Science.gov

Sample records for adhesion molecules e-cadherin

  1. Important factors mediates the adhesion of aspergillus fumigatus to alveolar epithelial cells with E-cadherin.

    PubMed

    Xu, Xiao-Yong; Chen, Fei; Sun, He; Chen, Chen; Zhao, Bei-Lei

    2016-01-01

    Aspergillus is widely distributed in the Earth's biosphere. It has strong adaptive capacity, and lives as saprophytic or parasitic life. This study aims to investigate the role of E-cadherin for adhesion of Aspergillus fumigatus blastospores in a human epithelial cell line (A549) and search the correlated molecule in aspergillus. A. fumigatus blastospores were incubated with the total protein of A549 to investigate the binding of E-cadherin and blastospores followed by an affinity purification procedure. After establishing the adhesion model, the adhesion of A. fumigatus blastospores by A549 cells was evaluated by down-regulating E-cadherin of A549 cells with small interfering RNA (siRNA). FVB mice constructed with E-cadherin down-regulation were infected with aspergillus fumigatus. Preliminary exploration of E-cadherin interacting protein on the surface of aspergillus fumigates by immunoprecipitation and mass spectrometry analysis. E-cadherin was adhered to the surface of A. fumigatus blastospore. Adhesion of the blastospores was reduced by blocking or down-regulating E-cadherin in A549 cells. E-cadherin showed limited significance in the process of mice against aspergillus fumigates. Mass spectrometry (MS) analysis indicated the following proteins AFUA_8G07080, AfA24A6.130c, XP_747789 can bind to E-cadherin. In conclusion, E-cadherin is a receptor for adhesion of A. fumigatus blastospores in epithelial cells. This may open a new approach to treat this fungal infection. PMID:27347350

  2. Important factors mediates the adhesion of aspergillus fumigatus to alveolar epithelial cells with E-cadherin

    PubMed Central

    Xu, Xiao-Yong; Chen, Fei; Sun, He; Chen, Chen; Zhao, Bei-Lei

    2016-01-01

    Aspergillus is widely distributed in the Earth’s biosphere. It has strong adaptive capacity, and lives as saprophytic or parasitic life. This study aims to investigate the role of E-cadherin for adhesion of Aspergillus fumigatus blastospores in a human epithelial cell line (A549) and search the correlated molecule in aspergillus. A. fumigatus blastospores were incubated with the total protein of A549 to investigate the binding of E-cadherin and blastospores followed by an affinity purification procedure. After establishing the adhesion model, the adhesion of A. fumigatus blastospores by A549 cells was evaluated by down-regulating E-cadherin of A549 cells with small interfering RNA (siRNA). FVB mice constructed with E-cadherin down-regulation were infected with aspergillus fumigatus. Preliminary exploration of E-cadherin interacting protein on the surface of aspergillus fumigates by immunoprecipitation and mass spectrometry analysis. E-cadherin was adhered to the surface of A. fumigatus blastospore. Adhesion of the blastospores was reduced by blocking or down-regulating E-cadherin in A549 cells. E-cadherin showed limited significance in the process of mice against aspergillus fumigates. Mass spectrometry (MS) analysis indicated the following proteins AFUA_8G07080, AfA24A6.130c, XP_747789 can bind to E-cadherin. In conclusion, E-cadherin is a receptor for adhesion of A. fumigatus blastospores in epithelial cells. This may open a new approach to treat this fungal infection. PMID:27347350

  3. Zeb1 Regulates E-cadherin and Epcam (Epithelial Cell Adhesion Molecule) Expression to Control Cell Behavior in Early Zebrafish Development*

    PubMed Central

    Vannier, Corinne; Mock, Kerstin; Brabletz, Thomas; Driever, Wolfgang

    2013-01-01

    The ZEB1 transcription factor is best known as an inducer of epithelial-mesenchymal transitions (EMT) in cancer metastasis, acting through transcriptional repression of CDH1 (encoding E-cadherin) and the EMT-suppressing microRNA-200s (miR-200s). Here we analyze roles of the ZEB1 zebrafish orthologs, Zeb1a and Zeb1b, and of miR-200s in control of cell adhesion and morphogenesis during gastrulation and segmentation stages. Loss and gain of function analyses revealed that Zeb1 represses cdh1 expression to fine-tune adhesiveness of migrating deep blastodermal cells. Furthermore, Zeb1 acts as a repressor of epcam in the deep cells of the blastoderm and may contribute to control of epithelial integrity of enveloping layer cells, the outermost cells of the blastoderm. We found a similar ZEB1-dependent repression of EPCAM expression in human pancreatic and breast cancer cell lines, mediated through direct binding of ZEB1 to the EPCAM promoter. Thus, Zeb1 proteins employ several evolutionary conserved mechanisms to regulate cell-cell adhesion during development and cancer. PMID:23667256

