epidermal growth factor (EGF). Neither factor substantially alters the production or activity of extracellular matrix proteases. HGF/SF, but not EGF, selectively promotes cell adhesion on laminins 1 and 5, fibronectin, and vitronectin through a PI3-K-dependent mechanism. Increased adhesion is followed by enhanced invasiveness through isolated matrix proteins as well as through reconstituted basement membranes. Inhibition assays using function-blocking antibodies show that this phenomenon is mediated by multiple integrins including beta1, beta3, beta4, and beta5. HGF/SF triggers clustering of all these integrins at actin-rich adhesive sites and lamellipodia but does not quantitatively modify their membrane expression. These data suggest that HGF/SF promotes cell adhesion and invasiveness by increasing the avidity of integrins for their specific ligands.

  4. DR-nm23 gene expression in neuroblastoma cells: relationship to integrin expression, adhesion characteristics, and differentiation.

    PubMed

    Amendola, R; Martinez, R; Negroni, A; Venturelli, D; Tanno, B; Calabretta, B; Raschellà, G

    1997-09-03

    Neuroblastoma, a childhood tumor originating from cells of the embryonic neural crest, retains the ability to differentiate, yielding cells with epithelial-Schwann-like, neuronal, or melanocytic characteristics. Since nm23 gene family members have been proposed to play a role in cellular differentiation, as well as in metastasis suppression, we investigated whether and how DR-nm23, a recently identified third member of the human nm23 gene family, might be involved in neuroblastoma differentiation. Three neuroblastoma cell lines (human LAN-5, human SK-N-SH, and murine N1E-115) were used in these experiments; cells from two of the lines (SK-N-SH and N1E-115) were also studied after being stably transfected with a plasmid containing a full-length DR-nm23 complementary DNA. Cellular expression of specific messenger RNAs and proteins was assessed by use of standard techniques. Cellular adhesion to a variety of protein substrates was also evaluated. DR-nm23 messenger RNA levels in nontransfected LAN-5 and SK-N-SH cells generally increased with time after exposure to differentiation-inducing conditions; levels of the other two human nm23 messenger RNAs (nm23-H1 and nm23-H2) remained essentially constant. Transfected SK-N-SH cells overexpressing DR-nm23 exhibited some characteristics of differentiated cells (increased vimentin and collagen type IV expression) even in the absence of differentiation-inducing conditions. Compared with control cells, DR-nm23-transfected cells exposed to differentiation-inducing conditions showed a greater degree of growth arrest (SK-N-SH cells) and greater increases in integrin protein expression, especially of integrin beta1 (N1E-115 cells). DR-nm23-transfected N1E-115 cells also showed a marked increase in adhesion to collagen type I-coated tissue culture plates that was inhibited by preincubation with an anti-integrin beta1 antibody. DR-nm23 gene expression appears to be associated with differentiation in neuroblastoma cells and may affect

  5. PI3K, ERK, p38 MAPK and integrins regulate CCR3-mediated secretion of mouse and human eosinophil-associated RNases

    PubMed Central

    Shamri, Revital; Young, Kristen M.; Weller, Peter F.

    2013-01-01

    Background Eosinophils have the capacity to secrete varied cytotoxic proteins. Among the proteins are the eosinophil-associated RNases (EARs): the human eosinophil-derived neurotoxin and eosinophilic cationic protein and their murine ortholog EARs, which have been shown to be involved in host defense, tissue remodeling and immunity regulation. However, the signal transduction that regulates EARs secretion in response to physiological stimuli, such as chemokines, has been little studied in human and scarcely in mouse eosinophils, the foremost animal model for eosinophil-associated human diseases. Objective In this study we aimed to understand the signal transduction involved in the secretion of enzymatically active EARs following chemokine stimulation. Methods Fresh mouse and human eosinophils were stimulated with CCL11 and CCL24 and the secretion of enzymatically active EARs was detected using an RNase activity assay. The involvement of signaling factors or integrins was probed using specific inhibitors and blocking antibodies. Adhesion was evaluated by microscopy. Results We found that secretion of mouse EARs in response to CCL11 and CCL24 was Gαi-dependent. Both mouse and human eosinophils required the activation of PI3K, ERK and p38 MAPK. In addition, the adhesion molecules β1 and β2 integrins were found to be crucial for EAR secretion, and we suggest a mechanism in which spreading is obligatory for EAR secretion. Conclusions Collectively, these data suggest a common CCR3-mediated signaling pathway that leads to EAR secretion in both mouse and human eosinophils. These findings are applicable for eosinophil-mediated host defense and eosinophil-associated diseases. PMID:23742707

  6. Increasing α7β1-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression

    PubMed Central

    Liu, Jianming; Burkin, Dean J.; Kaufman, Stephen J.

    2008-01-01

    The dystrophin-glycoprotein complex maintains the integrity of skeletal muscle by associating laminin in the extracellular matrix with the actin cytoskeleton. Several human muscular dystrophies arise from defects in the components of this complex. The α7β1-integrin also binds laminin and links the extracellular matrix with the cytoskeleton. Enhancement of α7-integrin levels alleviates pathology in mdx/utrn−/− mice, a model of Duchenne muscular dystrophy, and thus the integrin may functionally compensate for the absence of dystrophin. To test whether increasing α7-integrin levels affects transcription and cellular functions, we generated α7-integrin-inducible C2C12 cells and transgenic mice that overexpress the integrin in skeletal muscle. C2C12 myoblasts with elevated levels of integrin exhibited increased adhesion to laminin, faster proliferation when serum was limited, resistance to staurosporine-induced apoptosis, and normal differentiation. Transgenic expression of eightfold more integrin in skeletal muscle did not result in notable toxic effects in vivo. Moreover, high levels of α7-integrin in both myoblasts and in skeletal muscle did not disrupt global gene expression profiles. Thus increasing integrin levels can compensate for defects in the extracellular matrix and cytoskeleton linkage caused by compromises in the dystrophin-glycoprotein complex without triggering apparent overt negative side effects. These results support the use of integrin enhancement as a therapy for muscular dystrophy. PMID:18045857

  7. Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions

    NASA Technical Reports Server (NTRS)

    Pavalko, F. M.; Chen, N. X.; Turner, C. H.; Burr, D. B.; Atkinson, S.; Hsieh, Y. F.; Qiu, J.; Duncan, R. L.

    1998-01-01

    Mechanical stimulation of bone induces new bone formation in vivo and increases the metabolic activity and gene expression of osteoblasts in culture. We investigated the role of the actin cytoskeleton and actin-membrane interactions in the transmission of mechanical signals leading to altered gene expression in cultured MC3T3-E1 osteoblasts. Application of fluid shear to osteoblasts caused reorganization of actin filaments into contractile stress fibers and involved recruitment of beta1-integrins and alpha-actinin to focal adhesions. Fluid shear also increased expression of two proteins linked to mechanotransduction in vivo, cyclooxygenase-2 (COX-2) and the early response gene product c-fos. Inhibition of actin stress fiber development by treatment of cells with cytochalasin D, by expression of a dominant negative form of the small GTPase Rho, or by microinjection into cells of a proteolytic fragment of alpha-actinin that inhibits alpha-actinin-mediated anchoring of actin filaments to integrins at the plasma membrane each blocked fluid-shear-induced gene expression in osteoblasts. We conclude that fluid shear-induced mechanical signaling in osteoblasts leads to increased expression of COX-2 and c-Fos through a mechanism that involves reorganization of the actin cytoskeleton. Thus Rho-mediated stress fiber formation and the alpha-actinin-dependent anchorage of stress fibers to integrins in focal adhesions may promote fluid shear-induced metabolic changes in bone cells.

  8. Vesicle-associated membrane protein 2 mediates trafficking of {alpha}5{beta}1 integrin to the plasma membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Nazarul; Hu, Chuan, E-mail: chuan.hu@louisville.edu

    2010-01-01

    Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of {alpha}5{beta}1 integrin. VAMP2 was present on vesicles containing endocytosed {beta}1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cellmore » surface {alpha}5{beta}1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of {alpha}5{beta}1, without altering cell surface expression of {alpha}2{beta}1 integrin or {alpha}3{beta}1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of {alpha}5{beta}1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.« less

  9. Integrins are required for tissue organization and restriction of neurogenesis in regenerating planarians

    PubMed Central

    Seebeck, Florian; März, Martin; Meyer, Anna-Wiebke; Reuter, Hanna; Vogg, Matthias C.; Stehling, Martin; Mildner, Karina; Zeuschner, Dagmar; Rabert, Franziska

    2017-01-01

    Tissue regeneration depends on proliferative cells and on cues that regulate cell division, differentiation, patterning and the restriction of these processes once regeneration is complete. In planarians, flatworms with high regenerative potential, muscle cells express some of these instructive cues. Here, we show that members of the integrin family of adhesion molecules are required for the integrity of regenerating tissues, including the musculature. Remarkably, in regenerating β1-integrin RNAi planarians, we detected increased numbers of mitotic cells and progenitor cell types, as well as a reduced ability of stem cells and lineage-restricted progenitor cells to accumulate at wound sites. These animals also formed ectopic spheroid structures of neural identity in regenerating heads. Interestingly, those polarized assemblies comprised a variety of neural cells and underwent continuous growth. Our study indicates that integrin-mediated cell adhesion is required for the regenerative formation of organized tissues and for restricting neurogenesis during planarian regeneration. PMID:28137894

  10. The integrin alphav beta3 increases cellular stiffness and cytoskeletal remodeling dynamics to facilitate cancer cell invasion

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2013-01-01

    The process of cancer cell invasion through the extracellular matrix (ECM) of connective tissue plays a prominent role in tumor progression and is based fundamentally on biomechanics. Cancer cell invasion usually requires cell adhesion to the ECM through the cell-matrix adhesion receptors integrins. The expression of the αvβ3 integrin is increased in several tumor types and is consistently associated with increased metastasis formation in patients. The hypothesis was that the αvβ3 integrin expression increases the invasiveness of cancer cells through increased cellular stiffness, and increased cytoskeletal remodeling dynamics. Here, the invasion of cancer cells with different αvβ3 integrin expression levels into dense three-dimensional (3D) ECMs has been studied. Using a cell sorter, two subcell lines expressing either high or low amounts of αvβ3 integrins (αvβ3high or αvβ3low cells, respectively) have been isolated from parental MDA-MB-231 breast cancer cells. αvβ3high cells showed a threefold increased cell invasion compared to αvβ3low cells. Similar results were obtained for A375 melanoma, 786-O kidney and T24 bladder carcinoma cells, and cells in which the β3 integrin subunit was knocked down using specific siRNA. To investigate whether contractile forces are essential for αvβ3 integrin-mediated increased cellular stiffness and subsequently enhanced cancer cell invasion, invasion assays were performed in the presence of myosin light chain kinase inhibitor ML-7 and Rho kinase inhibitor Y27632. Indeed, cancer cell invasiveness was reduced after addition of ML-7 and Y27632 in αvβ3high cells but not in αvβ3low cells. Moreover, after addition of the contractility enhancer calyculin A, an increase in pre-stress in αvβ3low cells was observed, which enhanced cellular invasiveness. In addition, inhibition of the Src kinase, STAT3 or Rac1 strongly reduced the invasiveness of αvβ3high cells, whereas the invasiveness of β3 specific knock

  11. Peptides derived from central turn motifs within integrin αIIb and αV cytoplasmic tails inhibit integrin activation.

    PubMed

    Li, Xinlei; Liu, Yongqing; Haas, Thomas A

    2014-12-01

    We previously found that peptides derived from the full length of integrin αIIb and αV cytoplasmic tails inhibited their parent integrin activation, respectively. Here we showed that the cell-permeable peptides corresponding to the conserved central turn motif within αIIb and αV cytoplasmic tails, myr-KRNRPPLEED (αIIb peptide) and myr-KRVRPPQEEQ (αV peptide), similarly inhibited both αIIb and αV integrin activation. Pre-treatment with αIIb or αV peptides inhibited Mn(2+)-activated αIIbβ3 binding to soluble fibrinogen as well as the binding of αIIbβ3-expressing Chinese Hamster Ovary cells to immobilized fibrinogen. Our turn peptides also inhibited adhesion of two breast cancer cell lines (MDA-MB-435 and MCF7) to αV ligand vitronectin. These results suggest that αIIb and αV peptides share a same mechanism in regulating integrin function. Using αIIb peptide as a model, we found that replacement of RPP with AAA significantly attenuated the inhibitory activity of αIIb peptide. Furthermore, we found that αIIb peptide specifically bound to β-tubulin in cells. Our work suggests that the central motif of α tails is an anchoring point for cytoskeletons during integrin activation and integrin-mediated cell adhesion, and its function depends on the turn structure at RPP. However, post-treatment of peptides derived from the full-length tail or from the turn motif did not reverse αIIb and αV integrin activation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Alpha lipoic acid selectively inhibits proliferation and adhesion to fibronectin of v-H-ras-transformed 3Y1 cells.

    PubMed

    Yamasaki, Masao; Iwase, Masahiro; Kawano, Kazuo; Sakakibara, Yoichi; Suiko, Masahito; Nishiyama, Kazuo

    2012-05-01

    Here, we focused on the effects of racemic α-lipoic acid on proliferation and adhesion properties of 3Y1 rat fibroblasts and the v-H-ras-transformed derivative, HR-3Y1-2 cells. Racemic α-lipoic acid inhibited proliferation of HR-3Y1-2 but not 3Y1 cells at 0.3 and 1.0 mM. R-(+)-α-lipoic acid also inhibited proliferation of HR-3Y1-2 cells equivalent to that of racemic α-lipoic acid. In addition, racemic α-lipoic acid decreased intracellular reactive oxygen species levels in HR-3Y1 cells but not 3Y1 cells. Next, we evaluated the effects of racemic α-lipoic acid on cell adhesion to fibronectin. The results indicated that racemic α-lipoic acid decreased adhesive ability of HR-3Y1-2 cells to fibronectin-coated plates. As blocking antibody experiment revealed that β1-integrin plays a key role in cell adhesion in this experimental system, the effects of racemic α-lipoic acid on the expression of β1-integrin were examined. The results indicated that racemic α-lipoic acid selectively downregulated the expression of cell surface β1-integrin expression in HR-3Y1-2 cells. Intriguingly, exogenous hydrogen peroxide upregulated cell surface β1-integrin expression in 3Y1 cells. Taken together, these data suggest that reduction of intracellular reactive oxygen species levels by α-lipoic acid could be an effective means of ameliorating abnormal growth and adhesive properties in v-H-ras transformed cells.

  13. Integrin β4 Signaling Promotes Mammary Tumor Cell Adhesion to Brain Microvascular Endothelium by Inducing ErbB2-mediated Secretion of VEGF

    PubMed Central

    Fan, Jie; Cai, Bin; Zeng, Min; Hao, Yanyan

    2015-01-01

    Prior studies have indicated that the β4 integrin promotes mammary tumor invasion and metastasis by combining with ErbB2 and amplifying its signaling capacity. However, the effector pathways and cellular functions by which the β4 integrin exerts these effects are incompletely understood. To examine if β4 signaling plays a role during mammary tumor cell adhesion to microvascular endothelium, we have examined ErbB2-transformed mammary tumor cells expressing either a wild-type (WT) or a signaling-defective form of β4 (1355T). We report that WT cells adhere to brain microvascular endothelium in vitro to a significantly larger extent as compared to 1355T cells. Interestingly, integrin β4 signaling does not exert a direct effect on adhesion to the endothelium or the underlying basement membrane. Rather, it enhances ErbB2-dependent expression of VEGF by tumor cells. VEGF in turn disrupts the tight and adherens junctions of endothelial monolayers, enabling the exposure of underlying basement membrane and increasing the adhesion of tumor cells to the intercellular junctions of endothelium. Inhibition of ErbB2 on tumor cells or the VEGFR-2 on endothelial cells suppresses mammary tumor cell adhesion to microvascular endothelium. Our results indicate that β4 signaling regulates VEGF expression by the mammary tumor cells thereby enhancing their adhesion to microvascular endothelium. PMID:21556948

  14. The Plasma Membrane Sialidase NEU3 Regulates the Malignancy of Renal Carcinoma Cells by Controlling β1 Integrin Internalization and Recycling*

    PubMed Central

    Tringali, Cristina; Lupo, Barbara; Silvestri, Ilaria; Papini, Nadia; Anastasia, Luigi; Tettamanti, Guido; Venerando, Bruno

    2012-01-01

    The human plasma membrane sialidase NEU3 is a key enzyme in the catabolism of membrane gangliosides, is crucial in the regulation of cell surface processes, and has been demonstrated to be significantly up-regulated in renal cell carcinomas (RCCs). In this report, we show that NEU3 regulates β1 integrin trafficking in RCC cells by controlling β1 integrin recycling to the plasma membrane and controlling activation of the epidermal growth factor receptor (EGFR) and focal adhesion kinase (FAK)/protein kinase B (AKT) signaling. NEU3 silencing in RCC cells increased the membrane ganglioside content, in particular the GD1a content, and changed the expression of key regulators of the integrin recycling pathway. In addition, NEU3 silencing up-regulated the Ras-related protein RAB25, which directs internalized integrins to lysosomes, and down-regulated the chloride intracellular channel protein 3 (CLIC3), which induces the recycling of internalized integrins to the plasma membrane. In this manner, NEU3 silencing enhanced the caveolar endocytosis of β1 integrin, blocked its recycling and reduced its levels at the plasma membrane, and, consequently, inhibited EGFR and FAK/AKT. These events had the following effects on the behavior of RCC cells: they (a) decreased drug resistance mediated by the block of autophagy and the induction of apoptosis; (b) decreased metastatic potential mediated by down-regulation of the metalloproteinases MMP1 and MMP7; and (c) decreased adhesion to collagen and fibronectin. Therefore, our data identify NEU3 as a key regulator of the β1 integrin-recycling pathway and FAK/AKT signaling and demonstrate its crucial role in RCC malignancy. PMID:23139422

  15. Inhibition of STAT3 phosphorylation by sulforaphane reduces adhesion molecule expression in vascular endothelial cell.

    PubMed

    Cho, Young S; Kim, Chan H; Ha, Tae S; Ahn, Hee Y

    2015-11-18

    Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) play key roles in the initiation of vascular inflammation. In this study, we explored whether sulforaphane, a dietary phytochemical, can inhibit the expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS), and the mechanisms involved. Sulforaphane prevented the LPS-mediated increase in ICAM-1 and VCAM-1 expression, (P < 0.01) in HUVEC. Sulforaphane also prevented the LPS-mediated increase in the phosphorylation of signal transducer and activator of transcription 3 (STAT3) (P < 0.01). Stattic, a STAT3 inhibitor, reduced the LPS-induced expression of ICAM-1 and VCAM-1, and STAT3 phosphorylation (P < 0.01). STAT3 small interfering RNA treatment reduced the LPS-induced expression of ICAM-1, VCAM-1, and STAT3 (P < 0.01). Sulforaphane reduced LPS-mediated THP-1 monocyte adhesion to HUVEC (P < 0.01). In C57BL/6 mice, injection of LPS increased aortic ICAM-1 and VCAM-1 expression, and this effect was prevented by sulforaphane. These data provide insight into the mechanism through which sulforaphane partly reduces the expression of ICAM-1 and VCAM-1 on the vascular wall by inhibiting STAT3 phosphorylation.

  16. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia.

    PubMed

    de Rooij, Martin F M; Kuil, Annemieke; Geest, Christian R; Eldering, Eric; Chang, Betty Y; Buggy, Joseph J; Pals, Steven T; Spaargaren, Marcel

    2012-03-15

    Small-molecule drugs that target the B-cell antigen receptor (BCR) signalosome show clinical efficacy in the treatment of B-cell non-Hodgkin lymphoma. These agents, including the Bruton tyrosine kinase (BTK) inhibitor PCI-32765, display an unexpected response in patients with chronic lymphocytic leukemia (CLL): a rapid and sustained reduction of lymphadenopathy accompanied by transient lymphocytosis, which is reversible upon temporary drug deprivation. We hypothesized that this clinical response reflects impaired integrin-mediated adhesion and/or migration. Here, we show that PCI-32765 strongly inhibits BCR-controlled signaling and integrin α(4)β(1)-mediated adhesion to fibronectin and VCAM-1 of lymphoma cell lines and primary CLL cells. Furthermore, PCI-32765 also inhibits CXCL12-, CXCL13-, and CCL19-induced signaling, adhesion, and migration of primary CLL cells. Our data indicate that inhibition of BTK by PCI-32765 overcomes BCR- and chemokine-controlled integrin-mediated retention and homing of malignant B cells in their growth- and survival-supporting lymph node and bone marrow microenvironment, which results in clinically evident CLL regression.

  17. Upregulated Expression of Integrin α1 in Mesangial Cells and Integrin α3 and Vimentin in Podocytes of Col4a3-Null (Alport) Mice

    PubMed Central

    Steenhard, Brooke M.; Vanacore, Roberto; Friedman, David; Zelenchuk, Adrian; Stroganova, Larysa; Isom, Kathryn; St. John, Patricia L.; Hudson, Billy G.; Abrahamson, Dale R.

    2012-01-01

    mesangial integrin α1 and podocyte vimentin and integrin α3 may be important features of glomerular Alport disease, possibly affecting cell-signaling, cell shape and cellular adhesion to the GBM. PMID:23236390

  18. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation

    PubMed Central

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias

    2016-01-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  19. BIGH3 modulates adhesion and migration of hematopoietic stem and progenitor cells

    PubMed Central

    Klamer, Sofieke E; Kuijk, Carlijn GM; Hordijk, Peter L; van der Schoot, C Ellen; von Lindern, Marieke; van Hennik, Paula B; Voermans, Carlijn

    2013-01-01

    Cell adhesion and migration are important determinants of homing and development of hematopoietic stem and progenitor cells (HSPCs) in bone marrow (BM) niches. The extracellular matrix protein transforming growth factor-β (TGF-β) inducible gene H3 (BIGH3) is involved in adhesion and migration, although the effect of BIGH3 is highly cell type-dependent. BIGH3 is abundantly expressed by mesenchymal stromal cells, while its expression in HSPCs is relatively low unless induced by certain BM stressors. Here, we set out to determine how BIGH3 modulates HSPC adhesion and migration. We show that primary HSPCs adhere to BIGH3-coated substrates, which is, in part, integrin-dependent. Overexpression of BIGH3 in HSPCs and HL60 cells reduced the adhesion to the substrate fibronectin in adhesion assays, which was even more profound in electrical cell-substrate impedance sensing (ECIS) assays. Accordingly, the CXCL12 induced migration over fibronectin-coated surface was reduced in BIGH3-expressing HSPCs. The integrin expression profile of HSPCs was not altered upon BIGH3 expression. Although expression of BIGH3 did not alter actin polymerization in response to CXCL12, it inhibited the PMA-induced activation of the small GTPase RAC1 as well as the phosphorylation and activation of extracellular-regulated kinases (ERKs). Reduced activation of ERK and RAC1 may be responsible for the inhibition of cell adhesion and migration by BIGH3 in HSPCs. Induced BIGH3 expression upon BM stress may contribute to the regulation of BM homeostasis. PMID:24152593

  20. Focal Adhesion Kinase Regulates Fibroblast Migration via Integrin beta-1 and Plays a Central Role in Fibrosis

    PubMed Central

    Zhao, Xue-Ke; Cheng, Yiju; Liang Cheng, Ming; Yu, Lei; Mu, Mao; Li, Hong; Liu, Yang; Zhang, Baofang; Yao, Yumei; Guo, Hui; Wang, Rong; Zhang, Quan

    2016-01-01

    Lung fibrosis is a major medical problem for the aging population worldwide. Fibroblast migration plays an important role in fibrosis. Focal Adhesion Kinase (FAK) senses the extracellular stimuli and initiates signaling cascades that promote cell migration. This study first examined the dose and time responses of FAK activation in human lung fibroblasts treated with platelet derived growth factor BB (PDGF-BB). The data indicate that FAK is directly recruited by integrin β1 and the subsequent FAK activation is required for fibroblast migration on fibronectin. In addition, the study has identified that α5β1 and α4β1 are the major integrins for FAK-mediated fibroblast migration on fibronect. In contrast, integrins αvβ3, αvβ6, and αvβ8 play a minor but distinct role in fibroblast migration on fibronectin. FAK inhibitor significantly reduces PDGF-BB stimulated fibroblast migration. Importantly, FAK inhibitor protects bleomycin-induced lung fibrosis in mice. FAK inhibitor blocks FAK activation and significantly reduces signaling cascade of fibroblast migration in bleomycin-challenged mice. Furthermore, FAK inhibitor decreases lung fibrotic score, collagen accumulation, fibronectin production, and myofibroblast differentiation in in bleomycin-challenged mice. These data demonstrate that FAK mediates fibroblast migration mainly via integrin β1. Furthermore, the findings suggest that targeting FAK signaling is an effective therapeutic strategy against fibrosis. PMID:26763945

  1. Direct integrin alphavbeta6-ERK binding: implications for tumour growth.

    PubMed

    Ahmed, Nuzhat; Niu, Jun; Dorahy, Douglas J; Gu, Xinhua; Andrews, Sarah; Meldrum, Cliff J; Scott, Rodney J; Baker, Mark S; Macreadie, Ian G; Agrez, Michael V

    2002-02-21

    Blockade of the mitogen-activated protein (MAP) kinase pathway suppresses growth of colon cancer in vivo. Here we demonstrate a direct link between the extracellular signal-regulated kinase ERK2 and the growth-promoting cell adhesion molecule, integrin alphavbeta6, in colon cancer cells. Down-regulation of beta6 integrin subunit expression inhibits tumour growth in vivo and MAP kinase activity in response to serum stimulation. In alphavbeta6-expressing cells ERK2 is bound only to the beta6 subunit. The increase in cytosolic MAP kinase activity upon epidermal growth factor stimulation is all accounted for by beta6-bound ERK. Deletion of the ERK2 binding site on the beta6 cytoplasmic domain inhibits tumour growth and leads to an association between ERK and the beta5 subunit. The physical interaction between integrin alphavbeta6 and ERK2 defines a novel paradigm of integrin-mediated signalling and provides a therapeutic target for cancer treatment.

  2. Usage of heparan sulfate, integrins, and FAK in HPV16 infection

    PubMed Central

    Abban, Cynthia Y.; Meneses, Patricio I.

    2010-01-01

    Human Papillomavirus Type 16 (HPV16) is the major causative agent of cervical cancer. Studies regarding the early binding and signaling molecules that play a significant role in infection are still lacking. The current study analyses the role of heparan sulfate, integrins, and the signaling molecule FAK in HPV16 infection of human adult keratinocytes cell line (HaCaTs). Our data demonstrate that infection requires the binding of viral particles to heparan sulfate followed by activation of focal adhesion kinase through an integrin. Infections were reduced in the presence of the FAK inhibitor, TAE226. TAE226 was observed to inhibit viral entry to the early endosome a known infectious route. These findings suggest that FAK can serve as a novel target for antiviral therapy. PMID:20441998

  3. Age Increases Monocyte Adhesion on Collagen

    NASA Astrophysics Data System (ADS)

    Khalaji, Samira; Zondler, Lisa; Kleinjan, Fenneke; Nolte, Ulla; Mulaw, Medhanie A.; Danzer, Karin M.; Weishaupt, Jochen H.; Gottschalk, Kay-E.

    2017-05-01

    Adhesion of monocytes to micro-injuries on arterial walls is an important early step in the occurrence and development of degenerative atherosclerotic lesions. At these injuries, collagen is exposed to the blood stream. We are interested whether age influences monocyte adhesion to collagen under flow, and hence influences the susceptibility to arteriosclerotic lesions. Therefore, we studied adhesion and rolling of human peripheral blood monocytes from old and young individuals on collagen type I coated surface under shear flow. We find that firm adhesion of monocytes to collagen type I is elevated in old individuals. Pre-stimulation by lipopolysaccharide increases the firm adhesion of monocytes homogeneously in older individuals, but heterogeneously in young individuals. Blocking integrin αx showed that adhesion of monocytes to collagen type I is specific to the main collagen binding integrin αxβ2. Surprisingly, we find no significant age-dependent difference in gene expression of integrin αx or integrin β2. However, if all integrins are activated from the outside, no differences exist between the age groups. Altered integrin activation therefore causes the increased adhesion. Our results show that the basal increase in integrin activation in monocytes from old individuals increases monocyte adhesion to collagen and therefore the risk for arteriosclerotic plaques.

  4. The Gain-of-Function Integrin β3 Pro33 Variant Alters the Serotonin System in the Mouse Brain.

    PubMed

    Dohn, Michael R; Kooker, Christopher G; Bastarache, Lisa; Jessen, Tammy; Rinaldi, Capria; Varney, Seth; Mazalouskas, Matthew D; Pan, Hope; Oliver, Kendra H; Velez Edwards, Digna R; Sutcliffe, James S; Denny, Joshua C; Carneiro, Ana M D

    2017-11-15

    Engagement of integrins by the extracellular matrix initiates signaling cascades that drive a variety of cellular functions, including neuronal migration and axonal pathfinding in the brain. Multiple lines of evidence link the ITGB3 gene encoding the integrin β3 subunit with the serotonin (5-HT) system, likely via its modulation of the 5-HT transporter (SERT). The ITGB3 coding polymorphism Leu33Pro (rs5918, Pl A2 ) produces hyperactive αvβ3 receptors that influence whole-blood 5-HT levels and may influence the risk for autism spectrum disorder (ASD). Using a phenome-wide scan of psychiatric diagnoses, we found significant, male-specific associations between the Pro33 allele and attention-deficit hyperactivity disorder and ASDs. Here, we used knock-in (KI) mice expressing an Itgb3 variant that phenocopies the human Pro33 variant to elucidate the consequences of constitutively enhanced αvβ3 signaling to the 5-HT system in the brain. KI mice displayed deficits in multiple behaviors, including anxiety, repetitive, and social behaviors. Anatomical studies revealed a significant decrease in 5-HT synapses in the midbrain, accompanied by decreases in SERT activity and reduced localization of SERTs to integrin adhesion complexes in synapses of KI mice. Inhibition of focal adhesion kinase (FAK) rescued SERT function in synapses of KI mice, demonstrating that constitutive active FAK signaling downstream of the Pro32Pro33 integrin αvβ3 suppresses SERT activity. Our studies identify a complex regulation of 5-HT homeostasis and behaviors by integrin αvβ3, revealing an important role for integrins in modulating risk for neuropsychiatric disorders. SIGNIFICANCE STATEMENT The integrin β3 Leu33Pro coding polymorphism has been associated with autism spectrum disorders (ASDs) within a subgroup of patients with elevated blood 5-HT levels, linking integrin β3, 5-HT, and ASD risk. We capitalized on these interactions to demonstrate that the Pro33 coding variation in the murine

  5. [Expression of cell adhesion molecules in acute leukemia cell].

    PubMed

    Ju, Xiaoping; Peng, Min; Xu, Xiaoping; Lu, Shuqing; Li, Yao; Ying, Kang; Xie, Yi; Mao, Yumin; Xia, Fang

    2002-11-01

    To investigate the role of cell adhesion molecule in the development and extramedullary infiltration (EI) of acute leukemia. The expressions of neural cell adhesion molecule (NCAM) gene, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1) genes in 25 acute leukemia patients bone marrow cells were detected by microarray and reverse transcriptase-polymerase chain reaction (RT-PCR). The expressions of NCAM, ICAM-1 and VCAM-1 gene were significantly higher in acute leukemia cells and leukemia cells with EI than in normal tissues and leukemia cells without EI, respectively, both by cDNA microarray and by RT-PCR. The cDNA microarray is a powerful technique in analysis of acute leukemia cells associated genes. High expressions of cell adhesion molecule genes might be correlated with leukemia pathogenesis and infiltration of acute leukemia cell.

  6. Prostaglandin E2 suppresses beta1-integrin expression via E-prostanoid receptor in human monocytes/macrophages.

    PubMed

    Hasegawa, Shunji; Ichiyama, Takashi; Kohno, Fumitaka; Korenaga, Yuno; Ohsaki, Ayami; Hirano, Reiji; Haneda, Yasuhiro; Fukano, Reiji; Furukawa, Susumu

    2010-01-01

    Beta1-integrins mediate cell attachment to different extracellular matrix proteins, intracellular proteins, and intercellular adhesions. Recently, it has been reported that prostaglandin E2 (PGE2) has anti-inflammatory properties such as inhibition of the expression of adhesion molecules or production of chemokines. However, the effect of PGE2 on the expression of beta1-integrin remains unknown. In this study, we investigated the effects of PGE2 on the expression of beta1-integrin in the human monocytic cell line THP-1 and in CD14+ monocytes/macrophages in human peripheral blood. For this, we examined the role of four subtypes of PGE2 receptors and E-prostanoid (EP) receptors on PGE2-mediated inhibition. We found that PGE2 significantly inhibited the expression of beta1-integrin, mainly through EP4 receptors in THP-1 cells and CD14+ monocytes/macrophages in human peripheral blood. We suggest that PGE2 has anti-inflammatory effects, leading to the inhibited expression of beta1-integrin in human monocytes/macrophages, and that the EP4 receptor may play an important role in PGE2-mediated inhibition. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. Targeting αvβ3 and αvβ5 integrins inhibits pulmonary metastasis in an intratibial xenograft osteosarcoma mouse model

    PubMed Central

    Gvozdenovic, Ana; Boro, Aleksandar; Meier, Daniela; Bode-Lesniewska, Beata; Born, Walter; Muff, Roman; Fuchs, Bruno

    2016-01-01

    Osteosarcoma is an aggressive bone cancer that has a high propensity for metastasis to the lungs. Patients with metastatic disease face a very poor prognosis. Therefore, novel therapeutics, efficiently suppressing the metastatic process, are urgently needed. Integrins play a pivotal role in tumor cell adhesion, motility and metastasis. Here, we evaluated αvβ3 and αvβ5 integrin inhibition with cilengitide as a novel metastasis-suppressive therapeutic approach in osteosarcoma. Immunohistochemical analysis of αvβ3 and αvβ5 integrins expression in a tissue microarray of tumor specimens collected from osteosarcoma patients revealed that αvβ5 integrin is mainly found on tumor cells, whereas αvβ3 is predominantly expressed by stromal cells. In vitro functional assays demonstrated that cilengitide dose-dependently inhibited de novo adhesion, provoked detachment and inhibited migration of osteosarcoma cell lines. Cilengitide induced a decline in cell viability, blocked the cell cycle in the G1 phase and caused anoikis by activation of the Hippo pathway. In a xenograft orthotopic mouse model cilengitide minimally affected intratibial primary tumor growth but, importantly, suppressed pulmonary metastasis. The data demonstrate that targeting αvβ3 and αvβ5 integrins in osteosarcoma should be considered as a novel therapeutic option for patients with metastatic disease. PMID:27409827

  8. The conveyor belt hypothesis for thymocyte migration: participation of adhesion and de-adhesion molecules.

    PubMed

    Villa-Verde, D M; Calado, T C; Ocampo, J S; Silva-Monteiro, E; Savino, W

    1999-05-01

    Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble beta-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.

  9. Fibroblast surface-associated FGF-2 promotes contact-dependent colorectal cancer cell migration and invasion through FGFR-SRC signaling and integrin αvβ5-mediated adhesion.

    PubMed

    Knuchel, Sarah; Anderle, Pascale; Werfelli, Patricia; Diamantis, Eva; Rüegg, Curzio

    2015-06-10

    Carcinoma-associated fibroblasts were reported to promote colorectal cancer (CRC) invasion by secreting motility factors and extracellular matrix processing enzymes. Less is known whether fibroblasts may induce CRC cancer cell motility by contact-dependent mechanisms. To address this question we characterized the interaction between fibroblasts and SW620 and HT29 colorectal cancer cells in 2D and 3D co-culture models in vitro. Here we show that fibroblasts induce contact-dependent cancer cell elongation, motility and invasiveness independently of deposited matrix or secreted factors. These effects depend on fibroblast cell surface-associated fibroblast growth factor (FGF) -2. Inhibition of FGF-2 or FGF receptors (FGFRs) signaling abolishes these effects. FGFRs activate SRC in cancer cells and inhibition or silencing of SRC in cancer cells, but not in fibroblasts, prevents fibroblasts-mediated effects. Using an RGD-based integrin antagonist and function-blocking antibodies we demonstrate that cancer cell adhesion to fibroblasts requires integrin αvβ5. Taken together, these results demonstrate that fibroblasts induce cell-contact-dependent colorectal cancer cell migration and invasion under 2D and 3D conditions in vitro through fibroblast cell surface-associated FGF-2, FGF receptor-mediated SRC activation and αvβ5 integrin-dependent cancer cell adhesion to fibroblasts. The FGF-2-FGFRs-SRC-αvβ5 integrin loop might be explored as candidate therapeutic target to block colorectal cancer invasion.

  10. Molecules mediating adhesion of T and B cells, monocytes and granulocytes to vascular endothelial cells.

    PubMed Central

    Prieto, J; Beatty, P G; Clark, E A; Patarroyo, M

    1988-01-01

    Leucocytes interact with vascular endothelial cells (EC), and adhesion between these two cell types in vitro is modulated by phorbol ester. Monocytes were found to display the highest basal adhesion to EC, followed by Epstein-Barr virus-immortalized normal B cells (EBV-B), T cells and granulocytes. Phorbol ester treatment increased the adhesion of all types of leucocytes, except monocytes. In the presence of this compound, monoclonal antibody 60.3 to GP90 (CD18, a leucocyte-adhesion protein which is non-covalently associated to either GP160, GP155, or GP130) was found to inhibit the adhesion of the four types of leucocytes to a considerable extent, while anti-lymphocyte function-associated antigen-1 (LFA-1) antibody to GP160 (CD11a) inhibited the adhesion of T and B cells only. Antibody 60.1 to GP155 (CD11b) had a major inhibitory activity exclusively on granulocytes, while antibody LB-2, which recognizes a distinct adhesion molecule (GP84) and, in contrast to the previous antibodies, reacts with EC, mainly inhibited adhesion of EBV-B and did not increase the inhibition obtained with antibody 60.3 alone. Fab fragments of antibody 60.3 inhibited leucocyte adhesion more efficiently, in either the absence or presence of phorbol ester, than the intact antibody molecule. It is concluded the GP90, either alone or associated to the larger glycoproteins, mediates the adhesion in all types of leucocytes, while GP84 mediates the adhesion of the activated B cells. Images Figure 2 PMID:3259203

  11. PI3Kδ promotes CD4(+) T-cell interactions with antigen-presenting cells by increasing LFA-1 binding to ICAM-1.

    PubMed

    Garçon, Fabien; Okkenhaug, Klaus

    2016-05-01

    Activation of T lymphocytes by peptide/major histocompatibility complex on antigen-presenting cells (APCs) involves dynamic contacts between the two cells, during which T cells undergo marked morphological changes. These interactions are facilitated by integrins. Activation of the T cells increases the binding of the integrin lymphocyte function-associated antigen 1 (LFA-1) expressed by T cells to intercellular adhesion molecule (ICAM)-1 and ICAM-2 expressed by APCs. The signalling pathways that control integrin affinities are incompletely defined. The phosphoinositide 3-kinases (PI3Ks) generate second-messenger signalling molecules that control cell growth, proliferation, differentiation and trafficking. Here we show that in T cells, PI3Kδ attenuates the activation of Rac1, but sustains the activation of Rap1. Consequently, PI3Kδ increases LFA-1-dependent adhesion to form stable conjugates with APCs. Increased Rap1 activity and LFA-1 adhesion were only in part mediated by the downstream kinase Akt, suggesting the involvement of additional phosphatidylinositol(3,4,5)P3-binding proteins. These results establish a link between PI3K activity, cytoskeletal changes and integrin binding and help explain the impaired T-cell-dependent immune responses in PI3Kδ-deficient mice.

  12. Adhesion to the extracellular matrix is positively regulated by retinoic acid in HepG2 cells.

    PubMed

    Massimi, Mara; Devirgiliis, Laura Conti

    2007-02-01

    In this work, we aimed to investigate the possible modulation of cell-matrix interactions by retinoic acid (RA), in view of the well-known role of the extracellular matrix (ECM) and integrins in hepatocyte differentiation and proliferation. For this purpose, we analysed the adhesion ability of HepG2 cells on different substrates in the presence and absence of RA evaluating both the expression and cellular localisation of major proteins involved in focal contacts, using Western blot and confocal microscopy. A positive and substrate-dependent effect of RA on cell-matrix adhesion was observed after long-term culture. The increased adhesiveness in the treated cells was accompanied by an enhanced expression of beta1 and alpha3 integrin subunits, together with a redistribution of beta1 receptors clustered at the basal surface. In contrast, the levels of focal adhesion kinase (FAK), paxillin and alpha-actinin were unchanged, as was the phosphorylation state of FAK. Nonetheless, a stronger association between beta1 integrin and intracytoplasmatic proteins of focal contacts was observed in coimmunoprecipitation experiments after RA treatment, suggesting improved connection with the actin cytoskeleton. These results are consistent with previously described antiproliferative and differentiative effects of RA on transformed hepatocytes, and confirm the hypothesis of a direct influence of RA on specific adhesion molecules.

  13. Integrin-mediated human glioblastoma cells adhesion, migration and invasion by native and recombinant phospholipases of Scorpio maurus venom glands.

    PubMed

    Krayem, Najeh; Abdelkefi-Koubaa, Zaineb; Gargouri, Youssef; Luis, José

    2018-05-01

    Integrins are a large family of cell surface receptors mediating the interaction of cells with their microenvironment and they play an important role in glioma biology. In the present work, we reported the anti-tumor effect of Sm-PLGV a phospholipase A 2 from Tunisian scorpion venom glands-as well as its recombinant forms expressed in Escherichia coli-through interference with integrin receptor function in malignant glioma cells U87. These phospholipases inhibited in a dose dependent manner the adhesion, migration and invasion onto fibrinogen and fibronectin without any cytotoxicity. We showed that Sm-PLGV and its recombinant constructs blocked U87 migration by reducing their velocity and directional persistence. The inhibitory effect was related to a blockage of the integrins αvβ3 and α5β1 function. Inactivation of the enzymatic activity of Sm-PLGV by chemical modification with p-bromophenacyl bromide did not affect its anti-tumor properties, suggesting the presence of 'pharmacological sites' distinct from the catalytic site in scorpion venom phospholipases A 2 . Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Intracellular signaling required for CCL25-stimulated T cell adhesion mediated by the integrin alpha4beta1.

    PubMed

    Parmo-Cabañas, Marisa; García-Bernal, David; García-Verdugo, Rosa; Kremer, Leonor; Márquez, Gabriel; Teixidó, Joaquin

    2007-08-01

    The alpha4beta1 integrin is expressed on thymocytes and mediates cell attachment to its ligands CS-1/fibronectin (CS-1/FN) and VCAM-1 in the thymus. The chemokine CCL25 is highly expressed in the thymus, where it binds to its receptor CCR9 on thymocytes promoting migration and activation. We show here that alpha4beta1 and CCR9 are coexpressed mainly on double- and single-positive thymocytes and that CCL25 strongly stimulates CD4(+)CD8(+) and CD4(+)CD8(-) adhesion to CS-1/FN and VCAM-1. CCL25 rapidly activated the GTPases Rac and Rap1 on thymocytes, and this activation was required for stimulation of adhesion, as detected using the CCR9(+)/alpha4beta1(+) human T cell line Molt-4. To study the role on CCL25-stimulated adhesion of the Rac downstream effector Wiskott-Aldrich syndrome protein family verproline-homologous protein 2 (WAVE2) as well as of Rap1-GTP-interacting proteins, regulator of adhesion and cell polarization enriched in lymphoid tissues (RAPL) and Rap1-GTP-interacting adapter molecule (RIAM), we knocked down their expression and tested transfectant attachment to alpha4beta1 ligands. We found that WAVE2 and RAPL but not RIAM were required for efficient triggering by CCL25 of T cell adhesion to CS-1/FN and VCAM-1. Although Rac and Rap1 activation was required during early steps of T cell adhesion stimulated by CCL25, WAVE2 was needed for the development of actin-dependent T cell spreading subsequent to adhesion strengthening but not during initial alpha4beta1-ligand interactions. These results suggest that regulation by CCL25 of adhesion of thymocyte subpopulations mediated by alpha4beta1 could contribute to control their trafficking in the thymus during maturation, and identify Rac-WAVE2 and Rap1-RAPL as pathways whose activation is required in inside-out signaling, leading to stimulated adhesion.

  15. The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling

    PubMed Central

    Sandri, Chiara; Caccavari, Francesca; Valdembri, Donatella; Camillo, Chiara; Veltel, Stefan; Santambrogio, Martina; Lanzetti, Letizia; Bussolino, Federico; Ivaska, Johanna; Serini, Guido

    2012-01-01

    During developmental and tumor angiogenesis, semaphorins regulate blood vessel navigation by signaling through plexin receptors that inhibit the R-Ras subfamily of small GTPases. R-Ras is mainly expressed in vascular cells, where it induces adhesion to the extracellular matrix (ECM) through unknown mechanisms. We identify the Ras and Rab5 interacting protein RIN2 as a key effector that in endothelial cells interacts with and mediates the pro-adhesive and -angiogenic activity of R-Ras. Both R-Ras-GTP and RIN2 localize at nascent ECM adhesion sites associated with lamellipodia. Upon binding, GTP-loaded R-Ras converts RIN2 from a Rab5 guanine nucleotide exchange factor (GEF) to an adaptor that first interacts at high affinity with Rab5-GTP to promote the selective endocytosis of ligand-bound/active β1 integrins and then causes the translocation of R-Ras to early endosomes. Here, the R-Ras/RIN2/Rab5 signaling module activates Rac1-dependent cell adhesion via TIAM1, a Rac GEF that localizes on early endosomes and is stimulated by the interaction with both Ras proteins and the vesicular lipid phosphatidylinositol 3-monophosphate. In conclusion, the ability of R-Ras-GTP to convert RIN2 from a GEF to an adaptor that preferentially binds Rab5-GTP allows the triggering of the endocytosis of ECM-bound/active β1 integrins and the ensuing funneling of R-Ras-GTP toward early endosomes to elicit the pro-adhesive and TIAM1-mediated activation of Rac1. PMID:22825554

  16. Integrin activation by a cold atmospheric plasma jet

    NASA Astrophysics Data System (ADS)

    Volotskova, Olga; Stepp, Mary Ann; Keidar, Michael

    2012-05-01

    Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. In this paper, we explore potential mechanisms by which CAP alters cell migration and influences cell adhesion. We focus on the study of CAP interaction with fibroblasts and corneal epithelial cells. The data show that fibroblasts and corneal epithelial cells have different thresholds (treatment times) required to achieve maximum inhibition of cell migration. Both cell types reduced their migration rates by ˜30-40% after CAP compared to control cells. Also, the impact of CAP treatment on cell migration and persistence of fibroblasts after integrin activation by MnCl2, serum starvation or replating cells onto surfaces coated with integrin ligands is assessed; the results show that activation by MnCl2 or starvation attenuates cells’ responses to plasma. Studies carried out to assess the impact of CAP treatment on the activation state of β1 integrin and focal adhesion size by using immunofluorescence show that fibroblasts have more active β1 integrin on their surface and large focal adhesions after CAP treatment. Based on these data, a thermodynamic model is presented to explain how CAP leads to integrin activation and focal adhesion assembly.

  17. Upregulation of Fibronectin and the α5β1 and αvβ3 Integrins on Blood Vessels within the Cerebral Ischemic Penumbra

    PubMed Central

    Li, Longxuan; Liu, Fudong; Welser-Alves, Jennifer V.; McCullough, Louise D.; Milner, Richard

    2012-01-01

    Following focal cerebral ischemia, blood vessels in the ischemic border, or penumbra, launch an angiogenic response. In light of the critical role for fibronectin in angiogenesis, and the observation that fibronectin and its integrin receptors are strongly upregulated on angiogenic vessels in the hypoxic CNS, the aim of this study was to establish whether angiogenic vessels in the ischemic CNS also show this response. Focal cerebral ischemia was established in C57/Bl6 mice by middle cerebral artery occlusion (MCA:O), and brain tissue analyzed seven days following re-perfusion, a time at which angiogenesis is ongoing. Within the ischemic core, immunofluorescent (IF) studies demonstrated vascular expression of MECA-32, a marker of leaky cerebral vessels, and vascular breakdown, defined by loss of staining for the endothelial marker, CD31, and the vascular adhesion molecules, laminin, dystroglycan and α6 integrin. Within the ischemic penumbra, dual-IF with CD31 and Ki67 revealed the presence of proliferating endothelial cells, indicating ongoing angiogenesis. Significantly, vessels in the ischemic penumbra showed strong upregulation of fibronectin and the fibronectin receptors, α5β1 and αvβ3 integrins. Taken together with our recent finding that the α5β1 integrin plays an important role in promoting cerebral angiogenesis in response to hypoxia, these results suggest that stimulation of the fibronectin-α5β1 integrin signalling pathway may provide a novel approach to amplifying the intrinsic angiogenic response to cerebral ischemia. PMID:22056225

  18. The Changing Integrin Expression and a Role for Integrin β8 in the Chondrogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    LaPointe, Vanessa L. S.; Verpoorte, Amanda; Stevens, Molly M.

    2013-01-01

    Many cartilage tissue engineering approaches aim to differentiate human mesenchymal stem cells (hMSCs) into chondrocytes and develop cartilage in vitro by targeting cell-matrix interactions. We sought to better inform the design of cartilage tissue engineering scaffolds by understanding how integrin expression changes during chondrogenic differentiation. In three models of in vitro chondrogenesis, we studied the temporal change of cartilage phenotype markers and integrin subunits during the differentiation of hMSCs. We found that transcript expression of most subunits was conserved across the chondrogenesis models, but was significantly affected by the time-course of differentiation. In particular, ITGB8 was up-regulated and its importance in chondrogenesis was further established by a knockdown of integrin β8, which resulted in a non-hyaline cartilage phenotype, with no COL2A1 expression detected. In conclusion, we performed a systematic study of the temporal changes of integrin expression during chondrogenic differentiation in multiple chondrogenesis models, and revealed a role for integrin β8 in chondrogenesis. This work enhances our understanding of the changing adhesion requirements of hMSCs during chondrogenic differentiation and underlines the importance of integrins in establishing a cartilage phenotype. PMID:24312400

  19. Adhesion molecules affected by treatment of lung cancer cells with epidermal growth factor.

    PubMed

    Fonseca, Fernando L A; Azzalis, Ligia A; Feder, David; Nogoceke, Everson; Junqueira, Virginia B C; Valenti, Vitor E; de Abreu, Luiz Carlos

    2011-10-01

    Lung cancer is one of the leading causes of death in the world. Some tumor events are attributed to an important group of molecules (cadherins and integrins). We evaluated the interactions of cell adhesion molecules in cell lines from lung cancer. Two lung cancer cell lines were nonmetastatic (H358 and H441) and two were metastatic (H1299 and H292). All cell lines were treated with epidermal growth factor (EGF), and Western blot analysis was performed to assess the interactions between these proteins. The bronchoalveolar cells H358 showed the three analyzed proteins: E-cadherin, β-catenin, and p120 catenin. The adenocarcinoma cells H441 did not present p120 catenin, and carcinoma cells did not show E-cadherin (H1299) or p120 catenin (H292). FAK (pTyr925) was dephosphorylated in adenocarcinoma cells H441, absent in carcinoma cells H1299, and upregulated in the other carcinoma cells H292. p130Cas showed no difference when the cell lines were treated with EGF for 30 min; it was absent in the metastatic carcinoma cells H1299. Paxillin was dephosphorylated in adenocarcinoma cells H441 and also absent in other metastatic carcinoma cells H292. Vinculin showed the same results, and talin was downregulated in adenocarcinoma cells H441 when the cells were treated with EGF. Rap1 was downregulated and PYK2 was upregulated in the same cell line. Our data help to comprehend the mechanism involved in cell migration to the blood and metastasis generation. In conclusion, the expression patterns of cell-cell adhesion were not affected by EGF treatment but it affected cell-extracellular matrix adhesion.

  20. Galectin-3 Induces Clustering of CD147 and Integrin-β1 Transmembrane Glycoprotein Receptors on the RPE Cell Surface

    PubMed Central

    Priglinger, Claudia S.; Szober, Christoph M.; Priglinger, Siegfried G.; Merl, Juliane; Euler, Kerstin N.; Kernt, Marcus; Gondi, Gabor; Behler, Jennifer; Geerlof, Arie; Kampik, Anselm; Ueffing, Marius; Hauck, Stefanie M.

