Science.gov

Sample records for adhesion molecule-3-grabbing nonintegrin

  1. Vitamin C Attenuates Hemorrhagic Shock-induced Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Nonintegrin Expression in Tubular Epithelial Cells and Renal Injury in Rats

    PubMed Central

    Ma, Li; Fei, Jian; Chen, Ying; Zhao, Bing; Yang, Zhi-Tao; Wang, Lu; Sheng, Hui-Qiu; Chen, Er-Zhen; Mao, En-Qiang

    2016-01-01

    Background: The expression of dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) in renal tubular epithelial cells has been thought to be highly correlated with the occurrence of several kidney diseases, but whether it takes place in renal tissues during hemorrhagic shock (HS) is unknown. The present study aimed to investigate this phenomenon and the inhibitory effect of Vitamin C (VitC). Methods: A Sprague–Dawley rat HS model was established in vivo in this study. The expression level and location of DC-SIGN were observed in kidneys. Also, the degree of histological damage, the concentrations of tumor necrosis factor-α and interleukin-6 in the renal tissues, and the serum concentration of blood urea nitrogen and creatinine at different times (2–24 h) after HS (six rats in each group), with or without VitC treatment before resuscitation, were evaluated. Results: HS induced DC-SIGN expression in rat tubular epithelial cells. The proinflammatory cytokine concentration, histological damage scores, and functional injury of kidneys had increased. All these phenomena induced by HS were relieved when the rats were treated with VitC before resuscitation. Conclusions: The results of the present study illustrated that HS could induce tubular epithelial cells expressing DC-SIGN, and the levels of proinflammatory cytokines in the kidney tissues improved correspondingly. The results also indicated that VitC could suppress the DC-SIGN expression in the tubular epithelial cells induced by HS and alleviate the inflammation and functional injury in the kidney. PMID:27411463

  2. MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN).

    PubMed

    Martinez-Nunez, Rocio T; Louafi, Fethi; Friedmann, Peter S; Sanchez-Elsner, Tilman

    2009-06-12

    MicroRNA-155 (miR-155) has been involved in the response to inflammation in macrophages and lymphocytes. Here we show how miR-155 participates in the maturation of human dendritic cells (DC) and modulates pathogen binding by down-regulating DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN), after directly targeting the transcription factor PU.1. During the maturation of DCs, miR-155 increases up to 130-fold, whereas PU.1 protein levels decrease accordingly. We establish that human PU.1 is a direct target for miR-155 and localize the target sequence for miR-155 in the 3'-untranslated region of PU.1. Also, overexpression of miR-155 in the THP1 monocytic cell line decreases PU.1 protein levels and DC-SIGN at both the mRNA and protein levels. We prove a link between the down-regulation of PU.1 and reduced transcriptional activity of the DC-SIGN promoter, which is likely to be the basis for its reduced mRNA expression, after miR-155 overexpression. Finally, we show that, by reducing DC-SIGN in the cellular membrane, miR-155 is involved in regulating pathogen binding as dendritic cells exhibited the lower binding capacity for fungi and HIV protein gp-120 when the levels of miR-155 were higher. Thus, our results suggest a mechanism by which miR-155 regulates proteins involved in the cellular immune response against pathogens that could have clinical implications in the way pathogens enter the human organism. PMID:19386588

  3. Mannosyl Glycodendritic Structure Inhibits DC-SIGN-Mediated Ebola Virus Infection in cis and in trans

    PubMed Central

    Lasala, Fátima; Arce, Eva; Otero, Joaquín R.; Rojo, Javier; Delgado, Rafael

    2003-01-01

    We have designed a glycodendritic structure, BH30sucMan, that blocks the interaction between dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and Ebola virus (EBOV) envelope. BH30sucMan inhibits DC-SIGN-mediated EBOV infection at nanomolar concentrations. BH30sucMan may counteract important steps of the infective process of EBOV and, potentially, of microorganisms shown to exploit DC-SIGN for cell entry and infection. PMID:14638512

  4. Interaction of Helicobacter pylori with C-Type Lectin Dendritic Cell-Specific ICAM Grabbing Nonintegrin

    PubMed Central

    Miszczyk, Eliza; Rudnicka, Karolina; Moran, Anthony P.; Fol, Marek; Kowalewicz-Kulbat, Magdalena; Druszczyńska, Magdalena; Matusiak, Agnieszka; Walencka, Maria; Rudnicka, Wiesława; Chmiela, Magdalena

    2012-01-01

    In this study we asked whether Helicobacter pylori whole cells and lipopolysaccharide (LPS) utilize sugar moieties of Lewis (Le) antigenic determinants to interact with DC-SIGN (dendritic cell specific ICAM grabbing nonintegrin) receptor on dendritic cells (DCs). For this purpose the soluble DC-SIGN/Fc adhesion assay and the THP-1 leukemia cells with induced expression of DC-SIGN were used. We showed that the binding specificity of DC-SIGN with H. pylori LeX/Y positive whole cells and H. pylori LPS of LeX/Y type was fucose dependent, whereas in LeXY negative H. pylori strains and LPS preparations without Lewis determinants, this binding was galactose dependent. The binding of soluble synthetic LeX and LeY to the DC-SIGN-like receptor on THP-1 cells was also observed. In conclusion, the LeXY dependent as well as independent binding of H. pylori whole cells and H. pylori LPS to DC-SIGN was described. Moreover, we demonstrated that THP-1 cells may serve as an in vitro model for the assessment of H. pylori-DC-SIGN interactions mediated by LeX and LeY determinants. PMID:22550396

  5. Adhesion

    MedlinePlus

    ... adhesions Ovarian cyst References Munireddy S, Kavalukas SL, Barbul A. Intra-abdominal healing: gastrointestinal tract and adhesions. Surg Clin N Am Kulaylat MN, Dayton, MT. Surgical complications. In: Townsend CM Jr, Beauchamp RD, Evers BM, Mattox KL, ...

  6. Identification of Cell Surface Molecules Involved in Dystroglycan-Independent Lassa Virus Cell Entry

    PubMed Central

    Ströher, Ute; Ebihara, Hideki; Feldmann, Heinz

    2012-01-01

    Although O-mannosylated dystroglycan is a receptor for Lassa virus, a causative agent of Lassa fever, recent findings suggest the existence of an alternative receptor(s). Here we identified four molecules as receptors for Lassa virus: Axl and Tyro3, from the TAM family, and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and liver and lymph node sinusoidal endothelial calcium-dependent lectin (LSECtin), from the C-type lectin family. These molecules enhanced the binding of Lassa virus to cells and mediated infection independently of dystroglycan. Axl- or Tyro3-mediated infection required intracellular signaling via the tyrosine kinase activity of Axl or Tyro3, whereas DC-SIGN- or LSECtin-mediated infection and binding were dependent on a specific carbohydrate and on ions. The identification of these four molecules as Lassa virus receptors advances our understanding of Lassa virus cell entry. PMID:22156524

  7. The role of human dendritic cells in HIV-1 infection.

    PubMed

    Ahmed, Zahra; Kawamura, Tatsuyoshi; Shimada, Shinji; Piguet, Vincent

    2015-05-01

    Dendritic cells (DCs) and their subsets have multifaceted roles in the early stages of HIV-1 transmission and infection. DC studies have led to remarkable discoveries, including identification of restriction factors, cellular structures promoting viral transmission including the infectious synapse or the interplay of the C-type lectins, Langerin on Langerhans cells (LCs), and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin on other DC subsets, limiting or facilitating HIV transmission to CD4(+) T cells, respectively. LCs/DCs are also exposed to encountering HIV-1 and other sexually transmitted infections (herpes simplex virus-2, bacteria, fungi), which reprogram HIV-1 interaction with these cells. This review will summarize advances in the role of DCs during HIV-1 infection and discuss their potential involvement in the development of preventive strategies against HIV-1 and other sexually transmitted infections. PMID:25407434

  8. Deciphering the complex three-way interaction between the non-integrin laminin receptor, galectin-3 and Neisseria meningitidis.

    PubMed

    Alqahtani, Fulwah; Mahdavi, Jafar; Wheldon, Lee M; Vassey, Matthew; Pirinccioglu, Necmettin; Royer, Pierre-Joseph; Qarani, Suzan M; Morroll, Shaun; Stoof, Jeroen; Holliday, Nicholas D; Teo, Siew Y; Oldfield, Neil J; Wooldridge, Karl G; Ala'Aldeen, Dlawer A A

    2014-10-01

    The non-integrin laminin receptor (LAMR1/RPSA) and galectin-3 (Gal-3) are multi-functional host molecules with roles in diverse pathological processes, particularly of infectious or oncogenic origins. Using bimolecular fluorescence complementation and confocal imaging, we demonstrate that the two proteins homo- and heterodimerize, and that each isotype forms a distinct cell surface population. We present evidence that the 37 kDa form of LAMR1 (37LRP) is the precursor of the previously described 67 kDa laminin receptor (67LR), whereas the heterodimer represents an entity that is distinct from this molecule. Site-directed mutagenesis confirmed that the single cysteine (C(173)) of Gal-3 or lysine (K(166)) of LAMR1 are critical for heterodimerization. Recombinant Gal-3, expressed in normally Gal-3-deficient N2a cells, dimerized with endogenous LAMR1 and led to a significantly increased number of internalized bacteria (Neisseria meningitidis), confirming the role of Gal-3 in bacterial invasion. Contact-dependent cross-linking determined that, in common with LAMR1, Gal-3 binds the meningococcal secretin PilQ, in addition to the major pilin PilE. This study adds significant new mechanistic insights into the bacterial-host cell interaction by clarifying the nature, role and bacterial ligands of LAMR1 and Gal-3 isotypes during colonization. PMID:25274119

  9. Deciphering the complex three-way interaction between the non-integrin laminin receptor, galectin-3 and Neisseria meningitidis

    PubMed Central

    Alqahtani, Fulwah; Mahdavi, Jafar; Wheldon, Lee M.; Vassey, Matthew; Pirinccioglu, Necmettin; Royer, Pierre-Joseph; Qarani, Suzan M.; Morroll, Shaun; Stoof, Jeroen; Holliday, Nicholas D.; Teo, Siew Y.; Oldfield, Neil J.; Wooldridge, Karl G.; Ala'Aldeen, Dlawer A. A.

    2014-01-01

    The non-integrin laminin receptor (LAMR1/RPSA) and galectin-3 (Gal-3) are multi-functional host molecules with roles in diverse pathological processes, particularly of infectious or oncogenic origins. Using bimolecular fluorescence complementation and confocal imaging, we demonstrate that the two proteins homo- and heterodimerize, and that each isotype forms a distinct cell surface population. We present evidence that the 37 kDa form of LAMR1 (37LRP) is the precursor of the previously described 67 kDa laminin receptor (67LR), whereas the heterodimer represents an entity that is distinct from this molecule. Site-directed mutagenesis confirmed that the single cysteine (C173) of Gal-3 or lysine (K166) of LAMR1 are critical for heterodimerization. Recombinant Gal-3, expressed in normally Gal-3-deficient N2a cells, dimerized with endogenous LAMR1 and led to a significantly increased number of internalized bacteria (Neisseria meningitidis), confirming the role of Gal-3 in bacterial invasion. Contact-dependent cross-linking determined that, in common with LAMR1, Gal-3 binds the meningococcal secretin PilQ, in addition to the major pilin PilE. This study adds significant new mechanistic insights into the bacterial–host cell interaction by clarifying the nature, role and bacterial ligands of LAMR1 and Gal-3 isotypes during colonization. PMID:25274119

  10. The interaction between uPAR and vitronectin triggers ligand-independent adhesion signalling by integrins

    PubMed Central

    Ferraris, Gian Maria Sarra; Schulte, Carsten; Buttiglione, Valentina; De Lorenzi, Valentina; Piontini, Andrea; Galluzzi, Massimiliano; Podestà, Alessandro; Madsen, Chris D; Sidenius, Nicolai

    2014-01-01

    The urokinase-type plasminogen activator receptor (uPAR) is a non-integrin vitronectin (VN) cell adhesion receptor linked to the plasma membrane by a glycolipid anchor. Through structure–function analyses of uPAR, VN and integrins, we document that uPAR-mediated cell adhesion to VN triggers a novel type of integrin signalling that is independent of integrin–matrix engagement. The signalling is fully active on VN mutants deficient in integrin binding site and is also efficiently transduced by integrins deficient in ligand binding. Although integrin ligation is dispensable, signalling is crucially dependent upon an active conformation of the integrin and its association with intracellular adaptors such as talin. This non-canonical integrin signalling is not restricted to uPAR as it poses no structural constraints to the receptor mediating cell attachment. In contrast to canonical integrin signalling, where integrins form direct mechanical links between the ECM and the cytoskeleton, the molecular mechanism enabling the crosstalk between non-integrin adhesion receptors and integrins is dependent upon membrane tension. This suggests that for this type of signalling, the membrane represents a critical component of the molecular clutch. PMID:25168639

  11. Addition of a Single gp120 Glycan Confers Increased Binding to Dendritic Cell-Specific ICAM-3-Grabbing Nonintegrin and Neutralization Escape to Human Immunodeficiency Virus Type 1

    PubMed Central

    Lue, James; Hsu, Mayla; Yang, David; Marx, Preston; Chen, Zhiwei; Cheng-Mayer, Cecilia

    2002-01-01

    The potential role of dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) binding in human immunodeficiency virus transmission across the mucosal barrier was investigated by assessing the ability of simian-human immunodeficiency chimeric viruses (SHIVs) showing varying degrees of mucosal transmissibility to bind the DC-SIGN expressed on the surface of transfected cells. We found that gp120 of the highly transmissible, pathogenic CCR5-tropic SHIVSF162P3 bound human and rhesus DC-SIGN with an efficiency threefold or greater than that of gp120 of the nonpathogenic, poorly transmissible parental SHIVSF162, and this increase in binding to the DC-SIGN of the SHIVSF162P3 envelope gp120 translated into an enhancement of T-cell infection in trans. The presence of an additional glycan at the N-terminal base of the V2 loop of SHIVSF162P3 gp120 compared to that of the parental virus was shown to be responsible for the increase in binding to DC-SIGN. Interestingly, this glycan also conferred escape from autologous neutralization, raising the possibility that the modification occurred as a result of immune selection. Our data suggest that more-efficient binding of envelope gp120 to DC-SIGN could be relevant to the enhanced mucosal transmissibility of SHIVSF162P3 compared to that of parental SHIVSF162. PMID:12239306

  12. Abdominal Adhesions

    MedlinePlus

    ... Abdominal Adhesions 1 Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. Journal of Surgical Research. 2011;165(1):91– ... are abdominal adhesions and intestinal obstructions ... generally do not require treatment. Surgery is the only way to treat abdominal ...

  13. Reactive oxygen species production by human dendritic cells involves TLR2 and dectin-1 and is essential for efficient immune response against Mycobacteria.

    PubMed

    Romero, María Mercedes; Basile, Juan Ignacio; Corra Feo, Laura; López, Beatriz; Ritacco, Viviana; Alemán, Mercedes

    2016-06-01

    Tuberculosis remains the single largest infectious disease with 10 million new cases and two million deaths that are estimated to occur yearly, more than any time in history. The intracellular replication of Mycobacterium tuberculosis (Mtb) and its spread from the lungs to other sites occur before the development of adaptive immune responses. Dendritic cells (DC) are professional antigen-presenting cells whose maturation is critical for the onset of the protective immune response against tuberculosis disease and may vary depending on the nature of the cell wall of Mtb strain. Here, we describe the role of the endogenous production of reactive oxygen species (ROS) on DC maturation and expansion of Mtb-specific lymphocytes. Here, we show that Mtb induces DC maturation through TLR2/dectin-1 by generating of ROS and through Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN) in a ROS independently manner. Based on the differences observed in the ability to induce DC maturation, ROS production and lymphocyte proliferation by those Mtb families widespread in South America, i.e., Haarlem and Latin American Mediterranean and the reference strain H37Rv, we propose that variance in ROS production might contribute to immune evasion affecting DC maturation and antigen presentation. PMID:26709456

  14. Host Langerin (CD207) is a receptor for Yersinia pestis phagocytosis and promotes dissemination

    PubMed Central

    Yang, Kun; Park, Chae G; Cheong, Cheolho; Bulgheresi, Silvia; Zhang, Shusheng; Zhang, Pei; He, Yingxia; Jiang, Lingyu; Huang, Hongping; Ding, Honghui; Wu, Yiping; Wang, Shaogang; Zhang, Lin; Li, Anyi; Xia, Lianxu; Bartra, Sara S; Plano, Gregory V; Skurnik, Mikael; Klena, John D; Chen, Tie

    2015-01-01

    Yersinia pestis is a Gram-negative bacterium that causes plague. After Y. pestis overcomes the skin barrier, it encounters antigen-presenting cells (APCs), such as Langerhans and dendritic cells. They transport the bacteria from the skin to the lymph nodes. However, the molecular mechanisms involved in bacterial transmission are unclear. Langerhans cells (LCs) express Langerin (CD207), a calcium-dependent (C-type) lectin. Furthermore, Y. pestis possesses exposed core oligosaccharides. In this study, we show that Y. pestis invades LCs and Langerin-expressing transfectants. However, when the bacterial core oligosaccharides are shielded or truncated, Y. pestis propensity to invade Langerhans and Langerin-expressing cells decreases. Moreover, the interaction of Y. pestis with Langerin-expressing transfectants is inhibited by purified Langerin, a DC-SIGN (DC-specific intercellular adhesion molecule 3 grabbing nonintegrin)-like molecule, an anti-CD207 antibody, purified core oligosaccharides and several oligosaccharides. Furthermore, covering core oligosaccharides reduces the mortality associated with murine infection by adversely affecting the transmission of Y. pestis to lymph nodes. These results demonstrate that direct interaction of core oligosaccharides with Langerin facilitates the invasion of LCs by Y. pestis. Therefore, Langerin-mediated binding of Y. pestis to APCs may promote its dissemination and infection. PMID:25829141

  15. The effect of human immunodeficiency virus-1 on monocyte-derived dendritic cell maturation and function

    PubMed Central

    Fairman, P; Angel, J B

    2012-01-01

    Dendritic cells (DC) are mediators of the adaptive immune response responsible for antigen presentation to naive T cells in secondary lymph organs. Human immunodeficiency virus (HIV-1) has been reported to inhibit the maturation of DC, but a clear link between maturation and function has not been elucidated. To understand further the effects of HIV-1 on DC maturation and function, we expanded upon previous investigations and assessed the effects of HIV-1 infection on the expression of surface molecules, carbohydrate endocytosis, antigen presentation and lipopolysaccharide (LPS) responsiveness over the course of maturation. In vitro infection with HIV-1 resulted in an increase in the expression of DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) as well as decreases in maturation-induced CCR7 and major histocompatibility complex (MHC)-II expression. Retention of endocytosis that normally occurs with DC maturation as well as inhibition of antigen presentation to CD8+ T cells was also observed. Mitogen-activated protein kinase (MAPK) responsiveness to LPS as measured by phosphorylation of p38, c-Jun N-terminal kinase (JNK) and extracellular-regulated kinase (ERK)1/2 was not affected by HIV-1 infection. In summary, in-vitro HIV-1 impairs DC maturation, as defined by cell surface protein expression, with selective alterations in mature DC function. Understanding the mechanisms of DC dysfunction in HIV infection will provide further insight into HIV immune pathogenesis. PMID:22943206

  16. Sulfated Escherichia coli K5 Polysaccharide Derivatives Inhibit Dengue Virus Infection of Human Microvascular Endothelial Cells by Interacting with the Viral Envelope Protein E Domain III

    PubMed Central

    Vervaeke, Peter; Alen, Marijke; Noppen, Sam; Schols, Dominique; Oreste, Pasqua; Liekens, Sandra

    2013-01-01

    Dengue virus (DENV) is an emerging mosquito-borne pathogen that causes cytokine-mediated alterations in the barrier function of the microvascular endothelium, leading to dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). We observed that DENV (serotype 2) productively infects primary (HMVEC-d) and immortalized (HMEC-1) human dermal microvascular endothelial cells, despite the absence of well-described DENV receptors, such as dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) or the mannose receptor on the cell surface. However, heparan sulfate proteoglycans (HSPGs) were highly expressed on these cells and pre-treatment of HMEC-1 cells with heparinase II or with glycosaminoglycans reduced DENV infectivity up to 90%, suggesting that DENV uses HSPGs as attachment receptor on microvascular endothelial cells. Sulfated Escherichia coli K5 derivatives, which are structurally similar to heparin/heparan sulfate but lack anticoagulant activity, were able to block DENV infection of HMEC-1 and HMVEC-d cells in the nanomolar range. The highly sulfated K5-OS(H) and K5-N,OS(H) inhibited virus attachment and subsequent entry into microvascular endothelial cells by interacting with the viral envelope (E) protein, as shown by surface plasmon resonance (SPR) analysis using the receptor-binding domain III of the E protein. PMID:24015314

  17. CNS myelin induces regulatory functions of DC-SIGN-expressing, antigen-presenting cells via cognate interaction with MOG.

    PubMed

    García-Vallejo, J J; Ilarregui, J M; Kalay, H; Chamorro, S; Koning, N; Unger, W W; Ambrosini, M; Montserrat, V; Fernandes, R J; Bruijns, S C M; van Weering, J R T; Paauw, N J; O'Toole, T; van Horssen, J; van der Valk, P; Nazmi, K; Bolscher, J G M; Bajramovic, J; Dijkstra, C D; 't Hart, B A; van Kooyk, Y

    2014-06-30

    Myelin oligodendrocyte glycoprotein (MOG), a constituent of central nervous system myelin, is an important autoantigen in the neuroinflammatory disease multiple sclerosis (MS). However, its function remains unknown. Here, we show that, in healthy human myelin, MOG is decorated with fucosylated N-glycans that support recognition by the C-type lectin receptor (CLR) DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) on microglia and DCs. The interaction of MOG with DC-SIGN in the context of simultaneous TLR4 activation resulted in enhanced IL-10 secretion and decreased T cell proliferation in a DC-SIGN-, glycosylation-, and Raf1-dependent manner. Exposure of oligodendrocytes to proinflammatory factors resulted in the down-regulation of fucosyltransferase expression, reflected by altered glycosylation at the MS lesion site. Indeed, removal of fucose on myelin reduced DC-SIGN-dependent homeostatic control, and resulted in inflammasome activation, increased T cell proliferation, and differentiation toward a Th17-prone phenotype. These data demonstrate a new role for myelin glycosylation in the control of immune homeostasis in the healthy human brain through the MOG-DC-SIGN homeostatic regulatory axis, which is comprised by inflammatory insults that affect glycosylation. This phenomenon should be considered as a basis to restore immune tolerance in MS. PMID:24935259

  18. General mechanism for modulating immunoglobulin effector function

    PubMed Central

    Sondermann, Peter; Pincetic, Andrew; Maamary, Jad; Lammens, Katja; Ravetch, Jeffrey V.

    2013-01-01

    Immunoglobulins recognize and clear microbial pathogens and toxins through the coupling of variable region specificity to Fc-triggered cellular activation. These proinflammatory activities are regulated, thus avoiding the pathogenic sequelae of uncontrolled inflammation by modulating the composition of the Fc-linked glycan. Upon sialylation, the affinities for Fcγ receptors are reduced, whereas those for alternative cellular receptors, such as dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)/CD23, are increased. We demonstrate that sialylation induces significant structural alterations in the Cγ2 domain and propose a model that explains the observed changes in ligand specificity and biological activity. By analogy to related complexes formed by IgE and its evolutionarily related Fc receptors, we conclude that this mechanism is general for the modulation of antibody-triggered immune responses, characterized by a shift between an “open” activating conformation and a “closed” anti-inflammatory state of antibody Fc fragments. This common mechanism has been targeted by pathogens to avoid host defense and offers targets for therapeutic intervention in allergic and autoimmune disorders. PMID:23697368

  19. Host Langerin (CD207) is a receptor for Yersinia pestis phagocytosis and promotes dissemination.

    PubMed

    Yang, Kun; Park, Chae G; Cheong, Cheolho; Bulgheresi, Silvia; Zhang, Shusheng; Zhang, Pei; He, Yingxia; Jiang, Lingyu; Huang, Hongping; Ding, Honghui; Wu, Yiping; Wang, Shaogang; Zhang, Lin; Li, Anyi; Xia, Lianxu; Bartra, Sara S; Plano, Gregory V; Skurnik, Mikael; Klena, John D; Chen, Tie

    2015-10-01

    Yersinia pestis is a Gram-negative bacterium that causes plague. After Y. pestis overcomes the skin barrier, it encounters antigen-presenting cells (APCs), such as Langerhans and dendritic cells. They transport the bacteria from the skin to the lymph nodes. However, the molecular mechanisms involved in bacterial transmission are unclear. Langerhans cells (LCs) express Langerin (CD207), a calcium-dependent (C-type) lectin. Furthermore, Y. pestis possesses exposed core oligosaccharides. In this study, we show that Y. pestis invades LCs and Langerin-expressing transfectants. However, when the bacterial core oligosaccharides are shielded or truncated, Y. pestis propensity to invade Langerhans and Langerin-expressing cells decreases. Moreover, the interaction of Y. pestis with Langerin-expressing transfectants is inhibited by purified Langerin, a DC-SIGN (DC-specific intercellular adhesion molecule 3 grabbing nonintegrin)-like molecule, an anti-CD207 antibody, purified core oligosaccharides and several oligosaccharides. Furthermore, covering core oligosaccharides reduces the mortality associated with murine infection by adversely affecting the transmission of Y. pestis to lymph nodes. These results demonstrate that direct interaction of core oligosaccharides with Langerin facilitates the invasion of LCs by Y. pestis. Therefore, Langerin-mediated binding of Y. pestis to APCs may promote its dissemination and infection. PMID:25829141

  20. Dendritic cells respond to nasopharygeal carcinoma cells through annexin A2-recognizing DC-SIGN

    PubMed Central

    Cheng, Chao-Wen; Hsu, Tin-Jui; Lin, Yun-Tien; Lai, Chang-Hao; Liao, Chen-Chung; Chen, Wei-Yu; Leung, Ting-Kai; Lee, Fei-Peng; Lin, Yung-Feng; Chen, Chien-Ho

    2015-01-01

    Dendritic cells (DCs) play an essential role in immunity and are used in cancer immunotherapy. However, these cells can be tuned by tumors with immunosuppressive responses. DC-specific intercellular adhesion molecule 3-Grabbing Nonintegrin (DC-SIGN), a C-type lectin expressed on DCs, recognizes certain carbohydrate structures which can be found on cancer cells. Nasopharyngeal carcinoma (NPC) is an epithelial cell-derived malignant tumor, in which immune response remains unclear. This research is to reveal the molecular link on NPC cells that induces the immunosuppressive responses in DCs. In this article, we report identification of annexin A2 (ANXA2) on NPC cells as a ligand for DC-SIGN on DCs. N-linked mannose-rich glycan on ANXA2 may mediate the interaction. ANXA2 was abundantly expressed in NPC, and knockdown of ANXA2 suppressed NPC xenograft in mice, suggesting a crucial role of ANXA2 in NPC growth. Interaction with NPC cells caused DC-SIGN activation in DCs. Consequently DC maturation and the proinflammatory interleukin (IL)-12 production were inhibited, and the immunosuppressive IL-10 production was promoted. Blockage of either DC-SIGN or ANXA2 eliminated the production of IL-10 from DCs. This report suggests that suppression of ANXA2 at its expression or glycosylation on NPC may improve DC-mediated immunotherapy for the tumor. PMID:25402728

  1. Abdominal Adhesions

    MedlinePlus

    ... Adhesions 1 Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. Journal of Surgical Research. 2011;165(1):91–111. Seek Help for ... and how to participate, visit the NIH Clinical Research Trials and You website ... Foundation for Functional Gastrointestinal Disorders 700 West Virginia ...

  2. Polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, D. J.; Bell, V. L.; Saintclair, T. L. (Inventor)

    1974-01-01

    A process of preparing aromatic polyamide-acids for use as adhesives is described. An equimolar quantity of an aromatic dianhydride is added to a stirred solution of an aromatic diamine in a water or alcohol-miscible ether solvent to obtain a viscous polymer solution. The polymeric-acid intermediate polymer does not become insoluble but directly forms a smooth viscous polymer solution. These polyamic-acid polymers are converted, by heating in the range of 200-300 C and with pressure, to form polyimides with excellent adhesive properties.

  3. Looking into laminin receptor: critical discussion regarding the non-integrin 37/67-kDa laminin receptor/RPSA protein.

    PubMed

    DiGiacomo, Vincent; Meruelo, Daniel

    2016-05-01

    The 37/67-kDa laminin receptor (LAMR/RPSA) was originally identified as a 67-kDa binding protein for laminin, an extracellular matrix glycoprotein that provides cellular adhesion to the basement membrane. LAMR has evolutionary origins, however, as a 37-kDa RPS2 family ribosomal component. Expressed in all domains of life, RPS2 proteins have been shown to have remarkably diverse physiological roles that vary across species. Contributing to laminin binding, ribosome biogenesis, cytoskeletal organization, and nuclear functions, this protein governs critical cellular processes including growth, survival, migration, protein synthesis, development, and differentiation. Unsurprisingly given its purview, LAMR has been associated with metastatic cancer, neurodegenerative disease and developmental abnormalities. Functioning in a receptor capacity, this protein also confers susceptibility to bacterial and viral infection. LAMR is clearly a molecule of consequence in human disease, directly mediating pathological events that make it a prime target for therapeutic interventions. Despite decades of research, there are still a large number of open questions regarding the cellular biology of LAMR, the nature of its ability to bind laminin, the function of its intrinsically disordered C-terminal region and its conversion from 37 to 67 kDa. This review attempts to convey an in-depth description of the complexity surrounding this multifaceted protein across functional, structural and pathological aspects. PMID:25630983

  4. Costimulation of CD3/TcR complex with either integrin or nonintegrin ligands protects CD4+ allergen-specific T-cell clones from programmed cell death.

    PubMed

    Agea, E; Bistoni, O; Bini, P; Migliorati, G; Nicoletti, I; Bassotti, G; Riccardi, C; Bertotto, A; Spinozzi, F

    1995-08-01

    An optimal stimulation of CD4+ cells in an immune response requires not only signals transduced via the TcR/CD3 complex, but also costimulatory signals delivered as a consequence of interactions between T-cell surface-associated costimulatory receptors and their counterparts on antigen-presenting cells (APC). The intercellular adhesion molecule-1 (ICAM-1, CD54) efficiently costimulates proliferation of resting, but not antigen-specific, T cells. In contrast, CD28 and CD2 support interleukin (IL)-2 synthesis and proliferation of antigen-specific T cells more efficiently than those of resting T cells. The molecular basis for this differential costimulation of T cells is poorly understood. Cypress-specific T-cell clones (TCC) were generated from four allergic subjects during in vivo seasonal exposure to the allergen. Purified cypress extract was produced directly from fresh collected pollen and incubated with the patients' mononuclear cells. Repeated allergen stimulation was performed in T-cell cultures supplemented with purified extract and autologous APC. The limiting-dilution technique was then adopted to generate allergen-specific TCC, which were also characterized by their cytokine secretion pattern as Th0 (IL-4 plus interferon-gamma) or Th2 (IL-4). Costimulation-induced proliferation or apoptosis was measured by propidium iodide cytofluorometric assay. By cross-linking cypress-specific CD4+ and CD8+ T-cell clones with either anti-CD3 or anti-CD2, anti-CD28, and anti-CD54 monoclonal antibodies, we demonstrated that CD4+ clones (with Th0- or Th2-type cytokine production pattern) undergo programmed cell death only after anti-CD3 stimulation, whereas costimulation with either anti-CD54 or anti-CD28 protects target cells from apoptosis.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7503404

  5. DC-SIGN expression on podocytes and its role in inflammatory immune response of lupus nephritis.

    PubMed

    Cai, Minchao; Zhou, Tong; Wang, Xuan; Shang, Minghua; Zhang, Yueyue; Luo, Maocai; Xu, Chundi; Yuan, Weijie

    2016-03-01

    Podocytes, the main target of immune complex, participate actively in the development of glomerular injury as immune cells. Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is an innate immune molecular that has an immune recognition function, and is involved in mediation of cell adhesion and immunoregulation. Here we explored the expression of DC-SIGN on podocytes and its role in immune and inflammatory responses in lupus nephritis (LN). Expression of DC-SIGN and immunoglobulin (Ig)G1 was observed in glomeruli of LN patients. DC-SIGN was co-expressed with nephrin on podocytes. Accompanied by increased proteinuria of LN mice, DC-SIGN and IgG1 expressions were observed in the glomeruli from 20 weeks, and the renal function deteriorated up to 24 weeks. Mice with anti-DC-SIGN antibody showed reduced proteinuria and remission of renal function. After the podocytes were stimulated by serum of LN mice in vitro, the expression of DC-SIGN, major histocompatibility complex (MHC) class II and CD80 was up-regulated, stimulation of T cell proliferation was enhanced and the interferon (IFN)-γ/interleukin (IL)-4 ratio increased. However, anti-DC-SIGN antibody treatment reversed these events. These results suggested that podocytes in LN can exert DC-like function through their expression of DC-SIGN, which may be involved in immune and inflammatory responses of renal tissues. However, blockage of DC-SIGN can inhibit immune functions of podocytes, which may have preventive and therapeutic effects. PMID:26440060

  6. Thermal Characterization of Adhesive

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.

    1999-01-01

    The current Space Shuttle Reusable Solid Rocket Motor (RSRM) nozzle adhesive bond system is being replaced due to obsolescence. Down-selection and performance testing of the structural adhesives resulted in the selection of two candidate replacement adhesives, Resin Technology Group's Tiga 321 and 3M's EC2615XLW. This paper describes rocket motor testing of these two adhesives. Four forty-pound charge motors were fabricated in configurations that would allow side by side comparison testing of the candidate replacement adhesives and the current RSRM adhesives. The motors provided an environment where the thermal performance of adhesives in flame surface bondlines was compared. Results of the FPC testing show that: 1) The phenolic char depths on radial bond lines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used; 2) The adhesive char depth of the candidate replacement adhesives is less than the char depth of the current adhesives; 3) The heat-affected depth of the candidate replacement adhesives is less than the heat-affected depth of the current adhesives; and 4) The ablation rates for both replacement adhesives are slower than that of the current adhesives.

  7. Human Milk Blocks DC-SIGN-Pathogen Interaction via MUC1.

    PubMed

    Koning, Nathalie; Kessen, Sabine F M; Van Der Voorn, J Patrick; Appelmelk, Ben J; Jeurink, Prescilla V; Knippels, Leon M J; Garssen, Johan; Van Kooyk, Yvette

    2015-01-01

    Beneficial effects of breastfeeding are well-recognized and include both immediate neonatal protection against pathogens and long-term protection against allergies and autoimmune diseases. Although several proteins have been identified to have anti-viral or anti-bacterial effects like secretory IgA or lactoferrin, the mechanisms of immune modulation are not fully understood. Recent studies identified important beneficial effects of glycans in human milk, such as those expressed in oligosaccharides or on glycoproteins. Glycans are recognized by the carbohydrate receptors C-type lectins on dendritic cell (DC) and specific tissue macrophages, which exert important functions in immune modulation and immune homeostasis. A well-characterized C-type lectin is dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), which binds terminal fucose. The present study shows that in human milk, MUC1 is the major milk glycoprotein that binds to the lectin domain of DC-SIGN and prevents pathogen interaction through the presence of Lewis x-type oligosaccharides. Surprisingly, this was specific for human milk, as formula, bovine or camel milk did not show any presence of proteins that interacted with DC-SIGN. The expression of DC-SIGN is found in young infants along the entire gastrointestinal tract. Our data thus suggest the importance of human milk glycoproteins for blocking pathogen interaction to DC in young children. Moreover, a potential benefit of human milk later in life in shaping the infants immune system through DC-SIGN cannot be ruled out. PMID:25821450

  8. Human Cytomegalovirus Entry into Dendritic Cells Occurs via a Macropinocytosis-Like Pathway in a pH-Independent and Cholesterol-Dependent Manner

    PubMed Central

    Haspot, Fabienne; Lavault, Amélie; Sinzger, Christian; Laib Sampaio, Kerstin; Stierhof, York-Dieter; Pilet, Paul; Bressolette-Bodin, Céline; Halary, Franck

    2012-01-01

    Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that is able to infect fibroblastic, epithelial, endothelial and hematopoietic cells. Over the past ten years, several groups have provided direct evidence that dendritic cells (DCs) fully support the HCMV lytic cycle. We previously demonstrated that the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) has a prominent role in the docking of HCMV on monocyte-derived DCs (MDDCs). The DC-SIGN/HCMV interaction was demonstrated to be a crucial and early event that substantially enhanced infection in trans, i.e., from one CMV-bearing cell to another non-infected cell (or trans-infection), and rendered susceptible cells fully permissive to HCMV infection. Nevertheless, nothing is yet known about how HCMV enters MDDCs. In this study, we demonstrated that VHL/E HCMV virions (an endothelio/dendrotropic strain) are first internalized into MDDCs by a macropinocytosis-like process in an actin- and cholesterol-dependent, but pH-independent, manner. We observed the accumulation of virions in large uncoated vesicles with endosomal features, and the virions remained as intact particles that retained infectious potential for several hours. This trans-infection property was specific to MDDCs because monocyte-derived macrophages or monocytes from the same donor were unable to allow the accumulation of and the subsequent transmission of the virus. Together, these data allowed us to delineate the early mechanisms of the internalization and entry of an endothelio/dendrotropic HCMV strain into human MDDCs and to propose that DCs can serve as a "Trojan horse" to convey CMV from entry sites to other locations that may favor the occurrence of either latency or acute infection. PMID:22496863

  9. Dermal CD14(+) Dendritic Cell and Macrophage Infection by Dengue Virus Is Stimulated by Interleukin-4.

    PubMed

    Schaeffer, Evelyne; Flacher, Vincent; Papageorgiou, Vasiliki; Decossas, Marion; Fauny, Jean-Daniel; Krämer, Melanie; Mueller, Christopher G

    2015-07-01

    Dengue virus (DENV) is responsible for the most prevalent arthropod-borne viral infection in humans. Events decisive for disease development occur in the skin after virus inoculation by the mosquito. Yet, the role of human dermis-resident immune cells in dengue infection and disease remains elusive. Here we investigated how dermal dendritic cells (dDCs) and macrophages (dMs) react to DENV and impact on immunopathology. We show that both CD1c(+) and CD14(+) dDC subsets were infected, but viral load greatly increased in CD14(+) dDCs upon IL-4 stimulation, which correlated with upregulation of virus-binding lectins Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Nonintegrin (DC-SIGN/CD209) and mannose receptor (CD206). IL-4 also enhanced T-cell activation by dDCs, which was further increased upon dengue infection. dMs purified from digested dermis were initially poorly infected but actively replicated the virus and produced TNF-α upon lectin upregulation in response to IL-4. DC-SIGN(+) cells are abundant in inflammatory skin with scabies infection or Th2-type dermatitis, suggesting that skin reactions to mosquito bites heighten the risk of infection and subsequent immunopathology. Our data identify dDCs and dMs as primary arbovirus target cells in humans and suggest that dDCs initiate a potent virus-directed T-cell response, whereas dMs fuel the inflammatory cascade characteristic of dengue fever. PMID:25521455

  10. Human DC-SIGN binds specific human milk glycans.

    PubMed

    Noll, Alexander J; Yu, Ying; Lasanajak, Yi; Duska-McEwen, Geralyn; Buck, Rachael H; Smith, David F; Cummings, Richard D

    2016-05-15

    Human milk glycans (HMGs) are prebiotics, pathogen receptor decoys and regulators of host physiology and immune responses. Mechanistically, human lectins (glycan-binding proteins, hGBP) expressed by dendritic cells (DCs) are of major interest, as these cells directly contact HMGs. To explore such interactions, we screened many C-type lectins and sialic acid-binding immunoglobulin-like lectins (Siglecs) expressed by DCs for glycan binding on microarrays presenting over 200 HMGs. Unexpectedly, DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) showed robust binding to many HMGs, whereas other C-type lectins failed to bind, and Siglec-5 and Siglec-9 showed weak binding to a few glycans. By contrast, most hGBP bound to multiple glycans on other microarrays lacking HMGs. An α-linked fucose residue was characteristic of HMGs bound by DC-SIGN. Binding of DC-SIGN to the simple HMGs 2'-fucosyl-lactose (2'-FL) and 3-fucosyl-lactose (3-FL) was confirmed by flow cytometry to beads conjugated with 2'-FL or 3-FL, as well as the ability of the free glycans to inhibit DC-SIGN binding. 2'-FL had an IC50 of ∼1 mM for DC-SIGN, which is within the physiological concentration of 2'-FL in human milk. These results demonstrate that DC-SIGN among the many hGBP expressed by DCs binds to α-fucosylated HMGs, and suggest that such interactions may be important in influencing immune responses in the developing infant. PMID:26976925

  11. Lectin binding to surface Ig variable regions provides a universal persistent activating signal for follicular lymphoma cells.

    PubMed

    Linley, Adam; Krysov, Sergey; Ponzoni, Maurilio; Johnson, Peter W; Packham, Graham; Stevenson, Freda K

    2015-10-15

    The vast majority of cases of follicular lymphoma (FL), but not normal B cells, acquire N-glycosylation sites in the immunoglobulin variable regions during somatic hypermutation. Glycans added to sites are unusual in terminating at high mannoses. We showed previously that the C-type lectins, dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) and mannose receptor, bound to FL surface immunoglobulin (sIg), generating an intracellular Ca(2+) flux. We have now mapped further intracellular pathways activated by DC-SIGN in a range of primary FL cells with detection of phosphorylated ERK1/2, AKT, and PLCγ2. The SYK inhibitor (tamatinib) or the BTK inhibitor (ibrutinib) each blocked phosphorylation. Activation by DC-SIGN occurred in both IgM(+) and IgG(+) cases and led to upregulation of MYC expression, with detection in vivo observed in lymph nodes. Unlike cells of chronic lymphocytic leukemia, FL cells expressed relatively high levels of sIg, unchanged by long-term incubation in vitro, indicating no antigen-mediated downregulation in vivo. In contrast, expression of CXCR4 increased in vitro. Engagement of sIg in FL cells or normal B cells by anti-Ig led to endocytosis in vitro as expected, but DC-SIGN, even when cross-linked, did not lead to significant endocytosis of sIg. These findings indicate that lectin binding generates signals via sIg but does not mediate endocytosis, potentially maintaining a supportive antigen-independent signal in vivo. Location of DC-SIGN in FL tissue revealed high levels in sinusoidlike structures and in some colocalized mononuclear cells, suggesting a role for lectin-expressing cells at this site. PMID:26194765

  12. Role of Dendritic Cells in Antibody-Dependent Enhancement of Dengue Virus Infection▿

    PubMed Central

    Boonnak, Kobporn; Slike, Bonnie M.; Burgess, Timothy H.; Mason, Randall M.; Wu, Shuenn-Jue; Sun, Peifang; Porter, Kevin; Rudiman, Irani Fianza; Yuwono, Djoko; Puthavathana, Pilaipan; Marovich, Mary A.

    2008-01-01

    Dengue viruses (DV), composed of four distinct serotypes (DV1 to DV4), cause 50 to 100 million infections annually. Durable homotypic immunity follows infection but may predispose to severe subsequent heterotypic infections, a risk conferred in part by the immune response itself. Antibody-dependent enhancement (ADE), a process best described in vitro, is epidemiologically linked to complicated DV infections, especially in Southeast Asia. Here we report for the first time the ADE phenomenon in primary human dendritic cells (DC), early targets of DV infection, and human cell lines bearing Fc receptors. We show that ADE is inversely correlated with surface expression of DC-SIGN (DC-specific intercellular adhesion molecule-3-grabbing nonintegrin) and requires Fc gamma receptor IIa (FcγRIIa). Mature DC exhibited ADE, whereas immature DC, expressing higher levels of DC-SIGN and similar FcγRIIa levels, did not undergo ADE. ADE results in increased intracellular de novo DV protein synthesis, increased viral RNA production and release, and increased infectivity of the supernatants in mature DC. Interestingly, tumor necrosis factor alpha and interleukin-6 (IL-6), but not IL-10 and gamma interferon, were released in the presence of dengue patient sera but generally only at enhancement titers, suggesting a signaling component of ADE. FcγRIIa inhibition with monoclonal antibodies abrogated ADE and associated downstream consequences. DV versatility in entry routes (FcγRIIa or DC-SIGN) in mature DC broadens target options and suggests additional ways for DC to contribute to the pathogenesis of severe DV infection. Studying the cellular targets of DV infection and their susceptibility to ADE will aid our understanding of complex disease and contribute to the field of vaccine development. PMID:18272578

  13. Role of dendritic cells in antibody-dependent enhancement of dengue virus infection.

    PubMed

    Boonnak, Kobporn; Slike, Bonnie M; Burgess, Timothy H; Mason, Randall M; Wu, Shuenn-Jue; Sun, Peifang; Porter, Kevin; Rudiman, Irani Fianza; Yuwono, Djoko; Puthavathana, Pilaipan; Marovich, Mary A

    2008-04-01

    Dengue viruses (DV), composed of four distinct serotypes (DV1 to DV4), cause 50 to 100 million infections annually. Durable homotypic immunity follows infection but may predispose to severe subsequent heterotypic infections, a risk conferred in part by the immune response itself. Antibody-dependent enhancement (ADE), a process best described in vitro, is epidemiologically linked to complicated DV infections, especially in Southeast Asia. Here we report for the first time the ADE phenomenon in primary human dendritic cells (DC), early targets of DV infection, and human cell lines bearing Fc receptors. We show that ADE is inversely correlated with surface expression of DC-SIGN (DC-specific intercellular adhesion molecule-3-grabbing nonintegrin) and requires Fc gamma receptor IIa (FcgammaRIIa). Mature DC exhibited ADE, whereas immature DC, expressing higher levels of DC-SIGN and similar FcgammaRIIa levels, did not undergo ADE. ADE results in increased intracellular de novo DV protein synthesis, increased viral RNA production and release, and increased infectivity of the supernatants in mature DC. Interestingly, tumor necrosis factor alpha and interleukin-6 (IL-6), but not IL-10 and gamma interferon, were released in the presence of dengue patient sera but generally only at enhancement titers, suggesting a signaling component of ADE. FcgammaRIIa inhibition with monoclonal antibodies abrogated ADE and associated downstream consequences. DV versatility in entry routes (FcgammaRIIa or DC-SIGN) in mature DC broadens target options and suggests additional ways for DC to contribute to the pathogenesis of severe DV infection. Studying the cellular targets of DV infection and their susceptibility to ADE will aid our understanding of complex disease and contribute to the field of vaccine development. PMID:18272578

  14. Human Milk Blocks DC-SIGN–Pathogen Interaction via MUC1

    PubMed Central

    Koning, Nathalie; Kessen, Sabine F. M.; Van Der Voorn, J. Patrick; Appelmelk, Ben J.; Jeurink, Prescilla V.; Knippels, Leon M. J.; Garssen, Johan; Van Kooyk, Yvette

    2015-01-01

    Beneficial effects of breastfeeding are well-recognized and include both immediate neonatal protection against pathogens and long-term protection against allergies and autoimmune diseases. Although several proteins have been identified to have anti-viral or anti-bacterial effects like secretory IgA or lactoferrin, the mechanisms of immune modulation are not fully understood. Recent studies identified important beneficial effects of glycans in human milk, such as those expressed in oligosaccharides or on glycoproteins. Glycans are recognized by the carbohydrate receptors C-type lectins on dendritic cell (DC) and specific tissue macrophages, which exert important functions in immune modulation and immune homeostasis. A well-characterized C-type lectin is dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), which binds terminal fucose. The present study shows that in human milk, MUC1 is the major milk glycoprotein that binds to the lectin domain of DC-SIGN and prevents pathogen interaction through the presence of Lewis x-type oligosaccharides. Surprisingly, this was specific for human milk, as formula, bovine or camel milk did not show any presence of proteins that interacted with DC-SIGN. The expression of DC-SIGN is found in young infants along the entire gastrointestinal tract. Our data thus suggest the importance of human milk glycoproteins for blocking pathogen interaction to DC in young children. Moreover, a potential benefit of human milk later in life in shaping the infants immune system through DC-SIGN cannot be ruled out. PMID:25821450

  15. The relationship of interacting immunological components in dengue pathogenesis

    PubMed Central

    2009-01-01

    The World Health Organization (WHO) estimates that there are over 50 million cases of dengue fever reported annually and approximately 2.5 billion people are at risk. Mild dengue fever presents with headache, fever, rash, myalgia, osteogenic pain, and lethargy. Severe disease can manifest as dengue shock syndrome (DSS) or dengue hemorrhagic fever (DHF). Symptoms of DSS/DHF are leukopenia, low blood volume and pressure encephalitis, cold and sweaty skin, gastrointestinal bleeding, and spontaneous bleeding from gums and nose. Currently, there are no therapeutics available beyond supportive care and untreated complicated dengue fever can have a 50% mortality rate. According to WHO DSS/DHF is the leading cause of childhood mortality in some Asian countries. Dendritic cells are professional antigen presenting cells that are primary targets in a dengue infection. Dengue binds to Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN). DC-SIGN has a high affinity for ICAM3 which is expressed in activating T-cells. Previous studies have demonstrated an altered T-cell phenotype expressed in dengue infected patients that could be potentially mediated by dengue-infected DCs. Dengue is enhanced by three interacting components of the immune system. Dengue begins by infecting dendritic cells which in immature dendritic cells is mediated by DC-SIGN. In mature dendritic cells, antibodies can enhance dengue infection via Fc receptors. Downstream of dendritic cells T-cells become activated and generate the very cytokines implicated in vascular leak and shock in addition to activating effector cells. Both the virus and the antibodies are involved in release of complement and anaphylatoxins which can cause or exacerbate DHF/DSS. These systems are inextricable and strongly associated with dengue pathogenesis. PMID:19941667

  16. Understanding Marine Mussel Adhesion

    SciTech Connect

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  17. Understanding marine mussel adhesion.

    PubMed

    Silverman, Heather G; Roberto, Francisco F

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  18. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  19. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  20. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  1. Adhesion at metal interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1991-01-01

    A basic adhesion process is defined, the theory of the properties influencing metallic adhesion is outlined, and theoretical approaches to the interface problem are presented, with emphasis on first-principle calculations as well as jellium-model calculations. The computation of the energies of adhesion as a function of the interfacial separation is performed; fully three-dimensional calculations are presented, and universality in the shapes of the binding energy curves is considered. An embedded-atom method and equivalent-crystal theory are covered in the framework of issues involved in practical adhesion.

  2. Postoperative Peritoneal Adhesions

    PubMed Central

    Ryan, Graeme B.; Grobéty, Jocelyne; Majno, Guido

    1971-01-01

    This paper describes an experimental model of peritoneal adhesions, in the rat, based on two relatively minor accidents that may occur during abdominal surgery in man: drying of the serosa, and bleeding. Drying alone had little effect; drying plus bleeding consistently produced adhesions to the dried area. Fresh blood alone produced adhesions between the three membranous structures [omentum and pelvic fat bodies (PFBs)]. The formation of persistent adhesions required whole blood. Preformed clots above a critical size induced adhesions even without previous serosal injury; they were usually captured by the omentum and PFBs. If all three membranous structures were excised, the clots caused visceral adhesions. The protective role of the omentum, its structure, and the mechanism of omental adhesions, are discussed. These findings are relevant to the pathogenesis of post-operative adhesions in man. ImagesFig 3Fig 4Fig 5Fig 6Fig 7Fig 12Fig 13Fig 1Fig 2Fig 14Fig 15Fig 8Fig 9Fig 10Fig 11 PMID:5315369

  3. Cytotoxicity of denture adhesives.

    PubMed

    de Gomes, Pedro Sousa; Figueiral, Maria Helena; Fernandes, Maria Helena R; Scully, Crispian

    2011-12-01

    Ten commercially available denture adhesives, nine soluble formulations (six creams, three powders) and one insoluble product (pad), were analyzed regarding the cytotoxicity profile in direct and indirect assays using L929 fibroblast cells. In the direct assay, fibroblasts were seeded over the surface of a thick adhesive gel (5%, creams; 2.5%, powders and pad). In the indirect assay, cells were cultured in the presence of adhesive extracts prepared in static and dynamic conditions (0.5-2%, creams; 0.25-1%, powders and pad). Cell toxicity was assessed for cell viability/proliferation (MTT assay) and cell morphology (observation of the F-actin cytoskeleton organization by confocal laser scanning microscopy). Direct contact of the L929 fibroblasts with the thick adhesive gels caused no, or only a slight, decrease in cell viability/proliferation. The adhesive extracts (especially those prepared in dynamic conditions) caused significantly higher growth inhibition of fibroblasts and, in addition, caused dose- and time-dependent effects, throughout the 6-72 h exposure time. Also, dose-dependent effects on cell morphology, with evident disruption of the F-actin cytoskeleton organization, were seen in the presence of most adhesives. In conclusion, the adhesives possessed different degrees of cytotoxicity, but similar dose- and time-dependent biological profiles. PMID:20844908

  4. Focal adhesions in osteoneogenesis

    PubMed Central

    Biggs, M.J.P; Dalby, M.J

    2010-01-01

    As materials technology and the field of tissue engineering advances, the role of cellular adhesive mechanisms, in particular the interactions with implantable devices, becomes more relevant in both research and clinical practice. A key tenet of medical device technology is to use the exquisite ability of biological systems to respond to the material surface or chemical stimuli in order to help develop next-generation biomaterials. The focus of this review is on recent studies and developments concerning focal adhesion formation in osteoneogenesis, with an emphasis on the influence of synthetic constructs on integrin mediated cellular adhesion and function. PMID:21287830

  5. Cell adhesion force microscopy

    PubMed Central

    Sagvolden, G.; Giaever, I.; Pettersen, E. O.; Feder, J.

    1999-01-01

    The adhesion forces of cervical carcinoma cells in tissue culture were measured by using the manipulation force microscope, a novel atomic force microscope. The forces were studied as a function of time and temperature for cells cultured on hydrophilic and hydrophobic polystyrene substrates with preadsorbed proteins. The cells attached faster and stronger at 37°C than at 23°C and better on hydrophilic than on hydrophobic substrates, even though proteins adsorb much better to the hydrophobic substrates. Because cell adhesion serves to control several stages in the cell cycle, we anticipate that the manipulation force microscope can help clarify some cell-adhesion related issues. PMID:9892657

  6. Adhesive Contact Sweeper

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.

    1993-01-01

    Adhesive contact sweeper removes hair and particles vacuum cleaner leaves behind, without stirring up dust. Also cleans loose rugs. Sweeper holds commercially available spools of inverted adhesive tape. Suitable for use in environments in which air kept free of dust; optics laboratories, computer rooms, and areas inhabited by people allergic to dust. For carpets, best used in tandem with vacuum cleaner; first pass with vacuum cleaner removes coarse particles, and second pass with sweeper extracts fine particles. This practice extends useful life of adhesive spools.