  4. Soy isoflavone genistein upregulates epithelial adhesion molecule e-cadherin expression and attenuates beta-catenin signaling in mammary epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhanced Wnt/beta -catenin signaling and loss of E-cadherin expression are considered hallmarks of mammary tumorigenesis. Mammary tumor protection by dietary intake of soy-rich foods and the soy isoflavone genistein (Gen) is widely regarded based on numerous epidemiological and animal studies; howev...

  5. E-cadherin and Src associate with extradesmosomal Dsg3 and modulate desmosome assembly and adhesion.

    PubMed

    Rötzer, Vera; Hartlieb, Eva; Vielmuth, Franziska; Gliem, Martin; Spindler, Volker; Waschke, Jens

    2015-12-01

    Desmosomes provide strong intercellular cohesion essential for the integrity of cells and tissues exposed to continuous mechanical stress. For desmosome assembly, constitutively synthesized desmosomal cadherins translocate to the cell-cell border, cluster and mature in the presence of Ca(2+) to stable cell contacts. As adherens junctions precede the formation of desmosomes, we investigated in this study the relationship between the classical cadherin E-cadherin and the desmosomal cadherin Desmoglein 3 (Dsg3), the latter of which is indispensable for cell-cell adhesion in keratinocytes. By using autoantibodies from patients with the blistering skin disease pemphigus vulgaris (PV), we showed in loss of function studies that E-cadherin compensates for effects of desmosomal disassembly. Overexpression of E-cadherin reduced the loss of cell cohesion induced by PV autoantibodies and attenuated activation of p38 MAPK. Silencing of E-cadherin abolished the localization of Dsg3 at the membrane and resulted in a shift of Dsg3 from the cytoskeletal to the non-cytoskeletal protein pool which conforms to the notion that E-cadherin regulates desmosome assembly. Mechanistically, we identified a complex consisting of extradesmosomal Dsg3, E-cadherin, β-catenin and Src and that the stability of this complex is regulated by Src. Moreover, Dsg3 and E-cadherin are phosphorylated on tyrosine residues in a Src-dependent manner and Src activity is required for recruiting Dsg3 to the cytoskeletal pool as well as for desmosome maturation towards a Ca(2+)-insensitive state. Our data provide new insights into the role of E-cadherin and the contribution of Src signaling for formation and maintenance of desmosomal junctions. PMID:26115704

  6. Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex.

    PubMed

    Lee, Kwangkook; Zhong, Xiaofen; Gu, Shenyan; Kruel, Anna Magdalena; Dorner, Martin B; Perry, Kay; Rummel, Andreas; Dong, Min; Jin, Rongsheng

    2014-06-20

    How botulinum neurotoxins (BoNTs) cross the host intestinal epithelial barrier in foodborne botulism is poorly understood. Here, we present the crystal structure of a clostridial hemagglutinin (HA) complex of serotype BoNT/A bound to the cell adhesion protein E-cadherin at 2.4 angstroms. The HA complex recognizes E-cadherin with high specificity involving extensive intermolecular interactions and also binds to carbohydrates on the cell surface. Binding of the HA complex sequesters E-cadherin in the monomeric state, compromising the E-cadherin-mediated intercellular barrier and facilitating paracellular absorption of BoNT/A. We reconstituted the complete 14-subunit BoNT/A complex using recombinantly produced components and demonstrated that abolishing either E-cadherin- or carbohydrate-binding of the HA complex drastically reduces oral toxicity of BoNT/A complex in vivo. Together, these studies establish the molecular mechanism of how HAs contribute to the oral toxicity of BoNT/A. PMID:24948737