    2013-01-01

    Proliferative vitreoretinopathy (PVR) is a blinding disease frequently occurring after retinal detachment surgery. Adhesion, migration and matrix remodeling of dedifferentiated retinal pigment epithelial (RPE) cells characterize the onset of the disease. Treatment options are still restrained and identification of factors responsible for the abnormal behavior of the RPE cells will facilitate the development of novel therapeutics. Galectin-3, a carbohydrate-binding protein, was previously found to inhibit attachment and spreading of retinal pigment epithelial cells, and thus bares the potential to counteract PVR-associated cellular events. However, the identities of the corresponding cell surface glycoprotein receptor proteins on RPE cells are not known. Here we characterize RPE-specific Gal-3 containing glycoprotein complexes using a proteomic approach. Integrin-β1, integrin3 and CD147/EMMPRIN, a transmembrane glycoprotein implicated in regulating matrix metalloproteinase induction, were identified as potential Gal-3 interactors on RPE cell surfaces. In reciprocal immunoprecipitation experiments we confirmed that Gal-3 associated with CD147 and integrin-β1, but not with integrin3. Additionally, association of Gal-3 with CD147 and integrin-β1 was observed in co-localization analyses, while integrin3 only partially co-localized with Gal-3. Blocking of CD147 and integrin-β1 on RPE cell surfaces inhibited binding of Gal-3, whereas blocking of integrin3 failed to do so, suggesting that integrin3 is rather an indirect interactor. Importantly, Gal-3 binding promoted pronounced clustering and co-localization of CD147 and integrin-β1, with only partial association of integrin3. Finally, we show that RPE derived CD147 and integrin-β1, but not integrin3, carry predominantly β-1,6-N-actyl-D-glucosamine-branched glycans, which are high-affinity ligands for Gal-3. We conclude from these data that extracellular Gal-3 triggers clustering of CD147 and

  1. Fibroblast surface-associated FGF-2 promotes contact-dependent colorectal cancer cell migration and invasion through FGFR-SRC signaling and integrin αvβ5-mediated adhesion

    PubMed Central

    Knuchel, Sarah; Anderle, Pascale; Werfelli, Patricia; Diamantis, Eva; Rüegg, Curzio

    2015-01-01

    Carcinoma-associated fibroblasts were reported to promote colorectal cancer (CRC) invasion by secreting motility factors and extracellular matrix processing enzymes. Less is known whether fibroblasts may induce CRC cancer cell motility by contact-dependent mechanisms. To address this question we characterized the interaction between fibroblasts and SW620 and HT29 colorectal cancer cells in 2D and 3D co-culture models in vitro. Here we show that fibroblasts induce contact-dependent cancer cell elongation, motility and invasiveness independently of deposited matrix or secreted factors. These effects depend on fibroblast cell surface-associated fibroblast growth factor (FGF) -2. Inhibition of FGF-2 or FGF receptors (FGFRs) signaling abolishes these effects. FGFRs activate SRC in cancer cells and inhibition or silencing of SRC in cancer cells, but not in fibroblasts, prevents fibroblasts-mediated effects. Using an RGD-based integrin antagonist and function-blocking antibodies we demonstrate that cancer cell adhesion to fibroblasts requires integrin αvβ5. Taken together, these results demonstrate that fibroblasts induce cell-contact-dependent colorectal cancer cell migration and invasion under 2D and 3D conditions in vitro through fibroblast cell surface-associated FGF-2, FGF receptor-mediated SRC activation and αvβ5 integrin-dependent cancer cell adhesion to fibroblasts. The FGF-2-FGFRs-SRC-αvβ5 integrin loop might be explored as candidate therapeutic target to block colorectal cancer invasion. PMID:25973543

  2. Extracellular Membrane-proximal Domain of HAb18G/CD147 Binds to Metal Ion-dependent Adhesion Site (MIDAS) Motif of Integrin β1 to Modulate Malignant Properties of Hepatoma Cells*

    PubMed Central

    Li, Yong; Wu, Jiao; Song, Fei; Tang, Juan; Wang, Shi-Jie; Yu, Xiao-Ling; Chen, Zhi-Nan; Jiang, Jian-Li

    2012-01-01

    Several lines of evidence suggest that HAb18G/CD147 interacts with the integrin variants α3β1 and α6β1. However, the mechanism of the interaction remains largely unknown. In this study, mammalian protein-protein interaction trap (MAPPIT), a mammalian two-hybrid method, was used to study the CD147-integrin β1 subunit interaction. CD147 in human hepatocellular carcinoma (HCC) cells was interfered with by small hairpin RNA. Nude mouse xenograft model and metastatic model of HCC were used to detect the role of CD147 in carcinogenesis and metastasis. We found that the extracellular membrane-proximal domain of HAb18G/CD147 (I-type domain) binds at the metal ion-dependent adhesion site in the βA domain of the integrin β1 subunit, and Asp179 in the I-type domain of HAb18G/CD147 plays an important role in the interaction. The levels of the proteins that act downstream of integrin, including focal adhesion kinase (FAK) and phospho-FAK, were decreased, and the cytoskeletal structures of HCC cells were rearranged bearing the HAb18G/CD147 deletion. Simultaneously, the migration and invasion capacities, secretion of matrix metalloproteinases, colony formation rate in vitro, and tumor growth and metastatic potential in vivo were decreased. These results indicate that the interaction of HAb18G/CD147 extracellular I-type domain with the integrin β1 metal ion-dependent adhesion site motif activates the downstream FAK signaling pathway, subsequently enhancing the malignant properties of HCC cells. PMID:22130661

  3. Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through α2β1 integrin

    PubMed Central

    Bix, Gregory; Fu, Jian; Gonzalez, Eva M.; Macro, Laura; Barker, Amy; Campbell, Shelly; Zutter, Mary M.; Santoro, Samuel A.; Kim, Jiyeun K.; Höök, Magnus; Reed, Charles C.; Iozzo, Renato V.

    2004-01-01

    Endorepellin, the COOH-terminal domain of the heparan sulfate proteoglycan perlecan, inhibits several aspects of angiogenesis. We provide evidence for a novel biological axis that links a soluble fragment of perlecan protein core to the major cell surface receptor for collagen I, α2β1 integrin, and provide an initial investigation of the intracellular signaling events that lead to endorepellin antiangiogenic activity. The interaction between endorepellin and α2β1 integrin triggers a unique signaling pathway that causes an increase in the second messenger cAMP; activation of two proximal kinases, protein kinase A and focal adhesion kinase; transient activation of p38 mitogen-activated protein kinase and heat shock protein 27, followed by a rapid down-regulation of the latter two proteins; and ultimately disassembly of actin stress fibers and focal adhesions. The end result is a profound block of endothelial cell migration and angiogenesis. Because perlecan is present in both endothelial and smooth muscle cell basement membranes, proteolytic activity during the initial stages of angiogenesis could liberate antiangiogenic fragments from blood vessels' walls, including endorepellin. PMID:15240572

  4. Superior integrin activating capacity and higher adhesion to fibrinogen matrix in buffy coat-derived platelet concentrates (PCs) compared to PRP-PCs.

    PubMed

    Beshkar, Pezhman; Hosseini, Ehteramolsadat; Ghasemzadeh, Mehran

    2018-02-01

    Regardless of different sources, methods or devices which are applied for preparation of therapeutic platelets, these products are generally isolated from whole blood by the sedimentation techniques which are based on PRP or buffy coat (BC) separation. As a general fact, platelet preparation and storage are also associated with some deleterious changes that known as platelet storage lesion (PSL). Although these alternations in platelet functional activity are aggravated during storage, whether technical issues within preparation can affect integrin activation and platelet adhesion to fibrinogen were investigated in this study. PRP- and BC-platelet concentrates (PCs) were subjected to flowcytometry analysis to examine the expression of platelet activation marker, P-selectin as well as active confirmation of the GPIIb/IIIa (α IIb β 3 ) on day 0, 1, 3 and 5 post-storage. Platelet adhesion to fibrinogen matrix was evaluated by fluorescence microscopy. Glucose concentration and LDH activity were also measured by colorimetric methods. The increasing P-selectin expression during storage was in a reverse correlation with PAC-1 binding (r = -0.67; p = .001). PRP-PCs showed the higher level of P-selectin expression than BC-PCs, whereas the levels of PAC-1 binding and platelet adhesion to fibrinogen matrix were significantly lower in PRP-PCs. Higher levels of active confirmation of the GPIIb/IIIa in BC-PCs were also associated with greater concentration of glucose in these products. We demonstrated the superior capacities of integrin activation and adhesion to fibrinogen for BC-PCs compared to those of PRP-PCs. These findings may provide more advantages for BC method of platelet preparation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Physical association and functional interaction between beta1 integrin and CD98 on human T lymphocytes

    NASA Technical Reports Server (NTRS)

    Miyamoto, Yuko J.; Mitchell, Jason S.; McIntyre, Bradley W.

    2003-01-01

    CD98 is a cell surface protein previously characterized as a cell activation marker, an amino acid transporter, and has recently been implicated in integrin-related functions. Integrins are cell surface proteins, important for homotypic cell aggregation, cell adhesion, and coactivation of T lymphocytes. We have previously shown that the anti-CD98 mAb 80A10, when coimmobilized with anti-CD3 mAb OKT3, is able to mediate human T cell coactivation that is inhibited by anti-beta1 integrin specific mAb 18D3. These results indicated a functional association of CD98 and beta1 integrin signaling but left open the question of a physical association. We now show the induction of homotypic aggregation through CD98 among human T cells and this aggregation was inhibited by anti-beta1 integrin mAb. Therefore, CD98-dependent lymphocyte proliferation and adhesion may involve integrins. Competitive binding assays and fluorescence colocalization analysis suggested that CD98 and beta1 integrin were physically associated. Differential extraction techniques and immunoprecipitations provided the first evidence that the alpha4beta1 integrin and CD98 are specifically associated on human T lymphocytes.

  6. Circulating vascular cell adhesion molecule-1 in pre-eclampsia, gestational hypertension, and normal pregnancy: evidence of selective dysregulation of vascular cell adhesion molecule-1 homeostasis in pre-eclampsia.

    PubMed

    Higgins, J R; Papayianni, A; Brady, H R; Darling, M R; Walshe, J J

    1998-08-01

    Our purpose was to investigate circulating levels of vascular cell adhesion molecule-1 in the peripheral and uteroplacental circulations during normotensive and hypertensive pregnancies. This prospective observational study involved 2 patient groups. Group 1 consisted of 22 women with pre-eclampsia and 30 normotensive women followed up longitudinally through pregnancy and post partum. There were an additional 13 women with established gestational hypertension. Group 2 consisted of 20 women with established pre-eclampsia and 19 normotensive control subjects undergoing cesarean delivery. Plasma levels of vascular cell adhesion molecule-1 were measured in blood drawn from the antecubital vein (group 1) and from both the antecubital and uterine veins (group 2). Data were analyzed by analysis of variance. In group 1 vascular cell adhesion molecule-1 levels did not change significantly throughout normal pregnancy and post partum. Women with established pre-eclampsia had increased vascular cell adhesion molecule-1 levels compared with the normotensive pregnancy group (P = .01). Vascular cell adhesion molecule-1 levels were not elevated in women with established gestational hypertension. In group 2 significantly higher levels of vascular cell adhesion molecule-1 were detected in the uteroplacental (P < .0001) and peripheral (P < .0001) circulations of pre-eclamptic women by comparison with normotensive women. In the pre-eclamptic group there was a tendency toward higher vascular cell adhesion molecule-1 levels in the peripheral circulation than in the uteroplacental circulation (P = .06). In contrast to vascular cell adhesion molecule-1, circulating levels of E-selectin and intercellular adhesion molecule-1, other major leukocyte adhesion molecules expressed by the endothelium, were not different in pre-eclamptic and normotensive pregnancies. Established pre-eclampsia is characterized by selective dysregulation of vascular cell adhesion molecule-1 homeostasis. This event

  7. Phosphoinositide Signaling Regulates the Exocyst Complex and Polarized Integrin Trafficking in Directionally Migrating Cells

    PubMed Central

    Thapa, Narendra; Sun, Yue; Schramp, Mark; Choi, Suyoung; Ling, Kun; Anderson, Richard A

    2011-01-01

    Summary Polarized delivery of signaling and adhesion molecules to the leading edge is required for directional migration of cells. Here, we describe a role for the PIP2 synthesizing enzyme, PIPKIγi2, in regulation of exocyst complex control of cell polarity and polarized integrin trafficking during migration. Loss of PIPKIγi2 impaired directional migration, formation of cell polarity, and integrin trafficking to the leading edge. Upon initiation of directional migration PIPKIγi2 via PIP2 generation controls the integration of the exocyst complex into an integrin-containing trafficking compartment(s) that requires the talin-binding ability of PIPKIγi2, and talin for integrin recruitment to the leading edge. A PIP2 requirement is further emphasized by inhibition of PIPKIγi2-regulated directional migration by an Exo70 mutant deficient in PIP2 binding. These results reveal how phosphoinositide generation orchestrates polarized trafficking of integrin in coordination with talin that links integrins to the actin cytoskeleton, processes that are required for directional migration. PMID:22264730

  8. Exclusion of Integrins from CNS Axons Is Regulated by Arf6 Activation and the AIS

    PubMed Central

    Franssen, Elske H. P.; Zhao, Rong-Rong; Koseki, Hiroaki; Kanamarlapudi, Venkateswarlu; Hoogenraad, Casper C.

    2015-01-01

    Integrins are adhesion and survival molecules involved in axon growth during CNS development, as well as axon regeneration after injury in the peripheral nervous system (PNS). Adult CNS axons do not regenerate after injury, partly due to a low intrinsic growth capacity. We have previously studied the role of integrins in axon growth in PNS axons; in the present study, we investigate whether integrin mechanisms involved in PNS regeneration may be altered or lacking from mature CNS axons by studying maturing CNS neurons in vitro. In rat cortical neurons, we find that integrins are present in axons during initial growth but later become restricted to the somato-dendritic domain. We investigated how this occurs and whether it can be altered to enhance axonal growth potential. We find a developmental change in integrin trafficking; transport becomes predominantly retrograde throughout axons, but not dendrites, as neurons mature. The directionality of transport is controlled through the activation state of ARF6, with developmental upregulation of the ARF6 GEF ARNO enhancing retrograde transport. Lowering ARF6 activity in mature neurons restores anterograde integrin flow, allows transport into axons, and increases axon growth. In addition, we found that the axon initial segment is partly responsible for exclusion of integrins and removal of this structure allows integrins into axons. Changing posttranslational modifications of tubulin with taxol also allows integrins into the proximal axon. The experiments suggest that the developmental loss of regenerative ability in CNS axons is due to exclusion of growth-related molecules due to changes in trafficking. PMID:26019348

  9. Inhibition of Focal Adhesion Kinase Signaling by Integrin α6β1 Supports Human Pluripotent Stem Cell Self-Renewal.

    PubMed

    Villa-Diaz, Luis G; Kim, Jin Koo; Laperle, Alex; Palecek, Sean P; Krebsbach, Paul H

    2016-07-01

    Self-renewal of human embryonic stem cells and human induced pluripotent stem cells (hiPSCs)-known as pluripotent stem cells (PSC)-is influenced by culture conditions, including the substrate on which they are grown. However, details of the molecular mechanisms interconnecting the substrate and self-renewal of these cells remain unclear. We describe a signaling pathway in hPSCs linking self-renewal and expression of pluripotency transcription factors to integrin α6β1 and inactivation of focal adhesion kinase (FAK). Disruption of this pathway results in hPSC differentiation. In hPSCs, α6β1 is the dominant integrin and FAK is not phosphorylated at Y397, and thus, it is inactive. During differentiation, integrin α6 levels diminish and Y397 FAK is phosphorylated and activated. During reprogramming of fibroblasts into iPSCs, integrin α6 is upregulated and FAK is inactivated. Knockdown of integrin α6 and activation of β1 integrin lead to FAK phosphorylation and reduction of Nanog, Oct4, and Sox2, suggesting that integrin α6 functions in inactivation of integrin β1 and FAK signaling and prevention of hPSC differentiation. The N-terminal domain of FAK, where Y397 is localized, is in the nuclei of hPSCs interacting with Oct4 and Sox2, and this immunolocalization is regulated by Oct4. hPSCs remodel the extracellular microenvironment and deposit laminin α5, the primary ligand of integrin α6β1. Knockdown of laminin α5 resulted in reduction of integrin α6 expression, phosphorylation of FAK and decreased Oct4. In conclusion, hPSCs promote the expression of integrin α6β1, and nuclear localization and inactivation of FAK to supports stem cell self-renewal. Stem Cells 2016;34:1753-1764. © 2016 AlphaMed Press.

  10. Impacts of icodextrin on integrin-mediated wound healing of peritoneal mesothelial cells.

    PubMed

    Matsumoto, Mika; Tamura, Masahito; Miyamoto, Tetsu; Furuno, Yumi; Kabashima, Narutoshi; Serino, Ryota; Shibata, Tatsuya; Kanegae, Kaori; Takeuchi, Masaaki; Abe, Haruhiko; Okazaki, Masahiro; Otsuji, Yutaka

    2012-06-14

    Exposure to glucose and its metabolites in peritoneal dialysis fluid (PDF) results in structural alterations of the peritoneal membrane. Icodextrin-containing PDF eliminates glucose and reduces deterioration of peritoneal membrane function, but direct effects of icodextrin molecules on peritoneal mesothelial cells have yet to be elucidated. We compared the impacts of icodextrin itself with those of glucose under PDF-free conditions on wound healing processes of injured mesothelial cell monolayers, focusing on integrin-mediated cell adhesion mechanisms. Regeneration processes of the peritoneal mesothelial cell monolayer were investigated employing an in vitro wound healing assay of cultured rat peritoneal mesothelial cells treated with icodextrin powder- or glucose-dissolved culture medium without PDF, as well as icodextrin- or glucose-containing PDF. The effects of icodextrin on integrin-mediated cell adhesions were examined by immunocytochemistry and Western blotting against focal adhesion kinase (FAK). Cell migration over fibronectin was inhibited in conventional glucose-containing PDF, while icodextrin-containing PDF exerted no significant inhibitory effects. Culture medium containing 1.5% glucose without PDF also inhibited wound healing of mesothelial cells, while 7.5% icodextrin-dissolved culture medium without PDF had no inhibitory effects. Glucose suppressed cell motility by inhibiting tyrosine phosphorylation of FAK, formation of focal adhesions, and cell spreading, while icodextrin had no effects on any of these mesothelial cell functions. Our results demonstrate icodextrin to have no adverse effects on wound healing processes of peritoneal mesothelial cells. Preservation of integrin-mediated cell adhesion might be one of the molecular mechanisms accounting for the superior biocompatibility of icodextrin-containing PDF. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Combating Resistance to Anti-IGFR Antibody by Targeting the Integrin β3-Src Pathway

    PubMed Central

    2013-01-01

    Background Several phase II/III trials of anti–insulin-like growth factor 1 receptor (IGF-1R) monoclonal antibodies (mAbs) have shown limited efficacy. The mechanisms of resistance to IGF-1R mAb-based therapies and clinically applicable strategies for overcoming drug resistance are still undefined. Methods IGF-1R mAb cixutumumab efficacy, alone or in combination with Src inhibitors, was evaluated in 10 human head and neck squamous cell carcinoma (HNSCC) and six non–small cell lung cancer (NSCLC) cell lines in vitro in two- or three-dimensional culture systems and in vivo in cell line– or patient-derived xenograft tumors in athymic nude mice (n = 6–9 per group). Cixutumumab-induced changes in cell signaling and IGF-1 binding to integrin β3 were determined by Western or ligand blotting, immunoprecipitation, immunofluorescence, and cell adhesion analyses and enzyme-linked immunosorbent assay. Data were analyzed by the two-sided Student t test or one-way analysis of variance. Results Integrin β3–Src signaling cascade was activated by IGF-1 in HNSCC and NSCLC cells, when IGF-1 binding to IGF-1R was hampered by cixutumumab, resulting in Akt activation and cixutumumab resistance. Targeting integrin β3 or Src enhanced antitumor activity of cixutumumab in multiple cixutumumab-resistant cell lines and patient-derived tumors in vitro and in vivo. Mean tumor volume of mice cotreated with cixutumumab and integrin β3 siRNA was 133.7mm3 (95% confidence interval [CI] = 57.6 to 209.8mm3) compared with those treated with cixutumumab (1472.5mm3; 95% CI = 1150.7 to 1794.3mm3; P < .001) or integrin β3 siRNA (903.2mm3; 95% CI = 636.1 to 1170.3mm3; P < .001) alone. Conclusions Increased Src activation through integrin ανβ3 confers considerable resistance against anti–IGF-1R mAb-based therapies in HNSCC and NSCLC cells. Dual targeting of the IGF-1R pathway and collateral integrin β3–Src signaling module may override this resistance. PMID:24092920

  12. Apigenin Attenuates Melanoma Cell Migration by Inducing Anoikis through Integrin and Focal Adhesion Kinase Inhibition.

    PubMed

    Hasnat, Md Abul; Pervin, Mehnaz; Lim, Ji Hong; Lim, Beong Ou

    2015-11-27

    Apigenin, a nonmutagenic flavonoid, has been found to have antitumor properties and is therefore particularly relevant for the development of chemotherapeutic agents for cancers. In this study, time- and dose-dependent cell viability and cytotoxicity were assessed to determine the effects of apigenin on A2058 and A375 melanoma cells. Melanoma cells were pretreated with different concentrations of apigenin and analyzed for morphological changes, anoikis induction, cell migration, and levels of proteins associated with apoptosis. Apigenin reduced integrin protein levels and inhibited the phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK1/2), which induce anoikis in human cutaneous melanoma cells. Apigenin exhibited dose-dependent inhibition of melanoma cell migration, unlike untreated controls. Furthermore, apigenin treatment increased apoptotic factors such as caspase-3 and cleaved poly(ADP-ribose) polymerase in a dose-dependent manner, demonstrating the metastasis of melanoma cells. Our results provide a new insight into the mechanisms by which apigenin prevents melanoma metastasis by sensitizing anoikis induced by the loss of integrin proteins in the FAK/ERK1/2 signaling pathway. These findings elucidate the related mechanisms and suggest the potential of apigenin in developing clinical treatment strategies against malignant melanoma.

  13. Gastrin-releasing peptide induces monocyte adhesion to vascular endothelium by upregulating endothelial adhesion molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Mi-Kyoung; Park, Hyun-Joo; Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 626-870

    Gastrin-releasing peptide (GRP) is a neuropeptide that plays roles in various pathophysiological conditions including inflammatory diseases in peripheral tissues; however, little is known about whether GRP can directly regulate endothelial inflammatory processes. In this study, we showed that GRP promotes the adhesion of leukocytes to human umbilical vein endothelial cells (HUVECs) and the aortic endothelium. GRP increased the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by activating nuclear factor-κB (NF-κB) in endothelial cells. In addition, GRP activated extracellular signal-regulated kinase 1/2 (ERK1/2), p38MAPK, and AKT, and the inhibition of these signaling pathways significantly reduced GRP-inducedmore » monocyte adhesion to the endothelium. Overall, our results suggested that GRP may cause endothelial dysfunction, which could be of particular relevance in the development of vascular inflammatory disorders. - Highlights: • GRP induces adhesion of monocytes to vascular endothelium. • GRP increases the expression of endothelial adhesion molecules through the activation of NF-κB. • ERK1/2, p38MAPK, and Akt pathways are involved in the GRP-induced leukocyte adhesiveness to endothelium.« less

  14. Cooperative integrin/ITAM signaling in platelets enhances thrombus formation in vitro and in vivo

    PubMed Central

    Zhi, Huiying; Rauova, Lubica; Hayes, Vincent; Gao, Cunji; Boylan, Brian; Newman, Debra K.; McKenzie, Steven E.; Cooley, Brian C.; Poncz, Mortimer; Newman, Peter J.

    2013-01-01

    The integrin family is composed of a series of 24 αβ heterodimer transmembrane adhesion receptors that mediate cell-cell and cell-extracellular matrix interactions. Adaptor molecules bearing immunoreceptor tyrosine-based activation motifs (ITAMs) have recently been shown to cooperate with specific integrins to increase the efficiency of transmitting ligand-binding–induced signals into cells. In human platelets, Fc receptor γ-chain IIa (FcγRIIa) has been identified as an ITAM-bearing transmembrane receptor responsible for mediating “outside-in” signaling through αIIbβ3, the major adhesion receptor on the platelet surface. To explore the importance of FcγRIIa in thrombosis and hemostasis, we subjected FcγRIIa-negative and FcγRIIa-positive murine platelets to a number of well-accepted models of platelet function. Compared with their FcγRIIa-negative counterparts, FcγRIIa-positive platelets exhibited increased tyrosine phosphorylation of Syk and phospholipase Cγ2 and increased spreading upon interaction with immobilized fibrinogen, retracted a fibrin clot faster, and showed markedly enhanced thrombus formation when perfused over a collagen-coated flow chamber under conditions of arterial and venous shear. They also displayed increased thrombus formation and fibrin deposition in in vivo models of vascular injury. Taken together, these data establish FcγRIIa as a physiologically important functional conduit for αIIbβ3-mediated outside-in signaling, and suggest that modulating the activity of this novel integrin/ITAM pair might be effective in controlling thrombosis. PMID:23264598

  15. Integrin β1 regulates leiomyoma cytoskeletal integrity and growth

    PubMed Central

    Malik, Minnie; Segars, James; Catherino, William H.

    2014-01-01

    Uterine leiomyomas are characterized by an excessive extracellular matrix, increased mechanical stress, and increased active RhoA. Previously, we observed that mechanical signaling was attenuated in leiomyoma, but the mechanisms responsible remain unclear. Integrins, especially integrin β1, are transmembrane adhesion receptors that couple extracellular matrix stresses to the intracellular cytoskeleton to influence cell proliferation and differentiation. Here we characterized integrin and laminin to signaling in leiomyoma cells. We observed a 2.25 ± 0.32 fold increased expression of integrin β1 in leiomyoma cells, compared to myometrial cells. Antibody-mediated inhibition of integrin β1 led to significant growth inhibition in leiomyoma cells and a loss of cytoskeletal integrity. Specifically, polymerization of actin filaments and formation of focal adhesions were reduced by inhibition of integrin p1. Inhibition of integrin β1 in leiomyoma cells led to 0.81 ± 0.02 fold decrease in active RhoA, and resembled levels found in serum-starved cells. Likewise, inhibition of integrin β1 was accompanied by a decrease in phospho-ERK. Compared to myometrial cells, leiomyoma cells demonstrated increased expression of integrin α6 subunit to laminin receptor (1.91 ± 0.11 fold), and increased expression of laminin 5α (1.52±0.02), laminin 5β (3.06±0.92), and laminin 5γ (1.66 ± 0.06). Of note, leiomyoma cells grown on laminin matrix appear to realign themselves. Taken together, the findings reveal that the attenuated mechanical signaling in leiomyoma cells is accompanied by an increased expression and a dependence on integrin β1 signaling in leiomyoma cells, compared to myometrial cells. PMID:23023061

  16. The integrin-binding motif RGDS induces protein tyrosine phosphorylation without activation in Bufo arenarum (Amphibia) oocytes.

    PubMed

    Mouguelar, Valeria S; Cabada, Marcelo O; Coux, Gabriela

    2011-05-01

    Integrins are cell adhesion molecules that are thought to be involved in sperm-oocyte interaction. Nevertheless, their function in mammalian fertilization is still controversial, as different species behave differently. In amphibians, their role is mainly supported by Xenopus laevis studies, where RGDS peptide induces oocyte activation. We recently provided evidence suggesting the presence and involvement of integrins in the interaction of the oocyte plasma membrane (PM) with sperm in the amphibian Bufo arenarum. In order to understand the role of integrin homologs in oocytes and their possible contribution to egg activation mechanisms, we examined the presence of integrin subunits and the effect of RGDS peptide on oocytes and during fertilization. Western blot studies detected integrin subunits α5, αV and β1 in oocytes. In sperm, we could detect only the αV integrin subunit. We found that RGDS peptide was unable to elicit egg activation or MAPK dephosphorylation, but can induce reversible inhibition of fertilization. A similar partial inhibition was produced by an anti-β1 integrin antibody. Using an anti-phosphotyrosine antibody we found major changes in phosphotyrosine-containing proteins in egg extracts minutes after fertilization. Cytosol and PMs isolated from oocytes and fertilized eggs showed additional fertilization-induced phosphorylated proteins. Some of these were also present in cytosol and PMs from RGDS-treated oocytes (partially mimicking fertilization). These findings suggest that B. arenarum fertilization involves integrins (e.g. β1 subunit) as adhesion proteins. Our data support the view that RGDS-binding receptors may function as signaling receptors in B. arenarum oocytes, but integrin engagement by RGDS is not sufficient for oocyte activation.

  17. β1-integrin controls cell fate specification in early lens development

    PubMed Central

    Pathania, Mallika; Wang, Yan; Simirskii, Vladimir N.; Duncan, Melinda K.

    2016-01-01

    Integrins are heterodimeric cell surface molecules that mediate cell-extracellular matrix (ECM) adhesion, ECM assembly, and regulation of both ECM and growth factor induced signaling. However, the developmental context of these diverse functions is not clear. Loss of β1-integrin from the lens vesicle (mouse E10.5) results in abnormal exit of anterior lens epithelial cells (LECs) from the cell cycle and their aberrant elongation toward the presumptive cornea by E12.5. These cells lose expression of LEC markers and initiate expression of the Maf (also known as c-Maf) and Prox1 transcription factors as well as other lens fiber cell markers, β1-integrin null LECs also upregulate the ERK, AKT and Smad1/5/8 phosphorylation indicative of BMP and FGF signaling. By E14.5, β1-integrin null lenses have undergone a complete conversion of all lens epithelial cells into fiber cells. These data suggest that shortly after lens vesicle closure, β1-integrin blocks inappropriate differentiation of the lens epithelium into fibers, potentially by inhibiting BMP and/or FGF receptor activation. Thus, β1-integrin has an important role in fine-tuning the response of the early lens to the gradient of growth factors that regulate lens fiber cell differentiation. PMID:27596755

  18. Cell adhesion molecules in context

    PubMed Central

    2011-01-01

    Cell adhesion molecules (CAMs) are now known to mediate much more than adhesion between cells and between cells and the extracellular matrix. Work by many researchers has illuminated their roles in modulating activation of molecules such as receptor tyrosine kinases, with subsequent effects on cell survival, migration and process extension. CAMs are also known to serve as substrates for proteases that can create diffusible fragments capable of signaling independently from the CAM. The diversity of interactions is further modulated by membrane rafts, which can co-localize or separate potential signaling partners to affect the likelihood of a given signaling pathway being activated. Given the ever-growing number of known CAMs and the fact that their heterophilic binding in cis or in trans can affect their interactions with other molecules, including membrane-bound receptors, one would predict a wide range of effects attributable to a particular CAM in a particular cell at a particular stage of development. The function(s) of a given CAM must therefore be considered in the context of the history of the cell expressing it and the repertoire of molecules expressed both by that cell and its neighbors. PMID:20948304

  19. Expression of mucosal addressin cell adhesion molecule 1 on vessel endothelium of gastric mucosa in patients with nodular gastritis

    PubMed Central

    Ohara, Hiroshi; Isomoto, Hajime; Wen, Chun-Yang; Ejima, Chieko; Murata, Masahiro; Miyazaki, Masanobu; Takeshima, Fuminao; Mizuta, Yohei; Murata, Ikuo; Koji, Takehiko; Nagura, Hiroshi; Kohno, Shigeru

    2003-01-01

    AIM: The interaction of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) with integrin α4β7 mediates lymphocyte recruitment into mucosa-associated lymphoid tissue (MALT). Nodular gastritis is characterized by a unique military pattern on endoscopy representing increased numbers of lymphoid follicles with germinal center, strongly associated with H pylori infection. The purpose of this study was to address the implication of the MAdCAM-1/integrin β7 pathway in NG. METHODS: We studied 17 patients with NG and H pylori infection and 19 H pylori-positive and 14 H pylori-negative controls. A biopsy sample was taken from the antrum and snap-frozen for immunohistochemical analysis of MAdCAM-1 and integrin β7. In simultaneous viewing of serial sections, the percentage of MAdCAM-1-positive to von Willebrand factor-positive vessels was calculated. We also performed immunostaining with anti-CD20, CD4, CD8 and CD68 antibodies to determine the lymphocyte subsets co-expressing integrin β7. RESULTS: Vascular endothelial MAdCAM-1 expression was more enhanced in gastric mucosa with than without H pylori infection. Of note, the percentages of MAdCAM-1-positive vessels were significantly higher in the lamina propria of NG patients than in H pylori-positive controls. Strong expression of MAdCAM-1 was identified adjacent to lymphoid follicles and dense lymphoid aggregates. Integrin β7-expressing mononuclear cells, mainly composed of CD20 and CD4 lymphocytes, were associated with vessels lined with MAdCAM-1-expressing endothelium. CONCLUSION: Our results suggest that the MAdCAM-1/ integrin α4β7 homing system may participate in gastric inflammation in response to H pylori-infection and contributes to MALT formation, typically leading to the development of NG. PMID:14669317

  20. Clonorchis sinensis excretory-secretory products promote the migration and invasion of cholangiocarcinoma cells by activating the integrin β4-FAK/Src signaling pathway.

    PubMed

    Pak, Jhang Ho; Bashir, Qudsia; Kim, In Ki; Hong, Sung-Jong; Maeng, Sejung; Bahk, Young Yil; Kim, Tong-Soo

    2017-06-01

    Cholangiocarcinoma (CCA) is a slow-growing but highly metastatic cancer. Its metastatic potential largely explains its high mortality rate. A recognized risk factor for CCA development is infection with the liver flukes Opisthorchis viverrini and Clonorchis sinensis. We previously reported that the excretory-secretory products (ESPs) of C. sinensis promoted the three-dimensional aggregation and invasion of CCA cells. In the present study, a quantitative real-time PCR array of extracellular matrix (ECM) and adhesion molecules was used to examine the regulatory mechanism of ESP-mediated CCA cell migration and invasion. In particular, the expression levels of integrin α isoforms and β4 were upregulated in response to ESPs. Increased expression of integrin β4 was probably correlated with activation of focal adhesion kinase (FAK) and the steroid receptor coactivator (Src) family kinase and the subsequent activation of two downstream focal adhesion molecules, paxillin and vinculin. Moreover, inhibition of FAK/Src activation reduced paxillin and vinculin phosphorylation and attenuated ESP-induced CCA cell migration and invasion. These findings suggest that the integrin β4-FAK/Src signaling axis may play a crucial role in clonorchiasis-associated CCA metastasis during tumor progression. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Organization, regulatory sequences, and alternatively spliced transcripts of the mucosal addressin cell adhesion molecule-1 (MAdCAM-1) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampaio, S.O.; Mei, C.; Butcher, E.C.

    The mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is expressed selectively at venular sites of lymphocyte extravasation into mucosal lymphoid tissues and lamina propria, where it directs local lymphocyte trafficking. MAdCAM-1 is a multifunctional type I transmembrane adhesion molecule comprising two distal Ig domains involved in {alpha}4{beta}7 integrin binding, a mucin-like region able to display L-selectin-binding carbohydrates, and a membrane-proximal Ig domain homologous to IgA. We show in this work that the MAdCAM-1 gene is located on chromosome 10 and contains five exons. The signal peptide and each one of the three Ig domains are encoded by a distinct exon, whereasmore » the transmembrane, cytoplasmic tail, and 3{prime}-untranslated region of MAdCAM-1 are combined on a single exon. The mucin-like region and the third Ig domain are encoded together on exon 4. An alternatively spliced MAdCAM-1 mRNA is identified that lacks the mucin/IgA-homologous exon 4-encoded sequences. This short variant of MAdCAM-1 may be specialized to support {alpha}4{beta}7-dependent adhesion strengthening, independent of carbohydrate-presenting function. Sequences 5{prime} of the transcription start site include tandem nuclear factor-KB sites; AP-1, AP-2, and signal peptide-1 binding sites; and an estrogen response element. Our findings reinforce the correspondence between the multidomain structure and versatile functions of this vascular addressin, and suggest an additional level of regulation of carbohydrate-presenting capability, and thus of its importance in lectin-mediated vs. {alpha}4{beta}7-dependent adhesive events in lymphocyte trafficking. 46 refs., 6 figs., 1 tab.« less

  2. Evidence that β7 Integrin Regulates Hematopoietic Stem Cell Homing and Engraftment Through Interaction with MAdCAM-1.

    PubMed

    Murakami, Jodi L; Xu, Baohui; Franco, Christopher B; Hu, Xingbin; Galli, Stephen J; Weissman, Irving L; Chen, Ching-Cheng

    2016-01-01

    α4β7 integrin is a cell adhesion receptor that is crucial for the migration of hematopoietic progenitors and mature effector cells in the periphery, but its role in adult hematopoiesis is controversial. We identified a subset of hematopoietic stem cells (HSCs) in the bone marrow (BM) that expressed β7 integrin. These β7(+) HSCs were capable of multilineage, long-term reconstitution and had an inherent competitive advantage over β7(-) HSCs. On the other hand, HSCs that lacked β7 integrin (β7KO) had reduced engraftment potential. Interestingly, quantitative RT-PCR and flow cytometry revealed that β7KO HSCs expressed lower levels of the chemokine receptor CXCR4. Accordingly, β7KO HSCs exhibited impaired migration abilities in vitro and BM homing capabilities in vivo. Lethal irradiation induced expression of the α4β7 integrin ligand-mucosal addressin cell adhesion molecule-1 (MAdCAM-1) on BM endothelial cells. Moreover, blocking MAdCAM-1 reduced the homing of HSCs and impaired the survival of recipient mice. Altogether, these data indicate that β7 integrin, when expressed by HSCs, interacted with its endothelial ligand MAdCAM-1 in the BM microenvironment, thereby promoting HSC homing and engraftment.

  3. Integrin trafficking regulated by Rab21 is necessary for cytokinesis.

    PubMed

    Pellinen, Teijo; Tuomi, Saara; Arjonen, Antti; Wolf, Maija; Edgren, Henrik; Meyer, Hannelore; Grosse, Robert; Kitzing, Thomas; Rantala, Juha K; Kallioniemi, Olli; Fässler, Reinhard; Kallio, Marko; Ivaska, Johanna

    2008-09-01

    Adherent cells undergo remarkable changes in shape during cell division. However, the functional interplay between cell adhesion turnover and the mitotic machinery is poorly understood. The endo/exocytic trafficking of integrins is regulated by the small GTPase Rab21, which associates with several integrin alpha subunits. Here, we show that targeted trafficking of integrins to and from the cleavage furrow is required for successful cytokinesis, and that this is regulated by Rab21. Rab21 activity, integrin-Rab21 association, and integrin endocytosis are all necessary for normal cytokinesis, which becomes impaired when integrin-mediated adhesion at the cleavage furrow fails. We also describe a chromosomal deletion and loss of Rab21 gene expression in human cancer, which leads to the accumulation of multinucleate cells. Importantly, reintroduction of Rab21 rescued this phenotype. In conclusion, Rab21-regulated integrin trafficking is essential for normal cell division, and its defects may contribute to multinucleation and genomic instability, which are hallmarks of cancer.

  4. Glia Maturation Factor-γ Regulates Monocyte Migration through Modulation of β1-Integrin*

    PubMed Central

    Aerbajinai, Wulin; Liu, Lunhua; Zhu, Jianqiong; Kumkhaek, Chutima; Chin, Kyung; Rodgers, Griffin P.

    2016-01-01

    Monocyte migration requires the dynamic redistribution of integrins through a regulated endo-exocytosis cycle, but the complex molecular mechanisms underlying this process have not been fully elucidated. Glia maturation factor-γ (GMFG), a novel regulator of the Arp2/3 complex, has been shown to regulate directional migration of neutrophils and T-lymphocytes. In this study, we explored the important role of GMFG in monocyte chemotaxis, adhesion, and β1-integrin turnover. We found that knockdown of GMFG in monocytes resulted in impaired chemotactic migration toward formyl-Met-Leu-Phe (fMLP) and stromal cell-derived factor 1α (SDF-1α) as well as decreased α5β1-integrin-mediated chemoattractant-stimulated adhesion. These GMFG knockdown impaired effects could be reversed by cotransfection of GFP-tagged full-length GMFG. GMFG knockdown cells reduced the cell surface and total protein levels of α5β1-integrin and increased its degradation. Importantly, we demonstrate that GMFG mediates the ubiquitination of β1-integrin through knockdown or overexpression of GMFG. Moreover, GMFG knockdown retarded the efficient recycling of β1-integrin back to the plasma membrane following normal endocytosis of α5β1-integrin, suggesting that the involvement of GMFG in maintaining α5β1-integrin stability may occur in part by preventing ubiquitin-mediated degradation and promoting β1-integrin recycling. Furthermore, we observed that GMFG interacted with syntaxin 4 (STX4) and syntaxin-binding protein 4 (STXBP4); however, only knockdown of STXBP4, but not STX4, reduced monocyte migration and decreased β1-integrin cell surface expression. Knockdown of STXBP4 also substantially inhibited β1-integrin recycling in human monocytes. These results indicate that the effects of GMFG on monocyte migration and adhesion probably occur through preventing ubiquitin-mediated proteasome degradation of α5β1-integrin and facilitating effective β1-integrin recycling back to the plasma membrane

  5. Cell Adhesion Molecules and Ubiquitination—Functions and Significance

    PubMed Central

    Homrich, Mirka; Gotthard, Ingo; Wobst, Hilke; Diestel, Simone

    2015-01-01

    Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system. PMID:26703751

  6. Rac1 Recruitment to the Archipelago Structure of the Focal Adhesion through the Fluid Membrane as Revealed by Single-Molecule Analysis

    PubMed Central

    Shibata, Akihiro C E; Chen, Limin H; Nagai, Rie; Ishidate, Fumiyoshi; Chadda, Rahul; Miwa, Yoshihiro; Naruse, Keiji; Shirai, Yuki M; Fujiwara, Takahiro K; Kusumi, Akihiro

    2013-01-01

    The focal adhesion (FA) is an integrin-based structure built in/on the plasma membrane (PM), linking the extracellular matrix to the actin stress-fibers, working as cell migration scaffolds. Previously, we proposed the archipelago architecture of the FA, in which FA largely consists of fluid membrane, dotted with small islands accumulating FA proteins: membrane molecules enter the inter-island channels in the FA zone rather freely, and the integrins in the FA-protein islands rapidly exchanges with those in the bulk membrane. Here, we examined how Rac1, a small G-protein regulating FA formation, and its activators αPIX and βPIX, are recruited to the FA zones. PIX molecules are recruited from the cytoplasm to the FA zones directly. In contrast, majorities of Rac1 molecules first arrive from the cytoplasm on the general inner PM surface, and then enter the FA zones via lateral diffusion on the PM, which is possible due to rapid Rac1 diffusion even within the FA zones, slowed only by a factor of two to four compared with that outside. The constitutively-active Rac1 mutant exhibited temporary and all-time immobilizations in the FA zone, suggesting that upon PIX-induced Rac1 activation at the FA-protein islands, Rac1 tends to be immobilized at the FA-protein islands. © 2013 Wiley Periodicals, Inc PMID:23341328

  7. Indomethacin induced gastropathy in CD18, intercellular adhesion molecule 1, or P-selectin deficient mice

    PubMed Central

    Morise, Z; Granger, D; Fuseler, J; Anderson, D; Grisham, M

    1999-01-01

    BACKGROUND—Neutrophil-endothelial cell interactions are thought to play a critical role in the pathophysiology of non-steroidal anti-inflammatory drug (NSAID) induced gastropathy.
AIMS—To optimise a mouse model of NSAID induced gastropathy and to evaluate the importance of adhesion molecules using adhesion molecule deficient mice.
METHODS—Gastropathy was induced in C57BL/6 mice or their adhesion molecule deficient counterparts via oral administration of indomethacin (20 mg/kg). Lesion scores, mucosal permeability, and histopathology were used to assess gastric mucosal injury.
RESULTS—Intragastric administration of indomethacin induced linear haemorrhagic mucosal lesions, primarily in the corpus of the stomach that were first observed at six hours. These lesions continued to develop over the next six hours with maximal lesion scores and mucosal permeabilities at 12 hours. When indomethacin was administered to mice deficient in CD18, intercellular adhesion molecule 1 (ICAM-1), or P-selectin, there were significant decreases in lesion scores compared with their C57BL/6 controls. In addition, mucosal permeabilities were found to be significantly lower in CD18 or ICAM-1 deficient mice observed at 12 hours.
CONCLUSION—Certain leucocyte and endothelial cell adhesion molecules are important determinants for full expression of indomethacin induced gastropathy. It is proposed that this modification of the mouse model may be useful for the investigation of other pathophysiological mechanisms of NSAID induced gastropathy.


Keywords: indomethacin; gastropathy; cyclooxygenase; intercellular adhesion molecule; VCAM; vascular cell adhesion molecule; P-selectin PMID:10486359

  8. β3 integrin promotes chemoresistance to epirubicin in MDA-MB-231 through repression of the pro-apoptotic protein, BAD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nair, Madhumathy G.; Desai, Krisha; Prabhu, Jyothi S.

    Resistance to anthracycline based chemotherapy is a major limitation in the treatment of breast cancer, particularly of the triple negative sub-type that lacks targeted therapies. Resistance that arises from tumor-stromal interaction facilitated by integrins provides the possibility of targeted disruption. In the present study, we demonstrate that integrin β3 signaling inhibits apoptosis induced by a DNA-damaging chemotherapeutic agent, epirubicin, in MDA-MB-231 breast cancer cells. Drug efflux based mechanisms do not contribute to this effect. We show that integrin β3 employs the PI3K-Akt and the MAPK pathway for enabling cell survival and proliferation. Further, our results indicate that integrin β3 helpsmore » inhibit epirubicin induced cytotoxicity by repression of the pro-apoptotic protein BAD, thus promoting an anti-apoptotic response. Myristoylated RGT peptide and a monoclonal antibody against integrin β3 brought about a reversal of this effect and chemosensitized the cells. These results identify β3 integrin signaling via repression of BAD as an important survival pathway used by breast cancer cells to evade chemotherapy induced stress. - Highlights: • Integrin β3 signaling promotes chemoresistance to epirubicin in breast cancer cells. • Integrin β3 promotes cell survival and proliferation in drug treated cells through the PI3K and MAPK pathways. • Integrin signaling helps evade drug induced cytotoxicity by repression of pro-apoptotic molecule; BAD.« less

  9. Induction of experimental bone metastasis in mice by transfection of integrin alpha 4 beta 1 into tumor cells.

    PubMed Central

    Matsuura, N.; Puzon-McLaughlin, W.; Irie, A.; Morikawa, Y.; Kakudo, K.; Takada, Y.

    1996-01-01

    Cell adhesion receptors (eg, integrins and CD44) play an important role in invasion and metastasis during tumor progression. The increase in integrin alpha 4 beta 1 expression on primary melanomas has been reported to significantly correlate with the development of metastases. alpha 4 beta 1 is a cell surface heterodimer that mediates cell-cell and cell-extracellular matrix interactions through adhesion to vascular cell adhesion molecule (VCAM)-1 and to the IIICS region of fibronectin. To test the effects of alpha 4 beta 1 expression on tumor cell metastasis, Chinese hamster ovary cells were transfected with human alpha 4 cDNA. Whereas alpha 4-negative Chinese hamster ovary cells developed only pulmonary metastasis, alpha 4-positive Chinese hamster ovary cells developed bone and pulmonary metastasis in 3 to 4 weeks when injected intravenously into nude mice. Bone metastasis was inhibited by antibody against alpha 4 or VCAM-1. Expression of alpha 3 beta 1, alpha 6 beta 1, or alpha V beta 1 did not induce bone metastasis. Expression of alpha 4 beta 1 also induced bone metastasis in K562 human erythroleukemia cells injected into SCID mice. These results demonstrate that alpha 4 beta 1 can induce tumor cell trafficking to bone, probably via interaction with VCAM-1 that is constitutively expressed on bone marrow stromal cells. Images Figure 1 Figure 3 PMID:8546226

  10. Changes in E-cadherin rigidity sensing regulate cell adhesion.

    PubMed

    Collins, Caitlin; Denisin, Aleksandra K; Pruitt, Beth L; Nelson, W James

    2017-07-18

    Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin-dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell-cell adhesion assay and live cell imaging of cell-cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell-cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell-cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell-cell adhesion.

  11. Changes in E-cadherin rigidity sensing regulate cell adhesion

    PubMed Central

    Collins, Caitlin; Pruitt, Beth L.; Nelson, W. James

    2017-01-01

    Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin–dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell–cell adhesion assay and live cell imaging of cell–cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell–cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell–cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell–cell adhesion. PMID:28674019

  12. Regulation of T-lymphocyte motility, adhesion and de-adhesion by a cell surface mechanism directed by low density lipoprotein receptor-related protein 1 and endogenous thrombospondin-1.

    PubMed

    Talme, Toomas; Bergdahl, Eva; Sundqvist, Karl-Gösta

    2014-06-01

    T lymphocytes are highly motile and constantly reposition themselves between a free-floating vascular state, transient adhesion and migration in tissues. The regulation behind this unique dynamic behaviour remains unclear. Here we show that T cells have a cell surface mechanism for integrated regulation of motility and adhesion and that integrin ligands and CXCL12/SDF-1 influence motility and adhesion through this mechanism. Targeting cell surface-expressed low-density lipoprotein receptor-related protein 1 (LRP1) with an antibody, or blocking transport of LRP1 to the cell surface, perturbed the cell surface distribution of endogenous thrombospondin-1 (TSP-1) while inhibiting motility and potentiating cytoplasmic spreading on intercellular adhesion molecule 1 (ICAM-1) and fibronectin. Integrin ligands and CXCL12 stimulated motility and enhanced cell surface expression of LRP1, intact TSP-1 and a 130,000 MW TSP-1 fragment while preventing formation of a de-adhesion-coupled 110 000 MW TSP-1 fragment. The appearance of the 130 000 MW TSP-1 fragment was inhibited by the antibody that targeted LRP1 expression, inhibited motility and enhanced spreading. The TSP-1 binding site in the LRP1-associated protein, calreticulin, stimulated adhesion to ICAM-1 through intact TSP-1 and CD47. Shear flow enhanced cell surface expression of intact TSP-1. Hence, chemokines and integrin ligands up-regulate a dominant motogenic pathway through LRP1 and TSP-1 cleavage and activate an associated adhesion pathway through the LRP1-calreticulin complex, intact TSP-1 and CD47. This regulation of T-cell motility and adhesion makes pro-adhesive stimuli favour motile responses, which may explain why T cells prioritize movement before permanent adhesion.

  13. Integrin-directed modulation of macrophage responses to biomaterials.

    PubMed

    Zaveri, Toral D; Lewis, Jamal S; Dolgova, Natalia V; Clare-Salzler, Michael J; Keselowsky, Benjamin G

    2014-04-01

    Macrophages are the primary mediator of chronic inflammatory responses to implanted biomaterials, in cases when the material is either in particulate or bulk form. Chronic inflammation limits the performance and functional life of numerous implanted medical devices, and modulating macrophage interactions with biomaterials to mitigate this response would be beneficial. The integrin family of cell surface receptors mediates cell adhesion through binding to adhesive proteins nonspecifically adsorbed onto biomaterial surfaces. In this work, the roles of integrin Mac-1 (αMβ2) and RGD-binding integrins were investigated using model systems for both particulate and bulk biomaterials. Specifically, the macrophage functions of phagocytosis and inflammatory cytokine secretion in response to a model particulate material, polystyrene microparticles were investigated. Opsonizing proteins modulated microparticle uptake, and integrin Mac-1 and RGD-binding integrins were found to control microparticle uptake in an opsonin-dependent manner. The presence of adsorbed endotoxin did not affect microparticle uptake levels, but was required for the production of inflammatory cytokines in response to microparticles. Furthermore, it was demonstrated that integrin Mac-1 and RGD-binding integrins influence the in vivo foreign body response to a bulk biomaterial, subcutaneously implanted polyethylene terephthalate. A thinner foreign body capsule was formed when integrin Mac-1 was absent (~30% thinner) or when RGD-binding integrins were blocked by controlled release of a blocking peptide (~45% thinner). These findings indicate integrin Mac-1 and RGD-binding integrins are involved and may serve as therapeutic targets to mitigate macrophage inflammatory responses to both particulate and bulk biomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. A novel point mutation in CD18 causing the expression of dysfunctional CD11/CD18 leucocyte integrins in a patient with leucocyte adhesion deficiency (LAD)

    PubMed Central

    Mathew, E C; Shaw, J M; Bonilla, F A; Law, S K A; Wright, D A

    2000-01-01

    Leucocyte adhesion deficiency type 1 (LAD-1) is characterized by the incapacity of leucocytes to carry out their adhesion functions via their CD11/CD18 antigens, which are also referred to as the leucocyte integrins. The patients generally suffer from poor wound healing and recurrent bacterial and fungal infections. In severe cases, the infections are often systemic and life-threatening. A LAD patient (AW) of moderate phenotype has been identified but, unlike most other cases, the level of CD11/CD18 antigens on her leucocytes are uncharacteristically high for a LAD patient. Molecular analysis revealed that she is a compound heterozygote for CD18 mutations. She has inherited a D231H mutation from her father and a G284S mutation from her mother. By transfection studies, it was established that the G284S mutation does not support CD11/CD18 antigen expression on the cell surface. In contrast, the D231H mutation does not affect CD18 forming integrin heterodimers with the CD11 antigens on the cell surface. However, the expressed integrins with the D231H mutation are not adhesive to ligands. PMID:10886250

  15. Glucocorticoid-induced tumor necrosis factor receptor family-related ligand triggering upregulates vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 and promotes leukocyte adhesion.

    PubMed

    Lacal, Pedro Miguel; Petrillo, Maria Grazia; Ruffini, Federica; Muzi, Alessia; Bianchini, Rodolfo; Ronchetti, Simona; Migliorati, Graziella; Riccardi, Carlo; Graziani, Grazia; Nocentini, Giuseppe

    2013-10-01

    The interaction of glucocorticoid-induced tumor necrosis factor receptor-family related (GITR) protein with its ligand (GITRL) modulates different functions, including immune/inflammatory response. These effects are consequent to intracellular signals activated by both GITR and GITRL. Previous results have suggested that lack of GITR expression in GITR(-/-) mice decreases the number of leukocytes within inflamed tissues. We performed experiments to analyze whether the GITRL/GITR system modulates leukocyte adhesion and extravasation. For that purpose, we first evaluated the capability of murine splenocytes to adhere to endothelial cells (EC). Our results indicated that adhesion of GITR(-/-) splenocytes to EC was reduced as compared with wild-type cells, suggesting that GITR plays a role in adhesion and that this effect may be due to GITRL-GITR interaction. Moreover, adhesion was increased when EC were pretreated with an agonist GITR-Fc fusion protein, thus indicating that triggering of GITRL plays a role in adhesion by EC regulation. In a human in vitro model, the adhesion to human EC of HL-60 cells differentiated toward the monocytic lineage was increased by EC pretreatment with agonist GITR-Fc. Conversely, antagonistic anti-GITR and anti-GITRL Ab decreased adhesion, thus further indicating that GITRL triggering increases the EC capability to support leukocyte adhesion. EC treatment with GITR-Fc favored extravasation, as demonstrated by a transmigration assay. Notably, GITRL triggering increased intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression and anti-ICAM-1 and anti-VCAM-1 Abs reversed GITR-Fc effects. Our study demonstrates that GITRL triggering in EC increases leukocyte adhesion and transmigration, suggesting new anti-inflammatory therapeutic approaches based on inhibition of GITRL-GITR interaction.

  16. The relative influence of metal ion binding sites in the I-like domain and the interface with the hybrid domain on rolling and firm adhesion by integrin alpha4beta7.

    PubMed

    Chen, JianFeng; Takagi, Junichi; Xie, Can; Xiao, Tsan; Luo, Bing-Hao; Springer, Timothy A

    2004-12-31

    We examined the effect of conformational change at the beta(7) I-like/hybrid domain interface on regulating the transition between rolling and firm adhesion by integrin alpha(4)beta(7). An N-glycosylation site was introduced into the I-like/hybrid domain interface to act as a wedge and to stabilize the open conformation of this interface and hence the open conformation of the alpha(4) beta(7) headpiece. Wild-type alpha(4)beta(7) mediates rolling adhesion in Ca(2+) and Ca(2+)/Mg(2+) but firm adhesion in Mg(2+) and Mn(2+). Stabilizing the open headpiece resulted in firm adhesion in all divalent cations. The interaction between metal binding sites in the I-like domain and the interface with the hybrid domain was examined in double mutants. Changes at these two sites can either counterbalance one another or be additive, emphasizing mutuality and the importance of multiple interfaces in integrin regulation. A double mutant with counterbalancing deactivating ligand-induced metal ion binding site (LIMBS) and activating wedge mutations could still be activated by Mn(2+), confirming the importance of the adjacent to metal ion-dependent adhesion site (ADMIDAS) in integrin activation by Mn(2+). Overall, the results demonstrate the importance of headpiece allostery in the conversion of rolling to firm adhesion.

  17. Inhibitors of adhesion molecules expression; the synthesis and pharmacological properties of 10H-pyrazino[2,3-b][1,4]benzothiazine derivatives.