  7. Optical adhesive property study

    SciTech Connect

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  8. Adhesives for Aerospace

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1985-01-01

    The industry is hereby challenged to integrate adhesive technology with the total structure requirements in light of today's drive into automation/mechanization. The state of the art of adhesive technology is fairly well meeting the needs of the structural designers, the processing engineer, and the inspector, each on an individual basis. The total integration of these needs into the factory of the future is the next collective hurdle to be achieved. Improved processing parameters to fit the needs of automation/mechanization will necessitate some changes in the adhesive forms, formulations, and chemistries. Adhesives have, for the most part, kept up with the needs of the aerospace industry, normally leading the rest of the industry in developments. The wants of the aerospace industry still present a challenge to encompass all elements, achieving a totally integrated joined and sealed structural system. Better toughness with hot-wet strength improvements is desired. Lower cure temperatures, longer out times, and improved corrosion inhibition are desired.

  9. Adhesion of Lunar Dust

    NASA Astrophysics Data System (ADS)

    Walton, Otis R.

    2007-04-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  10. Adhesion of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.

    2007-01-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  11. Leucocyte cellular adhesion molecules.

    PubMed

    Yong, K; Khwaja, A

    1990-12-01

    Leucocytes express adhesion promoting receptors which mediate cell-cell and cell-matrix interactions. These adhesive interactions are crucial to the regulation of haemopoiesis and thymocyte maturation, the direction and control of leucocyte traffic and migration through tissues, and in the development of immune and non-immune inflammatory responses. Several families of adhesion receptors have been identified (Table). The leucocyte integrin family comprises 3 alpha beta heterodimeric membrane glycoproteins which share a common beta subunit, designated CD18. The alpha subunits of each of the 3 members, lymphocyte function associated antigen-1 (LFA-1), macrophage antigen-1 (Mac-1) and p150,95 are designated CD11a, b and c respectively. These adhesion molecules play a critical part in the immune and inflammatory responses of leucocytes. The leucocyte integrin family is, in turn, part of the integrin superfamily, members of which are evolutionally, structurally and functionally related. Another Integrin subfamily found on leucocytes is the VLA group, so-called because the 'very late activation antigens' VLA-1 and VLA-2 were originally found to appear late in T-cell activation. Members of this family function mainly as extracellular matrix adhesion receptors and are found both on haemopoietic and non-haemopoietic cells. They play a part in diverse cellular functions including tissue organisation, lymphocyte recirculation and T-cell immune responses. A third integrin subfamily, the cytoadhesins, are receptors on platelets and endothelial cells which bind extracellular matrix proteins. A second family of adhesion receptors is the immunoglobulin superfamily, members of which include CD2, LFA-3 and ICAM-1, which participate in T-cell adhesive interactions, and the antigen-specific receptors of T and B cells, CD4, CD8 and the MHC Class I and II molecules. A recently recognised family of adhesion receptors is the selectins, characterised by a common lectin domain. Leucocyte

  12. High temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, Terry L.

    1991-01-01

    The aerospace and electronics industries have an ever increasing need for higher performance materials. In recent years, linear aromatic polyimides have been proven to be a superior class of materials for various applications in these industries. The use of this class of polymers as adhesives is continuing to increase. Several NASA Langley developed polyimides show considerable promise as adhesives because of their high glass transition temperatures, thermal stability, resistance to solvents/water, and their potential for cost effective manufacture.

  13. Flexibilized copolyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St.clair, Terry L.

    1988-01-01

    Two copolyimides, LARC-STPI and STPI-LARC-2, with flexible backbones were processed and characterized as adhesives. The processability and adhesive properties were compared to those of a commercially available form of LARC-TPI. Lap shear specimens were fabricated using adhesive tape prepared from each of the three polymers. Lap shear tests were performed at room temperature, 177 C, and 204 C before and after exposure to water-boil and to thermal aging at 204 C for up to 1000 hours. The three adhesive systems possess exceptional lap shear strengths at room temperature and elevated temperatures both before and after thermal exposure. LARC-STPI, because of its high glass transition temperature provided high lap shear strengths up to 260 C. After water-boil, LARC-TPI exhibited the highest lap shear strengths at room temperature and 177 C, whereas the LARC-STPI retained a higher percentage of its original strength when tested at 204 C. These flexible thermoplastic copolyimides show considerable potential as adhesives based on this study and because of the ease of preparation with low cost, commercially available materials.

  14. Platelet Adhesion under Flow

    PubMed Central

    Ruggeri, Zaverio M.

    2011-01-01

    Platelet adhesive mechanisms play a well-defined role in hemostasis and thrombosis, but evidence continues to emerge for a relevant contribution to other pathophysiological processes including inflammation, immune-mediated responses to microbial and viral pathogens, and cancer metastasis. Hemostasis and thrombosis are related aspects of the response to vascular injury, but the former protects from bleeding after trauma while the latter is a disease mechanism. In either situation, adhesive interactions mediated by specific membrane receptors support the initial attachment of single platelets to cellular and extracellular matrix constituents of the vessel wall and tissues. In the subsequent steps of thrombus growth and stabilization, adhesive interactions mediate platelet to platelet cohesion (aggregation) and anchoring to the fibrin clot. A key functional aspect of platelets is their ability to circulate in a quiescent state surveying the integrity of the inner vascular surface, coupled to a prompt reaction wherever alterations are detected. In many respects, therefore, platelet adhesion to vascular wall structures, to one another or to other blood cells are facets of the same fundamental biological process. The adaptation of platelet adhesive functions to the effects of blood flow is the main focus of this review. PMID:19191170

  15. Epithelial Cell Adhesion Molecule

    PubMed Central

    Trzpis, Monika; McLaughlin, Pamela M.J.; de Leij, Lou M.F.H.; Harmsen, Martin C.

    2007-01-01

    The epithelial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of ∼40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally lower level than carcinoma cells. In early studies, EpCAM was proposed to be a cell-cell adhesion molecule. However, recent insights revealed a more versatile role for EpCAM that is not limited only to cell adhesion but includes diverse processes such as signaling, cell migration, proliferation, and differentiation. Cell surface expression of EpCAM may actually prevent cell-cell adhesion. Here, we provide a comprehensive review of the current knowledge on EpCAM biology in relation to other cell adhesion molecules. We discuss the implications of the newly identified functions of EpCAM in view of its prognostic relevance in carcinoma, inflammatory pathophysiology, and tissue development and regeneration as well as its role in normal epithelial homeostasis. PMID:17600130

  16. Protein mediated membrane adhesion

    NASA Astrophysics Data System (ADS)

    Carlson, Andreas; Mahadevan, L.

    2015-05-01

    Adhesion in the context of mechanical attachment, signaling, and movement in cellular dynamics is mediated by the kinetic interactions between membrane-embedded proteins in an aqueous environment. Here, we present a minimal theoretical framework for the dynamics of membrane adhesion that accounts for the kinetics of protein binding, the elastic deformation of the membrane, and the hydrodynamics of squeeze flow in the membrane gap. We analyze the resulting equations using scaling estimates to characterize the spatiotemporal features of the adhesive patterning and corroborate them using numerical simulations. In addition to characterizing aspects of cellular dynamics, our results might also be applicable to a range of phenomena in physical chemistry and materials science where flow, deformation, and kinetics are coupled to each other in slender geometries.

  17. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  18. Natural Underwater Adhesives

    PubMed Central

    Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

    2011-01-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  19. Elastomer toughened polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L. (Inventor)

    1983-01-01

    A rubber-toughened addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state, and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride was mixed, and utilizing solvent or mixture of solvents for the reaction.

  20. Metallic Adhesion and Bonding

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1984-01-01

    Although metallic adhesion has played a central part in much tribological speculation, few quantitative theoretical calculations are available. This is in part because of the difficulties involved in such calculations and in part because the theoretical physics community is not particularly involved with tribology. The calculations currently involved in metallic adhesion are summarized and shown that these can be generalized into a scaled universal relationship. Relationships exist to other types of covalent bonding, such as cohesive, chemisorptive, and molecular bonding. A simple relationship between surface energy and cohesive energy is offered.

  1. Timer cover adhesive optimization

    SciTech Connect

    Carleton, J.J. II.

    1992-03-17

    The implementation of PROCODE as the data acquisition system for processing timers has required some modifications to the method of identifying timer assemblies. PROCODE requires machine-readable labelling of the assemblies. This report describes a series of experiments to find an adhesive that would keep labels attached to timers regardless of the condition of their surface when the label was applied and regardless of the heat, vibration, and shock they endured afterwards. The effect of the variation of these experimental factors on the performance of the adhesive was determined by using a Taguchi experimental design.

  2. Switchable bio-inspired adhesives

    NASA Astrophysics Data System (ADS)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  3. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  4. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    PubMed Central

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  5. Wood Composite Adhesives

    NASA Astrophysics Data System (ADS)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  6. Adept Adhesion Reduction Solution

    MedlinePlus

    ... icodextrin. The fluid is used during or after laparoscopic gynecological surgery to separate and protect tissues and decrease the number of new adhesions after surgery. Adept® is supplied sterile, in a single-use bag. How does it work? During surgery, ...

  7. Adhesion molecules and receptors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adhesion molecules are necessary for leukocyte trafficking and differentiation. They serve to initiate cell-cell interactions under conditions of shear, and they sustain the cell-cell and cell-matrix interactions needed for cellular locomotion. They also can serve directly as signaling molecules act...

  8. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  9. Resistance heating releases structural adhesive

    NASA Technical Reports Server (NTRS)

    Glemser, N. N.

    1967-01-01

    Composite adhesive package bonds components together for testing and enables separation when testing is completed. The composite of adhesives, insulation and a heating element separate easily when an electrical current is applied.

  10. Adhesion testing of aircraft tires

    NASA Technical Reports Server (NTRS)

    Bobo, S. N.

    1983-01-01

    Adhesion testing appeared to offer a less burdensome alternative to replace some of the dynamometer tests. Accordingly, test results and data were requested from retreaders who had used adhesion testing.

  11. 3-D foam adhesive deposition

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.; Salmassy, O. K.

    1976-01-01

    Bonding method, which reduces amount and weight of adhesive, is applicable to foam-filled honeycomb constructions. Novel features of process include temperature-viscosity control and removal of excess adhesive by transfer to cellophane film.

  12. Coating Reduces Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  13. Focal Adhesion Kinase-Dependent Regulation of Adhesive Force Involves Vinculin Recruitment to Focal Adhesions

    PubMed Central

    Hanks, Steven K.; García, Andrés J.

    2016-01-01

    Background information Focal adhesion kinase (FAK), an essential non-receptor tyrosine kinase, plays pivotal roles in migratory responses, adhesive signaling, and mechanotransduction. FAK-dependent regulation of cell migration involves focal adhesion turnover dynamics as well as actin cytoskeleton polymerization and lamellipodia protrusion. Whereas roles for FAK in migratory and mechanosensing responses have been established, the contributions of FAK to the generation of adhesive forces are not well understood. Results Using FAK-null cells expressing wild-type and mutant FAK under an inducible tetracycline promoter, we analyzed the role of FAK in the generation of steady-state adhesive forces using micropatterned substrates and a hydrodynamic adhesion assay. FAK expression reduced steady-state strength by 30% compared to FAK-null cells. FAK expression reduced vinculin localization to focal adhesions by 35% independently from changes in integrin binding and localization of talin and paxillin. RNAi knockdown of vinculin abrogated the FAK-dependent differences in adhesive force. FAK-dependent changes in vinculin localization and adhesive force were confirmed in human primary fibroblasts with FAK knocked down by RNAi. The autophosphorylation Y397 and kinase domain Y576/Y577 sites were differentially required for FAK-mediated adhesive responses. Conclusions We demonstrate that FAK reduces steady-state adhesion strength by modulating vinculin recruitment to focal adhesions. These findings provide insights into the role of FAK in mechanical interactions between a cell and the extracellular matrix. PMID:19883375

  14. Adhesion behaviors on superhydrophobic surfaces.

    PubMed

    Zhu, Huan; Guo, Zhiguang; Liu, Weimin

    2014-04-18

    The adhesion behaviors of superhydrophobic surfaces have become an emerging topic to researchers in various fields as a vital step in the interactions between materials and organisms/materials. Controlling the chemical compositions and topological structures via various methods or technologies is essential to fabricate and modulate different adhesion properties, such as low-adhesion, high-adhesion and anisotropic adhesion on superhydrophobic surfaces. We summarize the recent developments in both natural superhydrophobic surfaces and artificial superhydrophobic surfaces with various adhesions and also pay attention to superhydrophobic surfaces switching between low- and high-adhesion. The methods to regulate or translate the adhesion of superhydrophobic surfaces can be considered from two perspectives. One is to control the chemical composition and change the surface geometric structure on the surfaces, respectively or simultaneously. The other is to provide external stimulations to induce transitions, which is the most common method for obtaining switchable adhesions. Additionally, adhesion behaviors on solid-solid interfaces, such as the behaviors of cells, bacteria, biomolecules and icing on superhydrophobic surfaces are also noticeable and controversial. This review is aimed at giving a brief and crucial overview of adhesion behaviors on superhydrophobic surfaces. PMID:24575424

  15. Clinical Recommendation: Labial Adhesions.

    PubMed

    Bacon, Janice L; Romano, Mary E; Quint, Elisabeth H

    2015-10-01

    Labial adhesions, also known as labial agglutination, are a common finding in prepubertal adolescents. They are defined as fusion of the labia minora in the midline or are termed vulvar adhesions when they occur below the labia minora (inner labia). Patients are often asymptomatic but might present with genitourinary complaints. The decision for treatment is based on symptoms. The mainstay of treatment in asymptomatic patients is conservative, with careful attention to vulvar hygiene and reassurance to parents. In symptomatic patients, topical treatment with estrogen and/or steroid cream is often curative. Less often, corrective surgery is necessary. Recurrence is common until a patient goes through puberty. These recommendations are intended for pediatric and gynecologic health care providers who care for pediatric and adolescent girls to facilitate diagnosis and treatment. PMID:26162697

  16. Environmentally compliant adhesive joining technology

    SciTech Connect

    Tira, J.S.

    1996-08-01

    Adhesive joining offers one method of assembling products. Advantages of adhesive joining/assembly include distribution of applied forces, lighter weight, appealing appearance, etc. Selecting environmentally safe adhesive materials and accompanying processes is paramount in today`s business climate if a company wants to be environmentally conscious and stay in business. Four areas of adhesive joining (adhesive formulation and selection, surface preparation, adhesive bonding process, waste and pollution generation/cleanup/management) all need to be carefully evaluated before adhesive joining is selected for commercial as well as military products. Designing for six sigma quality must also be addressed in today`s global economy. This requires material suppliers and product manufacturers to work even closer together.

  17. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  18. Development of phosphorylated adhesives

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Giants, T. W.; Jenkins, R. K.; Campbell, P. L.

    1983-01-01

    The synthesis of epoxy prepolymers containing phosphorus was carried out in such a manner as to provide adhesives containing at least 5 percent of this element. The purpose of this was to impart fire retardant properties to the adhesive. The two epoxy derivatives, bis(4-glycidyl-oxyphenyl)phenylphosphine oxide and bis(4-glycidyl-2-methoxyphenyl)phenylphosphonate, and a curing agent, bis(3-aminophenyl)methylphosphine oxide, were used in conjunction with one another and along with conventional epoxy resins and curing agents to bond Tedlar and Polyphenylethersulfone films to Kerimid-glass syntactic foam-filled honeycomb structures. Elevated temperatures are required to cure the epoxy resins with the phosphorus-contaning diamine; however, when Tedlar is being bonded, lower curing temperatures must be used to avoid shrinkage and the concomitant formation of surface defects. Thus, the phosphorus-containing aromatic amine curing agent cannot be used alone, although it is possible to use it in conjunction with an aliphatic amine which would allow lower cure temperatures to be used. The experimental epoxy resins have not provided adhesive bonds quite as strong as those provided by Epon 828 when compared in peel tests, but the differences are not very significant. It should be noted, if optimum properties are to be realized. In any case the fire retardant characteristics of the neat resin systems obtained are quite pronounced, since in most cases the self-extinguishing properties are evident almost instantly when specimens are removed from a flame.

  19. Polyurethane adhesive ingestion.

    PubMed

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Polyurethane adhesives are found in a large number of household products in the United States and are used for a variety of purposes. Several brands of these expanding wood glues (those containing diphenylmethane diisocyanate [MDI]) have the potential to form gastrointestinal (GI) foreign bodies if ingested. The ingested adhesive forms an expanding ball of glue in the esophagus and gastric lumen. This expansion is caused by a polymerization reaction using the heat, water, and gastric acids of the stomach. A firm mass is created that can be 4-8 times its original volume. As little as 2 oz of glue have been reported to develop gastric foreign bodies. The obstructive mass is reported to form within minutes of ingestion of the adhesive. The foreign body can lead to esophageal impaction and obstruction, airway obstruction, gastric outflow obstruction, mucosal hemorrhage, ulceration, laceration, perforation of the esophageal and gastric linings, and death. Clinical signs following ingestion include anorexia, lethargy, vomiting, tachypnea, and abdominal distention and pain, and typically develop within 12 hours. Clinical signs may depend upon the size of the mass. If left untreated, perforation and rupture of the esophagus or stomach can occur. The glue mass does not stick to the GI mucosa and is not always detectable on abdominal palpation. Radiographs are recommended to confirm the presence of the "glue-ball" foreign body, and radiographic evidence of the obstruction may be seen as early as 4-6 hours following ingestion. Emesis is contraindicated owing to the risk of aspiration of the glue into the respiratory tree or the subsequent lodging of the expanding glue mass in the esophagus. Likewise, efforts to dilute the glue and prevent the formation of the foreign body through administration of liquids, activated charcoal, or bulk-forming products to push the foreign body through the GI tract have proven ineffective. Even endoscopy performed to remove the foreign body has

  20. Effect of Culture Supernatant Derived from Trichophyton Rubrum Grown in the Nail Medium on the Innate Immunity-related Molecules of HaCaT

    PubMed Central

    Huang, Xin-Zhu; Liang, Pan-Pan; Ma, Han; Yi, Jin-Ling; Yin, Song-Chao; Chen, Zhi-Rui; Li, Mei-Rong; Lai, Wei; Chen, Jian

    2015-01-01

    Background: Trichophyton rubrum is superficial fungi characteristically confined to dead keratinized tissues. These observations suggest that the soluble components released by the fungus could influence the host immune response in a cell in contact-free manner. Therefore, this research aimed to analyze whether the culture supernatant derived from T. rubrum grown in the nail medium could elicit the immune response of keratinocyte effectively. Methods: The culture supernatants of two strains (T1a, TXHB) were compared for the β-glucan concentrations and their capacity to impact the innate immunity of keratinocytes. The β-glucan concentrations in the supernatants were determined with the fungal G-test kit and protein concentrations with bicinchoninic acid protein quantitative method, then HaCaT was stimulated with different concentrations of culture supernatants by adopting morphological method to select a suitable dosage. Expressions of host defense genes were assessed by quantitative polymerase chain reaction after the HaCaT was stimulated with the culture supernatants. Data were analyzed with one-way analysis of variance, followed by the least significant difference test. Results: The T. rubrum strains (T1a and TXHB) released β-glucan of 87.530 ± 37.581 pg/ml and 15.747 ± 6.453 pg/ml, respectively into the media. The messenger RNA (mRNA) expressions of toll-like receptor-2 (TLR2), TLR4, and CARD9 were moderately up-regulated in HaCaT within 6-h applications of both supernatants. HaCaT cells were more responsive to T1a than TXHB. The slight increase of dendritic cells-specific intercellular adhesion molecule 3-grabbing nonintegrin expression was faster and stronger, induced by T1a supernatant than TXHB. The moderate decreases of RNase 7, the slight up-regulations of Dectin-1 and interleukin-8 at the mRNA level were detected only in response to T1a rather than TXHB. After a long-time contact, all the elevated defense genes decreased after 24 h. Conclusion: The

  1. Mannosylated Mucin-Type Immunoglobulin Fusion Proteins Enhance Antigen-Specific Antibody and T Lymphocyte Responses

    PubMed Central

    Johansson, Tomas; Nilsson, Anki; Chatzissavidou, Nathalie; Sjöblom, Magnus; Rova, Ulrika; Holgersson, Jan

    2012-01-01

    Targeting antigens to antigen-presenting cells (APC) improve their immunogenicity and capacity to induce Th1 responses and cytotoxic T lymphocytes (CTL). We have generated a mucin-type immunoglobulin fusion protein (PSGL-1/mIgG2b), which upon expression in the yeast Pichia pastoris became multivalently substituted with O-linked oligomannose structures and bound the macrophage mannose receptor (MMR) and dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) with high affinity in vitro. Here, its effects on the humoral and cellular anti-ovalbumin (OVA) responses in C57BL/6 mice are presented. OVA antibody class and subclass responses were determined by ELISA, the generation of anti-OVA CTLs was assessed in 51Cr release assays using in vitro-stimulated immune spleen cells from the different groups of mice as effector cells and OVA peptide-fed RMA-S cells as targets, and evaluation of the type of Th cell response was done by IFN-γ, IL-2, IL-4 and IL-5 ELISpot assays. Immunizations with the OVA − mannosylated PSGL-1/mIgG2b conjugate, especially when combined with the AbISCO®-100 adjuvant, lead to faster, stronger and broader (with regard to IgG subclass) OVA IgG responses, a stronger OVA-specific CTL response and stronger Th1 and Th2 responses than if OVA was used alone or together with AbISCO®-100. Also non-covalent mixing of mannosylated PSGL-1/mIgG2b, OVA and AbISCO®-100 lead to relatively stronger humoral and cellular responses. The O-glycan oligomannoses were necessary because PSGL-1/mIgG2b with mono- and disialyl core 1 structures did not have this effect. Mannosylated mucin-type fusion proteins can be used as versatile APC-targeting molecules for vaccines and as such enhance both humoral and cellular immune responses. PMID:23071675

  2. Inhibition of HIV-1 transmission in trans from dendritic cells to CD4+ T lymphocytes by natural antibodies to the CRD domain of DC-SIGN purified from breast milk and intravenous immunoglobulins

    PubMed Central

    Requena, Mary; Bouhlal, Hicham; Nasreddine, Nadine; Saidi, Hela; Gody, Jean-Chrysostome; Aubry, Sylvie; Grésenguet, Gérard; Kazatchkine, Michel D; Sekaly, Rafick-Pierre; Bélec, Laurent; Hocini, Hakim

    2008-01-01

    The present study demonstrates that human breast milk and normal human polyclonal immunoglobulins purified from plasma [intravenous immunoglobulins (IVIg)] contain functional natural immunoglobulin A (IgA) and IgG antibodies directed against the carbohydrate recognition domain (CRD) domain of the dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) molecule, which is involved in the binding of human immunodeficiency virus (HIV)-1 to dendritic cells (DCs). Antibodies to DC-SIGN CRD were affinity-purified on a matrix to which a synthetic peptide corresponding to the N-terminal CRD domain (amino-acid 342–amino-acid 371) had been coupled. The affinity-purified antibodies bound to the DC-SIGN peptide and to the native DC-SIGN molecule expressed by HeLa DC-SIGN+ cells and immature monocyte-derived dendritic cells (iMDDCs), in a specific and dose-dependent manner. At an optimal dose of 200 µg/ml, natural antibodies to DC-SIGN CRD peptide purified from breast milk and IVIg stained 25 and 20% of HeLa DC-SIGN+ cells and 32 and 12% of iMDDCs, respectively. Anti-DC-SIGN CRD peptide antibodies inhibited the attachment of virus to HeLa DC-SIGN by up to 78% and the attachment to iMDDCs by only 20%. Both breast milk- and IVIg-derived natural antibodies to the CRD peptide inhibited 60% of the transmission in trans of HIV-1JRCSF, an R5-tropic strain, from iMDDCs to CD4+ T lymphocytes. Taken together, these observations suggest that the attachment of HIV to DCs and transmission in trans to autologous CD4+ T lymphocytes occur through two independent mechanisms. Our data support a role of natural antibodies to DC-SIGN in the modulation of postnatal HIV transmission through breast-feeding and in the natural host defence against HIV-1 in infected individuals. PMID:17999675

  3. Brugia malayi Antigen (BmA) Inhibits HIV-1 Trans-Infection but Neither BmA nor ES-62 Alter HIV-1 Infectivity of DC Induced CD4+ Th-Cells

    PubMed Central

    Mouser, Emily E. I. M.; Pollakis, Georgios; Yazdanbakhsh, Maria; Harnett, William

    2016-01-01

    One of the hallmarks of HIV-1 disease is the association of heightened CD4+ T-cell activation with HIV-1 replication. Parasitic helminths including filarial nematodes have evolved numerous and complex mechanisms to skew, dampen and evade human immune responses suggesting that HIV-1 infection may be modulated in co-infected individuals. Here we studied the effects of two filarial nematode products, adult worm antigen from Brugia malayi (BmA) and excretory-secretory product 62 (ES-62) from Acanthocheilonema viteae on HIV-1 infection in vitro. Neither BmA nor ES-62 influenced HIV-1 replication in CD4+ enriched T-cells, with either a CCR5- or CXCR4-using virus. BmA, but not ES-62, had the capacity to bind the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) thereby inhibiting HIV-1 trans-infection of CD4+ enriched T-cells. As for their effect on DCs, neither BmA nor ES-62 could enhance or inhibit DC maturation as determined by CD83, CD86 and HLA-DR expression, or the production of IL-6, IL-10, IL-12 and TNF-α. As expected, due to the unaltered DC phenotype, no differences were found in CD4+ T helper (Th) cell phenotypes induced by DCs treated with either BmA or ES-62. Moreover, the HIV-1 susceptibility of the Th-cell populations induced by BmA or ES-62 exposed DCs was unaffected for both CCR5- and CXCR4-using HIV-1 viruses. In conclusion, although BmA has the potential capacity to interfere with HIV-1 transmission or initial viral dissemination through preventing the virus from interacting with DCs, no differences in the Th-cell polarizing capacity of DCs exposed to BmA or ES-62 were observed. Neither antigenic source demonstrated beneficial or detrimental effects on the HIV-1 susceptibility of CD4+ Th-cells induced by exposed DCs. PMID:26808476

  4. Association of Dectin-1 and DC-SIGN gene single nucleotide polymorphisms with fungal keratitis in the northern Han Chinese population

    PubMed Central

    Qu, Xiaoli; Che, Chengye; Gao, Ang; Lin, Jing; Wang, Nan; Du, Xing; Liu, Ying; Guo, Yanli; Chen, Wenjun

    2015-01-01

    Purpose Dendritic cell-associated C-type lectin-1 (Dectin-1) and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) play a crucial role in the early procedure of fungal pathogen defenses. The present study evaluated the associations between Dectin-1 and DC-SIGN gene single nucleotide polymorphisms (SNPs) and susceptibility to fungal keratitis (FK) in the northern Han Chinese population. Methods The polymorphisms of Dectin-1 (rs17206002, rs3901533, rs11053613, and rs3901532) and DC-SIGN (rs4804803, rs2287886, rs735239, and rs735240) for 109 FK patients and 220 matched healthy controls were determined by PCR and DNA direct sequencing assay. Results Each SNP was consistent with Hardy–Weinberg equilibrium (p>0.05). The frequencies of genotypes and alleles for rs735239 and rs735240 (DC-SIGN) showed statistical differences between patients and control groups (p<0.05). The wild G allele of rs735239 and the wild A allele of rs735240 were significantly higher in patients (p = 0.003, OR = 1.766, 95% confidence interval [CI] 1.207–2.585; p = 0.014, OR = 1.609, 95% CI 1.100–2.355, respectively). No association with a risk of FK was found for the remaining SNPs (p>0.05) even after ruling out clinical characteristics, such as severity degree and case history. Carriers of the haplotype TC (rs4804803 and rs2287886) had a higher risk of developing fungal keratitis (p = 0.007, OR = 1.710, 95% CI 1.154–2.534). The distribution of haplotypes AG and GA (rs735239 and rs735240) between the two groups also showed significant differences (p = 0.014, p = 0.003, respectively). Conclusions Two SNPs of DC-SIGN (rs735239 and rs735240) are associated with susceptibility to FK in the northern Han Chinese population. The haplotypes of DC-SIGN may be susceptible to the risk of FK, whereas the analysis of Dectin-1 gene polymorphisms showed no significant association with FK risk. Further research with a larger sample is recommended. PMID:25883525

  5. JKR adhesion in cylindrical contacts

    NASA Astrophysics Data System (ADS)

    Sundaram, Narayan; Farris, T. N.; Chandrasekar, S.

    2012-01-01

    Planar JKR adhesive solutions use the half-plane assumption and do not permit calculation of indenter approach or visualization of adhesive force-displacement curves unless the contact is periodic. By considering a conforming cylindrical contact and using an arc crack analogy, we obtain closed-form indenter approach and load-contact size relations for a planar adhesive problem. The contact pressure distribution is also obtained in closed-form. The solutions reduce to known cases in both the adhesion-free and small-contact solution ( Barquins, 1988) limits. The cylindrical system shows two distinct regimes of adhesive behavior; in particular, contact sizes exceeding the critical (maximum) size seen in adhesionless contacts are possible. The effects of contact confinement on adhesive behavior are investigated. Some special cases are considered, including contact with an initial neat-fit and the detachment of a rubbery cylinder from a rigid cradle. A comparison of the cylindrical solution with the half-plane adhesive solution is carried out, and it indicates that the latter typically underestimates the adherence force. The cylindrical adhesive system is novel in that it possesses stable contact states that may not be attained even on applying an infinite load in the absence of adhesion.

  6. Stickiness--some fundamentals of adhesion.

    PubMed

    Gay, Cyprien

    2002-12-01

    We review some adhesion mechanisms that have been understood in the field of synthetic adhesives, and more precisely for adhesives that adhere instantaneously (a property named tackiness) and whose adhesive strength usually depends on the applied pressure (pressure-sensitive adhesives). The discussion includes effects of surface roughness, elasticity, cavitation, viscous and elastic fingering, substrate flexibility. PMID:21680396

  7. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    PubMed

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-01

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate. PMID:26167951

  8. Effect of adhesive thickness on adhesively bonded T-joint

    NASA Astrophysics Data System (ADS)

    Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul

    2013-12-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.

  9. Platelet adhesiveness in diabetes mellitus

    PubMed Central

    Shaw, S.; Pegrum, G. D.; Wolff, Sylvia; Ashton, W. L.

    1967-01-01

    Platelet adhesiveness has been assessed on whole blood from a series of 34 diabetics and 50 control subjects using adenosine diphosphate (A.D.P.) and by adherence to glass microspherules (ballotini). Using both techniques it was possible to demonstrate a significant increase in platelet adhesiveness in the diabetic patients. PMID:5614070

  10. Measuring Adhesion And Friction Forces

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1991-01-01

    Cavendish balance adapted to new purpose. Apparatus developed which measures forces of adhesion and friction between specimens of solid materials in vacuum at temperatures from ambient to 900 degrees C. Intended primarily for use in studying adhesion properties of ceramics and metals, including silicon carbide, aluminum oxide, and iron-base amorphous alloys.

  11. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  12. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  13. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  14. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  15. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  16. Biological adhesives and fastening devices

    NASA Astrophysics Data System (ADS)

    Wolpert, H. D.

    2012-04-01

    Sea creatures are a leading source to some of the more interesting discoveries in adhesives. Because sea water naturally breaks down even the strongest conventional adhesive, an alternative is important that could be used in repairing or fabricating anything that might have regular contact with moisture such as: Repairing broken and shattered bones, developing a surgical adhesive, use in the dental work, repairing and building ships, and manufacturing plywood. Some of nature's prototypes include the common mussel, limpet, some bacteria and abalone. As we learn more about these adhesives we are also developing non adhesive fasteners, such as mimicked after studying the octopus, burdock burrs (i.e. Velcro®) and the gecko.

  17. Hyaluronan-mediated cellular adhesion

    NASA Astrophysics Data System (ADS)

    Curtis, Jennifer

    2005-03-01

    Many cells surround themselves with a cushioning halo of polysaccharides that is further strengthened and organized by proteins. In fibroblasts and chrondrocytes, the primary component of this pericellular matrix is hyaluronan, a large linear polyanion. Hyaluronan production is linked to a variety of disease, developmental, and physiological processes. Cells manipulate the concentration of hyaluronan and hyaluronan receptors for numerous activities including modulation of cell adhesion, cell motility, and differentiation. Recent investigations by identify hyaluronan's role in mediating early-stage cell adhesion. An open question is how the cell removes the 0.5-10 micron thick pericellular matrix to allow for further mature adhesion events requiring nanometer scale separations. In this investigation, holographic optical tweezers are used to study the adhesion and viscoelastic properties of chondrocytes' pericellular matrix. Ultimately, we aim to shed further light on the spatial and temporal details of the dramatic transition from micron to nanometer gaps between the cell and its adhesive substrate.

  18. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, Ray A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe within an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough.

  19. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, R.A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe with an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough. 4 figs.

  20. Adhesion testing device

    NASA Technical Reports Server (NTRS)

    LaPeyronnie, Glenn M. (Inventor); Huff, Charles M. (Inventor)

    2010-01-01

    The present invention provides a testing apparatus and method for testing the adhesion of a coating to a surface. The invention also includes an improved testing button or dolly for use with the testing apparatus and a self aligning button hook or dolly interface on the testing apparatus. According to preferred forms, the apparatus and method of the present invention are simple, portable, battery operated rugged, and inexpensive to manufacture and use, are readily adaptable to a wide variety of uses, and provide effective and accurate testing results. The device includes a linear actuator driven by an electric motor coupled to the actuator through a gearbox and a rotatable shaft. The electronics for the device are contained in the head section of the device. At the contact end of the device, is positioned a self aligning button hook, attached below the load cell located on the actuator shaft.

  1. Epidural lysis of adhesions.

    PubMed

    Lee, Frank; Jamison, David E; Hurley, Robert W; Cohen, Steven P

    2014-01-01

    As our population ages and the rate of spine surgery continues to rise, the use epidural lysis of adhesions (LOA) has emerged as a popular treatment to treat spinal stenosis and failed back surgery syndrome. There is moderate evidence that percutaneous LOA is more effective than conventional ESI for both failed back surgery syndrome, spinal stenosis, and lumbar radiculopathy. For cervical HNP, cervical stenosis and mechanical pain not associated with nerve root involvement, the evidence is anecdotal. The benefits of LOA stem from a combination of factors to include the high volumes administered and the use of hypertonic saline. Hyaluronidase has been shown in most, but not all studies to improve treatment outcomes. Although infrequent, complications are more likely to occur after epidural LOA than after conventional epidural steroid injections. PMID:24478895

  2. Epidural Lysis of Adhesions

    PubMed Central

    Lee, Frank; Jamison, David E.; Hurley, Robert W.

    2014-01-01

    As our population ages and the rate of spine surgery continues to rise, the use epidural lysis of adhesions (LOA) has emerged as a popular treatment to treat spinal stenosis and failed back surgery syndrome. There is moderate evidence that percutaneous LOA is more effective than conventional ESI for both failed back surgery syndrome, spinal stenosis, and lumbar radiculopathy. For cervical HNP, cervical stenosis and mechanical pain not associated with nerve root involvement, the evidence is anecdotal. The benefits of LOA stem from a combination of factors to include the high volumes administered and the use of hypertonic saline. Hyaluronidase has been shown in most, but not all studies to improve treatment outcomes. Although infrequent, complications are more likely to occur after epidural LOA than after conventional epidural steroid injections. PMID:24478895

  3. [Retention of adhesive bridges].

    PubMed

    Raes, F; De Boever, J

    1994-04-01

    Since the development of adhesive bridges in the early seventies, the retention and therefore the durability of these bridges has been tremendously improved. Conditioning of the non-precious metal by silanisation, careful acid etching of the enamel and the use of the appropriate composite resin are of prime importance. Furthermore, the meticulous preparation with enough interproximal embrace, occlusal rests, interocclusal clearance and cingulum stops is equally important. Including more teeth in the design does not necessarily lead to an improved retention. Besides the material and technical aspects, the whole clinical procedure needs much attention. The retention does not depend on one single factor, but on the precision of all the necessary clinical steps and on a well-defined selection of the material. In this way a five-year survival rate of close to 80% can be obtained. PMID:11830965

  4. Effect of fibril shape on adhesive properties

    NASA Astrophysics Data System (ADS)

    Soto, Daniel; Hill, Ginel; Parness, Aaron; Esparza, Noé; Cutkosky, Mark; Kenny, Tom

    2010-08-01

    Research into the gecko's adhesive system revealed a unique architecture for adhesives using tiny hairs. By using a stiff material (β-keratin) to create a highly structured adhesive, the gecko's system demonstrates properties not seen in traditional pressure-sensitive adhesives which use a soft, unstructured planar layer. In contrast to pressure sensitive adhesives, the gecko adhesive displays frictional adhesion, in which increased shear force allows it to withstand higher normal loads. Synthetic fibrillar adhesives have been fabricated but not all demonstrate this frictional adhesion property. Here we report the dual-axis force testing of single silicone rubber pillars from synthetic adhesive arrays. We find that the shape of the adhesive pillar dictates whether frictional adhesion or pressure-sensitive behavior is observed. This work suggests that both types of behavior can be achieved with structures much larger than gecko terminal structures. It also indicates that subtle differences in the shape of these pillars can significantly influence their properties.

  5. Tunicate-mimetic nanofibrous hydrogel adhesive with improved wet adhesion.

    PubMed

    Oh, Dongyeop X; Kim, Sangsik; Lee, Dohoon; Hwang, Dong Soo

    2015-07-01

    The main impediment to medical application of biomaterial-based adhesives is their poor wet adhesion strength due to hydration-induced softening and dissolution. To solve this problem, we mimicked the wound healing process found in tunicates, which use a nanofiber structure and pyrogallol group to heal any damage on its tunic under sea water. We fabricated a tunicate-mimetic hydrogel adhesive based on a chitin nanofiber/gallic acid (a pyrogallol acid) composite. The pyrogallol group-mediated cross-linking and the nanofibrous structures improved the dissolution resistance and cohesion strength of the hydrogel compared to the amorphous polymeric hydrogels in wet condition. The tunicate-mimetic adhesives showed higher adhesion strength between fully hydrated skin tissues than did fibrin glue and mussel-mimetic adhesives. The tunicate mimetic hydrogels were produced at low cost from recyclable and abundant raw materials. This tunicate-mimetic adhesive system is an example of how natural materials can be engineered for biomedical applications. PMID:25841348

  6. Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces

    PubMed Central

    Shirtcliffe, Neil J.; McHale, Glen; Newton, Michael I.

    2012-01-01

    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces. PMID:22693563

  7. Marine Bioinspired Underwater Contact Adhesion.

    PubMed

    Clancy, Sean K; Sodano, Antonio; Cunningham, Dylan J; Huang, Sharon S; Zalicki, Piotr J; Shin, Seunghan; Ahn, B Kollbe

    2016-05-01

    Marine mussels and barnacles are sessile biofouling organisms that adhere to a number of surfaces in wet environments and maintain remarkably strong bonds. Previous synthetic approaches to mimic biological wet adhesive properties have focused mainly on the catechol moiety, present in mussel foot proteins (mfps), and especially rich in the interfacial mfps, for example, mfp-3 and -5, found at the interface between the mussel plaque and substrate. Barnacles, however, do not use Dopa for their wet adhesion, but are instead rich in noncatecholic aromatic residues. Due to this anomaly, we were intrigued to study the initial contact adhesion properties of copolymerized acrylate films containing the key functionalities of barnacle cement proteins and interfacial mfps, for example, aromatic (catecholic or noncatecholic), cationic, anionic, and nonpolar residues. The initial wet contact adhesion of the copolymers was measured using a probe tack testing apparatus with a flat-punch contact geometry. The wet contact adhesion of an optimized, bioinspired copolymer film was ∼15.0 N/cm(2) in deionized water and ∼9.0 N/cm(2) in artificial seawater, up to 150 times greater than commercial pressure-sensitive adhesive (PSA) tapes (∼0.1 N/cm(2)). Furthermore, maximum wet contact adhesion was obtained at ∼pH 7, suggesting viability for biomedical applications. PMID:27046671

  8. Adhesion molecules in cutaneous inflammation.

    PubMed

    Barker, J N

    1995-01-01

    As in other organs, leukocyte adhesion molecules and their ligands play a major role in cutaneous inflammatory events both by directing leukocyte trafficking and by their effects on antigen presentation. Skin biopsies of inflamed skin from patients with diseases such as as psoriasis or atopic dermatitis reveal up-regulation of endothelial cell expression of P- and E-selectin, vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. Studies of evolving lesions following UVB irradiation, Mantoux reaction or application of contact allergen, demonstrate that expression of these adhesion molecules parallels leukocyte infiltration into skin. When cutaneous inflammation is widespread (e.g. in erythroderma), soluble forms of these molecules are detectable in serum. In vitro studies predict that peptide mediators are important regulatory factors for endothelial adhesion molecules. Intradermal injection of the cytokines interleukin 1, tumour necrosis factor alpha and interferon gamma into normal human skin leads to induction of endothelial adhesion molecules with concomitant infiltration of leukocytes. In addition, neuropeptides rapidly induce P-selectin translocation to the cell membrane and expression of E-selectin. Adhesion molecules also play a crucial role as accessory molecules in the presentation of antigen to T lymphocytes by Langerhans' cells. Expression of selectin ligands by Langerhans' cells is up-regulated by various inflammatory stimuli, suggesting that adhesion molecules may be important in Langerhans' cell migration. The skin, because of its accessibility, is an ideal organ in which to study expression of adhesion molecules and their relationship to inflammatory events. Inflammatory skin diseases are common and inhibition of lymphocyte accumulation in skin is likely to prove of great therapeutic benefit. PMID:7587640

  9. Adhesive Performance of Biomimetic Adhesive-Coated Biologic Scaffolds

    PubMed Central

    Murphy, John L.; Vollenweider, Laura; Xu, Fangmin; Lee, Bruce P.

    2010-01-01

    Surgical repair of a discontinuity in traumatized or degenerated soft tissues is traditionally accomplished using sutures. A current trend is to reinforce this primary repair with surgical grafts, meshes, or patches secured with perforating mechanical devices (i.e., sutures, staples, or tacks). These fixation methods frequently lead to chronic pain and mesh detachment. We developed a series of biodegradable adhesive polymers that are synthetic mimics of mussel adhesive proteins (MAPs), composed of 3,4-dihydroxyphenylalanine (DOPA)-derivatives, polyethylene glycol (PEG), and polycaprolactone (PCL). These polymers can be cast into films, and their mechanical properties, extent of swelling, and degradation rate can be tailored through the composition of the polymers as well as blending with additives. When coated onto a biologic mesh used for hernia repair, these adhesive constructs demonstrated adhesive strengths significantly higher than fibrin glue. With further development, a pre-coated bioadhesive mesh may represent a new surgical option for soft tissue repair. PMID:20919699

  10. Focal adhesion kinases in adhesion structures and disease.

    PubMed

    Eleniste, Pierre P; Bruzzaniti, Angela

    2012-01-01

    Cell adhesion to the extracellular matrix (ECM) is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organization and role of focal adhesions, podosomes, and invadopodia in different cells. In addition, we discuss the role of the tyrosine kinases, FAK, Pyk2, and Src, which are critical for the function of the different adhesion structures. Finally, we discuss the essential role of these tyrosine kinases from the perspective of human diseases. PMID:22888421

  11. Focal Adhesion Kinases in Adhesion Structures and Disease

    PubMed Central

    Eleniste, Pierre P.; Bruzzaniti, Angela

    2012-01-01

    Cell adhesion to the extracellular matrix (ECM) is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organization and role of focal adhesions, podosomes, and invadopodia in different cells. In addition, we discuss the role of the tyrosine kinases, FAK, Pyk2, and Src, which are critical for the function of the different adhesion structures. Finally, we discuss the essential role of these tyrosine kinases from the perspective of human diseases. PMID:22888421

  12. Interfacial adhesion of carbon fibers

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.

    1987-01-01

    Relative adhesion strengths between AS4, AS1, and XAS carbon fibers and thermoplastic polymers were determined using the embedded single filament test. Polymers studied included polycarbonate, polyphenylene oxide, polyetherimide, polysulfone, polyphenylene oxide blends with polystyrene, and polycarbonate blends with a polycarbonate polysiloxane block copolymer. Fiber surface treatments and sizings improved adhesion somewhat, but adhesion remained well below levels obtained with epoxy matrices. An explanation for the differences between the Hercules and Grafil fibers was sought using X ray photon spectroscopy, wetting, scanning electron microscopy and thermal desorption analysis.

  13. Notch-Mediated Cell Adhesion.

    PubMed

    Murata, Akihiko; Hayashi, Shin-Ichi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms. PMID:26784245

  14. Photovoltaic module with adhesion promoter

    SciTech Connect

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  15. Notch-Mediated Cell Adhesion

    PubMed Central

    Murata, Akihiko; Hayashi, Shin-Ichi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms. PMID:26784245

  16. Adhesives from modified soy protein

    DOEpatents

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  17. Wear mechanism based on adhesion

    NASA Technical Reports Server (NTRS)

    Yamamoto, T.; Buckley, D. H.

    1982-01-01

    Various concepts concerning wear mechanisms and deformation behavior observed in the sliding wear track are surveyed. The mechanisms for wear fragment formation is discussed on the basis of adhesion. The wear process under unlubricated sliding conditions is explained in relation to the concept of adhesion at the interface during the sliding process. The mechanism for tearing away the surface layer from the contact area and forming the sliding track contour is explained by assuming the simplified process of material removal based on the adhesion theory.

  18. Advances in light curing adhesives

    NASA Astrophysics Data System (ADS)

    Bachmann, Andy

    2001-11-01

    This paper describes the development of a new family of light curing adhesives containing a new reactive additive previously not used in optical grade light curing adhesives are obtained with the addition of functionalized cellulositics. Outgassing as low as 10-6 grams/gram has been observed based on headspace sampling. Other additives have lowered the shrinkage rates of positioning adhesives from near 1 percent to less than 0.1 percent with fractional, percentage movements over thermal range of -40 degrees C to +200 degrees C.

  19. [Retention of adhesive bridges].

    PubMed

    Raes, F; De Boever, J

    1990-01-01

    Since the development of adhesive bridges in the early seventies, the retention and therefore the durability of these bridges has been tremendously improved. To ensure an adequate retention over a number of years different factors have to be considered. Conditioning of the non-precious metal by silanisation, careful acid etching of the enamel and the use of the appropriate composite resin (Panavia Ex) are of prime importance. Furthermore, the meticulous preparation with enough interproximal embrace, occlusal rets, interocclusal clearance of 0.4 mm and cingulum stops is equally important. Care should be taken not to remove all the enamel in the cervical region in preparing a mini chamfer. Including more teeth in the design does not necessarily lead to an improved retention. Teeth with a different mobility should not be included in the same bridge. Besides the material and technical aspects, the whole clinical procedure needs much attention. Only an exact impression, a precise model and a reliable casting technique will provide a metal frame with an optimal marginal adaptation and a close fit. The retention does not depend on one single factor but on the precision of all the necessary clinical steps and on a well-defined selection of the material. In this way a five-year survival rate of close to 90% can be obtained. PMID:2077574

  20. Seafood delicacy makes great adhesive

    ScienceCinema

    Idaho National Laboratory - Frank Roberto, Heather Silverman

    2010-01-08

    Technology from Mother Nature is often hard to beat, so Idaho National Laboratory scientistsgenetically analyzed the adhesive proteins produced by blue mussels, a seafood delicacy. Afterobtaining full-length DNA sequences encoding these proteins, reprod

  1. Seafood delicacy makes great adhesive

    SciTech Connect

    Idaho National Laboratory - Frank Roberto, Heather Silverman

    2008-03-26

    Technology from Mother Nature is often hard to beat, so Idaho National Laboratory scientistsgenetically analyzed the adhesive proteins produced by blue mussels, a seafood delicacy. Afterobtaining full-length DNA sequences encoding these proteins, reprod

  2. Fibrillar Adhesive for Climbing Robots

    NASA Technical Reports Server (NTRS)

    Pamess, Aaron; White, Victor E.

    2013-01-01

    A climbing robot needs to use its adhesive patches over and over again as it scales a slope. Replacing the adhesive at each step is generally impractical. If the adhesive or attachment mechanism cannot be used repeatedly, then the robot must carry an extra load of this adhesive to apply a fresh layer with each move. Common failure modes include tearing, contamination by dirt, plastic deformation of fibers, and damage from loading/ unloading. A gecko-like fibrillar adhesive has been developed that has been shown useful for climbing robots, and may later prove useful for grasping, anchoring, and medical applications. The material consists of a hierarchical fibrillar structure that currently contains two levels, but may be extended to three or four levels in continuing work. The contacting level has tens of thousands of microscopic fibers made from a rubberlike material that bend over and create intimate contact with a surface to achieve maximum van der Waals forces. By maximizing the real area of contact that these fibers make and minimizing the bending energy necessary to achieve that contact, the net amount of adhesion has been improved dramatically.

  3. Investigation of organic adhesives for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1975-01-01

    The properties of organic adhesives were investigated to acquire information for a guideline document regarding the selection of adhesives for use in high reliability hybrid microcircuits. Specifically, investigations were made of (1) alternate methods for determining the outgassing of cured adhesives, (2) effects of long term aging at 150 C on the electrical properties of conductive adhesives, (3) effects of shelf life age on adhesive characteristics, (4) bond strengths of electrically conductive adhesives on thick film gold metallization, (5) a copper filled adhesive, (6) effects of products outgassed from cured adhesives on device electrical parameters, (7) metal migration from electrically conductive adhesives, and (8) ionic content of electrically insulative adhesives. The tests performed during these investigations are described, and the results obtained are discussed.

  4. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  5. Optimizing Adhesive Design by Understanding Compliance.

    PubMed

    King, Daniel R; Crosby, Alfred J

    2015-12-23

    Adhesives have long been designed around a trade-off between adhesive strength and releasability. Geckos are of interest because they are the largest organisms which are able to climb utilizing adhesive toepads, yet can controllably release from surfaces and perform this action over and over again. Attempting to replicate the hierarchical, nanoscopic features which cover their toepads has been the primary focus of the adhesives field until recently. A new approach based on a scaling relation which states that reversible adhesive force capacity scales with (A/C)(1/2), where A is the area of contact and C is the compliance of the adhesive, has enabled the creation of high strength, reversible adhesives without requiring high aspect ratio, fibrillar features. Here we introduce an equation to calculate the compliance of adhesives, and utilize this equation to predict the shear adhesive force capacity of the adhesive based on the material components and geometric properties. Using this equation, we have investigated important geometric parameters which control force capacity and have shown that by controlling adhesive shape, adhesive force capacity can be increased by over 50% without varying pad size. Furthermore, we have demonstrated that compliance of the adhesive far from the interface still influences shear adhesive force capacity. Utilizing this equation will allow for the production of adhesives which are optimized for specific applications in commercial and industrial settings. PMID:26618537

  6. Innovative Electrostatic Adhesion Technologies

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  7. Innovative Electrostatic Adhesion Technologies

    NASA Astrophysics Data System (ADS)

    Gagliano, L.; Bryan, T.; Williams, S.; McCoy, B.; MacLeod, T.

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and development

  8. Elastocapilllarity in insect adhesion: the case of beetle adhesive hair

    NASA Astrophysics Data System (ADS)

    Gernay, Sophie; Gilet, Tristan; Lambert, Pierre; Federle, Walter

    2014-11-01

    The feet of many insects are covered with dense arrays of hair-like structures called setae. Liquid capillary bridges at the tip of these micrometric structures are responsible for the controlled adhesion of the insect on a large variety of substrates. The resulting adhesion force can exceed several times the body weight of the insect. The high aspect-ratio of setae suggests that flexibility is a key ingredient in this capillary-based adhesion mechanism. There is indeed a strong coupling between their elastic deformation and the shape of the liquid meniscus. In this experimental work, we observe and quantify the local deflection of dock beetle seta tips under perpendicular loading using interference microscopy. Our results are then interpreted in the light of an analytic model of elastocapillarity. This research has been funded by the FRIA/FNRS and the Interuniversity Attraction Poles Programme (IAP 7/38 MicroMAST) initiated by the Belgian Science Policy Office.

  9. High performance Cu adhesion coating

    SciTech Connect

    Lee, K.W.; Viehbeck, A.; Chen, W.R.; Ree, M.

    1996-12-31

    Poly(arylene ether benzimidazole) (PAEBI) is a high performance thermoplastic polymer with imidazole functional groups forming the polymer backbone structure. It is proposed that upon coating PAEBI onto a copper surface the imidazole groups of PAEBI form a bond with or chelate to the copper surface resulting in strong adhesion between the copper and polymer. Adhesion of PAEBI to other polymers such as poly(biphenyl dianhydride-p-phenylene diamine) (BPDA-PDA) polyimide is also quite good and stable. The resulting locus of failure as studied by XPS and IR indicates that PAEBI gives strong cohesive adhesion to copper. Due to its good adhesion and mechanical properties, PAEBI can be used in fabricating thin film semiconductor packages such as multichip module dielectric (MCM-D) structures. In these applications, a thin PAEBI coating is applied directly to a wiring layer for enhancing adhesion to both the copper wiring and the polymer dielectric surface. In addition, a thin layer of PAEBI can also function as a protection layer for the copper wiring, eliminating the need for Cr or Ni barrier metallurgies and thus significantly reducing the number of process steps.

  10. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St.clair, Terry L.

    1988-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  11. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St. Clair, Terry L.

    1989-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  12. Capillarity-based switchable adhesion

    PubMed Central

    Vogel, Michael J.; Steen, Paul H.

    2010-01-01

    Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillarity-based adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials. PMID:20133725

  13. Laboratory evaluation of adhesive systems.

    PubMed

    Barkmeier, W W; Cooley, R L

    1992-01-01

    Adhesive bonding of resin materials to acid-conditioned enamel is a clinically proven technique in preventative, restorative, and orthodontic procedures. Laboratory evaluations of etched-enamel resin bonding have shown excellent bond strengths and the virtual elimination of marginal microleakage. Adhesion to dentin has been more of a challenge. Earlier-generation dentin bonding systems did not yield high bond strengths in the laboratory or prevent marginal microleakage. Newer-generation adhesive systems generally use a dentin conditioner to modify or remove the smear layer and a subsequent application of an adhesive resin bonding agent. Laboratory evaluations of newer systems have shown bond strengths that approach or actually exceed that of etched enamel resin bonding. Bond strengths have improved with the evolution of dentin bonding systems, and microleakage from the cementum/dentin margin has been significantly reduced or prevented with the newer systems. Although laboratory testing of adhesive systems provides a mechanism to screen and compare newly developed systems, clinical trials are essential to document long-term clinical performance. PMID:1470553

  14. UV curable pressure sensitive adhesives

    SciTech Connect

    Glotfelter, C.A.