  7. Paranuaclear E-cadherin in gastric adenocarcinoma.

    PubMed

    Carpenter, Philip M; Al-Kuran, Rasha A; Theuer, Charles P

    2002-12-01

    Decreased E-cadherin expression permits dissociation and widespread dissemination of gastric adenocarcinoma cells. We studied the relationship between paranuclear E-cadherin distribution and the histopathologic characteristics of gastric adenocarcinomas. E-cadherin immunostains of 173 gastric adenocarcinoma sections revealed paranuclear; punctate to vesicular staining in 18% (16/87) of the intestinal-type adenocarcinomas, 30% (17/56) of the diffuse-type adenocarcinomas, and 30% (9/30) of the mired adenocarcinomas. These data suggest that in some gastric adenocarcinomas, there is a defect in transport of E-cadherin to the cell surface, which may prevent intercellular adhesion and encourage dissemination. Of 34 cancers with paranuclear E-cadherin staining, 20 (59%) had paranuclear staining within the nonneoplastic epithelium, but only 22.0% of 100 carcinomas with absent or membranous E-cadherin staining were accompanied by morphologically benign epithelium with paranuclear E-cadherin. In surface epithelium, paranuclear E-cadherin staining colocalized with Griffonia simplicifolia lectin II in the Golgi apparatus. The presence of paranuclear E-cadherin in cancer-associated benign epithelium suggests that the alteration in the E-cadherin molecule responsible for the paranuclear distribution may be an early change in gastric adenocarcinoma progression. PMID:12472282

  8. The Integrated Role of Wnt/β-Catenin, N-Glycosylation, and E-Cadherin-Mediated Adhesion in Network Dynamics.

    PubMed

    Vargas, Diego A; Sun, Meng; Sadykov, Khikmet; Kukuruzinska, Maria A; Zaman, Muhammad H

    2016-07-01

    The cellular network composed of the evolutionarily conserved metabolic pathways of protein N-glycosylation, Wnt/β-catenin signaling pathway, and E-cadherin-mediated cell-cell adhesion plays pivotal roles in determining the balance between cell proliferation and intercellular adhesion during development and in maintaining homeostasis in differentiated tissues. These pathways share a highly conserved regulatory molecule, β-catenin, which functions as both a structural component of E-cadherin junctions and as a co-transcriptional activator of the Wnt/β-catenin signaling pathway, whose target is the N-glycosylation-regulating gene, DPAGT1. Whereas these pathways have been studied independently, little is known about the dynamics of their interaction. Here we present the first numerical model of this network in MDCK cells. Since the network comprises a large number of molecules with varying cell context and time-dependent levels of expression, it can give rise to a wide range of plausible cellular states that are difficult to track. Using known kinetic parameters for individual reactions in the component pathways, we have developed a theoretical framework and gained new insights into cellular regulation of the network. Specifically, we developed a mathematical model to quantify the fold-change in concentration of any molecule included in the mathematical representation of the network in response to a simulated activation of the Wnt/ β-catenin pathway with Wnt3a under different conditions. We quantified the importance of protein N-glycosylation and synthesis of the DPAGT1 encoded enzyme, GPT, in determining the abundance of cytoplasmic β-catenin. We confirmed the role of axin in β-catenin degradation. Finally, our data suggest that cell-cell adhesion is insensitive to E-cadherin recycling in the cell. We validate the model by inhibiting β-catenin-mediated activation of DPAGT1 expression and predicting changes in cytoplasmic β-catenin concentration and stability

  9. The Integrated Role of Wnt/β-Catenin, N-Glycosylation, and E-Cadherin-Mediated Adhesion in Network Dynamics

    PubMed Central

    Vargas, Diego A.; Sun, Meng; Sadykov, Khikmet; Kukuruzinska, Maria A.; Zaman, Muhammad H.