    PubMed

    Kaneko, Toshihiko; Clark, Richard S J; Ohi, Norihito; Kawahara, Tetsuya; Akamatsu, Hiroshi; Ozaki, Fumihiro; Kamada, Atsushi; Okano, Kazuo; Yokohama, Hiromitsu; Muramoto, Kenzo; Ohkuro, Masayoshi; Takenaka, Osamu; Kobayashi, Seiichi

    2002-07-01

    During a search for novel, orally-active inhibitors of upregulation of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1), we found a new series of 10H-pyrazino[2,3-b][1,4]benzothiazine derivatives to be potent ICAM-1 inhibitors. Of these compounds, N-[1-(10H-Pyrazino[2,3-b][1,4]benzothiazin-8-ylmethyl)piperidin-4-yl]-N',N'-dimethylsulfamide 7p showed the potent oral inhibitory activities against neutrophil migration in a murine interleukin-1 (IL-1) induced paw inflammation model. The synthesis and structure-activity relationships of these amide derivatives are described.

  18. Non-Cell-Adhesive Substrates for Printing of Arrayed Biomaterials

    PubMed Central

    Appel, Eric A.; Larson, Benjamin L.; Luly, Kathryn M.; Kim, Jinseong D.

    2015-01-01

    Cellular microarrays have become extremely useful in expediting the investigation of large libraries of (bio)materials for both in vitro and in vivo biomedical applications. We have developed an exceedingly simple strategy for the fabrication of non-cell-adhesive substrates supporting the immobilization of diverse (bio)material features, including both monomeric and polymeric adhesion molecules (e.g. RGD and polylysine), hydrogels, and polymers. PMID:25430948

  19. Mechanotransduction through Integrins

    NASA Technical Reports Server (NTRS)

    Ingber, Donald

    2004-01-01

    The goal of this project was to characterize the molecular mechanism by which cells recognize and respond to physical forces in their local environment. The project was based on the working hypothesis that cells sense mechanical stresses through cell surface integrin receptors and through their interconnections with the underlying cytoskeleton. Work completed and published in past funding period had provided direct support for this hypothesis. In particular, we demonstrated that application of mechanical stresses to activated integrin receptors (but not inactive integrins or other control transmembrane receptors) resulted in stress-dependent activation of the CAMP signaling pathway leading to gene transcription. We also showed that this form of mechanotransduction requires activation of heterotrimeric G proteins. In this grant, our specific aims included: 1) to characterize the signal processing capabilities of different integrins and other cell surface receptors, 2) to identify heterotrimeric G proteins that mediate CAMP signaling by stresses applied to integrins, 3) to identify molecules that mediate transmembrane mechanochemical coupling between integrins and G proteins, and 4) to use genome-wide gene expression profiling techniques to identify other genes and signaling pathways that are activated by mechanical forces transmitted over specific cell surface receptors. Elucidation of the mechanism by which cells sense mechanical stresses through integrins and translate them into a biochemical response should help us to understand the molecular basis of the cellular response to gravity as well as many other forms of mechanosensation and tissue regulation.

  20. Integrin αIIbβ3 outside-in signaling

    PubMed Central

    2017-01-01

    Integrin αIIbβ3 is a highly abundant heterodimeric platelet receptor that can transmit information bidirectionally across the plasma membrane, and plays a critical role in hemostasis and thrombosis. Upon platelet activation, inside-out signaling pathways increase the affinity of αIIbβ3 for fibrinogen and other ligands. Ligand binding and integrin clustering subsequently stimulate outside-in signaling, which initiates and amplifies a range of cellular events driving essential platelet processes such as spreading, thrombus consolidation, and clot retraction. Integrin αIIbβ3 has served as an excellent model for the study of integrin biology, and it has become clear that integrin outside-in signaling is highly complex and involves a vast array of enzymes, signaling adaptors, and cytoskeletal components. In this review, we provide a concise but comprehensive overview of αIIbβ3 outside-in signaling, focusing on the key players involved, and how they cooperate to orchestrate this critical aspect of platelet biology. We also discuss gaps in the current understanding of αIIbβ3 outside-in signaling and highlight avenues for future investigation. PMID:28794070

  1. The adapter protein SLP-76 mediates "outside-in" integrin signaling and function in T cells.

    PubMed

    Baker, R G; Hsu, C J; Lee, D; Jordan, M S; Maltzman, J S; Hammer, D A; Baumgart, T; Koretzky, G A

    2009-10-01

    The adapter protein SH2 domain-containing leukocyte protein of 76 kDa (SLP-76) is an essential mediator of signaling from the T-cell antigen receptor (TCR). We report here that SLP-76 also mediates signaling downstream of integrins in T cells and that SLP-76-deficient T cells fail to support adhesion to integrin ligands. In response to both TCR and integrin stimulation, SLP-76 relocalizes to surface microclusters that colocalize with phosphorylated signaling proteins. Disruption of SLP-76 recruitment to the protein named LAT (linker for activation of T cells) inhibits SLP-76 clustering downstream of the TCR but not downstream of integrins. Conversely, an SLP-76 mutant unable to bind ADAP (adhesion and degranulation-promoting adapter protein) forms clusters following TCR but not integrin engagement and fails to support T-cell adhesion to integrin ligands. These findings demonstrate that SLP-76 relocalizes to integrin-initiated signaling complexes by a mechanism different from that employed during TCR signaling and that SLP-76 relocalization corresponds to SLP-76-dependent integrin function in T cells.

  2. Connective tissue growth factor and integrin αvβ6: a new pair of regulators critical for ductular reaction and biliary fibrosis in mice.

    PubMed

    Pi, Liya; Robinson, Paulette M; Jorgensen, Marda; Oh, Seh-Hoon; Brown, Alicia R; Weinreb, Paul H; Trinh, Thu Le; Yianni, Protopapadakis; Liu, Chen; Leask, Andrew; Violette, Shelia M; Scott, Edward W; Schultz, Gregory S; Petersen, Bryon E

    2015-02-01

    Connective tissue growth factor (CTGF) is a matricellular protein that mediates cell-matrix interaction through various subtypes of integrin receptors. This study investigated the role of CTGF and integrin αvβ6 in hepatic progenitor/oval cell activation, which often occurs in the form of ductular reactions (DRs) when hepatocyte proliferation is inhibited during severe liver injury. CTGF and integrin αvβ6 proteins were highly expressed in DRs of human cirrhotic livers and cholangiocarcinoma. Confocal microscopy analysis of livers from Ctgf promoter-driven green fluorescent protein reporter mice suggested that oval cells and cholangiocytes were the main sources of CTGF and integrin αvβ6 during liver injury induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Deletion of exon 4 of the Ctgf gene using tamoxifen-inducible Cre-loxP system down-regulated integrin αvβ6 in DDC-damaged livers of knockout mice. Ctgf deficiency or inhibition of integrin αvβ6, by administrating the neutralizing antibody, 6.3G9 (10 mg/kg body weight), caused low levels of epithelial cell adhesion molecule and cytokeratin 19 gene messenger RNAs. Also, there were smaller oval cell areas, fewer proliferating ductular epithelial cells, and lower cholestasis serum markers within 2 weeks after DDC treatment. Associated fibrosis was attenuated, as indicated by reduced expression of fibrosis-related genes, smaller areas of alpha-smooth muscle actin staining, and low collagen production based on hydroxyproline content and Sirius Red staining. Finally, integrin αvβ6 could bind to CTGF mediating oval cell adhesion to CTGF and fibronection substrata and promoting transforming growth factor (TGF)-β1 activation in vitro. CTGF and integrin αvβ6 regulate oval cell activation and fibrosis, probably through interacting with their common matrix and signal partners, fibronectin and TGF-β1. CTGF and integrin αvβ6 are potential therapeutic targets to control DRs and fibrosis in related liver

  3. Signal transduction by beta1 integrin receptors in human chondrocytes in vitro: collaboration with the insulin-like growth factor-I receptor.

    PubMed

    Shakibaei, M; John, T; De Souza, P; Rahmanzadeh, R; Merker, H J

    1999-09-15

    We have examined the mechanism by which collagen-binding integrins co-operate with insulin-like growth factor-I (IGF-I) receptors (IGF-IR) to regulate chondrocyte phenotype and differentiation. Adhesion of chondrocytes to anti-beta1 integrin antibodies or collagen type II leads to phosphorylation of cytoskeletal and signalling proteins localized at focal adhesions, including alpha-actinin, vinculin, paxillin and focal adhesion kinase (FAK). These stimulate docking proteins such as Shc (Src-homology collagen). Moreover, exposure of collagen type II-cultured chondrocytes to IGF-I leads to co-immunoprecipitation of Shc protein with the IGF-IR and with beta1, alpha1 and alpha5 integrins, but not with alpha3 integrin. Shc then associates with growth factor receptor-bound protein 2 (Grb2), an adaptor protein and extracellular signal-regulated kinase. The expression of the docking protein Shc occurs only when chondrocytes are bound to collagen type II or integrin antibodies and increases when IGF-I is added, suggesting a collaboration between integrins and growth factors in a common/shared biochemical signalling pathway. Furthermore, these results indicate that focal adhesion assembly may facilitate signalling via Shc, a potential common target for signal integration between integrin and growth-factor signalling regulatory pathways. Thus, the collagen-binding integrins and IGF-IR co-operate to regulate focal adhesion components and these signalling pathways have common targets (Shc-Grb2 complex) in subcellular compartments, thereby linking to the Ras-mitogen-activated protein kinase signalling pathway. These events may play a role during chondrocyte differentiation.

  4. Correlation of leukocyte adhesiveness, adhesion molecule expression and leukocyte-induced contraction following balloon angioplasty

    PubMed Central

    Kennedy, Simon; McPhaden, Allan R; Wadsworth, Roger M; Wainwright, Cherry L

    2000-01-01

    The aim of this study was to examine the changes in leukocyte adhesion and leukocyte-induced contraction in balloon-injured rabbit subclavian artery and to correlate these changes with vessel morphology and expression of adhesion molecules on the injured arteries.Rabbits were anaesthetized and their left subclavian arteries were injured by balloon inflation and withdrawal followed by sacrifice at 2, 24, 48 h or 8 days after injury. The left and right subclavian arteries were removed and leukocytes were isolated from autologous rabbit blood. Leukocyte-induced contraction was measured in 5-HT precontracted artery rings and leukocyte adhesion was measured using 51Cr-labelled leukocytes. Immunocytochemistry using paraffin-embedded tissue was employed to detect changes in the expression of adhesion molecules on injured arteries.Autologous leukocytes caused a contraction of rabbit subclavian artery rings, which was prevented by L-NAME (10−3 M). Balloon-induced injury abolished the contractile response to leukocytes, which correlated with loss of carbachol-induced relaxationBalloon injury markedly enhanced the adhesiveness of the subclavian artery for leukocytes, most notably at 24 and 48 h after injury (1.7 and 1.8 fold respectively). Increased leukocyte adhesion at these two time points correlated with an upregulation of E-selectin, P-selectin and VCAM-1 expression on the remaining endothelium of the injured artery.Vessel morphology revealed that balloon inflation had induced an infiltration of inflammatory cells into the vessel wall, the greatest increase being seen at 24 h after injury.It is concluded that an increase in the expression of E-selectin, P-selectin and VCAM-1 following balloon-induced injury leads to enhanced leukocyte adhesion and migration into the injured vessel. PMID:10781003

  5. The Sal-like 4 - integrin α6β1 network promotes cell migration for metastasis via activation of focal adhesion dynamics in basal-like breast cancer cells.

    PubMed

    Itou, Junji; Tanaka, Sunao; Li, Wenzhao; Iida, Atsuo; Sehara-Fujisawa, Atsuko; Sato, Fumiaki; Toi, Masakazu

    2017-01-01

    During metastasis, cancer cell migration is enhanced. However, the mechanisms underlying this process remain elusive. Here, we addressed this issue by functionally analyzing the transcription factor Sal-like 4 (SALL4) in basal-like breast cancer cells. Loss-of-function studies of SALL4 showed that this transcription factor is required for the spindle-shaped morphology and the enhanced migration of cancer cells. SALL4 also up-regulated integrin gene expression. The impaired cell migration observed in SALL4 knockdown cells was restored by overexpression of integrin α6 and β1. In addition, we clarified that integrin α6 and β1 formed a heterodimer. At the molecular level, loss of the SALL4 - integrin α6β1 network lost focal adhesion dynamics, which impairs cell migration. Over-activation of Rho is known to inhibit focal adhesion dynamics. We observed that SALL4 knockdown cells exhibited over-activation of Rho. Aberrant Rho activation was suppressed by integrin α6β1 expression, and pharmacological inhibition of Rho activity restored cell migration in SALL4 knockdown cells. These results indicated that the SALL4 - integrin α6β1 network promotes cell migration via modulation of Rho activity. Moreover, our zebrafish metastasis assays demonstrated that this gene network enhances cell migration in vivo. Our findings identify a potential new therapeutic target for the prevention of metastasis, and provide an improved understanding of cancer cell migration. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion.

    PubMed

    Chang, K C; Tees, D F; Hammer, D A

    2000-10-10

    Leukocyte adhesion under flow in the microvasculature is mediated by binding between cell surface receptors and complementary ligands expressed on the surface of the endothelium. Leukocytes adhere to endothelium in a two-step mechanism: rolling (primarily mediated by selectins) followed by firm adhesion (primarily mediated by integrins). Using a computational method called "Adhesive Dynamics," we have simulated the adhesion of a cell to a surface in flow, and elucidated the relationship between receptor-ligand functional properties and the dynamics of adhesion. We express this relationship in a state diagram, a one-to-one map between the biophysical properties of adhesion molecules and various adhesive behaviors. Behaviors that are observed in simulations include firm adhesion, transient adhesion (rolling), and no adhesion. We varied the dissociative properties, association rate, bond elasticity, and shear rate and found that the unstressed dissociation rate, k(r)(o), and the bond interaction length, gamma, are the most important molecular properties controlling the dynamics of adhesion. Experimental k(r)(o) and gamma values from the literature for molecules that are known to mediate rolling adhesion fall within the rolling region of the state diagram. We explain why L-selectin-mediated rolling, which has faster k(r)(o) than other selectins, is accompanied by a smaller value for gamma. We also show how changes in association rate, shear rate, and bond elasticity alter the dynamics of adhesion. The state diagram (which must be mapped for each receptor-ligand system) presents a concise and comprehensive means of understanding the relationship between bond functional properties and the dynamics of adhesion mediated by receptor-ligand bonds.

  7. The non-receptor tyrosine kinase Lyn controls neutrophil adhesion by recruiting the CrkL–C3G complex and activating Rap1 at the leading edge

    PubMed Central

    He, Yuan; Kapoor, Ashish; Cook, Sara; Liu, Shubai; Xiang, Yang; Rao, Christopher V.; Kenis, Paul J. A.; Wang, Fei

    2011-01-01

    Establishing new adhesions at the extended leading edges of motile cells is essential for stable polarity and persistent motility. Despite recent identification of signaling pathways that mediate polarity and chemotaxis in neutrophils, little is known about molecular mechanisms governing cell–extracellular-matrix (ECM) adhesion in these highly polarized and rapidly migrating cells. Here, we describe a signaling pathway in neutrophils that is essential for localized integrin activation, leading edge attachment and persistent migration during chemotaxis. This pathway depends upon Gi-protein-mediated activation and leading edge recruitment of Lyn, a non-receptor tyrosine kinase belonging to the Src kinase family. We identified the small GTPase Rap1 as a major downstream effector of Lyn to regulate neutrophil adhesion during chemotaxis. Depletion of Lyn in neutrophil-like HL-60 cells prevented chemoattractant-induced Rap1 activation at the leading edge of the cell, whereas ectopic expression of Rap1 largely rescued the defects induced by Lyn depletion. Furthermore, Lyn controls spatial activation of Rap1 by recruiting the CrkL–C3G protein complex to the leading edge. Together, these results provide novel mechanistic insights into the poorly understood signaling network that controls leading edge adhesion during chemotaxis of neutrophils, and possibly other amoeboid cells. PMID:21628423

  8. Agglucetin, a tetrameric C-type lectin-like venom protein, regulates endothelial cell survival and promotes angiogenesis by activating integrin {alpha}v{beta}3 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, W.-J.

    2008-05-02

    Agglucetin, a platelet glycoprotein (GP)Ib binding protein from Formosan Agkistrodon acutus (A. acutus) venom, could sustain human umbilical vein endothelial cell (HUVEC) proliferation and HUVEC adhering to immobilized agglucetin showed extensive spreading, which was strongly abrogated by integrin antagonists 7E3 and triflavin. Flow cytometric analyses confirmed the expression of GPIb complex on HUVEC is absent and fluorescein isothiocyanate (FITC)-agglucetin binds to HUVEC in a dose-dependent and saturable manner. Furthermore, native agglucetin specifically and dose-dependently inhibited the binding of FITC-23C6, an anti-{alpha}v{beta}3 monoclonal antibody (mAb), but not antibodies against {alpha}2 and {alpha}5, toward HUVEC and purified {alpha}v{beta}3 also bound to immobilizedmore » agglucetin-{beta} in a dose-dependent manner. Moreover, agglucetin exhibited a pro-angiogenic effect in vitro, as well as the focal adhesion kinase (FAK)-associated signaling molecules responsible for HUVEC activation were initiated by agglucetin. In conclusion, agglucetin, acting as a survival factor, promotes endothelial adhesion and angiogenesis by triggering {alpha}v{beta}3 signaling through FAK/phosphatidylinositol 3-kinase (PI3K)/Akt pathway.« less

  9. Pathogenetic role of Arg-Gly-Asp-recognizing integrins in acute renal failure. off.

    PubMed Central

    Goligorsky, M S; DiBona, G F

    1993-01-01

    Reorientation of the alpha 3 subunit of integrins from predominantly basal to the apical cell surface of cultured renal tubular epithelial cells subjected to oxidant stress has previously been demonstrated. The present study was designed to assess functional competence of ectopically expressed apical integrins. Cell-cell adhesion assay revealed enhanced cytoatractant properties of stressed cells. Stressed epithelial cells exhibited specific recognition and binding of laminin-coated latex beads. These processes were inhibited with the peptide Gly-Arg-Gly-Asp-Asn-Pro (GRGDNP) suggesting a role of RGD-recognizing integrins in augmented adhesion to stressed cells. Given that such enhanced adhesion in in vivo acute renal failure may govern tubular obstruction by desquamated epithelium, a physiological marker of patency of tubular lumen, proximal tubular pressure, was monitored in rats subjected to 60 min of renal ischemia followed by reperfusion. Proximal tubular pressure increased 2-fold after 2 hr of reperfusion in animals that had undergone 60 min of ischemia. Infusion of GRGDNP into the renal artery during reperfusion period virtually abolished an increase in proximal tubular pressure observed in ischemic acute renal failure. These in vitro and in vivo findings are consistent with the hypothesis that RGD-recognizing integrins play an important role in the pathogenesis of tubular obstruction in ischemic acute renal failure. Images Fig. 2 Fig. 3 PMID:8516318

  10. Neural cell adhesion molecule-deficient beta-cell tumorigenesis results in diminished extracellular matrix molecule expression and tumour cell-matrix adhesion.

    PubMed

    Håkansson, Joakim; Xian, Xiaojie; He, Liqun; Ståhlberg, Anders; Nelander, Sven; Samuelsson, Tore; Kubista, Mikael; Semb, Henrik

    2005-01-01

    To understand by which mechanism neural cell adhesion molecule (N-CAM) limits beta tumour cell disaggregation and dissemination, we searched for potential downstream genes of N-CAM during beta tumour cell progression by gene expression profiling. Here, we show that N-CAM-deficient beta-cell tumorigenesis is associated with changes in the expression of genes involved in cell-matrix adhesion and cytoskeletal dynamics, biological processes known to affect the invasive and metastatic behaviour of tumour cells. The extracellular matrix (ECM) molecules emerged as the primary target, i.e. N-CAM deficiency resulted in down-regulated mRNA expression of a broad range of ECM molecules. Consistent with this result, deficient deposition of major ECM stromal components, such as fibronectin, laminin 1 and collagen IV, was observed. Moreover, N-CAM-deficient tumour cells displayed defective matrix adhesion. These results offer a potential mechanism for tumour cell disaggregation during N-CAM-deficient beta tumour cell progression. Prospective consequences of these findings for the role of N-CAM in beta tumour cell dissemination are discussed.

  11. Expression and in vitro regulation of integrins by normal human urothelial cells.

    PubMed

    Southgate, J; Kennedy, W; Hutton, K A; Trejdosiewicz, L K

    1995-08-01

    Integrins are thought to be essential adhesion receptors for the maintenance of tissue histioarchitecture. The purpose of this study was to determine integrin expression patterns in the human stratified transitional epithelium of the urinary tract (urothelium). In situ expression patterns were compared with in vitro expression, using a normal cell culture model system in which the effects of cell stratification can be studied independently of differentiation. By immunohistological criteria, the urothelia of bladder, ureter and renal pelvis expressed alpha 2 beta 1 and alpha 3 beta 1 integrins in all layers at intercellular junctions, and cytoplasmically in the lower strata. By contrast, alpha 6 beta 4 and occasionally alpha v beta 4 were expressed only by basal cells and localised to the basal lamina. These expression patterns were unaltered in specimens where an inflammatory cell infiltrate was present. In long-term cultures of normal urothelial cells maintained in a low-Ca++ serum-free medium, the monolayer cultures expressed alpha 2 beta 1, alpha 3 beta 1 and alpha 5 beta 1 integrins at intercellular junctions and in cytoplasmic inclusions, whereas alpha 6 beta 4 was distributed in a random pattern over the substratum. Increasing exogenous Ca++ concentrations induced cell stratification and desmosome formation, but not cytodifferentiation. Under these conditions, alpha 6 beta 4 became cell-, rather than substratum-associated, localising particularly to filopodia and lamellipodia. Quantitation of integrin expression by flow cytometry confirmed increased surface expression of alpha 6 beta 4 in high Ca++ media, and also of alpha 3 and alpha 5, but not alpha 2, subunits. These results suggest that alpha 2 beta 1 and alpha 3 beta 1 integrins, although differentially regulated, are mainly involved in homotypic cell-cell interactions and the maintenance of a stratified morphology, whereas alpha 6 beta 4 is the principal integrin involved in substratum adhesion.

  12. The Relative Influence of Metal Ion Binding Sites in the I-like Domain and the Interface with the Hybrid Domain on Rolling and Firm Adhesion by Integrin α4β7*

    PubMed Central

    Chen, JianFeng; Takagi, Junichi; Xie, Can; Xiao, Tsan; Luo, Bing-Hao; Springer, Timothy A.

    2015-01-01

    We examined the effect of conformational change at the β7 I-like/hybrid domain interface on regulating the transition between rolling and firm adhesion by integrin α4β7. An N-glycosylation site was introduced into the I-like/hybrid domain interface to act as a wedge and to stabilize the open conformation of this interface and hence the open conformation of the α4β7 headpiece. Wild-type α4β7 mediates rolling adhesion in Ca2+ and Ca2+/Mg2+ but firm adhesion in Mg2+ and Mn2+. Stabilizing the open headpiece resulted in firm adhesion in all divalent cations. The interaction between metal binding sites in the I-like domain and the interface with the hybrid domain was examined in double mutants. Changes at these two sites can either counterbalance one another or be additive, emphasizing mutuality and the importance of multiple interfaces in integrin regulation. A double mutant with counterbalancing deactivating ligand-induced metal ion binding site (LIMBS) and activating wedge mutations could still be activated by Mn2+, confirming the importance of the adjacent to metal ion-dependent adhesion site (ADMIDAS) in integrin activation by Mn2+. Overall, the results demonstrate the importance of headpiece allostery in the conversion of rolling to firm adhesion. PMID:15448154

  13. Characterization of four CD18 mutants in leucocyte adhesion deficient (LAD) patients with differential capacities to support expression and function of the CD11/CD18 integrins LFA-1, Mac-1 and p150,95

    PubMed Central

    Shaw, J M; Al-Shamkhani, A; Boxer, L A; Buckley, C D; Dodds, A W; Klein, N; Nolan, S M; Roberts, I; Roos, D; Scarth, S L; Simmons, D L; Tan, S M; Law, S K A

    2001-01-01

    Leucocyte adhesion deficiency (LAD) is a hereditary disorder caused by mutations in the CD18 (β2 integrin) gene. Four missense mutations have been identified in three patients. CD18(A270V) supports, at a diminished level, CD11b/CD18 (Mac-1, αMβ2 integrin) and CD11c/CD18 (p150,95, αXβ2 integrin) expression and function but not CD11a/CD18 (LFA-1, αLβ2 integrin) expression. Conversely, CD18(A341P) supports a limited level of expression and function of CD11a/CD18, but not of the other two CD11/CD18 antigens. CD18(C590R) and CD18(R593C) show a decreasing capacity to associate with the CD11a, CD11c and CD11b subunits. Transfectants expressing the CD11a/CD18 with the C590R and R593C mutations are more adhesive than transfectants expressing wild-type LFA-1, and express the reporter epitope of the monoclonal antibody 24 constitutively. Thus, the four mutations affect CD18 differently in its capacities to support CD11/CD18 expression and adhesion. These results not only provide a biochemical account for the clinical diversity of patients with leucocyte adhesion deficiency, but also offer novel insights into the structural basis of interaction between the α and β subunits, which is an integral component in our understanding of integrin-mediated adhesion and its regulation. PMID:11703376

  14. Identification of Cell Surface Molecules Involved in Dystroglycan-Independent Lassa Virus Cell Entry

    PubMed Central

    Ströher, Ute; Ebihara, Hideki; Feldmann, Heinz

    2012-01-01

    Although O-mannosylated dystroglycan is a receptor for Lassa virus, a causative agent of Lassa fever, recent findings suggest the existence of an alternative receptor(s). Here we identified four molecules as receptors for Lassa virus: Axl and Tyro3, from the TAM family, and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and liver and lymph node sinusoidal endothelial calcium-dependent lectin (LSECtin), from the C-type lectin family. These molecules enhanced the binding of Lassa virus to cells and mediated infection independently of dystroglycan. Axl- or Tyro3-mediated infection required intracellular signaling via the tyrosine kinase activity of Axl or Tyro3, whereas DC-SIGN- or LSECtin-mediated infection and binding were dependent on a specific carbohydrate and on ions. The identification of these four molecules as Lassa virus receptors advances our understanding of Lassa virus cell entry. PMID:22156524

  15. Integrins: masters and slaves of endocytic transport.

    PubMed

    Caswell, Patrick T; Vadrevu, Suryakiran; Norman, Jim C

    2009-12-01

    Since it has become clear that adhesion receptors are trafficked through the endosomal pathway and that this can influence their function, much effort has been invested in obtaining detailed descriptions of the molecular machinery responsible for internalizing and recycling integrins. New findings indicate that integrin trafficking dictates the nature of Rho GTPase signalling during cytokinesis and cell migration. Furthermore, integrins can exert control over the trafficking of other receptors in a way that drives cancer cell invasion and tumour angiogenesis.

  16. Why do receptor–ligand bonds in cell adhesion cluster into discrete focal-adhesion sites?

    DOE PAGES

    Gao, Zhiwen; Gao, Yanfei

    2016-05-14

    We report that cell adhesion often exhibits the clustering of the receptor–ligand bonds into discrete focal-adhesion sites near the contact edge, thus resembling a rosette shape or a contracting membrane anchored by a small number of peripheral forces. The ligands on the extracellular matrix are immobile, and the receptors in the cell plasma membrane consist of two types: high-affinity integrins (that bond to the substrate ligands and are immobile) and low-affinity integrins (that are mobile and not bonded to the ligands). Thus the adhesion energy density is proportional to the high-affinity integrin density. This paper provides a mechanistic explanation formore » the clustering/assembling of the receptor–ligand bonds from two main points: (1) the cellular contractile force leads to the density evolution of these two types of integrins, and results into a large high-affinity integrin density near the contact edge and (2) the front of a propagating crack into a decreasing toughness field will be unstable and wavy. From this fracture mechanics perspective, the chemomechanical equilibrium is reached when a small number of patches with large receptor–ligand bond density are anticipated to form at the cell periphery, as opposed to a uniform distribution of bonds on the entire interface. Finally, cohesive fracture simulations show that the de-adhesion force can be significantly enhanced by this nonuniform bond density field, but the de-adhesion force anisotropy due to the substrate elastic anisotropy is significantly reduced.« less

  17. Why do receptor–ligand bonds in cell adhesion cluster into discrete focal-adhesion sites?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiwen; Gao, Yanfei

    We report that cell adhesion often exhibits the clustering of the receptor–ligand bonds into discrete focal-adhesion sites near the contact edge, thus resembling a rosette shape or a contracting membrane anchored by a small number of peripheral forces. The ligands on the extracellular matrix are immobile, and the receptors in the cell plasma membrane consist of two types: high-affinity integrins (that bond to the substrate ligands and are immobile) and low-affinity integrins (that are mobile and not bonded to the ligands). Thus the adhesion energy density is proportional to the high-affinity integrin density. This paper provides a mechanistic explanation formore » the clustering/assembling of the receptor–ligand bonds from two main points: (1) the cellular contractile force leads to the density evolution of these two types of integrins, and results into a large high-affinity integrin density near the contact edge and (2) the front of a propagating crack into a decreasing toughness field will be unstable and wavy. From this fracture mechanics perspective, the chemomechanical equilibrium is reached when a small number of patches with large receptor–ligand bond density are anticipated to form at the cell periphery, as opposed to a uniform distribution of bonds on the entire interface. Finally, cohesive fracture simulations show that the de-adhesion force can be significantly enhanced by this nonuniform bond density field, but the de-adhesion force anisotropy due to the substrate elastic anisotropy is significantly reduced.« less

  18. Evidence for a prolonged role of alpha 4 integrin throughout active experimental allergic encephalomyelitis.

    PubMed

    Keszthelyi, E; Karlik, S; Hyduk, S; Rice, G P; Gordon, G; Yednock, T; Horner, H

    1996-10-01

    The leukocyte integrin receptor, alpha 4 beta 1, and its endothelial cell ligand, vascular cell adhesion molecule 1, appear to be of critical importance in the leukocyte trafficking that accompanies CNS damage in experimental allergic encephalomyelitis (EAE). In this study, the persistence of the role for alpha 4 beta 1/VCAM-1 in EAE was established by observing antibody-mediated disease reversal up to 1 month following disease onset. Limited treatment with a monoclonal antibody against alpha 4 integrin, GG5/3, resulted in a significant decrease in both clinical and histopathologic signs. This was not observed in isotype control experiments. In the latter phase of progressive disease, widespread demyelination occurred in the animals that did not respond to 6 days of anti-alpha 4 treatment. These results demonstrate an essential role for alpha 4 beta 1 interactions throughout active EAE and illustrate the difference between reversible clinical deficits caused by edema and irreversible deficits associated with demyelination.

  19. RGD-containing peptides activate S6K1 through beta3 integrin in adult cardiac muscle cells.

    PubMed

    Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani

    2003-10-24

    The enzyme p70S6 kinase (S6K1) is critical for cell growth, and we have reported its activation during cardiac hypertrophy. Because cardiac hypertrophy also involves integrin activation, we analyzed whether integrins could contribute to S6K1 activation. Using adult feline cardiomyocytes, here we report that integrin-interacting Arg-Gly-Asp (RGD) peptides activate S6K1 as observed by band shifting, kinase activity and phosphorylation at Thr-389 and Thr-421/Ser-424 of S6K1, and S6 protein phosphorylation. Perturbation of specific integrin function with blocking antibodies and by overexpressing the beta1A cytoplasmic tail revealed that beta3 but not beta1 integrin mediates the RGD-induced S6K1 activation. This activation is focal adhesion complex-independent and is accompanied by the activation of extracellular signal-regulated kinases 1/2 (ERK) and mammalian target of rapamycin (mTOR). Studies using specific inhibitors and dominant negative c-Raf expression in cardiomyocytes indicate that the S6K1 activation involves mTOR, MEK/ERK, and phosphatidylinositol 3-kinase pathways and is independent of protein kinase C and c-Raf. Finally, addition of fluorescent-labeled RGD peptide to cardiomyocytes exhibits its internalization and localization to the endocytic vesicles, and pretreatment of cardiomyocytes with endocytic inhibitors reduced the S6K1 activation. These data suggest that RGD interaction with beta3 integrin and its subsequent endocytosis trigger specific signaling pathway(s) for S6K1 activation in cardiomyocytes and that this process may contribute to hypertrophic growth and remodeling of myocardium.

  20. Two conformations of the integrin A-domain (I-domain): a pathway for activation?

    PubMed

    Lee, J O; Bankston, L A; Arnaout, M A; Liddington, R C

    1995-12-15

    Integrins are plasma membrane proteins that mediate adhesion to other cells and to components of the extracellular matrix. Most integrins are constitutively inactive in resting cells, but are rapidly and reversibly activated in response to agonists, leading to highly regulated cell adhesion. This activation is associated with conformational changes in their extracellular portions, but the nature of the structural changes that lead to a change in adhesiveness is not understood. The interactions of several integrins with their extracellular ligands are mediated by an A-type domain (generally called the I-domain in integrins). Binding of the I-domain to protein ligands is dependent on divalent cations. We have described previously the structure of the I-domain from complement receptor 3 with bound Mg2+, in which the glutamate side chain from a second I-domain completes the octahedral coordination sphere of the metal, acting as a ligand mimetic. We now describe a new crystal form of the I-domain with bound Mn2+, in which water completes the metal coordination sphere and there is no equivalent of the glutamate ligand. Comparison of the two crystal forms reveals a change in metal coordination which is linked to a large (10 A) shift of the C-terminal helix and the burial of two phenylalanine residues into the hydrophobic core of the Mn2+ form. These structural changes, analogous to those seen in the signal-transducing G-proteins, alter the electrophilicity of the metal, reducing its ability to bind ligand-associated acidic residues, and dramatically alter the surface of the protein implicated in binding ligand. Our observations provide the first atomic resolution view of conformational changes in an integrin domain, and suggest how these changes are linked to a change in integrin adhesiveness. We propose that the Mg2+ form represents the conformation of the domain in the active state and the Mn2+ form the conformation in the inactive state of the integrin.

  1. Disruption of integrin-fibronectin complexes by allosteric but not ligand-mimetic inhibitors.

    PubMed

    Mould, A Paul; Craig, Susan E; Byron, Sarah K; Humphries, Martin J; Jowitt, Thomas A

    2014-12-15

    Failure of Arg-Gly-Asp (RGD)-based inhibitors to reverse integrin-ligand binding has been reported, but the prevalence of this phenomenon among integrin heterodimers is currently unknown. In the present study we have investigated the interaction of four different RGD-binding integrins (α5β1, αVβ1, αVβ3 and αVβ6) with fibronectin (FN) using surface plasmon resonance. The ability of inhibitors to reverse ligand binding was assessed by their capacity to increase the dissociation rate of pre-formed integrin-FN complexes. For all four receptors we showed that RGD-based inhibitors (such as cilengitide) were completely unable to increase the dissociation rate. Formation of the non-reversible state occurred very rapidly and did not rely on the time-dependent formation of a high-affinity state of the integrin, or the integrin leg regions. In contrast with RGD-based inhibitors, Ca2+ (but not Mg2+) was able to greatly increase the dissociation rate of integrin-FN complexes, with a half-maximal response at ~0.4 mM Ca2+ for αVβ3-FN. The effect of Ca2+ was overcome by co-addition of Mn2+, but not Mg2+. A stimulatory anti-β1 monoclonal antibody (mAb) abrogated the effect of Ca2+ on α5β1-FN complexes; conversely, a function-blocking mAb mimicked the effect of Ca2+. These results imply that Ca2+ acts allosterically, probably through binding to the adjacent metal-ion-dependent adhesion site (ADMIDAS), and that the α1 helix in the β subunit I domain is the key element affected by allosteric modulators. The data suggest an explanation for the limited clinical efficacy of RGD-based integrin antagonists, and we propose that allosteric antagonists could prove to be of greater therapeutic benefit.

  2. Release of Membrane-Bound Vesicles and Inhibition of Tumor Cell Adhesion by the Peptide Neopetrosiamide A

    PubMed Central

    Austin, Pamela; Heller, Markus; Williams, David E.; McIntosh, Lawrence P.; Vogl, A. Wayne; Foster, Leonard J.; Andersen, Raymond J.; Roberge, Michel; Roskelley, Calvin D.

    2010-01-01

    Background Neopetrosiamide A (NeoA) is a 28-amino acid tricyclic peptide originally isolated from a marine sponge as a tumor cell invasion inhibitor whose mechanism of action is unknown. Methodology/Principal Findings We show that NeoA reversibly inhibits tumor cell adhesion, disassembles focal adhesions in pre-attached cells, and decreases the level of β1 integrin subunits on the cell surface. NeoA also induces the formation of dynamic, membrane-bound protrusions on the surface of treated cells and the release of membrane-bound vesicles into the culture medium. Proteomic analysis indicates that the vesicles contain EGF and transferrin receptors as well as a number of proteins involved in adhesion and migration including: β1 integrin and numerous α integrin subunits; actin and actin-binding proteins such as cofilin, moesin and myosin 1C; and membrane modulating eps15 homology domain (EHD) proteins. Surface labeling, trafficking inhibition, and real-time imaging experiments all suggest that β1 integrin-containing vesicles are released directly from NeoA-induced cell surface protrusions rather than from vesicles generated intracellularly. The biological activity of NeoA is dependent on its disulfide bond pattern and NMR spectroscopy indicates that the peptide is globular with a continuous ridge of hydrophobic groups flanked by charged amino acid residues that could facilitate a simultaneous interaction with lipids and proteins in the membrane. Conclusions/Significance NeoA is an anti-adhesive peptide that decreases cell surface integrin levels through a novel, yet to be elucidated, mechanism that involves the release of adhesion molecule-containing vesicles from the cell surface. PMID:20520768

  3. Cell Adhesion-dependent Serine 85 Phosphorylation of Paxillin Modulates Focal Adhesion Formation and Haptotactic Migration via Association with the C-terminal Tail Domain of Talin*

    PubMed Central

    Kwak, Tae Kyoung; Lee, Mi-Sook; Ryu, Jihye; Choi, Yoon-Ju; Kang, Minkyung; Jeong, Doyoung; Lee, Jung Weon

    2012-01-01

    Integrin-mediated adhesion to extracellular matrix proteins is dynamically regulated during morphological changes and cell migration. Upon cell adhesion, protein-protein interactions among molecules at focal adhesions (FAs) play major roles in the regulation of cell morphogenesis and migration. Although tyrosine phosphorylation of paxillin is critically involved in adhesion-mediated signaling, the significance of paxillin phosphorylation at Ser-85 and the mechanism by which it regulates cell migration remain unclear. In this study, we examined how Ser-85 phosphorylation of paxillin affects FA formation and cell migration. We found that paxillin phosphorylation at Ser-85 occurred during HeLa cell adhesion to collagen I and was concomitant with tyrosine phosphorylation of both focal adhesion kinase and talin. However, the non-phosphorylatable S85A mutant of paxillin impaired cell spreading, FA turnover, and migration toward collagen I but not toward serum. Furthermore, whereas the (presumably indirect) interaction between paxillin and the C-terminal tail of talin led to dynamic FAs at the cell boundary, S85A paxillin did not bind talin and caused stabilized FAs in the central region of cells. Together, these observations suggest that cell adhesion-dependent Ser-85 phosphorylation of paxillin is important for its interaction with talin and regulation of dynamic FAs and cell migration. PMID:22761432

  4. 6-Mercaptopurine attenuates adhesive molecules in experimental vasospasm.

    PubMed

    Chang, Chih-Zen; Lin, Chih-Lung; Kassel, Neal F; Kwan, Aij-Lie; Howng, Shen-Long

    2010-05-01

    Adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, are important inflammatory mediators which are elevated in the serum of patients following aneurysmal subarachnoid hemorrhage (SAH). The authors previously found that 6-mercaptopurine (6-mp) was effective in preventing and reversing arterial narrowing in a rodent SAH model. The present study was to examine whether levels of adhesion molecules were altered after treatment with 6-mp in this animal model. Animals were each injected with autologous blood into the cisterna magna, and intraperitoneal treatment with 6-mp (2 mg/kg) was initiated 1 h before (prevention) or later (treatment). The compound was subsequently administered at 24 and 48 h post-SAH. Blood samples were collected at 72 h post-SAH to measure ICAM-1, VCAM-1, and E-selectin levels. The basilar arteries were harvested and sliced, and their cross-sectional areas were measured. Morphologically, convolution of the internal elastic lamina, distorted endothelial wall, and myonecrosis of the smooth muscle were prominently observed in the SAH only and vehicle-treated SAH groups, but not in the 6-mp-treated SAH group or in healthy controls. No significant differences were found in the levels of VCAM-1 among all groups. However, the levels of E-selectin were increased in all animals subjected to SAH (SAH only and SAH plus vehicle groups) compared with healthy controls (no SAH), but not in the 6-mp group (SAH plus 6-mp treatment and preventive treatment with 6-mp).Likewise, the levels of ICAM-1 in the SAH only and SAH plus vehicle groups were significantly elevated (p < 0.001), and pretreatment and treatment with 6-mp reduced ICAM-1 to control levels. These results show that ICAM-1 and E-selectin may play a role in mediating SAH-induced vasospasm and that a reduction of both adhesive molecules after SAH may partly contribute to the antispastic effect of 6-mp.

  5. Epidermal Expression of Intercellular Adhesion Molecule 1 is Not a Primary Inducer of Cutaneous Inflammation in Transgenic Mice

    NASA Astrophysics Data System (ADS)

    Williams, Ifor R.; Kupper, Thomas S.

    1994-10-01

    Keratinocytes at sites of cutaneous inflammation have increased expression of intercellular adhesion molecule 1 (ICAM-1), a cytokine-inducible adhesion molecule which binds the leukocyte integrins LFA-1 and Mac-1. Transgenic mice were prepared in which the expression of mouse ICAM-1 was targeted to basal keratinocytes by using the human K14 keratin promoter. The level of constitutive expression attained in the transgenic mice exceeded the peak level of ICAM-1 expression induced on nontransgenic mouse keratinocytes in vitro by optimal combinations of interferon γ and tumor necrosis factor α or in vivo by proinflammatory stimuli such as phorbol 12-myristate 13-acetate. In vitro adhesion assays demonstrated that cultured transgenic keratinocytes were superior to normal keratinocytes as a substrate for the LFA-1-dependent binding of mouse T cells, confirming that the transgene-encoded ICAM-1 was expressed in a functional form. However, the high level of constitutive ICAM-1 expression achieved on keratinocytes in vivo in these transgenic mice did not result in additional recruitment of CD45^+ leukocytes into transgenic epidermis, nor did it elicit dermal inflammation. Keratinocyte ICAM-1 expression also did not potentiate contact-hypersensitivity reactions to epicutaneous application of haptens. The absence of a spontaneous phenotype in these transgenic mice was not the result of increased levels of soluble ICAM-1, since serum levels of soluble ICAM-1 were equal in transgenic mice and controls. We conclude that elevated ICAM-1 expression on keratinocytes cannot act independently to influence leukocyte trafficking and elicit cutaneous inflammation.

  6. The Drosophila cell adhesion molecule Neuroglian regulates Lissencephaly-1 localisation in circulating immunosurveillance cells.

    PubMed

    Williams, Michael J

    2009-03-25

    When the parasitoid wasp Leptopilina boulardi lays its eggs in Drosophila larvae phagocytic cells called plasmatocytes and specialized cells known as lamellocytes encapsulate the egg. This requires these circulating immunosurveillance cells (haemocytes) to change from a non-adhesive to an adhesive state enabling them to bind to the invader. Interestingly, attachment of leukocytes, platelets, and insect haemocytes requires the same adhesion complexes as epithelial and neuronal cells. Here evidence is presented showing that the Drosophila L1-type cell adhesion molecule Neuroglian (Nrg) is required for haemocytes to encapsulate L. boulardi wasp eggs. The amino acid sequence FIGQY containing a conserved phosphorylated tyrosine is found in the intracellular domain of all L1-type cell adhesion molecules. This conserved tyrosine is phosphorylated at the cell periphery of plasmatocytes and lamellocytes prior to parasitisation, but dephosphorylated after immune activation. Intriguingly, another pool of Nrg located near the nucleus of plasmatocytes remains phosphorylated after parasitisation. In mammalian neuronal cells phosphorylated neurofascin, another L1-type cell adhesion molecule interacts with a nucleokinesis complex containing the microtubule binding protein lissencephaly-1 (Lis1) 1. Interestingly in plasmatocytes from Nrg mutants the nucleokinesis regulating protein Lissencephaly-1 (Lis1) fails to localise properly around the nucleus and is instead found diffuse throughout the cytoplasm and at unidentified perinuclear structures. After attaching to the wasp egg control plasmatocytes extend filopodia laterally from their cell periphery; as well as extending lateral filopodia plasmatocytes from Nrg mutants also extend many filopodia from their apical surface. The Drosophila cellular adhesion molecule Neuroglian is expressed in haemocytes and its activity is required for the encapsulation of L. boularli eggs. At the cell periphery of haemocytes Neuroglian may be

  7. The Drosophila cell adhesion molecule Neuroglian regulates Lissencephaly-1 localisation in circulating immunosurveillance cells

    PubMed Central

    Williams, Michael J

    2009-01-01

    Background When the parasitoid wasp Leptopilina boulardi lays its eggs in Drosophila larvae phagocytic cells called plasmatocytes and specialized cells known as lamellocytes encapsulate the egg. This requires these circulating immunosurveillance cells (haemocytes) to change from a non-adhesive to an adhesive state enabling them to bind to the invader. Interestingly, attachment of leukocytes, platelets, and insect haemocytes requires the same adhesion complexes as epithelial and neuronal cells. Results Here evidence is presented showing that the Drosophila L1-type cell adhesion molecule Neuroglian (Nrg) is required for haemocytes to encapsulate L. boulardi wasp eggs. The amino acid sequence FIGQY containing a conserved phosphorylated tyrosine is found in the intracellular domain of all L1-type cell adhesion molecules. This conserved tyrosine is phosphorylated at the cell periphery of plasmatocytes and lamellocytes prior to parasitisation, but dephosphorylated after immune activation. Intriguingly, another pool of Nrg located near the nucleus of plasmatocytes remains phosphorylated after parasitisation. In mammalian neuronal cells phosphorylated neurofascin, another L1-type cell adhesion molecule interacts with a nucleokinesis complex containing the microtubule binding protein lissencephaly-1 (Lis1) [1]. Interestingly in plasmatocytes from Nrg mutants the nucleokinesis regulating protein Lissencephaly-1 (Lis1) fails to localise properly around the nucleus and is instead found diffuse throughout the cytoplasm and at unidentified perinuclear structures. After attaching to the wasp egg control plasmatocytes extend filopodia laterally from their cell periphery; as well as extending lateral filopodia plasmatocytes from Nrg mutants also extend many filopodia from their apical surface. Conclusion The Drosophila cellular adhesion molecule Neuroglian is expressed in haemocytes and its activity is required for the encapsulation of L. boularli eggs. At the cell periphery of

  8. Soluble intercellular adhesion molecule-1 and interleukin-6 levels reflect endothelial dysfunction in patients with primary hypercholesterolaemia treated with atorvastatin.

    PubMed

    Nawawi, H; Osman, N S; Annuar, R; Khalid, B A K; Yusoff, K

    2003-08-01

    Adhesion molecules and cytokines are involved in the pathogenesis of intimal injury in atherosclerosis but their relationship with endothelial function remains unclear. The objectives of this study were to examine the effects of atorvastatin on soluble adhesion molecules, interleukin-6 (IL-6) and brachial artery endothelial-dependent flow mediated dilatation (FMD) in patients with familial (FH) and non-familial hypercholesterolaemia (NFH). A total of 74 patients (27 FH and 47 NFH) were recruited. Fasting lipid profiles, soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular-cellular adhesion molecule-1 (sVCAM-1), E-selectin, IL-6 and FMD were measured at baseline, 2 weeks, 3 and 9 months post-atorvastatin treatment (FH--80 mg/day, NFH--10 mg/day). In both groups, compared to baseline, sICAM-1 levels were significantly reduced at 2 weeks, further reduced at 3 months and maintained at 9 months (P<0.0001). The IL-6 levels were significantly reduced at 3 months and 9 months compared to baseline for FH (P<0.005) and NFH (P<0.0001). In both groups, the FMD at 2 weeks was higher than baseline (P<0.005), with progressive improvement up to 9 months. FMD was negatively correlated with sICAM-1 and IL-6. In conclusion, both low and high doses of atorvastatin lead to early progressive improvement in endothelial function in patients with primary hypercholesterolaemia. sICAM-1 and IL-6 levels reflect endothelial dysfunction in these patients.

  9. Circulating soluble adhesion molecules in patients with giant cell arteritis. Correlation between soluble intercellular adhesion molecule-1 (sICAM-1) concentrations and disease activity

    PubMed Central

    Coll-Vinent, B.; Vilardell, C.; Font, C.; Oristrell, J.; Hernandez-Rodrigu..., J.; Yague, J.; Urbano-Marquez, A.; Grau, J.; Cid, M.

    1999-01-01

    OBJECTIVE—To evaluate whether changes in concentrations of circulating adhesion molecules are related to disease activity in patients with giant cell arteritis (GCA).
METHODS—A sandwich ELISA was used to measure soluble intercellular adhesion molecule-1 (sICAM-1), sICAM-3, vascular cell adhesion molecule-1 (sVCAM-1), E-selectin (sE-selectin), and L-selectin (sL-selectin) in serum and plasma samples from patients with GCA. A cross sectional study was performed on 64 GCA patients at different activity stages and on 35 age and sex matched healthy donors. Thirteen of these patients were evaluated at the time of diagnosis and serially during follow up.
RESULTS—At the time of diagnosis, sICAM-1 concentrations were significantly higher in active GCA patients than in controls (mean (SD) 360.55 (129.78) ng/ml versus 243.25 (47.43) ng/ml, p<0.001). In contrast, sICAM-3, sVCAM-1, sE-selectin, and sL-selectin values did not differ from those obtained in normal donors. With corticosteroid administration, a decrease in sICAM-1 concentrations was observed, reaching normal values when clinical remission was achieved (263.18 (92.7) ng/ml globally, 293.59 (108.39) ng/ml in the group of patients in recent remission, and 236.83 (70.02) ng/ml in those in long term remission). In the 13 patients followed up longitudinally, sICAM-1 values also normalised with clinical remission (225.87 (64.25) ng/ml in patients in recent remission, and 256.29 (75.15) ng/ml in those in long term remission).
CONCLUSIONS—Circulating sICAM-1 concentrations clearly correlate with clinically apparent disease activity in GCA patients. Differences with results previously found in patients with other vasculitides may indicate that different pathogenic mechanisms contribute to vascular inflammation in different disorders.

 Keywords: adhesion molecules; giant cell arteritis; inflammation PMID:10364919

  10. Brain endothelial adhesion molecule expression in experimental colitis.

    PubMed

    Sans, M; Kawachi, S; Soriano, A; Palacín, A; Morise, Z; Granger, D N; Piqué, J M; Grisham, M B; Panés, J

    2001-04-01

    1) To determine if endothelial expression of adhesion molecules involved in leukocyte recruitment is increased in the brain and other organs in four different models of experimental colitis, and 2) to investigate whether leukocyte infiltration occurs in the brain of colitic animals. Endothelial vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression was quantified, using the dual radiolabeled antibody technique in rats with trinitrobenzenesulfonic acid (TNBS)-induced colitis, in mice with dextran sulfate sodium (DSS)-induced colitis, in SCID mice reconstituted with CD45RBhigh T-cells, and in IL-10-/- mice. Leukocyte infiltration in the brain of TNBS-induced colitic rats was assessed by myeloperoxidase activity and immunohistochemical staining with anti-CD45 monoclonal antibody. Marked upregulation of brain endothelial VCAM-1 (2- to 5.5-fold) was consistently found in colitic animals in the four models studied. Brain VCAM-1 strongly correlated with colon VCAM-1 and colon weight. By contrast, upregulation of brain ICAM-1 in colitic animals was only observed in the CD45RBhigh transfer (3-fold) and the TNBS-induced (1.5-fold models). Heart and muscle VCAM-1 and ICAM-1 were not upregulated in colitic animals in the majority of models studied. There was no leukocyte infiltration into the brain of TNBS-induced colitic rats. Our study demonstrates a marked and specific upregulation of endothelial VCAM-1 in the brain of colitic animals. This activation of cerebral endothelial cells was not associated with an infiltration of leukocytes into brain tissue.

  11. CXCR6-CXCL16 axis promotes prostate cancer by mediating cytoskeleton rearrangement via Ezrin activation and αvβ3 integrin clustering.

    PubMed

    Singh, Rajesh; Kapur, Neeraj; Mir, Hina; Singh, Nalinaksha; Lillard, James W; Singh, Shailesh

    2016-02-09

    Cytoskeletal rearrangement is required for migration and invasion, which are the key steps of cancer metastasis. Ezrin and integrin co-ordinate these processes by regulating cellular adhesion and cytoskeletal polymerization-depolymerization. It is also well established that chemokine-chemokine receptor axis plays a crucial role in regulating cancer cell migration and invasion. In this study, we show involvement of CXC chemokine receptor 6 (CXCR6) and its only natural ligand CXCL16 in pathobiology of prostate cancer (PCa). CXCR6 is highly expressed in PCa tissues and cell lines (LNCaP and PC3), relative to normal tissue and cells. CXCR6 expression in PCa tissues correlated with higher Gleason score. Similarly, aggressive PCa cells (PC3) show high CXCR6 compared to less aggressive LNCaP. Besides, PC3 cells show higher MMPs expression compared to LNCaP cells following CXCL16 stimulation. Intriguingly, CXCR6-CXCL16 interaction in PCa cells promotes Ezrin activation, αvβ3 integrin clustering and capping at the leading edge in FAK/PI3K/PKC dependent manner, thereby modifying cellular adhesion as well as motility. Together these results demonstrate that CXCL16 stimulation changes cytoskeletal dynamics resulting in enhanced migration, invasion and adhesion to endothelial cells, ultimately enabling PCa cells to achieve their metastatic goal.

  12. Clustered Integrin Ligands as a Novel Approach for the Targeting of Non-Viral Vectors

    NASA Astrophysics Data System (ADS)

    Ng, Quinn Kwan Tai

    ligand clusters compared to the reacted amounts on the surface of the particle was studied. This provided us the ability to control the size of the clusters formed and the spacing between the integrins for gold nanoparticles of various sizes. We then applied the clustered ligand binding system for targeting of DNA/PEI polyplexes and demonstrated that the use of RGD nanoclusters enhances gene transfer up to 35-fold which was dependent on the density of alphavbeta3 integrins on the cell surface. Cell integrin sensitivity was shown in which cells with higher alpha vbeta3 densities resulting in higher luciferase transgene expression. The targeting of RGD nanoclusters for DNA/PEI polyplexes was further shown in vivo using PET/CT technology which displayed improved targeting towards high level alphavbeta3 integrin expression (U87MG) tumors over medium level alphavbeta 3 integrin expression (HeLa). In addition to studying the clustered integrin binding system, the current non-viral vectors used suffer from stability and toxicity issues in vitro and in vivo. We have applied a new chemistry for synthesizing nanogels utilizing a Traut's reagent initiated Michael addition reaction for modification of diamine containing crosslikers which will allow for the development of stable and cell demanded release of oligonucleotides. We have shown bulk gels made were capable of encapsulating and holding DNA within the gel and were able to synthesize them into nanogels. The combined research shown here using clustered integrin ligands and a new type of nanogel synthesis provides an ideal system for gene delivery in the future.