    1995-12-01

    Pressure sensitive adhesives (PSA`s) have become a ubiquitous element in our society, so much so, that the relative status of a society can be determined by the per capita consumption of PSA`s. We discuss new monomers as components of PSA formulations which enable adhesion to be achieved on a variety of substrates. Since solventless coating systems are desirable, the UV PSA market is of utmost importance to meeting the strict environmental guidelines now being imposed worldwide. In addition, highly ethoxylated monomers have shown promise in water dispersed PSA formulations, and a self-emulsifying acrylate monomer has been developed to offer dispersive abilities without using traditional emulsifying agents. This talk will focus on the effects of the materials described on properties of adhesive strength and shear strength in UV PSA formulations.

  15. A novel addition polyimide adhesive

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Progar, D. J.

    1981-01-01

    An addition polyimide adhesive, LARC 13, was developed which shows promise for bonding both titanium and composites for applications which require service temperatures in excess of 533 K. The LARC 13 is based on an oligomeric bis nadimide containing a meta linked aromatic diamine. The adhesive melts prior to polymerization due to its oligomeric nature, thereby allowing it to be processed at 344 kPa or less. Therefore, LARC 13 is ideal for the bonding of honeycomb sandwich structures. After melting, the resin thermosets during the cure of the nadic endcaps to a highly crosslinked system. Few volatiles are evolved, thus allowing large enclosed structures to be bonded. Preparation of the adhesive as well as bonding, aging, and testing of lap shear and honeycomb samples are discussed.

  16. Liposome adhesion generates traction stress

    NASA Astrophysics Data System (ADS)

    Murrell, Michael P.; Voituriez, Raphaël; Joanny, Jean-François; Nassoy, Pierre; Sykes, Cécile; Gardel, Margaret L.

    2014-02-01

    Mechanical forces generated by cells modulate global shape changes required for essential life processes, such as polarization, division and spreading. Although the contribution of the cytoskeleton to cellular force generation is widely recognized, the role of the membrane is considered to be restricted to passively transmitting forces. Therefore, the mechanisms by which the membrane can directly contribute to cell tension are overlooked and poorly understood. To address this, we directly measure the stresses generated during liposome adhesion. We find that liposome spreading generates large traction stresses on compliant substrates. These stresses can be understood as the equilibration of internal, hydrostatic pressures generated by the enhanced membrane tension built up during adhesion. These results underscore the role of membranes in the generation of mechanical stresses on cellular length scales and that the modulation of hydrostatic pressure due to membrane tension and adhesion can be channelled to perform mechanical work on the environment.

  17. Interfacial adhesion - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Banerjea, Amitava; Bozzolo, Guillermo H.; Finley, Clarence W.

    1988-01-01

    Adhesion, the binding of different materials at an interface, is of general interest to many branches of technology, e.g., microelectronics, tribology, manufacturing, construction, etc. However, there is a lack of fundamental understanding of such diverse interfaces. In addition, experimental techniques generally have practical objectives, such as the achievement of sufficient strength to sustain mechanical or thermal effects and/or have the proper electronic properties. In addition, the theoretical description of binding at interfaces is quite limited, and a proper data base for such theoretical analysis does not exist. This presentation will review both experimental and theoretical aspects of adhesion in nonpolymer materials. The objective will be to delineate the critical parameters needed, governing adhesion testing along with an outline of testing objectives. A distinction will be made between practical and fundamental objectives. Examples are given where interfacial bonding may govern experimental consideration. The present status of theory is presented along with recommendations for future progress and needs.

  18. Interfacial adhesion: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Bozzolo, Guillermo H.; Finley, Clarence W.; Banerjea, Amitava

    1988-01-01

    Adhesion, the binding of different materials at an interface, is of general interest to many branches of technology, e.g., microelectronics, tribology, manufacturing, construction, etc. However, there is a lack of fundamental understanding of such diverse interfaces. In addition, experimental techniques generally have practical objectives, such as the achievement of sufficient strength to sustain mechanical or thermal effects and/or have the proper electronic properties. In addition, the theoretical description of binding at interfaces is quite limited, and a proper data base for such theoretical analysis does not exist. This presentation will review both experimental and theoretical aspects of adhesion in nonpolymer materials. The objective will be to delineate the critical parameters needed, governing adhesion testing along with an outline of testing objectives. A distinction will be made between practical and fundamental objectives. Examples are given where interfacial bonding may govern experimental consideration. The present status of theory is presented along wiith recommendations for future progress and needs.

  19. Dual-Mode Adhesive Pad

    NASA Technical Reports Server (NTRS)

    Hartz, Leslie

    1994-01-01

    Tool helps worker grip and move along large, smooth structure with no handgrips or footholds. Adheres to surface but easily released by actuating simple mechanism. Includes handle and segmented contact-adhesive pad. Bulk of pad made of soft plastic foam conforming to surface of structure. Each segment reinforced with rib. In sticking mode, ribs braced by side catches. In peeling mode, side catches retracted, and segmented adhesive pad loses its stiffness. Modified versions useful in inspecting hulls of ships and scaling walls in rescue operations.

  20. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  1. Candida biofilms: is adhesion sexy?

    PubMed

    Soll, David R

    2008-08-26

    The development of Candida albicans biofilms requires two types of adhesion molecule - the Als proteins and Hwp1. Mutational analyses have recently revealed that these molecules play complementary roles, and their characteristics suggest that they may have evolved from primitive mating agglutinins. PMID:18727911

  2. Fluorescence Reveals Contamination From Adhesives

    NASA Technical Reports Server (NTRS)

    Nikolia, William

    1992-01-01

    Contamination of nearby surfaces from ingredients in some adhesive materials detected by ultraviolet illumination and observation of resulting fluorescence. Identification of contaminants via telltale fluorescence not new; rather, significance lies in method of implementation and potential extension to wider variety of materials and applications.

  3. New adhesive withstands temperature extremes

    NASA Technical Reports Server (NTRS)

    Park, J. J.; Seidenberg, B.

    1978-01-01

    Adhesive, developed for high-temperature components aboard satellites, is useful at both high and low temperatures and exhibits low-vacuum volatility and low shrinkage. System uses polyfunctional epoxy with high aromatic content, low equivalent weight, and more compact polymer than conventional bisphenol A tape.

  4. Computational Chemistry of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Phillips, Donald H.

    1999-01-01

    This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.

  5. Photoresist substrate having robust adhesion

    DOEpatents

    Dentinger, Paul M.

    2005-07-26

    A substrate material for LIGA applications w hose general composition is Ti/Cu/Ti/SiO.sub.2. The SiO.sub.2 is preferably applied to the Ti/Cu/Ti wafer as a sputtered coating, typically about 100 nm thick. This substrate composition provides improved adhesion for epoxy-based photoresist materials, and particularly the photoresist material SU-8.

  6. Tackifier Dispersions to Make Pressure Sensitive Adhesives

    SciTech Connect

    2003-02-01

    Development of new processes for tackifier dispersion could improve the production of pressure sensitive adhesives. Pressure sensitive adhesives (PSAs) have the ability to adhere to different surfaces with manual or finger pressure.

  7. Microfluidic adhesion induced by subsurface microstructures.

    PubMed

    Majumder, Abhijit; Ghatak, Animangsu; Sharma, Ashutosh

    2007-10-12

    Natural adhesives in the feet of different arthropods and vertebrates show strong adhesion as well as excellent reusability. Whereas the hierarchical structures on the surface are known to have a substantial effect on adhesion, the role of subsurface structures such as the network of microchannels has not been studied. Inspired by these bioadhesives, we generated elastomeric layers with embedded air- or oil-filled microchannels. These adhesives showed remarkable enhancement of adhesion ( approximately 30 times), which results from the crack-arresting properties of the microchannels, together with the surface stresses caused by the capillary force. The importance of the thickness of the adhesive layer, channel diameter, interchannel spacing, and vertical position within the adhesive has been examined for developing an optimal design of this microfluidic adhesive. PMID:17932295

  8. Alterations in cell adhesion proteins and cardiomyopathy

    PubMed Central

    Li, Jifen

    2014-01-01

    Cell adhesive junction is specialized intercellular structure composed of cell adhesion proteins. They are essential to connect adjacent heart muscle cell and make heart contraction effectively and properly. Clinical and genetic studies have revealed close relationship between cell adhesive proteins and the occurrence of various cardiomyopathies. Here we will review recent development on the disease phenotype, potential cellular and molecular mechanism related to cell adhesion molecules, with particular disease pathogenesis learned from genetic manipulated murine models. PMID:24944760

  9. 21 CFR 175.105 - Adhesives.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Adhesives. 175.105 Section 175.105 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use Only as Components of Adhesives §...

  10. 21 CFR 175.105 - Adhesives.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Adhesives. 175.105 Section 175.105 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use Only as Components of Adhesives §...

  11. Nonwoven glass fiber mat reinforces polyurethane adhesive

    NASA Technical Reports Server (NTRS)

    Roseland, L. M.

    1967-01-01

    Nonwoven glass fiber mat reinforces the adhesive properties of a polyurethane adhesive that fastens hardware to exterior surfaces of aluminum tanks. The mat is embedded in the uncured adhesive. It ensures good control of the bond line and increases the peel strength.

  12. 21 CFR 878.4380 - Drape adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and... GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification. A drape adhesive is a device intended to be placed on the skin to attach a surgical drape....

  13. 21 CFR 878.4380 - Drape adhesive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and... GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification. A drape adhesive is a device intended to be placed on the skin to attach a surgical drape....

  14. Nature of the adhesion bond between epoxy adhesive and steel

    NASA Astrophysics Data System (ADS)

    Vettegren', V. I.; Mamalimov, R. I.; Savitskii, A. V.; Shcherbakov, I. P.; Sytov, V. V.; Sytov, V. A.

    2014-03-01

    The potential difference that appears in the epoxy resin located between two grade 3 steel plates is studied. One of them is stored in epoxy resin to reach equilibrium, and the second plate is coated with an asprepared mixture of epoxy resin with a hardener. It is found that the potential difference decreases in time because of charge transfer by Fe2+ ions through epoxy resin. The luminescence and infrared absorption spectra of the epoxy adhesive on the grade 3 steel surface are recorded. An analysis of these spectra shows that Fe2+ ions penetrate into the as-prepared mixture of epoxy resin with the hardener, and interact with CN groups in the mixture, and form coordination compounds. As a result, a diffusion layer saturated by the coordination compounds forms at the interface between the steel and the adhesive.

  15. Ceramic adhesive restorations and biomimetic dentistry: tissue preservation and adhesion.

    PubMed

    Tirlet, Gil; Crescenzo, Hélène; Crescenzo, Dider; Bazos, Panaghiotis

    2014-01-01

    Thanks to sophisticated adhesive techniques in contemporary dentistry, and the development of composite and ceramic materials, it is possible to reproduce a biomimetic match between substitution materials and natural teeth substrates. Biomimetics or bio-emulation allows for the association of two fundamental parameters at the heart of current therapeutic treatments: tissue preservation and adhesion. This contemporary concept makes the retention of the integrity of the maximum amount of dental tissue possible, while offering exceptional clinical longevity, and maximum esthetic results. It permits the conservation of the biological, esthetic, biomechanical and functional properties of enamel and dentin. Today, it is clearly possible to develop preparations allowing for the conservation of the enamel and dentin in order to bond partial restorations in the anterior and posterior sectors therefore limiting, as Professor Urs Belser from Geneva indicates, "the replacement of previous deficient crowns and devitalized teeth whose conservation are justified but whose residual structural state are insufficient for reliable bonding."1 This article not only addresses ceramic adhesive restoration in the anterior area, the ambassadors of biomimetic dentistry, but also highlights the possibility of occasionally integrating one or two restorations at the heart of the smile as a complement to extensive rehabilitations that require more invasive treatment. PMID:25126616

  16. Bio-inspired adhesion: local chemical environments impact adhesive stability

    NASA Astrophysics Data System (ADS)

    Gebbie, Matthew A.; Rapp, Michael V.; Yu, Jing; Wei, Wei; Waite, J. Herbert; Israelachvili, Jacob N.

    2014-03-01

    3,4-dihydroxyphenylalanine (Dopa) is an amino acid that is naturally synthesized by marine mussels and exhibits the unique ability to strongly bind to surfaces in aqueous environments. However, the Dopa functional group undergoes auto-oxidation to a non-adhesive quinone form in neutral to basic pH conditions, limiting the utilization of Dopa in biomedical applications. In this work, we performed direct surface force measurements with in situ electrochemical control across a Dopa-rich native mussel foot protein (mfp-5), as well as three simplified model peptide sequences. We find that the neighboring peptide residues can significantly impact the redox stability of Dopa functional groups, with lysine residues imparting a substantial degree of Dopa redox stabilization. Surprisingly, the local chemical environments only minimally impact the magnitude of the adhesion forces measured between molecularly-smooth mica and gold surfaces. Our results provide molecular level insight into approaches that can be used to mitigate the detrimental impact of Dopa auto-oxidation, thus suggesting new molecular design strategies for improving the performance of Dopa-based underwater adhesives.

  17. Adhesives for the composite wood panel industry

    SciTech Connect

    Koch, G.S.; Klareich, F.; Exstrum, B.

    1987-01-01

    This book presents a market and technology analysis of current fossil-fuel-based adhesives for the composite wood panel industry. It is also a study of the potential for, and technology of, less-energy-intensive biomass-derived adhesives for use in the industry. Adhesives manufacturer and production account for a significant portion of overall wood panel industry energy use as well as overall production costs, and the wood panel industry consumes about 25% of the total U.S. adhesives production. Significant savings might be realized if current fossil-fuel-based resins could be replaced with alternative biomass-derived adhesives.

  18. A review of high-temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1981-01-01

    The development of high temperature adhesives and polyphenylquinoxalines (PPQ) is reported. Thermoplastic polyimides and linear PPQ adhesive are shown to have potential for bonding both metals and composite structures. A nadic terminated addition polyimide adhesive, LARC-13, and an acetylene terminated phenylquinoxaline (ATPQ) were developed. Both of the addition type adhesives are shown to be more readily processable than linear materials but less thermooxidatively stable and more brittle. It is found that the addition type adhesives are able to perform, at elevated temperatures up to 595 C where linear systems fail thermoplastically.

  19. Viscoelastic analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    In this paper an adhesively bonded lap joint is analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. After formulating the general problem a specific example for two identical adherends bonded through a three parameter viscoelastic solid adhesive is considered. The standard Laplace transform technique is used to solve the problem. The stress distribution in the adhesive layer is calculated for three different external loads namely, membrane loading, bending, and transverse shear loading. The results indicate that the peak value of the normal stress in the adhesive is not only consistently higher than the corresponding shear stress but also decays slower.

  20. Viscoelastic analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1980-01-01

    An adhesively bonded lap joint is analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. After formulating the general problem a specific example for two identical adherends bonded through a three parameter viscoelastic solid adhesive is considered. The standard Laplace transform technique is used to solve the problem. The stress distribution in the adhesive layer is calculated for three different external loads, namely, membrane loading, bending, and transverse shear loading. The results indicate that the peak value of the normal stress in the adhesive is not only consistently higher than the corresponding shear stress but also decays slower.

  1. Gecko adhesion pad: a smart surface?

    NASA Astrophysics Data System (ADS)

    Pesika, Noshir S.; Zeng, Hongbo; Kristiansen, Kai; Zhao, Boxin; Tian, Yu; Autumn, Kellar; Israelachvili, Jacob

    2009-11-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  2. Nanocapillary Adhesion between Parallel Plates.

    PubMed

    Cheng, Shengfeng; Robbins, Mark O

    2016-08-01

    Molecular dynamics simulations are used to study capillary adhesion from a nanometer scale liquid bridge between two parallel flat solid surfaces. The capillary force, Fcap, and the meniscus shape of the bridge are computed as the separation between the solid surfaces, h, is varied. Macroscopic theory predicts the meniscus shape and the contribution of liquid/vapor interfacial tension to Fcap quite accurately for separations as small as two or three molecular diameters (1-2 nm). However, the total capillary force differs in sign and magnitude from macroscopic theory for h ≲ 5 nm (8-10 diameters) because of molecular layering that is not included in macroscopic theory. For these small separations, the pressure tensor in the fluid becomes anisotropic. The components in the plane of the surface vary smoothly and are consistent with theory based on the macroscopic surface tension. Capillary adhesion is affected by only the perpendicular component, which has strong oscillations as the molecular layering changes. PMID:27413872

  3. Particle adhesion in powder coating

    SciTech Connect

    Mazumder, M.K.; Wankum, D.L.; Knutson, M.; Williams, S.; Banerjee, S.

    1996-12-31

    Electrostatic powder coating is a widely used industrial painting process. It has three major advantages: (1) it provides high quality durable finish, (2) the process is environmentally friendly and does not require the use of organic solvents, and (3) it is economically competitive. The adhesion of electrostatically deposited polymer paint particles on the grounded conducting substrate depends upon many parameters: (a) particle size and shape distributions, (b) electrostatic charge distributions, (c) electrical resistivity, (d) dielectric strength of the particles, (e) thickness of the powder film, (f) presence and severity of the back corona, and (g) the conductivity and surface properties of the substrate. The authors present a model on the forces of deposition and adhesion of corona charged particles on conducting substrates.

  4. Acetylene-terminated polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Hanky, A. O.

    1983-01-01

    The nadic-encapped LARC-13 addition polyimide exhibits excellent flow, is easy to process, and can be utilized for short terms at temperatures up to 593 C. It retains good lap shear strength as an adhesive for titanium after aging in air up to 125 hours at 316 C; but lap shear strength degrades with longer exposures at that temperature. Thermid 600, an addition polyimide that is acetylene encapped, exhibits thermomechanical properties even after long term exposure in at air at 316 C. An inherent drawback of this system is that it has a narrow processing window. An acetylene encapped, addition polyimide which is a hybrid of these two systems was developed. It has good retention of strength after long term aging and is easily processed. The synthesis and characterization of various molecular weight oligomers of this system are discussed as well as the bonding, aging, and testing of lap shear adhesive samples.

  5. Labial adhesions in pubertal girls.

    PubMed

    Kumar, Roy Kallol; Sonika, Agarwal; Charu, Chanana; Sunesh, Kumar; Neena, Malhotra

    2006-01-01

    Labial adhesions after puberty are rare and are usually the result of chronic inflammation, urinary tract infection, hypoestrogenism or surgical procedures leading to vulval trauma. Sexual abuse leading to labial adhesions is extremely rare in girls who have attained menarche. Complete vulval fusion can rarely occur without any evidence of hypoestrogenism. We address this rare entity in three young pubertal girls wherein one had a history of genital trauma, the second had a history of surgical intervention due to urinary retention and the last one had a history of sexual abuse. All patients had history of genital trauma in common. Accepted management of this condition is adhesiolysis followed by application of estrogen cream in the postoperative period. PMID:16189695

  6. Acetylene-terminated polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Hanky, A. O.; St. Clair, T. L.

    1983-01-01

    The nadic-encapped LARC-43 addition polyimide exhibits excellent flow, is easy to process, and can be utilized for short terms at temperatures up to 593 C. It retains good lap shear strength as an adhesive for titanium after aging in air up to 125 hours at 316 C; but lap shear strength degrades with longer exposures at that temperature. Thermid 600, an addition polyimide that is acetylene encapped, exhibits thermomechanical properties even after long term exposure in at air at 316 C. An inherent drawback of this system is that it has a narrow processing window. An acetylene encapped, addition polyimide which is a hybrid of these two systems was developed. It has good retention of strength after long term aging and is easily processed. The synthesis and characterization of various molecular weight oligomers of this system are discussed as well as the bonding, aging, and testing of lap shear adhesive samples. Previously announced in STAR as N83-18910

  7. Host Selection of Microbiota via Differential Adhesion.

    PubMed

    McLoughlin, Kirstie; Schluter, Jonas; Rakoff-Nahoum, Seth; Smith, Adrian L; Foster, Kevin R

    2016-04-13

    The host epithelium is the critical interface with microbial communities, but the mechanisms by which the host regulates these communities are poorly understood. Here we develop the hypothesis that hosts use differential adhesion to select for and against particular members of their microbiota. We use an established computational, individual-based model to study the impact of host factors that regulate adhesion at the epithelial surface. Our simulations predict that host-mediated adhesion can increase the competitive advantage of microbes and create ecological refugia for slow-growing species. We show how positive selection via adhesion can be transformed into negative selection if the host secretes large quantities of a matrix such as mucus. Our work predicts that adhesion is a powerful mechanism for both positive and negative selection within the microbiota. We discuss molecules-mucus glycans and IgA-that affect microbe adhesion and identify testable predictions of the adhesion-as-selection model. PMID:27053168

  8. Adhesive mechanisms in cephalopods: a review.

    PubMed

    von Byern, Janek; Klepal, Waltraud

    2006-01-01

    Several genera of cephalopods (Nautilus, Sepia, Euprymna and Idiosepius) produce adhesive secretions, which are used for attachment to the substratum, for mating and to capture prey. These adhesive structures are located in different parts of the body, viz. in the digital tentacles (Nautilus), in the ventral surface of the mantle and fourth arm pair (Sepia), in the dorsal epidermis (Euprymna), or in the dorsal mantle side and partly on the fins (Idiosepius). Adhesion in Sepia is induced by suction of dermal structures on the mantle, while for Nautilus, Euprymna and Idiosepius adhesion is probably achieved by chemical substances. Histochemical studies indicate that in Nautilus and Idiosepius secretory cells that appear to be involved in adhesion stain for carbohydrates and protein, whilst in Euprymna only carbohydrates are detectable. De-adhesion is either achieved by muscle contraction of the tentacles and mantle (Nautilus and Sepia) or by secretion of substances (Euprymna). The de-adhesive mechanism used by Idiosepius remains unknown. PMID:17110356

  9. Adhesion effects in contact interaction of solids

    NASA Astrophysics Data System (ADS)

    Goryacheva, Irina; Makhovskaya, Yulya

    2008-01-01

    An approach to solving problems of the interaction of axisymmetric elastic bodies in the presence of adhesion is developed. The different natures of adhesion, i.e. capillary adhesion, or molecular adhesion described by the Lennard-Jones potential are examined. The effect of additional loading of the interacting bodies outside the contact zone is also investigated. The approach is based on the representation of the pressure outside the contact zone arising from adhesion by a step function. The analytical solution is obtained and is used to analyze the influence of the form of the adhesion interaction potential, of the surface energy of interacting bodies or the films covering the bodies, their shapes (parabolic, higher power exponential function), volume of liquid in the meniscus, density of contact spots, of elastic modulus and the Poisson ratio on the characteristics of the interaction of the bodies in the presence of adhesion. To cite this article: I. Goryacheva, Y. Makhovskaya, C. R. Mecanique 336 (2008).

  10. Theory of adhesion: Role of surface roughness

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.; Scaraggi, M.

    2014-09-01

    We discuss how surface roughness influences the adhesion between elastic solids. We introduce a Tabor number which depends on the length scale or magnification, and which gives information about the nature of the adhesion at different length scales. We consider two limiting cases relevant for (a) elastically hard solids with weak (or long ranged) adhesive interaction (DMT-limit) and (b) elastically soft solids with strong (or short ranged) adhesive interaction (JKR-limit). For the former cases we study the nature of the adhesion using different adhesive force laws (F ˜ u-n, n = 1.5-4, where u is the wall-wall separation). In general, adhesion may switch from DMT-like at short length scales to JKR-like at large (macroscopic) length scale. We compare the theory predictions to results of exact numerical simulations and find good agreement between theory and simulation results.

  11. Polymer nanocarriers for dentin adhesion.

    PubMed

    Osorio, R; Osorio, E; Medina-Castillo, A L; Toledano, M

    2014-12-01

    To obtain more durable adhesion to dentin, and to protect collagen fibrils of the dentin matrix from degradation, calcium- and phosphate-releasing particles have been incorporated into the dental adhesive procedure. The aim of the present study was to incorporate zinc-loaded polymeric nanocarriers into a dental adhesive system to facilitate inhibition of matrix metalloproteinases (MMPs)-mediated collagen degradation and to provide calcium ions for mineral deposition within the resin-dentin bonded interface. PolymP- N : Active nanoparticles (nanoMyP) were zinc-loaded through 30-minute ZnCl2 immersion and tested for bioactivity by means of 7 days' immersion in simulated body fluid solution (the Kokubo test). Zinc-loading and calcium phosphate depositions were examined by scanning and transmission electron microscopy, elemental analysis, and x-ray diffraction. Nanoparticles in ethanol solution infiltrated into phosphoric-acid-etched human dentin and Single Bond (3M/ESPE) were applied to determine whether the nanoparticles interfered with bonding. Debonded sticks were analyzed by scanning electron microscopy. A metalloproteinase collagen degradation assay was also performed in resin-infiltrated dentin with and without nanoparticles, measuring C-terminal telopeptide of type I collagen (ICTP) concentration in supernatants, after 4 wk of immersion in artificial saliva. Numerical data were analyzed by analysis of variance (ANOVA) and Student-Newman-Keuls multiple comparisons tests (p < .05). Nanoparticles were effectively zinc-loaded and were shown to have a chelating effect, retaining calcium regardless of zinc incorporation. Nanoparticles failed to infiltrate demineralized intertubular dentin and remained on top of the hybrid layer, without altering bond strength. Calcium and phosphorus were found covering nanoparticles at the hybrid layer, after 24 h. Nanoparticle application in etched dentin also reduced MMP-mediated collagen degradation. Tested nanoparticles may be

  12. Approaching improved adhesive bonding repeatability

    NASA Astrophysics Data System (ADS)

    Schlette, Christian; Müller, Tobias; Roβmann, Jürgen; Brecher, Christian

    2016-03-01

    Today, the precision of micro-optics assembly is mostly limited by the accuracy of the bonding process ― and in the case of adhesive bonding by the prediction and compensation of adhesive shrinkage during curing. In this contribution, we present a novel approach to address adhesive bonding based on hybrid control system theory. In hybrid control, dynamic systems are described as "plants" which produce discrete and/or continuous outputs from given discrete and/or continuous inputs, thus yielding a hybrid state space description of the system. The task of hybrid controllers is to observe the plant and to generate a discrete and/or continuous input sequence that guides or holds the plant in a desired target state region while avoiding invalid or unwanted intermediate states. Our approach is based on a series of experiments carried out in order to analyze, define and decouple the dependencies of adhesive shrinkage on multiple parameters, such as application geometries, fixture forces and UV intensities. As some of the dependencies describe continuous effects (e.g. shrinkage from UV intensity) and other dependencies describe discrete state transitions (e.g. fixture removal during curing), the resulting model of the overall bonding process is a hybrid dynamic system in the general case. For this plant model, we then propose a concept of sampling-based parameter search as a basis to design suitable hybrid controllers, which have the potential to optimize process control for a selection of assembly steps, thus improving the repeatability of related production steps like beam-shaping optics or mounting of turning mirrors for fiber coupling.

  13. Polymer Nanocarriers for Dentin Adhesion

    PubMed Central

    Osorio, R.; Osorio, E.; Medina-Castillo, A.L.; Toledano, M.

    2014-01-01

    To obtain more durable adhesion to dentin, and to protect collagen fibrils of the dentin matrix from degradation, calcium- and phosphate-releasing particles have been incorporated into the dental adhesive procedure. The aim of the present study was to incorporate zinc-loaded polymeric nanocarriers into a dental adhesive system to facilitate inhibition of matrix metalloproteinases (MMPs)-mediated collagen degradation and to provide calcium ions for mineral deposition within the resin-dentin bonded interface. PolymP-nActive nanoparticles (nanoMyP) were zinc-loaded through 30-minute ZnCl2 immersion and tested for bioactivity by means of 7 days’ immersion in simulated body fluid solution (the Kokubo test). Zinc-loading and calcium phosphate depositions were examined by scanning and transmission electron microscopy, elemental analysis, and x-ray diffraction. Nanoparticles in ethanol solution infiltrated into phosphoric-acid-etched human dentin and Single Bond (3M/ESPE) were applied to determine whether the nanoparticles interfered with bonding. Debonded sticks were analyzed by scanning electron microscopy. A metalloproteinase collagen degradation assay was also performed in resin-infiltrated dentin with and without nanoparticles, measuring C-terminal telopeptide of type I collagen (ICTP) concentration in supernatants, after 4 wk of immersion in artificial saliva. Numerical data were analyzed by analysis of variance (ANOVA) and Student-Newman-Keuls multiple comparisons tests (p < .05). Nanoparticles were effectively zinc-loaded and were shown to have a chelating effect, retaining calcium regardless of zinc incorporation. Nanoparticles failed to infiltrate demineralized intertubular dentin and remained on top of the hybrid layer, without altering bond strength. Calcium and phosphorus were found covering nanoparticles at the hybrid layer, after 24 h. Nanoparticle application in etched dentin also reduced MMP-mediated collagen degradation. Tested nanoparticles may be

  14. Culinary Medicine-Jalebi Adhesions.

    PubMed

    Kapoor, Vinay K

    2016-02-01

    Culinary terms have been used to describe anatomy (bean-shaped kidneys), pathology (strawberry gall bladder), clinical signs (café-au-lait spots), radiological images (sausage-shaped pancreas), etc. While Indian cuisine is popular all over the world, no Indian dish finds mention in medical terminology. In intra-abdominal adhesions, sometimes, the intestinal loops are so densely adherent that it is difficult to make out proximal from distal and it is impossible to separate them without injuring the bowel resulting in spill of contents-resection is the only option (Fig. 1). Jalebi, an Indian dessert, has a single long tubular strip of fried batter filled with sugary syrup so intertwined that it is impossible to discern its ends; if broken, the syrup spills out-the best way to relish it is to chew the whole piece (Fig. 2). Because of these similarities between them, I propose to name dense intra-abdominal adhesions as 'jalebi adhesions.' PMID:27186047

  15. Adhesive evaluation of new polyimides

    NASA Technical Reports Server (NTRS)

    Stclair, Terry L.; Progar, Donald J.

    1987-01-01

    During the past 10 to 15 years, the Materials Division at NASA Langley Research Center (LaRC) has developed several novel high temperature polyimide adhesives for anticipated needs of the aerospace industry. These developments have resulted from fundamental studies of structure-property relationships in polyimides. Recent research at LaRC has involved the synthesis and evaluation of copolyimides which incorporate both flexibilizing bridging groups and meta-linked benzene rings. The purpose was to develop systems based on low cost, readily available monomers. Two of these copolyimides evaluated as adhesives for bonding titanium alloy, Ti(6Al-4V), are identified as LARC-STPI and STPI-LARC-2. Lap shear strength (LSS) measurements were used to determine the strength and durability of the adhesive materials. LSS results are presented for LARC-TPI and LARC-STPI lap shear specimens thermally exposed in air at 232 C for up to 5000 hrs. LARC-TPI was shown to perform better than the copolymer LARC-STPI which exhibited poor thermooxidative performance possibly due to the amines used which would tend to oxidize easier than the benzophenone system in LARC-TPI.

  16. [Adhesion to the antiretroviral treatment].

    PubMed

    Carballo, M

    2004-12-01

    The objective of the therapy antiretroviral is to improve the quality of life and the survival of the persons affected by the VIH through the suppression of the viral replication. Nevertheless one of the present problems is the resistant apparition of stumps to the new medicines caused by an incorrect management of the therapeutic plan; by an incorrect adhesion of the personal processing. Since the therapeutic success will depend, among others factors, and of important form of the degree of implication and commitment of the person affected, is a matter of identifying prematurely the possible situations concomitants (personal factors and of addiction, psycho-social, related to the processing and its possible secondary effects, associated factors to the own illness or even to the relation professional-patient) that can interfere in a correct adhesion. For it is necessary of the interaction multidisciplinary of the welfare team, and fundamental the work of nursing at the moment of to detect the possible determinant factors and the intervention definition of strategies arrived at by consensus with the own person, that they promote it or it improve. The quantification of the degree of adhesion (measure in %) values through various direct and indirect methods and should keep in mind in it takes of therapeutic decisions being able to come to be advised the suspension of the processing until obtaining to conscience to the person affected of the importance of a correct therapeutic compliance. PMID:15672996

  17. Increased erythrocyte adhesion to VCAM-1 during pulsatile flow: Application of a microfluidic flow adhesion bioassay

    PubMed Central

    White, Jennell; Lancelot, Moira; Sarnaik, Sharada; Hines, Patrick

    2015-01-01

    Abstract Sickle cell disease (SCD) is characterized by microvascular occlusion mediated by adhesive interactions of sickle erythrocytes (SSRBCs) to the endothelium. Most in vitro flow adhesion assays measure SSRBC adhesion during continuous flow, although in vivo SSRBC adhesive interactions occur during pulsatile flow. Using a well-plate microfluidic flow adhesion system, we demonstrate that isolated SSRBCs adhere to vascular cell adhesion molecule (VCAM-1) at greater levels during pulsatile versus continuous flow. A significant increase in adhesive interactions was observed between all pulse frequencies 1 Hz to 2 Hz (60–120 beats/min) when compared to non-pulsatile flow. Adhesion of isolated SSRBCs and whole blood during pulsatile flow was unaffected by protein kinase A (PKA) inhibition, and exposure of SSRBCs to pulsatile flow did not affect the intrinsic adhesive properties of SSRBCs. The cell type responsible for increased adhesion of whole blood varied from patient to patient. We conclude that low flow periods of the pulse cycle allow more adhesive interactions between sickle erythrocytes and VCAM-1, and sickle erythrocyte adhesion in the context of whole blood may better reflect physiologic cellular interactions. The microfluidic flow adhesion bioassay used in this study may have applications for clinical assessment of sickle erythrocyte adhesion during pulsatile flow. PMID:24898561

  18. Sundew adhesive: a naturally occurring hydrogel

    PubMed Central

    Huang, Yujian; Wang, Yongzhong; Sun, Leming; Agrawal, Richa; Zhang, Mingjun

    2015-01-01

    Bioadhesives have drawn increasing interest in recent years, owing to their eco-friendly, biocompatible and biodegradable nature. As a typical bioadhesive, sticky exudate observed on the stalked glands of sundew plants aids in the capture of insects and this viscoelastic adhesive has triggered extensive interests in revealing the implied adhesion mechanisms. Despite the significant progress that has been made, the structural traits of the sundew adhesive, especially the morphological characteristics in nanoscale, which may give rise to the viscous and elastic properties of this mucilage, remain unclear. Here, we show that the sundew adhesive is a naturally occurring hydrogel, consisting of nano-network architectures assembled with polysaccharides. The assembly process of the polysaccharides in this hydrogel is proposed to be driven by electrostatic interactions mediated with divalent cations. Negatively charged nanoparticles, with an average diameter of 231.9 ± 14.8 nm, are also obtained from this hydrogel and these nanoparticles are presumed to exert vital roles in the assembly of the nano-networks. Further characterization via atomic force microscopy indicates that the stretching deformation of the sundew adhesive is associated with the flexibility of its fibrous architectures. It is also observed that the adhesion strength of the sundew adhesive is susceptible to low temperatures. Both elasticity and adhesion strength of the sundew adhesive reduce in response to lowering the ambient temperature. The feasibility of applying sundew adhesive for tissue engineering is subsequently explored in this study. Results show that the fibrous scaffolds obtained from sundew adhesive are capable of increasing the adhesion of multiple types of cells, including fibroblast cells and smooth muscle cells, a property that results from the enhanced adsorption of serum proteins. In addition, in light of the weak cytotoxic activity exhibited by these scaffolds towards a variety of

  19. Sundew adhesive: a naturally occurring hydrogel.

    PubMed

    Huang, Yujian; Wang, Yongzhong; Sun, Leming; Agrawal, Richa; Zhang, Mingjun

    2015-06-01

    Bioadhesives have drawn increasing interest in recent years, owing to their eco-friendly, biocompatible and biodegradable nature. As a typical bioadhesive, sticky exudate observed on the stalked glands of sundew plants aids in the capture of insects and this viscoelastic adhesive has triggered extensive interests in revealing the implied adhesion mechanisms. Despite the significant progress that has been made, the structural traits of the sundew adhesive, especially the morphological characteristics in nanoscale, which may give rise to the viscous and elastic properties of this mucilage, remain unclear. Here, we show that the sundew adhesive is a naturally occurring hydrogel, consisting of nano-network architectures assembled with polysaccharides. The assembly process of the polysaccharides in this hydrogel is proposed to be driven by electrostatic interactions mediated with divalent cations. Negatively charged nanoparticles, with an average diameter of 231.9 ± 14.8 nm, are also obtained from this hydrogel and these nanoparticles are presumed to exert vital roles in the assembly of the nano-networks. Further characterization via atomic force microscopy indicates that the stretching deformation of the sundew adhesive is associated with the flexibility of its fibrous architectures. It is also observed that the adhesion strength of the sundew adhesive is susceptible to low temperatures. Both elasticity and adhesion strength of the sundew adhesive reduce in response to lowering the ambient temperature. The feasibility of applying sundew adhesive for tissue engineering is subsequently explored in this study. Results show that the fibrous scaffolds obtained from sundew adhesive are capable of increasing the adhesion of multiple types of cells, including fibroblast cells and smooth muscle cells, a property that results from the enhanced adsorption of serum proteins. In addition, in light of the weak cytotoxic activity exhibited by these scaffolds towards a variety of

  20. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    NASA Astrophysics Data System (ADS)

    Díaz Téllez, J. P.; Harirchian-Saei, S.; Li, Y.; Menon, C.

    2013-10-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet-visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved.

  1. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    PubMed

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives. PMID:27182547

  2. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    PubMed Central

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G.; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J.R.; Santos, Romana

    2016-01-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article “Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach” (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives. PMID:27182547

  3. Experimental Investigation of Optimal Adhesion of Mushroomlike Elastomer Microfibrillar Adhesives.

    PubMed

    Marvi, Hamidreza; Song, Sukho; Sitti, Metin

    2015-09-22

    Optimal fiber designs for the maximal pull-off force have been indispensable for increasing the attachment performance of recently introduced gecko-inspired reversible micro/nanofibrillar adhesives. There are several theoretical studies on such optimal designs; however, due to the lack of three-dimensional (3D) fabrication techniques that can fabricate such optimal designs in 3D, there have not been many experimental investigations on this challenge. In this study, we benefitted from recent advances in two-photon lithography techniques to fabricate mushroomlike polyurethane elastomer fibers with different aspect ratios of tip to stalk diameter (β) and tip wedge angles (θ) to investigate the effect of these two parameters on the pull-off force. We found similar trends to those predicted theoretically. We found that β has an impact on the slope of the force-displacement curve while both β and θ play a role in the stress distribution and crack propagation. We found that these effects are coupled and the optimal set of parameters also depends on the fiber material. This is the first experimental verification of such optimal designs proposed for mushroomlike microfibers. This experimental approach could be used to evaluate a wide range of complex microstructured adhesive designs suggested in the literature and optimize them. PMID:26322396

  4. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    PubMed Central

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  5. Adhesive curing through low-voltage activation

    PubMed Central

    Ping, Jianfeng; Gao, Feng; Chen, Jian Lin; Webster, Richard D.; Steele, Terry W. J.

    2015-01-01

    Instant curing adhesives typically fall within three categories, being activated by either light (photocuring), heat (thermocuring) or chemical means. These curing strategies limit applications to specific substrates and can only be activated under certain conditions. Here we present the development of an instant curing adhesive through low-voltage activation. The electrocuring adhesive is synthesized by grafting carbene precursors on polyamidoamine dendrimers and dissolving in aqueous solvents to form viscous gels. The electrocuring adhesives are activated at −2 V versus Ag/AgCl, allowing tunable crosslinking within the dendrimer matrix and on both electrode surfaces. As the applied voltage discontinued, crosslinking immediately terminated. Thus, crosslinking initiation and propagation are observed to be voltage and time dependent, enabling tuning of both material properties and adhesive strength. The electrocuring adhesive has immediate implications in manufacturing and development of implantable bioadhesives. PMID:26282730

  6. Control of vascular permeability by adhesion molecules.

    PubMed

    Sarelius, Ingrid H; Glading, Angela J

    2015-01-01

    Vascular permeability is a vital function of the circulatory system that is regulated in large part by the limited flux of solutes, water, and cells through the endothelial cell layer. One major pathway through this barrier is via the inter-endothelial junction, which is driven by the regulation of cadherin-based adhesions. The endothelium also forms attachments with surrounding proteins and cells via 2 classes of adhesion molecules, the integrins and IgCAMs. Integrins and IgCAMs propagate activation of multiple downstream signals that potentially impact cadherin adhesion. Here we discuss the known contributions of integrin and IgCAM signaling to the regulation of cadherin adhesion stability, endothelial barrier function, and vascular permeability. Emphasis is placed on known and prospective crosstalk signaling mechanisms between integrins, the IgCAMs- ICAM-1 and PECAM-1, and inter-endothelial cadherin adhesions, as potential strategic signaling nodes for multipartite regulation of cadherin adhesion. PMID:25838987

  7. Mussel-Inspired Adhesives and Coatings

    PubMed Central

    Lee, Bruce P.; Messersmith, P.B.; Israelachvili, J.N.; Waite, J.H.

    2011-01-01

    Mussels attach to solid surfaces in the sea. Their adhesion must be rapid, strong, and tough, or else they will be dislodged and dashed to pieces by the next incoming wave. Given the dearth of synthetic adhesives for wet polar surfaces, much effort has been directed to characterizing and mimicking essential features of the adhesive chemistry practiced by mussels. Studies of these organisms have uncovered important adaptive strategies that help to circumvent the high dielectric and solvation properties of water that typically frustrate adhesion. In a chemical vein, the adhesive proteins of mussels are heavily decorated with Dopa, a catecholic functionality. Various synthetic polymers have been functionalized with catechols to provide diverse adhesive, sealant, coating, and anchoring properties, particularly for critical biomedical applications. PMID:22058660

  8. [Prevention of intrauterine adhesions after hysteroscopic surgery].

    PubMed

    Revaux, A; Ducarme, G; Luton, D

    2008-03-01

    Intrauterine adhesions are the most frequent complications after hysteroscopic surgery in women of reproductive age. The prevalence of intrauterine adhesions after hysteroscopic surgery is correlated to intrauterine pathology (myoma, polyp, or adhesions). Few clinical trials have demonstrated the efficiency of barrier agents developed in order to prevent adhesions after operative hysteroscopy. Adhesion barriers are mechanic agent (intrauterine device), fluid agents (Seprafilm, Hyalobarrier) and postoperative systemic treatment (estroprogestative treatment). In this article, we evaluate the efficiency of these barrier agents for adhesion prevention in hysteroscopic surgery, undertaking a review of clinical trials published. The most frequent published studies evaluate the anatomic efficiency of antiadhesion agents after hysteroscopic surgery in order to evaluate the fertility. Data are still insufficient to evaluate them for clinical use. There is a need for other randomised controlled trials. PMID:18308609

  9. Adhesive bonding of carbon and ceramic materials

    SciTech Connect

    Kravetskii, G.A.; Anikin, L.T.; Demin, A.V.; Butyrin, G.M.

    1995-12-01

    On the basis of phenol resins and high-melting powder fillers, adhesives for bonding carbon and ceramic materials have been developed at NIIGRAFIT that allow adhesively bonded parts to be used at temperatures as high as 1500 to 1800{degrees}C, Some properties of those adhesives are covered in. The present paper describes results of recent investigations of the heat- and corrosion-resistance of the NIIGRAFIT`s adhesives. As the subjects of investigations were taken adhesives differing in the powder filler composition. Moreover, one adhesive (SVK) was subjected to a preliminary heat treatment (1200{degrees}C, 1 h, Ar) to fully complete the interaction processes between powder components and a binder coke.

  10. Functionally Graded Adhesives for Composite Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof of concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint.

  11. Adhesion and wear resistance of materials

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1986-01-01

    Recent studies into the nature of bonding at the interface between two solids in contact or a solid and deposited film have provided a better understanding of those properties important to the adhesive wear resistance of materials. Analytical and experimental progress are reviewed. For simple metal systems the adhesive bond forces are related to electronic wave function overlap. With metals in contact with nonmetals, molecular-orbital energy, and density of states, respectively can provide insight into adhesion and wear. Experimental results are presented which correlate adhesive forces measured between solids and the electronic surface structures. Orientation, surface reconstruction, surface segregation, adsorption are all shown to influence adhesive interfacial strength. The interrelationship between adhesion and the wear of the various materials as well as the life of coatings applied to substrates are discussed. Metallic systems addressed include simple metals and alloys and these materials in contact with themselves, both oxide and nonoxide ceramics, diamond, polymers, and inorganic coating compounds, h as diamondlike carbon.

  12. Bacterial Adhesion at Synthetic Surfaces

    PubMed Central

    Cunliffe, D.; Smart, C. A.; Alexander, C.; Vulfson, E. N.

    1999-01-01

    A systematic investigation into the effect of surface chemistry on bacterial adhesion was carried out. In particular, a number of physicochemical factors important in defining the surface at the molecular level were assessed for their effect on the adhesion of Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus, and Escherichia coli. The primary experiments involved the grafting of groups varying in hydrophilicity, hydrophobicity, chain length, and chemical functionality onto glass substrates such that the surfaces were homogeneous and densely packed with functional groups. All of the surfaces were found to be chemically well defined, and their measured surface energies varied from 15 to 41 mJ · m−2. Protein adsorption experiments were performed with 3H-labelled bovine serum albumin and cytochrome c prior to bacterial attachment studies. Hydrophilic uncharged surfaces showed the greatest resistance to protein adsorption; however, our studies also showed that the effectiveness of poly(ethyleneoxide) (PEO) polymers was not simply a result of its hydrophilicity and molecular weight alone. The adsorption of the two proteins approximately correlated with short-term cell adhesion, and bacterial attachment for L. monocytogenes and E. coli also correlated with the chemistry of the underlying substrate. However, for S. aureus and S. typhimurium a different pattern of attachment occurred, suggesting a dissimilar mechanism of cell attachment, although high-molecular-weight PEO was still the least-cell-adsorbing surface. The implications of this for in vivo attachment of cells suggest that hydrophilic passivating groups may be the best method for preventing cell adsorption to synthetic substrates provided they can be grafted uniformly and in sufficient density at the surface. PMID:10543814

  13. Adhesive for solar control film

    SciTech Connect

    Penn, H.J.

    1984-01-31

    A water-activatable adhesive useful for adhering a solar film, polyester (polyethylene terephthalate) film, to glass or to metal substrates. The adhesive comprises the reacted product of (A) gamma-isocyanatopropyltriethoxy silane, containing a free isocyanate (NCO) group, and (B) a thermoplastic polyester formed by reacting (i) a dibasic acid selected from the group consisting of terephthalic acid, isophthalic acid and hexahydrophthalic acid, and mixtures thereof, with (ii) a polymethylene glycol of the formula HO(CH/sub 2/) /SUB x/ OH where x is an integer from 2 to 10, neopentyl glycol and glycerin, and mixtures thereof, and (iii) an aliphatic dibasic acid selected from the group consisting of those having the formula HOOC(CH/sub 2/) /SUB n/ COOH where n is an integer from 1 to 8, and mixtures of such acids, whereby substantially no free NCO remains in the adhesive. Solar film is used for absorbing and/or reflecting solar radiation. Solar film can be a single sheet of polyester dyed sufficiently to absorb the glare of bright sunlight, or it can be a single sheet of polyester, on one side of which a reflective metal (most often aluminum) is deposited in an amount which can be totally reflective or in an amount which still allows visible light transmission and over which a protective coating is deposited, or it can be a laminated structure of the reflective film adhered to a clear or dyed polyester film by which means the reflective metal is sandwiched between two layers of polyester film, or it can be a laminated structure of a reflective film to a polyolefin film.

  14. Improved Cure-in-Place Silicone Adhesives

    NASA Technical Reports Server (NTRS)

    Blevins, C. E.; Sweet, J.; Gonzalez, R.

    1982-01-01

    Two improved cure-in-place silicone-elastomer-based adhesives have low thermal expansion and low thermal conductivity. Adhesives are flexible at low temperature and withstand high temperatures without disintegrating. New ablative compounds were initially developed for in-flight repair of insulating tile on Space Shuttle orbiter. Could find use in other applications requiring high-performance adhesives, such as sealants for solar collectors.

  15. Compound Charpy specimens by adhesive joining

    NASA Astrophysics Data System (ADS)

    Ghoneim, M. M.; Hammad, F. H.; Pachur, D.; Britz, L.

    1992-03-01

    Compound (reconstituted) Charpy specimens were manufactured by an adhesive joining method in which each half of a previously tested specimen formed the central section of a new testpiece. 29 adhesives were screened to select the most suitable. Compound specimens were precracked and used as minature fracture mechanics specimens and tested in both 3-point static bending and impact. The results are in good agreement with those of conventional specimens. Recommendations for the most appropriate commercial adhesive for hot cell operations are given.

  16. Structural adhesives for missile external protection material

    NASA Astrophysics Data System (ADS)

    Banta, F. L.; Garzolini, J. A.

    1981-07-01

    Two basic rubber materials are examined as possible external substrate protection materials (EPM) for missiles. The analysis provided a data base for selection of the optimum adhesives which are compatible with the substrate, loads applied and predicted bondline temperatures. Under the test conditions, EA934/NA was found to be the optimum adhesive to bond VAMAC 2273 and/or NBR/EPDM 9969A to aluminum substrate. The optimum adhesive for composite structures was EA956. Both of these adhesives are two-part epoxy systems with a pot life of approximately two hours. Further research is suggested on field repair criteria, nuclear hardness and survivability effects on bondline, and ageing effects.

  17. Computational Contact Formulations for Soft Body Adhesion

    NASA Astrophysics Data System (ADS)

    Sauer, Roger A.

    This article gives an overview of adhesive contact for soft bodies and focuses on a general computational framework that is suitable for treating a large class of adhesion problems. The contact formulation is based on a non-linear continuum approach that is capable of describing bodies down to length scales of several nanometers. Several finite element formulations are presented, that introduce various approximations in order to increase the computational efficiency. The approaches are illustrated by several examples throughout the text. These include carbon nanotube interaction, adhesion of spheres, nanoindentation, thin film peeling, gecko adhesion and self-cleaning surface mechanisms.

  18. Investigation of package sealing using organic adhesives

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1977-01-01

    A systematic study was performed to evaluate the suitability of adhesives for sealing hybrid packages. Selected adhesives were screened on the basis of their ability to seal gold-plated Kovar butterfly-type packages that retain their seal integrity after individual exposures to increasingly severe temperature-humidity environments. Tests were also run using thermal shock, temperature cycling, mechanical shock and temperature aging. The four best adhesives were determined and further tested in a 60 C/98% RH environment and continuously monitored in regard to moisture content. Results are given, however, none of the tested adhesives passed all the tests.

  19. Denture Adhesives in Prosthodontics: An Overview

    PubMed Central

    Kumar, P Ranjith; Shajahan, P A; Mathew, Jyothis; Koruthu, Anil; Aravind, Prasad; Ahammed, M Fazeel

    2015-01-01

    The use of denture adhesives is common among denture wearers, and it is also prescribed by many dentists. Prescribing denture adhesives has been viewed by many prosthodontists as a means of compensating for any defects in the fabrication procedures. Denture adhesives add to the retention and thereby improve chewing ability, reduce any instability, provide comfort and eliminate the accumulation of food debris beneath the dentures. Consequently, they increase the patient’s sense of security and satisfaction. However, obtaining the advice of the dental practitioner prior to the use of adhesives is a must. PMID:26225115

  20. Adhesion as a weapon in microbial competition

    PubMed Central

    Schluter, Jonas; Nadell, Carey D; Bassler, Bonnie L; Foster, Kevin R

    2015-01-01

    Microbes attach to surfaces and form dense communities known as biofilms, which are central to how microbes live and influence humans. The key defining feature of biofilms is adhesion, whereby cells attach to one another and to surfaces, via attachment factors and extracellular polymers. While adhesion is known to be important for the initial stages of biofilm formation, its function within biofilm communities has not been studied. Here we utilise an individual-based model of microbial groups to study the evolution of adhesion. While adhering to a surface can enable cells to remain in a biofilm, consideration of within-biofilm competition reveals a potential cost to adhesion: immobility. Highly adhesive cells that are resistant to movement face being buried and starved at the base of the biofilm. However, we find that when growth occurs at the base of a biofilm, adhesion allows cells to capture substratum territory and force less adhesive, competing cells out of the system. This process may be particularly important when cells grow on a host epithelial surface. We test the predictions of our model using the enteric pathogen Vibrio cholerae, which produces an extracellular matrix important for biofilm formation. Flow cell experiments indicate that matrix-secreting cells are highly adhesive and form expanding clusters that remove non-secreting cells from the population, as predicted by our simulations. Our study shows how simple physical properties, such as adhesion, can be critical to understanding evolution and competition within microbial communities. PMID:25290505

  1. Adhesive strength of autologous fibrin glue.

    PubMed

    Yoshida, H; Hirozane, K; Kamiya, A

    2000-03-01

    To establish an easy and rapid method for measuring the adhesive strength of fibrin glue and to clarify the factor(s) most affecting the strength, a study was made on the effect of the concentration of plasma components on the strength of cryoprecipitate (Cryo) prepared from a subject's own autologous plasma to be used as fibrin glue. The adhesive strength of the Cryo was measured with various supporting materials instead of animal skin using a tester of tension and compression. The results were as follows: (1) the strength of Cryo applied to ground flat glass (4 cm2) was significantly greater than that applied to clear glass, clear plastic, or smooth and flat wood chips; (2) the adhesive strength of Cryo depended on the concentration of thrombin with the optimal concentration being 50 units/ml; (3) the concentration of CaCl2 did not affect the adhesive strength of Cryo; (4) the adhesive reaction was dependent on the temperature and the adhesive strength more quickly reached a steady state at 37 degrees C than at lower temperature; (5) the adhesive strength was correlated well with the total concentration of fibrinogen and fibronectin. These results indicate that the adhesive strength of Cryo can be easily and quickly evaluated using a tester and ground glass with thrombin at 50 units/ml, and that the adhesive strength of Cryo can be predicted from the total concentration of fibrinogen and fibronectin. PMID:10726885

  2. Effect of water absorption on pollen adhesion.

    PubMed

    Lin, Haisheng; Lizarraga, Leonardo; Bottomley, Lawrence A; Carson Meredith, J

    2015-03-15

    Pollens possess a thin liquid coating, pollenkitt, which plays a major role in adhesion by forming capillary menisci at interfaces. Unfortunately, the influence of humidity on pollenkitt properties and capillary adhesion is unknown. Because humidity varies widely in the environment, the answers have important implications for better understanding plant reproduction, allergy and asthma, and pollen as atmospheric condensation nuclei. Here, pollenkitt-mediated adhesion of sunflower pollen to hydrophilic and hydrophobic surfaces was measured as a function of humidity. The results quantify for the first time the significant water absorption of pollenkitt and the resulting complex dependence of adhesion on humidity. On hydrophilic Si, adhesion increased with increasing RH for pollens with or without pollenkitt, up to 200nN at 70% RH. In contrast, on hydrophobic PS, adhesion of pollenkitt-free pollen is independent of RH. Surprisingly, when pollenkitt was present adhesion forces on hydrophobic PS first increased with RH up to a maximum value at 35% RH (∼160nN), and then decreased with further increases in RH. Independent measurement of pollenkitt properties is used with models of capillary adhesion to show that humidity-dependent changes in pollenkitt wetting and viscosity are responsible for this complex adhesion behavior. PMID:25524008

  3. The development of aerospace polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1983-01-01

    Few materials are available which can be used as aerospace adhesives at temperatures in the range of 300 C. The Materials Division at NASA-Langley Research Center developed several high temperature polyimide adhesives to fulfill the stringent needs of current aerospace programs. These adhesives are the result of a decade of basic research studies on the structure property relationships of both linear and addition aromatic polyimides. The development of both in house and commercially available polyimides is reviewed with regards to their potential for use as aerospace adhesives.