    2016-01-01

    The cellular network composed of the evolutionarily conserved metabolic pathways of protein N-glycosylation, Wnt/β-catenin signaling pathway, and E-cadherin-mediated cell-cell adhesion plays pivotal roles in determining the balance between cell proliferation and intercellular adhesion during development and in maintaining homeostasis in differentiated tissues. These pathways share a highly conserved regulatory molecule, β-catenin, which functions as both a structural component of E-cadherin junctions and as a co-transcriptional activator of the Wnt/β-catenin signaling pathway, whose target is the N-glycosylation-regulating gene, DPAGT1. Whereas these pathways have been studied independently, little is known about the dynamics of their interaction. Here we present the first numerical model of this network in MDCK cells. Since the network comprises a large number of molecules with varying cell context and time-dependent levels of expression, it can give rise to a wide range of plausible cellular states that are difficult to track. Using known kinetic parameters for individual reactions in the component pathways, we have developed a theoretical framework and gained new insights into cellular regulation of the network. Specifically, we developed a mathematical model to quantify the fold-change in concentration of any molecule included in the mathematical representation of the network in response to a simulated activation of the Wnt/ β-catenin pathway with Wnt3a under different conditions. We quantified the importance of protein N-glycosylation and synthesis of the DPAGT1 encoded enzyme, GPT, in determining the abundance of cytoplasmic β-catenin. We confirmed the role of axin in β-catenin degradation. Finally, our data suggest that cell-cell adhesion is insensitive to E-cadherin recycling in the cell. We validate the model by inhibiting β-catenin-mediated activation of DPAGT1 expression and predicting changes in cytoplasmic β-catenin concentration and stability

  10. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface.

    PubMed Central

    Iino, R; Koyama, I; Kusumi, A

    2001-01-01

    Single green fluorescent protein (GFP) molecules were successfully imaged for the first time in living cells. GFP linked to the cytoplasmic carboxyl terminus of E-cadherin (E-cad-GFP) was expressed in mouse fibroblast L cells, and observed using an objective-type total internal reflection fluorescence microscope. Based on the fluorescence intensity of individual fluorescent spots, the majority of E-cad-GFP molecules on the free cell surface were found to be oligomers of various sizes, many of them greater than dimers, suggesting that oligomerization of E-cadherin takes place before its assembly at cell-cell adhesion sites. The translational diffusion coefficient of E-cad-GFP is reduced by a factor of 10 to 40 upon oligomerization. Because such large decreases in translational mobility cannot be explained solely by increases in radius upon oligomerization, an oligomerization-induced trapping model is proposed in which, when oligomers are formed, they are trapped in place due to greatly enhanced tethering and corralling effects of the membrane skeleton on oligomers (compared with monomers). The presence of many oligomers greater than dimers on the free surface suggests that these greater oligomers are the basic building blocks for the two-dimensional cell adhesion structures (adherens junctions). PMID:11371443

  11. Restoring E-cadherin-mediated cell-cell adhesion increases PTEN protein level and stability in human breast carcinoma cells

    SciTech Connect

    Li Zengxia; Wang Liying; Zhang Wen; Fu Yi; Zhao Hongbo; Hu Yali; Prins, Bram Peter; Zha Xiliang

    2007-11-09

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a well-characterized tumor suppressor that negatively regulates cell growth and survival. Despite the critical role of PTEN in cell signaling, the mechanisms of its regulation are still under investigation. We reported here that PTEN expression could be controlled by overexpression or knock-down of E-cadherin in several mammary carcinoma cell lines. Furthermore, we showed that the accumulation of PTEN protein in E-cadherin overexpressing cells was due to increased PTEN protein stability rather than the regulation of its transcription. The proteasome-dependent PTEN degradation pathway was impaired after restoring E-cadherin expression. Moreover, maintenance of E-cadherin mediated cell-cell adhesion was necessary for its regulating PTEN. Altogether, our results suggested that E-cadherin mediated cell-cell adhesion was essential for preventing the proteasome degradation of PTEN, which might explain how breast carcinoma cells which lost cell-cell contact proliferate rapidly and are prone to metastasis.

  12. Modulation of integrin and E-cadherin-mediated adhesions to spatially control heterogeneity in human pluripotent stem cell differentiation.