  13. Scaling from single molecule to macroscopic adhesion at polymer/metal interfaces.

    PubMed

    Utzig, Thomas; Raman, Sangeetha; Valtiner, Markus

    2015-03-10

    Understanding the evolution of macroscopic adhesion based on fundamental molecular interactions is crucial to designing strong and smart polymer/metal interfaces that play an important role in many industrial and biomedical applications. Here we show how macroscopic adhesion can be predicted on the basis of single molecular interactions. In particular, we carry out dynamic single molecule-force spectroscopy (SM-AFM) in the framework of Bell-Evans' theory to gain information about the energy barrier between the bound and unbound states of an amine/gold junction. Furthermore, we use Jarzynski's equality to obtain the equilibrium ground-state energy difference of the amine/gold bond from these nonequilibrium force measurements. In addition, we perform surface forces apparatus (SFA) experiments to measure macroscopic adhesion forces at contacts where approximately 10(7) amine/gold bonds are formed simultaneously. The SFA approach provides an amine/gold interaction energy (normalized by the number of interacting molecules) of (36 ± 1)k(B)T, which is in excellent agreement with the interaction free energy of (35 ± 3)k(B)T calculated using Jarzynski's equality and single-molecule AFM experiments. Our results validate Jarzynski's equality for the field of polymer/metal interactions by measuring both sides of the equation. Furthermore, the comparison of SFA and AFM shows how macroscopic interaction energies can be predicted on the basis of single molecular interactions, providing a new strategy to potentially predict adhesive properties of novel glues or coatings as well as bio- and wet adhesion.

  14. Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level

    PubMed Central

    Schvartzman, Mark; Palma, Matteo; Sable, Julia; Abramson, Justin; Hu, Xian; Sheetz, Michael P.; Wind, Shalom J.

    2011-01-01

    The ability to control the placement of individual molecules promises to enable a wide range of applications and is a key challenge in nanoscience and nanotechnology. Many biological interactions, in particular, are sensitive to the precise geometric arrangement of proteins. We have developed a technique which combines molecular-scale nanolithography with site-selective biochemistry to create biomimetic arrays of individual protein binding sites. The binding sites can be arranged in heterogeneous patterns of virtually any possible geometry with a nearly unlimited number of degrees of freedom. We have used these arrays to explore how the geometric organization of the extracellular matrix (ECM) binding ligand RGD (Arg-Gly-Asp) affects cell adhesion and spreading. Systematic variation of spacing, density and cluster size of individual integrin binding sites was used to elicit different cell behavior. Cell spreading assays on arrays of different geometric arrangements revealed a dramatic increase in spreading efficiency when at least 4 liganded sites were spaced within 60 nm or less, with no dependence on global density. This points to the existence of a minimal matrix adhesion unit for fibronectin defined in space and stoichiometry. Developing an understanding of the ECM geometries that activate specific cellular functional complexes is a critical step toward controlling cell behavior. Potential practical applications range from new therapeutic treatments to the rational design of tissue scaffolds that can optimize healing without scarring. More broadly, spatial control at the single-molecule level can elucidate factors controlling individual molecular interactions and can enable synthesis of new systems based on molecular-scale architectures. PMID:21319842

  15. Mouse CD23 regulates monocyte activation through an interaction with the adhesion molecule CD11b/CD18.

    PubMed

    Lecoanet-Henchoz, S; Plater-Zyberk, C; Graber, P; Gretener, D; Aubry, J P; Conrad, D H; Bonnefoy, J Y

    1997-09-01

    CD23 is expressed on a variety of hemopoietic cells. Recently, we have reported that blocking CD23 interactions in a murine model of arthritis resulted in a marked improvement of disease severity. Here, we demonstrate that CD11b, the alpha chain of the beta 2 integrin adhesion molecule complex CD11b/CD18 expressed on monocytes interacts with CD23. Using a recombinant fusion protein (ZZ-CD23), murine CD23 was shown to bind to peritoneal macrophages and peripheral blood cells isolated from mice as well as the murine macrophage cell line, RAW. The interactions between mouse ZZ-CD23 and CD11b/CD18-expressing cells were significantly inhibited by anti-CD11b monoclonal antibodies. A functional consequence was then demonstrated by inducing an up-regulation of interleukin-6 (IL-6) production following ZZ-CD23 incubation with monocytes. The addition of Fab fragments generated from the monoclonal antibody CD11b impaired this cytokine production by 50%. Interestingly, a positive autocrine loop was identified as IL-6 was shown to increase CD23 binding to macrophages. These results demonstrate that similar to findings using human cells, murine CD23 binds to the surface adhesion molecule, CD11b, and these interactions regulate biological activities of murine myeloid cells.

  16. In situ analysis of integrin and growth factor receptor signaling pathways in human glioblastomas suggests overlapping relationships with focal adhesion kinase activation.

    PubMed

    Riemenschneider, Markus J; Mueller, Wolf; Betensky, Rebecca A; Mohapatra, Gayatry; Louis, David N

    2005-11-01

    Deregulated integrin signaling is common in cancers, including glioblastoma. Integrin binding and growth factor receptor signaling activate focal adhesion kinase (FAK) and subsequently up-regulate extracellular regulated kinases (ERK-1/2), leading to cell-cycle progression and cell migration. Most studies of this pathway have used in vitro systems or tumor lysate-based approaches. We examined these pathways primarily in situ using a panel of 30 glioblastomas and gene expression arrays, immunohistochemistry, and fluorescence in situ hybridization, emphasizing the histological distribution of molecular changes. Within individual tumors, increased expression of FAK, p-FAK, paxillin, ERK-1/2, and p-ERK-1/2 occurred in regions of elevated EGFR and/or PDGFRA expression. Moreover, FAK activation levels correlated with EGFR and PDGFRA expression, and p-FAK and EGFR expression co-localized at the single-cell level. In addition, integrin expression was enriched in EGFR/PDGFRA-overexpressing areas but was more regionally confined than FAK, p-FAK, and paxillin. Integrins beta8 and alpha5beta1 were most commonly expressed, often in a perinecrotic or perivascular pattern. Taken together, our data suggest that growth factor receptor overexpression facilitates alterations in the integrin signaling pathway. Thus, FAK may act in glioblastoma as a downstream target of growth factor signaling, with integrins enhancing the impact of such signaling in the tumor microenvironment.

  17. Single Cell Force Spectroscopy for Quantification of Cellular Adhesion on Surfaces

    NASA Astrophysics Data System (ADS)

    Christenson, Wayne B.

    Cell adhesion is an important aspect of many biological processes. The atomic force microscope (AFM) has made it possible to quantify the forces involved in cellular adhesion using a technique called single cell force spectroscopy (SCFS). AFM based SCFS offers versatile control over experimental conditions for probing directly the interaction between specific cell types and specific proteins, surfaces, or other cells. Transmembrane integrins are the primary proteins involved in cellular adhesion to the extra cellular matix (ECM). One of the chief integrins involved in the adhesion of leukocyte cells is alpha Mbeta2 (Mac-1). The experiments in this dissertation quantify the adhesion of Mac-1 expressing human embryonic kidney (HEK Mac-1), platelets, and neutrophils cells on substrates with different concentrations of fibrinogen and on fibrin gels and multi-layered fibrinogen coated fibrin gels. It was shown that multi-layered fibrinogen reduces the adhesion force of these cells considerably. A novel method was developed as part of this research combining total internal reflection microscopy (TIRFM) with SCFS allowing for optical microscopy of HEK Mac-1 cells interacting with bovine serum albumin (BSA) coated glass after interacting with multi-layered fibrinogen. HEK Mac-1 cells are able to remove fibrinogen molecules from the multi-layered fibrinogen matrix. An analysis methodology for quantifying the kinetic parameters of integrin-ligand interactions from SCFS experiments is proposed, and the kinetic parameters of the Mac-1 fibrinogen bond are quantified. Additional SCFS experiments quantify the adhesion of macrophages and HEK Mac-1 cells on functionalized glass surfaces and normal glass surfaces. Both cell types show highest adhesion on a novel functionalized glass surface that was prepared to induce macrophage fusion. These experiments demonstrate the versatility of AFM based SCFS, and how it can be applied to address many questions in cellular biology offering

  18. Identification, Characterization, and Epitope Mapping of Human Monoclonal Antibody J19 That Specifically Recognizes Activated Integrin α4β7*

    PubMed Central

    Qi, JunPeng; Zhang, Kun; Zhang, Qiao; Sun, Yi; Fu, Ting; Li, GuoHui; Chen, JianFeng

    2012-01-01

    Integrin α4β7 is a lymphocyte homing receptor that mediates both rolling and firm adhesion of lymphocytes on vascular endothelium, two of the critical steps in lymphocyte migration and tissue-specific homing. The rolling and firm adhesions of lymphocytes rely on the dynamic shift between the inactive and active states of integrin α4β7, which is associated with the conformational rearrangement of integrin molecules. Activation-specific antibodies, which specifically recognize the activated integrins, have been used as powerful tools in integrin studies, whereas there is no well characterized activation-specific antibody to integrin α4β7. Here, we report the identification, characterization, and epitope mapping of an activation-specific human mAb J19 against integrin α4β7. J19 was discovered by screening a human single-chain variable fragment phage library using an activated α4β7 mutant as target. J19 IgG specifically bound to the high affinity α4β7 induced by Mn2+, DTT, ADP, or CXCL12, but not to the low affinity integrin. Moreover, J19 IgG did not interfere with α4β7-MAdCAM-1 interaction. The epitope of J19 IgG was mapped to Ser-331, Ala-332, and Ala-333 of β7 I domain and a seven-residue segment from 184 to 190 of α4 β-propeller domain, which are buried in low affinity integrin with bent conformation and only exposed in the high affinity extended conformation. Taken together, J19 is a potentially powerful tool for both studies on α4β7 activation mechanism and development of novel therapeutics targeting the activated lymphocyte expressing high affinity α4β7. PMID:22418441

  19. The role of alpha3beta1 integrin in determining the supramolecular organization of laminin-5 in the extracellular matrix of keratinocytes.

    PubMed

    deHart, Gregory W; Healy, Kevin E; Jones, Jonathan C R

    2003-02-01

    Analyses of mice with targeted deletions in the genes for alpha3 and beta1 integrin suggest that the alpha3beta1 integrin heterodimer likely determines the organization of the extracellular matrix within the basement membrane of skin. Here we tested this hypothesis using keratinocytes derived from alpha3 integrin-null mice. We have compared the organizational state of laminin-5, a ligand of alpha3beta1 integrin, in the matrix of wild-type keratinocytes with that of laminin-5 in the matrix of alpha3 integrin-null cells. Laminin-5 distributes diffusely in arc structures in the matrix of wild-type mouse keratinocytes, whereas laminin-5 is organized into linear, spike-like arrays by the alpha3 integrin-null cells. The fact that alpha3 integrin-null cells are deficient in their ability to assemble a proper laminin-5 matrix is also shown by their failure to remodel laminin-5 when plated onto surfaces coated with purified laminin-5 protein. In sharp contrast, wild-type keratinocytes organize exogenously added laminin-5 into discrete ring-like organizations. These findings led us next to assess whether differences in laminin-5 organization in the matrix of the wild-type and alpha3 integrin-null cells impact cell behavior. Our results indicate that alpha3 integrin-null cells are more motile than their wild-type counterparts and leave extensive trails of laminin-5 over the surface on which they move. Moreover, HEK 293 cells migrate significantly more on the laminin-5-rich matrix derived from the alpha3 integrin-null cells than on the wild-type keratinocyte laminin-5 matrix. In addition, alpha3 integrin-null cells show low strength of adhesion to surfaces coated with purified laminin-5 compared to wild-type cells although both the wild type and the alpha3 integrin-null keratinocytes adhere equally strongly to laminin-5 that has been organized into arrays by other epithelial cells. These data suggest: (1) that alpha3beta1 integrin plays an important role in determining the

  20. The roles of cell adhesion molecules in tumor suppression and cell migration: a new paradox.

    PubMed

    Moh, Mei Chung; Shen, Shali

    2009-01-01

    In addition to mediating cell adhesion, many cell adhesion molecules act as tumor suppressors. These proteins are capable of restricting cell growth mainly through contact inhibition. Alterations of these cell adhesion molecules are a common event in cancer. The resulting loss of cell-cell and/or cell-extracellular matrix adhesion promotes cell growth as well as tumor dissemination. Therefore, it is conventionally accepted that cell adhesion molecules that function as tumor suppressors are also involved in limiting tumor cell migration. Paradoxically, in 2005, we identified an immunoglobulin superfamily cell adhesion molecule hepaCAM that is able to suppress cancer cell growth and yet induce migration. Almost concurrently, CEACAM1 was verified to co-function as a tumor suppressor and invasion promoter. To date, the reason and mechanism responsible for this exceptional phenomenon remain unclear. Nevertheless, the emergence of these intriguing cell adhesion molecules with conflicting roles may open a new chapter to the biological significance of cell adhesion molecules.

  1. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1

    NASA Astrophysics Data System (ADS)

    Koch, Alisa E.; Halloran, Margaret M.; Haskell, Catherine J.; Shah, Manisha R.; Polverini, Peter J.

    1995-08-01

    ENDOTHELIAL adhesion molecules facilitate the entry of leukocytes into inflamed tissues. This in turn promotes neovascularization, a process central to the progression of rheumatoid arthritis, tumour growth and wound repair1. Here we test the hypothesis that soluble endothelial adhesion molecules promote angiogenesis2á¤-4. Human recombinant soluble E-selectin and soluble vascular cell adhesion molecule-1 induced chemotaxis of human endothelial cells in vitro and were angiogenic in rat cornea. Soluble E-selectin acted on endothelial cells in part through a sialyl Lewis-X-dependent mechanism, while soluble vascular cell adhesion molecule-1 acted on endothelial cells in part through a very late antigen (VLA)-4 dependent mechanism. The chemotactic activity of rheumatoid synovial fluid for endothelial cells, and also its angiogenic activity, were blocked by antibodies to either soluble E-selectin or soluble vascular cell adhesion molecule-1. These results suggest a novel function for soluble endothelial adhesion molecules as mediators of angiogenesis.

  2. E-Cadherin-Dependent Stimulation of Traction Force at Focal Adhesions via the Src and PI3K Signaling Pathways

    PubMed Central

    Jasaitis, Audrius; Estevez, Maruxa; Heysch, Julie; Ladoux, Benoit; Dufour, Sylvie

    2012-01-01

    The interplay between cadherin- and integrin-dependent signals controls cell behavior, but the precise mechanisms that regulate the strength of adhesion to the extracellular matrix remains poorly understood. We deposited cells expressing a defined repertoire of cadherins and integrins on fibronectin (FN)-coated polyacrylamide gels (FN-PAG) and on FN-coated pillars used as a micro-force sensor array (μFSA), and analyzed the functional relationship between these adhesion receptors to determine how it regulates cell traction force. We found that cadherin-mediated adhesion stimulated cell spreading on FN-PAG, and this was modulated by the substrate stiffness. We compared S180 cells with cells stably expressing different cadherins on μFSA and found that traction forces were stronger in cells expressing cadherins than in parental cells. E-cadherin-mediated contact and mechanical coupling between cells are required for this increase in cell-FN traction force, which was not observed in isolated cells, and required Src and PI3K activities. Traction forces were stronger in cells expressing type I cadherins than in cells expressing type II cadherins, which correlates with our previous observation of a higher intercellular adhesion strength developed by type I compared with type II cadherins. Our results reveal one of the mechanisms whereby molecular cross talk between cadherins and integrins upregulates traction forces at cell-FN adhesion sites, and thus provide additional insight into the molecular control of cell behavior. PMID:22853894

  3. Prognostic implications of adhesion molecule expression in colorectal cancer.

    PubMed

    Seo, Kyung-Jin; Kim, Maru; Kim, Jeana

    2015-01-01

    Research on the expression of adhesion molecules, E-cadherin (ECAD), CD24, CD44 and osteopontin (OPN) in colorectal cancer (CRC) has been limited, even though CRC is one of the leading causes of cancer-related deaths. This study was conducted to evaluate the expression of adhesion molecules in CRC and to determine their relationships with clinicopathologic variables, and the prognostic significance. The expression of ECAD, CD24, CD44 and OPN was examined in 174 stage II and III CRC specimens by immunohistochemistry of TMA. Negative ECAD expression was significantly correlated with advanced nodal stage and poor tumor differentiation. Multivariate analysis showed that both negative expression of ECAD and positive expression of CD24 were independent prognostic factors for disease-free survival (DFS) in CRC patients (P<0.001, relative risk [RR] = 5.596, 95% CI = 2.712-11.549; P = 0.038, RR = 3.768, 95% CI = 1.077-13.185, respectively). However, for overall survival (OS), only ECAD negativity showed statistically significant results in multivariate analysis (P<0.001, RR = 4.819, 95% CI = 2.515-9.234). Positive expression of CD24 was associated with poor OS in univariate analysis but was of no prognostic value in multivariate analysis. In conclusion, our study suggests that among these four adhesion molecules, ECAD and CD24 expression can be considered independent prognostic factors. The role of CD44 and OPN may need further evaluation.

  4. Prognostic implications of adhesion molecule expression in colorectal cancer

    PubMed Central

    Seo, Kyung-Jin; Kim, Maru; Kim, Jeana

    2015-01-01

    Research on the expression of adhesion molecules, E-cadherin (ECAD), CD24, CD44 and osteopontin (OPN) in colorectal cancer (CRC) has been limited, even though CRC is one of the leading causes of cancer-related deaths. This study was conducted to evaluate the expression of adhesion molecules in CRC and to determine their relationships with clinicopathologic variables, and the prognostic significance. The expression of ECAD, CD24, CD44 and OPN was examined in 174 stage II and III CRC specimens by immunohistochemistry of TMA. Negative ECAD expression was significantly correlated with advanced nodal stage and poor tumor differentiation. Multivariate analysis showed that both negative expression of ECAD and positive expression of CD24 were independent prognostic factors for disease-free survival (DFS) in CRC patients (P<0.001, relative risk [RR] = 5.596, 95% CI = 2.712-11.549; P = 0.038, RR = 3.768, 95% CI = 1.077-13.185, respectively). However, for overall survival (OS), only ECAD negativity showed statistically significant results in multivariate analysis (P<0.001, RR = 4.819, 95% CI = 2.515-9.234). Positive expression of CD24 was associated with poor OS in univariate analysis but was of no prognostic value in multivariate analysis. In conclusion, our study suggests that among these four adhesion molecules, ECAD and CD24 expression can be considered independent prognostic factors. The role of CD44 and OPN may need further evaluation. PMID:26097606

  5. Effects of nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) on melanoma cell adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Huiwen; Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701; Mollica, Molly Y.

    A new class of nitric oxide (NO•)-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) were developed in recent years and have shown promising potential as NSAID substitutes due to their gentle nature on cardiovascular and gastrointestinal systems. Since nitric oxide plays a role in regulation of cell adhesion, we assessed the potential use of NONO-NSAIDs as anti-metastasis drugs. In this regard, we compared the effects of NONO-aspirin and a novel NONO-naproxen to those exerted by their respective parent NSAIDs on avidities of human melanoma M624 cells. Both NONO-NSAIDs, but not the corresponding parent NSAIDs, reduced M624 adhesion on vascular cellular adhesion molecule-1 (VCAM-1)more » by 20–30% and fibronectin by 25–44% under fluid flow conditions and static conditions, respectively. Only NONO-naproxen reduced (∼ 56%) the activity of β1 integrin, which binds to α4 integrin to form very late antigen-4 (VLA-4), the ligand of VCAM-1. These results indicate that the diazeniumdiolate (NO•)-donor moiety is critical for reducing the adhesion between VLA-4 and its ligands, while the NSAID moiety can impact the regulation mechanism of melanoma cell adhesion. -- Highlights: ► NONO-naproxen, a novel nitric oxide-releasing NSAID, was synthesized. ► NONO-NSAIDs, but not their parent NSAIDs, reduced melanoma adhesion. ► NONO-naproxen, but not NONO-aspirin and NSAIDs, reduced activity of β1 integrin.« less

  6. Pro-metastatic NEDD9 regulates individual cell migration via caveolin-1-dependent trafficking of integrins

    PubMed Central

    Kozyulina, Polina Y.; Loskutov, Yuriy V.; Kozyreva, Varvara K.; Rajulapati, Anuradha; Ice, Ryan J.; Jones, Brandon. C.; Pugacheva, Elena N.

    2014-01-01

    The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of pro-metastatic protein, NEDD9, in breast cancer (BC) cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and co-localizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand/integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Re-expression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9 depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. PMID:25319010

  7. Rab-coupling protein coordinates recycling of alpha5beta1 integrin and EGFR1 to promote cell migration in 3D microenvironments.

    PubMed

    Caswell, Patrick T; Chan, May; Lindsay, Andrew J; McCaffrey, Mary W; Boettiger, David; Norman, Jim C

    2008-10-06

    Here we show that blocking the adhesive function of alphavbeta3 integrin with soluble RGD ligands, such as osteopontin or cilengitide, promoted association of Rab-coupling protein (RCP) with alpha5beta1 integrin and drove RCP-dependent recycling of alpha5beta1 to the plasma membrane and its mobilization to dynamic ruffling protrusions at the cell front. These RCP-driven changes in alpha5beta1 trafficking led to acquisition of rapid/random movement on two-dimensional substrates and to a marked increase in fibronectin-dependent migration of tumor cells into three-dimensional matrices. Recycling of alpha5beta1 integrin did not affect its regulation or ability to form adhesive bonds with substrate fibronectin. Instead, alpha5beta1 controlled the association of EGFR1 with RCP to promote the coordinate recycling of these two receptors. This modified signaling downstream of EGFR1 to increase its autophosphorylation and activation of the proinvasive kinase PKB/Akt. We conclude that RCP provides a scaffold that promotes the physical association and coordinate trafficking of alpha5beta1 and EGFR1 and that this drives migration of tumor cells into three-dimensional matrices.

  8. The regulation of integrin function by divalent cations

    PubMed Central

    Zhang, Kun; Chen, JianFeng

    2012-01-01

    Integrins are a family of α/β heterodimeric adhesion metalloprotein receptors and their functions are highly dependent on and regulated by different divalent cations. Recently advanced studies have revolutionized our perception of integrin metal ion-binding sites and their specific functions. Ligand binding to integrins is bridged by a divalent cation bound at the MIDAS motif on top of either α I domain in I domain-containing integrins or β I domain in α I domain-less integrins. The MIDAS motif in β I domain is flanked by ADMIDAS and SyMBS, the other two crucial metal ion binding sites playing pivotal roles in the regulation of integrin affinity and bidirectional signaling across the plasma membrane. The β-propeller domain of α subunit contains three or four β-hairpin loop-like Ca2+-binding motifs that have essential roles in integrin biogenesis. The function of another Ca2+-binding motif located at the genu of α subunit remains elusive. Here, we provide an overview of the integrin metal ion-binding sites and discuss their roles in the regulation of integrin functions. PMID:22647937

  9. Dynamic pattern of endothelial cell adhesion molecule expression in muscle and perineural vessels from patients with classic polyarteritis nodosa.

    PubMed

    Coll-Vinent, B; Cebrián, M; Cid, M C; Font, C; Esparza, J; Juan, M; Yagüe, J; Urbano-Márquez, A; Grau, J M

    1998-03-01

    To investigate endothelial cell adhesion molecule expression in vessels from patients with classic polyarteritis nodosa (PAN). Frozen sections of 21 muscle and 16 nerve samples from 30 patients with biopsy-proven PAN and 12 histologically normal muscle and 2 histologically normal nerve samples from 12 controls were studied immunohistochemically, using specific monoclonal antibodies (MAb) that recognize adhesion molecules. Adhesion molecules identified were intercellular adhesion molecule 1 (ICAM-1), ICAM-2, ICAM-3, vascular cell adhesion molecule 1 (VCAM-1), platelet endothelial cell adhesion molecule 1 (PECAM-1), E-selectin, P-selectin, L-selectin, lymphocyte function-associated antigen 1 (LFA-1), and very late activation antigen 4 (VLA-4). Neutrophils were identified with a MAb recognizing neutrophil elastase. Endothelial cells were identified with the lectin ulex europaeus. In early lesions, expression of PECAM-1, ICAM-1, ICAM-2, and P-selectin was similar to that in control samples, and VCAM-1 and E-selectin were induced in vascular endothelium. In advanced lesions, immunostaining for adhesion molecules diminished or disappeared in luminal endothelium, whereas these molecules were clearly expressed in microvessels within and surrounding inflamed vessels. Staining in endothelia from vessels in a healing stage tended to be negative. A high proportion of infiltrating leukocytes expressed LFA-1 and VLA-4, and only a minority expressed L-selectin. No relationship between the expression pattern of adhesion molecules and clinical features, disease duration, or previous corticosteroid treatment was observed. Endothelial adhesion molecule expression in PAN is a dynamic process that varies according to the histopathologic stage of the vascular lesions. The preferential expression of constitutive and inducible adhesion molecules in microvessels suggests that angiogenesis contributes to the persistence of inflammatory infiltration in PAN.

  10. An easily accessible sulfated saccharide mimetic inhibits in vitro human tumor cell adhesion and angiogenesis of vascular endothelial cells

    PubMed Central

    Marano, Grazia; Gronewold, Claas; Frank, Martin; Merling, Anette; Kliem, Christian; Sauer, Sandra; Wiessler, Manfred; Frei, Eva

    2012-01-01

    Summary Oligosaccharides aberrantly expressed on tumor cells influence processes such as cell adhesion and modulation of the cell’s microenvironment resulting in an increased malignancy. Schmidt’s imidate strategy offers an effective method to synthesize libraries of various oligosaccharide mimetics. With the aim to perturb interactions of tumor cells with extracellular matrix proteins and host cells, molecules with 3,4-bis(hydroxymethyl)furan as core structure were synthesized and screened in biological assays for their abilities to interfere in cell adhesion and other steps of the metastatic cascade, such as tumor-induced angiogenesis. The most active compound, (4-{[(β-D-galactopyranosyl)oxy]methyl}furan-3-yl)methyl hydrogen sulfate (GSF), inhibited the activation of matrix-metalloproteinase-2 (MMP-2) as well as migration of the human melanoma cells of the lines WM-115 and WM-266-4 in a two-dimensional migration assay. GSF inhibited completely the adhesion of WM-115 cells to the extracellular matrix (ECM) proteins, fibrinogen and fibronectin. In an in vitro angiogenesis assay with human endothelial cells, GSF very effectively inhibited endothelial tubule formation and sprouting of blood vessels, as well as the adhesion of endothelial cells to ECM proteins. GSF was not cytotoxic at biologically active concentrations; neither were 3,4-bis{[(β-D-galactopyranosyl)oxy]methyl}furan (BGF) nor methyl β-D-galactopyranoside nor 3,4-bis(hydroxymethyl)furan, which were used as controls, eliciting comparable biological activity. In silico modeling experiments, in which binding of GSF to the extracellular domain of the integrin αvβ3 was determined, revealed specific docking of GSF to the same binding site as the natural peptidic ligands of this integrin. The sulfate in the molecule coordinated with one manganese ion in the binding site. These studies show that this chemically easily accessible molecule GSF, synthesized in three steps from 3,4-bis

  11. CXCR6-CXCL16 axis promotes prostate cancer by mediating cytoskeleton rearrangement via Ezrin activation and αvβ3 integrin clustering

    PubMed Central

    Singh, Rajesh; Kapur, Neeraj; Mir, Hina; Singh, Nalinaksha; Lillard, James W.; Singh, Shailesh

    2016-01-01

    Cytoskeletal rearrangement is required for migration and invasion, which are the key steps of cancer metastasis. Ezrin and integrin co-ordinate these processes by regulating cellular adhesion and cytoskeletal polymerization-depolymerization. It is also well established that chemokine-chemokine receptor axis plays a crucial role in regulating cancer cell migration and invasion. In this study, we show involvement of CXC chemokine receptor 6 (CXCR6) and its only natural ligand CXCL16 in pathobiology of prostate cancer (PCa). CXCR6 is highly expressed in PCa tissues and cell lines (LNCaP and PC3), relative to normal tissue and cells. CXCR6 expression in PCa tissues correlated with higher Gleason score. Similarly, aggressive PCa cells (PC3) show high CXCR6 compared to less aggressive LNCaP. Besides, PC3 cells show higher MMPs expression compared to LNCaP cells following CXCL16 stimulation. Intriguingly, CXCR6-CXCL16 interaction in PCa cells promotes Ezrin activation, αvβ3 integrin clustering and capping at the leading edge in FAK/PI3K/PKC dependent manner, thereby modifying cellular adhesion as well as motility. Together these results demonstrate that CXCL16 stimulation changes cytoskeletal dynamics resulting in enhanced migration, invasion and adhesion to endothelial cells, ultimately enabling PCa cells to achieve their metastatic goal. PMID:26799186

  12. The endometrial cell surface and implantation. Expression of the polymorphic mucin MUC-1 and adhesion molecules during the endometrial cycle.

    PubMed

    Aplin, J D; Seif, M W; Graham, R A; Hey, N A; Behzad, F; Campbell, S

    1994-09-30

    The cell surface mucin MUC-1 is present in endometrial epithelial cells and their associated apical glycocalyx and is also released into gland lumens as a secretory product. MUC-1 mRNA and core protein are found at low levels in the proliferative phase of the cycle, but their abundance increases after ovulation. Endometrial MUC-1 has been found to carry sialokeratan sulphate chains and these show a dramatically increased abundance in cells and secretions in the post-ovulatory phase of the cycle, reaching a maximum in secretions 6-7 days after the LH peak. The apical epithelium also contains adhesion receptor molecules of the integrin and CD44 families. MUC-1 is large and highly glycosylated and probably extends farther from the cell surface than these 'conventional' glycoprotein receptors. It has the potential to inhibit sterically receptor-mediated cell-cell adhesion. However, it is also possible that MUC-1 displays specific (e.g., glycan) recognition structures for the initial attachment of the blastocyst or that the embryo may create a specialised microenvironment in which to implant.

  13. Top surface blade residues and the central channel water molecules are conserved in every repeat of the integrin-like β-propeller structures.

    PubMed

    Denesyuk, Alexander; Denessiouk, Konstantin; Johnson, Mark S

    2018-02-01

    An integrin-like β-propeller domain contains seven repeats of a four-stranded antiparallel β-sheet motif (blades). Previously we described a 3D structural motif within each blade of the integrin-type β-propeller. Here, we show unique structural links that join different blades of the β-propeller structure, which together with the structural motif for a single blade are repeated in a β-propeller to provide the functional top face of the barrel, found to be involved in protein-protein interactions and substrate recognition. We compare functional top face diagrams of the integrin-type β-propeller domain and two non-integrin type β-propeller domains of virginiamycin B lyase and WD Repeat-Containing Protein 5. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Decoy receptor 3 promotes cell adhesion and enhances endometriosis development.

    PubMed

    Tsai, Hsiao-Wen; Huang, Ming-Ting; Wang, Peng-Hui; Huang, Ben-Shian; Chen, Yi-Jen; Hsieh, Shie-Liang

    2018-02-01

    Endometriosis is a multifactorial inflammatory disease with persistent activation of the nuclear factor-κB (NF-κB) signalling pathway. Aberrant adhesion of endometrium is the essential step in the progression of endometriosis, but the molecular mechanism of ectopic growth of endometrium is still unclear. Decoy receptor 3 (DcR3)/TNFRSF6B, a pleiotropic immunomodulator regulated by oestrogen, is able to activate focal adhesion kinase to promote cell adhesion. We found that DcR3 is upregulated in human ectopic endometrial cells via activation of the Akt-NF-κB signalling pathway, and its expression level correlates positively with that of the adhesion molecules intercellular adhesion molecule 1 (ICAM-1) and homing cell adhesion molecule (HCAM; CD44). In a multivariate regression model, DcR3 expression level was the most significant parameter associated with endometriosis severity. Knockdown of DcR3 not only downregulated the expression of ICAM-1 and HCAM, but also reduced cell adhesion and migration. In vivo investigation further showed that DcR3 promoted the growth and spread of endometrium, whereas knockdown of DcR3 by lentivirus-delivered short hairpin RNA inhibited ectopic adhesion of endometrium and abrogated endometriosis progression. These observations are in support of DcR3 playing a critical role in the pathogenesis of endometriosis, and the inhibition of DcR3 expression being a promising approach for the treatment of endometriosis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  15. Glioma cell dispersion is driven by α5 integrin-mediated cell-matrix and cell-cell interactions.

    PubMed

    Blandin, Anne-Florence; Noulet, Fanny; Renner, Guillaume; Mercier, Marie-Cécile; Choulier, Laurence; Vauchelles, Romain; Ronde, Philippe; Carreiras, Franck; Etienne-Selloum, Nelly; Vereb, Gyorgy; Lelong-Rebel, Isabelle; Martin, Sophie; Dontenwill, Monique; Lehmann, Maxime

    2016-07-01

    Glioblastoma multiform (GBM) is the most common and most aggressive primary brain tumor. The fibronectin receptor, α5 integrin is a pertinent novel therapeutic target. Despite numerous data showing that α5 integrin support tumor cell migration and invasion, it has been reported that α5 integrin can also limit cell dispersion by increasing cell-cell interaction. In this study, we showed that α5 integrin was involved in cell-cell interaction and gliomasphere formation. α5-mediated cell-cell cohesion limited cell dispersion from spheroids in fibronectin-poor microenvironment. However, in fibronectin-rich microenvironment, α5 integrin promoted cell dispersion. Ligand-occupied α5 integrin and fibronectin were distributed in fibril-like pattern at cell-cell junction of evading cells, forming cell-cell fibrillar adhesions. Activated focal adhesion kinase was not present in these adhesions but was progressively relocalized with α5 integrin as cell migrates away from the spheroids. α5 integrin function in GBM appears to be more complex than previously suspected. As GBM overexpressed fibronectin, it is most likely that in vivo, α5-mediated dissemination from the tumor mass overrides α5-mediated tumor cell cohesion. In this respect, α5-integrin antagonists may be useful to limit GBM invasion in brain parenchyma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Hydrophobic fluorescent probes introduce artifacts into single molecule tracking experiments due to non-specific binding.

    PubMed

    Zanetti-Domingues, Laura C; Tynan, Christopher J; Rolfe, Daniel J; Clarke, David T; Martin-Fernandez, Marisa

    2013-01-01

    Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion.

  17. Hydrophobic Fluorescent Probes Introduce Artifacts into Single Molecule Tracking Experiments Due to Non-Specific Binding

    PubMed Central

    Rolfe, Daniel J.; Clarke, David T.; Martin-Fernandez, Marisa

    2013-01-01

    Single-molecule techniques are powerful tools to investigate the structure and dynamics of macromolecular complexes; however, data quality can suffer because of weak specific signal, background noise and dye bleaching and blinking. It is less well-known, but equally important, that non-specific binding of probe to substrates results in a large number of immobile fluorescent molecules, introducing significant artifacts in live cell experiments. Following from our previous work in which we investigated glass coating substrates and demonstrated that the main contribution to this non-specific probe adhesion comes from the dye, we carried out a systematic investigation of how different dye chemistries influence the behaviour of spectrally similar fluorescent probes. Single-molecule brightness, bleaching and probe mobility on the surface of live breast cancer cells cultured on a non-adhesive substrate were assessed for anti-EGFR affibody conjugates with 14 different dyes from 5 different manufacturers, belonging to 3 spectrally homogeneous bands (491 nm, 561 nm and 638 nm laser lines excitation). Our results indicate that, as well as influencing their photophysical properties, dye chemistry has a strong influence on the propensity of dye-protein conjugates to adhere non-specifically to the substrate. In particular, hydrophobicity has a strong influence on interactions with the substrate, with hydrophobic dyes showing much greater levels of binding. Crucially, high levels of non-specific substrate binding result in calculated diffusion coefficients significantly lower than the true values. We conclude that the physic-chemical properties of the dyes should be considered carefully when planning single-molecule experiments. Favourable dye characteristics such as photostability and brightness can be offset by the propensity of a conjugate for non-specific adhesion. PMID:24066121

  18. Bone marrow-derived mesenchymal stem cells enhance angiogenesis via their α6β1 integrin receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrion, Bita; Kong, Yen P.; Kaigler, Darnell

    Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes theirmore » failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis. Highlights: • BMSCs stimulate angiogenesis, but the mechanisms remain unclear. • We silenced the expression of the α6 integrin subunit in BMSCs. • Silencing this receptor subunit significantly inhibited angiogenic sprouting. • Knocking down α6 integrin affected laminin and αSMA expression. • Silencing α6 integrin expression also reduced BMSC proliferation.« less

  19. Integrin αvβ3 promotes infection by Japanese encephalitis virus.

    PubMed

    Fan, Wenchun; Qian, Ping; Wang, Dandan; Zhi, Xianwei; Wei, Yanming; Chen, Huanchun; Li, Xiangmin

    2017-04-01

    Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that is one of the major causes of viral encephalitis diseases worldwide. The JEV envelope protein facilitates viral entry, and its domain III contains an Arg-Gly-Asp (RGD) motif, that may modulate JEV entry through the RGD-binding integrin. In this study, the roles of integrin αv and β3 on the infection of JEV were evaluated. Reduced expression of integrin αv/β3 by special shRNA confers 2 to 4-fold inhibition of JEV replication in BHK-21 cells. Meanwhile, antibodies specific for integrin αv/β3 displayed ~58% and ~33% inhibition of JEV infectivity and RGD-specific peptides produced ~36% of inhibition. Expression of E protein and JEV RNA loads were clearly increased in CHO cells transfected with cDNA encoding human integrin β3. Moreover, integrin αv mediates JEV infection in viral binding stage of life cycle. Therefore, our study suggested that integrin αv and β3 serve as a host factor associated with JEV entry into the target cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A dual role for integrin-linked kinase in platelets: regulating integrin function and α-granule secretion

    PubMed Central

    Sage, Tanya; Stevens, Joanne M.; Jordan, Peter A.; Jones, Sarah; Barrett, Natasha E.; St-Arnaud, Rene; Frampton, Jonathan; Dedhar, Shoukat; Gibbins, Jonathan M.

    2008-01-01

    Integrin-linked kinase (ILK) has been implicated in the regulation of a range of fundamental biological processes such as cell survival, growth, differentiation, and adhesion. In platelets ILK associates with β1- and β3-containing integrins, which are of paramount importance for the function of platelets. Upon stimulation of platelets this association with the integrins is increased and ILK kinase activity is up-regulated, suggesting that ILK may be important for the coordination of platelet responses. In this study a conditional knockout mouse model was developed to examine the role of ILK in platelets. The ILK-deficient mice showed an increased bleeding time and volume, and despite normal ultrastructure the function of ILK-deficient platelets was decreased significantly. This included reduced aggregation, fibrinogen binding, and thrombus formation under arterial flow conditions. Furthermore, although early collagen stimulated signaling such as PLCγ2 phosphorylation and calcium mobilization were unaffected in ILK-deficient platelets, a selective defect in α-granule, but not dense-granule, secretion was observed. These results indicate that as well as involvement in the control of integrin affinity, ILK is required for α-granule secretion and therefore may play a central role in the regulation of platelet function. PMID:18772455

  1. Emergence and subsequent functional specialization of kindlins during evolution of cell adhesiveness

    PubMed Central

    Meller, Julia; Rogozin, Igor B.; Poliakov, Eugenia; Meller, Nahum; Bedanov-Pack, Mark; Plow, Edward F.; Qin, Jun; Podrez, Eugene A.; Byzova, Tatiana V.

    2015-01-01

    Kindlins are integrin-interacting proteins essential for integrin-mediated cell adhesiveness. In this study, we focused on the evolutionary origin and functional specialization of kindlins as a part of the evolutionary adaptation of cell adhesive machinery. Database searches revealed that many members of the integrin machinery (including talin and integrins) existed before kindlin emergence in evolution. Among the analyzed species, all metazoan lineages—but none of the premetazoans—had at least one kindlin-encoding gene, whereas talin was present in several premetazoan lineages. Kindlin appears to originate from a duplication of the sequence encoding the N-terminal fragment of talin (the talin head domain) with a subsequent insertion of the PH domain of separate origin. Sequence analysis identified a member of the actin filament–associated protein 1 (AFAP1) superfamily as the most likely origin of the kindlin PH domain. The functional divergence between kindlin paralogues was assessed using the sequence swap (chimera) approach. Comparison of kindlin 2 (K2)/kindlin 3 (K3) chimeras revealed that the F2 subdomain, in particular its C-terminal part, is crucial for the differential functional properties of K2 and K3. The presence of this segment enables K2 but not K3 to localize to focal adhesions. Sequence analysis of the C-terminal part of the F2 subdomain of K3 suggests that insertion of a variable glycine-rich sequence in vertebrates contributed to the loss of constitutive K3 targeting to focal adhesions. Thus emergence and subsequent functional specialization of kindlins allowed multicellular organisms to develop additional tissue-specific adaptations of cell adhesiveness. PMID:25540429

  2. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mobasseri, Rezvan; Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576; Tian, Lingling

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on differentmore » substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation. - Highlights: • Bioactive molecules modified surface is a strategy to design biomimicry scaffold. • Bi-functional Tat-derived peptide (R-pept) enhanced MSCs adhesion and proliferation. • R-pept showed similar influences to fibronectin on FA formation and attachment.« less

  3. Definition of Two Angiogenic Pathways by Distinct α_v Integrins

    NASA Astrophysics Data System (ADS)

    Friedlander, Martin; Brooks, Peter C.; Shaffer, Robert W.; Kincaid, Christine M.; Varner, Judith A.; Cheresh, David A.

    1995-12-01

    Angiogenesis depends on cytokines and vascular cell adhesion events. Two cytokine-dependent pathways of angiogenesis were shown to exist and were defined by their dependency on distinct vascular cell integrins. In vivo angiogenesis in corneal or chorioallantoic membrane models induced by basic fibroblast growth factor or by tumor necrosis factor-α depended on α_vβ_3, whereas angiogenesis initiated by vascular endothelial growth factor, transforming growth factor-α, or phorbol ester depended on α_vβ_5. Antibody to each integrin selectively blocked one of these pathways, and a cyclic peptide antagonist of both integrins blocked angiogenesis stimulated by each cytokine tested. These pathways are further distinguished by their sensitivity to calphostin C, an inhibitor of protein kinase C that blocked angiogenesis potentiated by α_vβ_5 but not by α_vβ_3.

  4. [Polymorphism of CD209 and TLR3 genes in populations of North Eurasia].

    PubMed

    Barkhash, A V; Babenko, V N; Voevoda, M I; Romaschenko, A G

    2016-06-01

    The DC-SIGN (dendritic cell-specific intercellular adhesion molecule (ICAM)-3-grabbing non-integrin) and TLR3 (toll-like receptor 3) proteins are key effectors of the innate immunity and particularly play an important role in the organism’s antiviral defense as pattern-recognition receptors. Previously, we demonstrated that certain genotypes and alleles of single nucleotide polymorphisms (SNPs) rs2287886 (G/A) in the promoter region of the CD209 gene (encoding DC-SIGN) and rs3775291 (G/A, Leu412Phe) in the exon 4 of the TLR3 gene are associated with human predisposition to tick-borne encephalitis in the Russian population. In the present work, the distribution of genotype and allele frequencies for these SNPs was studied in seven populations of North Eurasia, including Caucasians (Russians and Germans (from Altai region)), Central Asian Mongoloids (Altaians, Khakass, Tuvinians, and Shorians), and Arctic Mongoloids (Chukchi). It was found that the CD209 gene rs2287886 SNP A/A genotype and A allele, as well as the TLR3 gene rs3775291 SNP G/G genotype and G allele (the frequencies of which in our previous studies were increased in tick-borne encephalitis patients as compared with the population control (Russian citizens of Novosibirsk)), are preserved with a high frequency in Central Asian Mongoloids (who for a long time regularly came in contact with tick-borne encephalitis virus in places of their habitation). We suggested that predisposition to tick-borne encephalitis in Central Asian Mongoloid populations can be predetermined by a different set of genes and their polymorphisms than in the Russian population.

  5. High αv Integrin Level of Cancer Cells Is Associated with Development of Brain Metastasis in Athymic Rats

    PubMed Central

    WU, YINGJEN JEFFREY; PAGEL, MICHAEL A.; MULDOON, LESLIE L.; FU, RONGWEI; NEUWELT, EDWARD A.

    2018-01-01

    Background/Aim Brain metastases commonly occur in patients with malignant skin, lung and breast cancers resulting in high morbidity and poor prognosis. Integrins containing an αv subunit are cell adhesion proteins that contribute to cancer cell migration and cancer progression. We hypothesized that high expression of αv integrin cell adhesion protein promoted metastatic phenotypes in cancer cells. Materials and Methods Cancer cells from different origins were used and studied regarding their metastatic ability and intetumumab, anti-αv integrin mAb, sensitivity using in vitro cell migration assay and in vivo brain metastases animal models. Results The number of brain metastases and the rate of occurrence were positively correlated with cancer cell αv integrin levels. High αv integrin-expressing cancer cells showed significantly faster cell migration rate in vitro than low αv integrin-expressing cells. Intetumumab significantly inhibited cancer cell migration in vitro regardless of αv integrin expression level. Overexpression of αv integrin in cancer cells with low αv integrin level accelerated cell migration in vitro and increased the occurrence of brain metastases in vivo. Conclusion αv integrin promotes brain metastases in cancer cells and may mediate early steps in the metastatic cascade, such as adhesion to brain vasculature. Targeting αv integrin with intetumumab could provide clinical benefit in treating cancer patients who develop metastases. PMID:28739685

  6. Prometastatic NEDD9 Regulates Individual Cell Migration via Caveolin-1-Dependent Trafficking of Integrins.

    PubMed

    Kozyulina, Polina Y; Loskutov, Yuriy V; Kozyreva, Varvara K; Rajulapati, Anuradha; Ice, Ryan J; Jones, Brandon C; Pugacheva, Elena N

    2015-03-01

    The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of the prometastatic protein, NEDD9, in breast cancer cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and colocalizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand-integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Reexpression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9-depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. This study provides valuable new insight into the potential therapeutic benefit of NEDD9 depletion to reduce dissemination of tumor cells and discovers a new regulatory role of NEDD9 in promoting migration through modulation of CAV1-dependent trafficking of integrins. ©2014 American Association for Cancer Research.

  7. Selective inhibition of prostaglandin E2 receptors EP2 and EP4 inhibits adhesion of human endometriotic epithelial and stromal cells through suppression of integrin-mediated mechanisms.

    PubMed

    Lee, JeHoon; Banu, Sakhila K; Burghardt, Robert C; Starzinski-Powitz, Anna; Arosh, Joe A

    2013-03-01

    Endometriosis is a chronic gynecological disease of reproductive age women characterized by the presence of functional endometrial tissues outside the uterine cavity. Interactions between the endometriotic cells and the peritoneal extracellular matrix proteins (ECM) are crucial mechanisms that allow adhesion of the endometriotic cells into peritoneal mesothelia. Prostaglandin E2 (PGE2) plays an important role in the pathogenesis of endometriosis. In previous studies, we have reported that selective inhibition of PGE2 receptors PTGER2 and PTGER4 decreases survival and invasion of human endometriotic epithelial and stromal cells through multiple mechanisms. Results of the present study indicates that selective inhibition of PTGER2- and PTGER4-mediated PGE2 signaling 1) decreases the expression and/or activity of specific integrin receptor subunits Itgb1 (beta1) and Itgb3 (beta3) but not Itgb5 (beta5), Itga1 (alpha1), Itga2 (alpha2), Itga5 (alpha5), and Itgav (alphav); 2) decreases integrin-signaling components focal adhesion kinase or protein kinase 2 (PTK2) and talin proteins; 3) inhibits interactions between Itgb1/Itgb3 subunits, PTK2, and talin and PTGER2/PTGER4 proteins through beta-arrestin-1 and Src kinase protein complex in human endometriotic epithelial cells 12Z and stromal cells 22B; and 4) decreases adhesion of 12Z and 22B cells to ECM collagen I, collagen IV, fibronectin, and vitronectin in a substrate-specific manner. These novel findings provide an important molecular framework for further evaluation of selective inhibition of PTGER2 and PTGER4 as potential nonsteroidal therapy to expand the spectrum of currently available treatment options for endometriosis in child-bearing age women.

  8. Identification of inhibitors of α2β1 integrin, members of C-lectin type proteins, in Echis sochureki venom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubowski, Piotr; Calvete, Juan J.; Eble, Johannes A.

    Snake venom antagonists of α2β1 integrin have been identified as members of a C-lectin type family of proteins (CLP). In the present study, we characterized three new CLPs isolated from Echis sochureki venom, which interact with this integrin. These proteins were purified using a combination of gel filtration, ion exchange chromatography and reverse phase HPLC. Sochicetin-A and sochicetin-B potently inhibited adhesion of cells expressing α2β1 integrin and binding of isolated α2β1 ectodomain to collagen I, as well as bound to recombinant GST-α2A domain in ELISA, whereas activity of sochicetin-C in these assays was approximately two orders of magnitude lower. Structurally,more » sochicetin-B and sochicetin-C are typical heterodimeric αβ CLPs, whereas sochicetin-A exhibits a trimer of its subunits (αβ){sub 3} in the quaternary structure. Immobilized sochicetins supported adhesion of glioma cell lines, LN18 and LBC3, whereas in a soluble form they partially inhibited adhesion of these cells to collagen I. Glioma cells spread very poorly on sochicetin-A, showing no cytoskeleton rearrangement typical for adhesion to collagen I or fibronectin. Adhesion on CLP does not involve focal adhesion elements, such as vinculin. Sochicetin-A also inhibited collagen-induced platelet aggregation, similar to other CLPs' action on the blood coagulation system. - Highlights: • Isolation of three novel snake venom CLPs inhibiting α2β1 integrin • Reporting hexameric CLP, sochicetin-A with anti-collagen receptor activity • CLPs antagonize the interaction of glioma cells with collagen matrix. • Sochicetin-A does not support glioma cell spreading.« less

  9. Crystal Structure of the Heterotrimeric Integrin-Binding Region of Laminin-111.

    PubMed

    Pulido, David; Hussain, Sadaf-Ahmahni; Hohenester, Erhard

    2017-03-07

    Laminins are cell-adhesive glycoproteins that are essential for basement membrane assembly and function. Integrins are important laminin receptors, but their binding site on the heterotrimeric laminins is poorly defined structurally. We report the crystal structure at 2.13 Å resolution of a minimal integrin-binding fragment of mouse laminin-111, consisting of ∼50 residues of α1β1γ1 coiled coil and the first three laminin G-like (LG) domains of the α1 chain. The LG domains adopt a triangular arrangement, with the C terminus of the coiled coil situated between LG1 and LG2. The critical integrin-binding glutamic acid residue in the γ1 chain tail is surface exposed and predicted to bind to the metal ion-dependent adhesion site in the integrin β1 subunit. Additional contacts to the integrin are likely to be made by the LG1 and LG2 surfaces adjacent to the γ1 chain tail, which are notably conserved and free of obstructing glycans. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Small Molecule Inhibitors Target the Tissue Transglutaminase and Fibronectin Interaction

    PubMed Central

    Yakubov, Bakhtiyor; Chen, Lan; Belkin, Alexey M.; Zhang, Sheng; Chelladurai, Bhadrani; Zhang, Zhong-Yin; Matei, Daniela

    2014-01-01

    Tissue transglutaminase (TG2) mediates protein crosslinking through generation of ε−(γ-glutamyl) lysine isopeptide bonds and promotes cell adhesion through interaction with fibronectin (FN) and integrins. Cell adhesion to the peritoneal matrix regulated by TG2 facilitates ovarian cancer dissemination. Therefore, disruption of the TG2-FN complex by small molecules may inhibit cell adhesion and metastasis. A novel high throughput screening (HTS) assay based on AlphaLISA™ technology was developed to measure the formation of a complex between His-TG2 and the biotinylated FN fragment that binds TG2 and to discover small molecules that inhibit this protein-protein interaction. Several hits were identified from 10,000 compounds screened. The top candidates selected based on >70% inhibition of the TG2/FN complex formation were confirmed by using ELISA and bioassays measuring cell adhesion, migration, invasion, and proliferation. In conclusion, the AlphaLISA bead format assay measuring the TG2-FN interaction is robust and suitable for HTS of small molecules. One compound identified from the screen (TG53) potently inhibited ovarian cancer cell adhesion to FN, cell migration, and invasion and could be further developed as a potential inhibitor for ovarian cancer dissemination. PMID:24586660

  11. Leader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin β1 and PI3K.

    PubMed

    Yamaguchi, Naoya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2015-01-07

    Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating collective with a micromanipulator. This then caused disruption of the cohesive migration of cells that followed in movement, called "follower" cells, which showed the importance of leader cells. Next, we observed localization of active Rac, integrin β1, and PI3K. These molecules were clearly localized in the leading edge of leader cells, but not in follower cells. Live cell imaging using active Rac and active PI3K indicators was performed to elucidate the relationship between Rac, integrin β1, and PI3K. Finally, we demonstrated that the inhibition of these molecules resulted in the disruption of collective migration. Our findings not only demonstrated the significance of a leader cell in collective cell migration, but also showed that Rac, integrin β1, and PI3K are upregulated in leader cells and drive collective cell migration.

  12. Bone Marrow-Derived Mesenchymal Stem Cells Enhance Angiogenesis via their α6β1 Integrin Receptor

    PubMed Central

    Carrion, Bita; Kong, Yen P.; Kaigler, Darnell; Putnam, Andrew J

    2013-01-01

    Bone marrow-derived mesenchymal stem cells (BMSCs) facilitate the angiogenic response of endothelial cells (ECs) within three-dimensional (3D) matrices in vivo and in engineered tissues in vitro in part through paracrine mediators and by acting as stabilizing pericytes. However, the molecular interactions between BMSCs and nascent tubules during the process of angiogenesis are not fully understood. In this study, we have used a tractable 3D co-culture model to explore the functional role of the α6β1 integrin adhesion receptor on BMSCs in sprouting angiogenesis. We report that knockdown of the α6 integrin subunit in BMSCs significantly reduces capillary sprouting, and causes their failure to associate with the nascent vessels. Furthermore, we demonstrate that the BMSCs with attenuated α6 integrin proliferate at a significantly lower rate relative to either control cells expressing non-targeting shRNA or wild type BMSCs; however, despite adding more cells to compensate for this deficit in proliferation, deficient sprouting persists. Collectively, our findings demonstrate that the α6 integrin subunit in BMSCs is important for their ability to stimulate vessel morphogenesis. This conclusion may have important implications in the optimization of cell-based strategies to promote angiogenesis. PMID:24056178

  13. N-glycosylation at the SynCAM (synaptic cell adhesion molecule) immunoglobulin interface modulates synaptic adhesion.

    PubMed

    Fogel, Adam I; Li, Yue; Giza, Joanna; Wang, Qing; Lam, Tukiet T; Modis, Yorgo; Biederer, Thomas

    2010-11-05

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.