  4. Nucleation and growth of cadherin adhesions

    SciTech Connect

    Lambert, Mireille; Thoumine, Olivier; Brevier, Julien; Choquet, Daniel; Riveline, Daniel; Mege, Rene-Marc

    2007-11-15

    Cell-cell contact formation relies on the recruitment of cadherin molecules and their anchoring to actin. However, the precise chronology of events from initial cadherin trans-interactions to adhesion strengthening is unclear, in part due to the lack of access to the distribution of cadherins within adhesion zones. Using N-cadherin expressing cells interacting with N-cadherin coated surfaces, we characterized the formation of cadherin adhesions at the ventral cell surface. TIRF and RIC microscopies revealed streak-like accumulations of cadherin along actin fibers. FRAP analysis indicated that engaged cadherins display a slow turnover at equilibrium, compatible with a continuous addition and removal of cadherin molecules within the adhesive contact. Association of cadherin cytoplasmic tail to actin as well as actin cables and myosin II activity are required for the formation and maintenance of cadherin adhesions. Using time lapse microscopy we deciphered how cadherin adhesions form and grow. As lamellipodia protrude, cadherin foci stochastically formed a few microns away from the cell margin. Neo-formed foci coalesced aligned and coalesced with preformed foci either by rearward sliding or gap filling to form cadherin adhesions. Foci experienced collapse at the rear of cadherin adhesions. Based on these results, we present a model for the nucleation, directional growth and shrinkage of cadherin adhesions.

  5. Extended Maxwell Garnett formalism for composite adhesives for microwave-assisted adhesion of polymer surfaces

    SciTech Connect

    Shanker, B.; Lakhtakia, A. )

    1993-01-01

    Adhesives with dielectric loss are needed for microwave-assisted joining of polymeric substances. The dielectric loss in an otherwise suitable adhesive may be enhanced by doping it with fine metallic particles. Here we use a recently extended Maxwell Garnett formalism to estimate the complex dielectric constant of a metal-doped composite adhesive, with specific focus on the imaginary part of the dielectric constant of the composite adhesive. 14 refs.

  6. Misfit effects in adhesion calculations

    NASA Astrophysics Data System (ADS)

    Schnitker, Jurgen; Srolovitz, David J.

    1998-03-01

    The work of adhesion of bimaterial interfaces is commonly computed using quantum mechanical methods in which the two materials are strained into coherency. There is no relaxation of the coherency by the formation of an array of interfacial misfit dislocations, contrary to what is commonly observed for essentially all systems other than very thin films. In this paper, we investigate the errors introduced into the work of adhesion associated with the assumption of coherency. Series of atomistic simulations in two and three dimensions are performed using a simple Lennard-Jones-type model potential. We demonstrate that the assumption of coherency introduces errors that increase rapidly with misfit (for small misfit) and can easily be of the order of several tens of percent. We trace the source of these errors to the neglect of the elastic fields of misfit dislocations and to the variation in the number of bonds per unit interfacial area with misfit when coherency is assumed. Suggestions are made to minimize and/or correct for this error.

  7. 21 CFR 175.125 - Pressure-sensitive adhesives.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Pressure-sensitive adhesives. 175.125 Section 175... Adhesives § 175.125 Pressure-sensitive adhesives. Pressure-sensitive adhesives may be safely used as the... prescribed conditions: (a) Pressure-sensitive adhesives prepared from one or a mixture of two or more of...

  8. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    NASA Astrophysics Data System (ADS)

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  9. Evaluation of progestogens for postoperative adhesion prevention.

    PubMed

    Beauchamp, P J; Quigley, M M; Held, B

    1984-10-01

    Progesterone (P) has been shown to have potent antiinflammatory and immunosuppressive properties. Previous reports have suggested that the use of P decreases postoperative adhesion formation. To further evaluate the role of pharmacologic doses of progestogens in adhesion prevention, 42 mature New Zealand White rabbits underwent standardized injuries to the uterine horns, fimbriae, and pelvic peritoneum and received one of six treatments. Group S had intraperitoneal placement of normal saline (0.9%); group H received intraperitoneal placement of 32% dextran 70; group IM-P received intramuscular P-in-oil 10 days before and after laparotomy in addition to intraperitoneal saline; group IP-P had intraperitoneal placement of an aqueous P suspension; group DP received medroxyprogesterone acetate intraperitoneally; and group C received no intramuscular or intraperitoneal adhesion-prevention agents. The animals were sacrificed 6 weeks after laparotomy, and the adhesions were scored. Intraperitoneal saline (group S) significantly reduced the amount of adhesions when compared with the control group (C) (P less than 0.05). No significant difference was observed when group S was compared with group H. Intramuscular P added to saline (group IM-P) did not cause further reduction in adhesions when compared with group S. Both group IP-P and group DP had more adhesions than did group S (P less than 0.01). These data fail to support previous claims regarding adhesion prevention by the use of locally or parenterally administered progestogens. PMID:6237937

  10. Molecular Adhesion between Cartilage Extracellular Matrix Macromolecules

    PubMed Central

    2015-01-01

    In this study, we investigated the molecular adhesion between the major constituents of cartilage extracellular matrix, namely, the highly negatively charged proteoglycan aggrecan and the type II/IX/XI fibrillar collagen network, in simulated physiological conditions. Colloidal force spectroscopy was applied to measure the maximum adhesion force and total adhesion energy between aggrecan end-attached spherical tips (end radius R ≈ 2.5 μm) and trypsin-treated cartilage disks with undamaged collagen networks. Studies were carried out in various aqueous solutions to reveal the physical factors that govern aggrecan–collagen adhesion. Increasing both ionic strength and [Ca2+] significantly increased adhesion, highlighting the importance of electrostatic repulsion and Ca2+-mediated ion bridging effects. In addition, we probed how partial enzymatic degradation of the collagen network, which simulates osteoarthritic conditions, affects the aggrecan–collagen interactions. Interestingly, we found a significant increase in aggrecan–collagen adhesion even when there were no detectable changes at the macro- or microscales. It is hypothesized that the aggrecan–collagen adhesion, together with aggrecan–aggrecan self-adhesion, works synergistically to determine the local molecular deformability and energy dissipation of the cartilage matrix, in turn, affecting its macroscopic tissue properties. PMID:24491174

  11. Tensile and shear strength of adhesives

    NASA Technical Reports Server (NTRS)

    Stibolt, Kenneth A.

    1990-01-01

    This experiment is conducted in a freshman-level course: Introduction to Engineering Materials. There are no prerequisites for the course although students should have some knowledge of basic algebra. The objectives are to tension and shear test adhesives and to determine the tensile and shear properties of adhesives. Details of equipment of procedure are given.

  12. Adhesion force studies of nanofibers and nanoparticles.

    PubMed

    Xing, Malcolm; Zhong, Wen; Xu, Xiuling; Thomson, Douglas

    2010-07-20

    Surface adhesion between nanofibers and nanoparticles has attracted attention for potential biomedical applications, but the measurement has not been reported. Adhesion forces were measured using a polystyrene (PS) nanoparticle attached to an atomic force microscopy (AFM) tip/probe. Electrospun PS nanofibers of different diameters were tapped with the probe to study the effect of fiber diameters on adhesion force. Both AFM experiments and numerical models suggest that the adhesion force increases with increased fiber diameters. Numerical models further demonstrated that local deformation of the fiber surface, including the flattening of surface asperities and the nanofiber wrapping around the particle during contact, may have a significant impact on the adhesion force. The adhesion forces are in the order of 100 nN, much smaller than the adhesion forces of the gecko foot hair, but much larger than that of the receptor-ligand pair, antibody-antigen pair, and single-stranded DNA from a substrate. Adhesion forces of nanofibers with roughness were predicted by numerical analysis. This study is expected to provide approaches and information useful in the design of nanomedicine and scaffold based on nanofibers for tissue engineering and regenerative medicine. PMID:20552953

  13. Polyurethane adhesive with improved high temperature properties

    NASA Technical Reports Server (NTRS)

    Stuckey, J. M.

    1977-01-01

    A polyurethane resin with paste activator, capable of providing useful bond strengths over the temperature range of -184 C to 149 C, is described. The adhesive system has a pot life of over one hour. Tensile shear strength ratings are given for various adhesive formulations.

  14. Pathophysiology and prevention of postoperative peritoneal adhesions

    PubMed Central

    Arung, Willy; Meurisse, Michel; Detry, Olivier

    2011-01-01

    Peritoneal adhesions represent an important clinical challenge in gastrointestinal surgery. Peritoneal adhesions are a consequence of peritoneal irritation by infection or surgical trauma, and may be considered as the pathological part of healing following any peritoneal injury, particularly due to abdominal surgery. The balance between fibrin deposition and degradation is critical in determining normal peritoneal healing or adhesion formation. Postoperative peritoneal adhesions are a major cause of morbidity resulting in multiple complications, many of which may manifest several years after the initial surgical procedure. In addition to acute small bowel obstruction, peritoneal adhesions may cause pelvic or abdominal pain, and infertility. In this paper, the authors reviewed the epidemiology, pathogenesis and various prevention strategies of adhesion formation, using Medline and PubMed search. Several preventive agents against postoperative peritoneal adhesions have been investigated. Their role aims in activating fibrinolysis, hampering coagulation, diminishing the inflammatory response, inhibiting collagen synthesis or creating a barrier between adjacent wound surfaces. Their results are encouraging but most of them are contradictory and achieved mostly in animal model. Until additional findings from future clinical researches, only a meticulous surgery can be recommended to reduce unnecessary morbidity and mortality rates from these untoward effects of surgery. In the current state of knowledge, pre-clinical or clinical studies are still necessary to evaluate the effectiveness of the several proposed prevention strategies of postoperative peritoneal adhesions. PMID:22147959

  15. Sticky fingers: Adhesive properties of human fingertips.

    PubMed

    Spinner, Marlene; Wiechert, Anke B; Gorb, Stanislav N

    2016-02-29

    Fingertip friction is a rather well studied subject. Although the phenomenon of finger stickiness is known as well, the pull-off force and the adhesive strength of human finger tips have never been previously quantified. For the first time, we provided here characterization of adhesive properties of human fingers under natural conditions. Human fingers can generate a maximum adhesive force of 15mN on a smooth surface of epoxy resin. A weak correlation of the adhesive force and the normal force was found on all test surfaces. Up to 300mN load, an increase of the normal force leads to an increase of the adhesive force. On rough surfaces, the adhesive strength is significantly reduced. Our data collected from untreated hands give also an impression of an enormous scattering of digital adhesion depending on a large set of inter-subject variability and time-dependent individual factors (skin texture, moisture level, perspiration). The wide inter- and intra-individual range of digital adhesion should be considered in developing of technical and medical products. PMID:26892897

  16. ISOLATION OF INTEGRIN-BASED ADHESION COMPLEXES

    PubMed Central

    Jones, Matthew C.; Humphries, Jonathan D.; Byron, Adam; Millon-Frémillon, Angelique; Robertson, Joseph; Paul, Nikki R.; Ng, Daniel H. J.; Askari, Janet A.; Humphries, Martin J.

    2015-01-01

    The integration of cells with their extracellular environment is facilitated by cell surface adhesion receptors, such as integrins, which play important roles in both normal development and the onset of pathologies. Engagement of integrins with their ligands in the extracellular matrix, or counter receptors on other cells, initiates the intracellular assembly of a wide variety of proteins into adhesion complexes such as focal contacts, focal adhesions and fibrillar adhesions. The proteins recruited to these complexes mediate bidirectional signalling across the plasma membrane and as such help to coordinate and / or modulate the multitude of physical or chemical signals to which the cell is subjected. The protocols in this unit describe two approaches for the isolation or enrichment of proteins contained within integrin-associated adhesion complexes together with their local plasma membrane / cytosolic environments from cells in culture. In the first protocol integrin-associated adhesion structures are affinity isolated using microbeads coated with extracellular ligands or antibodies. The second protocol describes the isolation of ventral membrane preparations that are enriched for adhesion complex structures. The protocols permit the determination of adhesion complex components by subsequent downstream analysis by Western blotting or mass spectrometry. PMID:25727331

  17. 21 CFR 878.4380 - Drape adhesive.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification....

  18. 21 CFR 878.4380 - Drape adhesive.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification....

  19. 21 CFR 878.4380 - Drape adhesive.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification....

  20. Quantitation of Endothelial Cell Adhesiveness In Vitro

    PubMed Central

    Lowe, Donna J.; Raj, Kenneth

    2015-01-01

    One of the cardinal processes of inflammation is the infiltration of immune cells from the lumen of the blood vessel to the surrounding tissue. This occurs when endothelial cells, which line blood vessels, become adhesive to circulating immune cells such as monocytes. In vitro measurement of this adhesiveness has until now been done by quantifying the total number of monocytes that adhere to an endothelial layer either as a direct count or by indirect measurement of the fluorescence of adherent monocytes. While such measurements do indicate the average adhesiveness of the endothelial cell population, they are confounded by a number of factors, such as cell number, and do not reveal the proportion of endothelial cells that are actually adhesive. Here we describe and demonstrate a method which allows the enumeration of adhesive cells within a tested population of endothelial monolayer. Endothelial cells are grown on glass coverslips and following desired treatment are challenged with monocytes (that may be fluorescently labeled). After incubation, a rinsing procedure, involving multiple rounds of immersion and draining, the cells are fixed. Adhesive endothelial cells, which are surrounded by monocytes are readily identified and enumerated, giving an adhesion index that reveals the actual proportion of endothelial cells within the population that are adhesive. PMID:26132714

  1. Adhesions and Adhesiolysis: The Role of Laparoscopy

    PubMed Central

    Kavic, Suzanne M.

    2002-01-01

    Background: Adhesions commonly result from abdominal and pelvic surgical procedures and may result in intestinal obstruction, infertility, chronic pain, or complicate subsequent operations. Laparoscopy produces less peritoneal trauma than does conventional laparotomy and may result in decreased adhesion formation. We present a review of the available data on laparoscopy and adhesion formation, as well as laparoscopic adhesiolysis. We also review current adjuvant techniques that may be used by practicing laparoscopists to prevent adhesion formation. Database: A Medline search using “adhesions,” “adhesiolysis,” and “laparoscopy” as key words was performed for English-language articles. Further references were obtained through cross-referencing the bibliography cited in each work. Discussion: The majority of studies indicate that laparoscopy may reduce postoperative adhesion formation relative to laparotomy. However, laparoscopy by itself does not appear to eliminate adhesions completely. A variety of adjuvant materials are available to surgeons, and the most recent investigation has demonstrated significant potential for intraperitoneal barriers. Newer technologies continue to evolve and should result in clinically relevant reductions in adhesion formation. PMID:12113430

  2. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Yu; Takahashi, Kunio; Sato, Chiaki

    2015-12-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified.

  3. Adhesion hysteresis of silane coated microcantilevers

    SciTech Connect

    DE BOER,MAARTEN P.; KNAPP,JAMES A.; MICHALSKE,TERRY A.; SRINIVASAN,U.; MABOUDIAN,R.

    2000-04-17

    The authors have developed a new experimental approach for measuring hysteresis in the adhesion between micromachined surfaces. By accurately modeling the deformations in cantilever beams that are subject to combined interfacial adhesion and applied electrostatic forces, they determine adhesion energies for advancing and receding contacts. They draw on this new method to examine adhesion hysteresis for silane coated micromachined structures and found significant hysteresis for surfaces that were exposed to high relative humidity (RH) conditions. Atomic force microscopy studies of these surfaces showed spontaneous formation of agglomerates that they interpreted as silages that have irreversibly transformed from uniform surface layers at low RH to isolated vesicles at high RH. They used contact deformation models to show that the compliance of these vesicles could reasonably account for the adhesion hysteresis that develops at high RH as the surfaces are forced into contact by an externally applied load.

  4. Coating to enhance metal-polymer adhesion

    SciTech Connect

    Parthasarathi, A.; Mahulikar, D.

    1996-12-31

    An ultra-thin electroplated coating has been developed to enhance adhesion of metals to polymers. The coating was developed for microelectronic packaging applications where it greatly improves adhesion of metal leadframes to plastic molding compounds. Recent tests show that the coating enhances adhesion of different metals to other types of adhesives as well and may thus have wider applicability. Results of adhesion tests with this coating, as well as its other characteristics such as corrosion resistance, are discussed. The coating is a very thin transparent electroplated coating containing zinc and chromium. It has been found to be effective on a variety of metal surfaces including copper alloys, Fe-Ni alloys, Al alloys, stainless steel, silver, nickel, Pd/Ni and Ni-Sn. Contact resistance measurements show that the coating has little or no effect on electrical resistivity.

  5. Critical length scale controls adhesive wear mechanisms

    PubMed Central

    Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-Francois

    2016-01-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients. PMID:27264270

  6. [Adhesive and hemagglutinating properties of lactobacilli].

    PubMed

    Brilis, V I; Brilene, T A; Lentsner, Kh P; Lentsner, A A

    1982-09-01

    The study of the adhesive and hemagglutinating properties of the strains of different Lactobacillus species isolated from the human digestive tract and sour milk products were carried out. 49 strains of 9 Lactobacillus species were studied; of these, 10 strains had been isolated from saliva, 11 strains from feces, 7 strains from milk and 5 strains from sour cream. 11 collection strains and 2 strains used in the production of lactobacterin served as controls. Adhesion was studied in vitro on human red blood cells used as a model. Red blood cells used in the experiments had been taken from 23 donors aged 25-52 years. Lactobacilli were found to have certain inter and intraspecific differences in their adhesiveness. The adhesiveness of the lactobacilli isolated from human feces was considerably greater than that of the strains isolated from sour milk products and of the collection strains. Only the strains of lactobacilli with low adhesiveness possessed pronounced hemagglutinating properties. PMID:7148229

  7. Critical length scale controls adhesive wear mechanisms.

    PubMed

    Aghababaei, Ramin; Warner, Derek H; Molinari, Jean-Francois

    2016-01-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients. PMID:27264270

  8. Critical length scale controls adhesive wear mechanisms

    NASA Astrophysics Data System (ADS)

    Aghababaei, Ramin; Warner, Derek H.; Molinari, Jean-Francois

    2016-06-01

    The adhesive wear process remains one of the least understood areas of mechanics. While it has long been established that adhesive wear is a direct result of contacting surface asperities, an agreed upon understanding of how contacting asperities lead to wear debris particle has remained elusive. This has restricted adhesive wear prediction to empirical models with limited transferability. Here we show that discrepant observations and predictions of two distinct adhesive wear mechanisms can be reconciled into a unified framework. Using atomistic simulations with model interatomic potentials, we reveal a transition in the asperity wear mechanism when contact junctions fall below a critical length scale. A simple analytic model is formulated to predict the transition in both the simulation results and experiments. This new understanding may help expand use of computer modelling to explore adhesive wear processes and to advance physics-based wear laws without empirical coefficients.

  9. Adhesion, friction and micromechanical properties of ceramics

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1988-01-01

    The adhesion, friction, and micromechanical properties of ceramics, both in monolithic and coating form, are reviewed. Ceramics are examined in contact with themselves, other harder materials, and metals. For the simplicity of discussion, the tribological properties of concern in the processes are separated into two parts. The first part discusses the pull-off force (adhesion) and the shear force required to break the interfacial junctions between contacting surfaces. The role of chemical bonding in adhesion and friction, and the effects of surface contaminant films and temperature on tribological response with respect to adhesion and friction are discussed. The second part deals with abrasion of ceramics. Elastic, plastic, and fracture behavior of ceramics in solid state contact is discussed. The scratch technique of determining the critical load needed to fracture interfacial adhesive bonds of ceramic deposited on substrates is also addressed.

  10. Genetics Home Reference: leukocyte adhesion deficiency type 1

    MedlinePlus

    ... adhesion deficiency type 1 leukocyte adhesion deficiency type 1 Enable Javascript to view the expand/collapse boxes. ... All Close All Description Leukocyte adhesion deficiency type 1 is a disorder that causes the immune system ...

  11. Adhesion Awareness: A National Survey of Surgeons

    PubMed Central

    Schreinemacher, Marc H. F.; ten Broek, Richard P.; Bakkum, Erica A.; van Goor, Harry

    2010-01-01

    Background Postoperative adhesions are the most frequent complication of abdominal surgery, leading to high morbidity, mortality, and costs. However, the problem seems to be neglected by surgeons for largely unknown reasons. Methods A survey assessing knowledge and personal opinion about the extent and impact of adhesions was sent to all Dutch surgeons and surgical trainees. The informed-consent process and application of antiadhesive agents were questioned in addition. Results The response rate was 34.4%. Two thirds of all respondents (67.7%) agreed that adhesions exert a clinically relevant, negative effect. A negative perception of adhesions correlated with a positive attitude regarding adhesion prevention (ρ = 0.182, p < 0.001). However, underestimation of the extent and impact of adhesions resulted in low knowledge scores (mean test score 37.6%). Lower scores correlated with more uncertainty about indications for antiadhesive agents which, in turn, correlated with never having used any of these agents (ρ = 0.140, p = 0.002; ρ = 0.095, p = 0.035; respectively). Four in 10 respondents (40.9%) indicated that they never inform patients on adhesions and only 9.8% informed patients routinely. A majority of surgeons (55.9%) used antiadhesive agents in the past, but only a minority (13.4%) did in the previous year. Of trainees, 82.1% foresaw an increase in the use of antiadhesive agents compared to 64.5% of surgeons (p < 0.001). Conclusions The magnitude of the problem of postoperative adhesions is underestimated and informed consent is provided inadequately by Dutch surgeons. Exerting adhesion prevention is related to the perception of and knowledge about adhesions. PMID:20814678

  12. Peritoneal adhesions after laparoscopic gastrointestinal surgery

    PubMed Central

    Mais, Valerio

    2014-01-01

    Although laparoscopy has the potential to reduce peritoneal trauma and post-operative peritoneal adhesion formation, only one randomized controlled trial and a few comparative retrospective clinical studies have addressed this issue. Laparoscopy reduces de novo adhesion formation but has no efficacy in reducing adhesion reformation after adhesiolysis. Moreover, several studies have suggested that the reduction of de novo post-operative adhesions does not seem to have a significant clinical impact. Experimental data in animal models have suggested that CO2 pneumoperitoneum can cause acute peritoneal inflammation during laparoscopy depending on the insufflation pressure and the surgery duration. Broad peritoneal cavity protection by the insufflation of a low-temperature humidified gas mixture of CO2, N2O and O2 seems to represent the best approach for reducing peritoneal inflammation due to pneumoperitoneum. However, these experimental data have not had a significant impact on the modification of laparoscopic instrumentation. In contrast, surgeons should train themselves to perform laparoscopy quickly, and they should complete their learning curves before testing chemical anti-adhesive agents and anti-adhesion barriers. Chemical anti-adhesive agents have the potential to exert broad peritoneal cavity protection against adhesion formation, but when these agents are used alone, the concentrations needed to prevent adhesions are too high and could cause major post-operative side effects. Anti-adhesion barriers have been used mainly in open surgery, but some clinical data from laparoscopic surgeries are already available. Sprays, gels, and fluid barriers are easier to apply in laparoscopic surgery than solid barriers. Results have been encouraging with solid barriers, spray barriers, and gel barriers, but they have been ambiguous with fluid barriers. Moreover, when barriers have been used alone, the maximum protection against adhesion formation has been no greater than

  13. Dangling chain elastomers as repeatable fibrillar adhesives.

    PubMed

    Sitti, Metin; Cusick, Brian; Aksak, Burak; Nese, Alper; Lee, Hyung-il; Dong, Hongchen; Kowalewski, Tomasz; Matyjaszewski, Krzysztof

    2009-10-01

    This work reports on repeatable adhesive materials prepared by controlled grafting of dangling hetero chains from polymer elastomers. The dangling chain elastomer system was prepared by grafting poly(n-butyl acrylate) (PBA) chains from prefunctionalized polydimethylsiloxane (PDMS) elastomer networks using atom transfer radical polymerization. To study the effects of chain growth and network strain as they relate to network adhesion mechanics, various lengths of PBA chains with degree of polymerizations (DP) of 65, 281, 508, and 1200 were incorporated into the PDMS matrix. PBA chains with a DP value of 281 grafted from a flat PDMS substrate showed the highest (approximately 3.5-fold) enhancement of nano- and macroscale adhesion relative to a flat raw (ungrafted and not prefunctionalized) PDMS substrate. Moreover, to study the effect of PBA dangling chains on adhesion in fibrillar elastomer structures inspired by gecko foot hairs, a dip-transfer fabrication method was used to graft PBA chains with a DP value of 296 from the tip endings of mushroom-shaped PDMS micropillars. A PBA chain covered micropillar array showed macroscale adhesion enhancement up to approximately 7 times relative to the flat ungrafted prefunctionalized PDMS control substrate, showing additional nonoptimized approximately 2-fold adhesion enhancement due to fibrillar structuring and mushroom-shaped tip ending. These dangling hetero chains on elastomer micro-/nanofibrillar structures may provide a novel fabrication platform for multilength scale, repeatable, and high-strength fibrillar adhesives inspired by gecko foot hairs. PMID:20355863

  14. Tissue Mechanics and Adhesion during Embryo Development

    PubMed Central

    Shawky, Joseph H.; Davidson, Lance A.

    2014-01-01

    During development cells interact mechanically with their microenvironment through cell-cell and cell-matrix adhesions. Many proteins involved in these adhesions serve both mechanical and signaling roles. In this review we will focus on the mechanical roles of these proteins and their complexes in transmitting force or stress from cell to cell or from cell to the extracellular matrix. As forces operate against tissues they establish tissue architecture, extracellular matrix assembly, and pattern cell shapes. As tissues become more established, adhesions play a major role integrating cells with the mechanics of their local environment. Adhesions may serve as both a molecular-specific glue, holding defined populations of cells together, and as a lubricant, allowing tissues to slide past one another. We review the biophysical principles and experimental tools used to study adhesion so that we may aid efforts to understand how adhesions guide these movements and integrate their signaling functions with mechanical function. As we conclude we review efforts to develop predictive models of adhesion that can be used to interpret experiments and guide future efforts to control and direct the process of tissue self-assembly during development. PMID:25512299

  15. Adhesion in ceramics and magnetic media

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1989-01-01

    When a ceramic is brought into contact with a metal or a polymeric material such as a magnetic medium, strong bonds form between the materials. For ceramic-to-metal contacts, adhesion and friction are strongly dependent on the ductility of the metals. Hardness of metals plays a much more important role in adhesion and friction than does the surface energy of metals. Adhesion, friction, surface energy, and hardness of a metal are all related to its Young's modulus and shear modulus, which have a marked dependence on the electron configuration of the metal. An increase in shear modulus results in a decrease in area of contact that is greater than the corresponding increase in surface energy (the fond energy) with shear modulus. Consequently, the adhesion and friction decrease with increasing shear modulus. For ceramics in contact with polymeric magnetic tapes, environment is extremely important. For example, a nitrogen environment reduces adhesion and friction when ferrite contacts polymeric tape, whereas a vacuum environment strengthens the ferrite-to-tape adhesion and increases friction. Adhesion and friction are strongly dependent on the particle loading of the tape. An increase in magnetic particle concentration increases the complex modulus of the tape, and a lower real area of contact and lower friction result.

  16. Thrombospondin-induced adhesion of human platelets.

    PubMed Central

    Tuszynski, G P; Kowalska, M A

    1991-01-01

    Washed human unactivated platelets attached and spread on thrombospondin (TSP)-coated microtiter plates. Platelet adhesion was promoted by divalent cations Mn2+, Mg2+, and Ca2+ as compared to buffer having all divalent cations complexed with EDTA. TSP-dependent adhesion was inhibited by anti-TSP fab fragments, an anti-TSP monoclonal antibody, an RGD-containing peptide, complex-specific anti-glycoprotein (GP)IIb-IIIa monoclonal antibodies (A2A9 or AP-2) and anti-VLA-2 monoclonal antibodies (6F1 and Gi9), but not by rabbit preimmune fab fragments, mouse IgG, an anti-GPIIIa monoclonal antibody, or monoclonal antibodies against either the human vitronectin receptor, glycocalicin, or GPIV. At saturating concentrations, anti-GPIIb-IIIa inhibited adhesion by 40-60%. Glanzman's thrombasthenic platelets, which lack GPIIb-IIIa, adhered to TSP to the same extent as anti-GPIIb-IIIa-treated normal platelets or 40-60% as well as untreated normal platelets. Antibody 6F1 (5-10 micrograms/ml) inhibited platelet adhesion of both normal and thrombasthenic platelets by 84-100%. Both VLA-2 antibodies also inhibited collagen-induced platelet adhesion, but had no effect on fibronectin-induced adhesion of normal platelets. These data indicate that platelets specifically adhere to TSP and that this adhesion is mediated through GPIIb-IIIa and/or VLA-2. Images PMID:2010551

  17. Penile adhesion: the hidden complication of circumcision.

    PubMed

    Gracely-Kilgore, K A

    1984-05-01

    A penile or prepuce adhesion can occur after a circumcision if the remaining skin is not retracted after the circumcision has healed. When a circumcision is done, tissue which would normally be intact is split. Unless proper care is taken, the epithelium of the inner prepuce at the point where the foreskin was removed can reattach to the epithelium of the glans. The result of this is a penile adhesion. Usually the adhesions can be released by simple retraction. Sometimes, however, the fusion is so complete that simple retraction will not work, and the child must be referred to a urologist. Another problem is that smegma or bacteria can collect under the adhesion if it covers the preputial cavity and cause infection. Professionals must look for this problem, and parents must be taught how to care for the normal circumcised penis so that penile adhesions do not develop. This article discusses the formation and identification of penile adhesions, the process by which adhesions can be released, when a referral to a urologist is necessary and the proper care for the circumcised penis. PMID:6728346

  18. Strategies to Minimize Adhesion Formation After Surgery

    PubMed Central

    Lazarou, George; Mondesir, Carlene; Wei, Kai; Khullar, Poonan; Ogden, Lorna

    2011-01-01

    Objectives: To compare the potential for postoperative laparoscopic adhesion formation utilizing either monopolar cautery or ultrasonic energy and to determine whether there is added benefit with the addition of a suspension of hyaluronate/carboxymethylcellulose in saline versus saline alone. Methods: Injuries were induced in rabbits by using monopolar cautery on 1 uterine horn and adjacent sidewall and ultrasonic energy on the opposite. Hyaluronate/ carboxymethylcellulose or saline was added to every other animal. Autopsies were performed after 3 weeks. Clinical and pathologic scoring of adhesions was performed by blinded investigators. Results: A very significant difference occurred in pathologic adhesion scores favoring the ultrasonic scalpel when the animals were treated with saline. However, a borderline significant difference was found in pathologic scores favoring the ultrasonic scalpel compared to the monopolar cautery. There was no significant difference in clinical adhesion scores between the 2 modalities. No significant difference in either score was found with the addition of hyaluronate/carboxymethylcellulose or saline with either instrument. Conclusion: No benefit was found for adhesion prevention with hyaluronate/carboxymethylcellulose. Although no reduction was achieved in clinical adhesions, the ultrasonic scalpel resulted in fewer histologic signs of tissue inflammation in the early postoperative period, suggesting that further clinical adhesions might develop over time with cautery. PMID:21985723

  19. Adhesion of actinomyces isolates to experimental pellicles.

    PubMed

    Steinberg, D; Kopec, L K; Bowen, W H

    1993-06-01

    The ability of oral bacteria to adhere to surfaces is associated with their pathogenicity. Actinomyces can adhere to pellicle and cells through extracellular fimbriae. Research on adhesion of actinomyces has been conducted with use of hydroxyapatite (HA) coated with mammalian-derived salivary constituents, whereas the bacterial-derived components of the acquired pellicle have been largely ignored. The influence of the cell-free bacterial enzyme, glucosyltransferase (GTF), on adhesion of human and rodent isolates of Actinomyces viscosus was examined. Cell-free GTF was adsorbed onto parotid saliva-coated hydroxyapatite (sHA). Next, A. viscosus was exposed to the pellicle following the synthesis of glucan formed in situ by GTF. Glucans formed on the pellicle served as binding sites for adhesion of a rodent strain of A. viscosus. Conversely, the presence of in situ glucans on sHA reduced the adhesion of human isolates of A. viscosus compared with their adhesion to sHA. Adhesion of the rodent strains may be facilitated through a dextran-binding protein, since the rodent strains aggregated in the presence of dextrans and mutan. The human isolates were not aggregated by dextran or mutan. Pellicle harboring A. viscosus rodent strains interfered with the subsequent adhesion of Streptococcus mutans to the bacterial-coated pellicle. In contrast, the adhesion of S. mutans to pellicle was not decreased when the pellicle was pre-exposed to a human isolate of A. viscosus. The experimental data suggest that human and the rodent isolates of A. viscosus have distinct glucan adhesion properties.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8496474

  20. Adhesion of Dental Materials to Tooth Structure

    NASA Astrophysics Data System (ADS)

    Mitra, Sumita B.

    2000-03-01

    The understanding and proper application of the principles of adhesion has brought forth a new paradigm in the realm of esthetic dentistry. Modern restorative tooth procedures can now conserve the remaining tooth-structure and also provide for the strengthening of the tooth. Adhesive restorative techniques call for the application and curing of the dental adhesive at the interface between the tooth tissue and the filling material. Hence the success of the restoration depends largely on the integrity of this interface. The mechanism of adhesion of the bonding materials to the dental hard tissue will be discussed in this paper. There are four main steps that occur during the application of the dental adhesive to the oral hard tissues: 1) The first step is the creation of a microstructure in the tooth enamel or dentin by means of an acidic material. This can be through the application of a separate etchant or can be accomplished in situ by the adhesive/primer. This agent has to be effective in removing or modifying the proteinaceous “smear” layer, which would otherwise act as a weak boundary layer on the surface to be bonded. 2) The primer/adhesive must then be able to wet and penetrate the microstructure created in the tooth. Since the surface energies of etched enamel and that of etched dentin are different finding one material to prime both types of dental tissues can be quite challenging. 3) The ionomer types of materials, particularly those that are carboxylate ion-containing, can chemically bond with the calcium ions of the hydroxyapatite mineral. 4) Polymerization in situ allows for micromechanical interlocking of the adhesive. The importance of having the right mechanical properties of the cured adhesive layer and its role in absorbing and dissipating stresses encountered by a restored tooth will also be discussed.

  1. Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive.

    PubMed

    Ruffatto, Donald; Parness, Aaron; Spenko, Matthew

    2014-04-01

    This paper describes a novel, controllable adhesive that combines the benefits of electrostatic adhesives with gecko-like directional dry adhesives. When working in combination, the two technologies create a positive feedback cycle whose adhesion, depending on the surface type, is often greater than the sum of its parts. The directional dry adhesive brings the electrostatic adhesive closer to the surface, increasing its effect. Similarly, the electrostatic adhesion helps engage more of the directional dry adhesive fibrillar structures, particularly on rough surfaces. This paper presents the new hybrid adhesive's manufacturing process and compares its performance to three other adhesive technologies manufactured using a similar process: reinforced PDMS, electrostatic and directional dry adhesion. Tests were performed on a set of ceramic tiles with varying roughness to quantify its effect on shear adhesive force. The relative effectiveness of the hybrid adhesive increases as the surface roughness is increased. Experimental data are also presented for different substrate materials to demonstrate the enhanced performance achieved with the hybrid adhesive. Results show that the hybrid adhesive provides up to 5.1× greater adhesion than the electrostatic adhesive or directional dry adhesive technologies alone. PMID:24451392

  2. Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive

    PubMed Central

    Ruffatto, Donald; Parness, Aaron; Spenko, Matthew

    2014-01-01

    This paper describes a novel, controllable adhesive that combines the benefits of electrostatic adhesives with gecko-like directional dry adhesives. When working in combination, the two technologies create a positive feedback cycle whose adhesion, depending on the surface type, is often greater than the sum of its parts. The directional dry adhesive brings the electrostatic adhesive closer to the surface, increasing its effect. Similarly, the electrostatic adhesion helps engage more of the directional dry adhesive fibrillar structures, particularly on rough surfaces. This paper presents the new hybrid adhesive's manufacturing process and compares its performance to three other adhesive technologies manufactured using a similar process: reinforced PDMS, electrostatic and directional dry adhesion. Tests were performed on a set of ceramic tiles with varying roughness to quantify its effect on shear adhesive force. The relative effectiveness of the hybrid adhesive increases as the surface roughness is increased. Experimental data are also presented for different substrate materials to demonstrate the enhanced performance achieved with the hybrid adhesive. Results show that the hybrid adhesive provides up to 5.1× greater adhesion than the electrostatic adhesive or directional dry adhesive technologies alone. PMID:24451392

  3. Hierarchical bioinspired adhesive surfaces-a review.

    PubMed

    Brodoceanu, D; Bauer, C T; Kroner, E; Arzt, E; Kraus, T

    2016-01-01

    The extraordinary adherence and climbing agility of geckos on rough surfaces has been attributed to the multiscale hierarchical structures on their feet. Hundreds of thousands of elastic hairs called setae, each of which split into several spatulae, create a large number of contact points that generate substantial adhesion through van der Waals interactions. The hierarchical architecture provides increased structural compliance on surfaces with roughness features ranging from micrometers to millimeters. We review synthetic adhesion surfaces that mimic the naturally occurring hierarchy with an emphasis on microfabrication strategies, material choice and the adhesive performance achieved. PMID:27529743

  4. The development of low temperature curing adhesives

    NASA Technical Reports Server (NTRS)

    Green, H. E.; Sutherland, J. D.; Hom, J. M.; Sheppard, C. H.

    1975-01-01

    An approach for the development of a practical low temperature (293 K-311 K/68 F-100 F) curing adhesive system based on a family of amide/ester resins was studied and demonstrated. The work was conducted on resin optimization and adhesive compounding studies. An improved preparative method was demonstrated which involved the reaction of an amine-alcohol precursor, in a DMF solution with acid chloride. Experimental studies indicated that an adhesive formulation containing aluminum powder provided the best performance when used in conjunction with a commercial primer.

  5. Large bowel obstruction secondary to adhesive bands.

    PubMed

    El-Masry, Nabil S; Geevarghese, Ruben

    2015-01-01

    Large bowel obstruction (LBO) is most commonly due to malignancy, volvulus, hernia, diverticular disease and inflammatory bowel disease. LBO due to adhesions is unusual. A literature review was conducted which revealed that only a few such cases have been reported. We report two cases of LBO secondary to adhesions in patients, one with and one without a past abdominal surgical history. We highlight that while rare, the aetiology of LBO secondary to adhesions must be considered in the differential diagnosis in patients presenting with obstructive symptoms. PMID:25650387

  6. Method of making thermally removable adhesives

    DOEpatents

    Aubert, James H.

    2004-11-30

    A method of making a thermally-removable adhesive is provided where a bismaleimide compound, a monomeric furan compound, containing an oxirane group an amine curative are mixed together at an elevated temperature of greater than approximately 90.degree. C. to form a homogeneous solution, which, when cooled to less than approximately 70.degree. C., simultaneously initiates a Diels-Alder reaction between the furan and the bismaleimide and a epoxy curing reaction between the amine curative and the oxirane group to form a thermally-removable adhesive. Subsequent heating to a temperature greater than approximately 100.degree. C. causes the adhesive to melt and allows separation of adhered pieces.

  7. Weld bonding of titanium with polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Sheppard, C. H.; Orell, M. K.

    1975-01-01

    A conductive adhesive primer and a capillary flow adhesive were developed for weld bonding titanium alloy joints. Both formulations contained ingredients considered to be non-carcinogenic. Lap-shear joint test specimens and stringer-stiffened panels were weld bonded using a capillary flow process to apply the adhesive. Static property information was generated for weld bonded joints over the temperature range of 219K (-65 F) to 561K (550 F). The capillary flow process was demonstrated to produce weld bonded joints of equal strength to the weld through weld bonding process developed previously.

  8. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-09-08

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  9. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Paulauskas, Felix L.; Fathi, Zakaryae; Wei, Jianghua

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  10. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-08-25

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  11. Formation of focal adhesion-stress fibre complexes coordinated by adhesive and non-adhesive surface domains.

    PubMed

    Zimerman, B; Arnold, M; Ulmer, J; Blümmel, J; Besser, A; Spatz, J P; Geiger, B

    2004-04-01

    Cell motility consists of repeating cycles of protrusion of a leading edge in the direction of migration, attachment of the advancing membrane to the matrix, and pulling of the trailing edge forward. In this dynamic process there is a major role for the cytoskeleton, which drives the protrusive events via polymerisation of actin in the lamellipodium, followed by actomyosin contractility. To study the transition of the actin cytoskeleton from a 'protrusive' to 'retractive' form, we have monitored the formation of focal adhesions and stress fibres during cell migration on a micro-patterned surface. This surface consisted of parallel arrays of 2 microm-wide, fibronectin-coated gold stripes, separated by non-adhesive (poly(ethylene glycol)-coated) glass areas with variable width, ranging from 4-12 microm. Monitoring the spreading of motile cells indicated that cell spreading was equally effective along and across the adhesive stripes, as long as the non-adhesive spaces between them did not exceed 6 microm. When the width of the PEG region was 8 microm or more, cells became highly polarised upon spreading, and failed to reach the neighboring adhesive stripes. It was also noted that as soon as the protruding lamella successfully crossed the PEG-coated area and reached an adhesive region, the organisation of actin in that area was transformed from a diffuse meshwork into a bundle, oriented perpendicularly to the stripes and anchored at its ends in focal adhesions. This transition depends on actomyosin-based contractility and is apparently triggered by the adhesion to the rigid fibronectin surface. PMID:16475844

  12. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion.

    PubMed

    Younes, Jessica A; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J; Reid, Gregor; van der Mei, Henny C

    2016-04-01

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus. PMID:26477544

  13. Molecular dynamics simulation of interfacial adhesion

    SciTech Connect

    Yarovsky, I.; Chaffee, A.L.

    1996-12-31

    Chromium salts are often used in the pretreatment stages of steel painting processes in order to improve adhesion at the metal oxide/primer interface. Although well established empirically, the chemical basis for the improved adhesion conferred by chromia is not well understood. A molecular level understanding of this behaviour should provide a foundation for the design of materials offering improved adhesion control. Molecular modelling of adhesion involves simulation and analysis of molecular behaviour at the interface between two interacting phases. The present study concerns behaviour at the boundary between the metal coated steel surface (with or without chromium pretreatment) and an organic primer based on a solid epoxide resin produced from bisphenol A and epichlorohydrin. An epoxy resin oligomer of molecular weight 3750 was used as the model for the primer.

  14. Chemistry technology: Adhesives and plastics: A compilation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Technical information on chemical formulations for improving and/or producing adhesives is presented. Data are also reported on polymeric plastics with special characteristics or those plastics that were produced by innovative means.

  15. [PROPHYLAXIS OF AN ACUTE ADHESIVE ILEUS RECURRENCE].

    PubMed

    Evtushenko, D A

    2015-10-01

    The results of treatment of 56 patients were studied, in whom for adhesive abdominal disease, complicated by an acute adhesive ileus (AAI), the adhesiolysis with intraabdominal introduction of antiadhesive measures, named Mezogel, Defensal were conducted, as well as in 42 patients, operated on in emergency for AAI, using a routine method. Application of videolaparoscopy gives a possibility to control the adhesive process in the early postoperative period, what is necessary for prophylaxis of the adhesive disease occurence. Application of the apparatus, we have elaborated, permitted to conduct a precisional viscerolysis due to good visualization of organs, pathologically changed and healthy tissues. Application of the procedures elaborated for prophylaxis of the AAI recurrence have promoted the reduction of risk for the AAI occurence down to 1.8%, and of disorders of the gut contents transit in terms up to 1 yr - to 3.6%. PMID:26946653

  16. Recent Advances in Nanostructured Biomimetic Dry Adhesives

    PubMed Central

    Pattantyus-Abraham, Andras; Krahn, Jeffrey; Menon, Carlo

    2013-01-01

    The relatively large size of the gecko and its ability to climb a multitude of structures with ease has often been cited as the inspiration upon which the field of dry adhesives is based. Since 2010, there have been many advances in the field of dry adhesives with much of the new research focusing on developing nanoscale and hierarchical features in a concentrated effort to develop synthetic gecko-like dry adhesives which are strong, durable, and self-cleaning. A brief overview of the geckos and the hairs which it uses to adhere to many different surfaces is provided before delving into the current methods and materials used to fabricate synthetic gecko hairs. A summary of the recently published literature on bio-inspired, nanostructured dry adhesives is presented with an emphasis being placed on fabrication techniques. PMID:25023409

  17. Thread-Pull Test Of Curing Adhesive

    NASA Technical Reports Server (NTRS)

    Johnson, James A.

    1992-01-01

    Hardness (and degree of cure) of adhesive layer measured by pulling previously inserted thread out of layer. Strength of bond measured directly on assembly rather than on samples, which can be misleading.

  18. NREL Turning Biomass into Adhesives and Plastics

    SciTech Connect

    Not Available

    1994-05-01

    The U.S. Department of Energy (DOE) and it's National Renewable Energy Laboratory (NREL) are developing technology to make wood adhesives from sawdust, bark, or other biomass (plant materials or wastes derived from them).

  19. Adhesive wafer bonding for MEMS applications

    NASA Astrophysics Data System (ADS)

    Dragoi, Viorel; Glinsner, Thomas; Mittendorfer, Gerald; Wieder, Bernhard; Lindner, Paul

    2003-04-01

    Low temperature wafer bonding is a powerful technique for MEMS/MOEMS devices fabrication and packaging. Among the low temperature processes adhesive bonding focuses a high technological interest. Adhesive wafer bonding is a bonding approach using an intermediate layer for bonding (e.g. glass, polymers, resists, polyimides). The main advantages of this method are: surface planarization, encapsulation of structures on the wafer surface, particle compensation and decrease of annealing temperature after bonding. This paper presents results on adhesive bonding using spin-on glass and Benzocyclobutene (BCB) from Dow Chemicals. The advantages of using adhesive bonding for MEMS applications will be illustrated be presenting a technology of fabricating GaAs-on-Si substrates (up to 150 mm diameter) and results on BCB bonding of Si wafers (200 mm diameter).

  20. TOWARD MINIMALLY ADHESIVE SURFACES UTILIZING SILOXANES

    EPA Science Inventory

    Three types of siloxane-based network polymers have been investigated for their surface properties towards potential applications as minimally adhesive coatings. A filled poly(dimethylsiloxane) (PDMS) elastomer, RTV it, has been studied to determine surface weldability and stabil...

  1. Micropatterning cell adhesion on polyacrylamide hydrogels.

    PubMed

    Zhang, Jian; Guo, Wei-Hui; Rape, Andrew; Wang, Yu-Li

    2013-01-01

    Cell shape and substrate rigidity play critical roles in regulating cell behaviors and fate. Controlling cell shape on elastic adhesive materials holds great promise for creating a physiologically relevant culture environment for basic and translational research and clinical applications. However, it has been technically challenging to create high-quality adhesive patterns on compliant substrates. We have developed an efficient and economical method to create precise micron-scaled adhesive patterns on the surface of a hydrogel (Rape et al., Biomaterials 32:2043-2051, 2011). This method will facilitate the research on traction force generation, cellular mechanotransduction, and tissue engineering, where precise controls of both materials rigidity and adhesive patterns are important. PMID:23955741

  2. Ins and Outs of Microbial Adhesion

    NASA Astrophysics Data System (ADS)

    Virji, Mumtaz

    Microbial adhesion is generally a complex process, involving multiple adhesins on a single microbe and their respective target receptors on host cells. In some situations, various adhesins of a microbe may co-operate in an apparently hierarchical and sequential manner whereby the first adhesive event triggers the target cell to express receptors for additional microbial adhesins. In other instances, adhesins may act in concert leading to high avidity interactions, often a prelude to cellular invasion and tissue penetration. Mechanisms used to target the host include both lectin-like interactions and protein-protein interactions; the latter are often highly specific for the host or a tissue within the host. This reflective chapter aims to offer a point of view on microbial adhesion by presenting some experiences and thoughts especially related to respiratory pathogens and explore if there can be any future hope of controlling bacterial infections via preventing adhesion or invasion stages of microbial pathogenesis.

  3. Relationships between water wettability and ice adhesion.

    PubMed

    Meuler, Adam J; Smith, J David; Varanasi, Kripa K; Mabry, Joseph M; McKinley, Gareth H; Cohen, Robert E

    2010-11-01

    Ice formation and accretion may hinder the operation of many systems critical to national infrastructure, including airplanes, power lines, windmills, ships, and telecommunications equipment. Yet despite the pervasiveness of the icing problem, the fundamentals of ice adhesion have received relatively little attention in the scientific literature and it is not widely understood which attributes must be tuned to systematically design "icephobic" surfaces that are resistant to icing. Here we probe the relationships between advancing/receding water contact angles and the strength of ice adhesion to bare steel and twenty-one different test coatings (∼200-300 nm thick) applied to the nominally smooth steel discs. Contact angles are measured using a commercially available goniometer, whereas the average strengths of ice adhesion are evaluated with a custom-built laboratory-scale adhesion apparatus. The coatings investigated comprise commercially available polymers and fluorinated polyhedral oligomeric silsesquioxane (fluorodecyl POSS), a low-surface-energy additive known to enhance liquid repellency. Ice adhesion strength correlates strongly with the practical work of adhesion required to remove a liquid water drop from each test surface (i.e., with the quantity [1 + cos θ(rec)]), and the average strength of ice adhesion was reduced by as much as a factor of 4.2 when bare steel discs were coated with fluorodecyl POSS-containing materials. We argue that any further appreciable reduction in ice adhesion strength will require textured surfaces, as no known materials exhibit receding water contact angles on smooth/flat surfaces that are significantly above those reported here (i.e., the values of [1 + cos θ(rec)] reported here have essentially reached a minimum for known materials). PMID:20949900

  4. Cryogenic adhesives and sealants: Abstracted publications

    NASA Technical Reports Server (NTRS)

    Williamson, F. R.; Olien, N. A.

    1977-01-01

    Abstracts of primary documents containing original experimental data on the properties of adhesives and sealants at cryogenic temperatures are presented. The most important references mentioned in each document are cited. In addition, a brief annotation is given for documents considered secondary in nature, such as republications or variations of original reports, progress reports leading to final reports included as primary documents, and experimental data on adhesive properties at temperatures between about 130 K and room temperature.

  5. Pseudoelastic deformation during nanoscale adhesive contact formation.

    PubMed

    Mordehai, Dan; Rabkin, Eugen; Srolovitz, David J

    2011-08-26

    Molecular dynamics simulations are employed to demonstrate that adhesive contact formation through classical jump to contact is mediated by extensive dislocation activity in metallic nanoparticles. The dislocations generated during jump to contact are completely annihilated by the completion of the adhesive contact, leaving the nanoparticles dislocation-free. This rapid and efficient jump to contact process is pseudoelastic, rather than purely elastic or plastic. PMID:21929255

  6. New pressure-sensitive silicone adhesive

    NASA Technical Reports Server (NTRS)

    Leiffer, J. L.; Stoops, W. E., Jr.; St. Clair, T. L.; Watkins, V. E., Jr.; Kelly, T. P.

    1981-01-01

    Adhesive for high or low temperatures does not stretch severely under load. It is produced by combining intermediate-molecular-weight pressure sensitive adhesive which does not cure with silicone resin that cures with catalyst to rubbery tack-free state. Blend of silicone tackifier and cured rubbery silicone requires no solvents in either atmospheric or vacuum environments. Ratio of ingredients varies for different degrees of tack, creep resistance, and tensile strength.

  7. Shear adhesion strength of aligned electrospun nanofibers.

    PubMed

    Najem, Johnny F; Wong, Shing-Chung; Ji, Guang

    2014-09-01

    Inspiration from nature such as insects' foot hairs motivates scientists to fabricate nanoscale cylindrical solids that allow tens of millions of contact points per unit area with material substrates. In this paper, we present a simple yet robust method for fabricating directionally sensitive shear adhesive laminates. By using aligned electrospun nylon-6, we create dry adhesives, as a succession of our previous work on measuring adhesion energies between two single free-standing electrospun polymer fibers in cross-cylinder geometry, randomly oriented membranes and substrate, and peel forces between aligned fibers and substrate. The synthetic aligned cylindrical solids in this study are electrically insulating and show a maximal Mode II shear adhesion strength of 27 N/cm(2) on a glass slide. This measured value, for the purpose of comparison, is 270% of that reported from gecko feet. The Mode II shear adhesion strength, based on a commonly known "dead-weight" test, is 97-fold greater than the Mode I (normal) adhesion strength of the same. The data indicate a strong shear binding on and easy normal lifting off. Anisotropic adhesion (Mode II/Mode I) is pronounced. The size and surface boundary effects, crystallinity, and bending stiffness of fibers are used to understand these electrospun nanofibers, which vastly differ from otherwise known adhesive technologies. The anisotropic strength distribution is attributed to a decreasing fiber diameter and an optimized laminate thickness, which, in turn, influences the bending stiffness and solid-state "wettability" of points of contact between nanofibers and surface asperities. PMID:25105533

  8. Processable polyimide adhesive and matrix composite resin

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Progar, Donald J. (Inventor)

    1990-01-01

    A high temperature polyimide composition prepared by reacting 4,4'-isophthaloyldiphthalic anhydride with metaphenylenediamine is employed to prepare matrix resins, adhesives, films, coatings, moldings, and laminates, especially those showing enhanced flow with retention of mechanical and adhesive properties. It can be used in the aerospace industry, for example, in joining metals to metals or metals to composite structures. One area of application is in the manufacture of lighter and stronger aircraft and spacecraft structures.

  9. 21 CFR 175.125 - Pressure-sensitive adhesives.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Pressure-sensitive adhesives. 175.125 Section 175... Substances for Use Only as Components of Adhesives § 175.125 Pressure-sensitive adhesives. Pressure-sensitive... accordance with the following prescribed conditions: (a) Pressure-sensitive adhesives prepared from one or...

  10. 21 CFR 878.3750 - External prosthesis adhesive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false External prosthesis adhesive. 878.3750 Section 878.3750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... adhesive. (a) Identification. An external prosthesis adhesive is a silicone-type adhesive intended to...

  11. 21 CFR 175.125 - Pressure-sensitive adhesives.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Pressure-sensitive adhesives. 175.125 Section 175...) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use Only as Components of Adhesives § 175.125 Pressure-sensitive adhesives....

  12. 21 CFR 878.3750 - External prosthesis adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External prosthesis adhesive. 878.3750 Section 878.3750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... adhesive. (a) Identification. An external prosthesis adhesive is a silicone-type adhesive intended to...