    PubMed

    Toh, Yi-Chin; Xing, Jiangwa; Yu, Hanry

    2015-05-01

    Heterogeneity in human pluripotent stem cell (PSC) fates is partially caused by mechanical asymmetry arising from spatial polarization of cell-cell and cell-matrix adhesions. Independent studies have shown that integrin and E-cadherin adhesions promote opposing differentiation and pluripotent fates respectively although their crosstalk mechanism in modulating cell fate heterogeneity remains unknown. Here, we demonstrated that spatial polarization of integrin and E-cadherin adhesions in a human PSC colony compete to recruit Rho-ROCK activated myosin II to different localities to pattern pluripotent-differentiation decisions, resulting in spatially heterogeneous colonies. Cell micropatterning was used to modulate the spatial polarization of cell adhesions, which enabled us to prospectively determine localization patterns of activated myosin II and mesoendoderm differentiation. Direct inhibition of Rho-ROCK-myosin II activation phenocopied E-cadherin rather than integrin inhibition to form uniformly differentiated colonies. This indicated that E-cadherin was the primary gatekeeper to differentiation progression. This insight allows for biomaterials to be tailored for human PSC maintenance or differentiation with minimal heterogeneity. PMID:25736499

  13. A mechanism for inhibition of E-cadherin-mediated cell-cell adhesion by the membrane-associated mucin episialin/MUC1.

    PubMed Central

    Wesseling, J; van der Valk, S W; Hilkens, J

    1996-01-01

    Episialin (MUC1, PEM, EMA, CA15-3 antigen) is a sialylated, membrane-associated glycoprotein with an extended mucin-like ectodomain. This domain mainly consists of 30-90 homologous 20-amino acid repeats that are rich in O-glycosylation sites (serines and threonines). It is likely that this part forms a polyproline beta-turn helix. As a result, the ectodomain can protrude more than 200 nm above the cell surface, whereas most cell surface molecules do not exceed a length of 35 nm. Normally, episialin is present at the apical side of glandular epithelial cells. On carcinoma cells, however, it can be strongly overexpressed and it is often present over the entire cell surface. We have previously shown that episialin, if it is interspersed between adhesion molecules, nonspecifically reduces cell-cell and cell-extracellular matrix interactions in vitro and in vivo, presumably by steric hindrance caused by the extreme length and high density of the episialin molecules at the cell surface. To analyze the molecular mechanism for this anti-adhesion effect in more detail, we have now deleted an increasing number of repeats in the episialin cDNA and transfected the resulting mutants into murine L929 cells expressing the homophilic adhesion molecule E-cadherin. Here we show that the length of episialin is the dominant factor that determines the inhibition of E-cadherin-mediated cell-cell interactions. For the anti-adhesive effect mediated by the full length episialin, charge repulsion by negatively charged sialylated O-linked glycans is far less important. Images PMID:8730100

  14. Cooperation of distinct Rac-dependent pathways to stabilise E-cadherin adhesion.

    PubMed

    Erasmus, Jennifer C; Welsh, Natalie J; Braga, Vania M M

    2015-09-01

    The precise mechanisms via which Rac1 is activated by cadherin junctions are not fully known. In keratinocytes Rac1 activation by cadherin junctions requires EGFR signalling, but how EGFR does so is unclear. To address which activator could mediate E-cadherin signalling to Rac1, we investigated EGFR and two Rac1 GEFs, SOS1 and DOCK180. EGFR RNAi prevented junction-induced Rac1 activation and led to fragmented localization of E-cadherin at cadherin contacts. In contrast, depletion of another EGFR family member, ErbB3, did not interfere with either process. DOCK180 RNAi, but not SOS1, prevented E-cadherin-induced Rac1 activation. However, in a strong divergence from EGFR RNAi phenotype, DOCK180 depletion did not perturb actin recruitment or cadherin localisation at junctions. Rather, reduced DOCK180 levels impaired the resistance to mechanical stress of pre-formed cell aggregates. Thus, within the same cell type, EGFR and DOCK180 regulate Rac1 activation by newly-formed contacts, but control separate cellular events that cooperate to stabilise junctions. PMID:25957131

  15. Cooperation of distinct Rac-dependent pathways to stabilise E-cadherin adhesion

    PubMed Central

    Erasmus, Jennifer C.; Welsh, Natalie J.; Braga, Vania M.M.