  14. N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion*

    PubMed Central

    Fogel, Adam I.; Li, Yue; Giza, Joanna; Wang, Qing; Lam, TuKiet T.; Modis, Yorgo; Biederer, Thomas

    2010-01-01

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn60. Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn70/Asn104 flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn60 reduces adhesion, N-glycans at Asn70/Asn104 of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion. PMID:20739279

  15. Differential expression of extracellular matrix constituents and cell adhesion molecules between malignant pleural mesothelioma and mesothelial hyperplasia.

    PubMed

    Alì, Greta; Borrelli, Nicla; Riccardo, Giannini; Proietti, Agnese; Pelliccioni, Serena; Niccoli, Cristina; Boldrini, Laura; Lucchi, Marco; Mussi, Alfredo; Fontanini, Gabriella

    2013-11-01

    Malignant pleural mesothelioma (MPM) is a highly aggressive neoplasm associated with asbestos exposure. Currently, the molecular mechanisms that induce MPM development are still unknown. The purpose of this study was to identify new molecular biomarkers for mesothelial carcinogenesis. We analyzed a panel of 84 genes involved in extracellular matrix remodeling and cell adhesion by polymerase chain reaction (PCR) array in 15 samples of epithelioid mesothelioma and 10 samples of reactive mesothelial hyperplasia (MH; 3 of 25 samples were inadequate for mRNA analysis). To validate the differentially expressed genes identified by PCR array, we analyzed 27 more samples by immunohistochemistry, in addition to the 25 samples already studied. Twenty-five genes were differentially expressed in MPM and MH by PCR array. Of these we studied matrix metalloproteinase 7 (MMP7), MMP14, CD44, and integrin, alpha3 expression by immunohistochemistry in 26 epithelioid MPM and 26 MH samples from the entire series of 52 cases. We observed higher MMP14 and integrin, alpha3 expression in MPM samples compared with MH samples (p = 0.000002 and p = 0.000002, respectively). Conversely, CD44 expression was low in most (57.7%) mesothelioma samples but only in 11.5% of the MH samples (p = 0.0013). As regards MMP7, we did not observe differential expression between MH and MPM samples. We have extensively studied genes involved in cell adhesion and extracellular matrix remodeling in MPM and MH samples, gaining new insight into the pathophysiology of mesothelioma. Moreover, our data suggest that these factors could be potential biomarkers for MPM.

  16. Self-assembled monolayer of designed and synthesized triazinedithiolsilane molecule as interfacial adhesion enhancer for integrated circuit

    PubMed Central

    2011-01-01

    Self-assembled monolayer (SAM) with tunable surface chemistry and smooth surface provides an approach to adhesion improvement and suppressing deleterious chemical interactions. Here, we demonstrate the SAM comprising of designed and synthesized 6-(3-triethoxysilylpropyl)amino-1,3,5-triazine-2,4-dithiol molecule, which can enhance interfacial adhesion to inhibit copper diffusion used in device metallization. The formation of the triazinedithiolsilane SAM is confirmed by X-ray photoelectron spectroscopy. The adhesion strength between SAM-coated substrate and electroless deposition copper film was up to 13.8 MPa. The design strategy of triazinedithiolsilane molecule is expected to open up the possibilities for replacing traditional organosilane to be applied in microelectronic industry. PMID:21812994

  17. Osteoblast mineralization requires β1 integrin/ICAP-1–dependent fibronectin deposition

    PubMed Central

    Brunner, Molly; Millon-Frémillon, Angélique; Chevalier, Genevieve; Nakchbandi, Inaam A.; Mosher, Deane; Block, Marc R.

    2011-01-01

    The morphogenetic and differentiation events required for bone formation are orchestrated by diffusible and insoluble factors that are localized within the extracellular matrix. In mice, the deletion of ICAP-1, a modulator of β1 integrin activation, leads to severe defects in osteoblast proliferation, differentiation, and mineralization and to a delay in bone formation. Deposition of fibronectin and maturation of fibrillar adhesions, adhesive structures that accompany fibronectin deposition, are impaired upon ICAP-1 loss, as are type I collagen deposition and mineralization. Expression of β1 integrin with a mutated binding site for ICAP-1 recapitulates the ICAP-1–null phenotype. Follow-up experiments demonstrated that ICAP-1 negatively regulates kindlin-2 recruitment onto the β1 integrin cytoplasmic domain, whereas an excess of kindlin-2 binding has a deleterious effect on fibrillar adhesion formation. These results suggest that ICAP-1 works in concert with kindlin-2 to control the dynamics of β1 integrin–containing fibrillar adhesions and, thereby, regulates fibronectin deposition and osteoblast mineralization. PMID:21768292

  18. Platelet adhesion via glycoprotein IIb integrin is critical for atheroprogression and focal cerebral ischemia: an in vivo study in mice lacking glycoprotein IIb.

    PubMed

    Massberg, Steffen; Schürzinger, Katrin; Lorenz, Michael; Konrad, Ildiko; Schulz, Christian; Plesnila, Nikolaus; Kennerknecht, Elisabeth; Rudelius, Martina; Sauer, Susanne; Braun, Siegmund; Kremmer, Elisabeth; Emambokus, Nikla R; Frampton, Jon; Gawaz, Meinrad

    2005-08-23

    The platelet glycoprotein (GP) IIb/IIIa integrin binds to fibrinogen and thereby mediates platelet aggregation. Here, we addressed the role of GP IIb for platelet adhesion and determined the relevance of platelet GP IIb for the processes of atherosclerosis and cerebral ischemia-reperfusion (I/R) injury. GP IIb(-/-) mice were generated and bred with ApoE(-/-) animals to create GP IIb(-/-)ApoE(-/-) mice. Platelet adhesion to the mechanically injured or atherosclerotic vessel wall was monitored by in vivo video fluorescence microscopy. In the presence of GP IIb, vascular injury and early atherosclerosis induced platelet adhesion in the carotid artery (CA). In contrast, platelet adhesion was significantly reduced in the absence of GP IIb integrin (P<0.05). To address the contribution of platelet GP IIb to atheroprogression, we determined atherosclerotic lesion formation in the CA and aortic arch (AA) of GP IIb(+/+)ApoE(-/-) or GP IIb(-/-)ApoE(-/-) mice. Interestingly, the absence of GP IIb attenuated lesion formation in CA and AA, indicating that platelets, via GP IIb, contribute substantially to atherosclerosis. Next, we assessed the implication of GP IIb for cerebral I/R injury. We observed that after occlusion of the middle cerebral artery, the cerebral infarct size was drastically reduced in mice lacking GP IIb compared with wild-types. These findings show for the first time in vivo that GP IIb not only mediates platelet aggregation but also triggers platelet adhesion to exposed extracellular matrices and dysfunctional endothelial cells. In a process strictly involving GP IIb, platelets, which are among the first blood cells to arrive at the scene of endothelial dysfunction, contribute essentially to atherosclerosis and cerebral I/R injury.

  19. Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor.

    PubMed

    Orgovan, Norbert; Peter, Beatrix; Bősze, Szilvia; Ramsden, Jeremy J; Szabó, Bálint; Horvath, Robert

    2014-02-07

    A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (v(RGD)) of integrin ligand RGD-motifs. v(RGD) was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm(-2) (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels.

  20. Adhesion signaling promotes protease‑driven polyploidization of glioblastoma cells.

    PubMed

    Mercapide, Javier; Lorico, Aurelio

    2014-11-01

    An increase in ploidy (polyploidization) causes genomic instability in cancer. However, the determinants for the increased DNA content of cancer cells have not yet been fully elucidated. In the present study, we investigated whether adhesion induces polyploidization in human U87MG glioblastoma cells. For this purpose, we employed expression vectors that reported transcriptional activation by signaling networks implicated in cancer. Signaling activation induced by intercellular integrin binding elicited both extracellular signal‑regulated kinase (ERK) and Notch target transcription. Upon the prolonged activation of both ERK and Notch target transcription induced by integrin binding to adhesion protein, cell cultures accumulated polyploid cells, as determined by cell DNA content distribution analysis and the quantification of polynucleated cells. This linked the transcriptional activation induced by integrin adhesion to the increased frequency of polyploidization. Accordingly, the inhibition of signaling decreased the extent of polyploidization mediated by protease‑driven intracellular invasion. Therefore, the findings of this study indicate that integrin adhesion induces polyploidization through the stimulation of glioblastoma cell invasiveness.

  1. Suppression of Eosinophil Integrins Prevents Remodeling of Airway Smooth Muscle in Asthma

    PubMed Central

    Januskevicius, Andrius; Gosens, Reinoud; Sakalauskas, Raimundas; Vaitkiene, Simona; Janulaityte, Ieva; Halayko, Andrew J.; Hoppenot, Deimante; Malakauskas, Kestutis

    2017-01-01

    Background: Airway smooth muscle (ASM) remodeling is an important component of the structural changes to airways seen in asthma. Eosinophils are the prominent inflammatory cells in asthma, and there is some evidence that they contribute to ASM remodeling via released mediators and direct contact through integrin–ligand interactions. Eosinophils express several types of outer membrane integrin, which are responsible for cell–cell and cell–extracellular matrix interactions. In our previous study we demonstrated that asthmatic eosinophils show increased adhesion to ASM cells and it may be important factor contributing to ASM remodeling in asthma. According to these findings, in the present study we investigated the effects of suppression of eosinophil integrin on eosinophil-induced ASM remodeling in asthma. Materials and Methods: Individual combined cell cultures of immortalized human ASM cells and eosinophils from peripheral blood of 22 asthmatic patients and 17 healthy controls were prepared. Eosinophil adhesion was evaluated using eosinophil peroxidase activity assay. Genes expression levels in ASM cells and eosinophils were measured using quantitative real-time PCR. ASM cell proliferation was measured using alamarBlue® solution. Eosinophil integrins were blocked by incubating with Arg-Gly-Asp-Ser peptide. Results: Eosinophils from the asthma group showed increased outer membrane α4β1 and αMβ2 integrin expression, increased adhesion to ASM cells, and overexpression of TGF-β1 compared with eosinophils from the healthy control group. Blockade of eosinophil RGD-binding integrins by Arg-Gly-Asp-Ser peptide significantly reduced adhesion of eosinophils to ASM cells in both groups. Integrin-blocking decreased the effects of eosinophils on TGF-β1, WNT-5a, and extracellular matrix protein gene expression in ASM cells and ASM cell proliferation in both groups. These effects were more pronounced in the asthma group compared with the control group. Conclusion

  2. The role of α9β1 integrin and its ligands in the development of autoimmune diseases.

    PubMed

    Kon, Shigeyuki; Uede, Toshimitsu

    2018-03-01

    Adhesion of cells to extracellular matrix proteins through integrins expressed on the cell surface is important for cell adhesion/motility, survival, and differentiation. Recently, α9β1 integrin was reported to be important for the development of autoimmune diseases including rheumatoid arthritis, multiple sclerosis, and their murine models. In addition, ligands for α9β1 integrin, such as osteopontin and tenascin-C, are well established as key regulators of autoimmune diseases. Therefore, this review focused on the role of interactions between α9β1 integrin and its ligands in the development of autoimmune diseases.

  3. High αv Integrin Level of Cancer Cells Is Associated with Development of Brain Metastasis in Athymic Rats.

    PubMed

    Wu, Yingjen Jeffrey; Pagel, Michael A; Muldoon, Leslie L; Fu, Rongwei; Neuwelt, Edward A

    2017-08-01

    Brain metastases commonly occur in patients with malignant skin, lung and breast cancers resulting in high morbidity and poor prognosis. Integrins containing an αv subunit are cell adhesion proteins that contribute to cancer cell migration and cancer progression. We hypothesized that high expression of αv integrin cell adhesion protein promoted metastatic phenotypes in cancer cells. Cancer cells from different origins were used and studied regarding their metastatic ability and intetumumab, anti-αv integrin mAb, sensitivity using in vitro cell migration assay and in vivo brain metastases animal models. The number of brain metastases and the rate of occurrence were positively correlated with cancer cell αv integrin levels. High αv integrin-expressing cancer cells showed significantly faster cell migration rate in vitro than low αv integrin-expressing cells. Intetumumab significantly inhibited cancer cell migration in vitro regardless of αv integrin expression level. Overexpression of αv integrin in cancer cells with low αv integrin level accelerated cell migration in vitro and increased the occurrence of brain metastases in vivo. αv integrin promotes brain metastases in cancer cells and may mediate early steps in the metastatic cascade, such as adhesion to brain vasculature. Targeting αv integrin with intetumumab could provide clinical benefit in treating cancer patients who develop metastases. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. MC3T3-E1 cell adhesion to hydroxyapatite with adsorbed bone sialoprotein, bone osteopontin, and bovine serum albumin.

    PubMed

    Bernards, Matthew T; Qin, Chunlin; Jiang, Shaoyi

    2008-07-15

    Native bone tissue is composed of a complex matrix of collagen, non-collagenous proteins, and hydroxyapatite (HAP). Bone sialoprotein (BSP) and bone osteopontin (OPN) are members of the non-collagenous protein family termed the SIBLING (small integrin-binding ligand, N-linked glycoproteins) proteins, which are primarily found in mineralized tissues. Previously, OPN was shown to exhibit a preferential orientation for MC3T3-E1 cell adhesion when it was specifically bound to collagen, while the MC3T3-E1 cell adhesion was shown to be dependant on the conformational flexibility of BSP specifically bound to collagen. Additionally, OPN was shown to play a greater role than BSP for cell binding to collagen. In this work, the orientations and conformations of BSP and OPN specifically bound to HAP are probed under similar conditions. Radiolabeled adsorption isotherms were obtained for BSP and OPN on HAP formed from a simulated body fluid, and the results show that HAP has the capacity to bind significantly more BSP than OPN. An in vitro MC3T3-E1 cell adhesion assay was then performed to compare the cell binding ability of adsorbed BSP and OPN specifically bound to HAP. It was found that there is a preference for cell binding to HAP with adsorbed BSP as compared to OPN, but not to a statistically significant level. However, the maximum cell binding was observed on HAP substrates with adsorbed heat denatured bovine serum albumin (BSA). The influence of BSA on cell binding was shown to be concentration dependant and it is believed that the adsorbed BSA modulates the proliferation state of the bound cells.

  5. MC3T3-E1 Cell Adhesion to Hydroxyapatite with Adsorbed Bone Sialoprotein, Bone Osteopontin, and Bovine Serum Albumin

    PubMed Central

    Bernards, Matthew T.; Qin, Chunlin; Jiang, Shaoyi

    2008-01-01

    Native bone tissue is composed of a complex matrix of collagen, non-collagenous proteins, and hydroxyapatite (HAP). Bone sialoprotein (BSP) and bone osteopontin (OPN) are members of the non-collagenous protein family termed the SIBLING (small integrin-binding ligand, N-linked glycoproteins) proteins, which are primarily found in mineralized tissues. Previously, OPN was shown to exhibit a preferential orientation for MC3T3-E1 cell adhesion when it was specifically bound to collagen, while the MC3T3-E1 cell adhesion was shown to be dependant on the conformational flexibility of BSP specifically bound to collagen. Additionally, OPN was shown to play a greater role than BSP for cell binding to collagen. In this work, the orientations and conformations of BSP and OPN specifically bound to HAP are probed under similar conditions. Radiolabeled adsorption isotherms were obtained for BSP and OPN on HAP formed from a simulated body fluid, and the results show that HAP has the capacity to bind significantly more BSP than OPN. An in vitro MC3T3-E1 cell adhesion assay was then performed to compare the cell binding ability of adsorbed BSP and OPN specifically bound to HAP. It was found that there is a preference for cell binding to HAP with adsorbed BSP as compared to OPN, but not to a statistically significant level. However, the maximum cell binding was observed on HAP substrates with adsorbed heat denatured bovine serum albumin (BSA). The influence of BSA on cell binding was shown to be concentration dependant and it is believed that the adsorbed BSA modulates the proliferation state of the bound cells. PMID:18420388

  6. Inhibitory effects of clotrimazole on TNF-alpha-induced adhesion molecule expression and angiogenesis.

    PubMed

    Thapa, Dinesh; Lee, Jong Suk; Park, Min-A; Cho, Mi-Yeon; Park, Young-Joon; Choi, Han Gon; Jeong, Tae Cheon; Kim, Jung-Ae

    2009-04-01

    Cell adhesion molecules play a pivotal role in chronic inflammation and pathological angiogenesis. In the present study, we investigated the inhibitory effects of clotrimazole (CLT) on tumor necrosis factor (TNF)-alpha-induced changes in adhesion molecule expression. CLT dose-dependently inhibited monocyte chemoattractant protein-1 (MCP-1), intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) expressions in TNF-alpha-stimulated HT29 colonic epithelial cells. This inhibitory action of CLT correlated with a significant reduction in TNF-alpha-induced adhesion of monocytes to HT29 cells, which was comparable to the inhibitory effects of anti-ICAM-1 and VCAM-1 monoclonal antibodies on monocyte-epithelial adhesion. These inhibitory actions of CLT were, at least in part, attributable to the inhibition of redox sensitive NF-kappaB activation, as CLT inhibited TNF-alpha-induced ROS generation as well as NF-kappaB nuclear translocation and activation in HT29 cells. Furthermore, the inhibition of TNF-alpha-induced monocyte adhesion was also mimicked by the specific NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC). Inflammatory mediators including TNF-alpha have known to promote angiogenesis, which in turn further contributes to inflammatory pathology. Therefore, we additionally evaluated whether CLT modulates TNF-alpha-induced angiogenesis using in vivo chick chorioallantoic membrane (CAM) assay. The CAM assay showed that CLT dose-dependently attenuated TNF-alpha-induced angiogenesis, and the effect was correlated with decreased inflammation of the CAM tissue. In conclusion, our results suggest that CLT can inhibit TNF-alpha-triggered expression of adhesion molecules, ICAM-1 and VCAM-1, and angiogenesis during inflammation.

  7. Simultaneous Targeting of RGD-Integrins and Dual Murine Double Minute Proteins in Glioblastoma Multiforme.

    PubMed

    Merlino, Francesco; Daniele, Simona; La Pietra, Valeria; Di Maro, Salvatore; Di Leva, Francesco Saverio; Brancaccio, Diego; Tomassi, Stefano; Giuntini, Stefano; Cerofolini, Linda; Fragai, Marco; Luchinat, Claudio; Reichart, Florian; Cavallini, Chiara; Costa, Barbara; Piccarducci, Rebecca; Taliani, Sabrina; Da Settimo, Federico; Martini, Claudia; Kessler, Horst; Novellino, Ettore; Marinelli, Luciana

    2018-05-18

    In the fight against Glioblastoma Multiforme, recent literature data have highlighted that integrin α5β1 and p53 are part of convergent pathways in the control of glioma apoptosis. This observation prompted us to seek a molecule able to simultaneously modulate both target families. Analyzing the results of a previous virtual screening against murine double minute 2 protein (MDM2), we envisaged that Arg-Gly-Asp (RGD)-mimetic molecules could be inhibitors of MDM2/4. Herein we present the discovery of compound 7, which inhibits both MDM2/4 and α5β1/αvβ3 integrins. A lead optimization campaign was carried out on 7 with aim to preserve the activities on integrins while improving those on MDM proteins. Compound 9 turned out to be a potent MDM2/4, and α5β1/αvβ3 blocker. In p53-wild type glioma cells, 9 arrested cell cycle and proliferation and strongly reduced cell invasiveness, emerging as the first molecule of a novel class of integrin/MDM inhibitors, which might be especially useful in subpopulations of patients with glioblastoma expressing a functional p53 concomitantly with a high level of α5β1 integrin.

  8. Characterization of a conformationally sensitive murine monoclonal antibody directed to the metal ion-dependent adhesion site face of integrin CD11b.

    PubMed

    Li, Rui; Haruta, Ikuko; Rieu, Philippe; Sugimori, Takashi; Xiong, Jian-Ping; Arnaout, M Amin

    2002-02-01

    Integrin binding to physiologic ligands requires divalent cations and an inside-out-driven switch of the integrin to a high-affinity state. Divalent cations at the metal ion-dependent adhesion site (MIDAS) face of the alpha subunit-derived A domain provide a direct bridge between ligands and the integrin, and it has been proposed that activation dependency is caused by reorientation of the surrounding residues relative to the metal ion, forming an optimal binding interface. To gain more insight into the functional significance of the protein movements on the MIDAS face, we raised and characterized a murine mAb 107 directed against the MIDAS face of the A domain from integrin CD11b. We find that mAb 107 behaves as a ligand mimic. It binds in a divalent-cation-dependent manner to solvent-exposed residues on the MIDAS face of CD11b, blocks interaction of 11bA or the holoreceptor with ligands, and inhibits spreading and phagocytosis by human neutrophils. However, in contrast to physiologic ligands, mAb 107 preferentially binds to the inactive low-affinity form of the integrin, suggesting that its antagonistic effects are exerted in part by stabilizing the receptor in the low-affinity state. These data support a functional relevance of the protein movements on the MIDAS face and suggest that stabilizing the A domain in the low-affinity state may have therapeutic benefit.

  9. Smurf1 inhibits integrin activation by controlling Kindlin-2 ubiquitination and degradation

    PubMed Central

    Wei, Xiaofan; Wang, Xiang; Zhan, Jun; Chen, Yuhan; Fang, Weigang; Zhang, Lingqiang

    2017-01-01

    Integrin activation is an indispensable step for various integrin-mediated biological functions. Kindlin-2 is known to coactivate integrins with Talin; however, molecules that restrict integrin activation are elusive. Here, we demonstrate that the E3 ubiquitin ligase Smurf1 controls the amount of Kindlin-2 protein in cells and hinders integrin activation. Smurf1 interacts with and promotes Kindlin-2 ubiquitination and degradation. Smurf1 selectively mediates degradation of Kindlin-2 but not Talin, leading to inhibition of αIIbβ3 integrin activation in Chinese hamster ovary cells and β1 integrin activation in fibroblasts. Enhanced activation of β1 integrin was found in Smurf1-knockout mouse embryonic fibroblasts, which correlates with an increase in Kindlin-2 protein levels. Similarly, a reciprocal relationship between Smurf1 and Kindlin-2 protein levels is found in tissues from colon cancer patients, suggesting that Smurf1 mediates Kindlin-2 degradation in vivo. Collectively, we demonstrate that Smurf1 acts as a brake for integrin activation by controlling Kindlin-2 protein levels, a new mechanism that permits precise modulation of integrin-mediated cellular functions. PMID:28408404

  10. Dissecting the role of matrix metalloproteinases (MMP) and integrin alpha(v)beta3 in angiogenesis in vitro: absence of hemopexin C domain bioactivity, but membrane-Type 1-MMP and alpha(v)beta3 are critical.

    PubMed

    Nisato, Riccardo E; Hosseini, Ghamartaj; Sirrenberg, Christian; Butler, Georgina S; Crabbe, Thomas; Docherty, Andrew J P; Wiesner, Matthias; Murphy, Gillian; Overall, Christopher M; Goodman, Simon L; Pepper, Michael S

    2005-10-15

    Matrix metalloproteinase (MMP)-2 and its hemopexin C domain autolytic fragment (also called PEX) have been proposed to be crucial for angiogenesis. Here, we have investigated the dependency of in vitro angiogenesis on MMP-mediated extracellular proteolysis and integrin alpha(v)beta3-mediated cell adhesion in a three-dimensional collagen I model. The hydroxamate-based synthetic inhibitors BB94, CT1399, and CT1847 inhibited endothelial cell invasion, as did neutralizing anti-membrane-type 1-MMP (MT1-MMP) antibodies and tissue inhibitor of MMP (TIMP)-2 and TIMP-3 but not TIMP-1. This confirmed the pivotal importance of MT1-MMP over other MMPs in this model. Invasion was also inhibited by a nonpeptidic antagonist of integrin alpha(v)beta3, EMD 361276. Although PEX strongly inhibited pro-MMP-2 activation, when contaminating lipopolysaccharide was neutralized, PEX neither affected angiogenesis nor bound integrin alpha(v)beta(3). Moreover, no specific binding of pro-MMP-2 to integrin alpha(v)beta3 was found, whereas only one out of four independently prepared enzymatically active MMP-2 preparations could bind integrin alpha(v)beta3 , and this in a PEX-independent manner. Likewise, integrin alpha(v)beta3 -expressing cells did not bind MMP-2-coated surfaces. Hence, these findings show that endothelial cell invasion of collagen I gels is MT1-MMP and alpha(v)beta3 - dependent but MMP-2 independent and does not support a role for PEX in alpha(v)beta3 integrin binding or in modulating angiogenesis in this system.

  11. Blocking neutrophil integrin activation prevents ischemia-reperfusion injury.

    PubMed

    Yago, Tadayuki; Petrich, Brian G; Zhang, Nan; Liu, Zhenghui; Shao, Bojing; Ginsberg, Mark H; McEver, Rodger P

    2015-07-27

    Neutrophil recruitment, mediated by β2 integrins, combats pyogenic infections but also plays a key role in ischemia-reperfusion injury and other inflammatory disorders. Talin induces allosteric rearrangements in integrins that increase affinity for ligands (activation). Talin also links integrins to actin and other proteins that enable formation of adhesions. Structural studies have identified a talin1 mutant (L325R) that perturbs activation without impairing talin's capacity to link integrins to actin and other proteins. Here, we found that mice engineered to express only talin1(L325R) in myeloid cells were protected from renal ischemia-reperfusion injury. Dissection of neutrophil function in vitro and in vivo revealed that talin1(L325R) neutrophils had markedly impaired chemokine-induced, β2 integrin-mediated arrest, spreading, and migration. Surprisingly, talin1(L325R) neutrophils exhibited normal selectin-induced, β2 integrin-mediated slow rolling, in sharp contrast to the defective slow rolling of neutrophils lacking talin1 or expressing a talin1 mutant (W359A) that blocks talin interaction with integrins. These studies reveal the importance of talin-mediated activation of integrins for renal ischemia-reperfusion injury. They further show that neutrophil arrest requires talin recruitment to and activation of integrins. However, although neutrophil slow rolling requires talin recruitment to integrins, talin-mediated integrin activation is dispensable. © 2015 Yago et al.

  12. Activation of cannabinoid CB2 receptor ameliorates atherosclerosis associated with suppression of adhesion molecules.

    PubMed

    Zhao, Yan; Yuan, Zuyi; Liu, Yan; Xue, Jiahong; Tian, Yuling; Liu, Weimin; Zhang, Weiping; Shen, Yan; Xu, Wei; Liang, Xiao; Chen, Tao

    2010-03-01

    Adhesion molecules have been implicated in the development and progression of atherosclerosis. Cannabinoids have been reported to modulate the migration and adhesion molecules expression of various cell types. Here we examined the effects of WIN55212-2, a cannabinoid receptor 1 (CB1-R)/cannabinoid receptor 2 (CB2-R) agonist on the development of atherosclerotic lesions in apolipoprotein E-deficient (ApoE-/-) mice, which are vulnerable because of their high plasma cholesterol and triacylglycerol levels, focusing on the expression of endothelial adhesion molecules. In the aorta of ApoE-/- mice, WIN55212-2 significantly reduced aortic root plaque area. The mechanism for this seemed to be reduced infiltration of macrophages into the atherosclerotic plaque which was also associated with reduced expression of vascular cellular adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and P-selectin in the aorta. In vitro studies revealed reduced cell adhesion of a monocytic cell line (U937) to human umbilical vein endothelial cells after incubation with WIN55212-2. The reduction in macrophage adhesion also correlated with significant reductions in the expression of VCAM-1, ICAM-1, and P-selectin, indicating that reduced infiltration of macrophages in atherosclerotic plaques may occur as a result of the direct effect of WIN55212-2 on adhesion molecules in macrophages and endothelial cells. In conclusion, WIN55212-2 seems to have direct anti-atherosclerotic effects in an animal model of atherosclerosis. These effects were at least partly due to effects on the expression of VCAM-1, ICAM-1, and P-selectin, which led to reduced macrophage adhesion and infiltration. Furthermore, the protective effects completely blocked by the highly selective CB2 receptor antagonist AM630 suggest that these beneficial effects of WIN55212-2 may be mediated through the CB2 receptor.

  13. Assessing activation of hepatic stellate cells by (99m)Tc-3PRGD2 scintigraphy targeting integrin αvβ3: a feasibility study.

    PubMed

    Zhang, Xin; Xin, Jun; Shi, Yu; Xu, Weina; Yu, Shupeng; Yang, Zhiguang; Liu, Changping; Cao, Li; Guo, Qiyong

    2015-03-01

    Hepatic stellate cell (HSC) activation, which is accompanied by increased expression of integrin αvβ3, is an important factor in liver fibrogenesis. Molecular imaging targeting the integrin αvβ3 could provide a non-invasive method for evaluating the expression and the function of the integrin αvβ3 on the activated HSCs (aHSCs) in the injured liver, and then provide important prognostic information. (99m)Tc-3PRGD2 is such a radiotracer specific for integrin αvβ3. In this study, we aimed to compare the differences in liver uptake and retention of the (99m)Tc-3PRGD2 between normal liver and injured liver to evaluate the feasibility of (99m)Tc-3PRGD2 scintigraphy for this purpose. We used planar scintigraphy to assess changes in integrin αvβ3 binding of intravenously-administered (99m)Tc-3PRGD2 in the livers of rats with thioacetamide (TAA)-induced liver fibrosis compared with the controls. We co-injected cold c(RGDyK) with (99m)Tc-3PRGD2 to assess the specific binding of the radiotracer. We performed Sirius red staining to assess liver fibrosis, immunofluorescent colocalization to identify the location of integrin αvβ3 expressed in the fibrotic liver, and we measured protein and messenger RNA expression of integrin αvβ3 and alpha smooth muscle actin (α-SMA) in the control and fibrotic livers. The fibrotic livers showed enhanced (99m)Tc-3PRGD2 uptake and retention. The radiotracer was demonstrated to bind specifically with the integrin αvβ3 mainly expressed on the aHSCs. The liver-to-heart ratio at 30 min post-injection was higher in the fibrotic livers than in the control livers (TAA, 1.98±0.08 vs. control, 1.50±0.12, p<0.01). The liver t1/2 was longer than in the controls (TAA, 27.07±10.69 min vs. control, 12.67±4.10 min, p<0.01). The difference of heart t1/2 between the two groups was not statistically significant (TAA, 3.13±0.63 min vs. control, 3.41±0.77 min, p=0.94). (99m)Tc-3PRGD2 molecular imaging can provide a non-invasive method for

  14. Lipid raft regulates the initial spreading of melanoma A375 cells by modulating β1 integrin clustering.

    PubMed

    Wang, Ruifei; Bi, Jiajia; Ampah, Khamal Kwesi; Zhang, Chunmei; Li, Ziyi; Jiao, Yang; Wang, Xiaoru; Ba, Xueqing; Zeng, Xianlu

    2013-08-01

    Cell adhesion and spreading require integrins-mediated cell-extracellular matrix interaction. Integrins function through binding to extracellular matrix and subsequent clustering to initiate focal adhesion formation and actin cytoskeleton rearrangement. Lipid raft, a liquid ordered plasma membrane microdomain, has been reported to play major roles in membrane motility by regulating cell surface receptor function. Here, we identified that lipid raft integrity was required for β1 integrin-mediated initial spreading of melanoma A375 cells on fibronectin. We found that lipid raft disruption with methyl-β-cyclodextrin led to the inability of focal adhesion formation and actin cytoskeleton rearrangement by preventing β1 integrin clustering. Furthermore, we explored the possible mechanism by which lipid raft regulates β1 integrin clustering and demonstrated that intact lipid raft could recruit and modify some adaptor proteins, such as talin, α-actinin, vinculin, paxillin and FAK. Lipid raft could regulate the location of these proteins in lipid raft fractions and facilitate their binding to β1 integrin, which may be crucial for β1 integrin clustering. We also showed that lipid raft disruption impaired A375 cell migration in both transwell and wound healing models. Together, these findings provide a new insight for the relationship between lipid raft and the regulation of integrins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Cell-adhesion molecules in memory formation.

    PubMed

    Schmidt, R

    1995-01-23

    After learning events the CNS of higher organisms selects, which acquired informations are permanently stored as a memory trace. This period of memory consolidation is susceptible to interference by biochemical inhibitors of transcription and translation. Ependymin is a specific CNS glycoprotein functionally involved in memory consolidation in goldfish: after active shock-avoidance conditioning ependymin mRNA is rapidly induced in meningeal fibroblasts followed by enhanced synthesis and secretion of several closely related forms of the protein. Intracranial injections of anti-ependymin antisera or antisense oligodeoxynucleotides interfere specifically with memory consolidation, indicating that only de novo synthesized ependymin molecules are involved. Ependymin is capable of directing the growth of central axons in vitro and participates in neuronal regeneration in situ, presumably by its HNK-1 cell-adhesion epitope. Experiments reviewed in this article suggest a model that involves two regulation mechanisms for the function of ependymin in behavioural plasticity: while hormones appear to determine, how much of this cell adhesion molecule is synthesized after learning, local changes of metal cation concentrations in the micro-environment of activated neurons may polymerize ependymin at those synapses, that have to be consolidated to improve their efficacy for future use.

  16. Synergistic effect of two cell recognition systems: glycosphingolipid-glycosphingolipid interaction and integrin receptor interaction with pericellular matrix protein.

    PubMed

    Kojima, N; Hakomori, S

    1991-12-01

    GM3-expressing cells adhere, spread and migrate on plastic plates coated with Gg3, LacCer and Gb4, but not with other glycosphingolipids (GSLs). Thus, cell adhesion, spreading and migration through GSL-GSL interaction occur in an analogous fashion to the interaction of cells with adhesive matrix proteins [AP, e.g. fibronectin (FN), laminin (LN)] through their integrin receptors. In this study, the adhesion of two GM3-expressing cell lines (B16 melanoma and HEL299 fibroblast) on plastic plates co-coated with GSL plus AP is compared with adhesion on plates coated with GSL (Gg3 or LacCer) alone, or coated with AP alone. Results show that: (i) cell adhesion on GSL-coated plates takes place earlier in the incubation period than that on AP-coated plates; (ii) cell adhesion, as well as spreading, was greatly enhanced (in terms of strength and rapidity) on plates co-coated with GSL plus AP; (iii) repulsion (negative adhesion) of cells was observed on plates co-coated with AP plus N-acetyl-GM3 (NAcGM3) and was presumably based on repulsive NAcGM3-NAcGM3 interaction; (iv) GM3-dependent cell adhesion on GSL-coated plates, as well as synergistic promotion of cell adhesion (based on the GSL-GSL and AP-integrin systems), was suppressed by incubation of cells with anti-GM3 monoclonal antibody DH2 or sialidase. Synergistic adhesion of cells on GSL/AP co-coated plates was less inhibited by incubation with peptide sequences RGDS or YIGSR than was adhesion on plates coated with AP alone.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Adhesion of osteoblasts to a nanorough titanium implant surface

    PubMed Central

    Gongadze, Ekaterina; Kabaso, Doron; Bauer, Sebastian; Slivnik, Tomaž; Schmuki, Patrik; van Rienen, Ursula; Iglič, Aleš

    2011-01-01

    This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction between fibronectin molecules and the titanium surface is expected to be more efficient for a high surface charge density, resulting in facilitated integrin mediated osteoblast adhesion. We suggest that osteoblasts are most strongly bound along the sharp convex edges or spikes of nanorough titanium surfaces where the magnitude of the negative surface charge density is the highest. It is therefore plausible that nanorough regions of titanium surfaces with sharp edges and spikes promote the adhesion of osteoblasts. PMID:21931478

  18. Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepithelial migration

    PubMed Central

    Sumagin, Ronen; Parkos, Charles A

    2014-01-01

    Epithelial adhesion molecules play essential roles in regulating cellular function and maintaining mucosal tissue homeostasis. Some form epithelial junctional complexes to provide structural support for epithelial monolayers and act as a selectively permeable barrier separating luminal contents from the surrounding tissue. Others serve as docking structures for invading viruses and bacteria, while also regulating the immune response. They can either obstruct or serve as footholds for the immune cells recruited to mucosal surfaces. Currently, it is well appreciated that adhesion molecules collectively serve as environmental cue sensors and trigger signaling events to regulate epithelial function through their association with the cell cytoskeleton and various intracellular adapter proteins. Immune cells, particularly neutrophils (PMN) during transepithelial migration (TEM), can modulate adhesion molecule expression, conformation, and distribution, significantly impacting epithelial function and tissue homeostasis. This review discusses the roles of key intestinal epithelial adhesion molecules in regulating PMN trafficking and outlines the potential consequences on epithelial function. PMID:25838976

  19. The coffee diterpene kahweol inhibits tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in human endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil

    2006-12-15

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppressed the TNF{alpha}-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNF{alpha}-induced JAK2-PI3K/Akt-NF-{kappa}B activation pathway in these cells. Overall, kahweol hasmore » anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells.« less

  20. The EphA8 Receptor Regulates Integrin Activity through p110γ Phosphatidylinositol-3 Kinase in a Tyrosine Kinase Activity-Independent Manner

    PubMed Central

    Gu, Changkyu; Park, Soochul

    2001-01-01

    Recent genetic studies suggest that ephrins may function in a kinase-independent Eph receptor pathway. Here we report that expression of EphA8 in either NIH 3T3 or HEK293 cells enhanced cell adhesion to fibronectin via α5β1- or β3 integrins. Interestingly, a kinase-inactive EphA8 mutant also markedly promoted cell attachment to fibronectin in these cell lines. Using a panel of EphA8 point mutants, we have demonstrated that EphA8 kinase activity does not correlate with its ability to promote cell attachment to fibronectin. Analysis using EphA8 extracellular and intracellular domain mutants has revealed that enhanced cell adhesion is dependent on ephrin A binding to the extracellular domain and the juxtamembrane segment of the cytoplasmic domain of the receptor. EphA8-promoted adhesion was efficiently inhibited by wortmannin, a phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor. Additionally, we found that EphA8 had associated PI 3-kinase activity and that the p110γ isoform of PI 3-kinase is associated with EphA8. In vitro binding experiments revealed that the EphA8 juxtamembrane segment was sufficient for the formation of a stable complex with p110γ. Similar results were obtained in assay using cells stripped of endogenous ephrin A ligands by treatment with preclustered ephrin A5-Fc proteins. In addition, a membrane-targeted lipid kinase-inactive p110γ mutant was demonstrated to stably associate with EphA8 and suppress EphA8-promoted cell adhesion to fibronectin. Taken together, these results suggest the presence of a novel mechanism by which the EphA8 receptor localizes p110γ PI 3-kinase to the plasma membrane in a tyrosine kinase-independent fashion, thereby allowing access to lipid substrates to enable the signals required for integrin-mediated cell adhesion. PMID:11416136

  1. Adhesion of MC3T3-E1 cells to bone sialoprotein and bone osteopontin specifically bound to collagen I.

    PubMed

    Bernards, Matthew T; Qin, Chunlin; Ratner, Buddy D; Jiang, Shaoyi

    2008-09-01

    Bone sialoprotein (BSP) and bone osteopontin (OPN) are members of the SIBLING (small integrin-binding ligand, N-linked glycoproteins) family of proteins commonly found in mineralized tissues. Previously, OPN was shown to exhibit a preferential orientation for MC3T3-E1 cell adhesion when it was specifically bound to collagen. In this work, the orientation of BSP under similar circumstances is examined and compared with OPN. Radiolabeled adsorption isotherms were obtained for BSP bound to both tissue culture polystyrene (TCPS) and collagen-coated TCPS. The results show that collagen has the capacity to bind almost twice as much OPN under identical conditions. An in vitro MC3T3-E1 cell adhesion assay was then performed to compare the cell binding ability of BSP on either TCPS or collagen-coated TCPS with identical amounts of adsorbed protein. It was found that there is no significant difference in the cell binding ability of BSP on either of the substrates. For cell binding studies on collagen-coated TCPS, it was shown that there are a greater number of cells bound to substrates with adsorbed OPN as compared with BSP. The preferable orientation of OPN for cell binding coupled with the higher binding capability of collagen for OPN indicates that OPN is more important than BSP for osteoblast adhesion to the collagen matrix. In addition, a cell inhibition assay was performed to show that all of the cell binding that occurred throughout these studies was dependent upon integrin interactions with the RGD cell binding moiety.

  2. Adhesion of MC3T3-E1 cells to bone sialoprotein and bone osteopontin specifically bound to collagen I

    PubMed Central

    Bernards, Matthew T.; Qin, Chunlin; Ratner, Buddy D.; Jiang, Shaoyi

    2009-01-01

    Bone sialoprotein (BSP) and bone osteopontin (OPN) are members of the SIBLING (small integrin-binding ligand, N-linked glycoproteins) family of proteins commonly found in mineralized tissues. Previously, OPN was shown to exhibit a preferential orientation for MC3T3-E1 cell adhesion when it was specifically bound to collagen. In this work, the orientation of BSP under similar circumstances is examined and compared with OPN. Radiolabeled adsorption isotherms were obtained for BSP bound to both tissue culture polystyrene (TCPS) and collagen-coated TCPS. The results show that collagen has the capacity to bind almost twice as much OPN under identical conditions. An in vitro MC3T3-E1 cell adhesion assay was then performed to compare the cell binding ability of BSP on either TCPS or collagen-coated TCPS with identical amounts of adsorbed protein. It was found that there is no significant difference in the cell binding ability of BSP on either of the substrates. For cell binding studies on collagen-coated TCPS, it was shown that there are a greater number of cells bound to substrates with adsorbed OPN as compared with BSP. The preferable orientation of OPN for cell binding coupled with the higher binding capability of collagen for OPN indicates that OPN is more important than BSP for osteoblast adhesion to the collagen matrix. In addition, a cell inhibition assay was performed to show that all of the cell binding that occurred throughout these studies was dependent upon integrin interactions with the RGD cell binding moiety. PMID:18041732

  3. Intercellular adhesion molecule-1 augments myoblast adhesion and fusion through homophilic trans-interactions.

    PubMed

    Pizza, Francis X; Martin, Ryan A; Springer, Evan M; Leffler, Maxwell S; Woelmer, Bryce R; Recker, Isaac J; Leaman, Douglas W

    2017-07-11

    The overall objective of the study was to identify mechanisms through which intercellular adhesion molecule-1 (ICAM-1) augments the adhesive and fusogenic properties of myogenic cells. Hypotheses were tested using cultured myoblasts and fibroblasts, which do not constitutively express ICAM-1, and myoblasts and fibroblasts forced to express full length ICAM-1 or a truncated form lacking the cytoplasmic domain of ICAM-1. ICAM-1 mediated myoblast adhesion and fusion were quantified using novel assays and cell mixing experiments. We report that ICAM-1 augments myoblast adhesion to myoblasts and myotubes through homophilic trans-interactions. Such adhesive interactions enhanced levels of active Rac in adherent and fusing myoblasts, as well as triggered lamellipodia, spreading, and fusion of myoblasts through the signaling function of the cytoplasmic domain of ICAM-1. Rac inhibition negated ICAM-1 mediated lamellipodia, spreading, and fusion of myoblasts. The fusogenic property of ICAM-1-ICAM-1 interactions was restricted to myogenic cells, as forced expression of ICAM-1 by fibroblasts did not augment their fusion to ICAM-1+ myoblasts/myotubes. We conclude that ICAM-1 augments myoblast adhesion and fusion through its ability to self-associate and initiate Rac-mediated remodeling of the actin cytoskeleton.

  4. Leader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin β1 and PI3K

    PubMed Central

    Yamaguchi, Naoya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi

    2015-01-01

    Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating collective with a micromanipulator. This then caused disruption of the cohesive migration of cells that followed in movement, called “follower” cells, which showed the importance of leader cells. Next, we observed localization of active Rac, integrin β1, and PI3K. These molecules were clearly localized in the leading edge of leader cells, but not in follower cells. Live cell imaging using active Rac and active PI3K indicators was performed to elucidate the relationship between Rac, integrin β1, and PI3K. Finally, we demonstrated that the inhibition of these molecules resulted in the disruption of collective migration. Our findings not only demonstrated the significance of a leader cell in collective cell migration, but also showed that Rac, integrin β1, and PI3K are upregulated in leader cells and drive collective cell migration. PMID:25563751

  5. Identification of stepped changes of binding affinity during interactions between the disintegrin rhodostomin and integrin αIIbβ3 in living cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Hsieh, Chia-Fen; Chang, Bo-Jui; Pai, Chyi-Huey; Chen, Hsuan-Yi; Chi, Sien; Hsu, Long; Tsai, Jin-Wu; Lin, Chi-Hung

    2004-10-01

    Integrin receptors serve as both mechanical links and signal transduction mediators between the cell and its environment. Experimental evidence demonstrates that conformational changes and lateral clustering of the integrin proteins may affect their binding to ligands and regulate downstream cellular responses; however, experimental links between the structural and functional correlations of the ligand-receptor interactions are not yet elucidated. In the present report, we utilized optical tweezers to measure the dynamic binding between the snake venom rhodostomin, coated on a microparticle and functioned as a ligand, and the membrane receptor integrin alpha(IIb)beta(3) expressed on a Chinese Hamster Ovary (CHO) cell. A progressive increase of total binding affinity was found between the bead and CHO cell in the first 300 sec following optical tweezers-guided contact. Further analysis of the cumulative data revealed the presence of "unit binding force" presumably exerted by a single rhodostomin-integrin pair. Interestingly, two such units were found. Among the measurements of less total binding forces, presumably taken at the early stage of ligand-receptor interactions, a unit of 4.15 pN per molecule pair was derived. This unit force dropped to 2.54 pN per molecule pair toward the later stage of interactions when the total binding forces were relatively large. This stepped change of single molecule pair binding affinity was not found when mutant rhodostomin proteins were used as ligands (a single unit of 1.81 pN per pair was found). These results were interpreted along with the current knowledge about the conformational changes of integrins during the "molecule activation" process.

  6. Transient adhesion in a non-fully detached contact.

    PubMed

    Liu, Zheyu; Lu, Hongyu; Zheng, Yelong; Tao, Dashuai; Meng, Yonggang; Tian, Yu

    2018-04-18

    Continuous approaching and detaching displacement usually occurs in an adhesion test. Here, we found a transient adhesion force at the end of a non-fully detached contact. This force occurred when the nominal detaching displacement was less than the traditional quasi-static theory predicted zero force point. The transient adhesion force was ascribed to interfacial adhesion hysteresis, which was caused by the cracking process of the contact and the deformation competition between the sphere and supporting spring. Results indicated that the testing of adhesion can be significantly affected by different combinations of stiffnesses of the contact objects and the supporting spring cantilever. This combination should be carefully designed in an adhesion test. All these results enabled increased understanding of the nature of adhesion and can guide the design of adhesive actuators.

  7. Physical confinement alters tumor cell adhesion and migration phenotypes

    PubMed Central

    Balzer, Eric M.; Tong, Ziqiu; Paul, Colin D.; Hung, Wei-Chien; Stroka, Kimberly M.; Boggs, Amanda E.; Martin, Stuart S.; Konstantopoulos, Konstantinos

    2012-01-01

    Cell migration on planar surfaces is driven by cycles of actin protrusion, integrin-mediated adhesion, and myosin-mediated contraction; however, this mechanism may not accurately describe movement in 3-dimensional (3D) space. By subjecting cells to restrictive 3D environments, we demonstrate that physical confinement constitutes a biophysical stimulus that alters cell morphology and suppresses mesenchymal motility in human breast carcinoma (MDA-MB-231). Dorsoventral polarity, stress fibers, and focal adhesions are markedly attenuated by confinement. Inhibitors of myosin, Rho/ROCK, or β1-integrins do not impair migration through 3-μm-wide channels (confinement), even though these treatments repress motility in 50-μm-wide channels (unconfined migration) by ≥50%. Strikingly, confined migration persists even when F-actin is disrupted, but depends largely on microtubule (MT) dynamics. Interfering with MT polymerization/depolymerization causes confined cells to undergo frequent directional changes, thereby reducing the average net displacement by ≥80% relative to vehicle controls. Live-cell EB1-GFP imaging reveals that confinement redirects MT polymerization toward the leading edge, where MTs continuously impact during advancement of the cell front. These results demonstrate that physical confinement can induce cytoskeletal alterations that reduce the dependence of migrating cells on adhesion-contraction force coupling. This mechanism may explain why integrins can exhibit reduced or altered function during migration in 3D environments.—Balzer, E. M., Tong, Z., Paul, C. D., Hung, W.-C., Stroka, K. M., Boggs, A. E., Martin, S. S., Konstantopoulos, K. Physical confinement alters tumor cell adhesion and migration phenotypes. PMID:22707566

  8. Relating conformation to function in integrin α5β1.

    PubMed

    Su, Yang; Xia, Wei; Li, Jing; Walz, Thomas; Humphries, Martin J; Vestweber, Dietmar; Cabañas, Carlos; Lu, Chafen; Springer, Timothy A

    2016-07-05

    Whether β1 integrin ectodomains visit conformational states similarly to β2 and β3 integrins has not been characterized. Furthermore, despite a wealth of activating and inhibitory antibodies to β1 integrins, the conformational states that these antibodies stabilize, and the relation of these conformations to function, remain incompletely characterized. Using negative-stain electron microscopy, we show that the integrin α5β1 ectodomain adopts extended-closed and extended-open conformations as well as a bent conformation. Antibodies SNAKA51, 8E3, N29, and 9EG7 bind to different domains in the α5 or β1 legs, activate, and stabilize extended ectodomain conformations. Antibodies 12G10 and HUTS-4 bind to the β1 βI domain and hybrid domains, respectively, activate, and stabilize the open headpiece conformation. Antibody TS2/16 binds a similar epitope as 12G10, activates, and appears to stabilize an open βI domain conformation without requiring extension or hybrid domain swing-out. mAb13 and SG/19 bind to the βI domain and βI-hybrid domain interface, respectively, inhibit, and stabilize the closed conformation of the headpiece. The effects of the antibodies on cell adhesion to fibronectin substrates suggest that the extended-open conformation of α5β1 is adhesive and that the extended-closed and bent-closed conformations are nonadhesive. The functional effects and binding sites of antibodies and fibronectin were consistent with their ability in binding to α5β1 on cell surfaces to cross-enhance or inhibit one another by competitive or noncompetitive (allosteric) mechanisms.

  9. Glucosamine Treatment-mediated O-GlcNAc Modification of Paxillin Depends on Adhesion State of Rat Insulinoma INS-1 Cells*

    PubMed Central

    Kwak, Tae Kyoung; Kim, Hyeonjung; Jung, Oisun; Lee, Sin-Ae; Kang, Minkyung; Kim, Hyun Jeong; Park, Ji-Min; Kim, Sung-Hoon; Lee, Jung Weon

    2010-01-01

    Protein-protein interactions and/or signaling activities at focal adhesions, where integrin-mediated adhesion to extracellular matrix occurs, are critical for the regulation of adhesion-dependent cellular functions. Although the phosphorylation and activities of focal adhesion molecules have been intensively studied, the effects of the O-GlcNAc modification of their Ser/Thr residues on cellular functions have been largely unexplored. We investigated the effects of O-GlcNAc modification on actin reorganization and morphology of rat insulinoma INS-1 cells after glucosamine (GlcN) treatment. We found that paxillin, a key adaptor molecule in focal adhesions, could be modified by O-GlcNAc in INS-1 cells treated with GlcN and in pancreatic islets from mice treated with streptozotocin. Ser-84/85 in human paxillin appeared to be modified by O-GlcNAc, which was inversely correlated to Ser-85 phosphorylation (Ser-83 in rat paxillin). Integrin-mediated adhesion signaling inhibited the GlcN treatment-enhanced O-GlcNAc modification of paxillin. Adherent INS-1 cells treated with GlcN showed restricted protrusions, whereas untreated cells showed active protrusions for multiple-elongated morphologies. Upon GlcN treatment, expression of a triple mutation (S83A/S84A/S85A) resulted in no further restriction of protrusions. Together these observations suggest that murine pancreatic β cells may have restricted actin organization upon GlcN treatment by virtue of the O-GlcNAc modification of paxillin, which can be antagonized by a persistent cell adhesion process. PMID:20829364

  10. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy.

    PubMed

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis.

  11. Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability

    NASA Astrophysics Data System (ADS)

    Li, Shuoran; Nih, Lina R.; Bachman, Haylee; Fei, Peng; Li, Yilei; Nam, Eunwoo; Dimatteo, Robert; Carmichael, S. Thomas; Barker, Thomas H.; Segura, Tatiana

    2017-09-01

    Integrin binding to bioengineered hydrogel scaffolds is essential for tissue regrowth and regeneration, yet not all integrin binding can lead to tissue repair. Here, we show that through engineering hydrogel materials to promote α3/α5β1 integrin binding, we can promote the formation of a space-filling and mature vasculature compared with hydrogel materials that promote αvβ3 integrin binding. In vitro, α3/α5β1 scaffolds promoted endothelial cells to sprout and branch, forming organized extensive networks that eventually reached and anastomosed with neighbouring branches. In vivo, α3/α5β1 scaffolds delivering vascular endothelial growth factor (VEGF) promoted non-tortuous blood vessel formation and non-leaky blood vessels by 10 days post-stroke. In contrast, materials that promote αvβ3 integrin binding promoted endothelial sprout clumping in vitro and leaky vessels in vivo. This work shows that precisely controlled integrin activation from a biomaterial can be harnessed to direct therapeutic vessel regeneration and reduce VEGF-induced vascular permeability in vivo.

  12. Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability

    PubMed Central

    Li, Shuoran; Nih, Lina R.; Bachman, Haylee; Fei, Peng; Li, Yilei; Nam, Eunwoo; Dimatteo, Robert; Carmichael, S. Thomas; Barker, Thomas H.; Segura, Tatiana

    2017-01-01

    Integrin binding to bioengineered hydrogel scaffolds is essential for tissue regrowth and regeneration, yet not all integrin binding can lead to tissue repair. Here, we show that through engineering hydrogel materials to promote α3/α5β1 integrin binding, we can promote the formation of a space filling and mature vasculature compared to hydrogel materials that promote a αvβ3 integrin binding. In vitro, α3/α5β1 scaffolds promoted endothelial cells to sprout and branch, forming organized extensive networks that eventually reached and anastomosed with neighboring branches. In vivo, α3/α5β1 scaffolds delivering vascular endothelial growth factor (VEGF) promoted non-tortuous blood vessel formation and non-leaky blood vessels by 10-days post stroke. In contrast, materials that promote αvβ3 integrin binding promoted endothelial sprout clumping in vitro and leaky vessels in vivo. This work shows that precisely controlled integrin activation from a biomaterial can be harnessed to direct therapeutic vessel regeneration and reduce VEGF induced vascular permeability in vivo. PMID:28783156

  13. Highly sensitivity adhesion molecules detection in hereditary haemochromatosis patients reveals altered expression.

    PubMed

    Norris, S; White, M; Mankan, A K; Lawless, M W

    2010-04-01

    Several abnormalities in the immune status of patients with hereditary haemochromatosis (HH) have been reported, suggesting an imbalance in their immune function. This may include persistent production of, or exposure to, altered immune signalling contributing to the pathogenesis of this disorder. Adhesion molecules L-, E- and P-Selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) are some of the major regulators of the immune processes and altered levels of these proteins have been found in pathological states including cardiovascular diseases, arthritis and liver cancer. The aim of this study was to assess L-, E- and P-Selectin, ICAM-1 and VCAM-1 expression in patients with HH and correlate these results with HFE mutation status and iron indexes. A total of 139 subjects were diagnosed with HH (C282Y homozygotes = 87, C282Y/H63D = 26 heterozygotes, H63D homozygotes = 26), 27 healthy control subjects with no HFE mutation (N/N), 18 normal subjects heterozygous for the H63D mutation served as age-sex-matched controls. We observed a significant decrease in L-selectin (P = 0.0002) and increased E-selectin and ICAM-1 (P = 0.0006 and P = 0.0059) expression in HH patients compared with healthy controls. This study observes for the first time that an altered adhesion molecules profile occurs in patients with HH that is associated with specific HFE genetic component for iron overload, suggesting that differential expression of adhesion molecules may play a role in the pathogenesis of HH.