  13. Cell-Substrate Adhesion by Amoeboid Cells

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Panta, Krishna

    Amoeboid migration is a rapid (10 μm min-1) mode of migration that some tumor cells exhibit. To permit such rapid movement, the adhesive contacts between the cell and the substrate must be relatively short-lived and weak. In this study, we investigate the basic adhesive character of amoeboid cells (D. discoideum) in contact with silanized glass substrates. We observe the initiation and spreading of the adhesive contacts that these cells establish as they settle under gravity onto the substrate and relax towards mechanical equilibrium. The use of interference reflection microscopy and cellular tethering measurements have allowed us to determine the basic adhesive properties of the cell: the membrane-medium interfacial energy; the bending modulus; the equilibrium contact angle; and the work of adhesion. We find the time scale on which settling occurs to be longer than expected. Implications of these results on adhesion and migration will be discussed. The authors are grateful for support from NSF (CBET-1451903) and NIH (1R21EY026392).

  14. Force transmission during adhesion-independent migration.

    PubMed

    Bergert, Martin; Erzberger, Anna; Desai, Ravi A; Aspalter, Irene M; Oates, Andrew C; Charras, Guillaume; Salbreux, Guillaume; Paluch, Ewa K

    2015-04-01

    When cells move using integrin-based focal adhesions, they pull in the direction of motion with large, ∼100 Pa, stresses that contract the substrate. Integrin-mediated adhesions, however, are not required for in vivo confined migration. During focal adhesion-free migration, the transmission of propelling forces, and their magnitude and orientation, are not understood. Here, we combine theory and experiments to investigate the forces involved in adhesion-free migration. Using a non-adherent blebbing cell line as a model, we show that actin cortex flows drive cell movement through nonspecific substrate friction. Strikingly, the forces propelling the cell forward are several orders of magnitude lower than during focal-adhesion-based motility. Moreover, the force distribution in adhesion-free migration is inverted: it acts to expand, rather than contract, the substrate in the direction of motion. This fundamentally different mode of force transmission may have implications for cell-cell and cell-substrate interactions during migration in vivo. PMID:25774834

  15. Controlled Adhesion of Silicone Elastomer Surfaces

    NASA Astrophysics Data System (ADS)

    Owen, Michael

    2000-03-01

    Opportunities exist for controllably enhancing the adhesion of silicone surfaces, ranging from modest enhancement of release force levels of pressure-sensitive adhesive (PSA) release liners by incorporation of adhesion promoters known as high release additives (HRA), to permanent bonding of silicone elastomers using surface modification techniques such as plasma or corona treatment. Although only a part of the complex interaction of factors contributing to adhesion, surface properties such as wettability are a critical component in the understanding and control of release and adhesion phenomena. Surface characterization studies of low-surface-energy silicones before and after various adhesion modification strategies are reviewed. The silicones include polydimethylsiloxane (PDMS) and fluorosiloxane elastomers and coatings. Techniques used include contact angle, the Johnson, Kendall and Roberts (JKR) contact mechanics approach, scanning electron microscopy (SEM), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS). Topics addressed are: use of HRA in PDMS release liners, the interaction of PDMS PSAs with polytetrafluoroethylene (PTFE), and the effect of plasma treatment on PDMS and fluorosiloxane surfaces.

  16. Fibroblasts adhesion on ion beam modified polyethylene

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Tomášová, P.; Dvořánková, B.; Hnatowicz, V.; Ochsner, R.; Ryssel, H.

    2004-02-01

    Polyethylene (PE) was irradiated with 15 keV O +, P + and Ar + ions to the fluences from 3 × 10 12 to 1 × 10 15 cm -2. The changes of surface structure and polarity and oxygen concentration were examined on pristine and as-irradiated PE. The in vitro adhesion of rat 3T3 fibroblasts on the modified PE was evaluated 24 h after inoculation. Degradation of PE is manifested by the creation of conjugated double bonds and oxidation of the PE main chain. It was proved that the implanted P atoms are chemically bound onto degraded polymer chain. Wettability of the polymer surface is affected by the structure and composition of the modified surface layer. In comparison with pristine PE (i) higher cell adhesion is observed on implanted PE and (ii) the cells cultivated on implanted PE are larger and their adherence is significantly more homogeneous. The enhancement of 3T3 cells adhesion is highest and smallest for PE implanted with O + and Ar + ions, respectively. Highest cell adhesion was observed on PE implanted to the fluence of 1 × 10 13 cm -2 regardless of the ion specie. It was shown that the cell adhesion is related to the wettability of the PE surface and that there exists an optimal wettability with respect to the cell adhesion.

  17. Adhesion of colloidal particles on modified electrodes.

    PubMed

    Kuznetsov, Volodymyr; Papastavrou, Georg

    2012-12-01

    The adhesion between colloidal silica particles and modified electrodes has been studied by direct force measurements with the colloidal probe technique based on the atomic force microscope (AFM). The combination of potentiostatic control of gold electrodes and chemical modification of their surface with self-assembled monolayers (SAMs) allows for the decoupling of forces due to the electrical double layers and functional groups at the solid/liquid interface. Adhesion on such electrodes can be tuned over a large range using the externally applied potential and the aqueous solution's ionic strength. By utilizing cantilevers with a high force constant, it is possible to separate the various contributions to adhesion in an unambiguous manner. These contributions comprise diffuse-layer overlap, van der Waals forces, solvent exclusion, and electrocapillarity. A quantitative description of the observed adhesion forces is obtained by taking into account the surface roughness of the silica particle. The main component of the adhesion forces originates from the overlap of the electrical double layers, which is tuned by the external potential. By contrast, effects due to electrocapillarity are of only minor importance. Based on our quantitative analysis, a new approach is proposed that allows tuning of the adhesion force as a function of the externally applied potential. We expect this approach to have important applications for the design of microelectromechanical systems (MEMS), the development of electrochemical sensors, and the application of micro- and nanomanipulation. PMID:23072548

  18. Yielding Elastic Tethers Stabilize Robust Cell Adhesion

    PubMed Central

    Whitfield, Matt J.; Luo, Jonathon P.; Thomas, Wendy E.

    2014-01-01

    Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds. PMID:25473833

  19. Bistability of Cell Adhesion in Shear Flow

    PubMed Central

    Efremov, Artem; Cao, Jianshu

    2011-01-01

    Cell adhesion plays a central role in multicellular organisms helping to maintain their integrity and homeostasis. This complex process involves many different types of adhesion proteins, and synergetic behavior of these proteins during cell adhesion is frequently observed in experiments. A well-known example is the cooperation of rolling and stationary adhesion proteins during the leukocytes extravasation. Despite the fact that such cooperation is vital for proper functioning of the immune system, its origin is not fully understood. In this study we constructed a simple analytic model of the interaction between a leukocyte and the blood vessel wall in shear flow. The model predicts existence of cell adhesion bistability, which results from a tug-of-war between two kinetic processes taking place in the cell-wall contact area—bond formation and rupture. Based on the model results, we suggest an interpretation of several cytoadhesion experiments and propose a simple explanation of the existing synergy between rolling and stationary adhesion proteins, which is vital for effective cell adherence to the blood vessel walls in living organisms. PMID:21889439

  20. Plasma treatment of polymers for improved adhesion

    SciTech Connect

    Kelber, J.A.

    1988-01-01

    A variety of plasma treatments of polymer surfaces for improved adhesion are reviewed: noble and reactive gas treatment of fluoropolymers; noble and reactive treatment of polyolefins, and plasma-induced amination of polymer fibers. The plasma induced surface chemical and morphological changes are discussed, as are the mechanisms of adhesion to polymeric adhesives, particularly epoxy. Noble gas plasma etching of flouropolymers produces a partially defluorinated, textured surface. The mechanical interlocking of this textured surface is the primary cause of improved adhesion to epoxy. Reactive gas plasmas also induce defluorination, but oxygen containing gases cause continual ablation of the fluoropolymer surface. Noble and reactive gas (exept for hydrogen) etching of polyolefins results in surface oxidation and improved adhesion via hydrogen bonding of these oxygen containing groups across the interface. The introduction of amine groups to a polymer surface by amonia or amine plasma treatment generally results in improved adhesion to epoxy. However, amine-epoxy ring interactions can be severely effected by steric factors due to chemical groups surrounding the amine. 41 refs.

  1. Enhanced adhesion of diamond coatings

    NASA Astrophysics Data System (ADS)

    Zheng, Zhido

    potential layers identified: TiN and TiC. Crystalline diamond coatings are subsequently deposited on these layers by hot filament CVD. A large grained TiC coating with a relatively rough surface was found to provide the best adhesion to the diamond layer. As judged qualitatively by the extent of spallation adjacent to hardness indentation, this intermediate layer performs better than similar TiC layers reported in the literature. The residual stresses in the diamond coatings are analysed using Raman microprobe spectroscopy, and compared with the predictions of the analytical model. The adhesion of the diamond coatings on various substrates with and without an intermediate layer of TiC is quantitatively evaluated by measuring the length of the delamination crack surrounding through-thickness holes in the coating and comparing with the relationship derived between crack length and strain energy release rate. The measured adherence on WC-Co substrates, as characterised by the critical strain energy release rate for growth of the delamination crack, was found to be significantly higher in the presence of the TiC intermediate layer developed during the course of this work.

  2. Design guidelines for hybrid microcircuits; organic adhesives for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1975-01-01

    The properties of organic adhesives were studied to acquire an adequate information base to generate a guideline document for the selection of adhesives for use in high reliability hybrid microcircuits. Specific areas covered include: (1) alternate methods for determining the outgassing of cured adhesives; (2) effects of long term aging at 150C on the electrical properties of conductive adhesives; (3) effects of shelf life age on adhesive characteristics; (4) bond strengths of electrically conductive adhesives on thick film gold metallization, (5) a copper filled adhesive; (6) effects of products outgassed from cured adhesives on device electrical parameters; (7) metal migration from electrically conductive adhesives; and (8) ionic content of electrically insulative adhesives. The tests performed during these investigations are described, and the results obtained are discussed in detail.

  3. Investigation of chitosan-phenolics systems as wood adhesives.

    PubMed

    Peshkova, Svetlana; Li, Kaichang

    2003-04-24

    Chitosan-phenolics systems were investigated as wood adhesives. Adhesion between two pieces of wood veneer developed only when all three components-chitosan, a phenolic compound, and laccase-were present. For the adhesive systems containing a phenolic compound with only one phenolic hydroxyl group, adhesive strengths were highly dependent upon the chemical structures of phenolic compounds used in the system and the relative oxidation rates of the phenolic compounds by laccase. The adhesive strengths were also directly related to the viscosity of the adhesive systems. However, for the adhesive systems containing a phenolic compound with two or three phenolic hydroxyl groups adjacent to each other, no correlations among adhesive strengths, relative oxidation rates of the phenolic compounds by laccase, and viscosities were observed. The adhesion mechanisms of these chitosan-phenolics systems were proposed to be similar to those of mussel adhesive proteins. PMID:12697397

  4. Assay of Adhesion Under Shear Stress for the Study of T Lymphocyte-Adhesion Molecule Interactions.

    PubMed

    Strazza, Marianne; Azoulay-Alfaguter, Inbar; Peled, Michael; Mor, Adam

    2016-01-01

    Overall, T cell adhesion is a critical component of function, contributing to the distinct processes of cellular recruitment to sites of inflammation and interaction with antigen presenting cells (APC) in the formation of immunological synapses. These two contexts of T cell adhesion differ in that T cell-APC interactions can be considered static, while T cell-blood vessel interactions are challenged by the shear stress generated by circulation itself. T cell-APC interactions are classified as static in that the two cellular partners are static relative to each other. Usually, this interaction occurs within the lymph nodes. As a T cell interacts with the blood vessel wall, the cells arrest and must resist the generated shear stress.(1,2) These differences highlight the need to better understand static adhesion and adhesion under flow conditions as two distinct regulatory processes. The regulation of T cell adhesion can be most succinctly described as controlling the affinity state of integrin molecules expressed on the cell surface, and thereby regulating the interaction of integrins with the adhesion molecule ligands expressed on the surface of the interacting cell. Our current understanding of the regulation of integrin affinity states comes from often simplistic in vitro model systems. The assay of adhesion using flow conditions described here allows for the visualization and accurate quantification of T cell-epithelial cell interactions in real time following a stimulus. An adhesion under flow assay can be applied to studies of adhesion signaling within T cells following treatment with inhibitory or stimulatory substances. Additionally, this assay can be expanded beyond T cell signaling to any adhesive leukocyte population and any integrin-adhesion molecule pair. PMID:27404581

  5. Contribution from pressure-sensitive adhesives

    NASA Astrophysics Data System (ADS)

    Cunningham, Gilbert

    1996-03-01

    The successful use of many security papers, foils and films depends on the technology of chemical fastening systems -- especially pressure sensitive adhesives. These are adhesives activated not by heat or by the evaporation of water or some other solvent, but simply by the act of application -- by pressure. These adhesives provide the means whereby laminations, substrates and seals are made effective. In addition to their physical properties these adhesives are often required to possess optical properties to allow the security materials to be visibly active and indeed the adhesive system may itself contribute as a carrier for a variety of security materials. Recent advances in adhesives chemistry have made it possible to achieve virtually all the required physical performance characteristics combined with a choice of optical properties ranging from total opacity to invisibility and including controlled translucency and tinting. The implications for security printing and packaging are important. Opacity is easy to achieve, for example by loading the adhesive with aluminum powder, by the selection of totally opaque materials like metallized film or by various printing processes. But achieving transparency is a different matter, and transparency is mandatory for applications involving the protection of documents, photographs, etc. with a clear film over-laminate. Obvious examples would be for passports, visas and other personal identification. But some security devices may themselves require protection; for example holograms or embossings. And transparency in the test laboratory is not enough. The Australian driving licence is stuck to the windshield, so the transparency of the adhesive must be sustained over long periods without deterioration due to prolonged u/v exposure, climatic conditions or aging. The commercial label market has helped to push the technology forward. There is a strong demand for the 'no-label look' for packaging of clear plastic and glass

  6. Pressure-sensitive adhesives for transdermal drug delivery systems.

    PubMed

    Tan; Pfister

    1999-02-01

    Adhesives are a critical component in transdermal drug delivery (TDD) devices. In addition to the usual requirements of functional adhesive properties, adhesives for TDD applications must have good biocompatibility with the skin, chemical compatibility with the drug, various components of the formulation, and provide consistent, effective delivery of the drug. This review discusses the three most commonly used adhesives (polyisobutylenes, polyacrylates and silicones) in TDD devices, and provides an update on recently introduced TDD products and recent developments of new adhesives. PMID:10234208

  7. Adhesives for the composite wood panel industry. Final report

    SciTech Connect

    Koch, G.S.; Klareich, F.; Exstrum, B.

    1986-01-13

    Significant energy savings could be realized if current fossil fuel-based resins could be replaced with alternative biomass-derived adhesives. Hence, a program was performed to analyze the current wood panel adhesives market, identify both domestic and international R and D efforts in the area of biomass-derived alternative adhesives that might serve as substitutes for conventional fossil fuel-based adhesives, and assess the technical and economic factors that will influence commercial success of these alternative adhesives.

  8. Adhesion of latex films. Influence of surfactants

    SciTech Connect

    Charmeau, J.Y.; Kientz, E.; Holl, Y.

    1996-12-31

    In the applications of film forming latexes in paint, paper, coating, adhesive, textile industries, one of the most important property of latex films is adhesion onto a support. From the point of view of adhesion, latex films have two specificities. The first one arises from the particular structure of the film which is usually not homogeneous but retains to a certain extent the memory of the particles it was made from. These structure effects are clearly apparent when one compares mechanical or adhesion properties of pure latex films and of films of the same polymers but prepared from a solution. Latex films show higher Young`s moduli and lower adhesion properties than solution films. The second specificity of latex films comes from the presence of the surfactant which was used in the synthesis and as stabilizer for the latex. Most industrial latexes contain low amounts of surfactant, typically in the range 0.1 to 2-3 wt%. However, being usually incompatible with the polymer, the surfactant is not homogeneously distributed in the film. It tends to segregate towards the film-air or film-support interfaces or to form domains in the bulk of the film. Distribution of surfactants in latex films has been studied by several authors. The influence of the surfactant on adhesion, as well as on other properties, is thus potentially very important. This article presents the results of the authors investigation of surfactant effects on adhesion properties of latex films. To the authors knowledge, there is no other example, in the open literature, of this kind of study.

  9. Direct observation of microcavitation in underwater adhesion of mushroom-shaped adhesive microstructure.

    PubMed

    Heepe, Lars; Kovalev, Alexander E; Gorb, Stanislav N

    2014-01-01

    In this work we report on experiments aimed at testing the cavitation hypothesis [Varenberg, M.; Gorb, S. J. R. Soc., Interface 2008, 5, 383-385] proposed to explain the strong underwater adhesion of mushroom-shaped adhesive microstructures (MSAMSs). For this purpose, we measured the pull-off forces of individual MSAMSs by detaching them from a glass substrate under different wetting conditions and simultaneously video recording the detachment behavior at very high temporal resolution (54,000-100,000 fps). Although microcavitation was observed during the detachment of individual MSAMSs, which was a consequence of water inclusions present at the glass-MSAMS contact interface subjected to negative pressure (tension), the pull-off forces were consistently lower, around 50%, of those measured under ambient conditions. This result supports the assumption that the recently observed strong underwater adhesion of MSAMS is due to an air layer between individual MSAMSs [Kizilkan, E.; Heepe, L.; Gorb, S. N. Underwater adhesion of mushroom-shaped adhesive microstructure: An air-entrapment effect. In Biological and biomimetic adhesives: Challenges and opportunities; Santos, R.; Aldred, N.; Gorb, S. N.; Flammang, P., Eds.; The Royal Society of Chemistry: Cambridge, U.K., 2013; pp 65-71] rather than by cavitation. These results obtained due to the high-speed visualisation of the contact behavior at nanoscale-confined interfaces allow for a microscopic understanding of the underwater adhesion of MSAMSs and may aid in further development of artificial adhesive microstructures for applications in predominantly liquid environments. PMID:24991528

  10. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    PubMed Central

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-01-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives. PMID:26508080

  11. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins.

    PubMed

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N; Patil, Navinkumar J; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-01-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives. PMID:26508080

  12. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    NASA Astrophysics Data System (ADS)

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-10-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives.

  13. Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points.

    PubMed

    Lüdecke, Claudia; Roth, Martin; Yu, Wenqi; Horn, Uwe; Bossert, Jörg; Jandt, Klaus D

    2016-09-01

    Microbial adhesion to natural and synthetic materials surfaces is a key issue e.g. in food industry, sewage treatment and most importantly in the biomedical field. The current development and progress in nanoscale structuring of materials surfaces to control microbial adhesion requires an advanced understanding of the microbe-material-interaction. This study aimed to investigate the nanostructure of the microbe-material-interface and link it to microbial adhesion kinetics as function of titanium surface nanoroughness to gain new insight into controlling microbial adhesion via materials' surface nanoroughness. Adhesion of Escherichia coli and Staphylococcus aureus was statistically significantly reduced (p≤0.05) by 55.6 % and 40.5 %, respectively, on physical vapor deposited titanium thin films with a nanoroughness of 6nm and the lowest surface peak density compared to 2nm with the highest surface peak density. Cross-sectioning of the microbial cells with a focused ion beam (FIB) and SEM imaging provided for the first time direct insight into the titanium-microbe-interface. High resolution SEM micrographs gave evidence that the surface peaks are the loci of initial contact between the microbial cells and the material's surface. In a qualitative model we propose that the initial microbial adhesion on nanorough surfaces is controlled by the titanium surface peak density via nano adhesion points. This new understanding will help towards the design of materials surfaces for controlling microbial adhesion. PMID:27288816

  14. Cadherin-11 localizes to focal adhesions and promotes cell–substrate adhesion

    PubMed Central

    Langhe, Rahul P.; Gudzenko, Tetyana; Bachmann, Michael; Becker, Sarah F.; Gonnermann, Carina; Winter, Claudia; Abbruzzese, Genevieve; Alfandari, Dominique; Kratzer, Marie-Claire; Franz, Clemens M.; Kashef, Jubin

    2016-01-01

    Cadherin receptors have a well-established role in cell–cell adhesion, cell polarization and differentiation. However, some cadherins also promote cell and tissue movement during embryonic development and tumour progression. In particular, cadherin-11 is upregulated during tumour and inflammatory cell invasion, but the mechanisms underlying cadherin-11 stimulated cell migration are still incompletely understood. Here, we show that cadherin-11 localizes to focal adhesions and promotes adhesion to fibronectin in Xenopus neural crest, a highly migratory embryonic cell population. Transfected cadherin-11 also localizes to focal adhesions in different mammalian cell lines, while endogenous cadherin-11 shows focal adhesion localization in primary human fibroblasts. In focal adhesions, cadherin-11 co-localizes with β1-integrin and paxillin and physically interacts with the fibronectin-binding proteoglycan syndecan-4. Adhesion to fibronectin mediated by cadherin-11/syndecan-4 complexes requires both the extracellular domain of syndecan-4, and the transmembrane and cytoplasmic domains of cadherin-11. These results reveal an unexpected role of a classical cadherin in cell–matrix adhesion during cell migration. PMID:26952325

  15. Shear Strength of Conductive Adhesive Joints on Rigid and Flexible Substrates Depending on Adhesive Quantity

    NASA Astrophysics Data System (ADS)

    Hirman, Martin; Steiner, Frantisek

    2016-05-01

    This article deals with the impact of electrically conductive adhesive quantity on the shear strength of joints glued by adhesives "EPO-TEKⓇ H20S" and "MG8331S" on three types of substrates (FR-4, MELINEXⓇST504, DuPont™ PyraluxⓇAC). These joints were made by gluing chip resistors 1206, 0805 and 0603, with two curing profiles for each adhesive. Different thicknesses of stencil and reductions in the size of the hole in stencils were used for this experiment. These differences have an effect on the quantity of conductive adhesives which must be used on the samples. Samples were measured after the curing process by using a shear strength test applied by the device LabTest 3.030. This article presents the effects of different curing profiles, various types of substrates, and different quantities of adhesives on the mechanical strength of the joint.

  16. BIOLOGICAL ADHESIVES. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement.

    PubMed

    Maier, Greg P; Rapp, Michael V; Waite, J Herbert; Israelachvili, Jacob N; Butler, Alison

    2015-08-01

    In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is severely limited by high salt, pH, and hydration, yet these conditions have not deterred the evolution of effective adhesion by mussels. Mussel foot proteins provide insights about adhesive adaptations: Notably, the abundance and proximity of catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues hint at a synergistic interplay in adhesion. Certain siderophores—bacterial iron chelators—consist of paired catechol and lysine functionalities, thereby providing a convenient experimental platform to explore molecular synergies in bioadhesion. These siderophores and synthetic analogs exhibit robust adhesion energies (E(ad) ≥-15 millijoules per square meter) to mica in saline pH 3.5 to 7.5 and resist oxidation. The adjacent catechol-lysine placement provides a "one-two punch," whereby lysine evicts hydrated cations from the mineral surface, allowing catechol binding to underlying oxides. PMID:26250681

  17. The effect of polyethylene glycol adhesion barrier (Spray Gel) on preventing peritoneal adhesions.

    PubMed

    Dasiran, F; Eryilmaz, R; Isik, A; Okan, I; Somay, A; Sahin, M

    2015-01-01

    The prominent cells in the late phase of wound healing during proliferation and matrix deposition are fibroblasts. Foreign materials in the operation site like prosthesis prolong the inflammation and induce fibroblast proliferation (8). 3 different prostheses used in this study induced chronic inflammation and fibrosis and provided an effective repair. Dense and thick adhesions due to fibrosis also induced strong adhesions to omentum and small intestine if only polypropylene mesh used for hernia repair. However, there was no difference between SprayGel treated polypropylene mesh and Sepramesh when compared for fibrosis. It also prevents the intraabdominal adhesion formation. It is nontoxic, sticky adherent, non- immigrant and easy to use both in open and laparoscopic surgeries. This experimental study revealed that polyethyleneglycol applied polypropylene mesh accomplishes hernia repair with significantly less adhesion formation than polypropylene mesh alone while securing a remarkable economy than adhesion barrier coated dual meshes (Tab. 6, Fig. 7, Ref. 23). Text in PDF www.elis.sk. PMID:26084740

  18. Adhesion molecules in inflammatory bowel disease.

    PubMed Central

    Jones, S C; Banks, R E; Haidar, A; Gearing, A J; Hemingway, I K; Ibbotson, S H; Dixon, M F; Axon, A T

    1995-01-01

    The ability of leucocytes to adhere to endothelium is essential for leucocyte migration into inflammatory sites. Some of these adhesion molecules are released from the cell surface and can be detected in serum. The soluble adhesion molecules intercellular adhesion molecule 1 (ICAM-1), E selectin, and vascular cell adhesion molecule 1 (VCAM-1) were studied in the serum of patients with Crohn's disease, ulcerative colitis, and healthy controls. A second blood sample was taken from patients with active disease after one month of treatment and a third two months after remission was achieved. Tissue expression of the same adhesion molecules was studied by immunohistology. Circulating VCAM-1 concentrations were significantly higher in patients with active ulcerative colitis (n = 11, median = 165 U/ml) compared with patients with inactive ulcerative colitis (n = 10, median = 117 U/ml, p < 0.005), active Crohn's disease (n = 12, median = 124 U/ml, p < 0.02), and controls (n = 90, median = 50 U/ml, p < 0.0001). Within each disease group there were no significant differences in E selectin or ICAM-1 concentrations between the active and inactive states, however, patients with active Crohn's disease had significantly higher ICAM-1 concentrations (n = 12, median = 273 ng/ml) than controls (n = 28, median = 168, p < 0.003). VCAM-1 concentrations fell significantly from pretreatment values to remission in active ulcerative colitis (p < 0.01). In Crohn's disease there was a significant fall in ICAM-1 both during treatment (p < 0.01) and two months after remission (p < 0.02). Vascular expression of ICAM-1 occurred more often and was more intense in inflamed tissue sections from patients with ulcerative colitis and Crohn's disease than from controls. Vascular labelling with antibody to E selectin also occurred more often in patients with active inflammatory bowel disease. In conclusion, increased circulating concentrations of selected adhesion molecules are associated with

  19. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear

  20. Probing adhesion forces at the molecular scale

    SciTech Connect

    Thomas, R.C.; Houston, J.E.; Michalske, T.A.

    1996-12-31

    Measurements of adhesion forces at the molecular scale, such as those discussed here, are necessary to understand macroscopic boundary-layer behavior such as adhesion, friction, wear, lubrication, and many other important phenomena. The authors` recent interfacial force microscopy (IFM) studies have provided detailed information about the mechanical response of both self-assembled monolayer (SAM) films and the underlying substrates. In addition, they recently demonstrated that the IFM is useful for studying the chemical nature of such films. In this talk, the authors discuss a new method for studying surface interactions and chemical reactions using the IFM. To quantitatively measure the work of adhesion and bond energies between two organic thin films, they modify both a Au substrate and a Au probe with self-assembling organomercaptan molecules having either the same or different end groups (-CH{sub 3}, -NH{sub 2}, and -COOH), and then analyze the force-versus-displacement curves (force profiles) that result from the approach to contact of the two surfaces. Their results show that the magnitude of the adhesive forces measured between methyl-methyl interactions are in excellent agreement with van der Waals calculations using Lifshitz theory and previous experimentally determined values. Moreover, the measured peak adhesive forces scale as expected for van der Waals, hydrogen-bonding, and acid-base interactions.

  1. Spiders Tune Glue Viscosity to Maximize Adhesion.

    PubMed

    Amarpuri, Gaurav; Zhang, Ci; Diaz, Candido; Opell, Brent D; Blackledge, Todd A; Dhinojwala, Ali

    2015-11-24

    Adhesion in humid conditions is a fundamental challenge to both natural and synthetic adhesives. Yet, glue from most spider species becomes stickier as humidity increases. We find the adhesion of spider glue, from five diverse spider species, maximizes at very different humidities that matches their foraging habitats. By using high-speed imaging and spreading power law, we find that the glue viscosity varies over 5 orders of magnitude with humidity for each species, yet the viscosity at maximal adhesion for each species is nearly identical, 10(5)-10(6) cP. Many natural systems take advantage of viscosity to improve functional response, but spider glue's humidity responsiveness is a novel adaptation that makes the glue stickiest in each species' preferred habitat. This tuning is achieved by a combination of proteins and hygroscopic organic salts that determines water uptake in the glue. We therefore anticipate that manipulation of polymer-salts interaction to control viscosity can provide a simple mechanism to design humidity responsive smart adhesives. PMID:26513350

  2. Actin Foci Adhesion of D. discoideum

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Paneru, Govind

    2014-03-01

    Amoeboid migration is a fast (10 μm min-1) integrin-independent mode of migration that is important with D. discoideum, leukocytes, and breast cancer cells. It is poorly understood, but depends on the establishment of adhesive contacts to the substrate where the cell transmits traction forces. In pre-aggregative D. discoideum, a model system for learning about amoeboid migration, these adhesive contacts are discrete complexes that are known as actin-foci. They have an area of ~ 0.5 μm2 and a lifetime of ~ 20 s. This talk will present measurements of the adhesive character of actin foci that have been obtained using a submicron force transducer that was designed for this purpose. Results on the rupture stresses and lifetimes of individual acting foci under nano-newton level forces will be described in the context of a general theory for cellular adhesion. This theory depends on, essentially, three cellular properties: the membrane-medium surface tension, the number density of adhesion receptors in the membrane, and the receptor-substrate potential energy surface. Therefore, the use of the transducer to determine the surface tension will be presented, as well.

  3. Signaling during platelet adhesion and activation

    PubMed Central

    Li, Zhenyu; Delaney, M. Keegan; O’Brien, Kelly A.; Du, Xiaoping

    2011-01-01

    Upon vascular injury, platelets are activated by adhesion to adhesive proteins like von Willebrand factor and collagen, or by soluble platelet agonists like ADP, thrombin, and thromboxane A2. These adhesive proteins and soluble agonists induce signal transduction via their respective receptors. The various receptor-specific platelet activation signaling pathways converge into common signaling events, which stimulate platelet shape change, granule secretion, and ultimately induce the “inside-out” signaling process leading to activation of the ligand binding function of integrin αIIbβ3. Ligand binding to integrin αIIbβ3 mediates platelet adhesion and aggregation and triggers “outside-in” signaling, resulting in platelet spreading, additional granule secretion, stabilization of platelet adhesion and aggregation, and clot retraction. It has become increasingly evident that agonist-induced platelet activation signals also crosstalk with integrin “outside-in” signals to regulate platelet responses. Platelet activation involves a series of rapid positive feedback loops that greatly amplify initial activation signals, and enable robust platelet recruitment and thrombus stabilization. Recent studies have provided novel insight into the molecular mechanisms of these processes. PMID:21071698

  4. Elasto-capillarity in insect fibrillar adhesion.

    PubMed

    Gernay, Sophie; Federle, Walter; Lambert, Pierre; Gilet, Tristan

    2016-08-01

    The manipulation of microscopic objects is challenging because of high adhesion forces, which render macroscopic gripping strategies unsuitable. Adhesive footpads of climbing insects could reveal principles relevant for micro-grippers, as they are able to attach and detach rapidly during locomotion. However, the underlying mechanisms are still not fully understood. In this work, we characterize the geometry and contact formation of the adhesive setae of dock beetles (Gastrophysa viridula) by interference reflection microscopy. We compare our experimental results to the model of an elastic beam loaded with capillary forces. Fitting the model to experimental data yielded not only estimates for seta adhesion and compliance in agreement with previous direct measurements, but also previously unknown parameters such as the volume of the fluid meniscus and the bending stiffness of the tip. In addition to confirming the primary role of surface tension for insect adhesion, our investigation reveals marked differences in geometry and compliance between the three main kinds of seta tips in leaf beetles. PMID:27488250

  5. Shear-enhanced adhesion of Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Lecuyer, Sigolene; Rusconi, Roberto; Shen, Yi; Forsyth, Alison; Stone, Howard

    2010-03-01

    Bacterial adhesion is the first step in the development of surface-associated communities known as biofilms, which are the cause of many problems in medical devices and industrial water systems. However the underlying mechanisms of initial bacterial attachment are not fully understood. We have investigated the effects of hydrodynamics on the probability of adsorption and detachment of Pseudomonas aeruginosa strain PA14 on model surfaces under flow, in straight microfluidic channels, and measured the distribution of bacteria residence time as a function of the shear rate. Our main discovery is a counter-intuitive enhanced adhesion as the shear stress is increased over a wide range of shear rates. In order to identify the origin of this phenomenon, we have performed experiments with several mutant strains. Our results show that shear-enhanced adhesion is not regulated by primary surface organelles, and that this process is not specific to a certain type of surface, but rather appears a general feature of the adhesive behavior of P. aeruginosa. These results suggest that shear-induced adhesion could be a very widespread strategy in nature.

  6. Adhesion of germlings of Botrytis cinerea.

    PubMed Central

    Doss, R P; Potter, S W; Soeldner, A H; Christian, J K; Fukunaga, L E

    1995-01-01

    Adhesion of conidia and germlings of the facultative plant parasite Botrytis cinerea occurs in two distinct stages. The first stage, which occurs immediately upon hydration of conidia and is characterized by relatively weak adhesive forces, appears to involve hydrophobic interactions (R. P. Doss, S. W. Potter, G. A. Chastagner, and J. K. Christian, Appl. Environ. Microbiol. 59:1786-1791, 1993). The second stage of adhesion, delayed adhesion, occurs after viable conidia have been incubated for several hours under conditions that promote germination. At this time, the germlings attach strongly to either hydrophobic or hydrophilic substrata. Delayed adhesion involves secretion of an ensheating film that remains attached to the substratum upon physical removal of the germlings. This fungal sheath, which can be visualized by using interference-contrast light microscopy, scanning electron microscopy, or atomic force microscopy, is 25 to 60 nm thick in the region immediately adjacent to the germ tubes. Germlings are resistant to removal by boiling or by treatment with a number of hydrolytic enzymes, 2.0 M periodic acid, or 1.0 M sulfuric acid. They are readily removed by brief exposure to 1.25 N NaOH. A base-soluble material that adheres to culture flask walls in short-term liquid cultures of B. cinerea is composed of glucose (about 30%), galactosamine (about 3%), and protein (30 to 44%). PMID:7887606

  7. Thermodynamics of capillary adhesion between rough surfaces.

    PubMed

    de Boer, M P; de Boer, P C T

    2007-07-01

    According to the Dupré equation, the work of adhesion is equal to the surface energy difference in the separated versus the joined materials minus an interfacial energy term. However, if a liquid is at the interface between two solid materials, evaporation or condensation takes place under equilibrium conditions. The resulting matter exchange is accompanied by heat flow, and can reduce or increase the work of adhesion. Accounting for the energies requires an open-system control volume analysis based on the first law of thermodynamics. Depending on whether evaporation or condensation occurs during separation, a work term that is negative or positive must be added to the surface energy term to calculate the work of adhesion. We develop and apply this energy balance to several different interface geometries and compare the work of adhesion to the surface energy created. The model geometries include a sphere on a flat with limiting approximations and also with an exact solution, a circular disc, and a combination of these representing a rough interface. For the sphere on a flat, the work of adhesion is one half the surface energy created if equilibrium is maintained during the pull-off process. PMID:17368659

  8. High-temperature Adhesive Development and Evaluation

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hale, J. N.

    1985-01-01

    High-temperature adhesive systems are evaluated for short and long-term stability at temperatures ranging from 232C to 427C. The resins selected for characterization include: NASA Langley developed polyphenylquinoxaline (PPQ), and commercially available polyimides (PI). The primary method of bond testing is single lap shear. The PPQ candidates are evaluated on 6A1-4V titanium adherends with chromic acid anodize and phosphate fluoride etch surface preparations. The remaining adhesives are evaluated on 15-5 PH stainless steel with a sulfuric acid anodize surface preparation. Preliminary data indicate that the PPQ adhesives tested have stability to 3000 hours at 450F with chromic acid anodize surface preparation. Additional studies are continuing to attempt to improve the PPQ's high-performance by formulating adhesive films with a boron filler and utilizing the phosphate fluoride surface preparation on titanium. Evaluation of the polyimide candidates on stainless-steel adherends indicates that the FM-35 (American Cyanamid), PMR-15 (U.S. Polymeric/Ferro), TRW partially fluorinated polyimide and NR 150B2S6X (DuPont) adhesives show sufficient promise to justify additional testing.

  9. Adhesive curing options for photonic packaging

    NASA Astrophysics Data System (ADS)

    Martin, Steven C.; Hubert, Manfred; Tam, Robin

    2002-06-01

    Varying the intensity of illumination used to cure photoactivated adhesives has been applied in medical and dental applications to improve the performance of polymer materials. For example, it has been observed that dental polymer composite materials express reduced shrinkage, important for durability of non-amalgam restorations, by introducing a phased time-intensity cure schedule. This work identified that curing conditions could influence the final properties of materials, and suggested the possibility of extending the characteristics that could be influenced beyond shrinkage to humidity resistance, Tg, outgassing and other important material properties. Obviously, these results have important ramifications for the photonic industry, with current efforts focused on improved manufacturing techniques. Improvement in low cost packaging solutions, including adhesives, will have to be made to bring the component cost down to address the needs of Metro and similar markets. However, there are perceived problems with the widespread use of adhesives, the most prevalent of these involving long term durability of the bond. Devices are typically aligned to sub-micron precision using active feedback and then must be locked in position to maintain performance. In contrast to traditional fastening methods, adhesive bonding is a highly attractive option due to the ease of deployment, lower equipment costs, and improved flexibility. Moreover, using methods analogous to those employed in dental applications, materials properties of photonic adhesives may be tailored using a programmed cure approach.

  10. The differential adhesion hypothesis: a direct evaluation.

    PubMed

    Foty, Ramsey A; Steinberg, Malcolm S

    2005-02-01

    The differential adhesion hypothesis (DAH), advanced in the 1960s, proposed that the liquid-like tissue-spreading and cell segregation phenomena of development arise from tissue surface tensions that in turn arise from differences in intercellular adhesiveness. Our earlier measurements of liquid-like cell aggregate surface tensions have shown that, without exception, a cell aggregate of lower surface tension tends to envelop one of higher surface tension to which it adheres. We here measure the surface tensions of L cell aggregates transfected to express N-, P- or E-cadherin in varied, measured amounts. We report that in these aggregates, in which cadherins are essentially the only cell-cell adhesion molecules, the aggregate surface tensions are a direct, linear function of cadherin expression level. Taken together with our earlier results, the conclusion follows that the liquid-like morphogenetic cell and tissue rearrangements of cell sorting, tissue spreading and segregation represent self-assembly processes guided by the diminution of adhesive-free energy as cells tend to maximize their mutual binding. This conclusion relates to the physics governing these morphogenetic phenomena and applies independently of issues such as the specificities of intercellular adhesives. PMID:15649477

  11. Characterizing cell adhesion by using micropipette aspiration.

    PubMed

    Hogan, Brenna; Babataheri, Avin; Hwang, Yongyun; Barakat, Abdul I; Husson, Julien

    2015-07-21

    We have developed a technique to directly quantify cell-substrate adhesion force using micropipette aspiration. The micropipette is positioned perpendicular to the surface of an adherent cell and a constant-rate aspiration pressure is applied. Since the micropipette diameter and the aspiration pressure are our control parameters, we have direct knowledge of the aspiration force, whereas the cell behavior is monitored either in brightfield or interference reflection microscopy. This setup thus allows us to explore a range of geometric parameters, such as projected cell area, adhesion area, or pipette size, as well as dynamical parameters such as the loading rate. We find that cell detachment is a well-defined event occurring at a critical aspiration pressure, and that the detachment force scales with the cell adhesion area (for a given micropipette diameter and loading rate), which defines a critical stress. Taking into account the cell adhesion area, intrinsic parameters of the adhesion bonds, and the loading rate, a minimal model provides an expression for the critical stress that helps rationalize our experimental results. PMID:26200857

  12. Characterizing Cell Adhesion by Using Micropipette Aspiration

    PubMed Central

    Hogan, Brenna; Babataheri, Avin; Hwang, Yongyun; Barakat, Abdul I.; Husson, Julien

    2015-01-01

    We have developed a technique to directly quantify cell-substrate adhesion force using micropipette aspiration. The micropipette is positioned perpendicular to the surface of an adherent cell and a constant-rate aspiration pressure is applied. Since the micropipette diameter and the aspiration pressure are our control parameters, we have direct knowledge of the aspiration force, whereas the cell behavior is monitored either in brightfield or interference reflection microscopy. This setup thus allows us to explore a range of geometric parameters, such as projected cell area, adhesion area, or pipette size, as well as dynamical parameters such as the loading rate. We find that cell detachment is a well-defined event occurring at a critical aspiration pressure, and that the detachment force scales with the cell adhesion area (for a given micropipette diameter and loading rate), which defines a critical stress. Taking into account the cell adhesion area, intrinsic parameters of the adhesion bonds, and the loading rate, a minimal model provides an expression for the critical stress that helps rationalize our experimental results. PMID:26200857

  13. Thermal Characterization of Epoxy Adhesive by Hotfire Testing

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.; Haddock, M. Reed; McCool, Alex (Technical Monitor)

    2001-01-01

    This paper describes subscale solid-rocket motor hot-fire testing of epoxy adhesives in flame surface bondlines to evaluate heat-affected depth, char depth and ablation rate. Hot-fire testing is part of an adhesive down-selection program on the Space Shuttle Solid Rocket Motor Nozzle to provide additional confidence in the down-selected adhesives. The current nozzle structural adhesive bond system is being replaced due to obsolescence. Prior to hot-fire testing, adhesives were tested for chemical, physical and mechanical properties, which resulted in the selection of two potential replacement adhesives, Resin Technology Group's TIGA 321 and 3M's EC2615XLW. Hot-fire testing consisted of four forty-pound charge (FPC) motors fabricated in configurations that would allow side-by-side comparison testing of the candidate replacement adhesives with the current RSRM adhesives. Results of the FPC motor testing show that: 1) the phenolic char depths on radial bondlines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used, 2) the replacement candidate adhesive char depths are equivalent to the char depths of the current adhesives, 3) the heat-affected depths of the candidate and current adhesives are equivalent, and 4) the ablation rates for both replacement adhesives were equivalent to the current adhesives.

  14. Human climbing with efficiently scaled gecko-inspired dry adhesives

    PubMed Central

    Hawkes, Elliot W.; Eason, Eric V.; Christensen, David L.; Cutkosky, Mark R.

    2015-01-01

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A−1/4. We present a mechanical concept which improves upon the gecko's non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A−1/50. Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm2 of adhesive per hand. PMID:25411404

  15. Water based adhesive primers on aluminum substrates

    SciTech Connect

    Wightman, J.P.; Mori, S.

    1996-12-31

    The number of aluminum alloy bonding applications has been increasing recently in the automobile industry. Primer coating of aluminum substrates is one of the main processes used to promote bond performance. Solvent based organic primers have been used for a long time but environmental regulations now require the substitution of volatile organic compounds (VOC) by alternate materials such as water based adhesive primers. However, the bond strengths obtained with many water based primers are generally lower than for solvent based ones. Water based primers which have some reactive functional groups have been proposed recently but such primers require special treatment. This paper describes a study conducted to optimize bond strength using a water based adhesive as a primer in the adhesive bonding of anodized aluminum.

  16. [Inhibition of neutrophil adhesion by pectic galacturonans].

    PubMed

    Popov, S V; Ovodova, R G; Popova, G Iu; Nikitina, I R; Ovodov, Iu S

    2007-01-01

    The inhibition of the adhesion of neutrophils to fibronectin by the fragments of the main galacturonan chain of the following pectins was demonstrated: comaruman from the marsh cinquefoil Comarum polustre, bergenan from the Siberian tea Bergenia crassifolia, lemnan from the duckweed Lemna minor, zosteran from the seagrass Zostera marina, and citrus pectin. The parent pectins, except for comaruman, did not affect the cell adhesion. Galacturonans prepared from the starting pectins by acidic hydrolysis were shown to reduce the neutrophil adhesion stimulated by phorbol 12-myristate 13-acetate (1.625 microM) and dithiothreitol (0.5 mM) at a concentration of 50-200 microg/ml. The presence of carbohydrate chains with molecular masses higher than 300, from 100 to 300, and from 50 to 100 kDa in the galacturonan fractions was proved by membrane ultrafiltration. PMID:17375675

  17. Enhanced adhesion from high energy ion irradiation

    NASA Technical Reports Server (NTRS)

    Werner, B. T.; Vreeland, T., Jr.; Mendenhall, M. H.; Qui, Y.; Tombrello, T. A.

    1983-01-01

    It has been found that the adhesion of thin metal films on insulators, semiconductors, and metals could be improved by subjecting the material to a high-energy ion bombardment. Griffith et al. (1982) have first suggested a use of this technique with insulators. The present investigation has the objective to determine the mechanism for the adhesion enhancement. A description is presented of a preliminary transmission electron microscopy (TEM) study of thinned bonded samples of silver on silicon using electron diffraction. It is found that irradiation of a variety of thin film-substrate combinations by heavy ion beams will provide a remarkable improvement in the adherence of the film. The evidence for the mechanism involved in the enhancement of adhesion is discussed.

  18. Optimizing ultrasonic imaging for adhesively bonded plates

    SciTech Connect

    Conboy, Mike; Hart, Scot; Harris-Weiel, David; Meyer, R. L.; Claytor, T. N.

    2004-01-01

    Bonded materials are used in many critical applications, making it important to determine the state of the adhesive during service or aging. It is also of importance, in many cases, to determine if the adhesive has uniformly and completely covered the area to be joined. Through dual transducer scanning, focused and unfocused transducers, and immersion scanning, the uniformity and adherence of a visco-elastic material can be evaluated. In this report, ultrasonic scanning parameters will be optimized experimentally with guidance from simulation tools including Wave 2000 pro and Imagine 3D. We explored optimizing the contrast ratio by varying the interrogation frequency and also by adjusting the distance between the transducer and bond line. An improvement in contrast should also increase the ability to detect differences in compositions and viscosity of the bonded layer. By maximizing the contrast the quality of the visco-elastic bond can be determined, and imperfections detected before adhesive failure.

  19. Surface tension and deformation in soft adhesion

    NASA Astrophysics Data System (ADS)

    Jensen, Katharine

    Modern contact mechanics was originally developed to account for the competition between adhesion and elasticity for relatively stiff deformable materials like rubber, but much softer sticky materials are ubiquitous in biology, engineering, and everyday consumer products. In such soft materials, the solid surface tension can also play an important role in resisting shape change, and significantly modify the physics of contact with soft matter. We report indentation and pull-off experiments that bring small, rigid spheres into adhesive contact with compliant silicone gel substrates, varying both the surface functionalization of the spheres and the bulk elastic properties of the gels. We map the resulting deformation profiles using optical microscopy and image analysis. We examine the substrate geometry in light of capillary and elastic theories in order to explore the interplay of surface tension and bulk elasticity in governing soft adhesion.

  20. Friction, adhesion, and elasticity of graphene edges

    NASA Astrophysics Data System (ADS)

    Hunley, D. Patrick; Flynn, Tyler J.; Dodson, Tom; Sundararajan, Abhishek; Boland, Mathias J.; Strachan, Douglas R.

    2013-01-01

    Frictional, adhesive, and elastic characteristics of graphene edges are determined through lateral force microscopy. Measurements reveal a significant local frictional increase at exposed graphene edges, whereas a single overlapping layer of graphene removes this local frictional increase. Comparison of lateral force and atomic force microscopy measurements shows that local forces on the probe are successfully modeled with a vertical adhesion in the vicinity of the atomic-scale graphene steps which also provides a new low-load calibration method. Lateral force microscopy performed with carefully maintained low-adhesion probes shows evidence of elastic straining of graphene edges. Estimates of the energy stored of this observed elastic response is consistent with out-of-plane bending of the graphene edge.

  1. A multiscale modeling approach to adhesive contact

    NASA Astrophysics Data System (ADS)

    Fan, KangQi; Wang, WeiDong; Zhu, YingMin; Zhang, XiuYan

    2011-09-01

    In order to model the adhesive contact across different length scales, a multiscale approach is developed and used to study the adhesive contact behaviors between a rigid cylinder and an elastic face-centered cubic (FCC) substrate. The approach combines an atomistic treatment of the interfacial region with an elastic mechanics method description of the continuum region. The two regions are connected by a coupling region where nodes of the continuum region are refined to atoms of the atomistic region. Moreover, the elastic constants of FCC crystals are obtained directly from the Lennard-Jones potential to describe the elastic response characteristics of the continuum region, which ensures the consistency of material proprieties between atomistic and continuum regions. The multiscale approach is examined by comparing it with the pure MD simulation, and the results indicate that the multiscale modeling approach agrees well with the MD method in studying the adhesive contact behaviors.

  2. Coatings for rubber bonding and paint adhesion

    NASA Astrophysics Data System (ADS)

    Boulos, M. S.; Petschel, M.

    1997-08-01

    Conversion coatings form an important base for the adhesion of paint to metal substrates and for the bonding of rubber to metal parts. Four types of conversion coatings were assessed as base treatments for the bonding of rubber to steel and for the corrosion protection of metal substrates under paint: amorphous iron phosphate, heavy zinc phosphate, and three types of modified zinc phosphates that utilized one or more metal cations in addition to zinc. When applied, these conversion coatings formed a thin film over the metal substrate that was characterized by scanning electron microscopy, x-ray diffraction, and chemical methods. The performance of the coatings was assessed using physical methods such as dry adhesion, conical mandrel, impact, and stress adhesion for the rubber-bonded parts, and by corrosion resistance methods such as humidity, salt spray, and cyclic corrosion. Coating characterization and performance were correlated.

  3. Laparoscopic Management of Adhesive Small Bowel Obstruction

    PubMed Central

    Konjic, Ferid; Idrizovic, Enes; Hasukic, Ismar; Jahic, Alen

    2016-01-01

    Introduction: Adhesions are the reason for bowel obstruction in 80% of the cases. In well selected patients the adhesive ileus laparoscopic treatment has multiple advantages which include the shorter hospitalization period, earlier food taking, and less postoperative morbidity rate. Case report: Here we have a patient in the age of 35 hospitalized at the clinic due to occlusive symptoms. Two years before an opened appendectomy had been performed on him. He underwent the treatment of exploration laparoscopy and laparoscopic adhesiolysis. Dilated small bowel loops connected with the anterior abdominal wall in the ileocecal region by adhesions were found intraoperatively and then resected harmonically with scalpel. One strangulation around which a small bowel loop was wrapped around was found and dissected. Postoperative course was normal. PMID:27041815

  4. Adhesive capsulitis of the hip: a review.

    PubMed

    Looney, Colin G; Raynor, Brett; Lowe, Rebecca

    2013-12-01

    Adhesive capsulitis of the hip (ACH) is a rare clinical entity. Similar to adhesive capsulitis of the shoulder, ACH is characterized by a painful decrease in active and passive range of motion as synovial inflammation in the acute stages of the disease progresses to capsular fibrosis in the chronic stages. Once other diagnoses have been ruled out, management of ACH is tailored to reduce inflammation in the acute stages with NSAIDs, intra-articular steroid injections, and targeted physical therapy while biomechanical dysfunction in the spine, hip, sacroiliac joint, or lower limb joints is addressed. In chronic stages of the disease, intervention should focus on decreasing the progression of fibrotic changes and regaining range of motion through aggressive physical therapy. Interventions described for chronic ACH include manipulation under anesthesia; pressure dilatation; and open or arthroscopic synovectomy, lysis of adhesions, and capsular release. Surgical intervention should be considered only after failure of a minimum 3-month course of nonsurgical treatment. PMID:24292931

  5. Biologically Inspired Mushroom-Shaped Adhesive Microstructures

    NASA Astrophysics Data System (ADS)

    Heepe, Lars; Gorb, Stanislav N.

    2014-07-01

    Adhesion is a fundamental phenomenon with great importance in technology, in our everyday life, and in nature. In this article, we review physical interactions that resist the separation of two solids in contact. By using examples of biological attachment systems, we summarize and categorize various principles that contribute to the so-called gecko effect. Emphasis is placed on the contact geometry and in particular on the mushroom-shaped geometry, which is observed in long-term biological adhesive systems. Furthermore, we report on artificial model systems with this bio-inspired geometry and demonstrate that surface microstructures with this geometry are promising candidates for technical applications, in which repeatable, reversible, and residue-free adhesion under different environmental conditions—such as air, fluid, and vacuum—is required. Various applications in robotic systems and in industrial pick-and-place processes are discussed.

  6. Optimizing Scale Adhesion on Single Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Pint, Bruce A.

    2000-01-01

    To improve scale adhesion, single crystal superalloys have been desulfurized to levels below 1 ppmw by hydrogen annealing. A transition to fully adherent behavior has been shown to occur at a sulfur level of about 0.2 ppmw, as demonstrated for PWA 1480, PWA 1484, and Rene N5 single crystal superalloys in 1100-1150 C cyclic oxidation tests up to 2000 h. Small additions of yttrium (15 ppmw) also have been effective in producing adhesion for sulfur contents of about 5 ppmw. Thus the critical Y/S ratio required for adhesion was on the order of 3-to-1 by weight (1-to-1 atomic), in agreement with values estimated from solubility products for yttrium sulfides. While hydrogen annealing greatly improved an undoped alloy, yielding <= 0.01 ppmw S, it also produced benefits for Y-doped alloys without measurably reducing the sulfur content.

  7. Clinical status of ten dentin adhesive systems.

    PubMed

    Van Meerbeek, B; Peumans, M; Verschueren, M; Gladys, S; Braem, M; Lambrechts, P; Vanherle, G

    1994-11-01

    Laboratory testing of dentin adhesive systems still requires corroboration by long-term clinical trials for their ultimate clinical effectiveness to be validated. The objective of this clinical investigation was to evaluate, retrospectively, the clinical effectiveness of earlier-investigated dentin adhesive systems (Scotchbond, Gluma, Clearfil New Bond, Scotchbond 2, Tenure, and Tripton), and to compare their clinical results with those obtained with four modern total-etch adhesive systems (Bayer exp. 1 and 2, Clearfil Liner Bond System, and Scotchbond Multi-Purpose). In total, 1177 Class V cervical lesions in the teeth of 346 patients were restored following two cavity designs: In Group A, enamel was neither beveled nor intentionally etched, as per ADA guidelines; in Group B, adjacent enamel was beveled and conditioned. Clinical retention rates definitely indicated the improved clinical efficacy of the newest dentin adhesives over the earlier systems. With regard to adhesion strategy, adhesive systems that removed the smear layer and concurrently demineralized the dentin surface layer performed clinically better than systems that modified the disorderly layer of smear debris without complete removal. Hybridization by resin interdiffusion into the exposed dentinal collagen layer, combined with attachment of resin tags into the opened dentin tubules, appeared to be essential for reliable dentin bonding but might be insufficient by itself. The additional formation of an elastic bonding area as a polymerization shrinkage absorber and the use of a microfine restorative composite apparently guaranteed an efficient clinical result. The perfect one-year retention recorded for Clearfil Liner Bond System and Scotchbond Multi-Purpose must be confirmed at later recalls. PMID:7983255

  8. High-Temperature Adhesive Strain Gage Developed

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.