  14. Biological role of site-specific O-glycosylation in cell adhesion activity and phosphorylation of osteopontin.

    PubMed

    Oyama, Midori; Kariya, Yoshinobu; Kariya, Yukiko; Matsumoto, Kana; Kanno, Mayumi; Yamaguchi, Yoshiki; Hashimoto, Yasuhiro

    2018-05-09

    Osteopontin (OPN) is an extracellular glycosylated phosphoprotein that promotes cell adhesion by interacting with several integrin receptors. We previously reported that an OPN mutant lacking five O-glycosylation sites (Thr 134 /Thr 138 /Thr 143 /Thr 147 /Thr 152 ) in the threonine/proline-rich region increased cell adhesion activity and phosphorylation compared with the wild type. However, the role of O-glycosylation in cell adhesion activity and phosphorylation of OPN remains to be clarified. Here, we show that site-specific O-glycosylation in the threonine/proline-rich region of OPN affects its cell adhesion activity and phosphorylation independently and/or synergistically. Using site-directed mutagenesis, we found that OPN mutants with substitution sets of Thr 134 /Thr 138 or Thr 143 /Thr 147 /Thr 152 had decreased and increased cell adhesion activity, respectively. In contrast, the introduction of a single mutation into the O-glycosylation sites had no effect on OPN cell adhesion activity. An adhesion assay using function-blocking antibodies against αvβ3 and β1 integrins, as well as αvβ3 integrin-overexpressing A549 cells, revealed that site-specific O-glycosylation affected the association of OPN with the two integrins. Phosphorylation analyses using phos-tag and LC-MS/MS indicated that phosphorylation levels and sites were influenced by the O-glycosylation status, although the number of O-glycosylation sites was not correlated with the phosphorylation level in OPN. Furthermore, a correlation analysis between phosphorylation level and cell adhesion activity in OPN mutants with the site-specific O-glycosylation showed that they were not always correlated. These results provide conclusive evidence of a novel regulatory mechanism of cell adhesion activity and phosphorylation of OPN by site-specific O-glycosylation. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  15. The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins.

    PubMed

    Lord, Megan S; Cheng, Bill; McCarthy, Simon J; Jung, MoonSun; Whitelock, John M

    2011-10-01

    Chitosan has been shown to promote initial wound closure events to prevent blood loss. Platelet adhesion and activation are crucial early events in these processes after traumatic bleeding leading to thrombus formation. Platelet adhesion to chitosan was found to be enhanced in the presence of adsorbed plasma and extracellular matrix proteins and was found to be primarily mediated by α(IIb)β(3) integrins, while α(2)β(1) integrins were found to be involved in platelet adhesion to collagen and perlecan. Platelets were found to be activated by chitosan, as shown by an increase in the expression of α(IIb)β(3) integrins and P-selectin, while the extent of activation was modulated by the presence of proteins including perlecan and fibrinogen. Collagen-coated chitosan was found to activate platelets to the same extent as either chitosan or collagen alone. These data support the role of plasma and extracellular matrix proteins in promoting chitosan mediated platelet adhesion and activation supporting the hypothesis that chitosan promotes wound healing via these interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Physical and functional interaction between integrins and hERG potassium channels.

    PubMed

    Arcangeli, A; Becchetti, A; Cherubini, A; Crociani, O; Defilippi, P; Guasti, L; Hofmann, G; Pillozzi, S; Olivotto, M; Wanke, E

    2004-11-01

    Integrins are adhesion receptors capable of transmitting intracellular signals that regulate many different cellular functions. Among integrin-mediated signals, the activation of ion channels can be included. We demonstrated that a long-lasting activation of hERG (human ether-a-go-go-related gene) potassium channels occurs in both human neuroblastoma and leukaemia cells after the activation of the beta1 integrin subunit. This activation is apparently a determining factor inducing neurite extension and osteoclastic differentiation in both the cell types. More recently, we provided evidences that beta1 integrins and hERG channels co-precipitate in both the cell types. Preliminary results suggest that a macromolecular signalling complex indeed occurs between integrins and the hERG1 protein and that hERG channel activity can modulate integrin downstream signalling.

  17. Interaction with glycosaminoglycans is required for cyclophilin B to trigger integrin-mediated adhesion of peripheral blood T lymphocytes to extracellular matrix

    PubMed Central

    Allain, Fabrice; Vanpouille, Christophe; Carpentier, Mathieu; Slomianny, Marie-Christine; Durieux, Sandrine; Spik, Geneviève

    2002-01-01

    Cyclophilins A and B (CyPA and CyPB) are cyclosporin A-binding proteins that are involved in inflammatory events. We have reported that CyPB interacts with two types of cell-surface-binding sites. The first site corresponds to a functional receptor and requires interaction with the central core of CyPB. This region is highly conserved in cyclophilins, suggesting that CyPA and CyPB might share biological activities mediated by interaction with this receptor. The second site is identified with glycosaminoglycans (GAGs), the binding region located in the N terminus of CyPB. The difference in the N-terminal extensions of CyPA and CyPB suggests that a unique interaction with GAGs might account for selective activity of CyPB. To explore this hypothesis, we analyzed the lymphocyte responses triggered by CyPA, CyPB, and CyPBKKK−, a mutant unable to interact with GAGs. The three ligands seemed capable enough to elicit calcium signal and chemotaxis by binding to the same signaling receptor. In contrast, only CyPB enhanced firm adhesion of T cells to the extracellular matrix. This activity depended on the interactions with GAGs and signaling receptor. CyPB-mediated adhesion required CD147 presumably because it was a costimulatory molecule and was related to an activation of α4β1 and α4β7 integrins. Finally, we showed that CyPB was capable mainly to enhance T cell adhesion of the CD4+CD45RO+ subset. The present data indicate that CyPB rather than CyPA is a proinflammatory factor for T lymphocytes and highlight the crucial role of CyPB–GAG interaction in the chemokine-like activity of this protein. PMID:11867726

  18. Interaction with glycosaminoglycans is required for cyclophilin B to trigger integrin-mediated adhesion of peripheral blood T lymphocytes to extracellular matrix.

    PubMed

    Allain, Fabrice; Vanpouille, Christophe; Carpentier, Mathieu; Slomianny, Marie-Christine; Durieux, Sandrine; Spik, Geneviève

    2002-03-05

    Cyclophilins A and B (CyPA and CyPB) are cyclosporin A-binding proteins that are involved in inflammatory events. We have reported that CyPB interacts with two types of cell-surface-binding sites. The first site corresponds to a functional receptor and requires interaction with the central core of CyPB. This region is highly conserved in cyclophilins, suggesting that CyPA and CyPB might share biological activities mediated by interaction with this receptor. The second site is identified with glycosaminoglycans (GAGs), the binding region located in the N terminus of CyPB. The difference in the N-terminal extensions of CyPA and CyPB suggests that a unique interaction with GAGs might account for selective activity of CyPB. To explore this hypothesis, we analyzed the lymphocyte responses triggered by CyPA, CyPB, and CyPB(KKK-), a mutant unable to interact with GAGs. The three ligands seemed capable enough to elicit calcium signal and chemotaxis by binding to the same signaling receptor. In contrast, only CyPB enhanced firm adhesion of T cells to the extracellular matrix. This activity depended on the interactions with GAGs and signaling receptor. CyPB-mediated adhesion required CD147 presumably because it was a costimulatory molecule and was related to an activation of alpha4beta1 and alpha4beta7 integrins. Finally, we showed that CyPB was capable mainly to enhance T cell adhesion of the CD4+CD45RO+ subset. The present data indicate that CyPB rather than CyPA is a proinflammatory factor for T lymphocytes and highlight the crucial role of CyPB-GAG interaction in the chemokine-like activity of this protein.

  19. α5β1 Integrin-Fibronectin Interactions Specify Liquid to Solid Phase Transition of 3D Cellular Aggregates

    PubMed Central

    Caicedo-Carvajal, Carlos E.; Shinbrot, Troy; Foty, Ramsey A.

    2010-01-01

    Background Tissue organization during embryonic development and wound healing depends on the ability of cells on the one hand to exchange adhesive bonds during active rearrangement and on the other to become fixed in place as tissue homeostasis is reached. Cells achieve these contradictory tasks by regulating either cell-cell adhesive bonds, mediated by cadherins, or cell-extracellular matrix (ECM) connections, regulated by integrins. Integrin α5β1 and soluble fibronectin (sFN) are key players in cell-ECM force generation and in ECM polymerization. Here, we explore the interplay between integrin α5β1 and sFN and its influence on tissue mechanical properties and cell sorting behavior. Methodology/Principal Findings We generated a series of cell lines varying in α5β1 receptor density. We then systematically explored the effects of different sFN concentrations on aggregate biomechanical properties using tissue surface tensiometry. We found previously unreported complex behaviors including the observation that interactions between fibronectin and integrin α5β1 generates biphasic tissue cohesion profiles. Specifically, we show that at constant sFn concentration, aggregate cohesion increases linearly as α5β1 receptor density is increased from low to moderate levels, producing a transition from viscoelastic-liquid to pseudo viscoelastic-solid behavior. However, further increase in receptor density causes an abrupt drop in tissue cohesion and a transition back to viscoelastic-liquid properties. We propose that this may be due to depletion of sFn below a critical value in the aggregate microenvironment at high α5β1 levels. We also show that differential expression of α5β1 integrin can promote phase-separation between cells. Conclusions/Significance The interplay between α5-integrin and sFn contributes significantly to tissue cohesion and, depending on their level of expression, can mediate a shift from liquid to elastic behavior. This interplay represents a

  20. Cell-contact-dependent activation of CD4+ T cells by adhesion molecules on synovial fibroblasts.

    PubMed

    Mori, Masato; Hashimoto, Motomu; Matsuo, Takashi; Fujii, Takao; Furu, Moritoshi; Ito, Hiromu; Yoshitomi, Hiroyuki; Hirose, Jun; Ito, Yoshinaga; Akizuki, Shuji; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Ohmura, Koichiro; Mimori, Tsuneyo

    2017-05-01

    To determine how cell-cell contact with synovial fibroblasts (SF) influence on the proliferation and cytokine production of CD4 +  T cells. Naïve CD4 +  T cells were cultured with SF from rheumatoid arthritis patients, stimulated by anti-CD3/28 antibody, and CD4 +  T cell proliferation and IFN-γ/IL-17 production were analyzed. To study the role of adhesion molecules, cell contact was blocked by transwell plate or anti-intracellular adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1(VCAM-1) antibody. To study the direct role of adhesion molecules for CD4 +  T cells, CD161 +  or CD161 - naïve CD4 +  T cells were stimulated on plastic plates coated by recombinant ICAM-1 or VCAM-1, and the source of IFN-γ/IL-17 were analyzed. SF enhanced naïve CD4 +  T cell proliferation and IFN-γ/IL-17 production in cell-contact and in part ICAM-1-/VCAM-1-dependent manner. Plate-coated ICAM-1 and VCAM-1 enhanced naïve CD4 +  T cell proliferation and IFN-γ production, while VCAM-1 efficiently promoting IL-17 production. CD161 +  naïve T cells upregulating LFA-1 and VLA-4 were the major source of IFN-γ/IL-17 upon interaction with ICAM-1/VCAM-1. CD4 +  T cells rapidly expand and secrete IFN-γ/IL-17 upon cell-contact with SF via adhesion molecules. Interfering with ICAM-1-/VCAM-1 may be beneficial for inhibiting RA synovitis.

  1. ADAM disintegrin-like domain recognition by the lymphocyte integrins α4β1 and α4β7

    PubMed Central

    Bridges, Lance C.; Sheppard, Dean; Bowditch, Ron D.

    2004-01-01

    The ADAM (a disintegrin and metalloprotease) family of proteins possess both proteolytic and adhesive domains. We have established previously that the disintegrin domain of ADAM28, an ADAM expressed by human lymphocytes, is recognized by the integrin α4β1. The present study characterizes the integrin binding properties of the disintegrin-like domains of human ADAM7, ADAM28 and ADAM33 with the integrins α4β1, α4β7 and α9β1. Cell-adhesion assays demonstrated that, similar to ADAM28, the ADAM7 disintegrin domain supported α4β1-dependent Jurkat cell adhesion, whereas the ADAM33 disintegrin domain did not. The lymphocyte integrin α4β7 was also found to recognize both disintegrin domains of ADAM7 and ADAM28, but not of ADAM33. This is the first demonstration that mammalian disintegrins are capable of interacting with α4β7. All three disintegrin domains supported α9β1-dependent cell adhesion. Recognition by both α4β1 and α4β7 of ADAM7 and ADAM28 was activation-dependent, requiring either the presence of Mn2+ or an activating monoclonal antibody for cell attachment. Charge-to-alanine mutagenesis experiments revealed that the same residues within an individual ADAM disintegrin domain function in recognizing multiple integrins. However, the residues within a specific region of each ADAM disintegrin-like domain required for integrin binding were distinct. These results establish that ADAM7 and ADAM28 are recognized by the leucocyte integrins α4β1, α4β7 and α9β1. ADAM33 exclusively supported only α9β1-dependent adhesion. PMID:15504110

  2. Early storage lesions in apheresis platelets are induced by the activation of the integrin αIIbβ₃ and focal adhesion signaling pathways.

    PubMed

    Thiele, Thomas; Iuga, Cristina; Janetzky, Susann; Schwertz, Hansjorg; Gesell Salazar, Manuela; Fürll, Birgit; Völker, Uwe; Greinacher, Andreas; Steil, Leif

    2012-12-05

    Production and storage of platelet concentrates (PC) induce protein changes in platelets leading to impaired platelet function. This study aimed to identify signaling pathways involved in the development of early platelet storage lesions in apheresis-PCs stored in plasma or additive solution (PAS). Apheresis-PCs from four donors were stored in plasma or in PAS at 22°C (n=4 each). Platelets were analyzed at day 0 (production day) and after 1, 6 and 9 days of storage. Platelet response to agonists (TRAP, collagen, ADP) and to hypotonic shock decreased, CD62P expression increased in both storage media over time. Using DIGE 1550 protein spots were monitored and compared to baseline values at day 0. Platelets in plasma displayed changes in 352 spots (166/day 1, 263/day 6 and 201/day 9); in PAS 325 spots changed (202/day 1, 221/day 6, 200/day 9). LC-ESI-MS/MS analysis of 405 platelet proteins revealed 32 proteins changed during storage in plasma (9/day 1, 15/day 6 and 26/day 9) and 28 in PAS (5/day 1, 20/day 6, 26/day 9). Ingenuity pathway analysis found integrin-αII(b)β(3) and focal adhesion signaling pathways involved in early alterations, being confirmed by Western blotting. Corresponding mRNAs in platelets were identified by next generation sequencing for 84 changed proteins. Integrin-αII(b)β(3) and focal adhesion signaling cause irreversible early storage lesions in apheresis platelets. This article is part of a Special Issue entitled: Integrated omics. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Direct Interactions with the Integrin β1 Cytoplasmic Tail Activate the Abl2/Arg Kinase*

    PubMed Central

    Simpson, Mark A.; Bradley, William D.; Harburger, David; Parsons, Maddy; Calderwood, David A.; Koleske, Anthony J.

    2015-01-01

    Integrins are heterodimeric α/β extracellular matrix adhesion receptors that couple physically to the actin cytoskeleton and regulate kinase signaling pathways to control cytoskeletal remodeling and adhesion complex formation and disassembly. β1 integrins signal through the Abl2/Arg (Abl-related gene) nonreceptor tyrosine kinase to control fibroblast cell motility, neuronal dendrite morphogenesis and stability, and cancer cell invasiveness, but the molecular mechanisms by which integrin β1 activates Arg are unknown. We report here that the Arg kinase domain interacts directly with a lysine-rich membrane-proximal segment in the integrin β1 cytoplasmic tail, that Arg phosphorylates the membrane-proximal Tyr-783 in the β1 tail, and that the Arg Src homology domain then engages this phosphorylated region in the tail. We show that these interactions mediate direct binding between integrin β1 and Arg in vitro and in cells and activate Arg kinase activity. These findings provide a model for understanding how β1-containing integrins interact with and activate Abl family kinases. PMID:25694433

  4. Sequence-Specific Interaction between the Disintegrin Domain of Mouse ADAM 3 and Murine Eggs: Role of β1 Integrin-associated Proteins CD9, CD81, and CD98

    PubMed Central

    Takahashi, Yuji; Bigler, Dora; Ito, Yasuhiko; White, Judith M.

    2001-01-01

    ADAM 3 is a sperm surface glycoprotein that has been implicated in sperm-egg adhesion. Because little is known about the adhesive activity of ADAMs, we investigated the interaction of ADAM 3 disintegrin domains, made in bacteria and in insect cells, with murine eggs. Both recombinant proteins inhibited sperm-egg binding and fusion with potencies similar to that which we recently reported for the ADAM 2 disintegrin domain. Alanine scanning mutagenesis revealed a critical importance for the glutamine at position 7 of the disintegrin loop. Fluorescent beads coated with the ADAM 3 disintegrin domain bound to the egg surface. Bead binding was inhibited by an authentic, but not by a scrambled, peptide analog of the disintegrin loop. Bead binding was also inhibited by the function-blocking anti-α6 monoclonal antibody (mAb) GoH3, but not by a nonfunction blocking anti-α6 mAb, or by mAbs against either the αv or β3 integrin subunits. We also present evidence that in addition to the tetraspanin CD9, two other β1-integrin-associated proteins, the tetraspanin CD81 as well as the single pass transmembrane protein CD98 are expressed on murine eggs. Antibodies to CD9 and CD98 inhibited in vitro fertilization and binding of the ADAM 3 disintegrin domain. Our findings are discussed in terms of the involvement of multiple sperm ADAMs and multiple egg β1 integrin-associated proteins in sperm-egg binding and fusion. We propose that an egg surface “tetraspan web” facilitates fertilization and that it may do so by fostering ADAM–integrin interactions. PMID:11294888

  5. Sequence-specific interaction between the disintegrin domain of mouse ADAM 3 and murine eggs: role of beta1 integrin-associated proteins CD9, CD81, and CD98.

    PubMed

    Takahashi, Y; Bigler, D; Ito, Y; White, J M

    2001-04-01

    ADAM 3 is a sperm surface glycoprotein that has been implicated in sperm-egg adhesion. Because little is known about the adhesive activity of ADAMs, we investigated the interaction of ADAM 3 disintegrin domains, made in bacteria and in insect cells, with murine eggs. Both recombinant proteins inhibited sperm-egg binding and fusion with potencies similar to that which we recently reported for the ADAM 2 disintegrin domain. Alanine scanning mutagenesis revealed a critical importance for the glutamine at position 7 of the disintegrin loop. Fluorescent beads coated with the ADAM 3 disintegrin domain bound to the egg surface. Bead binding was inhibited by an authentic, but not by a scrambled, peptide analog of the disintegrin loop. Bead binding was also inhibited by the function-blocking anti-alpha6 monoclonal antibody (mAb) GoH3, but not by a nonfunction blocking anti-alpha6 mAb, or by mAbs against either the alphav or beta3 integrin subunits. We also present evidence that in addition to the tetraspanin CD9, two other beta1-integrin-associated proteins, the tetraspanin CD81 as well as the single pass transmembrane protein CD98 are expressed on murine eggs. Antibodies to CD9 and CD98 inhibited in vitro fertilization and binding of the ADAM 3 disintegrin domain. Our findings are discussed in terms of the involvement of multiple sperm ADAMs and multiple egg beta1 integrin-associated proteins in sperm-egg binding and fusion. We propose that an egg surface "tetraspan web" facilitates fertilization and that it may do so by fostering ADAM-integrin interactions.

  6. Blocking neutrophil integrin activation prevents ischemia–reperfusion injury

    PubMed Central

    Yago, Tadayuki; Petrich, Brian G.; Zhang, Nan; Liu, Zhenghui; Shao, Bojing; Ginsberg, Mark H.

    2015-01-01

    Neutrophil recruitment, mediated by β2 integrins, combats pyogenic infections but also plays a key role in ischemia–reperfusion injury and other inflammatory disorders. Talin induces allosteric rearrangements in integrins that increase affinity for ligands (activation). Talin also links integrins to actin and other proteins that enable formation of adhesions. Structural studies have identified a talin1 mutant (L325R) that perturbs activation without impairing talin’s capacity to link integrins to actin and other proteins. Here, we found that mice engineered to express only talin1(L325R) in myeloid cells were protected from renal ischemia–reperfusion injury. Dissection of neutrophil function in vitro and in vivo revealed that talin1(L325R) neutrophils had markedly impaired chemokine-induced, β2 integrin–mediated arrest, spreading, and migration. Surprisingly, talin1(L325R) neutrophils exhibited normal selectin-induced, β2 integrin–mediated slow rolling, in sharp contrast to the defective slow rolling of neutrophils lacking talin1 or expressing a talin1 mutant (W359A) that blocks talin interaction with integrins. These studies reveal the importance of talin-mediated activation of integrins for renal ischemia–reperfusion injury. They further show that neutrophil arrest requires talin recruitment to and activation of integrins. However, although neutrophil slow rolling requires talin recruitment to integrins, talin-mediated integrin activation is dispensable. PMID:26169939

  7. Clustering of adhesion receptors following exposure of insect blood cells to foreign surfaces.

    PubMed

    Nardi, James B; Zhuang, Shufei; Pilas, Barbara; Bee, Charles Mark; Kanost, Michael R

    2005-05-01

    Cell-mediated immune responses of insects involve interactions of two main classes of blood cells (hemocytes) known as granular cells and plasmatocytes. In response to a foreign surface, these hemocytes suddenly transform from circulating, non-adherent cells to cells that interact and adhere to each other and the foreign surface. This report presents evidence that during this adhesive transformation the extracellular matrix (ECM) proteins lacunin and a ligand for peanut agglutinin (PNA) lectin are released by granular cells and bind to surfaces of both granular cells and plasmatocytes. ECM protein co-localizes on cell surfaces with the adhesive receptors integrin and neuroglian, a member of the immunoglobulin superfamily. The ECM protein(s) secreted by granular cells are hypothesized to interact with adhesion receptors such as neuroglian and integrin by cross linking and clustering them on hemocyte surfaces. This clustering of receptors is known to enhance the adhesiveness (avidity) of interacting mammalian immune cells. The formation of ring-shaped clusters of these adhesion receptors on surfaces of insect immune cells represents an evolutionary antecedent of the mammalian immunological synapse.

  8. The depletion of MARVELD1 leads to murine placenta accreta via integrin β4-dependent trophoblast cell invasion.

    PubMed

    Chen, Yue; Zhang, Hui; Han, Fang; Yue, Lei; Qiao, Chunxiao; Zhang, Yao; Dou, Peng; Liu, Weizhe; Li, Yu

    2018-03-01

    The placenta is a remarkable organ, it serves as the interface between the mother and the fetus. Proper invasion of trophoblast cells is required for a successful pregnancy. Previous studies have found that the adhesion molecule integrin β4 plays important roles during trophoblast cell invasion. Here, we found that the overall birth rate of the MARVELD1 knockout mouse is much lower than that of the wild-type mouse (p < 0.001). In E18.5 MARVELD1 knockout mice, we observed an over-invasion of trophoblast cells, and indeed, the pregnant mice had a partial placenta accreta phenotype. The HTR8/SVneo cell line was used as an in vitro model to elucidate the underlying mechanisms of MARVELD1-mediated trophoblast invasion. We detected a diminished expression of integrin β4 upon the downregulation of MARVELD1 and enhanced migrate and invasive abilities of trophoblast cells both in vivo and in vitro. The integrin β4 rescue assay also supported the results. In conclusion, this study found that MARVELD1 mediated the invasion of trophoblast cells via regulating the expression of integrin β4 during placenta development. © 2017 Wiley Periodicals, Inc.

  9. Cytokine and adhesion molecule expression evolves between the neutrophilic and lymphocytic phases of viral meningitis.

    PubMed

    Makis, Alexandros; Shipway, David; Hatzimichael, Eleftheria; Galanakis, Emmanouil; Pshezhetskiy, Dmitry; Chaliasos, Nikolaos; Stebbing, Justin; Siamopoulou, Antigone

    2010-09-01

    Viral meningitis is characterized by cerebrospinal fluid (CSF) lymphocyte pleocytosis, although neutrophils may predominate in the early phase. The T helper 1 (Th1)/Th2 cytokine balance and expression of adhesion molecules seem to be involved in the CSF chemotaxis. We aimed to determine expression of cytokines and adhesion molecules in enteroviral meningitis. We investigated the serum and CSF levels of adhesion molecules (E-selectin, L-selectin, vascular cell adhesion molecule-1 [VCAM-1], and intracellular adhesion molecule-1 [ICAM-1]) and cytokines (interleukin-12 [IL-12] and IL-4) in 105 children during an outbreak of enteroviral meningitis. Diagnosis was confirmed with positive polymerase chain reaction (PCR) and/or serology for echovirus or Coxsackie virus, and matched with control subjects for clinical features but with negative PCR and/or serology. Apart from VCAM-1, the CSF levels of all investigated inflammatory molecules were significantly increased. In serum, sL-selectin and ICAM-1 levels were significantly higher than control subjects. Serum and CSF L-selectin, serum VCAM-1, and CSF IL-12 were all observed to be expressed in significantly higher levels in the neutrophil-dominant subgroup (72% had duration of symptoms <24 h) than in the lymphocyte-dominant group (87.5% had duration of symptoms >24 h). Serum and CSF ICAM-1 was found at significantly higher levels in the latter group. Evolving expression of adhesion molecules and cytokines indicates a shift from Th1 to Th2 immune responses as infection progresses.

  10. The Differential Expression of Adhesion Molecule and Extracellular Matrix Genes in Mesenchymal Stromal Cells after Interaction with Cord Blood Hematopoietic Progenitors.

    PubMed

    Buravkova, L B; Andreeva, E R; Lobanova, M V; Cotnezova, E V; Grigoriev, A I

    2018-03-01

    The dynamics of the expression of genes encoding adhesion molecules, molecules of the connective tissue matrix, and its remodeling enzymes was studied in multipotent mesenchymal stromal cells (MSCs) from human adipose tissue after interaction with cord blood hematopoietic progenitors (HSPCs). An upregulation of ICAM1 and VCAM1, directly proportional to the coculture time (24-72 h), was found. After 72 h of culturing, a downregulation of the genes encoding the majority of matrix molecules (SPP1; COL6A2,7A1; MMP1,3; TIMP1,3; and HAS1) and cell-matrix adhesion molecules (ITGs) was revealed. The detected changes may ensure the realization of the stromal MSC function due to improvement of adhesion and transmigration of HSPCs into the subcellular space.

  11. Integrin αIIb (CD41) plays a role in the maintenance of hematopoietic stem cell activity in the mouse embryonic aorta

    PubMed Central

    Boisset, Jean-Charles; Clapes, Thomas; Van Der Linden, Reinier; Dzierzak, Elaine; Robin, Catherine

    2013-01-01

    Summary Integrins are transmembrane receptors that play important roles as modulators of cell behaviour through their adhesion properties and the initiation of signaling cascades. The αIIb integrin subunit (CD41) is one of the first cell surface markers indicative of hematopoietic commitment. αIIb pairs exclusively with β3 to form the αIIbβ3 integrin. β3 (CD61) also pairs with αv (CD51) to form the αvβ3 integrin. The expression and putative role of these integrins during mouse hematopoietic development is as yet unknown. We show here that hematopoietic stem cells (HSCs) differentially express αIIbβ3 and αvβ3 integrins throughout development. Whereas the first HSCs generated in the aorta at mid-gestation express both integrins, HSCs from the placenta only express αvβ3, and most fetal liver HSCs do not express either integrin. By using αIIb deficient embryos, we show that αIIb is not only a reliable HSC marker but it also plays an important and specific function in maintaining the HSC activity in the mouse embryonic aorta. PMID:23789102

  12. Multifaced Roles of the αvβ3 Integrin in Ehlers–Danlos and Arterial Tortuosity Syndromes’ Dermal Fibroblasts

    PubMed Central

    Zoppi, Nicoletta; Chiarelli, Nicola; Ritelli, Marco; Colombi, Marina

    2018-01-01

    The αvβ3 integrin, an endothelial cells’ receptor-binding fibronectin (FN) in the extracellular matrix (ECM) of blood vessels, regulates ECM remodeling during migration, invasion, angiogenesis, wound healing and inflammation, and is also involved in the epithelial mesenchymal transition. In vitro-grown human control fibroblasts organize a fibrillar network of FN, which is preferentially bound on the entire cell surface to its canonical α5β1 integrin receptor, whereas the αvβ3 integrin is present only in rare patches in focal contacts. We report on the preferential recruitment of the αvβ3 integrin, due to the lack of FN–ECM and its canonical integrin receptor, in dermal fibroblasts from Ehlers–Danlos syndromes (EDS) and arterial tortuosity syndrome (ATS), which are rare multisystem connective tissue disorders. We review our previous findings that unraveled different biological mechanisms elicited by the αvβ3 integrin in fibroblasts derived from patients affected with classical (cEDS), vascular (vEDS), hypermobile EDS (hEDS), hypermobility spectrum disorders (HSD), and ATS. In cEDS and vEDS, respectively, due to defective type V and type III collagens, αvβ3 rescues patients’ fibroblasts from anoikis through a paxillin-p60Src-mediated cross-talk with the EGF receptor. In hEDS and HSD, without a defined molecular basis, the αvβ3 integrin transduces to the ILK-Snail1-axis inducing a fibroblast-to-myofibroblast-transition. In ATS cells, the deficiency of the dehydroascorbic acid transporter GLUT10 leads to redox imbalance, ECM disarray together with the activation of a non-canonical αvβ3 integrin-TGFBRII signaling, involving p125FAK/p60Src/p38MAPK. The characterization of these different biological functions triggered by αvβ3 provides insights into the multifaced nature of this integrin, at least in cultured dermal fibroblasts, offering future perspectives for research in this field. PMID:29587413

  13. TNFα pathway blockade ameliorates toxic effects of FSGS plasma on podocyte cytoskeleton and β3 integrin activation.

    PubMed

    Bitzan, Martin; Babayeva, Sima; Vasudevan, Anil; Goodyer, Paul; Torban, Elena

    2012-12-01

    In the absence of mutant genes encoding components of the podocyte slit diaphragm, about 30-50 % of children with primary glucocorticoid-resistant focal segmental glomerulosclerosis (FSGS) develop recurrent proteinuria and slowly progressive FSGS lesions following renal transplantation. Recurrence of FSGS in the allograft strongly suggests a circulating factor that disturbs normal podocyte biology. To date, the nature of the circulating factor is unclear, and there is no cure for the recurrent form of FSGS (R-FSGS). Cultured differentiated human podocytes were exposed to the plasmapheresis effluent or blood plasma samples from pediatric patients with recurrent or primary FSGS; in some cases, podocytes were pre-incubated with specific antibodies to block the tumor necrosis factor-alpha (TNFα) signaling pathway. Integrity of focal adhesion complexes and actin cytoskeleton were investigated by immunofluorescent microscopy. Plasmapheresis effluent from an R-FSGS child or fresh plasma from two children with primary FSGS rapidly disturbed the cytoskeleton of normal human podocytes in vitro. Plasma from a child with R-FSGS also activated β3 integrin and dispersed focal adhesion complexes. The effects were reversed by pre-incubation with antibodies against TNFα or either of the two TNFα receptors. When our patient with R-FSGS became resistant to plasmapheresis, we initiated treatment with twice weekly etanercept injections and then infliximab. Within 3 weeks of regular anti-TNFα therapy, the patient achieved sustained partial remission of proteinuria, allowing us to wean her off plasmapheresis completely. We suggest that in some FSGS patients, disruption of the podocyte cytoskeleton and β3 integrin-mediated podocyte attachment are driven by the TNFα pathway.

  14. Suppression of the PI3K subunit p85α delays embryoid body development and inhibits cell adhesion.

    PubMed

    Gurney, Susan M R; Forster, Peter; Just, Ursula; Schwanbeck, Ralf

    2011-12-01

    Phosphatidylinositol-3-kinases (PI3Ks) exert a variety of signaling functions in eukaryotes. We suppressed the PI3K regulatory subunit p85α using a small interfering RNA (Pik3r1 siRNA) and examined the effects on embryoid body (EB) development in hanging drop culture. We observed a 150% increase in the volume of the treated EBs within 24 h, compared to the negative controls. Fluorescence Activated Cell Sorting (FACS) assays showed that this increase in volume is not due to increased cellular proliferation. Instead, the increase in volume appears to be due to reduced cellular aggregation and adherence. This is further shown by our observation that 40% of treated EBs form twin instead of single EBs, and that they have a significantly reduced ability to adhere to culture dishes when plated. A time course over the first 96 h reveals that the impaired adherence is transient and explained by an initial 12-hour delay in EB development. Quantitative PCR expression analysis suggests that the adhesion molecule integrin-β1 (ITGB1) is transiently downregulated by the p85α suppression. In conclusion we found that suppressing p85α leads to a delay in forming compact EBs, accompanied by a transient inability of the EBs to undergo normal cell-cell and cell-substrate adhesion. Copyright © 2011 Wiley Periodicals, Inc.

  15. Selective Cell Adhesion and Biosensing Applications of Bio-Active Block Copolymers Prepared by CuAAC/Thiol-ene Double Click Reactions.

    PubMed

    Oyman Eyrilmez, Gizem; Doran, Sean; Murtezi, Eljesa; Demir, Bilal; Odaci Demirkol, Dilek; Coskunol, Hakan; Timur, Suna; Yagci, Yusuf

    2015-09-01

    N-Acetyl-l-cysteine (NAC)-capped poly(methyl methacrylate)-b-polycaprolactone block copolymer (PMMA-b-PCL-NAC) was prepared using the previously described one-pot photoinduced sequential CuAAC/thiol-ene double click procedure. PMMA-b-PCL-NAC had previously shown good applicability as a matrix for cell adhesion of cells from the Vero cell line (African green monkey kidney epithelial). Here, in this work, PMMA-b-PCL-NAC served as an excellent immobilization matrix for biomolecule conjugation. Covalent binding of RGD (R: arginine, G: glycine, and D: aspartic acid) peptide sequence onto the PMMA-b-PCL-NAC-coated surface was performed via EDC chemistry. RGD-modified PMMA-b-PCL-NAC (PMMA-b-PCL-NAC-RGD) as a non-toxic cell proliferation platform was used for selective "integrin αvβ3-mediated cell adhesion and biosensing studies. Both optical and electrochemical techniques were used to monitor the adhesion differences between "integrin αvβ3" receptor positive and negative cell lines on to the designed biofunctional surfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    PubMed

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  17. Calcium mobilization and Rac1 activation are required for VCAM-1 (vascular cell adhesion molecule-1) stimulation of NADPH oxidase activity.

    PubMed Central

    Cook-Mills, Joan M; Johnson, Jacob D; Deem, Tracy L; Ochi, Atsuo; Wang, Lei; Zheng, Yi

    2004-01-01

    VCAM-1 (vascular cell adhesion molecule-1) plays an important role in the regulation of inflammation in atherosclerosis, asthma, inflammatory bowel disease and transplantation. VCAM-1 activates endothelial cell NADPH oxidase, and this oxidase activity is required for VCAM-1-dependent lymphocyte migration. We reported previously that a mouse microvascular endothelial cell line promotes lymphocyte migration that is dependent on VCAM-1, but not on other known adhesion molecules. Here we have investigated the signalling mechanisms underlying VCAM-1 function. Lymphocyte binding to VCAM-1 on the endothelial cell surface activated an endothelial cell calcium flux that could be inhibited with anti-alpha4-integrin and mimicked by anti-VCAM-1-coated beads. VCAM-1 stimulation of calcium responses could be blocked by an inhibitor of intracellular calcium mobilization, a calcium channel inhibitor or a calcium chelator, resulting in the inhibition of NADPH oxidase activity. Addition of ionomycin overcame the calcium channel blocker suppression of VCAM-1-stimulated NADPH oxidase activity, but could not reverse the inhibitory effect imposed by intracellular calcium blockage, indicating that both intracellular and extracellular calcium mobilization are required for VCAM-1-mediated activation of NADPH oxidase. Furthermore, VCAM-1 specifically activated the Rho-family GTPase Rac1, and VCAM-1 activation of NADPH oxidase was blocked by a dominant negative Rac1. Thus VCAM-1 stimulates the mobilization of intracellular and extracellular calcium and Rac1 activity that are required for the activation of NADPH oxidase. PMID:14594451

  18. β3 integrin expression is required for invadopodia-mediated ECM degradation in lung carcinoma cells

    PubMed Central

    Morales, Xabier; Salvo, Elizabeth; Garasa, Saray; Ortiz de Solórzano, Carlos; Martínez, Alfredo; Larrayoz, Ignacio M.; Rouzaut, Ana

    2017-01-01

    Cancer related deaths are primarily due to tumor metastasis. To facilitate their dissemination to distant sites, cancer cells develop invadopodia, actin-rich protrusions capable of degrading the surrounding extracellular matrix (ECM). We aimed to determine whether β3 integrin participates in invadopodia formed by lung carcinoma cells, based on our previous findings of specific TGF-β induction of β3 integrin dependent metastasis in animal models of lung carcinoma. In this study, we demonstrate that lung carcinoma cells form invadopodia in response to TGF-β exposure. Invadopodia formation and degradation activity is dependent on β3 integrin expression since β3 integrin deficient cells are not able to degrade gelatin-coated surfaces. Even more, transient over-expression of SRC did not restore invadopodia formation in β3 integrin deficient cells. Finally, we observed that blockade of PLC-dependent signaling leads to more intense labeling for β3 integrin in invadopodia. Our results suggest that β3 integrin function, and location, in lung cancer cells are essential for invadopodia formation, and this integrin regulates the activation of different signal pathways necessary for the invasive structure. β3 integrin has been associated with poor prognosis and increased metastasis in several carcinoma types, including lung cancer. Our findings provide new evidence to support the use of targeted therapies against this integrin to combat the onset of metastases. PMID:28767724

  19. Molecular imaging of alpha v beta3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA.

    PubMed

    Burtea, Carmen; Laurent, Sophie; Murariu, Oltea; Rattat, Dirk; Toubeau, Gérard; Verbruggen, Alfons; Vansthertem, David; Vander Elst, Luce; Muller, Robert N

    2008-04-01

    The integrin alpha v beta3 is highly expressed in atherosclerotic plaques by medial and intimal smooth muscle cells and by endothelial cells of angiogenic microvessels. In this study, we have assessed non-invasive molecular magnetic resonance imaging (MRI) of plaque-associated alpha v beta3 integrin expression on transgenic ApoE-/- mice with a low molecular weight peptidomimetic of Arg-Gly-Asp (mimRGD) grafted to gadolinium diethylenetriaminepentaacetate (Gd-DTPA-g-mimRGD). The analogous compound Eu-DTPA-g-mimRGD was employed for an in vivo competition experiment and to confirm the molecular targeting. The specific interaction of mimRGD conjugated to Gd-DTPA or to 99mTc-DTPA with alpha v beta3 integrin was furthermore confirmed on Jurkat T lymphocytes. The mimRGD was synthesized and conjugated to DTPA. DTPA-g-mimRGD was complexed with GdCl3.6H2O, EuCl3.6H2O, or with [99mTc(CO)3(H2O)3]+. MRI evaluation was performed on a 4.7 T Bruker imaging system. Blood pharmacokinetics of Gd-DTPA-g-mimRGD were assessed in Wistar rats and in c57bl/6j mice. The presence of angiogenic blood vessels and the expression of alpha v beta3 integrin were confirmed in aorta specimens by immunohistochemistry. Gd-DTPA-g-mimRGD produced a strong enhancement of the external structures of the aortic wall and of the more profound layers (possibly tunica media and intima). The aortic lumen seemed to be restrained and distorted. Pre-injection of Eu-DTPA-g-mimRGD diminished the Gd-DTPA-g-mimRGD binding to atherosclerotic plaque and confirmed the specific molecular targeting. A slower blood clearance was observed for Gd-DTPA-g-mimRGD, as indicated by a prolonged elimination half-life and a diminished total clearance. The new compound is potentially useful for the diagnosis of vulnerable atherosclerotic plaques and of other pathologies characterized by alpha v beta3 integrin expression, such as cancer and inflammation. The delayed blood clearance, the significant enhancement of the signal

  20. Cardiac integrins the ties that bind.

    PubMed

    Simpson, D G; Reaves, T A; Shih, D T; Burgess, W; Borg, T K; Terracio, L

    1998-01-01

    An elaborate series of morphogenetic events must be precisely coordinated during development to promote the formation of the elaborate three-dimensional structure of the normal heart. In this study we focus on discussing how interconnections between the cardiac myocyte and its surrounding environment regulate cardiac form and function. In vitro experiments from our laboratories provide direct evidence that cardiac cell shape is regulated by a dynamic interaction between constituents of the extracellular matrix (ECM) and by specific members of the integrin family of matrix receptors. Our data indicates that phenotypic information is stored in the tertiary structure and chemical identity of the ECM. This information appears to be actively communicated and transduced by the α1β1 integrin molecule into an intracellular signal that regulates cardiac cell shape and myofibrillar organization. In this study we have assessed the phenotypic consequences of suppressing the expression and accumulation of the α1 integrin molecule in aligned cultures of cardiac myocytes. In related experiments we have examined how the overexpression of α2 and α5 integrin, integrins normally not present or present at very low copy number on the cell surface of neonatal cardiac myocytes, affect cardiac protein metabolism. We also consider how biochemical signals and the mechanical signals mediated by the integrins may converge on common intracellular signaling pathways in the heart. Experiments with the whole embryo culture system indicate that angiotensin II, a peptide that carries information concerning cardiac load, plays a role in controling cardiac looping and the proliferation of myofibrils during development.

  1. mda-9/Syntenin protein positively regulates the activation of Akt protein by facilitating integrin-linked kinase adaptor function during adhesion to type I collagen.

    PubMed

    Hwangbo, Cheol; Park, Juhee; Lee, Jeong-Hyung

    2011-09-23

    The integrin-linked kinase (ILK)-PINCH1-α-parvin (IPP) complex functions as a signaling platform for integrins that modulates various cellular processes. ILK functions as a central adaptor for the assembly of IPP complex. We report here that mda-9/syntenin, a positive regulator of cancer metastasis, regulates the activation of Akt (also known as protein kinase B) by facilitating ILK adaptor function during adhesion to type I collagen (COL-I) in human breast cancer cells. COL-I stimulation induced the phosphorylation and plasma membrane translocation of Akt. Inhibition of mda-9/syntenin or expression of mutant ILK (E359K) significantly blocked the translocation of both ILK and Akt to the plasma membrane. mda-9/syntenin associated with ILK, and this association was increased at the plasma membrane by COL-I stimulation. Knockdown of mda-9/syntenin impaired COL-I-induced association of ILK with Akt and plasma membrane targeting of ILK-Akt complex. These results demonstrated that mda-9/syntenin regulates the activation of Akt by controlling the plasma membrane targeting of Akt via a mechanism that facilitates the association of Akt with ILK at the plasma membrane during adhesion to COL-I. On a striking note, inhibition of mda-9/syntenin impaired COL-I-induced plasma membrane translocation of the IPP complex and assembly of integrin β1-IPP signaling complexes. Thus, our study defines the role of mda-9/syntenin in ILK adaptor function and describes a new mechanism of mda-9/syntenin for regulation of cell migration.

  2. Revealing Early Steps of α2β1 Integrin-mediated Adhesion to Collagen Type I by Using Single-Cell Force Spectroscopy

    PubMed Central

    Taubenberger, Anna; Cisneros, David A.; Friedrichs, Jens; Puech, Pierre-Henri; Muller, Daniel J.

    2007-01-01

    We have characterized early steps of α2β1 integrin-mediated cell adhesion to a collagen type I matrix by using single-cell force spectroscopy. In agreement with the role of α2β1 as a collagen type I receptor, α2β1-expressing Chinese hamster ovary (CHO)-A2 cells spread rapidly on the matrix, whereas α2β1-negative CHO wild-type cells adhered poorly. Probing CHO-A2 cell detachment forces over a contact time range of 600 s revealed a nonlinear adhesion response. During the first 60 s, cell adhesion increased slowly, and forces associated with the smallest rupture events were consistent with the breakage of individual integrin–collagen bonds. Above 60 s, a fraction of cells rapidly switched into an activated adhesion state marked by up to 10-fold increased detachment forces. Elevated overall cell adhesion coincided with a rise of the smallest rupture forces above the value required to break a single-integrin–collagen bond, suggesting a change from single to cooperative receptor binding. Transition into the activated adhesion mode and the increase of the smallest rupture forces were both blocked by inhibitors of actomyosin contractility. We therefore propose a two-step mechanism for the establishment of α2β1-mediated adhesion as weak initial, single-integrin–mediated binding events are superseded by strong adhesive interactions involving receptor cooperativity and actomyosin contractility. PMID:17314408

  3. The integrin effector PINCH regulates JNK activity and epithelial migration in concert with Ras suppressor 1

    PubMed Central

    Kadrmas, Julie L.; Smith, Mark A.; Clark, Kathleen A.; Pronovost, Stephen M.; Muster, Nemone; Yates, John R.; Beckerle, Mary C.

    2004-01-01

    Cell adhesion and migration are dynamic processes requiring the coordinated action of multiple signaling pathways, but the mechanisms underlying signal integration have remained elusive. Drosophila embryonic dorsal closure (DC) requires both integrin function and c-Jun amino-terminal kinase (JNK) signaling for opposed epithelial sheets to migrate, meet, and suture. Here, we show that PINCH, a protein required for integrin-dependent cell adhesion and actin–membrane anchorage, is present at the leading edge of these migrating epithelia and is required for DC. By analysis of native protein complexes, we identify RSU-1, a regulator of Ras signaling in mammalian cells, as a novel PINCH binding partner that contributes to PINCH stability. Mutation of the gene encoding RSU-1 results in wing blistering in Drosophila, demonstrating its role in integrin-dependent cell adhesion. Genetic interaction analyses reveal that both PINCH and RSU-1 antagonize JNK signaling during DC. Our results suggest that PINCH and RSU-1 contribute to the integration of JNK and integrin functions during Drosophila development. PMID:15596544

  4. A Novel Role for Integrin-linked Kinase in Epithelial Sheet Morphogenesis

    PubMed Central

    Vespa, Alisa; D'Souza, Sudhir J.A.; Dagnino, Lina

    2005-01-01

    Integrin-linked kinase (ILK) is a multidomain protein involved in cell motility and cell-extracellular matrix interactions. ILK is found in integrin-containing focal adhesions in undifferentiated primary epidermal keratinocytes. Induction of keratinocyte differentiation by treatment with Ca2+ triggers formation of cell–cell junctions, loss of focal adhesions, and ILK distribution to cell borders. We now show that Ca2+ treatment of keratinocytes induces rapid (≤1 h) translocation to the cell membrane of the adherens junction (AJ) proteins E-cadherin and β-catenin. This is followed by slower (>6 h) localization of tight junction (TJ) proteins. The kinetics of ILK movement toward the cell periphery mimics that of AJ components, suggesting that ILK plays a role in the early formation of cell–cell contacts. Whereas the N terminus in ILK mediates localization to cell borders, expression of an ILK deletion mutant incapable of localizing to the cell membrane (ILK 191-452) interferes with translocation of E-cadherin/β-catenin to cell borders, precluding Ca2+-induced AJ formation. Cells expressing ILK 191-452 also fail to form TJ and sealed cell–cell borders and do not form epithelial sheets. Thus, we have uncovered a novel role for ILK in epithelial cell–cell adhesion, independent of its well-established role in integrin-mediated adhesion and migration. PMID:15975904

  5. A novel role for integrin-linked kinase in epithelial sheet morphogenesis.

    PubMed

    Vespa, Alisa; D'Souza, Sudhir J A; Dagnino, Lina

    2005-09-01

    Integrin-linked kinase (ILK) is a multidomain protein involved in cell motility and cell-extracellular matrix interactions. ILK is found in integrin-containing focal adhesions in undifferentiated primary epidermal keratinocytes. Induction of keratinocyte differentiation by treatment with Ca(2+) triggers formation of cell-cell junctions, loss of focal adhesions, and ILK distribution to cell borders. We now show that Ca(2+) treatment of keratinocytes induces rapid (6 h) localization of tight junction (TJ) proteins. The kinetics of ILK movement toward the cell periphery mimics that of AJ components, suggesting that ILK plays a role in the early formation of cell-cell contacts. Whereas the N terminus in ILK mediates localization to cell borders, expression of an ILK deletion mutant incapable of localizing to the cell membrane (ILK 191-452) interferes with translocation of E-cadherin/beta-catenin to cell borders, precluding Ca(2+)-induced AJ formation. Cells expressing ILK 191-452 also fail to form TJ and sealed cell-cell borders and do not form epithelial sheets. Thus, we have uncovered a novel role for ILK in epithelial cell-cell adhesion, independent of its well-established role in integrin-mediated adhesion and migration.

  6. Tank 241-U-103, grab samples 3U-99-1, 3u-99-2 and 3U-99-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STEEN, F.H.

    This document is the final report for tank 241-U-103 grab samples. Three grab samples were collected from riser 13 on March 12, 1999 and received by the 222-S laboratory on March 15, 1999. Analyses were performed in accordance with the Compatibility Grab Sampling and Analysis Plan for Fiscal year 1999 (TSAP) and the Data Quality Objectives for Tank Farms Waste Compatibility Program (DQO). The analytical results are presented in the data summary report. None of the subsamples submitted for differential scanning calorimetry (DSC), total organic carbon (TOC) and plutonium 239 (Pu239) analyses exceeded the notification limits as stated in TSAP.

  7. Hyperreactivity of junctional adhesion molecule A-deficient platelets accelerates atherosclerosis in hyperlipidemic mice.

    PubMed

    Karshovska, Ela; Zhao, Zhen; Blanchet, Xavier; Schmitt, Martin M N; Bidzhekov, Kiril; Soehnlein, Oliver; von Hundelshausen, Philipp; Mattheij, Nadine J; Cosemans, Judith M E M; Megens, Remco T A; Koeppel, Thomas A; Schober, Andreas; Hackeng, Tilman M; Weber, Christian; Koenen, Rory R

    2015-02-13

    Besides their essential role in hemostasis, platelets also have functions in inflammation. In platelets, junctional adhesion molecule (JAM)-A was previously identified as an inhibitor of integrin αIIbβ3-mediated outside-in signaling and its genetic knockdown resulted in hyperreactivity. This gain-of-function was specifically exploited to investigate the role of platelet hyperreactivity in plaque development. JAM-A-deficient platelets showed increased aggregation and cellular and sarcoma tyrosine-protein kinase activation. On αIIbβ3 ligation, JAM-A was shown to be dephosphorylated, which could be prevented by protein tyrosine phosphatase nonreceptor type 1 inhibition. Mice with or without platelet-specific (tr)JAM-A-deficiency in an apolipoprotein e (apoe(-/-)) background were fed a high-fat diet. After ≤12 weeks of diet, trJAM-A(-/-)apoe-/- mice showed increased aortic plaque formation when compared with trJAM-A(+/+) apoe(-/-) controls, and these differences were most evident at early time points. At 2 weeks, the plaques of the trJAM-A(-/-) apoe(-/-) animals revealed increased macrophage, T cell, and smooth muscle cell content. Interestingly, plasma levels of chemokines CC chemokine ligand 5 and CXC-chemokine ligand 4 were increased in the trJAM-A(-/-) apoe(-/-)mice, and JAM-A-deficient platelets showed increased binding to monocytes and neutrophils. Whole-blood perfusion experiments and intravital microscopy revealed increased recruitment of platelets and monocytes to the inflamed endothelium in blood of trJAM-A(-/-) apoe(-/-)mice. Notably, these proinflammatory effects of JAM-A-deficient platelets could be abolished by the inhibition of αIIbβ3 signaling in vitro. Deletion of JAM-A causes a gain-of-function in platelets, with lower activation thresholds and increased inflammatory activities. This leads to an increase of plaque formation, particularly in early stages of the disease. © 2014 American Heart Association, Inc.

  8. ILK mediates LPS-induced vascular adhesion receptor expression and subsequent leucocyte trans-endothelial migration.

    PubMed

    Hortelano, Sonsoles; López-Fontal, Raquel; Través, Paqui G; Villa, Natividad; Grashoff, Carsten; Boscá, Lisardo; Luque, Alfonso

    2010-05-01

    The inflammatory response to injurious agents is tightly regulated to avoid adverse consequences of inappropriate leucocyte accumulation or failed resolution. Lipopolysaccharide (LPS)-activated endothelium recruits leucocytes to the inflamed tissue through controlled expression of membrane-associated adhesion molecules. LPS responses in macrophages are known to be regulated by integrin-linked kinase (ILK); in this study, we investigated the role of ILK in the regulation of the LPS-elicited inflammatory response in endothelium. This study was performed on immortalized mouse endothelial cells (EC) isolated from lung and coronary vasculature. Cells were thoroughly characterized and the role of ILK in the regulation of the LPS response was investigated by suppressing ILK expression using siRNA and shRNA technologies. Phenotypic and functional analyses confirmed that the immortalized cells behaved as true EC. LPS induced the expression of the inflammatory genes E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). ILK knockdown impaired LPS-mediated endothelial activation by preventing the induction of ICAM-1 and VCAM-1. Blockade of the LPS-induced response inhibited the inflammatory-related processes of firm adhesion and trans-endothelial migration of leucocytes. ILK is involved in the expression of cell adhesion molecules by EC activated with the inflammatory stimulus LPS. This reduced expression modulates leucocyte adhesion to the endothelium and the extravasation process. This finding suggests ILK as a potential anti-inflammatory target for the development of vascular-specific treatments for inflammation-related diseases.

  9. Conservation of the Human Integrin-Type Beta-Propeller Domain in Bacteria

    PubMed Central

    Chouhan, Bhanupratap; Denesyuk, Alexander; Heino, Jyrki; Johnson, Mark S.; Denessiouk, Konstantin

    2011-01-01

    Integrins are heterodimeric cell-surface receptors with key functions in cell-cell and cell-matrix adhesion. Integrin α and β subunits are present throughout the metazoans, but it is unclear whether the subunits predate the origin of multicellular organisms. Several component domains have been detected in bacteria, one of which, a specific 7-bladed β-propeller domain, is a unique feature of the integrin α subunits. Here, we describe a structure-derived motif, which incorporates key features of each blade from the X-ray structures of human αIIbβ3 and αVβ3, includes elements of the FG-GAP/Cage and Ca2+-binding motifs, and is specific only for the metazoan integrin domains. Separately, we searched for the metazoan integrin type β-propeller domains among all available sequences from bacteria and unicellular eukaryotic organisms, which must incorporate seven repeats, corresponding to the seven blades of the β-propeller domain, and so that the newly found structure-derived motif would exist in every repeat. As the result, among 47 available genomes of unicellular eukaryotes we could not find a single instance of seven repeats with the motif. Several sequences contained three repeats, a predicted transmembrane segment, and a short cytoplasmic motif associated with some integrins, but otherwise differ from the metazoan integrin α subunits. Among the available bacterial sequences, we found five examples containing seven sequential metazoan integrin-specific motifs within the seven repeats. The motifs differ in having one Ca2+-binding site per repeat, whereas metazoan integrins have three or four sites. The bacterial sequences are more conserved in terms of motif conservation and loop length, suggesting that the structure is more regular and compact than those example structures from human integrins. Although the bacterial examples are not full-length integrins, the full-length metazoan-type 7-bladed β-propeller domains are present, and sometimes two tandem

  10. Galectin-3 modulates the polarized surface delivery of β1-integrin in epithelial cells.

    PubMed

    Hönig, Ellena; Ringer, Karina; Dewes, Jenny; von Mach, Tobias; Kamm, Natalia; Kreitzer, Geri; Jacob, Ralf

    2018-05-10

    Epithelial cells require a precise intracellular transport and sorting machinery in order to establish and maintain their polarized architecture. This machinery includes beta-galactoside binding galectins for glycoprotein targeting to the apical membrane. Galectin-3 sorts cargo destined for the apical plasma membrane into vesicular carriers. After delivery of cargo to the apical milieu, galectin-3 recycles back into sorting organelles. We analyzed the role of galectin-3 in the polarized distribution of β1-integrin in MDCK cells. Integrins are located primarily at the basolateral domain of epithelial cells. We demonstrate that a minor pool of β1-integrin interacts with galectin-3 at the apical plasma membrane. Knockdown of galectin-3 decreases apical delivery of β1-integrin. This loss is restored by supplementation with recombinant galectin-3 and galectin-3 overexpression. Our data suggest that galectin-3 targets newly synthesized β1-integrin to the apical membrane and promotes apical delivery of β1-integrin internalized from the basolateral membrane. In parallel, galectin-3 knockout results in a reduction in cell proliferation and an impairment in proper cyst development. Our results suggest that galectin-3 modulates the surface distribution of β1-integrin and affects the morphogenesis of polarized cells. © 2018. Published by The Company of Biologists Ltd.

  11. The Interaction of Integrin αIIbβ3 with Fibrin Occurs through Multiple Binding Sites in the αIIb β-Propeller Domain*

    PubMed Central

    Podolnikova, Nataly P.; Yakovlev, Sergiy; Yakubenko, Valentin P.; Wang, Xu; Gorkun, Oleg V.; Ugarova, Tatiana P.

    2014-01-01

    The currently available antithrombotic agents target the interaction of platelet integrin αIIbβ3 (GPIIb-IIIa) with fibrinogen during platelet aggregation. Platelets also bind fibrin formed early during thrombus growth. It was proposed that inhibition of platelet-fibrin interactions may be a necessary and important property of αIIbβ3 antagonists; however, the mechanisms by which αIIbβ3 binds fibrin are uncertain. We have previously identified the γ370–381 sequence (P3) in the γC domain of fibrinogen as the fibrin-specific binding site for αIIbβ3 involved in platelet adhesion and platelet-mediated fibrin clot retraction. In the present study, we have demonstrated that P3 can bind to several discontinuous segments within the αIIb β-propeller domain of αIIbβ3 enriched with negatively charged and aromatic residues. By screening peptide libraries spanning the sequence of the αIIb β-propeller, several sequences were identified as candidate contact sites for P3. Synthetic peptides duplicating these segments inhibited platelet adhesion and clot retraction but not platelet aggregation, supporting the role of these regions in fibrin recognition. Mutant αIIbβ3 receptors in which residues identified as critical for P3 binding were substituted for homologous residues in the I-less integrin αMβ2 exhibited reduced cell adhesion and clot retraction. These residues are different from those that are involved in the coordination of the fibrinogen γ404–411 sequence and from auxiliary sites implicated in binding of soluble fibrinogen. These results map the binding of fibrin to multiple sites in the αIIb β-propeller and further indicate that recognition specificity of αIIbβ3 for fibrin differs from that for soluble fibrinogen. PMID:24338009

  12. Astrocyte-to-neuron communication through integrin-engaged Thy-1/CBP/Csk/Src complex triggers neurite retraction via the RhoA/ROCK pathway.

    PubMed

    Maldonado, H; Calderon, C; Burgos-Bravo, F; Kobler, O; Zuschratter, W; Ramirez, O; Härtel, S; Schneider, P; Quest, A F G; Herrera-Molina, R; Leyton, L

    2017-02-01

    Two key proteins for cellular communication between astrocytes and neurons are αvβ3 integrin and the receptor Thy-1. Binding of these molecules in the same (cis) or on adjacent (trans) cellular membranes induces Thy-1 clustering, triggering actin cytoskeleton remodeling. Molecular events that could explain how the Thy-1-αvβ3 integrin interaction signals have only been studied separately in different cell types, and the detailed transcellular communication and signal transduction pathways involved in neuronal cytoskeleton remodeling remain unresolved. Using biochemical and genetic approaches, single-molecule tracking, and high-resolution nanoscopy, we provide evidence that upon binding to αvβ3 integrin, Thy-1 mobility decreased while Thy-1 nanocluster size increased. This occurred concomitantly with inactivation and exclusion of the non-receptor tyrosine kinase Src from the Thy-1/C-terminal Src kinase (Csk)-binding protein (CBP)/Csk complex. The Src inactivation decreased the p190Rho GTPase activating protein phosphorylation, promoting RhoA activation, cofilin, and myosin light chain II phosphorylation and, consequently, neurite shortening. Finally, silencing the adaptor CBP demonstrated that this protein was a key transducer in the Thy-1 signaling cascade. In conclusion, these data support the hypothesis that the Thy-1-CBP-Csk-Src-RhoA-ROCK axis transmitted signals from astrocytic integrin-engaged Thy-1 (trans) to the neuronal actin cytoskeleton. Importantly, the β3 integrin in neurons (cis) was not found to be crucial for neurite shortening. This is the first study to detail the signaling pathway triggered by αvβ3, the endogenous Thy-1 ligand, highlighting the role of membrane-bound integrins as trans acting ligands in astrocyte-neuron communication. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Lubrol-RAFTs in melanoma cells: a molecular platform for tumor-promoting ephrin-B2-integrin-beta1 interaction.

    PubMed

    Meyer, Stefanie; Orsó, Evelyn; Schmitz, Gerd; Landthaler, Michael; Vogt, Thomas

    2007-07-01

    Ephrins control cell motility and matrix adhesion. These functions play a pivotal role in cancer progression, for example, in malignant melanomas. We have previously shown that the ephrin-B2-tumor-promoting action is partly mediated by integrin-beta1 interaction. However, the subcellular prerequisites for molecular interaction like molecular proximity and co-compartmentalization have not been elucidated yet. Specific cholesterol-rich microdomains, termed lipid rafts (RAFTs), are known to be essential for functional ephrin-B2 signalling and integrin-mediated effects. Therefore, we addressed the question whether RAFT co-compartmentalization of both molecules could provide the molecular platform for their tumor-promoting interaction. In this study, we show that overexpressed ephrin-B2 is not only compartmentalized to classical Triton X-100 RAFTs in B16 melanoma cells, but also to the recently defined Lubrol-RAFTs. Interestingly, in the melanoma cells investigated, integrin-beta1 is also preferentially detected in such Lubrol-RAFTs. Accordingly, the presence of ephrin-B2 and integrin-beta1 in RAFTs and their function in cell migration and matrix attachment are highly sensitive to RAFT disruption by cholesterol depletion. Confocal fluorescence microscopy analyses also support the concept of a close molecular proximity and functional interplay of ephrin-B2 and integrin-beta1 in the plasma membrane. We conclude that Lubrol-RAFTs probably represent the platform for tumor-promoting ephrin-B2-integrin-beta1 interaction, which could become an interesting target for future antitumoral therapies.

  14. Positive and negative regulation by SLP-76/ADAP and Pyk2 of chemokine-stimulated T-lymphocyte adhesion mediated by integrin α4β1.

    PubMed

    Dios-Esponera, Ana; Isern de Val, Soledad; Sevilla-Movilla, Silvia; García-Verdugo, Rosa; García-Bernal, David; Arellano-Sánchez, Nohemí; Cabañas, Carlos; Teixidó, Joaquin

    2015-09-15

    Stimulation by chemokines of integrin α4β1-dependent T-lymphocyte adhesion is a crucial step for lymphocyte trafficking. The adaptor Vav1 is required for chemokine-activated T-cell adhesion mediated by α4β1. Conceivably, proteins associating with Vav1 could potentially modulate this adhesion. Correlating with activation by the chemokine CXCL12 of T-lymphocyte attachment to α4β1 ligands, a transient stimulation in the association of Vav1 with SLP-76, Pyk2, and ADAP was observed. Using T-cells depleted for SLP-76, ADAP, or Pyk2, or expressing Pyk2 kinase-inactive forms, we show that SLP-76 and ADAP stimulate chemokine-activated, α4β1-mediated adhesion, whereas Pyk2 opposes T-cell attachment. While CXCL12-promoted generation of high-affinity α4β1 is independent of SLP-76, ADAP, and Pyk2, the strength of α4β1-VCAM-1 interaction and cell spreading on VCAM-1 are targets of regulation by these three proteins. GTPase assays, expression of activated or dominant-negative Rac1, or combined ADAP and Pyk2 silencing indicated that Rac1 activation by CXCL12 is a common mediator response in SLP-76-, ADAP-, and Pyk2-regulated cell adhesion involving α4β1. Our data strongly suggest that chemokine-stimulated associations between Vav1, SLP-76, and ADAP facilitate Rac1 activation and α4β1-mediated adhesion, whereas Pyk2 opposes this adhesion by limiting Rac1 activation. © 2015 Dios-Esponera, Isern de Val, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Intercellular adhesion molecules (ICAMs) and spermatogenesis

    PubMed Central

    Xiao, Xiang; Mruk, Dolores D.; Cheng, C. Yan

    2013-01-01

    BACKGROUND During the seminiferous epithelial cycle, restructuring takes places at the Sertoli–Sertoli and Sertoli–germ cell interface to accommodate spermatogonia/spermatogonial stem cell renewal via mitosis, cell cycle progression and meiosis, spermiogenesis and spermiation since developing germ cells, in particular spermatids, move ‘up and down’ the seminiferous epithelium. Furthermore, preleptotene spermatocytes differentiated from type B spermatogonia residing at the basal compartment must traverse the blood–testis barrier (BTB) to enter the adluminal compartment to prepare for meiosis at Stage VIII of the epithelial cycle, a process also accompanied by the release of sperm at spermiation. These cellular events that take place at the opposite ends of the epithelium are co-ordinated by a functional axis designated the apical ectoplasmic specialization (ES)—BTB—basement membrane. However, the regulatory molecules that co-ordinate cellular events in this axis are not known. METHODS Literature was searched at http://www.pubmed.org and http://scholar.google.com to identify published findings regarding intercellular adhesion molecules (ICAMs) and the regulation of this axis. RESULTS Members of the ICAM family, namely ICAM-1 and ICAM-2, and the biologically active soluble ICAM-1 (sICAM-1) are the likely regulatory molecules that co-ordinate these events. sICAM-1 and ICAM-1 have antagonistic effects on the Sertoli cell tight junction-permeability barrier, involved in Sertoli cell BTB restructuring, whereas ICAM-2 is restricted to the apical ES, regulating spermatid adhesion during the epithelial cycle. Studies in other epithelia/endothelia on the role of the ICAM family in regulating cell movement are discussed and this information has been evaluated and integrated into studies of these proteins in the testis to create a hypothetical model, depicting how ICAMs regulate junction restructuring events during spermatogenesis. CONCLUSIONS ICAMs are crucial

  16. PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility

    PubMed Central

    González Wusener, Ana E.; González, Ángela; Nakamura, Fumihiko; Arregui, Carlos O.

    2016-01-01

    ABSTRACT Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO) cells and PTP1B reconstituted (WT) cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration. PMID:26700725

  17. Ca2+-dependent localization of integrin-linked kinase to cell junctions in differentiating keratinocytes.

    PubMed

    Vespa, Alisa; Darmon, Alison J; Turner, Christopher E; D'Souza, Sudhir J A; Dagnino, Lina

    2003-03-28

    Integrin complexes are necessary for proper proliferation and differentiation of epidermal keratinocytes. Differentiation of these cells is accompanied by down-regulation of integrins and focal adhesions as well as formation of intercellular adherens junctions through E-cadherin homodimerization. A central component of integrin adhesion complexes is integrin-linked kinase (ILK), which can induce loss of E-cadherin expression and epithelial-mesenchymal transformation when ectopically expressed in intestinal and mammary epithelia. In cultured primary mouse keratinocytes, we find that ILK protein levels are independent of integrin expression and signaling, since they remain constant during Ca(2+)-induced differentiation. In contrast, keratinocyte differentiation is accompanied by marked reduction in kinase activity in ILK immunoprecipitates and altered ILK subcellular distribution. Specifically, ILK distributes in close apposition to actin fibers along intercellular junctions in differentiated but not in undifferentiated keratinocytes. ILK localization to cell-cell borders occurs independently of integrin signaling and requires Ca(2+) as well as an intact actin cytoskeleton. Further, and in contrast to what is observed in other epithelial cells, ILK overexpression in differentiated keratinocytes does not promote E-cadherin down-regulation and epithelial-mesenchymal transition. Thus, novel tissue-specific mechanisms control the formation of ILK complexes associated with cell-cell junctions in differentiating murine epidermal keratinocytes.

  18. Efficacy of an inhibitor of adhesion molecule expression (GI270384X) in the treatment of experimental colitis.

    PubMed

    Panés, Julián; Aceituno, Montserrat; Gil, Fèlix; Miquel, Rosa; Piqué, Josep M; Salas, Azucena; McLean, Peter

    2007-10-01

    Modulation of adhesion molecule expression or function is regarded as a promising therapy for inflammatory conditions. This study evaluates the effects of an inhibitor of adhesion molecule expression (GI270384X) in two experimental models of colitis. Colitis of different severity was induced in C57BL/6J mice by administering 1, 2, or 3% dextran sulfate sodium (DSS). GI270384X (3, 10, or 25 mg.kg(-1).day(-1)) was administered as pretreatment or started 3 days after colitis induction. In IL-10-deficient mice, the highest dose was given for 2 wk. The clinical course of colitis, pathological changes, serum inflammatory biomarkers, expression of adhesion molecules, and leukocyte-endothelial cell interactions in colonic venules were measured in mice treated with vehicle or with active drug. In the most severe forms of colitis (2% and 3% DSS and IL-10-deficient mice), the magnitude of colonic inflammation was not modified by treatment with GI270384X. In a less severe form of colitis (1% DSS), GI270384X treatment dose dependently ameliorated the clinical signs of colitis, colonic pathological changes, and serum levels of biomarkers (IL-6 and serum amyloid A). Administration of 25 mg.kg(-1).day(-1) GI270384X abrogated upregulation of ICAM-1 in the inflamed colon but had no effect on VCAM-1 or E-selectin expression. This was associated with a significant reduction in number of rolling and firmly adherent leukocytes in colonic venules. These results indicate that GI270384X is effective in the treatment of experimental colitis of moderate severity. Reduced adhesion molecule expression and leukocyte recruitment to the inflamed intestine contribute to this beneficial effect.

  19. Bone-Induced Expression of Tumoral Integrin beta3 Enables Targeted Nanotherapy of Breast Cancer Metastases

    NASA Astrophysics Data System (ADS)

    Ross, Michael H.

    Breast cancer is the most common cancer for women worldwide, representing approximately 25% of all new cancer cases in this population. While early detection and removal of breast cancer still confined to the primary site results in a good prognosis, approximately one- third of patients will develop distant metastases. In these patients, overall survival is markedly reduced. Of the common sites for breast cancer metastasis, the skeletal system is the most frequent. Treating breast cancer bone metastases has proven particularly difficult for several reasons, such as dissemination of metastases throughout the skeleton, poor drug localization to sites of interest, a lack of tumor-specific targets expressed across breast cancer subtypes, and the chemo-protective nature of the bone microenvironment. This dissertation is focused on investigating a potential tumor-target expressed on breast cancer bone metastases, and to improve drug treatment efficacy against tumor cells in the bone microenvironment. Integrins are heterodimeric cell surface receptors, composed of an alpha and beta subunit from a large family of selectively-compatible integrin subunits. As a heterodimeric complex, integrins can bind to components of the extracellular matrix or to other cells. One particular integrin complex, integrin alphavbeta3, is composed of the tightly regulated integrin subunit beta3 and the more widely expressed alphav subunit. I examined the expression of integrin beta3 on primary breast cancer as compared to metastases in murine cancer models, and observed that integrin expression is significantly elevated on bone metastases as compared to the primary tumors or visceral metastases. In addition, I evaluated tumor-associated integrin beta3 expression on a tissue microarray (TMA) composed of primary breast cancer and patient-matched bone metastatic tissue from 42 patients. Across nearly all patients, tumor-associated integrin beta3 expression was significantly elevated on bone

  20. Access to Bathtub Grab Bars: Evidence of a Policy Gap

    ERIC Educational Resources Information Center

    Birkett, Nicholas; Nair, Rama; Murphy, Maureen; Roberge, Ginette; Lockett, Donna

    2006-01-01

    This paper examines access to bathtub grab bars in privately and publicly owned apartment buildings and explores the profile of seniors who have access to bathtub grab bars. Results indicate that bathtub grab bars were significantly more prevalent in apartments that were publicly owned (91.3%) as compared to privately owned (37.8%) (p lesser than…

  1. Covisualization by computational optical-sectioning microscopy of integrin and associated proteins at the cell membrane of living onion protoplasts

    NASA Technical Reports Server (NTRS)

    Gens, J. S.; Reuzeau, C.; Doolittle, K. W.; McNally, J. G.; Pickard, B. G.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Using higher-resolution wide-field computational optical-sectioning fluorescence microscopy, the distribution of antigens recognized by antibodies against animal beta 1 integrin, fibronectin, and vitronectin has been visualized at the outer surface of enzymatically protoplasted onion epidermis cells and in depectinated cell wall fragments. On the protoplast all three antigens are colocalized in an array of small spots, as seen in raw images, in Gaussian filtered images, and in images restored by two different algorithms. Fibronectin and vitronectin but not beta 1 integrin antigenicities colocalize as puncta in comparably prepared and processed images of the wall fragments. Several control visualizations suggest considerable specifity of antibody recognition. Affinity purification of onion cell extract with the same anti-integrin used for visualization has yielded protein that separates in SDS-PAGE into two bands of about 105-110 and 115-125 kDa. These bands are again recognized by the visualization antibody, which was raised against the extracellular domain of chicken beta 1 integrin, and are also recognized by an antibody against the intracellular domain of chicken beta 1 integrin. Because beta 1 integrin is a key protein in numerous animal adhesion sites, it appears that the punctate distribution of this protein in the cell membranes of onion epidermis represents the adhesion sites long known to occur in cells of this tissue. Because vitronectin and fibronection are matrix proteins that bind to integrin in animals, the punctate occurrence of antigenically similar proteins both in the wall (matrix) and on enzymatically prepared protoplasts reinforces the concept that onion cells have adhesion sites with some similarity to certain kinds of adhesion sites in animals.

  2. Toll-like receptor (TLR)-1/2 triggering of multiple myeloma cells modulates their adhesion to bone marrow stromal cells and enhances bortezomib-induced apoptosis.

    PubMed

    Abdi, Jahangir; Mutis, Tuna; Garssen, Johan; Redegeld, Frank A

    2014-01-01

    In multiple myeloma (MM), the malignant plasma cells usually localize to the bone marrow where they develop drug resistance due to adhesion to stromal cells and various environmental signals. Hence, modulation of this interaction is expected to influence drug sensitivity of MM cells. Toll-like receptor (TLR) ligands have displayed heterogeneous effects on B-cell malignancies and also on MM cells in a few recent studies, but effects on adhesion and drug sensitivity of myeloma cells in the context of bone marrow stromal cells (BMSCs) have never been investigated. In the present study, we explored the modulatory effects of TLR1/2 ligand (Pam3CSK4) on adhesion of human myeloma cells to BMSCs. It is shown that TLR1/2 triggering has opposite effects in different HMCLs on their adhesion to BMSCs. Fravel, L363, UM-6, UM-9 and U266 showed increased adhesion to BMSC in parallel with an increased surface expression of integrin molecules α4 and αVβ3. OPM-1, OPM-2 and NCI-H929 showed a dose-dependent decrease in adhesion upon TLR activation following a downregulation of β7 integrin expression. Importantly, TLR1/2 triggering increased cytotoxic and apoptotic effects of bortezomib in myeloma cells independent of the effect on stromal cell adhesion. Moreover, the apoptosis-enhancing effect of Pam3CSK4 paralleled induction of cleaved caspase-3 protein in FACS analysis suggesting a caspase-dependent mechanism. Our findings uncover a novel role of TLR activation in MM cells in the context of bone marrow microenvironment. Stimulation of TLR1/2 bypasses the protective shield of BMSCs and may be an interesting strategy to enhance drug sensitivity of multiple myeloma cells.

  3. Disulfide bond exchanges in integrins αIIbβ3 and αvβ3 are required for activation and post-ligation signaling during clot retraction.

    PubMed

    Mor-Cohen, Ronit; Rosenberg, Nurit; Averbukh, Yulia; Seligsohn, Uri; Lahav, Judith

    2014-05-01

    Integrin αIIbβ3 mediates platelet adhesion, aggregation and fibrin clot retraction. These processes require activation of αIIbβ3 and post-ligation signaling. Disulfide bond exchanges are involved in αIIbβ3 and αvβ3 activation. In order to investigate the role of integrin activation and disulfide bond exchange during αIIbβ3- and αvβ3-mediated clot retraction, we co-expressed in baby hamster kidney cells wild-type (WT) human αIIb and WT or mutated human β3 that contain single or double cysteine substitutions disrupting C523-C544 or C560-C583 bonds. Flow cytometry was used to measure surface expression and activation state of the integrins. Time-course of fibrin clot retraction was examined. Cells expressed WT or mutated human αIIbβ3 as well as chimeric hamster/human αvβ3. The αIIbβ3 mutants were constitutively active and the thiol blocker dithiobisnitrobenzoic acid (DTNB) did not affect their activation state. WT cells retracted the clot and addition of αvβ3 inhibitors decreased the retraction rate. The active mutants and WT cells activated by anti-LIBS6 antibody retracted the clot faster than untreated WT cells, particularly in the presence of αvβ3 inhibitor. DTNB substantially inhibited clot retraction by WT or double C523S/C544S mutant expressing cells, but minimally affected single C523S, C544S or C560S mutants. Anti-LIBS6-enhanced clot retraction was significantly inhibited by DTNB when added prior to anti-LIBS6. Both αIIbβ3 and αvβ3 contribute to clot retraction without prior activation of the integrins. Activation of αIIbβ3, but not of αvβ3 enhances clot retraction. Both αIIbβ3 activation and post-ligation signaling during clot retraction require disulfide bond exchange. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Internal relationship between symptomatic venous thromboembolism and risk factors: up-regulation of integrin β1, β2 and β3 levels

    PubMed Central

    Duan, Qianglin; Wang, Lemin; Yang, Fan; Li, Jue; Song, Yanli; Gong, Zhu; Li, Guiyuan; Song, Haoming; Zhang, Xiaoyu; Shen, Zugang; Dart, Anthony

    2015-01-01

    Background: To compare different expression of core proteins among venous thromboembolism (VTE) and those with risk factor groups and analyze the relative risk for VTE after integrating integrin β1, β2 and β3 expression. Methods: A total of 1006 subjects were recruited and divided into VTE group, risk factor groups and control (non- risk factor) group. Flow cytometry was performed to detect the expression of integrin β1, β2 and β3. The relative risk for VTE was evaluated with independent, parallel and serial methods. Results: The expression of integrin β1 increased markedly in VTE patients, and those with risk factors (acute infection, malignancy, and autoimmune diseases), respectively (P < 0.001 or 0.01). The expression of integrin β1 in trauma/surgery group was not significantly different with control group (P > 0.05). The expression of integrin β2 or β3 significantly increased in VTE group, but that in risk factor groups was not significantly increased (P > 0.05). Multivariate analysis revealed the trauma/surgery groups had no significantly increased risk for VTE. Conclusions: VTE group patients have significantly increased expression of integrin β1, β2 and β3, and risk factor groups (acute infection, malignancy and autoimmune disease) have significantly increased expression of integrin β1. The significant increase in integrin β2, β3 expression is a marker differentiating of VTE group patients with other risk factor groups. Trauma/surgery group has no increased expression of integrin β1, β2 and β3 as other risk factors. Thus, that trauma/surgery may be not the “true” risk factor for VTE. PMID:26045901

  5. An epigenetic signature of adhesion molecules predicts poor prognosis of ovarian cancer patients

    PubMed Central

    Chang, Ping-Ying; Liao, Yu-Ping; Wang, Hui-Chen; Chen, Yu-Chih; Huang, Rui-Lan; Wang, Yu-Chi; Yuan, Chiou-Chung; Lai, Hung-Cheng

    2017-01-01

    DNA methylation is a promising biomarker for cancer. The epigenetic effects of cell adhesion molecules may affect the therapeutic outcome and the present study examined their effects on survival in ovarian cancer. We integrated methylomics and genomics datasets in The Cancer Genome Atlas (n = 391) and identified 106 highly methylated adhesion-related genes in ovarian cancer tissues. Univariate analysis revealed the methylation status of eight genes related to progression-free survival. In multivariate Cox regression analysis, four highly methylated genes (CD97, CTNNA1, DLC1, HAPLN2) and three genes (LAMA4, LPP, MFAP4) with low methylation were significantly associated with poor progression-free survival. Low methylation of VTN was an independent poor prognostic factor for overall survival after adjustment for age and stage. Patients who carried any two of CTNNA1, DLC1 or MFAP4 were significantly associated with poor progression-free survival (hazard ratio: 1.59; 95% confidence interval: 1.23, 2.05). This prognostic methylation signature was validated in a methylomics dataset generated in our lab (n = 37, hazard ratio: 16.64; 95% confidence interval: 2.68, 103.14) and in another from the Australian Ovarian Cancer Study (n = 91, hazard ratio: 2.43; 95% confidence interval: 1.11, 5.36). Epigenetics of cell adhesion molecules is related to ovarian cancer prognosis. A more comprehensive methylomics of cell adhesion molecules is needed and may advance personalized treatment with adhesion molecule-related drugs. PMID:28881822

  6. Non-contrast MRI diagnosis of adhesive capsulitis of the shoulder.

    PubMed

    Chi, Andrew S; Kim, John; Long, Suzanne S; Morrison, William B; Zoga, Adam C

    To investigate non-contrast MRI findings of clinical adhesive capsulitis. 31 non-contrast, non-arthrographic, shoulder MRIs were evaluated for coracohumeral ligament thickness, rotator interval infiltration, and axillary recess thickening/edema. In detection of adhesive capsulitis, sensitivity is 76.7% and specificity is 53.3% for coracohumeral ligament thickening, sensitivity is 66.7% and specificity is 55.2% for coracohumeral ligament thickening and rotator interval infiltration, and sensitivity is 23.3% and specificity is 86.7% for coracohumeral ligament thickening, rotator interval infiltration, and axillary recess thickening/edema. Adhesive capsulitis can be accurately diagnosed on non-contrast MRI shoulder examinations with appropriate clinical criteria without direct MR arthrography. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Dual mechanism of integrin αIIbβ3 closure in procoagulant platelets.

    PubMed

    Mattheij, Nadine J A; Gilio, Karen; van Kruchten, Roger; Jobe, Shawn M; Wieschhaus, Adam J; Chishti, Athar H; Collins, Peter; Heemskerk, Johan W M; Cosemans, Judith M E M

    2013-05-10

    Inactivation of integrin αIIbβ3 reverses platelet aggregate formation upon coagulation. Platelets from patient (Scott) and mouse (Capn1(-/-) and Ppif(-/-)) blood reveal a dual mechanism of αIIbβ3 inactivation: by calpain-2 cleavage of integrin-associated proteins and by cyclophilin D/TMEM16F-dependent phospholipid scrambling. These data provide novel insight into the switch mechanisms from aggregating to procoagulant platelets. Aggregation of platelets via activated integrin αIIbβ3 is a prerequisite for thrombus formation. Phosphatidylserine-exposing platelets with a key role in the coagulation process disconnect from a thrombus by integrin inactivation via an unknown mechanism. Here we show that αIIbβ3 inactivation in procoagulant platelets relies on a sustained high intracellular Ca(2+), stimulating intracellular cleavage of the β3 chain, talin, and Src kinase. Inhibition of calpain activity abolished protein cleavage, but only partly suppressed αIIbβ3 inactivation. Integrin αIIbβ3 inactivation was unchanged in platelets from Capn1(-/-) mice, suggesting a role of the calpain-2 isoform. Scott syndrome platelets, lacking the transmembrane protein TMEM16F and having low phosphatidylserine exposure, displayed reduced αIIbβ3 inactivation with the remaining activity fully dependent on calpain. In platelets from Ppif(-/-) mice, lacking mitochondrial permeability transition pore (mPTP) formation, agonist-induced phosphatidylserine exposure and αIIbβ3 inactivation were reduced. Treatment of human platelets with cyclosporin A gave a similar phenotype. Together, these data point to a dual mechanism of αIIbβ3 inactivation via calpain(-2) cleavage of integrin-associated proteins and via TMEM16F-dependent phospholipid scrambling with an assistant role of mPTP formation.

  8. The role of integrin α8β1 in fetal lung morphogenesis and injury

    PubMed Central

    Benjamin, John T.; Gaston, David C.; Halloran, Brian A.; Schnapp, Lynn M.; Zent, Roy; Prince, Lawrence S.

    2009-01-01

    Prenatal inflammation prevents normal lung morphogenesis and leads to bronchopulmonary dysplasia (BPD), a common complication of preterm birth. We previously demonstrated in a bacterial endotoxin mouse model of BPD that disrupting fibronectin localization in the fetal lung mesenchyme causes arrested saccular airway branching. In this study we show that expression of the fibronectin receptor, integrin α8β1, is decreased in the lung mesenchyme in the same inflammation model suggesting it is required for normal lung development. We verified a role for integrin α8β1 in lung development using integrin α8-null mice, which develop fusion of the medial and caudal lobes as well as abnormalities in airway division. We further show in vivo and vitro that α8-null fetal lung mesenchymal cells fail to form stable adhesions and have increased migration. Thus we propose that integrin α8β1 plays a critical role in lung morphogenesis by regulating mesenchymal cell adhesion and migration. Furthermore, our data suggests that disruption of the interactions between extracellular matrix and integrin α8β1 may contribute to the pathogenesis of BPD. PMID:19769957

  9. Interaction of tumor and host cells with adhesion and extracellular matrix molecules in the development of multiple myeloma.

    PubMed

    Teoh, G; Anderson, K C

    1997-02-01

    Adhesion molecules play an important role in the growth regulation and migration of multiple myeloma (MM) cells. They mediate homing of MM cells to the bone marrow and MM cell to bone marrow stromal cell adhesion, with resultant interleukin-6 related autocrine and paracine growth and antiapoptotic affects. Their pattern of expression on tumor cells correlates with the development of plasma cell leukemia or extramedullary disease. Clinically, expression of adhesion molecules on tumor cells or in the serum has already shown prognostic utility. Finally, since adhesion molecules are involved at multiple steps in the pathogenesis of MM, therapeutic studies may target these molecules.

  10. Utilizing Fibronectin Integrin-Binding Specificity to Control Cellular Responses

    PubMed Central

    Bachman, Haylee; Nicosia, John; Dysart, Marilyn; Barker, Thomas H.

    2015-01-01

    Significance: Cells communicate with the extracellular matrix (ECM) protein fibronectin (Fn) through integrin receptors on the cell surface. Controlling integrin–Fn interactions offers a promising approach to directing cell behavior, such as adhesion, migration, and differentiation, as well as coordinated tissue behaviors such as morphogenesis and wound healing. Recent Advances: Several different groups have developed recombinant fragments of Fn that can control epithelial to mesenchymal transition, sequester growth factors, and promote bone and wound healing. It is thought that these physiological responses are, in part, due to specific integrin engagement. Furthermore, it has been postulated that the integrin-binding domain of Fn is a mechanically sensitive switch that drives binding of one integrin heterodimer over another. Critical Issues: Although computational simulations have predicted the mechano-switch hypothesis and recent evidence supports the existence of varying strain states of Fn in vivo, experimental evidence of the Fn integrin switch is still lacking. Future Directions: Evidence of the integrin mechano-switch will enable the development of new Fn-based peptides in tissue engineering and wound healing, as well as deepen our understanding of ECM pathologies, such as fibrosis. PMID:26244106

  11. Modeled Microgravity Disrupts Collagen I/Integrin Signaling During Osteoblastic Differentiation of Human Mesenchymal Stem Cells

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie E.; Zayzafoon, Majd; Gonda, Steven R.; Gathings, William E.; McDonald, Jay M.

    2004-01-01

    Spaceflight leads to reduced bone mineral density in weight bearing bones that is primarily attributed to a reduction in bone formation. We have previously demonstrated severely reduced osteoblastogenesis of human mesenchymal stem cells (hMSC) following seven days culture in modeled microgravity. One potential mechanism for reduced osteoblastic differentiation is disruption of type I collagen-integrin interactions and reduced integrin signaling. Integrins are heterodimeric transmembrane receptors that bind extracellular matrix proteins and produce signals essential for proper cellular function, survival, and differentiation. Therefore, we investigated the effects of modeled microgravity on integrin expression and function in hMSC. We demonstrate that seven days of culture in modeled microgravity leads to reduced expression of the extracellular matrix protein, type I collagen (Col I). Conversely, modeled microgravity consistently increases Col I-specific alpha2 and beta1 integrin protein expression. Despite this increase in integrin sub-unit expression, autophosphorylation of adhesion-dependent kinases, focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2), is significantly reduced. Activation of Akt is unaffected by the reduction in FAK activation. However, reduced downstream signaling via the Ras-MAPK pathway is evidenced by a reduction in Ras and ERK activation. Taken together, our findings indicate that modeled microgravity decreases integrin/MAPK signaling, which likely contributes to the observed reduction in osteoblastogenesis.

  12. Silibinin inhibits fibronectin induced motility, invasiveness and survival in human prostate carcinoma PC3 cells via targeting integrin signaling

    PubMed Central

    Deep, Gagan; Kumar, Rahul; Jain, Anil K; Agarwal, Chapla; Agarwal, Rajesh

    2014-01-01

    Prostate cancer (PCA) is the 2nd leading cause of cancer-related deaths among men in the United States. Preventing or inhibiting metastasis-related events through non-toxic agents could be a useful approach for lowering high mortality among PCA patients. We have earlier reported that natural flavonoid silibinin possesses strong anti-metastatic efficacy against PCA however, mechanism/s of its action still remains largely unknown. One of the major events during metastasis is the replacement of cell-cell interaction with integrins-based cell-matrix interaction that controls motility, invasiveness and survival of cancer cells. Accordingly, here we examined silibinin effect on advanced human PCA PC3 cells' interaction with extracellular matrix component fibronectin. Silibinin (50-200 μM) treatment significantly decreased the fibronectin (5 μg/ml)-induced motile morphology via targeting actin cytoskeleton organization in PC3 cells. Silibinin also decreased the fibronectin-induced cell proliferation and motility but significantly increased cell death in PC3 cells. Silibinin also inhibited the PC3 cells invasiveness in Transwell invasion assays with fibronectin or cancer associated fibroblasts (CAFs) serving as chemoattractant. Importantly, PC3-luc cells cultured on fibronectin showed rapid dissemination and localized in lungs following tail vein injection in athymic male nude mice; however, in silibinin-treated PC3-luc cells, dissemination and lung localization was largely compromised. Molecular analyses revealed that silibinin treatment modulated the fibronectin-induced expression of integrins (α5, αV, β1 and β3), actin-remodeling (FAK, Src, GTPases, ARP2 and cortactin), apoptosis (cPARP and cleaved caspase 3), EMT (E-cadherin and β-catenin), and cell survival (survivin and Akt) related signaling molecules in PC3 cells. Furthermore, PC3-xenograft tissue analyses confirmed the inhibitory effect of silibinin on fibronectin and integrins expression. Together, these

  13. Silibinin inhibits fibronectin induced motility, invasiveness and survival in human prostate carcinoma PC3 cells via targeting integrin signaling.

    PubMed

    Deep, Gagan; Kumar, Rahul; Jain, Anil K; Agarwal, Chapla; Agarwal, Rajesh

    2014-10-01

    Prostate cancer (PCA) is the 2nd leading cause of cancer-related deaths among men in the United States. Preventing or inhibiting metastasis-related events through non-toxic agents could be a useful approach for lowering high mortality among PCA patients. We have earlier reported that natural flavonoid silibinin possesses strong anti-metastatic efficacy against PCA however, mechanism/s of its action still remains largely unknown. One of the major events during metastasis is the replacement of cell-cell interaction with integrins-based cell-matrix interaction that controls motility, invasiveness and survival of cancer cells. Accordingly, here we examined silibinin effect on advanced human PCA PC3 cells' interaction with extracellular matrix component fibronectin. Silibinin (50-200 μM) treatment significantly decreased the fibronectin (5 μg/ml)-induced motile morphology via targeting actin cytoskeleton organization in PC3 cells. Silibinin also decreased the fibronectin-induced cell proliferation and motility but significantly increased cell death in PC3 cells. Silibinin also inhibited the PC3 cells invasiveness in Transwell invasion assays with fibronectin or cancer associated fibroblasts (CAFs) serving as chemoattractant. Importantly, PC3-luc cells cultured on fibronectin showed rapid dissemination and localized in lungs following tail vein injection in athymic male nude mice; however, in silibinin-treated PC3-luc cells, dissemination and lung localization was largely compromised. Molecular analyses revealed that silibinin treatment modulated the fibronectin-induced expression of integrins (α5, αV, β1 and β3), actin-remodeling (FAK, Src, GTPases, ARP2 and cortactin), apoptosis (cPARP and cleaved caspase 3), EMT (E-cadherin and β-catenin), and cell survival (survivin and Akt) related signaling molecules in PC3 cells. Furthermore, PC3-xenograft tissue analyses confirmed the inhibitory effect of silibinin on fibronectin and integrins expression. Together, these

  14. Antibody Against Integrin Lymphocyte Function-Associated Antigen 1 Inhibits HIV Type 1 Infection in Primary Cells Through Caspase-8-Mediated Apoptosis

    PubMed Central

    Walker, Tiffany N.; Cimakasky, Lisa M.; Coleman, Ebony M.; Madison, M. Nia

    2013-01-01

    Abstract HIV-1 infection induces formation of a virological synapse wherein CD4, chemokine receptors, and cell-adhesion molecules such as lymphocyte function-associated antigen 1 (LFA-1) form localized domains on the cell surface. Studies show that LFA-1 on the surface of HIV-1 particles retains its adhesion function and enhances virus attachment to susceptible cells by binding its counterreceptor intercellular adhesion molecule 1 (ICAM-1). This virus–cell interaction augments virus infectivity by facilitating binding and entry events. In this study, we demonstrate that inhibition of the LFA-1/ICAM-1 interaction by a monoclonal antibody leads to decreased virus production and spread in association with increased apoptosis of HIV-infected primary T cells. The data indicate that the LFA-1/ICAM-1 interaction may limit apoptosis in HIV-1-infected T cells. This phenomenon appears similar to anoikis wherein epithelial cells are protected from apoptosis conferred by ligand-bound integrins. These results have implications for further understanding HIV pathogenesis and replication in peripheral compartments and lymphoid organs. PMID:22697794

  15. Prognostic role of integrin β1, E-cadherin, and rac1 expression in small cell lung cancer.

    PubMed

    Chang, Myung Hee; Lee, Kyungji; Lee, Kyo-Young; Kim, Yeon Sil; Kim, Young Kyoon; Kang, Jin-Hyoung

    2012-01-01

    Integrin β(1) mediates cellular adhesion to the extracellular matrix (ECM) and is correlated with highly invasive and metastatic behavior in small cell lung cancer (SCLC). E-cadherin (ECAD) is a calcium-dependent cell-cell adhesion receptor that restricts invasion of cells and reduces metastasis. Rac1 is involved in the regulation of the actin cytoskeleton, adhesion, migration, invasion, and tumor metastasis. The aim of this study was to examine integrin β(1) , ECAD and rac1 expression in SCLC and to analyze the prognostic value of these markers in patients with SCLC. We analyzed integrin β(1) , ECAD, and rac1 expression in 112 SCLC tissues by immunohistochemical staining. Correlative analyses between integrin β(1) , ECAD, and rac1 expression and cliniopathological factors were performed. A total of 65 patients had extensive disease (ED) (58%), and 47 had limited disease (LD) (42%). The median follow-up duration was 61 months (range: 14-117 months), and the median progression free survival (PFS) and overall survival (OS) were 6.1 months (range: 4.8-7.4 months) and 9.7 months (range: 8.1-11.3 months), respectively. The expression of integrin β(1) , ECAD, and rac1 protein was observed in 64, 73, and 99 of SCLC tissues, respectively. The correlative analyses between integrin β(1) , ECAD, or rac1 expression and various clinical parameters did not show any statistical significance. However, the ECAD expression was associated with OS in the entire cohort. In contrast, the expression of integrin β(1) and rac1 was not associated with PFS or OS. In a subgroup analysis, patients with less than two metastasis had significantly longer OS (p = 0.047) if their tumors expressed integrin β(1) compared to those without integrin β(1) expression. In addition, OS was longer for patients with ECAD positive tumors compared to those whose tumors did not express ECAD in males (p = 0.032) and patients who never smoked (p < 0.001). Multivariate analysis showed that LD (p = 0

  16. Persistence of fan-shaped keratocytes is a matrix-rigidity-dependent mechanism that requires α5β1 integrin engagement.

    PubMed

    Riaz, Maryam; Versaevel, Marie; Mohammed, Danahe; Glinel, Karine; Gabriele, Sylvain

    2016-09-28

    Despite the importance of matrix rigidity on cell functions, many aspects of the mechanosensing process in highly migratory cells remain elusive. Here, we studied the migration of highly motile keratocytes on culture substrates with similar biochemical properties and rigidities spanning the range between soft tissues (~kPa) and stiff culture substrates (~GPa). We show that morphology, polarization and persistence of motile keratocytes are regulated by the matrix stiffness over seven orders of magnitude, without changing the cell spreading area. Increasing the matrix rigidity leads to more F-actin in the lamellipodia and to the formation of mature contractile actomyosin fibers that control the cell rear retraction. Keratocytes remain rounded and form nascent adhesions on compliant substrates, whereas large and uniformly distributed focal adhesions are formed on fan-shaped keratocytes migrating on rigid surfaces. By combining poly-L-lysine, fibronectin and vitronectin coatings with selective blocking of α v β 3 or α 5 β 1 integrins, we show that α V β 3 integrins permit the spreading of keratocytes but are not sufficient for polarization and rigidity sensing that require the engagement of α 5 β 1 integrins. Our study demonstrates a matrix rigidity-dependent regulation of the directional persistence in motile keratocytes and refines the role of α v β 3 and α 5 β 1 integrins in the molecular clutch model.

  17. Integrin αMβ2 is differently expressed by subsets of human osteoclast precursors and mediates adhesion of classical monocytes to bone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprangers, Sara, E-mail: s.l.sprangers@acta.nl; Schoenmaker, Ton, E-mail: t.schoenmaker@acta.nl; Department of Periodontology, Academic Centre for Dentistry Amsterdam

    Bone-degrading osteoclasts are formed through fusion of their monocytic precursors. In the population of human peripheral blood monocytes, three distinct subsets have been identified: classical, intermediate and non-classical monocytes. We have previously shown that when the monocyte subsets are cultured on bone, significantly more osteoclasts are formed from classical monocytes than from intermediate or non-classical monocytes. Considering that this difference does not exist when monocyte subsets are cultured on plastic, we hypothesized that classical monocytes adhere better to the bone surface compared to intermediate and non-classical monocytes. To investigate this, the different monocyte subsets were isolated from human peripheral bloodmore » and cultured on slices of human bone in the presence of the cytokine M-CSF. We found that classical monocytes adhere better to bone due to a higher expression of the integrin αMβ2 and that their ability to attach to bone is significantly decreased when the integrin is blocked. This suggests that integrin αMβ2 mediates attachment of osteoclast precursors to bone and thereby enables the formation of osteoclasts.« less

  18. Natalizumab in the treatment of Crohn’s disease

    PubMed Central

    Guagnozzi, Danila; Caprilli, Renzo

    2008-01-01

    The pathogenesis of Crohn’s disease (CD) is multifactorial and the activation of specific pathways of immunological system is important. In particular, the adhesion molecules (integrins) mediate the selective binding between the leukocytes and the endothelial cells regulating the migration of leukocytes into the normal and inflamed intestine. Selective adhesion molecule inhibitors interfere with the migration of leukocytes to the sites of inflammation by targeting adhesion molecules (α4-integrin or α4β7-integrin). Natalizumab is a humanized IgG4 anti-α4-integrin monoclonal antibody that inhibits both α4β7-integrin/mucosal addressin-cell adhesion molecule-1 (MadCAM-1) interaction and α4β1/vascular-cell adhesion molecule-1 (VCAM-1) binding. Pooled data from the four studies, analyzed in a Cochrane review, suggest that natalizumab is effective for induction of clinical response and remission in patients with moderately to severely active CD. In particular, natalizumab may be beneficial for patients with active inflammation or chronically active disease despite the use of conventional therapies with high level of C-reactive protein values at baseline time. Nevertheless, many problems about the utilization of natalizumab in CD remain unsolved (such as the high placebo response, the final definition of dosage and timing schedule, the definition of outcomes and the development of adverse events). PMID:19707360

  19. Integrins in bone metastasis formation and potential therapeutic implications.

    PubMed

    Clëzardin, P

    2009-11-01

    Integrins constitute a family of cell surface receptors that are heterodimers composed of noncovalently associated alpha and beta subunits. Integrins bind to extracellular matrix proteins and immunogobulin superfamily molecules. They exert a stringent control on cell migration, survival and proliferation. However, their expression and functions are often deregulated in cancer, and many lines of evidence implicate them as key regulators during progression from primary tumor growth to metastasis. Here, we review the role of integrins in bone metastasis formation and present evidence that the use of integrin-targeted therapeutic agents may be an efficient strategy to block tumor metastasis.

  20. Cryptotanshinone inhibits oxidized LDL-induced adhesion molecule expression via ROS dependent NF-κB pathways

    PubMed Central

    Zhao, Wenwen; Wu, Chuanhong; Chen, Xiuping

    2016-01-01

    ABSTRACT Adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, play important roles in the initial stage of atherosclerosis. Cryptotanshinone (CPT), a natural compound isolated from Salvia miltiorrhiza Bunge, exhibits anti-atherosclerotic activity although the underlying mechanisms remain elusive. In this study, the protective effect of CPT against oxidized low-density lipoprotein (ox-LDL)-induced adhesion molecule expression was investigated in human umbilical vein endothelial cells. Ox-LDL significantly induced ICAM-1, VCAM-1, and E-selectin expression at the mRNA and protein levels but reduced eNOS phosphorylation and NO generation, which were reversed by CPT pretreatment. Sodium nitroprusside, a NO donor, N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger, and BAY117082, a NF-κB inhibitor, inhibited ox-LDL-induced ICAM-1, VCAM-1, and E-selectin expression. Ox-LDL-induced ROS production was significantly inhibited by CPT and NAC. Furthermore, ox-LDL activated the NF-κB signaling pathway by inducing phosphorylation of IKKβ and IκBα, promoting the interaction of IKKβ and IκBα, and increasing p65 nuclear translocation, which were significantly inhibited by CPT. In addition, CPT, NAC, and BAY117082 inhibited ox-LDL-induced membrane expression of ICAM-1, VCAM-1, E-selectin, and endothelial–monocyte adhesion and restored eNOS phosphorylation and NO generation. Results suggested that CPT inhibited ox-LDL-induced adhesion molecule expression by decreasing ROS and inhibiting the NF-κB pathways, which provides new insight into the anti-atherosclerotic mechanism of CPT. PMID:26647279

  1. Adhesion molecules, chemokines and matrix metallo-proteinases response after albendazole and albendazole plus steroid therapy in swine neurocysticercosis.

    PubMed

    Singh, Satyendra K; Prasad, Kashi N; Singh, Aloukick K; Gupta, Kamlesh K; Singh, Amrita; Tripathi, Mukesh; Gupta, Rakesh K

    2017-11-01

    The treatment of neurocysticercosis (NCC) varies with location, number and stage of the Taenia solium cysticerci (cysts). Albendazole (ABZ) effectively kills cysticerci, and subsequently induces neuro-inflammation facilitated by leukocyte infiltration. We hypothesize that immune response varies around drug responder (degenerating/dying) and non-responder (viable) cysts after ABZ and ABZ plus steroid (ABZS) therapy, which may determine the disease pathogenesis. Twenty cysticercotic swine were treated with ABZ (n = 10; group1) and ABZS (n = 10; group2). Expression of adhesion molecules, chemokines and matrix metallo-proteinases (MMPs) was measured by qRT-PCR (quantitative reverse transcriptase-polymerase chain reaction) and ELISA. Gelatin gel zymography was performed to detect the activity of MMP-2 and -9. In group1, ABZ therapy induced higher expressions of ICAM-1 (intercellular adhesion molecule-1), VCAM-1 (vascular cell adhesion molecule-1), E-selectin, MCP-1 (monocyte chemotactic protein-1), Eotaxin-1, MIP-1α (macrophage inflammatory protein-1α), RANTES (regulated on activation, normal T cell expressed and secreted), MMP-2 and MMP-9 around ABZ responder (AR) cysts. Three pigs with cyst burdens ≥10 died following ABZ therapy. However, in group2, moderate expressions of ICAM-1, VCAM-1, E-selectin, RANTES and MMP-9 were associated with ABZS responder (ASR), whereas low expressions of these molecules were associated with ABZS non-responder (ASNR) cysts. In conclusion, ABZ alone therapy is not safe since it causes death of pigs due to higher inflammatory immune response around dying cysts. However, combination therapy is an effective treatment regimen even with the high cyst burden. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Matrix Metalloproteinase-2 Cleavage of the β1 Integrin Ectodomain Facilitates Colon Cancer Cell Motility*

    PubMed Central

    Kryczka, Jakub; Stasiak, Marta; Dziki, Lukasz; Mik, Michał; Dziki, Adam; Cierniewski, Czesław S.

    2012-01-01

    Cancer cell invasion is a key element in metastasis that requires integrins for adhesion/de-adhesion, as well as matrix metalloproteinases (MMPs) for focalized proteolysis. Herein we show that MMP-2 is up-regulated in resected colorectal tumors and degrades β1 integrins with the release of fragments containing the β1 I-domain. The β1 cleavage pattern is similar to that produced by digestion of α5β1 and α2β1 with MMP-2. Two such fragments, at 25 and 75 kDa, were identified after immunoprecipitation, with monoclonal antibody BD610468 reacting with the NH2-terminal I-like ectodomain followed by SDS-PAGE and microsequencing using electrospray (ISI-Q-TOF-Micromass) spectrometry. Cleavage of the β1 integrin can be abolished by inhibition of MMP-2 activity; it can be induced by up-regulation of MMP-2 expression, as exemplified by HT29 colon cancer cells transfected with pCMV6-XL5-MMP-2. Co-immunoprecipitation studies of colon cancer cells showed that the β1 integrin subunit is associated with MMP-2. The MMP-2-mediated shedding of the I-like domain from β1 integrins resulted in decreased adhesion of colon cancer cells to collagen and fibronectin, thus abolishing their receptivity. Furthermore, such cells showed enhanced motility as evaluated by a “wound healing-like” assay and time-lapse microscopy, indicating their increased invasiveness. Altogether, our data demonstrate that MMP-2 amplifies the motility of colon cancer cells, not only by digesting the extracellular matrix components in the vicinity of cancer cells but also by inactivating their major β1 integrin receptors. PMID:22898815

  3. Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-selectin and beta2-integrin

    NASA Technical Reports Server (NTRS)

    Konstantopoulos, K.; Neelamegham, S.; Burns, A. R.; Hentzen, E.; Kansas, G. S.; Snapp, K. R.; Berg, E. L.; Hellums, J. D.; Smith, C. W.; McIntire, L. V.; hide

    1998-01-01

    BACKGROUND: After activation, platelets adhere to neutrophils via P-selectin and beta2-integrin. The molecular mechanisms and adhesion events in whole blood exposed to venous levels of hydrodynamic shear in the absence of exogenous activation remain unknown. METHODS AND RESULTS: Whole blood was sheared at approximately 100 s(-1). The kinetics of neutrophil-platelet adhesion and neutrophil aggregation were measured in real time by flow cytometry. P-selectin was upregulated to the platelet surface in response to shear and was the primary factor mediating neutrophil-platelet adhesion. The extent of neutrophil aggregation increased linearly with platelet adhesion to neutrophils. Blocking either P-selectin, its glycoprotein ligand PSGL-1, or both simultaneously by preincubation with a monoclonal antibody resulted in equivalent inhibition of neutrophil-platelet adhesion (approximately 30%) and neutrophil aggregation (approximately 70%). The residual amount of neutrophil adhesion was blocked with anti-CD11b/CD18. Treatment of blood with prostacyclin analogue ZK36374, which raises cAMP levels in platelets, blocked P-selectin upregulation and neutrophil aggregation to baseline. Complete abrogation of platelet-neutrophil adhesion required both ZK36374 and anti-CD18. Electron microscopic observations of fixed blood specimens revealed that platelets augmented neutrophil aggregation both by forming bridges between neutrophils and through contact-mediated activation. CONCLUSIONS: The results are consistent with a model in which venous levels of shear support platelet adherence to neutrophils via P-selectin binding PSGL-1. This interaction alone is sufficient to mediate neutrophil aggregation. Abrogation of platelet adhesion and aggregation requires blocking Mac-1 in addition to PSGL-1 or P-selectin. The described mechanisms are likely of key importance in the pathogenesis and progression of thrombotic disorders that are exacerbated by leukocyte-platelet aggregation.

  4. Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-selectin and beta2-integrin.