    1997-01-01

    Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.

  9. Molecular mechanics of mussel adhesion proteins

    NASA Astrophysics Data System (ADS)

    Qin, Zhao; Buehler, Markus J.

    2014-01-01

    Mussel foot protein (mfp), a natural glue produced by marine mussel, is an intriguing material because of its superior ability for adhesion in various environments. For example, a very small amount of this material is sufficient to affix a mussel to a substrate in water, providing structural support under extreme forces caused by the dynamic effects of waves. Towards a more complete understanding of its strength and underwater workability, it is necessary to understand the microscropic mechanisms by which the protein structure interacts with various substrates. However, none of the mussel proteins' structure is known, preventing us from directly using atomistic modeling to probe their structural and mechanical properties. Here we use an advanced molecular sampling technique to identify the molecular structures of two mussel foot proteins (mfp-3 and mfp-5) and use those structures to study their mechanics of adhesion, which is then incorporated into a continuum model. We calculate the adhesion energy of the mussel foot protein on a silica substrate, compute the adhesion strength based on results obtained from molecular modeling, and compare with experimental data. Our results show good agreement with experimental measurements, which validates the multiscale model. We find that the molecular structure of the folded mussel foot protein (ultimately defined by its genetic sequence) favors strong adhesion to substrates, where L-3,4-dihydroxyphenylalanine (or DOPA) protein subunits work in a cooperative manner to enhance adhesion. Our experimental data suggests a peak attachment force of 0.4±0.1 N, which compares favorably with the prediction from the multiscale model of Fc=0.21-0.33 N. The principles learnt from those results could guide the fabrication of new interfacial materials (e.g. composites) to integrate organic with inorganic surfaces in an effective manner.

  10. Method of measuring metal coating adhesion

    DOEpatents

    Roper, John R.

    1985-01-01

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  11. Treatment of adhesive capsulitis: a review

    PubMed Central

    D’Orsi, Giovanni Maria; Via, Alessio Giai; Frizziero, Antonio; Oliva, Francesco

    2012-01-01

    Summary Adhesive capsulitis is a condition “difficult to define, difficult to treat and difficult to explain from the point of view of pathology”. This Codman’s assertion is still actual because of a variable nomenclature, an inconsistent reporting of disease staging and many types of treatment. There is no consensus on how the best way best to manage patients with this condition, so we want to provide an evidence-based overview regarding the effectiveness of conservative and surgical interventions to treat adhesive capsulitis. PMID:23738277

  12. Surgical Adhesives in Facial Plastic Surgery.

    PubMed

    Toriumi, Dean M; Chung, Victor K; Cappelle, Quintin M

    2016-06-01

    In facial plastic surgery, attaining hemostasis may require adjuncts to traditional surgical techniques. Fibrin tissue adhesives have broad applications in surgery and are particularly useful when addressing the soft tissue encountered in facial plastic surgery. Beyond hemostasis, tissue adhesion and enhanced wound healing are reported benefits associated with a decrease in operating time, necessity for drains and pressure dressings, and incidence of wound healing complications. These products are clinically accessible to most physicians who perform facial plastic surgery, including skin grafts, flaps, rhytidectomy, and endoscopic forehead lift. PMID:27267012

  13. [Investigation on bovine leukocyte adhesion deficiency].

    PubMed

    Ma, Jin-Zhu; Cui, Yu-Dong; Zhu, Zhan-Bo; Cao, Hong-Wei; Piao, Fan-Ze

    2006-10-01

    Bovine leukocyte adhesion deficiency (BLAD) is autosomal recessive disease. The pathogeny of BLAD is genic mutation of CD18-integrins on the leukocyte. In order to know the carrier and occurrence of bovine leukocyte adhesion deficiency (BLAD) among cows age from one to six years old in China, 1,000 cows were investigated by means of amplifying a CD18 gene fragment via reverse transcriptase-PCR followed by restriction digestion with Taq I. Results showed that 19 cows were BLAD carriers, indicating that the BLAD carrier rate was 1.9 percent. In addition, one cow was found to have BLAD. PMID:17035180

  14. Effects of military environments on optical adhesives

    NASA Astrophysics Data System (ADS)

    Krevor, David H.; Vazirani, Hargovind N.; Xu, Antai

    1993-09-01

    The military environment imposes harsh conditions on adhesives. These conditions differ both qualitatively and quantitatively from typical civilian environments. Military systems must withstand exposure to moisture, temperature extremes, sunlight/ultraviolet radiation and other climatic stresses that are far in excess of what would be expected for commercial applications. Additionally, civilian products rarely consider issues such as fungus susceptibility, resistance to jet fuels and de-icing solvents, or resistance to chemical warfare agents and their decontaminants. The effect of military environments on both the optical and mechanical properties of optical adhesives are discussed for avionic display applications.

  15. Addition polyimide adhesives containing various end groups

    NASA Technical Reports Server (NTRS)

    Saint Clair, A. K.; Saint Clair, T. L.

    1982-01-01

    Addition polyimode oligomers have been synthesized from 3,3 prime, 4,4 prime-benzophenone tetracarboxylic acid dianhydride and 3,3 prime-methylenedianiline using a variety of latent crosslinking groups as end-caps. The nominal 1300 molecular weight imide prepolymers were isolated and characterized for solubility in amide, chlorinated and ether solvents, melt-flow and cure properties, glass transition temperature, and thermal stability on heating in an air atmosphere. Adhesive strengths of the polyimides were obtained both at ambient and elevated temperatures before and after aging at 232 C. Properties of the novel addition polyimides were compared to a known nadic end-capped adhesive, LARC-13.

  16. Physics of cell elasticity, shape and adhesion

    NASA Astrophysics Data System (ADS)

    Safran, S. A.; Gov, N.; Nicolas, A.; Schwarz, U. S.; Tlusty, T.

    2005-07-01

    We review recent theoretical work that analyzes experimental measurements of the shape, fluctuations and adhesion properties of biological cells. Particular emphasis is placed on the role of the cytoskeleton and cell elasticity and we contrast the shape and adhesion of elastic cells with fluid-filled vesicles. In red blood cells (RBC), the cytoskeleton consists of a two-dimensional network of spectrin proteins. Our analysis of the wavevector and frequency dependence of the fluctuation spectrum of RBC indicates that the spectrin network acts as a confining potential that reduces the fluctuations of the lipid bilayer membrane. However, since the cytoskeleton is only sparsely connected to the bilayer, one cannot regard the composite cytoskeleton-membrane as a polymerized object with a shear modulus. The sensitivity of RBC fluctuations and shapes to ATP concentration may reflect topological defects induced in the cytoskeleton network by ATP. The shapes of cells that adhere to a substrate are strongly determined by the cytoskeletal elasticity that can be varied experimentally by drugs that depolymerize the cytoskeleton. This leads to a tension-driven retraction of the cell body and a pearling instability of the resulting ray-like protrusions. Recent experiments have shown that adhering cells exert polarized forces on substrates. The interactions of such “force dipoles” in either bulk gels or on surfaces can be used to predict the nature of self-assembly of cell aggregates and may be important in the formation of artificial tissues. Finally, we note that cell adhesion strongly depends on the forces exerted on the adhesion sites by the tension of the cytoskeleton. The size and shape of the adhesion regions are strongly modified as the tension is varied and we present an elastic model that relates this tension to deformations that induce the recruitment of new molecules to the adhesion region. In all these examples, cell shape and adhesion differ from vesicle shape and

  17. Method of measuring metal coating adhesion

    DOEpatents

    Roper, J.R.

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  18. Analysis of adhesively bonded composite lap joints

    SciTech Connect

    Tong, L.; Kuruppu, M.; Kelly, D.

    1994-12-31

    A new nonlinear formulation is developed for the governing equations for the shear and peel stresses in adhesively bonded composite double lap joints. The new formulation allows arbitrary nonlinear stress-strain characteristics in both shear and peel behavior. The equations are numerically integrated using a shooting technique and Newton-Raphson method behind a user friendly interface. The failure loads are predicted by utilizing the maximum stress criterion, interlaminar delamination and the energy density failure criteria. Numerical examples are presented to demonstrate the effect of the nonlinear adhesive behavior on the stress distribution and predict the failure load and the associated mode.

  19. Disturbed Homeostasis of Lung Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 During Sepsis

    PubMed Central

    Laudes, Ines J.; Guo, Ren-Feng; Riedemann, Niels C.; Speyer, Cecilia; Craig, Ron; Sarma, J. Vidya; Ward, Peter A.

    2004-01-01

    Cecal ligation and puncture (CLP)-induced sepsis in mice was associated with perturbations in vascular adhesion molecules. In CLP mice, lung vascular binding of 125I-monoclonal antibodies to intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 revealed sharp increases in binding of anti-ICAM-1 and significantly reduced binding of anti-VCAM-1. In whole lung homogenates, intense ICAM-1 up-regulation was found (both in mRNA and in protein levels) during sepsis, whereas very little increase in VCAM-1 could be measured although some increased mRNA was found. During CLP soluble VCAM-1 (sVCAM-1) and soluble ICAM-1 (sICAM-1) appeared in the serum. When mouse dermal microvascular endothelial cells (MDMECs) were incubated with serum from CLP mice, constitutive endothelial VCAM-1 fell in association with the appearance of sVCAM-1 in the supernatant fluids. Under the same conditions, ICAM-1 cell content increased in MDMECs. When MDMECs were evaluated for leukocyte adhesion, exposure to CLP serum caused increased adhesion of neutrophils and decreased adhesion of macrophages and T cells. The progressive build-up in lung myeloperoxidase after CLP was ICAM-1-dependent and independent of VLA-4 and VCAM-1. These data suggest that sepsis disturbs endothelial homeostasis, greatly favoring neutrophil adhesion in the lung microvasculature, thereby putting the lung at increased risk of injury. PMID:15039231

  20. Beetle adhesive hairs differ in stiffness and stickiness: in vivo adhesion measurements on individual setae

    NASA Astrophysics Data System (ADS)

    Bullock, James M. R.; Federle, Walter

    2011-05-01

    Leaf beetles are able to climb on smooth and rough surfaces using arrays of micron-sized adhesive hairs (setae) of varying morphology. We report the first in vivo adhesive force measurements of individual setae in the beetle Gastrophysa viridula, using a smooth polystyrene substrate attached to a glass capillary micro-cantilever. The beetles possess three distinct adhesive pads on each leg which differ in function and setal morphology. Visualisation of pull-offs allowed forces to be measured for each tarsal hair type. Male discoidal hairs adhered with the highest forces (919 ± 104 nN, mean ± SE), followed by spatulate (582 ± 59 nN) and pointed (127 ± 19 nN) hairs. Discoidal hairs were stiffer in the normal direction (0.693 ± 0.111 N m-1) than spatulate (0.364 ± 0.039 N m-1) or pointed (0.192 ± 0.044 N m-1) hairs. The greater adhesion on smooth surfaces and the higher stability of discoidal hairs help male beetles to achieve strong adhesion on the elytra of females during copulation. A comparison of pull-off forces measured for single setae and whole pads (arrays) revealed comparable levels of adhesive stress. This suggests that beetles are able to achieve equal load sharing across their adhesive pads so that detachment through peeling is prevented.

  1. Differential adhesiveness between blood and marrow leukemic cells having similar pattern of VLA adhesion molecule expression.

    PubMed

    Thomas, X; Anglaret, B; Bailly, M; Maritaz, O; Magaud, J P; Archimbaud, E

    1998-10-01

    Functional adhesion of blood and marrow leukemic cells from 14 acute myeloid leukemia patients presenting with hyperleukocytosis was evaluated by performing cytoadhesion assays on purified (extracellular matrix proteins) and non-purified supports (MRC5 fibroblastic cell line). Results, in 30-min chromium release assay, show a mean +/- S.D. adhesion to fibronectin, collagen, and laminin respectively of 30 +/- 17%, 20 +/- 13%, 25 +/- 17% for blood leukemic cells and 18 +/- 11%, 11 +/- 10%, 11 +/- 8% for marrow leukemic cells. These differences between blood and marrow cells were statistically significant (respectively P = 0.005, P = 0.01 and P = 0.002), while no difference was noted regarding adhesion to non-purified supports. The higher adhesion of blood blast cells to purified supports was observed regardless of CD34 expression. No significant difference was observed in the expression of cell surface VLA-molecules (CD29, CD49b, CD49d, CD49e, CD49f) between blood and marrow blast cells. The addition of GM-CSF or G-CSF induced increased adhesion of marrow blasts and decreased adhesion of blood blasts leading to a loss of the difference between blood and marrow cells. In a 60-min chromium release assay, marrow blasts adhered even more than blood leukemic cells to fibronectin. In contrast, marrow blasts from 'aleukemic' acute myeloid leukemia patients did not show any modification regarding their adhesion to extracellular matrix proteins when co-cultured with growth factors. PMID:9766756

  2. Nitrogen starvation affects bacterial adhesion to soil

    PubMed Central

    Borges, Maria Tereza; Nascimento, Antônio Galvão; Rocha, Ulisses Nunes; Tótola, Marcos Rogério

    2008-01-01

    One of the main factors limiting the bioremediation of subsoil environments based on bioaugmentation is the transport of selected microorganisms to the contaminated zones. The characterization of the physiological responses of the inoculated microorganisms to starvation, especially the evaluation of characteristics that affect the adhesion of the cells to soil particles, is fundamental to anticipate the success or failure of bioaugmentation. The objective of this study was to investigate the effect of nitrogen starvation on cell surface hydrophobicity and cell adhesion to soil particles by bacterial strains previously characterized as able to use benzene, toluene or xilenes as carbon and energy sources. The strains LBBMA 18-T (non-identified), Arthrobacter aurescens LBBMA 98, Arthrobacter oxydans LBBMA 201, and Klebsiella sp. LBBMA 204–1 were used in the experiments. Cultivation of the cells in nitrogen-deficient medium caused a significant reduction of the adhesion to soil particles by all the four strains. Nitrogen starvation also reduced significantly the strength of cell adhesion to the soil particles, except for Klebsiella sp. LBBMA 204–1. Two of the four strains showed significant reduction in cell surface hydrophobicity. It is inferred that the efficiency of bacterial transport through soils might be potentially increased by nitrogen starvation. PMID:24031246

  3. Towards a chemistry of cohesion and adhesion

    NASA Astrophysics Data System (ADS)

    Eberhart, M. E.; Donovan, M. M.; MacLaren, J. M.; Clougherty, D. P.

    Modern chemistry frequently describes the structure and reaction dynamics of molecules in terms of the general principle of “competition for bonds”; consequently, bonding forms the basis of the language of chemistry. The actual models used to represent these bonds are frequently system specific. Organic reactions are described in terms of bonds based on pairs of atomic valence electrons. Reactions of inorganic coordination complexes are described in terms of bonds based on a molecular orbital representation. In analogy to those chemistries, a representation for a bond and bond strength, suitable for describing the cohesive and adhesive properties of all classes of materials, is introduced. This representation proves to yield an explanation for the observed cohesive properties of a specific class of materials (cleavage in bcc metals), and it also provides a framework for exploring and analyzing the more complex phenomena of cohesion and adhesion, such as environmentally-induced embrittlement. A complete chemistry of cohesion and adhesion will require the demonstration that the specific bonding model used can form the basis for consistent interpretations for a wealth of experimental phenomena beyond environmentally-induced embrittlement; thus, as presented, this model does not provide a complete chemistry of cohesion and adhesion, but does embody the first steps in that direction.

  4. Cure-rate data for silicone adhesive

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C.; Fisher, A.

    1978-01-01

    Report describes work with concentrations down to 0.07 percent and is useful when applying adhesives in terrestrial and space applications. Cured Silicone retains low-outgassing properties as well as its snap, elongation, and resilience. Tests for hardness of silicone material also showed good results. No gross hysteresis observable on recovery from stretching nor was there any decrease in hardness.

  5. Adhesion of D. discoideum on Hydrophobic Substrate

    NASA Astrophysics Data System (ADS)

    Flanders, Bret; Ploscariu, Nicoleta

    2015-03-01

    Adhesion by amoeboid cells, such as D. discoideum, is poorly understood but critical for other behaviors such as phagocytosis and migration. Furthermore, both leucocytes and breast cancer cells employ the amoeboid mode of movement at various points in their life-cycles. Hence, improved knowledge of amoeboid adhesion may lead to be new strategies for controlling other important cellular processes. This study regards adhesion by D. discoideum on silanized glass substrates. Reflection interference contrast microscopy is used in conjunction with other methods to determine the contact angle, cell-medium interfacial energy, and adhesion energy of these cells. The contact angle of individual cells settling under gravity onto a substrate is observed to increase as the size of the contact patch increases. This behavior occurs on slower time-scales than expected for the settling of inert vesicles. The implications of this observation on the nature of the underlying forces will be discussed. This work was supported in part by NSF Grant PHY-646966.

  6. Underwater Adhesives Retrofit Pipelines with Advanced Sensors

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Houston-based Astro Technology Inc. used a partnership with Johnson Space Center to pioneer an advanced fiber-optic monitoring system for offshore oil pipelines. The company's underwater adhesives allow it to retrofit older deepwater systems in order to measure pressure, temperature, strain, and flow properties, giving energy companies crucial data in real time and significantly decreasing the risk of a catastrophe.

  7. Si/Cu Interface Structure and Adhesion

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Gang; Smith, John

    2006-03-01

    An ab initio investigation of the Si(111)/Cu(111) interfacial atomic structure and adhesion is reported [1]. Misfit dislocations appear naturally, as do hcp interfacial silicide phases that vary with temperature. The silicides form in the interface even at relatively low temperatures. These results are consistent with available experimental data. [1] Xiao-Gang Wang, John Smith, Physical Review Letters 95, 156102 (2005).

  8. Adhesion networks of cnidarians: a postgenomic view.

    PubMed

    Tucker, Richard P; Adams, Josephine C

    2014-01-01

    Cell-extracellular matrix (ECM) and cell-cell adhesion systems are fundamental to the multicellularity of metazoans. Members of phylum Cnidaria were classified historically by their radial symmetry as an outgroup to bilaterian animals. Experimental study of Hydra and jellyfish has fascinated zoologists for many years. Laboratory studies, based on dissection, biochemical isolations, or perturbations of the living organism, have identified the ECM layer of cnidarians (mesoglea) and its components as important determinants of stem cell properties, cell migration and differentiation, tissue morphogenesis, repair, and regeneration. Studies of the ultrastructure and functions of intercellular gap and septate junctions identified parallel roles for these structures in intercellular communication and morphogenesis. More recently, the sequenced genomes of sea anemone Nematostella vectensis, Hydra magnipapillata, and coral Acropora digitifera have opened up a new frame of reference for analyzing the cell-ECM and cell-cell adhesion molecules of cnidarians and examining their conservation with bilaterians. This chapter integrates a review of literature on the structure and functions of cell-ECM and cell-cell adhesion systems in cnidarians with current analyses of genome-encoded repertoires of adhesion molecules. The postgenomic perspective provides a fresh view on fundamental similarities between cnidarian and bilaterian animals and is impelling wider adoption of species from phylum Cnidaria as model organisms. PMID:24411175

  9. Adhesion and Thin-Film Module Reliability

    SciTech Connect

    McMahon, T. J.; Jorgenson, G. J.

    2006-01-01

    Among the infrequently measured but essential properties for thin-film (T-F) module reliability are the interlayer adhesion and cohesion within a layer. These can be cell contact layers to glass, contact layers to the semiconductor, encapsulant to cell, glass, or backsheet, etc. We use an Instron mechanical testing unit to measure peel strengths at 90deg or 180deg and, in some cases, a scratch and tape pull test to evaluate inter-cell layer adhesion strengths. We present peel strength data for test specimens laminated from the three T-F technologies, before and after damp heat, and in one instance at elevated temperatures. On laminated T-F cell samples, failure can occur uniformly at any one of the many interfaces, or non-uniformly across the peel area at more than one interface. Some peel strengths are Lt1 N/mm. This is far below the normal ethylene vinyl acetate/glass interface values of >10 N/mm. We measure a wide range of adhesion strengths and suggest that adhesion measured under higher temperature and relative humidity conditions is more relevant for module reliability.

  10. High Temperature Adhesives for Bonding Kapton

    NASA Technical Reports Server (NTRS)

    Stclair, A. K.; Slemp, W. S.; Stclair, T. L.

    1978-01-01

    Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/Kapton bondlines were monitored by thermomechanical analysis.

  11. Performance of thermal adhesives in forced convection

    NASA Technical Reports Server (NTRS)

    Kundu, Nikhil K.

    1993-01-01

    Cooling is critical for the life and performance of electronic equipment. In most cases cooling may be achieved by natural convection but forced convection may be necessary for high wattage applications. Use of conventional type heat sinks may not be feasible from the viewpoint of specific applications and the costs involved. In a heat sink, fins can be attached to the well by ultrasonic welding, by soldering, or with a number of industrially available thermal adhesives. In this paper, the author investigates the heat transfer characteristics of several adhesives and compares them with ultrasonic welding and theoretically calculated values. This experiment was conducted in an air flow chamber. Heat was generated by using heaters mounted on the well. Thermstrate foil, Uniset A401, and Aremco 571 adhesives were tested along with an ultrasonically welded sample. Ultrasonic welding performed far better than the adhesives and Thermstrate foil. This type of experiment can be adapted for a laboratory exercise in an upper level heat transfer course. It gives students an exposure to industrial applications that help them appreciate the importance of the course material.

  12. Guest editorial, special issue on biobased adhesives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article is a preface for a special issue that showcases significant developments on adhesives made with biorenewable materials, such as agricultural crops (soybean, corn), plant extractives (bark, tannins), and marine sources (mussels). This collection of pioneering studies and reviews on bioba...

  13. Microfabricated adhesive mimicking gecko foot-hair

    NASA Astrophysics Data System (ADS)

    Geim, A. K.; Dubonos, S. V.; Grigorieva, I. V.; Novoselov, K. S.; Zhukov, A. A.; Shapoval, S. Yu.

    2003-07-01

    The amazing climbing ability of geckos has attracted the interest of philosophers and scientists alike for centuries. However, only in the past few years has progress been made in understanding the mechanism behind this ability, which relies on submicrometre keratin hairs covering the soles of geckos. Each hair produces a miniscule force ~10-7 N (due to van der Waals and/or capillary interactions) but millions of hairs acting together create a formidable adhesion of ~10 N cm-2: sufficient to keep geckos firmly on their feet, even when upside down on a glass ceiling. It is very tempting to create a new type of adhesive by mimicking the gecko mechanism. Here we report on a prototype of such 'gecko tape' made by microfabrication of dense arrays of flexible plastic pillars, the geometry of which is optimized to ensure their collective adhesion. Our approach shows a way to manufacture self-cleaning, re-attachable dry adhesives, although problems related to their durability and mass production are yet to be resolved.

  14. Adhesive transfer of thin viscoelastic films.

    PubMed

    Shull, Kenneth R; Martin, Elizabeth F; Drzal, Peter L; Hersam, Mark C; Markowitz, Alison R; McSwain, Rachel L

    2005-01-01

    Micellar suspensions of acrylic diblock copolymers are excellent model materials for studying the adhesive transfer of viscoelastic solids. The micellar structure is maintained in films with a variety of thicknesses, giving films with a well-defined structure and viscoelastic character. Thin films were cast onto elastomeric silicone substrates from micellar suspensions in butanol, and the adhesive interactions between these coated elastomeric substrates and a rigid indenter were quantified. By controlling the adhesive properties of the film/indenter and film/substrate interfaces we were able to obtain very clean transfer of the film from the substrate to the portion of the glass indenter with which the film was in contact. Adhesive failure at the film/substrate interface occurs when the film/indenter interface is able to support an applied energy release rate that is sufficient to result in cavity nucleation at the film/substrate interface. Cavity formation is rapidly followed by delamination of the entire region under the indenter. The final stage in the transfer process involves the failure of the film that bridges the indenter and the elastomeric substrate. This film is remarkably robust and is extended to three times its original width prior to failure. Failure of this film occurs at the periphery of the indenter, giving a transferred film that conforms to the original contact area between the indenter and the coated substrate. PMID:15620300

  15. The role of material properties in adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When two solid surfaces are brought into contact strong adhesive bond forces can develop between the materials. The magnitude of the forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between solids is addressed from a theoretical consideration of the electronic nature of the surfaces and experimentally relating bond forces to the nature of the interface resulting from solid state contact. Surface properties correlated with adhesion include, atomic or molecular orientation, reconstruction and segregation as well as the chemistry of the surface specie. Where dissimilar solids are in contact the contribution of each is considered as is the role of their interactive chemistry on bond strength. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structure, crystallographic orientation and state. Materials examined with respect to interfacial adhesive interactions include metals, alloys, ceramics, polymers and diamond. They are reviewed both in single and polycrystalline form. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  16. Flowmeter determines mix ratio for viscous adhesives

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.

    1967-01-01

    Flowmeter determines mix ratio for continuous flow mixing machine used to produce an adhesive from a high viscosity resin and aliphatic amine hardener pumped through separate lines to a rotary blender. The flowmeter uses strain gages in the two flow paths and monitors their outputs with appropriate instrumentation.

  17. Method for making adhesive from biomass

    DOEpatents

    Russell, Janet A.; Riemath, William F.

    1985-01-01

    A method is described for making adhesive from biomass. A liquefaction oil is prepared from lignin-bearing plant material and a phenolic fraction is extracted therefrom. The phenolic fraction is reacted with formaldehyde to yield a phenol-formaldehyde resin.

  18. 21 CFR 878.4010 - Tissue adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue adhesive. 878.4010 Section 878.4010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... intended for use in the embolization of brain arteriovenous malformation or for use in ophthalmic...

  19. 21 CFR 878.4010 - Tissue adhesive.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tissue adhesive. 878.4010 Section 878.4010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... intended for use in the embolization of brain arteriovenous malformation or for use in ophthalmic...

  20. 21 CFR 878.4010 - Tissue adhesive.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tissue adhesive. 878.4010 Section 878.4010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... intended for use in the embolization of brain arteriovenous malformation or for use in ophthalmic...

  1. 21 CFR 878.4010 - Tissue adhesive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tissue adhesive. 878.4010 Section 878.4010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... intended for use in the embolization of brain arteriovenous malformation or for use in ophthalmic...

  2. 21 CFR 878.4010 - Tissue adhesive.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tissue adhesive. 878.4010 Section 878.4010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... intended for use in the embolization of brain arteriovenous malformation or for use in ophthalmic...

  3. Method for making adhesive from biomass

    DOEpatents

    Russell, J.A.; Riemath, W.F.

    1984-03-30

    A method is described for making adhesive from biomass. A liquefaction oil is prepared from lignin-bearing plant material and a phenolic fraction is extracted therefrom. The phenolic fraction is reacted with formaldehyde to yield a phenol-formaldehyde resin. 2 figures.

  4. Elastic Light Tunable Tissue Adhesive Dendrimers.

    PubMed

    Feng, Gao; Djordjevic, Ivan; Mogal, Vishal; O'Rorke, Richard; Pokholenko, Oleksandr; Steele, Terry W J

    2016-07-01

    Development of bioadhesive formulations for tissue fixation remains a challenge. The major drawbacks of available bioadhesives are low adhesion strength, toxic byproducts, and complexity of application onto affected tissues. In order to address these problems, this study has developed a hydrogel bioadhesive system based on poly amido amine (PAMAM) dendrimer, grafted (conjugated) with UV-sensitive, 4-[3-(trifluoromethyl)-3H-diazirin-3-yl] benzyl bromide (PAMAM-g-diazirine). This particular diazirine molecule can be grafted to the surface amine groups of PAMAM in a one-pot synthesis. Diazirine functionalities are carbene precursors that form covalent crosslinks with hydrated tissues after low-power UV activation without necessity of free-radical initiators. The rheological properties and adhesion strength to ex vivo tissues are highly controllable depending on diazirine grafting, hydrogel concentration, and UV dose intensity fitting variety types of tissues. Covalent bonds at the tissue/bioadhesive interface provide robust adhesive and mechanical strength in a highly hydrated environment. The free flowing hydrogel conversion to elastic adhesive after UV activation allows intimate contact with the ex vivo swine tissue surfaces with low in vitro cytotoxicity observed, making it a promising bioadhesive formulation toward clinical applications. PMID:27061355

  5. Nondestructive Evaluation of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Nayeb-Hashemi, Hamid; Rossettos, J. N.

    1997-01-01

    The final report consists of 5 published papers in referred journals and a technical letter to the technical monitor. These papers include the following: (1) Comparison of the effects of debonds and voids in adhesive; (2) On the peak shear stresses in adhesive joints with voids; (3) Nondestructive evaluation of adhesively bonded joints by acousto-ultrasonic technique and acoustic emission; (4) Multiaxial fatigue life evaluation of tubular adhesively bonded joints; (5) Theoretical and experimental evaluation of the bond strength under peeling loads. The letter outlines the progress of the research. Also included is preliminary information on the study of nondestructive evaluation of composite materials subjected to localized heat damage. The investigators studied the effects of localized heat on unidirectional fiber glass epoxy composite panels. Specimens of the fiber glass epoxy composites were subjected to 400 C heat for varying lengths of time. The specimens were subjected to nondestructive tests. The specimens were then pulled to their failure and acoustic emission of these specimens were measured. The analysis of the data was continuing as of the writing of the letter, and includes a finite element stress analysis of the problem.

  6. Periderm prevents pathological epithelial adhesions during embryogenesis

    PubMed Central

    Richardson, Rebecca J.; Hammond, Nigel L.; Coulombe, Pierre A.; Saloranta, Carola; Nousiainen, Heidi O.; Salonen, Riitta; Berry, Andrew; Hanley, Neil; Headon, Denis; Karikoski, Riitta; Dixon, Michael J.

    2014-01-01

    Appropriate development of stratified, squamous, keratinizing epithelia, such as the epidermis and oral epithelia, generates an outer protective permeability barrier that prevents water loss, entry of toxins, and microbial invasion. During embryogenesis, the immature ectoderm initially consists of a single layer of undifferentiated, cuboidal epithelial cells that stratifies to produce an outer layer of flattened periderm cells of unknown function. Here, we determined that periderm cells form in a distinct pattern early in embryogenesis, exhibit highly polarized expression of adhesion complexes, and are shed from the outer surface of the embryo late in development. Mice carrying loss-of-function mutations in the genes encoding IFN regulatory factor 6 (IRF6), IκB kinase-α (IKKα), and stratifin (SFN) exhibit abnormal epidermal development, and we determined that mutant animals exhibit dysfunctional periderm formation, resulting in abnormal intracellular adhesions. Furthermore, tissue from a fetus with cocoon syndrome, a lethal disorder that results from a nonsense mutation in IKKA, revealed an absence of periderm. Together, these data indicate that periderm plays a transient but fundamental role during embryogenesis by acting as a protective barrier that prevents pathological adhesion between immature, adhesion-competent epithelia. Furthermore, this study suggests that failure of periderm formation underlies a series of devastating birth defects, including popliteal pterygium syndrome, cocoon syndrome, and Bartsocas-Papas syndrome. PMID:25133425

  7. Study of the adhesion of coal particles during briquetting

    SciTech Connect

    Tekenov, Zh.; Dzhamanbaev, A.

    1983-01-01

    The paper presents a method for measuring the forces of adhesion between coal particles during briquetting. Some experimental data are reported illustrating the relationship between the adhesive forces and various factors.

  8. Sliding Adhesion Dynamics of Isolated Gecko Setal Arrays

    NASA Astrophysics Data System (ADS)

    Sponberg, Simon; Autumn, Kellar

    2003-03-01

    The tokay gecko (Gekko gecko) can adhere to nearly any surface through van der Waals interactions of the specialized setae (b-keratin "hairs") of its toe pads. Our recent research has suggested that a gecko is substantially overbuilt for static adhesion requiring as little as 0.03of its theoretical adhesive capacity. We performed the first sliding adhesion experiments on this novel biological adhesive to determine its response to dynamic loading. We isolated arrays of setae and constructed a precision controlled Robo-toe to study sliding effects. Our results indicate that, unlike many typical adhesives, gecko setal arrays exhibit an increased frictional force upon sliding (mk > ms) which further increases with velocity, suggesting that perturbation rejection may be an evolutionary design principle underlying the evolution of the gecko adhesive. We compare these dynamic properties with those of other adhesives and explore the impacts of these results on the design of artificial adhesives.

  9. Current pharmaceutical design on adhesive based transdermal drug delivery systems.

    PubMed

    Ghosh, Animesh; Banerjee, Subham; Kaity, Santanu; Wong, Tin W

    2015-01-01

    Drug-in-adhesive transdermal drug delivery matrix exploits intimate contact of the carrier with stratum corneum, the principal skin barrier to drug transport, to deliver the actives across the skin and into the systemic circulation. The main application challenges of drug-in-adhesive matrix lie in the physicochemical properties of skin varying with age, gender, ethnicity, health and environmental condition of patients. This in turn poses difficulty to design a universal formulation to meet the intended adhesiveness, drug release and drug permeation performances. This review focuses on pressure-sensitive adhesives, and their adhesiveness and drug release/permeation modulation mechanisms as a function of adhesive molecular structure and formulation attributes. It discusses approaches to modulate adhesive tackiness, strength, elasticity, hydrophilicity, molecular suspension capability and swelling capacity, which contribute to the net effect of adhesive on skin bonding, drug release and drug permeation. PMID:25925119

  10. The evolution of adhesiveness as a social adaptation.

    PubMed

    Garcia, Thomas; Doulcier, Guilhem; De Monte, Silvia

    2015-01-01

    Cellular adhesion is a key ingredient to sustain collective functions of microbial aggregates. Here, we investigate the evolutionary origins of adhesion and the emergence of groups of genealogically unrelated cells with a game-theoretical model. The considered adhesiveness trait is costly, continuous and affects both group formation and group-derived benefits. The formalism of adaptive dynamics reveals two evolutionary stable strategies, at each extreme on the axis of adhesiveness. We show that cohesive groups can evolve by small mutational steps, provided the population is already endowed with a minimum adhesiveness level. Assortment between more adhesive types, and in particular differential propensities to leave a fraction of individuals ungrouped at the end of the aggregation process, can compensate for the cost of increased adhesiveness. We also discuss the change in the social nature of more adhesive mutations along evolutionary trajectories, and find that altruism arises before directly beneficial behavior, despite being the most challenging form of cooperation. PMID:26613415

  11. Piezoelectric inkjet printing of medical adhesives and sealants

    NASA Astrophysics Data System (ADS)

    Boehm, Ryan D.; Gittard, Shaun D.; Byrne, Jacqueline M. H.; Doraiswamy, Anand; Wilker, Jonathan J.; Dunaway, Timothy M.; Crombez, Rene; Shen, Weidian; Lee, Yuan-Shin; Narayan, Roger J.

    2010-07-01

    Piezoelectric inkjet printing is a noncontact process that enables microscale processing of biological materials. In this research summary, the use of piezoelectric inkjet printing for patterning medical adhesives and sealants, including a two-component polyethylene glycol hydrogel-based medical sealant, an N-butyl cyanoacrylate tissue adhesive, and a mussel adhesive protein biological adhesive, is described The effect of Fe(III) on mussel adhesive protein structure was evaluated by means of atomic force microscopy. The ability to process microscale patterns of medical sealants and adhesives will provide an improvement in tissue joining, including enhanced tissue integrity, reduced bond lines, and decreased adhesive toxicity. Piezoelectric inkjet deposition of medical adhesives and sealants may be used in wound closure, fracture fixation, and microscale vascular surgery.

  12. Evaluation of high temperature structural adhesives for extended service

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.

    1984-01-01

    High temperature stable adhesive systems were evaluated for potential Supersonic Cruise Research (SCR) vehicle applications. The program was divided into two major phases: Phase I 'Adhesive Screening' evaluated eleven selected polyimide (PI) and polyphenylquinoxaline (PPQ) adhesive resins using eight different titanium (6Al-4V) adherend surface preparations; Phase II 'Adhesive Optimization and Characterization' extensively evaluated two adhesive systems, selected from Phase I studies, for chemical characterization and environmental durability. The adhesive systems which exhibited superior thermal and environmental bond properties were LARC-TPI polyimide and polyphenylquinoxaline both developed at NASA Langley. The latter adhesive system did develop bond failures at extended thermal aging due primarily to incompatibility between the surface preparation and the polymer. However, this study did demonstrate that suitable adhesive systems are available for extended supersonic cruise vehicle design applications.

  13. Adhesives for laminating polyimide insulated flat conductor cable

    NASA Technical Reports Server (NTRS)

    Montermoso, J. C.; Saxton, T. R.; Taylor, R. L.

    1967-01-01

    Polymer adhesive laminates polyimide-film flat conductor cable. It is obtained by reacting an appropriate diamine with a dianhydride. The adhesive has also been used in the lamination of copper to copper for the preparation of multilayer circuit boards.

  14. TOPICAL REVIEW: Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives

    NASA Astrophysics Data System (ADS)

    Sameoto, D.; Menon, C.

    2010-10-01

    In the past two years, there have been a large number of publications on the topic of biomimetic dry adhesives from modeling, fabrication and testing perspectives. We review and compare the most recent advances in fabrication and testing of these materials. While there is increased convergence and consensus as to what makes a good dry adhesive, the fabrication of these materials is still challenging, particularly for anisotropic or hierarchal designs. Although qualitative comparisons between different adhesive designs can be made, quantifying the exact performance and rating each design is significantly hampered by the lack of standardized testing methods. Manufacturing dry adhesives, which can reliably adhere to rough surfaces, show directional and self-cleaning behavior and are relatively simple to manufacture, is still very challenging—great strides by multiple research groups have however made these goals appear achievable within the next few years.

  15. Adhesion of synthetic organic polymer on soft tissue. I. A fast setting polyurethane adhesive.

    PubMed

    Llewellyn-Thomas, E; Wang, P Y; Cannon, J S

    1974-01-01

    Conventional polyurethane prepolymers have been shown to adhere to living biological tissues. However, their setting is not sufficiently expedient to permit convenient applications in vivo. A prepolymer prepared from the highly reactive 6-chloro-2,4,5-trifluoro-1,3-phenylene diisocyanate, castor oil, and a trace of pyridine has afforded an adhesive which sets in about 2 min in vivo. The fast setting has resulted in poor adhesion on biological tissue. The bonding has been improved by the inclusion of tolylene diisocyanate in the composition without affecting the fast curing rate of the prepolymer. The dispersion of the adhesive and its cohesion after solidification have been adjusted by other minor additives. Preliminary evaluation on animals indicates that this adhesive is most useful as a hemostatic coating in hepatic lacerations. PMID:4819871

  16. Adhesive small bowel adhesions obstruction: Evolutions in diagnosis, management and prevention

    PubMed Central

    Catena, Fausto; Di Saverio, Salomone; Coccolini, Federico; Ansaloni, Luca; De Simone, Belinda; Sartelli, Massimo; Van Goor, Harry

    2016-01-01

    Intra-abdominal adhesions following abdominal surgery represent a major unsolved problem. They are the first cause of small bowel obstruction. Diagnosis is based on clinical evaluation, water-soluble contrast follow-through and computed tomography scan. For patients presenting no signs of strangulation, peritonitis or severe intestinal impairment there is good evidence to support non-operative management. Open surgery is the preferred method for the surgical treatment of adhesive small bowel obstruction, in case of suspected strangulation or after failed conservative management, but laparoscopy is gaining widespread acceptance especially in selected group of patients. "Good" surgical technique and anti-adhesive barriers are the main current concepts of adhesion prevention. We discuss current knowledge in modern diagnosis and evolving strategies for management and prevention that are leading to stratified care for patients. PMID:27022449

  17. Assessment of piezoelectric sensor adhesive bonding

    NASA Astrophysics Data System (ADS)

    Wandowski, T.; Moll, J.; Malinowski, P.; Opoka, S.; Ostachowicz, W.

    2015-07-01

    Piezoelectric transducers are widely utilized in Structural Health Monitoring (SHM). They are used both in guided wave-based and electromechanical impedance-based methods. Transducer debonding or unevenly distributed glue underneath the transducer reduce the performance and reliability of the SHM system. Therefore, quality assessment methods for glue layer need to be developed. In this paper, the authors present results obtained from two methods that allow the quality assessment of adhesive bonds of piezoelectric transducers. The electromechanical impedance method is utilized to analyze transducer adhesive bonding. An improperly prepared bonding layer is a source for changes in the electromechanical impedance characteristics in comparison to a perfectly bonded transducer. In the resistance characteristics of the properly bonded transducer the resonance peaks of the structure were clearly visible. In the case when adhesive layer is not equally distributed under sensor, the amplitudes of structural resonance peaks are reduced. In the case of completely detached transducer, the structural resonance peaks disappear and only resonance peaks of the transducer itself are visible. These peaks (peaks of free transducer hanging on wires) are significantly larger than the resonance peaks of the investigated structure in the considered frequency interval. The bonding layer shape is also analyzed using time-domain terahertz spectroscopy in reflection mode. This method allows to visualize the adhesive layer distribution based on C-scan analysis. C-scans of signals or envelope-detected signals can be used to estimate the area of proper adhesion between bonding agent and transducer and hence provides a more quantitative approach towards transducer inspection.

  18. Surface pretreatments for medical application of adhesion

    PubMed Central

    Erli, Hans J; Marx, Rudolf; Paar, Othmar; Niethard, Fritz U; Weber, Michael; Wirtz, Dieter C

    2003-01-01

    Medical implants and prostheses (artificial hips, tendono- and ligament plasties) usually are multi-component systems that may be machined from one of three material classes: metals, plastics and ceramics. Typically, the body-sided bonding element is bone. The purpose of this contribution is to describe developments carried out to optimize the techniques , connecting prosthesis to bone, to be joined by an adhesive bone cement at their interface. Although bonding of organic polymers to inorganic or organic surfaces and to bone has a long history, there remains a serious obstacle in realizing long-term high-bonding strengths in the in vivo body environment of ever present high humidity. Therefore, different pretreatments, individually adapted to the actual combination of materials, are needed to assure long term adhesive strength and stability against hydrolysis. This pretreatment for metal alloys may be silica layering; for PE-plastics, a specific plasma activation; and for bone, amphiphilic layering systems such that the hydrophilic properties of bone become better adapted to the hydrophobic properties of the bone cement. Amphiphilic layering systems are related to those developed in dentistry for dentine bonding. Specific pretreatment can significantly increase bond strengths, particularly after long term immersion in water under conditions similar to those in the human body. The bond strength between bone and plastic for example can be increased by a factor approaching 50 (pealing work increasing from 30 N/m to 1500 N/m). This review article summarizes the multi-disciplined subject of adhesion and adhesives, considering the technology involved in the formation and mechanical performance of adhesives joints inside the human body. PMID:14561228

  19. On the mechanism of adhesion in biological systems

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.

    2003-04-01

    I study adhesion relevant to biological systems, e.g., flies, crickets and lizards, where the adhesive microstructures consist of arrays of thin fibers. The effective elastic modulus of the fiber arrays can be very small which is of fundamental importance for adhesion on smooth and rough substrates. I study how the adhesion depend on the substrate roughness amplitude and apply the theoretical results to lizards.

  20. Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing

    PubMed Central

    Labonte, David; Clemente, Christofer J.; Dittrich, Alex; Kuo, Chi-Yun; Crosby, Alfred J.; Irschick, Duncan J.; Federle, Walter

    2016-01-01

    Organismal functions are size-dependent whenever body surfaces supply body volumes. Larger organisms can develop strongly folded internal surfaces for enhanced diffusion, but in many cases areas cannot be folded so that their enlargement is constrained by anatomy, presenting a problem for larger animals. Here, we study the allometry of adhesive pad area in 225 climbing animal species, covering more than seven orders of magnitude in weight. Across all taxa, adhesive pad area showed extreme positive allometry and scaled with weight, implying a 200-fold increase of relative pad area from mites to geckos. However, allometric scaling coefficients for pad area systematically decreased with taxonomic level and were close to isometry when evolutionary history was accounted for, indicating that the substantial anatomical changes required to achieve this increase in relative pad area are limited by phylogenetic constraints. Using a comparative phylogenetic approach, we found that the departure from isometry is almost exclusively caused by large differences in size-corrected pad area between arthropods and vertebrates. To mitigate the expected decrease of weight-specific adhesion within closely related taxa where pad area scaled close to isometry, data for several taxa suggest that the pads’ adhesive strength increased for larger animals. The combination of adjustments in relative pad area for distantly related taxa and changes in adhesive strength for closely related groups helps explain how climbing with adhesive pads has evolved in animals varying over seven orders of magnitude in body weight. Our results illustrate the size limits of adhesion-based climbing, with profound implications for large-scale bio-inspired adhesives. PMID:26787862

  1. Adhesions and Healing of Intestinal Anastomoses: The Effect of Anti-Adhesion Barriers.

    PubMed

    Ntourakis, Dimitrios; Katsimpoulas, Michail; Tanoglidi, Anna; Barbatis, Calypso; Karayannacos, Panayotis E; Sergentanis, Theodoros N; Kostomitsopoulos, Nikolaos; Machairas, Anastasios

    2016-06-01

    Background Postoperative adhesions are the result of aberrant peritoneal healing. As they are the leading cause of postoperative bowel obstruction, anti-adherence barriers are advocated for their prevention. This study looks into the effect of these biomaterials on the healing of intestinal anastomoses. Materials and Methods Thirty-three New Zealand White rabbits underwent laparotomy, transection of the terminal ileum, and creation of an end-to-end anastomosis. Animals were randomized into 3 groups: the Control group (n = 11); the Icodextrin group, receiving icodextrin 4% intraperitonealy (n = 11); and the HA/CMC group, having the anastomosis wrapped with a hyaluronic acid/carboxymethylcellulose film (n = 11). All animals were sacrificed on the seventh postoperative day. Macroscopic adhesions were graded and anastomotic strength was tested by the burst pressure. Histological healing was assessed in a semiquantitative way for the presence of ulceration, reepithelization, granulation tissue, inflammation, eosinophilic infiltration, serosal inflammation, and microscopic adhesions. Univariate and multivariate analysis was used. Results are given as medians with interquartile range. Results The median adhesion scores were the following: Control 1 (0-3), Icodextrin 0 (0-1), HA/CMC 0 (0-0), P = .017. The burst pressure did not differ between the groups; however, all except one bowel segments tested burst away from the anastomosis. The macroscopic and histological anastomotic healing was comparable in all 3 groups. A poor histological anastomotic healing score was associated with a higher adhesion grade (odds ratio = 1.92; 95% confidence interval = 1.06-3.47; P = .032). Conclusion Adhesion formation was inhibited by the materials tested without direct detrimental effects on anastomotic healing. Poor anastomotic healing provokes adhesions even in the presence of anti-adhesion barriers. PMID:26474604

  2. Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing.

    PubMed

    Labonte, David; Clemente, Christofer J; Dittrich, Alex; Kuo, Chi-Yun; Crosby, Alfred J; Irschick, Duncan J; Federle, Walter

    2016-02-01

    Organismal functions are size-dependent whenever body surfaces supply body volumes. Larger organisms can develop strongly folded internal surfaces for enhanced diffusion, but in many cases areas cannot be folded so that their enlargement is constrained by anatomy, presenting a problem for larger animals. Here, we study the allometry of adhesive pad area in 225 climbing animal species, covering more than seven orders of magnitude in weight. Across all taxa, adhesive pad area showed extreme positive allometry and scaled with weight, implying a 200-fold increase of relative pad area from mites to geckos. However, allometric scaling coefficients for pad area systematically decreased with taxonomic level and were close to isometry when evolutionary history was accounted for, indicating that the substantial anatomical changes required to achieve this increase in relative pad area are limited by phylogenetic constraints. Using a comparative phylogenetic approach, we found that the departure from isometry is almost exclusively caused by large differences in size-corrected pad area between arthropods and vertebrates. To mitigate the expected decrease of weight-specific adhesion within closely related taxa where pad area scaled close to isometry, data for several taxa suggest that the pads' adhesive strength increased for larger animals. The combination of adjustments in relative pad area for distantly related taxa and changes in adhesive strength for closely related groups helps explain how climbing with adhesive pads has evolved in animals varying over seven orders of magnitude in body weight. Our results illustrate the size limits of adhesion-based climbing, with profound implications for large-scale bio-inspired adhesives. PMID:26787862

  3. Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium.

    PubMed

    Hallahan, D; Kuchibhotla, J; Wyble, C

    1996-11-15

    The predominant early histological changes in irradiated tissues are edema and leukocyte infiltration. Cell adhesion molecules (CAMs) are required for the extravasation of leukocytes from the circulation. To study the role of CAMs in the pathogenesis of radiation-mediated inflammation, we quantified the expression of P-selectin, E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 glycoproteins on the surface of irradiated human endothelial cells. We found that E-selectin and ICAM-1 expression increased after irradiation, whereas there was no increased expression of other cytokine-inducible adhesion molecules (P-selectin or vascular cell adhesion molecule-1). We found a dose- and time-dependent increase in radiation-induced expression of both E-selectin and ICAM-1. Furthermore, the threshold dose for E-selectin expression was 1 Gy, whereas the threshold dose for ICAM-1 synthesis was 5 Gy of X-rays. Northern blot analysis of RNA from irradiated endothelial cells demonstrated that ICAM-1 is expressed at 3-6 h following irradiation. No de novo protein synthesis was required for increased ICAM-1 mRNA expression. The 1.1-kb segment of the 5' untranslated region of the ICAM-1 gene was sufficient for X-ray induction of chloramphenicol acetyltransferase reporter gene expression. We measured whether ICAM-1 mediates adhesion of leukocyte to the irradiated endothelium and found that leukocyte adhesion occurred concurrently with ICAM-1 induction. Radiation-mediated leukocyte adhesion was prevented by anti-ICAM-1 blocking antibodies. These data indicate that ICAM-1 participates in the inflammatory response to ionizing radiation. Moreover, radiation induction of these CAMs occurs in the absence of tumor necrosis factor and interleukin 1 production. PMID:8912850

  4. Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces.

    PubMed

    Lee, Hyungoo; Bhushan, Bharat

    2012-04-15

    The mechanics of fibrillar adhesive surfaces of biological systems such as a Lotus leaf and a gecko are widely studied due to their unique surface properties. The Lotus leaf is a model for superhydrophobic surfaces, self-cleaning properties, and low adhesion. Gecko feet have high adhesion due to the high micro/nanofibrillar hierarchical structures. A nanostructured surface may exhibit low adhesion or high adhesion depending upon fibrillar density, and it presents the possibility of realizing eco-friendly surface structures with desirable adhesion. The current research, for the first time uses a patterning technique to fabricate smart adhesion surfaces: single- and two-level hierarchical synthetic adhesive structure surfaces with various fibrillar densities and diameters that allows the observation of either the Lotus or gecko adhesion effects. Contact angles of the fabricated structured samples were measured to characterize their wettability, and contamination experiments were performed to study for self-cleaning ability. A conventional and a glass ball attached to an atomic force microscope (AFM) tip were used to obtain the adhesive forces via force-distance curves to study scale effect. A further increase of the adhesive forces on the samples was achieved by applying an adhesive to the surfaces. PMID:22285098

  5. Soy and cottonseed protein blends as wood adhesives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As an environmentally friendlier alternative to adhesives from petroleum feedstock, soy proteins are currently being formulated as wood adhesives. Cottonseed proteins have also been found to provide good adhesive properties. In at least some cases, cottonseed proteins appear to form greater shear ...

  6. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  7. 7 CFR 3201.16 - Adhesive and mastic removers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Adhesive and mastic removers. 3201.16 Section 3201.16... Designated Items § 3201.16 Adhesive and mastic removers. (a) Definition. Solvent products formulated for use in removing asbestos, carpet, and tile mastics as well as adhesive materials, including glue,...

  8. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  9. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  10. 7 CFR 3201.16 - Adhesive and mastic removers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Adhesive and mastic removers. 3201.16 Section 3201.16... Designated Items § 3201.16 Adhesive and mastic removers. (a) Definition. Solvent products formulated for use in removing asbestos, carpet, and tile mastics as well as adhesive materials, including glue,...

  11. 7 CFR 3201.16 - Adhesive and mastic removers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Adhesive and mastic removers. 3201.16 Section 3201.16... Designated Items § 3201.16 Adhesive and mastic removers. (a) Definition. Solvent products formulated for use in removing asbestos, carpet, and tile mastics as well as adhesive materials, including glue,...

  12. Looking beyond fibrillar features to scale gecko-like adhesion.

    PubMed

    Bartlett, Michael D; Croll, Andrew B; King, Daniel R; Paret, Beth M; Irschick, Duncan J; Crosby, Alfred J

    2012-02-21

    Hand-sized gecko-inspired adhesives with reversible force capacities as high as 2950 N (29.5 N cm(-2) ) are designed without the use of fibrillar features through a simple scaling theory. The scaling theory describes both natural and synthetic gecko-inspired adhesives, over 14 orders of magnitude in adhesive force capacity, from nanoscopic to macroscopic length scales. PMID:22278804

  13. 7 CFR 2902.16 - Adhesive and mastic removers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Adhesive and mastic removers. 2902.16 Section 2902.16... Items § 2902.16 Adhesive and mastic removers. (a) Definition. Solvent products formulated for use in removing asbestos, carpet, and tile mastics as well as adhesive materials, including glue, tape, and...

  14. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  15. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  16. 7 CFR 2902.16 - Adhesive and mastic removers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Adhesive and mastic removers. 2902.16 Section 2902.16... Items § 2902.16 Adhesive and mastic removers. (a) Definition. Solvent products formulated for use in removing asbestos, carpet, and tile mastics as well as adhesive materials, including glue, tape, and...

  17. Changes in elastic modulus of adhesive and adhesive-infiltrated dentin during storage in water.

    PubMed

    Yasuda, Genta; Inage, Hirohiko; Kawamoto, Ryo; Shimamura, Yutaka; Takubo, Chikako; Tamura, Yukie; Koga, Kensaku; Miyazaki, Masashi

    2008-12-01

    The purpose of this study was to determine the elastic modulus of components at the resin-dentin interface with the use of an ultrasound device. Dentin slabs were obtained from freshly extracted bovine incisors shaped into a rectangular form. After demineralization, the dentin specimens were immersed in adhesives and polymerized. Adhesives were also polymerized and trimmed into the same shape as the dentin slabs. The specimens were then immersed in distilled water at 37 degrees C for up to one year. The ultrasound equipment employed in this study was a Pulser-Receiver, transducers and an oscilloscope. By measuring the longitudinal and shear wave sound velocities, the elastic modulus was determined. When the elastic modulus of adhesive resin-infiltrated demineralized dentin was compared with that of adhesives, slightly but significantly lower values were found for adhesives used in a self-etching primer system. On the other hand, a higher elastic modulus was observed for resin-infiltrated dentin than for an adhesive used in an etch and rinse system. The elastic modulus of the resin-infiltrated dentin prepared with the etch and rinse system was affected by long-term storage in distilled water. PMID:19106478

  18. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    NASA Technical Reports Server (NTRS)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  19. Polymer adhesion at surfaces: biological adhesive proteins and their synthetic mimics

    NASA Astrophysics Data System (ADS)

    Messersmith, Phillip

    2008-03-01

    Mussels are famous for their ability to permanently adhere to a wide variety of wet surfaces, such as rocks, metal and polymer ship hulls, and wood structures. They accomplish this through specialized proteins collectively referred to as mussel adhesive proteins (MAPs). The biophysical aspects of MAP adhesion is being revealed through the use of single molecule force measurements. The results provide insight into the adhesive roles of key amino acids found in these proteins, including the magnitude of adhesive forces, cooperative effects, and their self-healing properties. This molecular-level information is being incorporated into designs of biomimetic polymer coatings for a variety of applications. Our biomimetic approach to polymer design will be illustrated by a few examples where adhesive constituents found in MAPs are exploited to make wet-adhesive polymer coatings. In addition, small molecule analogs of MAPs can be used to apply thin functional films onto virtually any material surface using a facile approach. These coatings have a variety of potential uses in microelectronics, water treatment, prevention of environmental biofouling, and for control of biointerfacial phenomena at the surfaces of medical/diagnostic devices.