    PubMed

    Konstantopoulos, K; Neelamegham, S; Burns, A R; Hentzen, E; Kansas, G S; Snapp, K R; Berg, E L; Hellums, J D; Smith, C W; McIntire, L V; Simon, S I

    1998-09-01

    After activation, platelets adhere to neutrophils via P-selectin and beta2-integrin. The molecular mechanisms and adhesion events in whole blood exposed to venous levels of hydrodynamic shear in the absence of exogenous activation remain unknown. Whole blood was sheared at approximately 100 s(-1). The kinetics of neutrophil-platelet adhesion and neutrophil aggregation were measured in real time by flow cytometry. P-selectin was upregulated to the platelet surface in response to shear and was the primary factor mediating neutrophil-platelet adhesion. The extent of neutrophil aggregation increased linearly with platelet adhesion to neutrophils. Blocking either P-selectin, its glycoprotein ligand PSGL-1, or both simultaneously by preincubation with a monoclonal antibody resulted in equivalent inhibition of neutrophil-platelet adhesion (approximately 30%) and neutrophil aggregation (approximately 70%). The residual amount of neutrophil adhesion was blocked with anti-CD11b/CD18. Treatment of blood with prostacyclin analogue ZK36374, which raises cAMP levels in platelets, blocked P-selectin upregulation and neutrophil aggregation to baseline. Complete abrogation of platelet-neutrophil adhesion required both ZK36374 and anti-CD18. Electron microscopic observations of fixed blood specimens revealed that platelets augmented neutrophil aggregation both by forming bridges between neutrophils and through contact-mediated activation. The results are consistent with a model in which venous levels of shear support platelet adherence to neutrophils via P-selectin binding PSGL-1. This interaction alone is sufficient to mediate neutrophil aggregation. Abrogation of platelet adhesion and aggregation requires blocking Mac-1 in addition to PSGL-1 or P-selectin. The described mechanisms are likely of key importance in the pathogenesis and progression of thrombotic disorders that are exacerbated by leukocyte-platelet aggregation.

  5. Levels of Soluble Adhesion Molecules PECAM-1 and P-Selectin are Decreased in Children with Autism Spectrum Disorder

    PubMed Central

    Onore, Charity E.; Nordahl, Christine Wu; Young, Gregory S.; Van de Water, Judy A.; Rogers, Sally J.; Ashwood, Paul

    2012-01-01

    Background Although the etiopathology of Autism Spectrum Disorder (ASD) is not clear there is increasing evidence that dysfunction in the immune system affects many children with ASD. Findings of immune dysfunction in ASD include increases in inflammatory cytokines, chemokines and microglial activity in brain tissue and CSF, as well as abnormal peripheral immune cell function. Methods Adhesion molecules, such as platelet endothelial adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), P-Selectin, and L-Selectin, function to facilitate leukocyte transendothelial migration. We assessed concentrations of soluble adhesion molecules, sPECAM-1, sICAM-1, sVCAM-1, sP-Selectin, and sL-Selectin in the plasma of 49 participants with ASD, and 31 typically developing controls of the same age, all of whom were enrolled as part of the Autism Phenome Project (APP). Behavioral assessment, the levels of soluble adhesion molecules, head circumference and MRI measurements of brain volume were compared in the same subjects. Results Levels of sPECAM-1 and sP-Selectin were significantly reduced in the ASD group compared to typically developing controls (p < 0.02). Soluble PECAM-1 levels were negatively associated with repetitive behavior and abnormal brain growth in children with ASD (p=0.03). Conclusions As adhesion molecules modulate the permeability and signaling at the blood brain barrier as well as leukocyte infiltration into the CNS, current data suggests a role for these molecules in the complex pathophysiology of ASD. PMID:22717029

  6. The Synaptic Cell Adhesion Molecule, SynCAM1, Mediates Astrocyte-to-Astrocyte and Astrocyte-to-GnRH Neuron Adhesiveness in the Mouse Hypothalamus

    PubMed Central

    Sandau, Ursula S.; Mungenast, Alison E.; McCarthy, Jack; Biederer, Thomas; Corfas, Gabriel

    2011-01-01

    We previously identified synaptic cell adhesion molecule 1 (SynCAM1) as a component of a genetic network involved in the hypothalamic control of female puberty. Although it is well established that SynCAM1 is a synaptic adhesion molecule, its contribution to hypothalamic function is unknown. Here we show that, in addition to the expected neuronal localization illustrated by its presence in GnRH neurons, SynCAM1 is expressed in hypothalamic astrocytes. Cell adhesion assays indicated that SynCAM is recognized by both GnRH neurons and astrocytes as an adhesive partner and promotes cell-cell adhesiveness via homophilic, extracellular domain-mediated interactions. Alternative splicing of the SynCAM1 primary mRNA transcript yields four mRNAs encoding membrane-spanning SynCAM1 isoforms. Variants 1 and 4 are predicted to be both N and O glycosylated. Hypothalamic astrocytes and GnRH-producing GT1-7 cells express mainly isoform 4 mRNA, and sequential N- and O-deglycosylation of proteins extracted from these cells yields progressively smaller SynCAM1 species, indicating that isoform 4 is the predominant SynCAM1 variant expressed in astrocytes and GT1-7 cells. Neither cell type expresses the products of two other SynCAM genes (SynCAM2 and SynCAM3), suggesting that SynCAM-mediated astrocyte-astrocyte and astrocyte-GnRH neuron adhesiveness is mostly mediated by SynCAM1 homophilic interactions. When erbB4 receptor function is disrupted in astrocytes, via transgenic expression of a dominant-negative erbB4 receptor form, SynCAM1-mediated adhesiveness is severely compromised. Conversely, SynCAM1 adhesive behavior is rapidly, but transiently, enhanced in astrocytes by ligand-dependent activation of erbB4 receptors, suggesting that erbB4-mediated events affecting SynCAM1 function contribute to regulate astrocyte adhesive communication. PMID:21486931

  7. S-layer proteins from Lactobacillus sp. inhibit bacterial infection by blockage of DC-SIGN cell receptor.

    PubMed

    Prado Acosta, Mariano; Ruzal, Sandra M; Cordo, Sandra M

    2016-11-01

    Many species of Lactobacillus sp. possess Surface(s) layer proteins in their envelope. Among other important characteristics S-layer from Lactobacillus acidophilus binds to the cellular receptor DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin; CD209), which is involved in adhesion and infection of several families of bacteria. In this report we investigate the activity of new S-layer proteins from the Lactobacillus family (Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus helveticus and Lactobacillus kefiri) over the infection of representative microorganisms important to human health. After the treatment of DC-SIGN expressing cells with these proteins, we were able to diminish bacterial infection by up to 79% in both gram negative and mycobacterial models. We discovered that pre-treatment of the bacteria with S-layers from Lactobacillus acidophilus and Lactobacillus brevis reduced bacteria viability but also prevent infection by the pathogenic bacteria. We also proved the importance of the glycosylation of the S-layer from Lactobacillus kefiri in the binding to the receptor and thus inhibition of infection. This novel characteristic of the S-layers proteins may contribute to the already reported pathogen exclusion activity for these Lactobacillus probiotic strains; and might be also considered as a novel enzymatic antimicrobial agents to inhibit bacterial infection and entry to host cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Hypergravity Stimulates the Extracellular Matrix/Integrin-Signaling Axis and Proliferation in Primary Osteoblasts

    NASA Technical Reports Server (NTRS)

    Parra, M.; Vercoutere, W.; Roden, C.; Banerjee, I.; Krauser, W.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.

    2003-01-01

    We set out to determine the molecular mechanisms involved in the proliferative response of primary rat osteoblasts to mechanical stimulation using cell culture centrifugation as a model for hypergravity. We hypothesized that this proliferative response is mediated by specific integrin/Extracellular Matrix (ECM) interactions. To investigate this question we developed a cell culture centrifuge and an automated system that performs cell fixation during hypergravity loading. We generated expression vectors for various focal adhesion and cytoskeletal proteins fused to GFP or dsRed and visualized these structures in transfected (or infected) osteoblasts. The actin cytoskeleton was also visualized using rhodamine-phalloidin staining and Focal Adhesion Kinase (FAK) levels were assessed biochemically. We observed that a 24 hour exposure to 50-g stimulated proliferation compared to the 1-g control when cells were plated on fibronectin, collagen Type I , and collagen Type IV, but not on uncoated tissue culture plastic surfaces. This proliferative response was greatest for osteoblasts grown on fibronectin (2-fold increase over 1-g control) and collagen Type I (1.4 fold increase over 1-g control), suggesting that specific matrices and integrins are involved in the signaling pathways required for proliferation. Exposing osteoblasts grown on different matrices to 10-g or 25-g showed that effects on proliferation depended on both matrix type and loading level. We found that osteoblasts exposed to a short pulse of hypergravity during adhesion spread further and had more GFP-FAK containing focal adhesions compared to their 1-g controls. While overall levels of FAK did not change, more FAK was in the active (phosphorylated) form under hypergravity than in the 1-g controls. Cytoskeletal F-actin organization into filaments was also more prominent after brief exposures to hypergravity during the first five minutes of adhesion. These results suggest that specific integrins sense

  9. WAVE2 Regulates High-Affinity Integrin Binding by Recruiting Vinculin and Talin to the Immunological Synapse▿

    PubMed Central

    Nolz, Jeffrey C.; Medeiros, Ricardo B.; Mitchell, Jason S.; Zhu, Peimin; Freedman, Bruce D.; Shimizu, Yoji; Billadeau, Daniel D.

    2007-01-01

    T-cell-receptor (TCR)-mediated integrin activation is required for T-cell-antigen-presenting cell conjugation and adhesion to extracellular matrix components. While it has been demonstrated that the actin cytoskeleton and its regulators play an essential role in this process, no mechanism has been established which directly links TCR-induced actin polymerization to the activation of integrins. Here, we demonstrate that TCR stimulation results in WAVE2-ARP2/3-dependent F-actin nucleation and the formation of a complex containing WAVE2, ARP2/3, vinculin, and talin. The verprolin-connecting-acidic (VCA) domain of WAVE2 mediates the formation of the ARP2/3-vinculin-talin signaling complex and talin recruitment to the immunological synapse (IS). Interestingly, although vinculin is not required for F-actin or integrin accumulation at the IS, it is required for the recruitment of talin. In addition, RNA interference of either WAVE2 or vinculin inhibits activation-dependent induction of high-affinity integrin binding to VCAM-1. Overall, these findings demonstrate a mechanism in which signals from the TCR produce WAVE2-ARP2/3-mediated de novo actin polymerization, leading to integrin clustering and high-affinity binding through the recruitment of vinculin and talin. PMID:17591693

  10. WAVE2 regulates high-affinity integrin binding by recruiting vinculin and talin to the immunological synapse.

    PubMed

    Nolz, Jeffrey C; Medeiros, Ricardo B; Mitchell, Jason S; Zhu, Peimin; Freedman, Bruce D; Shimizu, Yoji; Billadeau, Daniel D

    2007-09-01

    T-cell-receptor (TCR)-mediated integrin activation is required for T-cell-antigen-presenting cell conjugation and adhesion to extracellular matrix components. While it has been demonstrated that the actin cytoskeleton and its regulators play an essential role in this process, no mechanism has been established which directly links TCR-induced actin polymerization to the activation of integrins. Here, we demonstrate that TCR stimulation results in WAVE2-ARP2/3-dependent F-actin nucleation and the formation of a complex containing WAVE2, ARP2/3, vinculin, and talin. The verprolin-connecting-acidic (VCA) domain of WAVE2 mediates the formation of the ARP2/3-vinculin-talin signaling complex and talin recruitment to the immunological synapse (IS). Interestingly, although vinculin is not required for F-actin or integrin accumulation at the IS, it is required for the recruitment of talin. In addition, RNA interference of either WAVE2 or vinculin inhibits activation-dependent induction of high-affinity integrin binding to VCAM-1. Overall, these findings demonstrate a mechanism in which signals from the TCR produce WAVE2-ARP2/3-mediated de novo actin polymerization, leading to integrin clustering and high-affinity binding through the recruitment of vinculin and talin.

  11. CD36 Recruits α5β1 Integrin to Promote Cytoadherence of P. falciparum-Infected Erythrocytes

    PubMed Central

    Davis, Shevaun P.; Lee, Kristine; Gillrie, Mark R.; Roa, Lina; Amrein, Matthias; Ho, May

    2013-01-01

    The adhesion of Plasmodium falciparum-infected erythrocytes (IRBC) to receptors on different host cells plays a divergent yet critical role in determining the progression and outcome of the infection. Based on our ex vivo studies with clinical parasite isolates from adult Thai patients, we have previously proposed a paradigm for IRBC cytoadherence under physiological shear stress that consists of a recruitment cascade mediated largely by P-selectin, ICAM-1 and CD36 on primary human dermal microvascular endothelium (HDMEC). In addition, we detected post-adhesion signaling events involving Src family kinases and the adaptor protein p130CAS in endothelial cells that lead to CD36 clustering and cytoskeletal rearrangement which enhance the magnitude of the adhesive strength, allowing adherent IRBC to withstand shear stress of up to 20 dynes/cm2. In this study, we addressed whether CD36 supports IRBC adhesion as part of an assembly of membrane receptors. Using a combination of flow chamber assay, atomic force and confocal microscopy, we showed for the first time by loss- and gain-of function assays that in the resting state, the integrin α5β1 does not support adhesive interactions between IRBC and HDMEC. Upon IRBC adhesion to CD36, the integrin is recruited either passively as part of a molecular complex with CD36, or actively to the site of IRBC attachment through phosphorylation of Src family kinases, a process that is Ca2+-dependent. Clustering of β1 integrin is associated with an increase in IRBC recruitment as well as in adhesive strength after attachment (∼40% in both cases). The adhesion of IRBC to a multimolecular complex on the surface of endothelial cells could be of critical importance in enabling adherent IRBC to withstand the high shear stress in the microcirculations. Targeting integrins may provide a novel approach to decrease IRBC cytoadherence to microvascular endothelium. PMID:24009511

  12. Serological level of ICAM and ELAM adhesion molecules in allergic vascularitis.

    PubMed

    Alecu, M; Coman, G; Gălăţescu, E

    1997-01-01

    A 24-patient lot with hypersensitivity vasculitis was investigated for serological determinations of ICAM and ELAM adhesion molecules. Determinations were made in attack and in remission. Over two thirds of the cases presented elevated serological levels of ICAM and ELAM in attack, with twofold higher values than normal. In remission, in the absence of clinical signs, ICAM and ELAM values were normal in 19 cases (ICAM) and 22 cases (ELAM). Serological level of ICAM and ELAM was concordant with serological level of IL-2, IL-6, circulating immune complexes and clinical status. The increased values of ICAM and ELAM are due to the expression of these molecules both on the surface of endothelial cells and on immune cells. The adherence of leukocytes on the endothelial cells, by adhesion molecules involvement, followed by their extravasation represents an important event in the vascular lesion pathogeny of the hypersensitivity vasculitis.

  13. Cytokines, chemokines and soluble adhesion molecules in aqueous humor of children with uveitis.

    PubMed

    Sijssens, Karen M; Rijkers, Ger T; Rothova, Aniki; Stilma, Jan S; Schellekens, Peter A W J F; de Boer, Joke H

    2007-10-01

    Uveitis in childhood is a visual threatening disease with a complication rate of more than 75%. Despite extensive research, the etiology of uveitis is still unclear although the general opinion is now that uveitis is a T-cell mediated disease. The purpose of this study was to investigate the profile of cytokines, chemotactic cytokines (chemokines) and soluble adhesion molecules in the aqueous humor (AqH) of children with uveitis in order to identify the factors that control the immune response in the eye. In this clinical laboratory investigation we analyzed, with a multiplex immunoassay, 16 immune mediators in the AqH of 25 children with uveitis and 6 children without uveitis. Increased levels of interleukin-2 (IL-2), IL-6, IL-10, IL-13, IL-18, interferon-gamma, tumor necrosis factor-alpha, soluble intercellular adhesion molecule-1, RANTES, IL-8 and interferon-inducible 10-kDa protein were found in the AqH of children with uveitis compared with controls. No significant differences were found for IL-1 beta, IL-4, IL-12 p-70, soluble vascular cell adhesion molecule 1 and Eotaxin. Lower levels of IL-10 and IL-8 were found in quiet stage uveitis (surgical) samples compared with active uveitis (diagnostic) samples and in samples of patients treated with methotrexate (MTX) compared with samples of patients not treated with MTX. Lower levels of IL-10 were as well found in samples taken during the first 3 months after the diagnosis of uveitis than samples taken later during the disease process. No significant differences were found between patients treated with or without topical or systemic (perioperative and long term) corticosteroids. In conclusion, in children with uveitis, multiple intraocular cytokines, chemokines and soluble adhesion molecules are increased in the AqH regardless of active or inactive inflammation. Whether the IL-8 and IL-10 levels in AqH of children with uveitis are correlated with uveitis activity, early or late phase of the course of the disease

  14. SNARE-mediated trafficking of {alpha}{sub 5}{beta}{sub 1} integrin is required for spreading in CHO cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalski, Michael; Coppolino, Marc G.

    2005-10-07

    In this study, the role of SNARE-mediated membrane traffic in regulating integrin localization was examined and the requirement for SNARE function in cellular spreading was quantitatively assessed. Membrane traffic was inhibited with the VAMP-specific catalytic light chain from tetanus toxin (TeTx-LC), a dominant-negative form (E329Q) of N-ethylmaleimide-sensitive fusion protein (NSF), and brefeldin A (BfA). Inhibition of membrane traffic with either E329Q-NSF or TeTx-LC, but not BfA, significantly inhibited spreading of CHO cells on fibronectin. Spreading was rescued in TeTx-LC-expressing cells by co-transfection with a TeTx-resistant cellubrevin/VAMP3. E329Q-NSF, a general inhibitor of SNARE function, was a more potent inhibitor of cellmore » spreading than TeTx-LC, suggesting that tetanus toxin-insensitive SNAREs contribute to adhesion. It was found that E329Q-NSF prevented trafficking of {alpha}{sub 5}{beta}{sub 1} integrins from a central Rab11-containing compartment to sites of protrusion during cell adhesion, while TeTx-LC delayed this trafficking. These results are consistent with a model of cellular adhesion that implicates SNARE function as an important component of integrin trafficking during the process of cell spreading.« less

  15. microPET Imaging of Glioma Integrin (alpha-v, beta-3) Expression Using Cu-64-Labeled Tetrameric RGD Peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun; Zhang, , Xianzhong; Xiong, , Zhengming

    2005-10-01

    Integrins ?v?3 and ?v?5 play a critical role in tumor-induced angiogenesis and metastasis, and have become promising diagnostic indicators and therapeutic targets of tumors. Radiolabeled RGD peptides that are integrin-specific may be used for non-invasive imaging of integrin expression level as well as for integrin-targeted radionuclide therapy. We previously conjugated a series of mono- and dimeric RGD peptides with 1,4,7,10-tetraazacyclododecane-N, N?,N??,N???-tetraacetic acid (DOTA) and labeled these with copper-64 for microPET imaging in various mouse xenograft models. The copper-64 tracers showed ?v?3-selective tumor uptake, but the magnitude of tumor uptake was relatively low, the tumor washout was rapid, and non-target organ/tissuemore » retention was high. In this study we developed a tetrameric RGD peptide tracer 64Cu-DOTA-E{l_brace}E[c(RGDfK)]2{r_brace}2 for positron emission tomography (PET) imaging of integrin ?v?3 expression in a subcutaneous U87MG glioma xenograft model in female athymic nude mice. The RGD tetramer showed significantly higher integrin binding affinity than the corresponding mono- and dimeric RGD analogs, most likely due to polyvalency effect. The radiolabeled peptide showed rapid blood clearance (0.61 ? 0.01%ID/g at 30 min and 0.21 ? 0.01 %ID/g at 4 h postinjection (p.i.), respectively) and predominantly renal excretion. Tumor uptake was rapid and high and the tumor washout was slow (9.93 ? 1.05 %ID/g at 30 min p.i. and 4.56 ? 0.51 %ID/g at 24 h post-injection). The metabolic stability of 64Cu-DOTA-E{l_brace}E[c(RGDfK)]2{r_brace}2 was determined in mouse blood, urine, and liver and kidney homogenates at different times after tracer injection. The average fractions of intact tracer in these organs at 1 h were approximately 70, 58, 51 and 26 percent, respectively. Non-invasive microPET imaging studies showed significant tumor uptake and good contrast in the subcutaneous tumor-bearing mice, which agreed well with the biodistribution

  16. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri.

    PubMed

    Matsuo, Yosuke; Miyoshi, Yukihiro; Okada, Sanae; Satoh, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion.

  17. Role of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion.

    PubMed

    Mainali, Dipak; Syed, Aleem; Arora, Neha; Smith, Emily A

    2014-12-01

    Integrins are ubiquitous transmembrane receptors with adhesion and signaling properties. The influence of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion was studied using single particle tracking in S2 cells before and after reducing the insulin receptor expression or insulin stimulation. Insulin signaling was monitored by Western blotting for phospho-Akt expression. The expression of the insulin receptor was reduced using RNA interference (RNAi). After insulin receptor RNAi, four significant changes were measured in integrin diffusion properties: (1) there was a 24% increase in the mobile integrin population, (2) 14% of the increase was represented by integrins with Brownian diffusion, (3) for integrins that reside in confined zones of diffusion, there was a 45% increase in the diameter of the confined zone, and (4) there was a 29% increase in the duration integrins spend in confined zones of diffusion. In contrast to reduced expression of the insulin receptor, which alters integrin diffusion properties, insulin stimulation alone or insulin stimulation under conditions of reduced insulin receptor expression have minimal effects on altering the measured integrin diffusion properties. The differences in integrin diffusion measured after insulin receptor RNAi in the presence or absence of insulin stimulation may be the result of other insulin signaling pathways that are activated at reduced insulin receptor conditions. No change in the average integrin diffusion coefficient was measured for any conditions included in this study.

  18. Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Ruiz, María E., E-mail: mrruiz@unav.es; Radiation Oncology, University Clinic, University of Navarra, Pamplona; Garasa, Saray

    Purpose/Objectives: The goal of this study was to assess the effects of ionizing radiation on the expression of the integrin ligands ICAM-1 and VCAM that control leucocyte transit by lymphatic endothelial cells. Materials/Methods: Confluent monolayers of primary human lymphatic endothelial cells (LEC) were irradiated with single dose of 2, 5, 10 or 20 Gy, with 6 MeV-x-rays using a Linear-Accelerator. ICAM-1 and VCAM expression was determined by flow cytometry. Human tissue specimens received a single dose of 20 Gy with 15 MeV-x-rays. MC38, B16-OVA or B16-VEGF-C tumors grown in C57BL/6 mice were irradiated with single dose of 20Gy using amore » Linear-Accelerator fitted with a 10mm Radiosurgery collimator. Clinical samples were obtained from patients previous and 4 weeks after complete standard radiotherapy. ICAM-1 and VCAM expression was detected in all tissue specimens by confocal microscopy. To understand the role of TGFβ in this process anti-TGFβ blocking mAb were injected i.p. 30min before radiotherapy. Cell adhesion to irradiated LEC was analyzed in adhesion experiments performed in the presence or in the absence of anti- TGFβ and /or anti-ICAM1 blocking mAb. Results: We demonstrate that lymphatic endothelial cells in tumor samples experience induction of surface ICAM-1 and VCAM when exposed to ionizing radiation in a dose- and time-dependent manner. These effects can be recapitulated in cultured LEC, and are in part mediated by TGFβ. These data are consistent with increases in ICAM-1 and VCAM expression on LYVE-1+ endothelial cells in freshly explanted human tumor tissue and in mouse transplanted tumors after radiotherapy. Finally, ICAM-1 and VCAM expression accounts for enhanced adherence of human T lymphocytes to irradiated LEC. Conclusion: Our results show induction of ICAM-1 and VCAM on LVs in irradiated lesions and offer a starting point for elucidating the biological and therapeutic implications of targeting leukocyte traffic in combination to

  19. Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule Are Induced by Ionizing Radiation on Lymphatic Endothelium.

    PubMed

    Rodriguez-Ruiz, María E; Garasa, Saray; Rodriguez, Inmaculada; Solorzano, Jose Luis; Barbes, Benigno; Yanguas, Alba; Teijeira, Alvaro; Etxeberria, Iñaki; Aristu, José Javier; Halin, Cornelia; Melero, Ignacio; Rouzaut, Ana

    2017-02-01

    The goal of this study was to assess the effects of ionizing radiation on the expression of the integrin ligands ICAM-1 and VCAM that control leucocyte transit by lymphatic endothelial cells. Confluent monolayers of primary human lymphatic endothelial cells (LEC) were irradiated with single dose of 2, 5, 10 or 20 Gy, with 6 MeV-x-rays using a Linear-Accelerator. ICAM-1 and VCAM expression was determined by flow cytometry. Human tissue specimens received a single dose of 20 Gy with 15 MeV-x-rays. MC38, B16-OVA or B16-VEGF-C tumors grown in C57BL/6 mice were irradiated with single dose of 20Gy using a Linear-Accelerator fitted with a 10mm Radiosurgery collimator. Clinical samples were obtained from patients previous and 4 weeks after complete standard radiotherapy. ICAM-1 and VCAM expression was detected in all tissue specimens by confocal microscopy. To understand the role of TGFβ in this process anti-TGFβ blocking mAb were injected i.p. 30min before radiotherapy. Cell adhesion to irradiated LEC was analyzed in adhesion experiments performed in the presence or in the absence of anti- TGFβ and /or anti-ICAM1 blocking mAb. We demonstrate that lymphatic endothelial cells in tumor samples experience induction of surface ICAM-1 and VCAM when exposed to ionizing radiation in a dose- and time-dependent manner. These effects can be recapitulated in cultured LEC, and are in part mediated by TGFβ. These data are consistent with increases in ICAM-1 and VCAM expression on LYVE-1+ endothelial cells in freshly explanted human tumor tissue and in mouse transplanted tumors after radiotherapy. Finally, ICAM-1 and VCAM expression accounts for enhanced adherence of human T lymphocytes to irradiated LEC. Our results show induction of ICAM-1 and VCAM on LVs in irradiated lesions and offer a starting point for elucidating the biological and therapeutic implications of targeting leukocyte traffic in combination to immunotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Modulation of adhesion-dependent cAMP signaling by echistatin and alendronate

    NASA Technical Reports Server (NTRS)

    Fong, J. H.; Ingber, D. E.

    1996-01-01

    We measured intracellular cAMP levels in cells during attachment and spreading on different extracellular matrix (ECM) proteins. Increases in cAMP were observed within minutes when cells attached to fibronectin, vitronectin, and a synthetic RGD-containing fibronectin peptide (Petite 2000), but not when they adhered to another integrin alpha nu beta 3 ligand, echistatin. Because echistatin also inhibits bone resorption, we measured the effects of adding another osteoporosis inhibitor, alendronate, in this system. Alendronate inhibited the cAMP increase induced by ligands that primarily utilize integrin alpha nu beta 3 (vitronectin, Peptite 2000), but not by fibronectin which can also use integrin alpha 5 beta 1. These results show that cell adhesion to ECM can increase intracellular cAPM levels and raise the possibility that inhibitors of osteoporosis may act, in part, by preventing activation of this pathway by integrins.

  1. Single molecule force spectroscopy reveals the adhesion mechanism of hydrophobins

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Li, Bing; Qin, Meng; Wang, Wei

    Hydrophobins are a special class of amphiphilic proteins produced by filamentous fungi. They show outstanding interfacial self-assembly and adhesion properties, which are critical to their biological function. Such feature also inspires their broad applications in bio-engineering, surface modification, and nanotechnology. However, the biophysical properties of hydrophobins are not well understood. We combined atomic force microscopy based single molecule force spectroscopy and protein engineering to directly quantify the adhesion strength of a hydorphobin (HFB1) to various surfaces in both the monomer and oligomer states to reveal the molecular determinant of the adhesion strength of hydrophobins. We found that the monomer HFB1 showed distinct adhesion properties towards hydrophobic and hydrophilic surfaces. The adhesion to hydrophobic surfaces (i.e. graphite and gold) was significantly higher than that to the hydrophilic ones (e.g. mica and silicon). However, when self-assembled monolayers were formed, the adhesion strengths to various surfaces were similar and were ubiquitously stronger than the monomer cases. We hypothesized that the interactions among hydrophobins in the monolayer played significant roles for the enhance adhesion strengths. Extracting any single hydrophobin monomers from the surface required the break of interactions not only with the surface but also with the neighboring units. We proposed that such a mechanism may be widely explored in nature for many biofilms for surface adhesion. May also inspire the design of novel adhesives.

  2. The influence of surface integrin binding patterns on specific biomaterial-cell interactions

    NASA Astrophysics Data System (ADS)

    Beranek, Maggi Marie

    As the future of biomaterials progresses toward bioactivity, the biomaterial surface must control non-specific protein adsorption and encourage selective protein and cell adsorption. Integrins alphavbeta3, alpha 1beta1, alpha5beta1 and alpha Mbeta2 are expressed on cells involved in endothelialization, inflammation, and intimal hyperplasia. These cellular events play a vital role in biomaterial biocompatibility, especially in the vascular environment. The overall hypothesis of these studies is that biomaterial surfaces exhibit selective integrin binding, which then specifies differential cell binding. To test this hypothesis, four specific aims were developed. The first aim was designed to determine whether metal and polymeric biomaterials exhibit selective integrin binding. The tested materials included 316L stainless steel, nitinol, gold, Elgiloy RTM, poly(D, L-lactide-co-glycolide), polycarbonate urethane and expanded polytetrafluoroethylene. Discrete integrin binding patterns were detected microscopically using integrin specific fluorescent antibodies. Stainless steel exhibited high level integrin alpha1beta 1 and low level integrin alphaMbeta2 binding pattern. This suggests that this metal surface should selectively encourage endothelial cell to inflammatory cell binding. In contrast, gold bound ten times the amount of integrin alphaMbeta2 compared to integrin alpha1beta1, which should encourage inflammatory cell adhesion. The 65/35 poly(D, L-lactide-co-glycolide) was the only polymeric biomaterial tested that had integrin binding levels comparable to metal biomaterials. Based on these observations, a combinational biomaterial with a surface pattern of 65/35 poly(D, L-lactide-co-glycolide) dots on a 316L stainless steel background was created. A pattern of high level integrin alpha1beta1 binding and low level integrin alpha Mbeta2 binding on this combinational surface indicates that this surface should selectively favor endothelial cell binding. In the second

  3. Focal Adhesion Induction at the Tip of a Functionalized Nanoelectrode

    PubMed Central

    Fuentes, Daniela E.; Bae, Chilman; Butler, Peter J.

    2012-01-01

    Cells dynamically interact with their physical micro-environment through the assembly of nascent focal contacts and focal adhesions. The dynamics and mechanics of these contact points are controlled by transmembrane integrins and an array of intracellular adaptor proteins. In order to study the mechanics and dynamics of focal adhesion assembly, we have developed a technique for the timed induction of a nascent focal adhesion. Bovine aortic endothelial cells were approached at the apical surface by a nanoelectrode whose position was controlled with a resolution of 10s of nanometers using changes in electrode current to monitor distance from the cell surface. Since this probe was functionalized with fibronectin, a focal contact formed at the contact location. Nascent focal adhesion assembly was confirmed using time-lapse confocal fluorescent images of red fluorescent protein (RFP) – tagged talin, an adapter protein that binds to activated integrins. Binding to the cell was verified by noting a lack of change of electrode current upon retraction of the electrode. This study demonstrates that functionalized nanoelectrodes can enable precisely-timed induction and 3-D mechanical manipulation of focal adhesions and the assay of the detailed molecular kinetics of their assembly. PMID:22247742

  4. Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN.

    PubMed

    Liu, Zhaofei; Yan, Yongjun; Chin, Frederic T; Wang, Fan; Chen, Xiaoyuan

    2009-01-22

    Radiolabeled RGD and bombesin peptides have been extensively investigated for tumor integrin alpha(v)beta(3) and GRPR imaging, respectively. Due to the fact that many tumors are both integrin and GRPR positive, we designed and synthesized a heterodimeric peptide Glu-RGD-BBN, which is expected to be advantageous over the monomeric peptides for dual-receptor targeting. A PEG(3) spacer was attached to the glutamate alpha-amino group of Glu-RGD-BBN to enhance the (18)F labeling yield and to improve the in vivo kinetics. PEG(3)-Glu-RGD-BBN possesses the comparable GRPR and integrin alpha(v)beta(3) receptor-binding affinities as the corresponding monomers, respectively. The dual-receptor targeting properties of (18)F-FB-PEG(3)-Glu-RGD-BBN were observed in PC-3 tumor model. (18)F-FB-PEG(3)-Glu-RGD-BBN with high tumor contrast and favorable pharmacokinetics is a promising PET tracer for dual integrin and GRPR positive tumor imaging. This heterodimer strategy may also be an applicable method to develop other molecules with improved in vitro and in vivo characterizations for tumor diagnosis and therapy.

  5. Caveolin 3-mediated integrin β1 signaling is required for the proliferation of folliculostellate cells in rat anterior pituitary gland under the influence of extracellular matrix.

    PubMed

    Horiguchi, Kotaro; Fujiwara, Ken; Ilmiawati, Cimi; Kikuchi, Motoshi; Tsukada, Takehiro; Kouki, Tom; Yashiro, Takashi

    2011-07-01

    Folliculostellate (FS) cells in the anterior pituitary gland are believed to have multifunctional properties. Using transgenic rats that express green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary gland (S100b-GFP rats), we recently revealed that FS cells in primary culture exhibited marked proliferation in the presence of laminin, an extracellular matrix (ECM) component of the basement membrane. In a process referred to as matricrine action, FS cells receive ECM as a signal through their receptors, which results in morphological and functional changes. In this study, we investigated matricrine signaling in FS cells and observed that the proliferation of FS cells is mediated by integrin β1, which is involved in various signaling pathways for cell migration and proliferation in response to ECM. Then, we analyzed downstream events of the integrin β1 signaling pathway in the proliferation of FS cells and identified caveolin 3 as a potential candidate molecule. Caveolin 3 is a membrane protein that binds cholesterol and a number of signaling molecules that interact with integrin β1. Using specific small interfering RNA of caveolin 3, the proliferation of FS cells was inhibited. Furthermore, caveolin 3 drove activation of the mitogen-activated protein kinase (MAPK) signaling cascades, which resulted in upregulation of cyclin D1 in FS cells. These findings suggest that matricrine signaling in the proliferation of FS cells was transduced by a caveolin 3-mediated integrin β1 signaling pathway and subsequent activation of the MAPK pathway. © 2011 Society for Endocrinology

  6. Integrin Targeted MR Imaging

    PubMed Central

    Tan, Mingqian; Lu, Zheng-Rong

    2011-01-01

    Magnetic resonance imaging (MRI) is a powerful medical diagnostic imaging modality for integrin targeted imaging, which uses the magnetic resonance of tissue water protons to display tissue anatomic structures with high spatial resolution. Contrast agents are often used in MRI to highlight specific regions of the body and make them easier to visualize. There are four main classes of MRI contrast agents based on their different contrast mechanisms, including T1, T2, chemical exchange saturation transfer (CEST) agents, and heteronuclear contrast agents. Integrins are an important family of heterodimeric transmembrane glycoproteins that function as mediators of cell-cell and cell-extracellular matrix interactions. The overexpressed integrins can be used as the molecular targets for designing suitable integrin targeted contrast agents for MR molecular imaging. Integrin targeted contrast agent includes a targeting agent specific to a target integrin, a paramagnetic agent and a linker connecting the targeting agent with the paramagnetic agent. Proper selection of targeting agents is critical for targeted MRI contrast agents to effectively bind to integrins for in vivo imaging. An ideal integrin targeted MR contrast agent should be non-toxic, provide strong contrast enhancement at the target sites and can be completely excreted from the body after MR imaging. An overview of integrin targeted MR contrast agents based on small molecular and macromolecular Gd(III) complexes, lipid nanoparticles and superparamagnetic nanoparticles is provided for MR molecular imaging. By using proper delivery systems for loading sufficient Gd(III) chelates or superparamagnetic nanoparticles, effective molecular imaging of integrins with MRI has been demonstrated in animal models. PMID:21547154

  7. [Effects of macrophages on the biological behaviors and VEGF receptor mRNA, Hoxb2 mRNA, and integrin alphavbeta3 expressions of vascular endothelial cells].

    PubMed

    Liu, Liang; Liu, Xu-Sheng; Zhang, Xiao-Qi; Ming, Jia; Xu, Hui; Cheng, Tian-Min

    2005-02-01

    To explore the mechanism by which macrophages regulate angiogenesis by co-culturing human umbilical vein endothelial cells (ECV-304) with human macrophage cells (U937) stimulated by concanavalin A (ConA). Monolayer ECV-304 cells growing to 60% confluence were co-cultured with 1 x 10(5)/ml U937 cells in the presence or absence of ConA (ConA+U937+ECV-304 and U937+ECV-304 groups, respectively), with non-treated and ConA-treated ECV-304 cells serving as the control groups (ECV-304 and ConA+ECV-304 groups, respectively). Forty-eight h later, U937 cells were removed from the cell co-culture for examining changes in DNA synthesis of ECV-304 cells with (3)H-TdR incorporation assay and for cell cycle analysis with flow cytometry. RT-PCR was employed to assess the influence of macrophages stimulated by ConA on the expression of the target genes. With immunofluorescent method, the changes in the expression of integrin receptor alphavbeta3 of ECV-304 were determined. A significant increase in S-phase ECV-304 cells with enhanced DNA synthesis was observed after co-culture of the cells with ConA-stimulated U937 cells (P<0.01), which also resulted in significant up-regulation of the expressions of KDR mRNA (0.879+/-0.003), Hoxb2 mRNA (0.947+/-0.003) and integrin receptor alphavbeta3 (10.26+/-1.73). Macrophages can accelerate the proliferation, migration and adhesion of the vascular endothelial cells to the basilar membrane matrix by affecting their cell cycle, DNA synthesis, expression of KDR mRNA, Hoxb2 mRNA and integrin alphavbeta3, so as to modulate the angiogenetic process of the latter cells.

  8. Connection between integrins and cell activation in rat adrenal glomerulosa cells: a role for Arg-Gly-Asp peptide in the activation of the p42/p44(mapk) pathway and intracellular calcium.

    PubMed

    Campbell, Shirley; Otis, Melissa; Côté, Mylène; Gallo-Payet, Nicole; Payet, Marcel Daniel

    2003-04-01

    Integrins are responsible for adhesion and activation of several intracellular cascades. The present study was aimed at determining whether the interaction between fibronectin and integrins could generate pathways involved in physiological functions of rat adrenal glomerulosa cells. Immunofluorescence studies and adhesion assays showed that fibronectin was the best matrix in promoting the formation of focal adhesion. Binding of glomerulosa cells to fibronectin, but not to collagen I or poly-L-lysine, involved the integrin-binding sequence Arg-Gly-Asp (RGD). Activation of glomerulosa cells with Arg-Gly-Asp-Ser (RGDS) induced an increase in [Ca(2+)](i), whereas fibronectin triggered a release of Ca(2+) from InsP(3)-sensitive Ca(2+) stores. Aldosterone secretion induced by ACTH, angiotensin II, and RGDS and proliferation were improved on fibronectin, compared with poly-L-lysine. The RGDS peptide induced a transient increase in the activity of the p42/p44(mapk), independent of phosphatidylinositol-3 kinase and protein kinase C. Integrins alpha(5) and alpha(V) as well as their fibronectin receptor partners beta(1) and beta(3), were identified. These results suggest that in rat adrenal glomerulosa cells, binding of the alpha(5)beta(1), alpha(v)beta(1), or alpha(v)beta(3) integrins to fibronectin is involved in the generation of two important signaling events, increase in intracellular calcium, and activation of the p42/p44(mapk) cascade, leading to cell proliferation and aldosterone secretion.

  9. Klf5 controls bone marrow homing of stem cells and progenitors through Rab5-mediated β1/β2-integrin trafficking

    PubMed Central

    Taniguchi Ishikawa, E.; Chang, K.H.; Nayak, R.; Olsson, H.A; Ficker, A.; Dunn, S.K.; Madhu, M.; Sengupta, A.; Whitsett, J.A.; Grimes, H.L.; Cancelas, J.A.

    2013-01-01

    Kruppel-like factor 5 (Klf5) regulates pluripotent stem cell self-renewal but its role in somatic stem cells is unknown. Here we show that Klf5 deficient haematopoietic stem cells and progenitors (HSC/P) fail to engraft after transplantation. This HSC/P defect is associated with impaired bone marrow homing and lodging and decreased retention in bone marrow, and with decreased adhesion to fibronectin and expression of membrane-bound β1/β2-integrins. In vivo inducible gain-of-function of Klf5 in HSCs increases HSC/P adhesion. The expression of Rab5 family members, mediators of β1/β2-integrin recycling in the early endosome, is decreased in Klf5Δ/Δ HSC/Ps. Klf5 binds directly to the promoter of Rab5a/b and overexpression of Rab5b rescues the expression of activated β1/β2-integrins, adhesion and bone marrow homing of Klf5Δ/Δ HSC/Ps. Altogether, these data indicate that Klf5 is indispensable for adhesion, homing, lodging and retention of HSC/Ps in the bone marrow through Rab5-dependent post-translational regulation of β1/β2 integrins. PMID:23552075

  10. Single molecule force measurements delineate salt, pH and surface effects on biopolymer adhesion

    NASA Astrophysics Data System (ADS)

    Pirzer, T.; Geisler, M.; Scheibel, T.; Hugel, T.

    2009-06-01

    In this paper we probe the influence of surface properties, pH and salt on the adhesion of recombinant spider silk proteins onto solid substrates with single molecule force spectroscopy. A single engineered spider silk protein (monomeric C16 or dimeric (QAQ)8NR3) is covalently bound with one end to an AFM tip, which assures long-time measurements for hours with one and the same protein. The tip with the protein is brought into contact with various substrates at various buffer conditions and then retracted to desorb the protein. We observe a linear dependence of the adhesion force on the concentration of three selected salts (NaCl, NaH2PO4 and NaI) and a Hofmeister series both for anions and cations. As expected, the more hydrophobic C16 shows a higher adhesion force than (QAQ)8NR3, and the adhesion force rises with the hydrophobicity of the substrate. Unexpected is the magnitude of the dependences—we never observe a change of more than 30%, suggesting a surprisingly well-regulated balance between dispersive forces, water-structure-induced forces as well as co-solute-induced forces in biopolymer adhesion.

  11. Complementary roles of KCa3.1 channels and β1-integrin during alveolar epithelial repair.

    PubMed

    Girault, Alban; Chebli, Jasmine; Privé, Anik; Trinh, Nguyen Thu Ngan; Maillé, Emilie; Grygorczyk, Ryszard; Brochiero, Emmanuelle

    2015-09-04

    Extensive alveolar epithelial injury and remodelling is a common feature of acute lung injury and acute respiratory distress syndrome (ARDS) and it has been established that epithelial regeneration, and secondary lung oedema resorption, is crucial for ARDS resolution. Much evidence indicates that K(+) channels are regulating epithelial repair processes; however, involvement of the KCa3.1 channels in alveolar repair has never been investigated before. Wound-healing assays demonstrated that the repair rates were increased in primary rat alveolar cell monolayers grown on a fibronectin matrix compared to non-coated supports, whereas an anti-β1-integrin antibody reduced it. KCa3.1 inhibition/silencing impaired the fibronectin-stimulated wound-healing rates, as well as cell migration and proliferation, but had no effect in the absence of coating. We then evaluated a putative relationship between KCa3.1 channel and the migratory machinery protein β1-integrin, which is activated by fibronectin. Co-immunoprecipitation and immunofluorescence experiments indicated a link between the two proteins and revealed their cellular co-distribution. In addition, we demonstrated that KCa3.1 channel and β1-integrin membrane expressions were increased on a fibronectin matrix. We also showed increased intracellular calcium concentrations as well as enhanced expression of TRPC4, a voltage-independent calcium channel belonging to the large TRP channel family, on a fibronectin matrix. Finally, wound-healing assays showed additive effects of KCa3.1 and TRPC4 inhibitors on alveolar epithelial repair. Taken together, our data demonstrate for the first time complementary roles of KCa3.1 and TRPC4 channels with extracellular matrix and β1-integrin in the regulation of alveolar repair processes.

  12. Integrative systems and synthetic biology of cell-matrix adhesion sites.

    PubMed

    Zamir, Eli

    2016-09-02

    The complexity of cell-matrix adhesion convolves its roles in the development and functioning of multicellular organisms and their evolutionary tinkering. Cell-matrix adhesion is mediated by sites along the plasma membrane that anchor the actin cytoskeleton to the matrix via a large number of proteins, collectively called the integrin adhesome. Fundamental challenges for understanding how cell-matrix adhesion sites assemble and function arise from their multi-functionality, rapid dynamics, large number of components and molecular diversity. Systems biology faces these challenges in its strive to understand how the integrin adhesome gives rise to functional adhesion sites. Synthetic biology enables engineering intracellular modules and circuits with properties of interest. In this review I discuss some of the fundamental questions in systems biology of cell-matrix adhesion and how synthetic biology can help addressing them.

  13. Rac1 and Rac3 have opposing functions in cell adhesion and differentiation of neuronal cells.

    PubMed

    Hajdo-Milasinović, Amra; Ellenbroek, Saskia I J; van Es, Saskia; van der Vaart, Babet; Collard, John G

    2007-02-15

    Rac1 and Rac3 are highly homologous members of the Rho small GTPase family. Rac1 is ubiquitously expressed and regulates cell adhesion, migration and differentiation in various cell types. Rac3 is primarily expressed in brain and may therefore have a specific function in neuronal cells. We found that depletion of Rac1 by short interference RNA leads to decreased cell-matrix adhesions and cell rounding in neuronal N1E-115 cells. By contrast, depletion of Rac3 induces stronger cell adhesions and dramatically increases the outgrowth of neurite-like protrusions, suggesting opposite functions for Rac1 and Rac3 in neuronal cells. Consistent with this, overexpression of Rac1 induces cell spreading, whereas overexpression of Rac3 results in a contractile round morphology. Rac1 is mainly found at the plasma membrane, whereas Rac3 is predominantly localized in the perinuclear region. Residues 185-187, present in the variable polybasic rich region at the carboxyl terminus are responsible for the difference in phenotype induced by Rac1 and Rac3 as well as for their different intracellular localization. The Rac1-opposing function of Rac3 is not mediated by or dependent on components of the RhoA signaling pathway. It rather seems that Rac3 exerts its function through negatively affecting integrin-mediated cell-matrix adhesions. Together, our data reveal that Rac3 opposes Rac1 in the regulation of cell adhesion and differentiation of neuronal cells.

  14. Elucidating the role of select cytoplasmic proteins in altering diffusion of integrin receptors.

    PubMed

    Sander, Suzanne; Arora, Neha; Smith, Emily A

    2012-06-01

    Cytoplasmic proteins that affect integrin diffusion in the cell membrane are identified using a combination of fluorescence recovery after photobleaching (FRAP) and RNA interference. Integrin receptors are essential for many cellular events, and alterations in lateral diffusion are one mechanism for modulating their function. In cells expressing native cytoplasmic protein concentrations and spread on a slide containing integrin extracellular ligand, 45 ± 2% of the integrin is mobile with a time-dependent 5.2 ± 0.9 × 10(-9) cm(2)/s diffusion coefficient at 1 s. The time exponent is 0.90 ± 0.07, indicating integrin diffusion moderately slows at longer times. The role of a specific cytoplasmic protein in altering integrin diffusion is revealed through changes in the FRAP curve after reducing the cytoplasmic protein's expression. Decreased expression of cytoplasmic proteins rhea, focal adhesion kinase (FAK), or steamer duck decreases the integrin mobile fraction. For rhea and FAK, there is a concomitant shift to Brownian (i.e., time-independent) diffusion at reduced concentrations of these proteins. In contrast, when the expression of actin 42A, dreadlocks, paxillin, integrin-linked kinase (ILK), or vinculin is reduced, integrin diffusion generally becomes more constrained with an increase in the integrin mobile fraction. This same change in integrin diffusion is measured in the absence of integrin extracellular ligand. The results indicate breaking the extracellular ligand-integrin-cytoskeletal linkage alters integrin diffusion properties, and, in most cases, there is no correlation between integrin and lipid diffusion properties.

  15. Mechanism of mast cell adhesion to human tenocytes in vitro.

    PubMed

    Behzad, Hayedeh; Tsai, Shu-Huei; Nassab, Paulina; Mousavizadeh, Rouhollah; McCormack, Robert G; Scott, Alex

    2015-01-01

    Mast cells and fibroblasts are two key players involved in many fibrotic and degenerative disorders. In the present study we examined the nature of binding interactions between human mast cells and tendon fibroblasts (tenocytes). In the mast cell-fibroblast co-culture model, mast cells were shown to spontaneously bind to tenocytes, in a process that was partially mediated by α5β1 integrin receptors. The same receptors on mast cells significantly mediated binding of these cells to tissue culture plates in the presence of tenocyte-conditioned media; the tenocyte-derived fibronectin in the media was shown to also play a major role in these binding activities. Upon binding to tenocytes or tissue culture plates, mast cells acquired an elongated phenotype, which was dependent on α5β1 integrin and tenocyte fibronectin. Additionally, tenocyte-derived fibronectin significantly enhanced mRNA expression of the adhesion molecule, THY1, by mast cells. Our data suggests that α5β1 integrin mediates binding of mast cells to human tenocyte and to tenocyte-derived ECM proteins, in particular fibronectin. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Non-viral gene delivery regulated by stiffness of cell adhesion substrates.

    PubMed

    Kong, Hyun Joon; Liu, Jodi; Riddle, Kathryn; Matsumoto, Takuya; Leach, Kent; Mooney, David J

    2005-06-01

    Non-viral gene vectors are commonly used for gene therapy owing to safety concerns with viral vectors. However, non-viral vectors are plagued by low levels of gene transfection and cellular expression. Current efforts to improve the efficiency of non-viral gene delivery are focused on manipulations of the delivery vector, whereas the influence of the cellular environment in DNA uptake is often ignored. The mechanical properties (for example, rigidity) of the substrate to which a cell adheres have been found to mediate many aspects of cell function including proliferation, migration and differentiation, and this suggests that the mechanics of the adhesion substrate may regulate a cell's ability to uptake exogeneous signalling molecules. In this report, we present a critical role for the rigidity of the cell adhesion substrate on the level of gene transfer and expression. The mechanism relates to material control over cell proliferation, and was investigated using a fluorescent resonance energy transfer (FRET) technique. This study provides a new material-based control point for non-viral gene therapy.

  17. Receptor-like Molecules on Human Intestinal Epithelial Cells Interact with an Adhesion Factor from Lactobacillus reuteri

    PubMed Central

    MATSUO, Yosuke; MIYOSHI, Yukihiro; OKADA, Sanae; SATOH, Eiichi

    2012-01-01

    A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion. PMID:24936355

  18. The effect of acute physical and mental stress on soluble cellular adhesion molecule concentration.

    PubMed

    Crabb, E Blake; Franco, R Lee; Caslin, Heather L; Blanks, Anson M; Bowen, Mary K; Acevedo, Edmund O

    2016-07-15

    This study investigated the impact of acute physical and mental stress on serum concentrations of vascular cell adhesion molecule (VCAM)-1 and CX3CL1/fractalkine. Male volunteers (n=20; 21.3±0.55years of age) completed a graded treadmill test to exhaustion and a 20-minute mental stress task (Stroop Color-Word Test, mental arithmetic) on separate, non-consecutive days. Heart rate (HR) was measured at baseline and throughout exercise and mental stress. Blood was collected at baseline (PRE), immediately following (POST) and 30min after (POST30) exercise and mental stress. Soluble VCAM-1 and fractalkine were quantified in participant serum via enzyme-linked immunosorbent assays. Both treadmill exercise and the mental stress task significantly increased participant HR; although, exercise resulted in a substantially greater increase in participant HR compared to mental stress (197.82±11.99 vs. 38.67±3.10% [p<0.001]). VCAM-1 (815.74±139.55 vs. 738.67±131.59ng/mL [p=0.002]) and fractalkine (1.032±0.33 vs. 0.59±0.20ng/mL [p<0.001]) were significantly elevated in participant serum POST maximal exercise before returning to values similar to baseline at POST30. The acute mental stress task did not significantly alter serum VCAM-1 or fractalkine at any time point. In conclusion, maximal aerobic exercise results in a significant elevation of the soluble adhesion molecules VCAM-1 and fractalkine in the serum of adult males that does not occur following laboratory-induced mental stress. The findings of the current investigation may suggest a novel protective role for acute aerobic exercise in vascular health via exercise-induced CAM proteolysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Isthmin exerts pro-survival and death-promoting effect on endothelial cells through alphavbeta5 integrin depending on its physical state

    PubMed Central

    Zhang, Y; Chen, M; Venugopal, S; Zhou, Y; Xiang, W; Li, Y-H; Lin, Q; Kini, R M; Chong, Y-S; Ge, R

    2011-01-01

    Isthmin (ISM) is a 60 kDa secreted-angiogenesis inhibitor that suppresses tumor growth in mouse and disrupts vessel patterning in zebrafish embryos. It selectively binds to alphavbeta5 (αvβ5) integrin on the surface of endothelial cells (ECs), but the mechanism of its antiangiogenic action remains unknown. In this work, we establish that soluble ISM suppresses in vitro angiogenesis and induces EC apoptosis by interacting with its cell surface receptor αvβ5 integrin through a novel ‘RKD' motif localized within its adhesion-associated domain in MUC4 and other proteins domain. ISM induces EC apoptosis through integrin-mediated death (IMD) by direct recruitment and activation of caspase-8 without causing anoikis. On the other hand, immobilized ISM loses its antiangiogenic function and instead promotes EC adhesion, survival and migration through αvβ5 integrin by activating focal adhesion kinase (FAK). ISM unexpectedly has both a pro-survival and death-promoting effect on ECs depending on its physical state. This dual function of a single antiangiogenic protein may impact its antiangiogenic efficacy in vivo. PMID:21544092

  20. Isthmin exerts pro-survival and death-promoting effect on endothelial cells through alphavbeta5 integrin depending on its physical state.

    PubMed

    Zhang, Y; Chen, M; Venugopal, S; Zhou, Y; Xiang, W; Li, Y-H; Lin, Q; Kini, R M; Chong, Y-S; Ge, R

    2011-05-05

    Isthmin (ISM) is a 60 kDa secreted-angiogenesis inhibitor that suppresses tumor growth in mouse and disrupts vessel patterning in zebrafish embryos. It selectively binds to alphavbeta5 (αvβ5) integrin on the surface of endothelial cells (ECs), but the mechanism of its antiangiogenic action remains unknown. In this work, we establish that soluble ISM suppresses in vitro angiogenesis and induces EC apoptosis by interacting with its cell surface receptor αvβ5 integrin through a novel 'RKD' motif localized within its adhesion-associated domain in MUC4 and other proteins domain. ISM induces EC apoptosis through integrin-mediated death (IMD) by direct recruitment and activation of caspase-8 without causing anoikis. On the other hand, immobilized ISM loses its antiangiogenic function and instead promotes EC adhesion, survival and migration through αvβ5 integrin by activating focal adhesion kinase (FAK). ISM unexpectedly has both a pro-survival and death-promoting effect on ECs depending on its physical state. This dual function of a single antiangiogenic protein may impact its antiangiogenic efficacy in vivo.