  20. Alterations in Adhesion, Transport, and Membrane Characteristics in an Adhesion-Deficient Pseudomonad

    PubMed Central

    DeFlaun, M. F.; Oppenheimer, S. R.; Streger, S.; Condee, C. W.; Fletcher, M.

    1999-01-01

    A stable adhesion-deficient mutant of Burkholderia cepacia G4, a soil pseudomonad, was selected in a sand column assay. This mutant (ENV435) was compared to the wild-type strain by examining the adhesion of the organisms to silica sand and their transport through two aquifer sediments that differed in their sand, silt, and clay contents. We compared the longitudinal transport of the wild type and the adhesion mutant to the transport of a conservative chloride tracer in 25-cm-long glass columns. The transport of the wild-type strain was severely retarded compared to the transport of the conservative tracer in a variety of aquifer sediments, while the adhesion mutant and the conservative tracer traveled at similar rates. An intact sediment core study produced similar results; ENV435 was transported at a faster rate and in much greater numbers than G4. The results of hydrophobic interaction chromatography revealed that G4 was significantly more hydrophobic than ENV435, and polyacrylamide gel electrophoresis revealed significant differences in the lipopolysaccharide O-antigens of the adhesion mutant and the wild type. Differences in this cell surface polymer may explain the decreased adhesion of strain ENV435. PMID:9925613

  1. Alterations in adhesion, transport, and membrane characteristics in an adhesion-deficient pseudomonad

    SciTech Connect

    DeFlaun, M.F.; Streger, S.; Condee, C.W.; Oppenheimer, S.R.; Fletcher, M.

    1999-02-01

    A stable adhesion-deficient mutant of Burkholderia cepacia G4, a soil pseudomonad, was selected in a sand column assay. This mutant (ENV435) was compared to the wild-type strain by examining the adhesion of the organisms to silica sand and their transport through two aquifer sediments that differed in their sand, silt, and clay contents. The authors compared the longitudinal transport of the wild type and the adhesion mutant to the transport of a conservative chloride tracer in 25-cm-long glass columns. The transport of the wild-type strain was severely retarded compared to the transport of the conservative tracer in a variety of aquifer sediments, while the adhesion mutant and the conservative tracer traveled at similar rates. An intact sediment core study produced similar results; ENV435 was transported at a faster rate and in much greater numbers than G4. The results of hydrophobic interaction chromatography revealed that G4 was significantly more hydrophobic than ENV435, and polyacrylamide gel electrophoresis revealed significant differences in the lipopolysaccharide O-antigens of the adhesion mutant and the wild type. Differences in this cell surface polymer may explain the decreased adhesion of strain ENV435.

  2. Humidity-enhanced wet adhesion on insect-inspired fibrillar adhesive pads

    PubMed Central

    Xue, Longjian; Kovalev, Alexander; Eichler-Volf, Anna; Steinhart, Martin; Gorb, Stanislav N.

    2015-01-01

    Many insect species reversibly adhere to surfaces by combining contact splitting (contact formation via fibrillar contact elements) and wet adhesion (supply of liquid secretion via pores in the insects’ feet). Here, we fabricate insect-inspired fibrillar pads for wet adhesion containing continuous pore systems through which liquid is supplied to the contact interfaces. Synergistic interaction of capillarity and humidity-induced pad softening increases the pull-off force and the work of adhesion by two orders of magnitude. This increase and the independence of pull-off force on the applied load are caused by the capillarity-supported formation of solid–solid contact between pad and the surface. Solid–solid contact dominates adhesion at high humidity and capillarity at low humidity. At low humidity, the work of adhesion strongly depends on the amount of liquid deposited on the surface and, therefore, on contact duration. These results may pave the way for the design of insect-inspired adhesive pads. PMID:25791574

  3. The Talin Head Domain Reinforces Integrin-Mediated Adhesion by Promoting Adhesion Complex Stability and Clustering

    PubMed Central

    Ellis, Stephanie J.; Lostchuck, Emily; Goult, Benjamin T.; Bouaouina, Mohamed; Fairchild, Michael J.; López-Ceballos, Pablo; Calderwood, David A.; Tanentzapf, Guy

    2014-01-01

    Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development. PMID:25393120

  4. Rapid Development of Wet Adhesion between Carboxymethylcellulose Modified Cellulose Surfaces Laminated with Polyvinylamine Adhesive.

    PubMed

    Gustafsson, Emil; Pelton, Robert; Wågberg, Lars

    2016-09-14

    The surface of regenerated cellulose membranes was modified by irreversible adsorption of carboxymethylcellulose (CMC). Pairs of wet CMC-modified membranes were laminated with polyvinylamine (PVAm) at room temperature, and the delamination force for wet membranes was measured for both dried and never-dried laminates. The wet adhesion was studied as a function of PVAm molecular weight, amine content, and deposition pH of the polyelectrolyte. Surprisingly the PVAm-CMC system gave substantial wet adhesion that exceeded that of TEMPO-oxidized membranes with PVAm for both dried and never-dried laminates. The greatest wet adhesion was achieved for fully hydrolyzed high molecular weight PVAm. Bulk carboxymethylation of cellulose membranes gave inferior wet adhesion combined with PVAm as compared to CMC adsorption which indicates that a CMC layer of the order of 10 nm was necessary. There are no obvious covalent cross-linking reactions between CMC and PVAm at room temperature, and on the basis of our results, we are instead attributing the wet adhesion to complex formation between the PVAm and the irreversibly adsorbed CMC at the cellulose surface. We propose that interdigitation of PVAm chains into the CMC layer is responsible for the high wet adhesion values. PMID:27552256

  5. Microtubule-dependent modulation of adhesion complex composition.

    PubMed

    Ng, Daniel H J; Humphries, Jonathan D; Byron, Adam; Millon-Frémillon, Angélique; Humphries, Martin J

    2014-01-01

    The microtubule network regulates the turnover of integrin-containing adhesion complexes to stimulate cell migration. Disruption of the microtubule network results in an enlargement of adhesion complex size due to increased RhoA-stimulated actomyosin contractility, and inhibition of adhesion complex turnover; however, the microtubule-dependent changes in adhesion complex composition have not been studied in a global, unbiased manner. Here we used label-free quantitative mass spectrometry-based proteomics to determine adhesion complex changes that occur upon microtubule disruption with nocodazole. Nocodazole-treated cells displayed an increased abundance of the majority of known adhesion complex components, but no change in the levels of the fibronectin-binding α5β1 integrin. Immunofluorescence analyses confirmed these findings, but revealed a change in localisation of adhesion complex components. Specifically, in untreated cells, α5-integrin co-localised with vinculin at peripherally located focal adhesions and with tensin at centrally located fibrillar adhesions. In nocodazole-treated cells, however, α5-integrin was found in both peripherally located and centrally located adhesion complexes that contained both vinculin and tensin, suggesting a switch in the maturation state of adhesion complexes to favour focal adhesions. Moreover, the switch to focal adhesions was confirmed to be force-dependent as inhibition of cell contractility with the Rho-associated protein kinase inhibitor, Y-27632, prevented the nocodazole-induced conversion. These results highlight a complex interplay between the microtubule cytoskeleton, adhesion complex maturation state and intracellular contractile force, and provide a resource for future adhesion signaling studies. The proteomics data have been deposited in the ProteomeXchange with identifier PXD001183. PMID:25526367

  6. A plastic relationship between vinculin-mediated tension and adhesion complex area defines adhesion size and lifetime

    PubMed Central

    Hernández-Varas, Pablo; Berge, Ulrich; Lock, John G.; Strömblad, Staffan

    2015-01-01

    Cell-matrix adhesions are central mediators of mechanotransduction, yet the interplay between force and adhesion regulation remains unclear. Here we use live cell imaging to map time-dependent cross-correlations between vinculin-mediated tension and adhesion complex area, revealing a plastic, context-dependent relationship. Interestingly, while an expected positive cross-correlation dominated in mid-sized adhesions, small and large adhesions display negative cross-correlation. Furthermore, although large changes in adhesion complex area follow vinculin-mediated tension alterations, small increases in area precede vinculin-mediated tension dynamics. Modelling based on this mapping of the vinculin-mediated tension-adhesion complex area relationship confirms its biological validity, and indicates that this relationship explains adhesion size and lifetime limits, keeping adhesions focal and transient. We also identify a subpopulation of steady-state adhesions whose size and vinculin-mediated tension become stabilized, and whose disassembly may be selectively microtubule-mediated. In conclusion, we define a plastic relationship between vinculin-mediated tension and adhesion complex area that controls fundamental cell-matrix adhesion properties. PMID:26109125

  7. Recycle polymer characterization and adhesion modeling

    NASA Astrophysics Data System (ADS)

    Holbery, James David

    Contaminants from paper product producers that adversely affect fiber yield have been collected from mills located in three North American geographic regions. Samples have been fractionated using a modified solvent extraction process and subsequently quantitatively characterized and it was found that agglomerates were comprised of the following: approximately 30% extractable polymeric material, 25--35% fiber, 12--15% inorganic material, 15% non-extractable high molecular-weight polyethylene or cross-linked polymers, and 2--4% starch residue. Three representative polymers, paraffin, low-molecular weight polyethylene, and a commercial hot-melt adhesive were selected for further analysis to model the attractive and repulsive behavior using Scanning Probe Microscopy in an aqueous cell. Scanning force probes were characterized using an original technique utilizing a nano-indentation apparatus that is non-destructive and is accurate to within 10% for probes with force constants as low as 1 N/m. Surface force measurements were performed between a Poly (Styrene/30% Butyl Methacrylate) sphere and substrates produced from paraffin, polyethylene, and a commercial hot-melt adhesive in solutions ranging in NaF ionic concentrations from 0.001M to 1M. Reasonable theoretical agreement with experimental data has been shown between a combined model applying van der Waals force contributions using the Derjaguin approximation and electrostatic contributions as predicted by a Debye-Huckel linearization of the Poisson-Boltzmann equation utilizing Hamaker constants derived from critical surface energies determined from Zisman and Lifshitz-van der Waals energy approaches. This model has been applied to measured data and indicates the strength of adhesion for the hot-melt to be 0.14 nN while that of paraffin is 1.9 nN and polyethylene 2.8 nN. Paraffin and polyethylene are 13.5 and 20 times greater in attraction than the hot-melt adhesive. Hot-melt adhesive repulsion is predicted to be 220

  8. Cadherin Cell Adhesion System in Canine Mammary Cancer: A Review

    PubMed Central

    Gama, Adelina; Schmitt, Fernando

    2012-01-01

    Cadherin-catenin adhesion complexes play important roles by providing cell-cell adhesion and communication in different organ systems. Abnormal expression of cadherin adhesion molecules constitutes a common phenomenon in canine mammary cancer and has been frequently implicated in tumour progression. This paper summarizes the current knowledge on cadherin/catenin adhesion molecules (E-cadherin, β-catenin, and P-cadherin) in canine mammary cancer, focusing on the putative biological functions and clinical significance of these molecules in this disease. This paper highlights the need for further research studies in this setting in order to elucidate the role of these adhesion molecules during tumour progression and metastasis. PMID:22973534

  9. Universal adhesive (glue composition) for electrical porcelain products

    SciTech Connect

    Khristoforov, K.K.; Belen'kaya, E.S.; Omel'chenko, Y.A.; Vinogradova, T.K.

    1986-05-01

    The aim of this work is to develop an adhesive for porcelain insulators that exhibits high physicomechanical properties and increased resistance to the simultaneous action of heat and moisture. One method of solving this problem is to introduce special additives possessing hydrophobic (waterrepelling) properties into the adhesive composition during the process of its preparation. The adhesive based on the ED-20 epoxy resin and TEA hardened with 5 parts of AF-2 additive possesses higher resistance to the action of heat and moisture as compared to the adhesive used at the present time for assembling insulators. The improved and stable physiomechanical properties of the developed adhesive permit its use in any climactic conditions.

  10. The effect of bending on the stresses in adhesive joints

    NASA Technical Reports Server (NTRS)

    Yuceoglu, U.; Updike, D. P.

    1975-01-01

    The problem of stress distribution in adhesive joints where two orthotropic plates are bonded through a flexible adhesive layer is analyzed. It is shown that the effect of bending of the adherends on the stresses in the adhesive layer is very significant. The transverse shear deformations of the adherends appear to have little influence on the adhesive layer stresses. The maximum transverse normal stress in the adhesive is shown to be larger than the maximum longitudinal shear stress. The method of solution is applied to several examples of specific joint geometries and material combinations, and is proven to be applicable to other related problems.

  11. On the mechanical properties of bovine serum albumin (BSA) adhesives.

    PubMed

    Berchane, N S; Andrews, M J; Kerr, S; Slater, N K H; Jebrail, F F

    2008-04-01

    Biological adhesives, natural and synthetic, are of current active interest. These adhesives offer significant advantages over traditional sealant techniques, in particular, they are easier to use, and can play an integral part in the healing mechanism of tissue. Thus, biological adhesives can play a major role in medical applications if they possess adequate mechanical behavior and stability over time. In this work, we report on the method of preparation of bovine serum albumin (BSA) into a biological adhesive. We present quantitative measurements that show the effect of BSA concentration and cross-linker content on the bonding strength of BSA adhesive to wood. A comparison is then made with synthetic poly(glycidyl methacrylate) (PGMA) adhesive, and a commercial cyanoacrylate glue, which was used as a control adhesive. In addition, BSA samples were prepared and characterized for their water content, tensile strength, and elasticity. We show that on dry surface, BSA adhesive exhibits a high bonding strength that is comparable with non-biological commercial cyanoacrylate glues, and synthetic PGMA adhesive. Tensile testing on wet wood showed a slight increase in the bonding strength of BSA adhesive, a considerable decrease in the bonding strength of cyanoacrylate glue, and negligible adhesion of PGMA. Tests performed on BSA samples demonstrate that initial BSA concentration and final water content have a significant effect on the stress-strain behavior of the samples. PMID:18197367

  12. Quantitative methods for analyzing cell-cell adhesion in development.

    PubMed

    Kashef, Jubin; Franz, Clemens M

    2015-05-01

    During development cell-cell adhesion is not only crucial to maintain tissue morphogenesis and homeostasis, it also activates signalling pathways important for the regulation of different cellular processes including cell survival, gene expression, collective cell migration and differentiation. Importantly, gene mutations of adhesion receptors can cause developmental disorders and different diseases. Quantitative methods to measure cell adhesion are therefore necessary to understand how cells regulate cell-cell adhesion during development and how aberrations in cell-cell adhesion contribute to disease. Different in vitro adhesion assays have been developed in the past, but not all of them are suitable to study developmentally-related cell-cell adhesion processes, which usually requires working with low numbers of primary cells. In this review, we provide an overview of different in vitro techniques to study cell-cell adhesion during development, including a semi-quantitative cell flipping assay, and quantitative single-cell methods based on atomic force microscopy (AFM)-based single-cell force spectroscopy (SCFS) or dual micropipette aspiration (DPA). Furthermore, we review applications of Förster resonance energy transfer (FRET)-based molecular tension sensors to visualize intracellular mechanical forces acting on cell adhesion sites. Finally, we describe a recently introduced method to quantitate cell-generated forces directly in living tissues based on the deformation of oil microdroplets functionalized with adhesion receptor ligands. Together, these techniques provide a comprehensive toolbox to characterize different cell-cell adhesion phenomena during development. PMID:25448695

  13. Surface Modifications in Adhesion and Wetting

    NASA Astrophysics Data System (ADS)

    Longley, Jonathan

    Advances in surface modification are changing the world. Changing surface properties of bulk materials with nanometer scale coatings enables inventions ranging from the familiar non-stick frying pan to advanced composite aircraft. Nanometer or monolayer coatings used to modify a surface affect the macro-scale properties of a system; for example, composite adhesive joints between the fuselage and internal frame of Boeing's 787 Dreamliner play a vital role in the structural stability of the aircraft. This dissertation focuses on a collection of surface modification techniques that are used in the areas of adhesion and wetting. Adhesive joints are rapidly replacing the familiar bolt and rivet assemblies used by the aerospace and automotive industries. This transition is fueled by the incorporation of composite materials into aircraft and high performance road vehicles. Adhesive joints have several advantages over the traditional rivet, including, significant weight reduction and efficient stress transfer between bonded materials. As fuel costs continue to rise, the weight reduction is accelerating this transition. Traditional surface pretreatments designed to improve the adhesion of polymeric materials to metallic surfaces are extremely toxic. Replacement adhesive technologies must be compatible with the environment without sacrificing adhesive performance. Silane-coupling agents have emerged as ideal surface modifications for improving composite joint strength. As these coatings are generally applied as very thin layers (<50 nm), it is challenging to characterize their material properties for correlation to adhesive performance. We circumvent this problem by estimating the elastic modulus of the silane-based coatings using the buckling instability formed between two materials of a large elastic mismatch. The elastic modulus is found to effectively predict the joint strength of an epoxy/aluminum joint that has been reinforced with silane coupling agents. This buckling

  14. Multiscale Model Describing Bacterial Adhesion and Detachment.

    PubMed

    Ostvar, Sassan; Wood, Brian D

    2016-05-24

    Bacterial surfaces are complex structures with nontrivial adhesive properties. The physics of bacterial adhesion deviates from that of ideal colloids as a result of cell-surface roughness and because of the mechanical properties of the polymers covering the cell surface. In the present study, we develop a simple multiscale model for the interplay between the potential energy functions that characterize the cell surface biopolymers and their interaction with the extracellular environment. We then use the model to study a discrete network of bonds in the presence of significant length heterogeneities in cell-surface polymers. The model we present is able to generate force curves (both approach and retraction) that closely resemble those measured experimentally. Our results show that even small-length-scale heterogeneities can lead to macroscopically nonlinear behavior that is qualitatively and quantitatively different from the homogeneous case. We also report on the energetic consequences of such structural heterogeneity. PMID:27129780

  15. Adhesion behaviors of Escherichia coli on hydroxyapatite.

    PubMed

    Kamitakahara, Masanobu; Takahashi, Shohei; Yokoi, Taishi; Inoue, Chihiro; Ioku, Koji

    2016-04-01

    Optimum design of support materials for microorganisms is required for the construction of bioreactors. However, the effects of support materials on microorganisms are still unclear. In this study, we investigated the adhesion behavior of Escherichia coli (E. coli) on hydroxyapatite (HA), polyurethane (PU), poly(vinyl chloride) (PVC), and carbon (Carbon) to obtain basic knowledge for the design of support materials. The total metabolic activity and number of E. coli adhering on the samples followed the order of HA ≈ Carbon>PVC>PU. On the other hand, the water contact angle of the pellet surfaces followed the order of HAadhesion of E. coli. The results implied that HA has a potential as a support material for microorganisms used in bioreactors. PMID:26838837

  16. Adhesion and friction of thin metal films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    Sliding friction experiments were conducted in vacuum with thin films of titanium, chromium, iron, and platinum sputter deposited on quartz or mica substrates. A single crystal hemispherically tipped gold slider was used in contact with the films at loads of 1.0 to 30.0 and at a sliding velocity of 0.7 mm/min at 23 C. Test results indicate that the friction coefficient is dependent on the adhesion of two interfaces, that between the film and its substrate and the slider and the film. There exists a relationship between the percent d bond character of metals in bulk and in thin film form and the friction coefficient. Oxygen can increase adhesive bonding of a metal film (platinum) to a substrate.

  17. Adhesive joint and composites modeling in SIERRA.

    SciTech Connect

    Ohashi, Yuki; Brown, Arthur A.; Hammerand, Daniel Carl; Adolf, Douglas Brian; Chambers, Robert S.; Foulk, James W., III

    2005-11-01

    Polymers and fiber-reinforced polymer matrix composites play an important role in many Defense Program applications. Recently an advanced nonlinear viscoelastic model for polymers has been developed and incorporated into ADAGIO, Sandia's SIERRA-based quasi-static analysis code. Standard linear elastic shell and continuum models for fiber-reinforced polymer-matrix composites have also been added to ADAGIO. This report details the use of these models for advanced adhesive joint and composites simulations carried out as part of an Advanced Simulation and Computing Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical response of an adhesive joint when loaded during repeated thermal cycling is simulated, the response of some composite rings under internal pressurization is calculated, and the performance of a composite container subjected to internal pressurization, thermal loading, and distributed mechanical loading is determined. Finally, general comparisons between the continuum and shell element approaches for modeling composites using ADAGIO are given.

  18. Similarity and singularity in adhesive elastohydrodynamic touchdown

    NASA Astrophysics Data System (ADS)

    Carlson, Andreas; Mahadevan, L.

    2016-01-01

    We consider the dynamics of an elastic sheet as it starts to adhere to a wall, a process that is limited by the viscous squeeze flow of the intervening liquid. Elastohydrodynamic lubrication theory allows us to derive a partial differential equation coupling the elastic deformation of the sheet, the microscopic van der Waals adhesion, and viscous thin film flow. We use a combination of numerical simulations of the governing equation and a scaling analysis to describe the self-similar touchdown of the sheet as it approaches the wall. An analysis of the equation in terms of similarity variables in the vicinity of the touchdown event shows that only the fundamental similarity solution is observed in the time-dependent numerical simulations, consistent with the fact that it alone is stable. Our analysis generalizes similar approaches for rupture in capillary thin film hydrodynamics and suggests experimentally verifiable predictions for a new class of singular flows linking elasticity, hydrodynamics, and adhesion.

  19. Verification of surface preparation for adhesive bonding

    NASA Technical Reports Server (NTRS)

    Myers, Rodney S.

    1995-01-01

    A survey of solid rocket booster (SRB) production operations identified potential contaminants which might adversely affect bonding operations. Lap shear tests quantified these contaminants' effects on adhesive strength. The most potent contaminants were selected for additional studies on SRB thermal protection system (TPS) bonding processes. Test panels were prepared with predetermined levels of contamination, visually inspected using white and black light, then bonded with three different TPS materials over the unremoved contamination. Bond test data showed that white and black light inspections are adequate inspection methods for TPS bonding operations. Extreme levels of contamination (higher than expected on flight hardware) had an insignificant effect on TPS bond strengths because of the apparent insensitivity of the adhesive system to contamination effects, and the comparatively weak cohesive strength of the TPS materials.

  20. Cyclic debonding of adhesively bonded composites

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.; Everett, R. A., Jr.

    1982-01-01

    The fatigue behavior of a simple composite to composite bonded joint was analyzed. The cracked lap shear specimen subjected to constant amplitude cyclic loading was studied. Two specimen geometries were tested for each bonded system: (1) a strap adherend of 16 plies bonded to a lap adherend of 8 plies; and (2) a strap adherend of 8 plies bonded to a lap adherend of 16 plies. In all specimens the fatigue failure was in the form of cyclic debonding with some 0 deg fiber pull off from the strap adherend. The debond always grew in the region of adhesive that had the highest mode (peel) loading and that region was close to the adhesive strap interface.

  1. Light-Curing Adhesive Repair Tapes

    NASA Technical Reports Server (NTRS)

    Allred, Ronald; Haight, Andrea Hoyt

    2009-01-01

    Adhesive tapes, the adhesive resins of which can be cured (and thereby rigidized) by exposure to ultraviolet and/or visible light, are being developed as repair patch materials. The tapes, including their resin components, consist entirely of solid, low-outgassing, nonhazardous or minimally hazardous materials. They can be used in air or in vacuum and can be cured rapidly, even at temperatures as low as -20 C. Although these tapes were originally intended for use in repairing structures in outer space, they can also be used on Earth for quickly repairing a wide variety of structures. They can be expected to be especially useful in situations in which it is necessary to rigidize tapes after wrapping them around or pressing them onto the parts to be repaired.

  2. Nanostructured niobium oxide coatings influence osteoblast adhesion.

    PubMed

    Eisenbarth, E; Velten, D; Müller, M; Thull, R; Breme, J

    2006-10-01

    The interaction of osteoblasts was correlated to the roughness of nanosized surface structures of Nb(2)O(5) coatings on polished CP titanium grade 2. Nb(2)O(5) sol-gel coatings were selected as a model surface to study the interaction of osteoblasts with nanosized surface structures. The surface roughness was quantified by determination of the average surface finish (Ra number) by means of atomic force microscopy. Surface topographies with Ra = 7, 15, and 40 nm were adjusted by means of the annealing process parameters (time and temperature) within a sol-gel coating procedure. The observed osteoblast migration was fastest on smooth surfaces with Ra = 7 nm. The adhesion strength, spreading area, and collagen-I synthesis showed the best results on an intermediate roughness of Ra = 15 nm. The surface roughness of Ra = 40 nm was rather peaked and reduced the speed of cell reactions belonging to the adhesion process. PMID:16788971

  3. Universal binding energy relations in metallic adhesion

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1981-01-01

    Scaling relations which map metallic adhesive binding energy onto a single universal binding energy curve are discussed in relation to adhesion, friction, and wear in metals. The scaling involved normalizing the energy to the maximum binding energy and normalizing distances by a suitable combination of Thomas-Fermi screening lengths. The universal curve was found to be accurately represented by E*(A*)= -(1+beta A) exp (-Beta A*) where E* is the normalized binding energy, A* is the normalized separation, and beta is the normalized decay constant. The calculated cohesive energies of potassium, barium, copper, molybdenum, and samarium were also found to scale by similar relations, suggesting that the universal relation may be more general than for the simple free electron metals.

  4. Fracto-emission accompanying adhesive failure

    NASA Technical Reports Server (NTRS)

    Dickinson, J. T.

    1984-01-01

    The fractoemission characteristics of various material interfaces have been investigated experimentally. The interfaces studied include brittle materials/epoxy, glass/elastomers and brittle materials/pressure sensitive adhesives. Results are presented for both large (1 sq cm) planar surfaces together with a few small microns fibers (E-glass, S-glass, Kevlar, and graphite), and a small (10-500 micron) particles in polymer matrices. The composition and energies of the particles emitted during adhesive failure were measured over a wide range of time scales by means of conventional particle counting techniques and photon imaging. Measurements of the time dependence, energy distribution, crack velocity dependence, and spatial distribution of fractoemissive particles are also presented. Some correlations between the various fractoemission components are described in detail.

  5. Adhesive bonding of medical and implantable devices.

    PubMed

    Tavakoli, S M

    2002-09-01

    Although there are many commercially available medical-grade adhesives, their use for new applications requires detailed investigation. It is also important that as well as the initial joint strength, durability of the bonded components during intended use, including exposure to low and high temperatures, stress, fluids and sterilisation, are investigated. Design of accelerated ageing tests, which can simulate the service environments, is critical in providing realistic durability data. Interpretation of ageing data and lifetime prediction of the joint is essential in assessing the performance of medical devices. Emergence of new types of adhesives as well as further development of precision dispensing and rapid-curing technologies offer many exciting and commercially attractive opportunities for joining medical devices. PMID:12397833

  6. On coating adhesion during impulse plasma deposition

    NASA Astrophysics Data System (ADS)

    Nowakowska-Langier, Katarzyna; Zdunek, Krzysztof; Chodun, Rafal; Okrasa, Sebastian; Kwiatkowski, Roch; Malinowski, Karol; Składnik-Sadowska, Elzbieta; Sadowski, Marek J.

    2014-05-01

    The impulse plasma deposition (IPD) technique is the only method of plasma surface engineering (among plasma-based technologies) that allows a synthesis of layers upon a cold unheated substrate and which ensures a good adhesion. This paper presents a study of plasma impacts upon a copper substrate surface during the IPD process. The substrate was exposed to pulsed N2/Al plasma streams during the synthesis of AlN layers. For plasma-material interaction diagnostics, the optical emission spectroscopy method was used. Our results show that interactions of plasma lead to sputtering of the substrate material. It seems that the obtained adhesion of the layers is the result of a complex surface mechanism combined with the effects of pulsed plasma energy impacts upon the unheated substrate. An example of such a result is the value of the critical load for the Al2O3 layer, which was measured by the scratch-test method to be above 40 N.

  7. Focal adhesions, stress fibers and mechanical tension

    PubMed Central

    Burridge, Keith; Guilluy, Christophe

    2016-01-01

    Stress fibers and focal adhesions are complex protein arrays that produce, transmit and sense mechanical tension. Evidence accumulated over many years led to the conclusion that mechanical tension generated within stress fibers contributes to the assembly of both stress fibers themselves and their associated focal adhesions. However, several lines of evidence have recently been presented against this model. Here we discuss the evidence for and against the role of mechanical tension in driving the assembly of these structures. We also consider how their assembly is influenced by the rigidity of the substratum to which cells are adhering. Finally, we discuss the recently identified connections between stress fibers and the nucleus, and the roles that these may play, both in cell migration and regulating nuclear function. PMID:26519907

  8. The Effects of Leaf Roughness, Surface Free Energy and Work of Adhesion on Leaf Water Drop Adhesion

    PubMed Central

    Wang, Huixia; Shi, Hui; Li, Yangyang; Wang, Yanhui

    2014-01-01

    The adhesion of water droplets to leaves is important in controlling rainfall interception, and affects a variety of hydrological processes. Leaf water drop adhesion (hereinafter, adhesion) depends not only on droplet formulation and parameters but also on the physical (leaf roughness) and physico-chemical (surface free energy, its components, and work-of-adhesion) properties of the leaf surface. We selected 60 plant species from Shaanxi Province, NW China, as experimental materials with the goal of gaining insight into leaf physical and physico-chemical properties in relation to the adhesion of water droplets on leaves. Adhesion covered a wide range of area, from 4.09 to 88.87 g/m2 on adaxial surfaces and 0.72 to 93.35 g/m2 on abaxial surfaces. Distinct patterns of adhesion were observed among species, between adaxial and abaxial surfaces, and between leaves with wax films and wax crystals. Adhesion decreased as leaf roughness increased (r =  −0.615, p = 0.000), but there were some outliers, such as Salix psammophila and Populus simonii with low roughness and low adhesion, and the abaxial surface of Hyoscyamus pusillus and the adaxial surface of Vitex negundo with high roughness and high adhesion. Meanwhile, adhesion was positively correlated with surface free energy (r = 0.535, p = 0.000), its dispersive component (r = 0.526, p = 0.000), and work of adhesion for water (r = 0.698, p = 0.000). However, a significant power correlation was observed between adhesion and the polar component of surface free energy (p = 0.000). These results indicated that leaf roughness, surface free energy, its components, and work-of-adhesion for water played important roles in hydrological characteristics, especially work-of-adhesion for water. PMID:25198355

  9. The effects of leaf roughness, surface free energy and work of adhesion on leaf water drop adhesion.

    PubMed

    Wang, Huixia; Shi, Hui; Li, Yangyang; Wang, Yanhui

    2014-01-01

    The adhesion of water droplets to leaves is important in controlling rainfall interception, and affects a variety of hydrological processes. Leaf water drop adhesion (hereinafter, adhesion) depends not only on droplet formulation and parameters but also on the physical (leaf roughness) and physico-chemical (surface free energy, its components, and work-of-adhesion) properties of the leaf surface. We selected 60 plant species from Shaanxi Province, NW China, as experimental materials with the goal of gaining insight into leaf physical and physico-chemical properties in relation to the adhesion of water droplets on leaves. Adhesion covered a wide range of area, from 4.09 to 88.87 g/m(2) on adaxial surfaces and 0.72 to 93.35 g/m(2) on abaxial surfaces. Distinct patterns of adhesion were observed among species, between adaxial and abaxial surfaces, and between leaves with wax films and wax crystals. Adhesion decreased as leaf roughness increased (r =  -0.615, p = 0.000), but there were some outliers, such as Salix psammophila and Populus simonii with low roughness and low adhesion, and the abaxial surface of Hyoscyamus pusillus and the adaxial surface of Vitex negundo with high roughness and high adhesion. Meanwhile, adhesion was positively correlated with surface free energy (r = 0.535, p = 0.000), its dispersive component (r = 0.526, p = 0.000), and work of adhesion for water (r = 0.698, p = 0.000). However, a significant power correlation was observed between adhesion and the polar component of surface free energy (p = 0.000). These results indicated that leaf roughness, surface free energy, its components, and work-of-adhesion for water played important roles in hydrological characteristics, especially work-of-adhesion for water. PMID:25198355

  10. Universal aspects of brittle fracture, adhesion, and atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1989-01-01

    This universal relation between binding energy and interatomic separation was originally discovered for adhesion at bimetallic interfaces involving the simple metals Al, Zn, Mg, and Na. It is shown here that the same universal relation extends to adhesion at transition-metal interfaces. Adhesive energies have been computed for the low-index interfaces of Al, Ni, Cu, Ag, Fe, and W, using the equivalent-crystal theory (ECT) and keeping the atoms in each semiinfinite slab fixed rigidly in their equilibrium positions. These adhesive energy curves can be scaled onto each other and onto the universal adhesion curve. The effect of tip shape on the adhesive forces in the atomic-force microscope (AFM) is studied by computing energies and forces using the ECT. While the details of the energy-distance and force-distance curves are sensitive to tip shape, all of these curves can be scaled onto the universal adhesion curve.

  11. Adhesion prevention after cesarean delivery: evidence, and lack of it.

    PubMed

    Walfisch, Asnat; Beloosesky, Ron; Shrim, Alon; Hallak, Mordechai

    2014-11-01

    In spite of the recognized occurrence of cesarean-attributable adhesions, its clinical significance is uncertain. The presence of adhesions during a repeat cesarean section can make fetal extraction lengthy and the procedure challenging and may increase the risk of injury to adjacent organs. Two methods for adhesion prevention are discussed, peritoneal closure and use of adhesion barriers. Peritoneal closure appears to be safe in the short term. In the long term, conflicting evidence arise from reviewing the literature for possible adhesion reduction benefits. A systematic review of the literature on the use of adhesion barriers in the context of cesarean section yielded only a few studies, most of which are lacking in methodology. For now, it appears that the available evidence does not support the routine use of adhesion barriers during cesarean delivery. PMID:24858198

  12. Orientation angle and the adhesion of single gecko setae.

    PubMed

    Hill, Ginel C; Soto, Daniel R; Peattie, Anne M; Full, Robert J; Kenny, T W

    2011-07-01

    We investigated the effects of orientation angle on the adhesion of single gecko setae using dual-axis microelectromechanical systems force sensors to simultaneously detect normal and shear force components. Adhesion was highly sensitive to the pitch angle between the substrate and the seta's stalk. Maximum lateral adhesive force was observed with the stalk parallel to the substrate, and adhesion decreased smoothly with increasing pitch. The roll orientation angle only needed to be roughly correct with the spatular tuft of the seta oriented grossly towards the substrate for high adhesion. Also, detailed measurements were made to control for the effect of normal preload forces. Higher normal preload forces caused modest enhancement of the observed lateral adhesive force, provided that adequate contact was made between the seta and the substrate. These results should be useful in the design and manufacture of gecko-inspired synthetic adhesives with anisotropic properties, an area of substantial recent research efforts. PMID:21288955

  13. High-performance mussel-inspired adhesives of reduced complexity

    PubMed Central

    Ahn, B. Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R.; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H.; Israelachvili, Jacob N.; Waite, J. Herbert

    2015-01-01

    Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (∼50 mJ m−2) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule. PMID:26478273

  14. Tongue adhesion in the horned frog Ceratophrys sp.

    NASA Astrophysics Data System (ADS)

    Kleinteich, Thomas; Gorb, Stanislav N.

    2014-06-01

    Frogs are well-known to capture elusive prey with their protrusible and adhesive tongues. However, the adhesive performance of frog tongues and the mechanism of the contact formation with the prey item remain unknown. Here we measured for the first time adhesive forces and tongue contact areas in living individuals of a horned frog (Ceratophrys sp.) against glass. We found that Ceratophrys sp. generates adhesive forces well beyond its own body weight. Surprisingly, we found that the tongues adhered stronger in feeding trials in which the coverage of the tongue contact area with mucus was relatively low. Thus, besides the presence of mucus, other features of the frog tongue (surface profile, material properties) are important to generate sufficient adhesive forces. Overall, the experimental data shows that frog tongues can be best compared to pressure sensitive adhesives (PSAs) that are of common technical use as adhesive tapes or labels.

  15. Binary Time Series Modeling with Application to Adhesion Frequency Experiments

    PubMed Central

    Hung, Ying; Zarnitsyna, Veronika; Zhang, Yan; Zhu, Cheng; Wu, C. F. Jeff

    2011-01-01

    Repeated adhesion frequency assay is the only published method for measuring the kinetic rates of cell adhesion. Cell adhesion plays an important role in many physiological and pathological processes. Traditional analysis of adhesion frequency experiments assumes that the adhesion test cycles are independent Bernoulli trials. This assumption can often be violated in practice. Motivated by the analysis of repeated adhesion tests, a binary time series model incorporating random effects is developed in this paper. A goodness-of-fit statistic is introduced to assess the adequacy of distribution assumptions on the dependent binary data with random effects. The asymptotic distribution of the goodness-of-fit statistic is derived and its finite-sample performance is examined via a simulation study. Application of the proposed methodology to real data from a T-cell experiment reveals some interesting information, including the dependency between repeated adhesion tests. PMID:22180690

  16. Isolation and biochemical characterization of underwater adhesives from diatoms.

    PubMed

    Poulsen, Nicole; Kröger, Nils; Harrington, Matthew J; Brunner, Eike; Paasch, Silvia; Buhmann, Matthias T

    2014-01-01

    Many aquatic organisms are able to colonize surfaces through the secretion of underwater adhesives. Diatoms are unicellular algae that have the capability to colonize any natural and man-made submerged surfaces. There is great technological interest in both mimicking and preventing diatom adhesion, yet the biomolecules responsible have so far remained unidentified. A new method for the isolation of diatom adhesive material is described and its amino acid and carbohydrate composition determined. The adhesive materials from two model diatoms show differences in their amino acid and carbohydrate compositions, but also share characteristic features including a high content of uronic acids, the predominance of hydrophilic amino acid residues, and the presence of 3,4-dihydroxyproline, an extremely rare amino acid. Proteins containing dihydroxyphenylalanine, which mediate underwater adhesion of mussels, are absent. The data on the composition of diatom adhesives are consistent with an adhesion mechanism based on complex coacervation of polyelectrolyte-like biomolecules. PMID:24689803

  17. Quantifying adhesion energy of mechanical coatings at atomistic scale

    NASA Astrophysics Data System (ADS)

    Yin, Deqiang; Peng, Xianghe; Qin, Yi; Feng, Jiling; Wang, Zhongchang

    2011-12-01

    Coatings of transition metal compounds find widespread technological applications where adhesion is known to influence or control functionality. Here, we, by first-principles calculations, propose a new way to assess adhesion in coatings and apply it to analyze the TiN coating. We find that the calculated adhesion energies of both the (1 1 1) and (0 0 1) orientations are small under no residual stress, yet increase linearly once the stress is imposed, suggesting that the residual stress is key to affecting adhesion. The strengthened adhesion is found to be attributed to the stress-induced shrinkage of neighbouring bonds, which results in stronger interactions between bonds in TiN coatings. Further finite elements simulation (FEM) based on calculated adhesion energy reproduces well the initial cracking process observed in nano-indentation experiments, thereby validating the application of this approach in quantifying adhesion energy of surface coating systems.

  18. High-performance mussel-inspired adhesives of reduced complexity

    NASA Astrophysics Data System (ADS)

    Ahn, B. Kollbe; Das, Saurabh; Linstadt, Roscoe; Kaufman, Yair; Martinez-Rodriguez, Nadine R.; Mirshafian, Razieh; Kesselman, Ellina; Talmon, Yeshayahu; Lipshutz, Bruce H.; Israelachvili, Jacob N.; Waite, J. Herbert

    2015-10-01

    Despite the recent progress in and demand for wet adhesives, practical underwater adhesion remains limited or non-existent for diverse applications. Translation of mussel-inspired wet adhesion typically entails catechol functionalization of polymers and/or polyelectrolytes, and solution processing of many complex components and steps that require optimization and stabilization. Here we reduced the complexity of a wet adhesive primer to synthetic low-molecular-weight catecholic zwitterionic surfactants that show very strong adhesion (~50 mJ m-2) and retain the ability to coacervate. This catecholic zwitterion adheres to diverse surfaces and self-assembles into a molecularly smooth, thin (<4 nm) and strong glue layer. The catecholic zwitterion holds particular promise as an adhesive for nanofabrication. This study significantly simplifies bio-inspired themes for wet adhesion by combining catechol with hydrophobic and electrostatic functional groups in a small molecule.

  19. Orientation angle and the adhesion of single gecko setae

    PubMed Central

    Hill, Ginel C.; Soto, Daniel R.; Peattie, Anne M.; Full, Robert J.; Kenny, T. W.

    2011-01-01

    We investigated the effects of orientation angle on the adhesion of single gecko setae using dual-axis microelectromechanical systems force sensors to simultaneously detect normal and shear force components. Adhesion was highly sensitive to the pitch angle between the substrate and the seta's stalk. Maximum lateral adhesive force was observed with the stalk parallel to the substrate, and adhesion decreased smoothly with increasing pitch. The roll orientation angle only needed to be roughly correct with the spatular tuft of the seta oriented grossly towards the substrate for high adhesion. Also, detailed measurements were made to control for the effect of normal preload forces. Higher normal preload forces caused modest enhancement of the observed lateral adhesive force, provided that adequate contact was made between the seta and the substrate. These results should be useful in the design and manufacture of gecko-inspired synthetic adhesives with anisotropic properties, an area of substantial recent research efforts. PMID:21288955

  20. Expression of adhesion molecules in leprosy lesions.

    PubMed Central

    Sullivan, L; Sano, S; Pirmez, C; Salgame, P; Mueller, C; Hofman, F; Uyemura, K; Rea, T H; Bloom, B R; Modlin, R L

    1991-01-01

    Leprosy presents as a clinical spectrum that is precisely paralleled by a spectrum of immunological reactivity. The disease provides a useful and accessible model, in this case in the skin, in which to study the dynamics of cellular immune responses to an infectious pathogen, including the role of adhesion molecules in those responses. In lesions characterized by strong delayed-type hypersensitivity against Mycobacterium leprae (tuberculoid, reversal reaction, and Mitsuda reaction), the overlying epidermis exhibited pronounced keratinocyte intracellular adhesion molecule 1 (ICAM-1) expression and contained lymphocytes expressing the ICAM-1 ligand, LFA-1. Conversely, in lesions in which delayed-type hypersensitivity was lacking (lepromatous), keratinocyte ICAM-1 expression was low and LFA-1+ lymphocytes were rare. Expression of these adhesion molecules on the cells within the dermal granulomas was equivalent throughout the spectrum of leprosy. The percentage of lymphocytes in these granulomas containing mRNA coding for gamma interferon and tumor necrosis factor alpha, synergistic regulators of ICAM-1 expression, paralleled epidermal ICAM-1 expression. In lesions of erythema nodosum leprosum, a reactional state of lepromatous leprosy thought to be due to immune complex deposition, keratinocyte ICAM-1 expression and gamma interferon mRNA+ cells were both prominent. Antibodies to LFA-1 and ICAM-1 blocked the response of both alpha beta and gamma delta T-cell clones in vitro to mycobacteria. Overall, the expression of adhesion molecules by immunocompetent epidermal cells, as well as the cytokines which regulate such expression, correlates with the outcome of the host response to infection. Images PMID:1718871

  1. Comparative radiopacity of six current adhesive systems

    PubMed Central

    de Moraes Porto, Isabel Cristina Celerino; Honório, Naira Cândido; Amorim, Dayse Annie Nicácio; de Melo Franco, Áurea Valéria; Penteado, Luiz Alexandre Moura; Parolia, Abhishek

    2014-01-01

    Background: The radiopacity of contemporary adhesive systems has been mentioned as the indication for replacement of restorations due to misinterpretation of radiographic images. Aims: This study aimed to evaluate the radiopacity of contemporary bonding agents and to compare their radiodensities with those of enamel and dentin. Methods and Materials: To measure the radiopacity, eight specimens were fabricated from Clearfil SE Bond (CF), Xeno V (XE), Adper SE Bond (ASE), Magic Bond (MB), Single Bond 2 (SB), Scotchbond Multipurpose (SM), and gutta-percha (positive control). The optical densities of enamel, dentin, the bonding agents, gutta-percha, and an aluminium (Al) step wedge were obtained from radiographic images using image analysis software. Statistical Analysis: The radiographic density data were analyzed statistically by analysis of variance and Tukey's test (α =0.05). Results: Significant differences were found between ASE and all other groups tested and between XE and CF. No statistical difference was observed between the radiodensity of 1 mm of Al and 1 mm of dentin, between 2 mm of Al and enamel, and between 5 mm of Al and gutta-percha. Five of the six adhesive resins had radiopacity values that fell below the value for dentin, whereas the radiopacity of ASE adhesive was greater than that of dentin but below that of enamel. Conclusion: This investigation demonstrates that only ASE presented a radiopacity within the values of dentin and enamel. CF, XE, MB, SB, and SM adhesives are all radiolucent and require alterations to their composition to facilitate their detection by means of radiographic images. PMID:24554865

  2. Aluminum ion-containing polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; Taylor, L. T.; St.clair, T. L. (Inventor)

    1981-01-01

    A meta-oriented aromatic diamine is reacted with an aromatic dianhydride and an aluminum compound in the presence of a water or lower alkanol miscible ether solvent to produce an intermediate polyamic acid. The polyamic acid is then converted to the thermally stable, metal ion-filled polyimide by heating in the temperature range of 300 C to produce a flexible, high temperature adhesive.

  3. Adhesive electroless metallization of fluoropolymeric substrates.

    PubMed

    Vargo, T G; Gardella, J A; Calvert, J M; Chen, M S

    1993-12-10

    A process for producing patterned metal deposits on fluoropolymeric substrates is described. A metal ion-chelating organosilane is chemisorbed by self-assembly onto a fluoropolymer surface after radio-frequency glow discharge plasma surface hydroxylation. Positional modulation of the surface hydrophobicity is illustrated by wetting. The silane covalently binds an aqueous palladium catalyst and subsequent electroless deposition yields homogeneous or patterned metal deposits that exhibit excellent adhesion to the fluoropolymer. PMID:17781789

  4. Nonlinear viscoelastic characterization of structural adhesives

    NASA Technical Reports Server (NTRS)

    Rochefort, M. A.; Brinson, H. F.

    1983-01-01

    Measurements of the nonliner viscoelastic behavior of two adhesives, FM-73 and FM-300, are presented and discussed. Analytical methods to quantify the measurements are given and fitted into a framework of an accelerated testing and analysis procedure. The single integral model used is shown to function well and is analogous to a time-temperature stress-superposition procedure (TTSSP). Advantages and disadvantages of the creep power law method used in this study are given.

  5. Adhesive capsulitis of the ankle (frozen ankle).

    PubMed

    van Moppes, F I; van den Hoogenband, C R; Greep, J M

    1979-09-01

    Adhesive capsulitis or "frozen ankle" is a syndrome resulting from repeated ankle sprains, or perhaps following immobilization after trauma. Ankle arthrography is a useful and safe diagnostic procedure in this syndrome. Typical arthrographic features are described together with case histories of two patients with frozen ankle. We suggest that early mobilization of the patient following trauma is particularly important in preventing the development of a forzen ankle syndrome. PMID:508071

  6. Superhydrophobic nanocomposite surface topography and ice adhesion.

    PubMed

    Davis, Alexander; Yeong, Yong Han; Steele, Adam; Bayer, Ilker S; Loth, Eric

    2014-06-25

    A method to reduce the surface roughness of a spray-casted polyurethane/silica/fluoroacrylic superhydrophobic nanocomposite coating was demonstrated. By changing the main slurry carrier fluid, fluoropolymer medium, surface pretreatment, and spray parameters, we achieved arithmetic surface roughness values of 8.7, 2.7, and 1.6 μm on three test surfaces. The three surfaces displayed superhydrophobic performance with modest variations in skewness and kurtosis. The arithmetic roughness level of 1.6 μm is the smoothest superhydrophobic surface yet produced with these spray-based techniques. These three nanocomposite surfaces, along with a polished aluminum surface, were impacted with a supercooled water spray in icing conditions, and after ice accretion occurred, each was subjected to a pressurized tensile test to measure ice-adhesion. All three superhydrophobic surfaces showed lower ice adhesion than that of the polished aluminum surface. Interestingly, the intermediate roughness surface yielded the best performance, which suggests that high kurtosis and shorter autocorrelation lengths improve performance. The most ice-phobic nanocomposite showed a 60% reduction in ice-adhesion strength when compared to polished aluminum. PMID:24914617

  7. Development of Screenable Pressure Sensitive Adhesives

    SciTech Connect

    Steven J. Severtson

    2003-11-29

    An industrial research area of high activity in recent years has been the development of pressure sensitive adhesive (PSA) products that do not interfere with the processing of post-consumer waste. The problem of PSA contamination is arguably the most important technical challenge in expanding the use of recycled fiber. The presence of PSAs in recovered paper creates problems that reduce the efficiency of recycling and papermaking operations and diminish product quality. The widespread use of PSAs engineered to avoid these problems, often referred to as environmentally benign PSAs, could greatly increase the commercial viability of utilizing secondary fiber. Much of the research efforts in this area have focused on the development of PSAs that are designed for enhanced removal with cleaning equipment currently utilized by recycling plants. Most removal occurs at the pressure screens with the size and shape of residual contaminants in the process being the primary criteria for their separation. A viable approach for developing environmentally benign PSAs is their reformulation to inhibit fragmentation. The reduction of adhesives to small particles occurs almost exclusively during repulping; a process in which water and mechanical energy are used to swell and reduce paper products to their constituent fiber. Engineering PSA products to promote the formation of larger adhesive particles during repulping will greatly enhance their removal and reduce or eliminate their impact on the recycling process.

  8. Mechanism of Focal Adhesion Kinase Mechanosensing.

    PubMed

    Zhou, Jing; Aponte-Santamaría, Camilo; Sturm, Sebastian; Bullerjahn, Jakob Tómas; Bronowska, Agnieszka; Gräter, Frauke

    2015-11-01

    Mechanosensing at focal adhesions regulates vital cellular processes. Here, we present results from molecular dynamics (MD) and mechano-biochemical network simulations that suggest a direct role of Focal Adhesion Kinase (FAK) as a mechano-sensor. Tensile forces, propagating from the membrane through the PIP2 binding site of the FERM domain and from the cytoskeleton-anchored FAT domain, activate FAK by unlocking its central phosphorylation site (Tyr576/577) from the autoinhibitory FERM domain. Varying loading rates, pulling directions, and membrane PIP2 concentrations corroborate the specific opening of the FERM-kinase domain interface, due to its remarkably lower mechanical stability compared to the individual alpha-helical domains and the PIP2-FERM link. Analyzing downstream signaling networks provides further evidence for an intrinsic mechano-signaling role of FAK in broadcasting force signals through Ras to the nucleus. This distinguishes FAK from hitherto identified focal adhesion mechano-responsive molecules, allowing a new interpretation of cell stretching experiments. PMID:26544178

  9. Control cell adhesion with dynamic bilayer films

    NASA Astrophysics Data System (ADS)

    Kourouklis, Andreas; Lerum, Ronald; Bermudez, Harry

    2012-02-01

    Interfacially-directed assembly of amphiphilic block copolymers was employed to create ultrathin films having the potential to correlate the dynamics of ECM cues with cell adhesion and cytoskeletally-generated forces. The mobility of the polymeric bilayer films were tuned by the incorporation of hydrophobic homopolymer chains, which are thought to reduce interlayer friction. Labeling of the block copolymer chains with an adhesive peptide ligand (RGD) provided a specific means to study integrin-mediated cellular processes and the corresponding mechanotransduction. By seeding anchorage-dependent cells on ``dynamic'' (laterally mobile) and ``static'' films that display the same amount of RGD, we have found that cells recognize the difference in RGD diffusivity and develop distinct responses over time. We intend to examine changes in cell response by controlling the extent of cytoskeletally-generated forces and the assembly dynamics of focal adhesion complexes. Such films provide a unique platform to unveil the biomechanical signals related with ECM dynamics, and may ultimately facilitate a deeper understanding of cellular processes.

  10. Use of cyanoacrylate adhesives in general surgery.

    PubMed

    García Cerdá, David; Ballester, Antonio Martín; Aliena-Valero, Alicia; Carabén-Redaño, Anna; Lloris, José M

    2015-08-01

    This paper presents a review of the use of cyanoacrylate adhesives (CA) in general surgery and digestive surgery, studies the mechanisms of action and interactions of CAs in adherent tissues, and compiles data on the latest experimental and clinical applications. More than seven million traumatic injuries are estimated to occur every year, and between 26 and 90 million surgical procedures using different techniques are performed to close the resulting wounds. Traditional methods not only are both useful and effective, but also have some drawbacks. This review covers a considerable number of surgical procedures for which CAs had satisfactory results. The adhesive facilitated the healing of very diverse tissues, such as solid organs, vascular tissue or the abdominal wall. In other cases, no significant differences were found when CA was compared to traditional methods, with the adhesive standing out as a simple and reliable solution. The number of procedures in which CA was detrimental was very low. This review also collects and describes these. In conclusion, the surgical fields and procedures in which CA was successfully used are highly diverse. This review will allow physicians to determine which techniques were first used experimentally, but finally settled in clinical practice as feasible alternatives to standard treatments. PMID:25344231

  11. Adhesion of Pseudomonas fluorescens onto nanophase materials

    NASA Astrophysics Data System (ADS)

    Webster, Thomas J.; Tong, Zonghua; Liu, Jin; Banks, M. Katherine

    2005-07-01

    Nanobiotechnology is a growing area of research, primarily due to the potentially numerous applications of new synthetic nanomaterials in engineering/science. Although various definitions have been given for the word 'nanomaterials' by many different experts, the commonly accepted one refers to nanomaterials as those materials which possess grains, particles, fibres, or other constituent components that have one dimension specifically less than 100 nm. In biological applications, most of the research to date has focused on the interactions between mammalian cells and synthetic nanophase surfaces for the creation of better tissue engineering materials. Although mammalian cells have shown a definite positive response to nanophase materials, information on bacterial interactions with nanophase materials remains elusive. For this reason, this study was designed to assess the adhesion of Pseudomonas fluorescens on nanophase compared to conventional grain size alumina substrates. Results provide the first evidence of increased adhesion of Pseudomonas fluorescens on alumina with nanometre compared to conventional grain sizes. To understand more about the process, polymer (specifically, poly-lactic-co-glycolic acid or PLGA) casts were made of the conventional and nanostructured alumina surfaces. Results showed similar increased Pseudomonas fluorescens capture on PLGA casts of nanostructured compared to conventional alumina as on the alumina itself. For these reasons, a key material property shown to enhance bacterial adhesion was elucidated in this study for both polymers and ceramics: nanostructured surface features.

  12. Wetting and phase separation in soft adhesion

    PubMed Central

    Jensen, Katharine E.; Sarfati, Raphael; Style, Robert W.; Boltyanskiy, Rostislav; Chakrabarti, Aditi; Chaudhury, Manoj K.; Dufresne, Eric R.

    2015-01-01

    In the classic theory of solid adhesion, surface energy drives deformation to increase contact area whereas bulk elasticity opposes it. Recently, solid surface stress has been shown also to play an important role in opposing deformation of soft materials. This suggests that the contact line in soft adhesion should mimic that of a liquid droplet, with a contact angle determined by surface tensions. Consistent with this hypothesis, we observe a contact angle of a soft silicone substrate on rigid silica spheres that depends on the surface functionalization but not the sphere size. However, to satisfy this wetting condition without a divergent elastic stress, the gel phase separates from its solvent near the contact line. This creates a four-phase contact zone with two additional contact lines hidden below the surface of the substrate. Whereas the geometries of these contact lines are independent of the size of the sphere, the volume of the phase-separated region is not, but rather depends on the indentation volume. These results indicate that theories of adhesion of soft gels need to account for both the compressibility of the gel network and a nonzero surface stress between the gel and its solvent. PMID:26553989

  13. Bovine leukocyte adhesion deficiency (BLAD): a review.

    PubMed

    Nagahata, Hajime

    2004-12-01

    Bovine leukocyte adhesion deficiency (BLAD) in Holstein cattle is an autosomal recessive congenital disease characterized by recurrent bacterial infections, delayed wound healing and stunted growth, and is also associated with persistent marked neutrophilia. The molecular basis of BLAD is a single point mutation (adenine to guanine) at position 383 of the CD18 gene, which caused an aspartic acid to glycine substitution at amino acid 128 (D128G) in the adhesion molecule CD18. Neutrophils from BLAD cattle have impaired expression of the beta2 integrin (CD11a,b,c/CD18) of the leukocyte adhesion molecule. Abnormalities in a wide spectrum of adherence dependent functions of leukocytes have been fully characterized. Cattle affected with BLAD have severe ulcers on oral mucous membranes, severe periodontitis, loss of teeth, chronic pneumonia and recurrent or chronic diarrhea. Affected cattle die at an early age due to the infectious complications. Holstein bulls, including carrier sires that had a mutant BLAD gene in heterozygote were controlled from dairy cattle for a decade. The control of BLAD in Holstein cattle by publishing the genotypes and avoiding the mating between BLAD carriers was found to be successful. This paper provides an overview of the genetic disease BLAD with reference to the disease in Holstein cattle. PMID:15644595

  14. Bacterial Adhesion: Seen Any Good Biofilms Lately?

    PubMed Central

    Dunne, W. Michael

    2002-01-01

    The process of surface adhesion and biofilm development is a survival strategy employed by virtually all bacteria and refined over millions of years. This process is designed to anchor microorganisms in a nutritionally advantageous environment and to permit their escape to greener pastures when essential growth factors have been exhausted. Bacterial attachment to a surface can be divided into several distinct phases, including primary and reversible adhesion, secondary and irreversible adhesion, and biofilm formation. Each of these phases is ultimately controlled by the expression of one or more gene products. Ultrastructurally, the mature bacterial biofilm resembles an underwater coral reef containing pyramidal or mushroom-shaped microcolonies of organisms embedded within an extracellular glycocalyx, with channels and cavities to allow the exchange of nutrients and waste. The biofilm protects its inhabitants from predators, dehydration, biocides, and other environmental extremes while regulating population growth and diversity through primitive cell signals. From a physiological standpoint, surface-bound bacteria behave quite differently from their planktonic counterparts. Recognizing that bacteria naturally occur as surface-bound and often polymicrobic communities, the practice of performing antimicrobial susceptibility tests using pure cultures and in a planktonic growth mode should be questioned. That this model does not reflect conditions found in nature might help explain the difficulties encountered in the management and treatment of biomedical implant infections. PMID:11932228

  15. Recent developments in polyimide and bismaleimide adhesives

    NASA Technical Reports Server (NTRS)

    Politi, R. E.

    1985-01-01

    Research on high temperature resin systems has intensified. In the Aerospace Industry, the motivation for this increased activity has been to replace heat resistant alloys of aluminum, stainless steel and titanium by lighter weight glass and carbon fiber reinforced composites. Applications for these structures include: (1) engine nacelles involving long time exposure (thousands of hours) to temperatures in the 150 to 300 C range, (2) supersonic military aircraft involving moderately long exposure (hundreds of hours) to temperatures of 150 to 200 C, and (3) missile applications involving only brief exposure (seconds or minutes) to temperatures up to 500 C and above. Because of fatigue considerations, whenever possible, it is preferable to bond rather than mechanically fasten composite structures. For this reason, the increased usage of high temperature resin matrix systems for composites has necessitated the devlopment of compatible and equally heat stable adhesive systems. The performance of high temperature epoxy, epoxy phenolic and condensation polyimide adhesives is reviewed. This is followed by a discussion of three recently developed types of adhesives: (1) condensation reaction polyimides having improved processing characteristics; (2) addition reaction polyimides; and (3) bismaleimides.

  16. Mechanism of Focal Adhesion Kinase Mechanosensing

    PubMed Central

    Sturm, Sebastian; Bullerjahn, Jakob Tómas; Bronowska, Agnieszka; Gräter, Frauke

    2015-01-01

    Mechanosensing at focal adhesions regulates vital cellular processes. Here, we present results from molecular dynamics (MD) and mechano-biochemical network simulations that suggest a direct role of Focal Adhesion Kinase (FAK) as a mechano-sensor. Tensile forces, propagating from the membrane through the PIP2 binding site of the FERM domain and from the cytoskeleton-anchored FAT domain, activate FAK by unlocking its central phosphorylation site (Tyr576/577) from the autoinhibitory FERM domain. Varying loading rates, pulling directions, and membrane PIP2 concentrations corroborate the specific opening of the FERM-kinase domain interface, due to its remarkably lower mechanical stability compared to the individual alpha-helical domains and the PIP2-FERM link. Analyzing downstream signaling networks provides further evidence for an intrinsic mechano-signaling role of FAK in broadcasting force signals through Ras to the nucleus. This distinguishes FAK from hitherto identified focal adhesion mechano-responsive molecules, allowing a new interpretation of cell stretching experiments. PMID:26544178

  17. Low-temperature full wafer adhesive bonding

    NASA Astrophysics Data System (ADS)

    Niklaus, Frank; Enoksson, Peter; Kälvesten, Edvard; Stemme, Göran

    2001-03-01

    We have systematically investigated the influence of different bonding parameters on void formation in a low-temperature adhesive bonding process. As a result of these studies we present guidelines for void free adhesive bonding of 10 cm diameter wafers. We have focused on polymer coatings with layer thicknesses between 1 µm and 18 µm. The tested polymer materials were benzocyclobutene (BCB) from Dow Chemical, a negative photoresist (ULTRA-i 300) and a positive photoresist (S1818) from Shipley, a polyimide (HTR3) from Arch Chemical and two different polyimides (PI2555 and PI2610) from DuPont. The polymer material, the bonding pressure and the pre-curing time and temperature for the polymer significantly influence void formation at the bond interface. High bonding pressure and optimum pre-curing times/temperatures counteract void formation. We present the process parameters to achieve void-free bonding with the BCB coating and with the ULTRA-i 300 photoresist coating as adhesive materials. Excellent void-free and strong bonds have been achieved by using BCB as the bonding material which requires a minimum bonding temperature of 180 °C.

  18. Cell adhesion during bullet motion in capillaries.

    PubMed

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji

    2016-08-01

    A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. PMID:27261363

  19. Adhesion of Particulate Materials to Mesostructured Polypyrrole

    NASA Astrophysics Data System (ADS)

    Hoss, Darby; Knepper, Robert; Hotchkiss, Peter; Tappan, Alexander; Boudouris, Bryan; Beaudoin, Stephen

    Interactions based on van der Waals (vdW) forces will influence the performance and reliability of mesostructured polypyrrole swabs used for the collection and detection of trace particles. The vdW adhesion force between materials is described by the Hamaker constant, and these constants are measured via optical and dielectric properties (i.e., according to Lifshitz theory), inverse gas chromatography (IGC), and contact angle measurements. Here, contact angle measurements were performed on films of several common materials and used to estimate Hamaker constants. This, in turn, will allow for the tuning of the design properties associated with the polypyrrole swabs. A comparison of these results to Hamaker constants estimated using Lifshitz Theory and IGC reveals the fundamental behavior of the materials. The Hamaker constants were then used in a new computational vdW adhesion model. The idealized model describes particle adhesion to an array of mesostrucures. This model elucidates the importance of where the particle makes contact with the mesostructure and the independence of vdW forces generated by each mesostructure. These results will facilitate the rational design of polypyrrole swabs optimized for harvesting microscale particles of trace materials.

  20. The thoracic anterior spinal cord adhesion syndrome

    PubMed Central

    Taylor, T R; Dineen, R; White, B; Jaspan, T

    2012-01-01

    Objectives This study included a series of middle-aged male and female patients who presented with chronic anterior hemicord dysfunction progressing to paraplegia. Imaging of anterior thoracic cord displacement by either a dural adhesion or a dural defect with associated cord herniation is presented. Methods This is a retrospective review of cases referred to a tertiary neuroscience centre over a 19-year period. Imaging series were classified by two experienced neuroradiologists against several criteria and correlated with clinical examination and/or findings at surgery. Results 16 cases were available for full review. Nine were considered to represent adhesions (four confirmed surgically) and four to represent true herniation (three confirmed surgically). In the three remaining cases the diagnosis was radiologically uncertain. Conclusion The authors propose “thoracic anterior spinal cord adhesion syndrome” as a novel term to describe this patient cohort and suggest appropriate clinicoradiological features for diagnosis. Several possible aetiologies are also suggested, with disc rupture and inflammation followed by disc resorption and dural pocket formation being a possible mechanism predisposing to herniation at the extreme end of a clinicopathological spectrum. PMID:22665931

  1. Adhesion of hydrogels under water by hydrogen bonding: from molecular interactions to macroscopic adhesion

    NASA Astrophysics Data System (ADS)

    Creton, Costantino

    2012-02-01

    Hydrogels are an essential part of living organisms and are widely used in biotechnologies, health care and food science. Although swelling properties, cell adhesion on gel surfaces and gel elasticity have attracted much interest, macroscopic adhesion of hydrogels on solid surfaces in aqueous environment is much less well understood. We studied systematically and in aqueous environment, the reversible adhesion by hydrogen bonding of macroscopic model hydrogels of polydimethylacrylamide (PDMA) or of polyacrylamide (PAAm) on solid surfaces functionalized with polyacrylic acid (PAA) polymer brushes. The hydrogels were synthesized by free radical polymerization and the brushes were prepared by grafting polytertbutyl acrylate chains and converting them by pyrolisis into polyacrylic acid. A new adhesion tester based on the flat punch geometry was designed and used to control the contact area, contact time, contact pressure and debonding velocity of the gels from the surface while the samples were fully immersed in water. The adhesion tests were performed at different pH and temperatures and the modulus of the gel and grafting density and molecular weight of the brushes was varied. Macroscopic adhesion results were compared with phase diagrams in dilute solution to detect molecular interactions. While the PDMA/PAA pair behaved very similarly in solution and in macroscopic adhesion tests, the PAAm/PAA pair showed an unexpectedly high adhesion level relatively to its complexation ability in dilute solution. Surprisingly, time dependent experiments showed that the kinetics of H-bond formation and breakup at interfaces was very slow resulting in adhesion energies which were very dependent on contact time up to one hour of contact. At the molecular level, neutron reflectivity showed that the equilibrium brush conformation when in contact with the gels was more extended at pH2 (H-bonds activated) than at pH9 (H-bonds deactivated) and that a certain applied pressure was

  2. Strategies to improve the adhesion of rubbers to adhesives by means of plasma surface modification

    NASA Astrophysics Data System (ADS)

    Martín-Martínez, J. M.; Romero-Sánchez, M. D.

    2006-05-01

    The surface modifications produced by treatment of a synthetic sulfur vulcanized styrene-butadiene rubber with oxidizing (oxygen, air, carbon dioxide) and non oxidizing (nitrogen, argon) RF low pressure plasmas, and by treatment with atmospheric plasma torch have been assessed by ATR-IR and XPS spectroscopy, SEM, and contact angle measurements. The effectiveness of the low pressure plasma treatment depended on the gas atmosphere used to generate the plasma. A lack of relationship between surface polarity and wettability, and peel strength values was obtained, likely due to the cohesive failure in the rubber obtained in the adhesive joints. In general, acceptable adhesion values of plasma treated rubber were obtained for all plasmas, except for nitrogen plasma treatment during 15 minutes due to the creation of low molecular weight moieties on the outermost rubber layer. A toluene wiping of the N{2 } plasma treated rubber surface for 15 min removed those moieties and increased adhesion was obtained. On the other hand, the treatment of the rubber with atmospheric pressure by means of a plasma torch was proposed. The wettability of the rubber was improved by decreasing the rubber-plasma torch distance and by increasing the duration because a partial removal of paraffin wax from the rubber surface was produced. The rubber surface was oxidized by the plasma torch treatment, and the longer the duration of the plasma torch treatment, the higher the degree of surface oxidation (mainly creation of C O moieties). However, although the rubber surface was effectively modified by the plasma torch treatment, the adhesion was not greatly improved, due to the migration of paraffin wax to the treated rubber-polyurethane adhesive interface once the adhesive joint was produced. On the other hand, the extended treatment with plasma torch facilitated the migration of zinc stearate to the rubber-adhesive interface, also contributing to deteriorate the adhesion in greater extent. Finally

  3. Shear adhesion strength of thermoplastic gecko-inspired synthetic adhesive exceeds material limits.

    PubMed

    Gillies, Andrew G; Fearing, Ronald S

    2011-09-20

    Natural gecko array wearless dynamic friction has recently been reported for 30,000 cycles on a smooth substrate. Following these findings, stiff polymer gecko-inspired synthetic adhesives have been proposed for high-cycle applications such as robot feet. Here we examine the behavior of high-density polyethylene (HDPE) and polypropylene (PP) microfiber arrays during repeated cycles of engagement on a glass surface, with a normal preload of less than 40 kPa. We find that fiber arrays maintained 54% of the original shear stress of 300 kPa after 10,000 cycles, despite showing a marked plastic deformation of fiber tips. This deformation could be due to shear-induced plastic creep of the fiber tips from high adhesion forces, adhesive wear, or thermal effects. We hypothesize that a fundamental material limit has been reached for these fiber arrays and that future gecko synthetic adhesive designs must take into account the high adhesive forces generated to avoid damage. Although the synthetic material and natural gecko arrays have a similar elastic modulus, the synthetic material does not show the same wear-free dynamic friction as the gecko. PMID:21848321

  4. The focal adhesion protein PINCH-1 associates with EPLIN at integrin adhesion sites

    PubMed Central

    Karaköse, Esra; Geiger, Tamar; Flynn, Kevin; Lorenz-Baath, Katrin; Zent, Roy; Mann, Matthias; Fässler, Reinhard

    2015-01-01

    ABSTRACT PINCH-1 is a LIM-only domain protein that forms a ternary complex with integrin-linked kinase (ILK) and parvin (to form the IPP complex) downstream of integrins. Here, we demonstrate that PINCH-1 (also known as Lims1) gene ablation in the epidermis of mice caused epidermal detachment from the basement membrane, epidermal hyperthickening and progressive hair loss. PINCH-1-deficient keratinocytes also displayed profound adhesion, spreading and migration defects in vitro that were substantially more severe than those of ILK-deficient keratinocytes indicating that PINCH-1 also exerts functions in an ILK-independent manner. By isolating the PINCH-1 interactome, the LIM-domain-containing and actin-binding protein epithelial protein lost in neoplasm (EPLIN, also known as LIMA1) was identified as a new PINCH-1-associated protein. EPLIN localized, in a PINCH-1-dependent manner, to integrin adhesion sites of keratinocytes in vivo and in vitro and its depletion severely attenuated keratinocyte spreading and migration on collagen and fibronectin without affecting PINCH-1 levels in focal adhesions. Given that the low PINCH-1 levels in ILK-deficient keratinocytes were sufficient to recruit EPLIN to integrin adhesions, our findings suggest that PINCH-1 regulates integrin-mediated adhesion of keratinocytes through the interactions with ILK as well as EPLIN. PMID:25609703

  5. Urethane/Silicone Adhesives for Bonding Flexing Metal Parts

    NASA Technical Reports Server (NTRS)

    Edwards, Paul D.

    2004-01-01

    Adhesives that are blends of commercially available urethane and silicone adhesives have been found to be useful for bonding metal parts that flex somewhat during use. These urethane/silicone adhesives are formulated for the specific metal parts to be bonded. The bonds formed by these adhesives have peel and shear strengths greater than those of bonds formed by double-sided tapes and by other adhesives, including epoxies and neat silicones. In addition, unlike the bonds formed by epoxies, the bonds formed by these adhesives retain flexibility. In the initial application for which the urethane/silicone adhesives were devised, there was a need to bond spring rings, which provide longitudinal rigidity for inflatable satellite booms, with the blades that provide the booms axial strength. The problem was to make the bonds withstand the stresses, associated with differences in curvature between the bonded parts, that arose when the booms were deflated and the springs were compressed. In experiments using single adhesives (that is, not the urethane/ silicone blends), the bonds were broken and, in each experiment, it was found that the adhesive bonded well with either the ring or with the blade, but not both. After numerous experiments, the adhesive that bonded best with the rings and the adhesive that bonded best with the blades were identified. These adhesives were then blended and, as expected, the blend bonded well with both the rings and the blades. The two adhesives are Kalex (or equivalent) high-shear-strength urethane and Dow Corning 732 (or equivalent) silicone. The nominal mixture ratio is 5 volume parts of the urethane per 1 volume part of the silicone. Increasing the proportion of silicone makes the bond weaker but more flexible, and decreasing the proportion of silicone makes the bond stronger but more brittle. The urethane/silicone blend must be prepared and used quickly because of the limited working time of the urethane: The precursor of the urethane

  6. Mechanical behavior of adhesive joints subjected to cyclic thermal loading

    SciTech Connect

    Humfeld, G.R.; Dillard, D.A.

    1996-12-31

    Stresses induced in bimaterial systems due to changing temperature has been the subject of much study since the publication of Timoshenko`s classic paper of 1925. An adhesive bond is one example of a bimaterial system in which thermal stress can play an important role. However, adhesives are viscoelastic in nature, and their mechanical behavior is dictated by the temperature- and time-dependence of their material properties; analytical solutions for elastic materials do not adequately describe their true behavior. The effect of the adhesive`s viscoelasticity on stress in an adhesive bond subjected to changing temperature is therefore of compelling interest and importance for the adhesives industry. The objective of this research is to develop an understanding of the viscoelastic effect in an adhesive bond subjected to cycling temperature, particularly when the temperature range spans a transition temperature of the adhesive. Numerical modeling of a simplified geometry was first undertaken to isolate the influence of viscoelasticity on the stress state from any particular specimen geometry effect. Finite element modeling was then undertaken to examine the mechanical behavior of the adhesive in a layered geometry. Both solution methods predicted development of residual tensile stresses in the adhesive. For the layered geometry this was found to correspond with residual tensile peel stresses, which are thought to be the cause of interfacial debonding.

  7. The chemistry of stalked barnacle adhesive (Lepas anatifera)

    PubMed Central

    Jonker, Jaimie-Leigh; Morrison, Liam; Lynch, Edward P.; Grunwald, Ingo; von Byern, Janek; Power, Anne Marie

    2015-01-01

    The results of the first chemical analysis of the adhesive of Lepas anatifera, a stalked barnacle, are presented. A variety of elements were identified in scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) of the adhesive, including Na, Mg, Ca, Cl, S, Al, Si, K and Fe; however, protein–metal interactions were not detected in Raman spectra of the adhesive. Elemental signatures from SEM-EDS of L. anatifera adhesive glands were less varied. Phosphorous was mostly absent in adhesive samples; supporting previous studies showing that phosphoserines do not play a significant role in adult barnacle adhesion. Disulfide bridges arising from Cys dimers were also investigated; Raman analysis showed weak evidence for S–S bonds in L. anatifera. In addition, there was no calcium carbonate signal in the attenuated total reflectance Fourier transform infrared spectra of L. anatifera adhesive, unlike several previous studies in other barnacle species. Significant differences were observed between the Raman spectra of L. anatifera and Balanus crenatus; these and a range of Raman peaks in the L. anatifera adhesive are discussed. Polysaccharide was detected in L. anatifera adhesive but the significance of this awaits further experiments. The results demonstrate some of the diversity within barnacle species in the chemistry of their adhesives. PMID:25657841

  8. Structural Evaluation of the RSRM Nozzle Replacement Adhesive

    NASA Technical Reports Server (NTRS)

    Batista-Rodriguez, A.; McLennan, M. L.; Palumbos, A. V.; Richardson, D. E.

    1999-01-01

    This paper describes the structural performance evaluation of a replacement adhesive for the Reusable Solid Rocket Motor (RSRM) nozzle utilizing finite element analysis. Due to material obsolescence and industrial safety issues, the two current structural adhesives, EA 913 and EA 946 are to be replaced with a new adhesive. TIGA 321. The structural evaluation in support of the adhesive replacement effort includes residual stress, transportation, and flight analyses. Factors of safety are calculated using the stress response from each analysis. The factors of safety are used as the limiting criteria to compare the replacement adhesive against the current adhesives. Included in this paper are the analytical approach, assumptions and modeling techniques as well as the results of the evaluation. An important factor to the evaluation is the similarity in constitutive material properties (elastic modulus and Poisson's ratio) between TIGA 321 and EA 913. This similarity leads to equivalent material response from the two adhesives. However, TIGA 321 surpasses EA 913's performance due to higher material capabilities. Conversely, the change in stress response from EA 946 to TIGA 321 is more apparent: this is primarily attributed to the difference in the modulii of the two adhesives, which differ by two orders of magnitude. The results of the bondline evaluation indicate that the replacement adhesive provides superior performance than the current adhesives with only minor exceptions. Furthermore, TIGA 321 causes only a minor chance in the response of the phenolic and metal components.

  9. A bioinspired wet/dry microfluidic adhesive for aqueous environments.

    PubMed

    Majumder, Abhijit; Sharma, Ashutosh; Ghatak, Animangsu

    2010-01-01

    A pressure-sensitive, nonreacting and nonfouling adhesive which can perform well both in air and underwater is very desirable because of its potential applications in various settings such as biomedical, marine, and automobile. Taking a clue from nature that many natural adhesive pads have complex structures underneath the outer adhesive layer, we have prepared thin elastic adhesive films with subsurface microstructures using PDMS (poly(dimethylsiloxane)) and investigated their performance underwater. The presence of embedded structure enhances the energy of adhesion considerably both in air and underwater. Furthermore, filling the channels with liquid of suitable surface tension modifies the internal stress profile, resulting into significant enhancement in adhesive performance. As this increase in adhesion is mediated by mechanics and not by surface chemistry, the presence of water does not alter its performance much. For the same reason, this adhesion mechanism works with both hydrophobic and hydrophilic surfaces. The adhesive can be reused because of its elastic surface. Moreover, unlike many other present-day adhesives, its performance does not decrease with time. PMID:20038181

  10. Dual-axis MEMS force sensors for gecko adhesion studies

    NASA Astrophysics Data System (ADS)

    Hill, Ginel Corina

    Dual-axis piezoresistive microelectromechanical systems (MEMS) force sensors were used to investigate the effects of orientation angle on the adhesion of gecko hairs, called setae. These hairs are part of a fantastic, robust dry adhesive. Their adhesion is highly angle-dependent, with both the "pitch" and "roll" orientation angles playing a role. This anisotropy in adhesion properties is critical for locomotion, as it enables detachment of the gecko's foot with limited pull-off force. Many synthetic mimics of the gecko adhesive are isotropic. This work on the anisotropy of natural setae will inform future work on synthetic dry adhesives. A dual-axis microscale force sensor was needed to study single seta adhesive forces, which are stronger parallel to a substrate than perpendicular. Piezoresistive silicon cantilevers that separately detect lateral and normal forces applied at the tip were used. The fabrication process and rigorous characterization of new devices are reported. A novel calibration method was developed that uses resonant frequency measurements in concert with finite element models to correct for the expected variability of critical dimensions. These corrected models were used to predict the stiffnesses of each cantilever, and thus improve the accuracy of force measurements made with these sensors. This calibration technique was also validated by direct measurement of the dual-axis cantilever stiffnesses using a reference cantilever. The adhesion force of a single gecko seta is dramatically enhanced by proper orientation. The dual-axis cantilevers were used to measure two components of force between a substrate and a Gekko gecko seta. Lateral adhesion was highest with the stalk oriented parallel to the surface at 0° pitch. Adhesion decreased smoothly as the pitch angle of the stalk was increased, until detachment or no adhesion occurred at approximately 30°. To display enhanced adhesion, the splayed tuft at the end of the seta needed to be only

  11. Modified Surface Having Low Adhesion Properties to Mitigate Insect Residue Adhesion

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J., Jr. (Inventor); Smith, Joseph G., Jr. (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor)

    2016-01-01

    A process to modify a surface to provide reduced adhesion surface properties to mitigate insect residue adhesion. The surface may include the surface of an article including an aircraft, an automobile, a marine vessel, all-terrain vehicle, wind turbine, helmet, etc. The process includes topographically and chemically modifying the surface by applying a coating comprising a particulate matter, or by applying a coating and also topographically modifying the surface by various methods, including but not limited to, lithographic patterning, laser ablation and chemical etching, physical vapor phase deposition, chemical vapor phase deposition, crystal growth, electrochemical deposition, spin casting, and film casting.

  12. High Strain-Rate Compressive Behavior of Bulk Structural Adhesives: Epoxy and Methacrylate Adhesives

    NASA Astrophysics Data System (ADS)

    Yokoyama, Takashi; Nakai, Kenji; Yatim, Norfazrina Hayati Mohd

    The present paper describes the determination of high strain-rate compressive stress-strain loops for bulk specimens of two different epoxy and methacrylate structural adhesives on the standard split Hopkinson pressure bar with a tapered striker bar. The full compressive stress-strain data including unloading process are obtained over a wide range of strain rates from 10-3 to 103/s at room temperature. The effects of strain rate on the initial (secant) modulus, flow stress, dissipation energy and hysteresis loss ratio are studied. The experimental results show that both bulk structural adhesives exhibit highly strain-rate dependent viscoelastic behavior like polymeric materials.

  13. Effect of metal surface characteristics on the adhesion performance of the integrated low-level energies method of adhesion.

    PubMed

    Aodai, Toshiyuki; Masuzawa, Toru; Ozeki, Kazuhide; Kishida, Akio; Higami, Tetsuya

    2012-12-01

    We have previously proposed a new method of adhesion using the integrated low-level energy sources heat, vibration, and pressure. This adhesion method can be used to attach biological tissue to a metal object. Effects of surface roughness and energy of the metal subject on adhesion performance were studied by using commercially pure titanium (cpTi) and stainless steel (SUS304). Surface roughness and energy were changed by sandblast treatment and heat treatment, respectively. A porcine aorta was adhered to sandblast-treated SUS304 by use of an adhesion temperature of 80 °C, a vibration amplitude of 15 μm, a pressure of 2.5 MPa, an adhesion time of 120 s, and a surface roughness of an Ra 0.25 μm. The shear tensile strength of the adhesion was 0.45 MPa. The adhesion performance was improved by roughening the surface of the metal specimen. Surface energy has an insignificant effect on adhesive strength. The adhesion performance varied depending on metal material for the same surface roughness, Ra, and energy. Results from analysis of the surface roughness profile suggested that the size of surface asperity has an effect on adhesion performance. PMID:22933053

  14. Enhancing Adhesion: Relative Merits of Different Approaches

    NASA Technical Reports Server (NTRS)

    Penn, L. S.; Pater, R.

    1996-01-01

    Adhesive performance is improved mainly by manipulation of the bimaterials interface zone, which is only a few molecules thick. There are three approaches to enhancement of interfacial adhesion at the molecular level. They are 1) changing the nonchemically bonded interactions across the interface from weak ones to strong ones, 2) making the true interfacial area much larger than the simple geometric area, and 3) inducing chemical bonding between the two materials forming the interface. Our goal this summer was to question some of the built-in assumptions contained within these approaches and to determine the most promising approach, both theoretically and practically, for enhancing adhesion in NASA structures. Our computations revealed that all three of these approaches have, in theory, the potential to enhance molecular adhesion approximately ten-fold. Experiments, however, revealed that this excellent level of enhancement is not likely to be reached in practice. Each approach was found to be severely limited by practical problems. In addition, some of the built-in assumptions associated with these approaches were found to be insufficient or inadequate. The first approach, changing the nonchemically bonded interactions from weak to strong, Is an example of one containing inadequate assumptions. The extensive literature on intermolecular interactions, based on solution studies, shows that certain functional group pairs interact much more strongly than others. It has always been assumed that these data can be reliably extended to systems where only one member of the pair is in solution and the other Is contained in a solid surface. Our experiments this summer demonstrated that solution data do not adequately predict the strength of functional group interaction at the solid-liquid interface. Furthermore, the strong solvents needed to dissolve the monomers or polymers to which the functional groups of interest are attached compete successfully with the solid surface

  15. Ice adhesion on lubricant-impregnated textured surfaces.

    PubMed

    Subramanyam, Srinivas Bengaluru; Rykaczewski, Konrad; Varanasi, Kripa K

    2013-11-01

    Ice accretion is an important problem and passive approaches for reducing ice-adhesion are of great interest in various systems such as aircrafts, power lines, wind turbines, and oil platforms. Here, we study the ice-adhesion properties of lubricant-impregnated textured surfaces. Force measurements show ice adhesion strength on textured surfaces impregnated with thermodynamically stable lubricant films to be higher than that on surfaces with excess lubricant. Systematic ice-adhesion measurements indicate that the ice-adhesion strength is dependent on texture and decreases with increasing texture density. Direct cryogenic SEM imaging of the fractured ice surface and the interface between ice and lubricant-impregnated textured surface reveal stress concentrators and crack initiation sites that can increase with texture density and result in lowering adhesion strength. Thus, lubricant-impregnated surfaces have to be optimized to outperform state-of-the-art icephobic treatments. PMID:24070257

  16. Intrinsic adhesion force of lubricants to steel surface.

    PubMed

    Lee, Jonghwi

    2004-09-01

    The intrinsic adhesion forces of lubricants and other pharmaceutical materials to a steel surface were quantitatively compared using Atomic Force Microscopy (AFM). A steel sphere was attached to the tip of an AFM cantilever, and its adhesion forces to the substrate surfaces of magnesium stearate, sodium stearyl fumarate, lactose, 4-acetamidophenol, and naproxen were measured. Surface roughness varied by an order of magnitude among the materials. However, the results clearly showed that the two lubricants had about half the intrinsic adhesion force as lactose, 4-acetamidophenol, and naproxen. Differences in the intrinsic adhesion forces of the two lubricants were insignificant. The lubricant molecules were unable to cover the steel surface during AFM measurements. Intrinsic adhesion force can slightly be modified by surface treatment and compaction, and its tip-to-tip variation was not greater than its difference between lubricants and other pharmaceutical particles. This study provides a quantitative fundamental basis for understanding adhesion related issues. PMID:15295791

  17. Adhesion of mussel foot proteins to different substrate surfaces

    PubMed Central

    Lu, Qingye; Danner, Eric; Waite, J. Herbert; Israelachvili, Jacob N.; Zeng, Hongbo; Hwang, Dong Soo

    2013-01-01

    Mussel foot proteins (mfps) have been investigated as a source of inspiration for the design of underwater coatings and adhesives. Recent analysis of various mfps by a surface forces apparatus (SFA) revealed that mfp-1 functions as a coating, whereas mfp-3 and mfp-5 resemble adhesive primers on mica surfaces. To further refine and elaborate the surface properties of mfps, the force–distance profiles of the interactions between thin mfp (i.e. mfp-1, mfp-3 or mfp-5) films and four different surface chemistries, namely mica, silicon dioxide, polymethylmethacrylate and polystyrene, were measured by an SFA. The results indicate that the adhesion was exquisitely dependent on the mfp tested, the substrate surface chemistry and the contact time. Such studies are essential for understanding the adhesive versatility of mfps and related/similar adhesion proteins, and for translating this versatility into a new generation of coatings and (including in vivo) adhesive materials. PMID:23173195

  18. Effects of low concentrations of antibiotics on Escherichia coli adhesion.

    PubMed Central

    Vosbeck, K; Mett, H; Huber, U; Bohn, J; Petignat, M

    1982-01-01

    We have previously shown that subinhibitory concentrations of antibiotics may influence the adhesion of Escherichia coli SS142 to human epithelioid tissue culture cells. This report shows that these effects are not limited to E. coli SS142 or to our tissue culture system. Most of the 10 E. coli strains studied showed decreased adhesion to Intestine 407 tissue culture cells after growth in 25% of the minimum inhibitory concentration of streptomycin, tetracycline, trimethoprimsulfametrole, chloramphenicol, and clindamycin. Nalidixic acid at 25% of the minimum inhibitory concentration caused an increase of adhesion. The hemagglutinating activity of the five hemagglutinating strains and the adhesiveness of E. coli SS142 to human buccal cells were similarly affected by low concentrations of the above-mentioned antibiotics. We conclude that E. coli adhesion to human epithelioid tissue culture cells is a valid model of bacterial adhesion because of its high accuracy and reproducibility. PMID:7051972

  19. Elastic-plastic analysis of crack in ductile adhesive joint

    SciTech Connect

    Ikeda, Toru; Miyazaki, Noriyuki; Yamashita, Akira; Munakata, Tsuyoshi

    1995-11-01

    The fracture of a crack in adhesive is important to the structural integrity of adhesive structures and composite materials. Though the fracture toughness of a material should be constant according to fracture mechanics, it is said that the fracture toughness of a crack in an adhesive joint depends on the bond thickness. In the present study, the elastic-plastic stress analyses of a crack in a thin adhesive layer are performed by the combination of the boundary element method and the finite element method. The effect of adhesive thickness on the J-integral, the Q`-factor which is a modified version of the Q-factor, and the crack tip opening displacement (CTOD) are investigated. It is found from the analyses that the CTOD begins to decrease at very thin bond thickness, the Q`-factor being almost constant. The decrease of the fracture toughness at very thin adhesive layer is expected by the present analysis.

  20. Adhesion forces between AFM tips and superficial dentin surfaces.

    PubMed

    Pelin, I M; Piednoir, A; Machon, D; Farge, P; Pirat, C; Ramos, S M M

    2012-06-15

    In this work, we study the adhesion forces between atomic force microscopy (AFM) tips and superficial dentin etched with phosphoric acid. Initially, we quantitatively analyze the effect of acid etching on the surface heterogeneity and the surface roughness, two parameters that play a key role in the adhesion phenomenon. From a statistical study of the force-distance curves, we determine the average adhesion forces on the processed substrates. Our results show that the average adhesion forces, measured in water, increase linearly with the acid exposure time. The highest values of such forces are ascribed to the high density of collagen fibers on the etched surfaces. The individual contribution of exposed collagen fibrils to the adhesion force is highlighted. We also discuss in this paper the influence of the environmental medium (water/air) in the adhesion measurements. We show that the weak forces involved require working in the aqueous medium. PMID:22472512

  1. New Technique for Evaluating Adhesion Properties between Soft Materials

    NASA Astrophysics Data System (ADS)

    Sato, Takaya; Goto, Motoaki; Nakano, Ken; Suzuki, Atsushi

    2005-11-01

    A new, simple apparatus for measuring the surface adhesion properties of soft materials was designed, where the adhesion force of a point contact between soft materials and the total energy required to separate the contact can be measured using the springs of phosphor-bronze thin plates with strain gauges. The adhesion between swollen hydrogels was studied here by this simple technique in air at room temperature. The gels used in the present preliminary experiments were poly(sodium acrylate) hydrogels physically cross-linked by aluminum ions. The adhesion force and the separation energy showed a power-law increase with separation velocity. The apparatus was applied to evaluate the adhesion properties of seven anti-inflammatory analgesic cataplasms on the market. It was found that the easiness to separate (rank of adhesion force and the separation energy) was consistent with the results of those obtained by organoleptic evaluations.

  2. Ultrasonic Evaluation of Thermal Degradation in Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Mal, Ajit K.; Bar-Cohen, Yoseph

    1994-01-01

    The critical role played by adhesive bonds in lap joints is well known. A good knowledge of the mechanical properties of adhesive bonds in lap joints is a prerequisite to the design and reliable prediction of the performance of these bonded structures. Furthermore, the lap joint may be subject to high-temperature environments in service. Early detection of the degree of thermal degradation in adhesive bonds is required under these circumstances. A variety of ultrasonic nondestructive evaluation (NDE) techniques can be used to determine the thickness and the elastic moduli of adhesively bonded joints. In this paper we apply a previously developed technique based on the leaky Lamb wave (LLW) experiment to investigate the possibility of characterizing the thermal degradation of adhesive bonds in lap joints. The degradation of the adhesive bonds is determined through comparison between experimental data and theoretical calculations.

  3. Adhesion of Nongerminated Botrytis cinerea Conidia to Several Substrata †

    PubMed Central

    Doss, Robert P.; Potter, Sandra W.; Chastagner, Gary A; Christian, James K.

    1993-01-01

    Conidia of the plant pathogenic fungus Botrytis cinerea adhered to tomato cuticle and to certain other substrata immediately upon hydration. This immediate adhesion occurred with both living and nonliving conidia. Adhesion was not consistently influenced by several lectins, sugars, or salts or by protease treatment, but it was strongly inhibited by ionic or nonionic detergents. With glass and oxidized polyethylene, substrata whose surface hydrophobicities could be conveniently varied, there was a direct relationship between water contact angle and percent adhesion. Immediate adhesion did not involve specific conidial attachment structures, although the surfaces of attached conidia were altered by contact with a substratum. Freshly harvested conidia were very hydrophobic, with more than 97% partitioning into the organic layer when subjected to a phase distribution test. Percent adhesion of germinated conidia was larger than that of nongerminated conidia. Evidence suggests that immediate adhesion of conidia of B. cinerea depends, at least in part, on hydrophobic interactions between the conidia and substratum. Images PMID:16348954

  4. Evaluation of polyaryl adhesives in elastomer-stainless steel joints

    SciTech Connect

    Miura, M.; Carciello, N.; Sugama, T.; Kukacka, L.E.

    1992-10-01

    Polyaryl thermoplastic adhesives (polyetheretherketone, PEEK, polyphenylene sulfide PPS, polyphenylethersulfone, PES) were evaluated for ability to bond elastomer to metal for use in geothermal environments. Strength of elastomer-to-metal joints adhesives blends (such as in drill pipe or casing protectors) were determined using peel tests. Parameters involved in making the joints were temperature, time and atmosphere, in addition to type of adhesive. Physical chemical analyses have aided endeavors to determine the cause of adhesion failure in the joint: differential thermal analyses, thermal gravimetric analyses, infrared spectroscopy and electron spectroscopy for chemical analysis. Tests showed that joints made of adhesive blends which contained greater than 50% PES survived simulated geothermal conditions (200C, water vapor pressure 200 psi) for weeks without significant decrease in peel strength. Chemical components of the adhesive appear to be highly stable under the conditions required to make the joints and in subsequent exposure to the simulated geothermal environment.

  5. Thermophysical and flammability characterization of phosphorylated epoxy adhesives

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Giants, T. W.; Bilow, N.; Hsu, M.-T.

    1980-01-01

    Some of the thermophysical and flammability properties of a phosphorylated epoxy adhesive, which has potential applications in aircraft interior panels, are described. The adhesive consists of stoichiometric ratios of bis(3-glycidyloxphenyl)methylphosphine oxide and bis(3-aminophenyl)methylphosphine oxide containing approximately 7.5% phosphorus. Preliminary data are presented from adhesive bonding studies conducted utilizing this adhesive with polyvinyl fluoride (PVF) film and phenolic-glass laminates. Limiting oxygen index and smoke density data are presented and compared with those of the tetraglycidyl methylene dianiline epoxy resin-adhesive system currently used in aircraft interiors. Initial results indicate that the phosphorylated epoxy compound has excellent adhesive properties when used with PVF film and that desirable fire-resistant properties are maintained.

  6. Directing cell migration using micropatterned and dynamically adhesive polymer brushes.

    PubMed

    Costa, Patricia; Gautrot, Julien E; Connelly, John T

    2014-06-01

    Micropatterning techniques, such as photolithography and microcontact printing, provide robust tools for controlling the adhesive interactions between cells and their extracellular environment. However, the ability to modify these interactions in real time and examine dynamic cellular responses remains a significant challenge. Here we describe a novel strategy to create dynamically adhesive, micropatterned substrates, which afford precise control of cell adhesion and migration over both space and time. Specific functionalization of micropatterned poly(ethylene glycol methacrylate) (POEGMA) brushes with synthetic peptides, containing the integrin-binding arginine-glycine-aspartic acid (RGD) motif, was achieved using thiol-yne coupling reactions. RGD activation of POEGMA brushes promoted fibroblast adhesion, spreading and migration into previously non-adhesive areas, and migration speed could be tuned by adjusting the surface ligand density. We propose that this technique is a robust strategy for creating dynamically adhesive biomaterial surfaces and a useful assay for studying cell migration. PMID:24508539

  7. Cryogenic/high temperature structural adhesives. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Sheppard, C. H.

    1974-01-01

    Results are described of the work performed to develop a structural adhesive system which possesses useful properties over a 20K (-423 F) to 589 K (600 F) temperature range. Adhesives systems based on polyimide, polyphenylquinoxaline polyquinoxaline, polybenzothiazole and polybenzimidazole polymers first were screened for suitability. Detailed evaluation of two polyimide adhesive sytems, Br34/FM34 and P4/A5F or P4A/A5FA, and one polyphenylquinoxaline adhesive system, PPQ II (IMW), then was performed. Property information was generated over the full temperature range for shear strength, stressed and unstressed thermal aging, thermal shock and coefficient of thermal expansion. Both polyimide adhesive systems were identified as being capable of providing structural adhesive joints for cryogenic/high temperature service.

  8. Bonding Durability of Four Adhesive Systems

    PubMed Central

    Seyed Tabai, Elaheh; Mohammadi Basir, Mahshid

    2015-01-01

    Objectives: This study aimed to compare the durability of four adhesive systems by assessing their microtensile bond strength (MTBS) and microleakage during six months of water storage. Materials and Methods: A total of 128 human third molars were used. The adhesives tested were Scotch Bond Multipurpose (SBMP), Single Bond (SB), Clearfil-SE bond (CSEB), and All-Bond SE (ABSE). After sample preparation for MTBS testing, the microspecimens were subjected to microtensile tester after one day and six months of water storage. For microleakage evaluation, facial and lingual class V cavities were prepared and restored with composite. After thermocycling, microleakage was evaluated. Bond strength values were subjected to one-way ANOVA and Tamhane’s test, and the microleakage data were analyzed by the Kruskal-Wallis, Dunn, Mann Whitney and Wilcoxon tests (P<0.05). Results: Single Bond yielded the highest and ABSE yielded the lowest bond strength at one day and six months. Short-term bond strength of SBMP and CSEB was similar. After six months, a significant decrease in bond strength was observed in ABSE and SBMP groups. At one day, ABSE showed the highest microleakage at the occlusal margin; however, at the gingival margin, there was no significant difference among groups. Long-term microleakage of all groups at the occlusal margins was similar, whilst gingival margins of SBMP and SB showed significantly higher microleakage. Conclusion: The highest MTBS and favorable sealability were obtained by Clearfil SE bond. Water storage had no effect on microleakage of self-etch adhesives at the gingival margin or MTBS of CSEB and SB. PMID:27123015

  9. Adhesion to chondroitinase ABC treated dentin

    PubMed Central

    Mazzoni, Annalisa; Pashley, David H.; Ruggeri, Alessandra; Vita, Francesca; Falconi, Mirella; Di Lenarda, Roberto; Breschi, Lorenzo

    2013-01-01

    Dentin bonding relies on complete resin impregnation throughout the demineralised hydrophilic collagen mesh. Chondroitin sulphate-glycosaminoglycans are claimed to regulate the three-dimensional arrangement of the dentin organic matrix and its hydrophilicity. The aim of this study was to investigate bond strength of two etch-and-rinse adhesives to chondroitinase ABC treated dentin. Human extracted molars were treated with chondroitinase ABC and a double labelling immunohistochemical technique was applied to reveal type I collagen and chondroitin 4/6 sulphate distribution under field emission in-lens scanning electron microscope. The immunohistochemical technique confirmed the effective removal of chondroitin 4/6 sulphate after the enzymatic treatment. Dentin surfaces exposed to chondroitinase ABC and untreated specimens prepared on untreated acid-etched dentin were bonded with Adper Scotchbond Multi-Purpose or Prime & Bond NT. Bonded specimens were submitted to microtensile testing and nanoleakage interfacial analysis under transmission electron microscope. Increased mean values of microtensile bond strength and reduced nanoleakage expression were found for both adhesives after chondroitinase ABC treatment of the dentin surface. Adper Scotchbond Multi-Purpose increased its bond strength about 28%, while bonding made with Prime & Bond NT almost doubled (92% increase) compared to untreated specimens. This study supports the hypothesis that adhesion can be enhanced by removal of chondroitin 4/6 sulphate and dermatan sulphate, probably due to a reduced amount of water content and enlarged interfibrillar spaces. Further studies should validate this hypothesis investigating the stability of chondroitin 4/6 and dermatan sulphate-depleted dentin bonded interface over time. PMID:18161809

  10. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1997-01-01

    Qualitative measurements of adhesion or binding forces can be accomplished, for example, by using the reflection coefficient of an ultrasound or by using thermal waves (Light and Kwun, 1989, Achenbach and Parikh, 1991, and Bostrom and wickham, 1991). However, a quantitative determination of binding forces is rather difficult. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasound passes through a nonlinear material. It seems that such non-linearity can be effectively used to characterize the bond strength. Several theories have been developed to model this nonlinear effect (Adler and Nagy, 1991; Achenbach and Parikh, 1991; Parikh and Achenbach, 1992; and Hirose and Kitahara, 1992; Anastasi and Roberts, 1992). Based on a microscopic description of the nonlinear interface binding force, a quantitative method was presented by Pangraz and Arnold (1994). Recently, Tang, Cheng and Achenbach (1997) made a comparison between the experimental and simulated results based on this theoretical model. A water immersion mode-converted shear wave through-transmission setup was used by Berndt and Green (1997) to analyze the nonlinear acoustic behavior of the adhesive bond. In this project, the nonlinear responses of an adhesive joint was investigated through transmission tests of ultrasonic wave and analyzed by the finite element simulations. The higher order harmonics were obtained in the tests. It is found that the amplitude of higher harmonics increases as the aging increases, especially the 3dorder harmonics. Results from the numerical simulation show that the material nonlinearity does indeed generate higher order harmonics. In particular, the elastic-perfect plastic behavior generates significant 3rd and 5th order harmonics.

  11. Fatigue crack propagation at polymer adhesive interfaces

    SciTech Connect

    Ritter, J.E.

    1996-12-31

    Delamination of polymer adhesive interfaces often occurs due to slow crack growth under either monotonic or cyclic loading. The author`s previous research showed that moisture-assisted crack growth at epoxy/glass and epoxy acrylate/glass interfaces under monotonic loading was directly related to the applied energy release rate and relative humidity and that cyclic loading could enhance crack growth. The purpose of the present research is to compare crack growth along epoxy acrylate/glass and epoxy/PMMA interfaces under monotonic and cyclic loading.

  12. Strength of adhesive-bonded hybrid structures

    NASA Technical Reports Server (NTRS)

    Kirschke, L.; Prinz, R.; Schnell, H.

    1979-01-01

    Structures prepared from materials with different thermal and mechanical properties by means of fiber-strengthened binders can fail in a number of ways. The present lecture is focused on failures through debonding at the metal or at the fiber-reinforced plastic. A method for calculating the stress distribution in adhesive layers as a function of the load is outlined, and its usefulness in providing insight into the behavior of bonds in hybrid structures is noted. Means of eliminating the unfavorable effects of temperature, humidity, creep and relaxation on the bonds in the manufacture of hybrid structures are examined, along with test methods developed for such structures.

  13. How to develop globular proteins into adhesives.

    PubMed

    van der Leeden, M C; Rutten, A A; Frens, G

    2000-05-26

    To make globular proteins suitable for application in adhesives, the specific bonds and interactions which shape their structure have to broken. Only then, a layer of relatively large, flexible and interwoven polymer chains, which are firmly attached to the solid surface by adsorption, can be created. Such a network layer is essential to save the adhesive bond under an applied force, because it can distribute the concentration of stresses generated at the interface into the bulk. Unfolding and swelling of a protein can be achieved by changing the solvent quality. For the globular whey protein beta-lactoglobulin, the optimal conditions for unfolding and swelling is found with 98% formic acid as a solvent. In formic acid, beta-lactoglobulin looses its amphoteric character (it is protonated, probably for approximately 20%). In addition, formic acid is less polar than water and thus a better solvent for the apolar parts of the protein. The swelling and unfolding behaviour of beta-lactoglobulin is studied by viscosity and CD-spectroscopy measurements. For the interpretation of the results we apply the Kuhn formalism that the conformation of a protein can be described in terms of a statistical chain which consists of segments of an average persistence length P. The statistical segment length P, which varies with the experimental conditions, is directly related to the adsorption energy required for a strong adhesion between coil and surface. It determines the depletion energy kT P(-2) m(-2) which must be overcome by specific attraction between side groups of the protein chain and the surface. For beta-lactoglobulin in 98% formic acid, we find a P value of approximately 2.2 nm, pointing at a relatively flexible chain. The minimum net adsorption energy kT P(-2) is then approximately 1 mJ m(-2), a relatively small value to be exceeded. Preliminary results of destructive adhesion tests on beech wood lap-shear joints reveal promising tensile strengths of approximately 2

  14. [Posttraumatic adhesive ileus following pelvic ring fracture].

    PubMed

    Kusmenkov, T; Kasparek, M S; Brumann, M; Bogner, V; Mutschler, W

    2015-09-01

    We report on two cases of posttraumatic ileus after pelvic ring fracture in two patients aged 73 and 74 years, respectively. Although all conservative measures were exhausted, in both cases the ileus resulted in additional operative procedures and a significant extension of the hospital stay. Intraoperatively both patients presented with a mechanical ileus caused by adhesions which were unapparent for decades. Only the trauma-related motility disorder led to a clinical manifestation. Pathophysiological mechanisms and their implications on prophylaxis and therapy are discussed. PMID:25432671

  15. [Ingredients of membrane adhesion in reused dialyzer].

    PubMed

    Xu, Xiulin; Yang, Yujing; Zhu, Gendi; Fan, Xiaohong

    2007-10-01

    Selecting reused polysulfone membrane (PSM) dialyzers as research objects, we mainly analyzed quantitatively the adhesion ingredients which obstructed the passage through the membrane, and we investigated the differences of residual contaminants on the surface of PSM in the cases of various reuse times. The results illustrated that after the completion of dialysis, the dialyzer was first cleaned by reverse osmosis (RO) water to remove the protein adsorpted. Then we used 2% sodium hypochlorite (NaClO) solution to soak it, and the glucose, cholesterol and triglyceride adsorpted were dissolved off. Meanwhile, the quantity of most of adsorption gradually increased with the increase of reuse times. PMID:18027707

  16. Doxycycline-encapsulated nanotube-modified dentin adhesives.

    PubMed

    Feitosa, S A; Palasuk, J; Kamocki, K; Geraldeli, S; Gregory, R L; Platt, J A; Windsor, L J; Bottino, M C

    2014-12-01

    This article presents details of fabrication, biological activity (i.e., anti-matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)-encapsulated halloysite nanotube (HNT)-modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives-but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels-we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of encapsulated MMP

  17. Adhesion molecules in antibacterial defenses: effects of bacterial extracts.

    PubMed

    Marchant, A; Duchow, J; Goldman, M

    1992-01-01

    Adhesion of polymorphonuclear leukocytes (PMN) to vascular endothelium is one of the first events in their response against local bacterial infection. Different adhesion molecules sequentially mediate PMN adherence to endothelium and extravasation into inflamed tissues. We show that bacterial extracts OM-85 BV and OM-89 increase the expression of adhesion molecules at the surface of PMN and we suggest that this upregulation could be linked to the beneficial effect of bacterial extracts in the prevention of respiratory tract infections. PMID:1439236

  18. The peel test in experimental adhesive fracture mechanics

    NASA Technical Reports Server (NTRS)

    Anderson, G. P.; Devries, K. L.; Williams, M. L.

    1974-01-01

    Several testing methods have been proposed for obtaining critical energy release rate or adhesive fracture energy in bond systems. These tests include blister, cone, lap shear, and peel tests. Peel tests have been used for many years to compare relative strengths of different adhesives, different surface preparation techniques, etc. The present work demonstrates the potential use of the peel test for obtaining adhesive fracture energy values.

  19. Epoxy Nanocomposites—Curing Rheokinetics, Wetting and Adhesion to Fibers

    NASA Astrophysics Data System (ADS)

    Ilyin, S. O.; Kotomin, S. V.; Kulichikhin, V. G.

    2010-06-01

    Epoxy nanocomposites considered as challenging polymeric matrix for advanced reinforced plastics. Nanofillers change rheokinetics of epoxy resin curing, affect wetting and adhesion to aramid and carbon fibers. In all cases extreme dependence of adhesive strength vs filler content in the binder was observed. New experimental techniques were developed to study wettability and fiber-matrix adhesion interaction, using yarn penetration path length, aramid fiber knot pull-up test and electrical admittance of the fracture surface of CFRP.

  20. Adhesive behavior of aluminum layers evaporated on polyester films

    SciTech Connect

    Vallat, M.F.; Haidara, H.; Ziegler, P.; Rey, D.; Papirer, Y.; Schultz, J.

    1996-01-01

    The adhesive performance of thin aluminum coatings deposited onto polymer substrates is considered. The effects of the evaporation conditions and the metal thickness on the adhesive properties of polyester/aluminum assemblies are examined. A ultrasonic test for adherence measurements of thin metal layers is proposed and its shown that a thermal treatment under stress modifies the adhesive properties of such metallized polymer films. (AIP) {copyright}{ital 1996 American Institute of Physics.}