    2015-01-01

    The precise mechanisms via which Rac1 is activated by cadherin junctions are not fully known. In keratinocytes Rac1 activation by cadherin junctions requires EGFR signalling, but how EGFR does so is unclear. To address which activator could mediate E-cadherin signalling to Rac1, we investigated EGFR and two Rac1 GEFs, SOS1 and DOCK180. EGFR RNAi prevented junction-induced Rac1 activation and led to fragmented localization of E-cadherin at cadherin contacts. In contrast, depletion of another EGFR family member, ErbB3, did not interfere with either process. DOCK180 RNAi, but not SOS1, prevented E-cadherin-induced Rac1 activation. However, in a strong divergence from EGFR RNAi phenotype, DOCK180 depletion did not perturb actin recruitment or cadherin localisation at junctions. Rather, reduced DOCK180 levels impaired the resistance to mechanical stress of pre-formed cell aggregates. Thus, within the same cell type, EGFR and DOCK180 regulate Rac1 activation by newly-formed contacts, but control separate cellular events that cooperate to stabilise junctions. PMID:25957131

  16. Loss of E-cadherin-dependent cell-cell adhesion due to mutation of the beta-catenin gene in a human cancer cell line, HSC-39.

    PubMed Central

    Kawanishi, J; Kato, J; Sasaki, K; Fujii, S; Watanabe, N; Niitsu, Y

    1995-01-01

    Detachment of cell-cell adhesion is indispensable for the first step of invasion and metastasis of cancer. This mechanism is frequently associated with the impairment of either E-cadherin expression or function. However, mechanisms of such abnormalities have not been fully elucidated. In this study, we demonstrated that the function of E-cadherin was completely abolished in the human gastric cancer cell line HSC-39, despite the high expression of E-cadherin, because of mutations in one of the E-cadherin-associated cytoplasmic proteins, beta-catenin. Although immunofluorescence staining of HSC-39 cells by using an anti-E-cadherin antibody (HECD-1) revealed the strong and uniform expression of E-cadherin on the cell surface, cell compaction and cell aggregation were not observed in this cell. Western blotting (immunoblotting) using HECD-1 exhibited a 120-kDa band which is equivalent to normal E-cadherin. Northern (RNA) blotting demonstrated a 4.7-kb band, the same as mature E-cadherin mRNA. Immunoprecipitation of metabolically labeled proteins with HECD-1 revealed three bands corresponding to E-cadherin, alpha-catenin, and gamma-catenin and a 79-kDa band which was apparently smaller than that of normal beta-catenin, indicating truncated beta-catenin. The 79-kDa band was immunologically identified as beta-catenin by using immunoblotting with anti-beta-catenin antibodies. Examination of beta-catenin mRNA by the reverse transcriptase-PCR method revealed a transcript which was shorter than that of normal beta-catenin. The sequencing of PCR product for beta-catenin confirmed deletion in 321 bases from nucleotides +82 to +402. Southern blotting of beta-catenin DNA disclosed mutation at the genomic level. Expression vectors of Beta-catenin were introduced into HSC-39 cells by transfection. In the obtained transfectants, E-cadherin-dependent cell-cell adhesiveness was recovered, as revealed by cell compaction, cell aggregation, and immunoflourescence staining. From these

  17. Dynamic and Static Interactions between p120 Catenin and E-Cadherin Regulate the Stability of Cell-Cell Adhesion

    SciTech Connect

    Ishiyama, Noboru; Lee, Seung-Hye; Liu, Shuang; Li, Guang-Yao; Smith, Matthew J.; Reichardt, Louis F.; Ikura, Mitsuhiko

    2010-04-26

    The association of p120 catenin (p120) with the juxtamembrane domain (JMD) of the cadherin cytoplasmic tail is critical for the surface stability of cadherin-catenin cell-cell adhesion complexes. Here, we present the crystal structure of p120 isoform 4A in complex with the JMD core region (JMD{sub core}) of E-cadherin. The p120 armadillo repeat domain contains modular binding pockets that are complementary to electrostatic and hydrophobic properties of the JMD{sub core}. Single-residue mutations within the JMD{sub core}-binding site of p120 abolished its interaction with E- and N-cadherins in vitro and in cultured cells. These mutations of p120 enabled us to clearly differentiate between N-cadherin-dependent and -independent steps of neuronal dendritic spine morphogenesis crucial for synapse development. NMR studies revealed that p120 regulates the stability of cadherin-mediated cell-cell adhesion by associating with the majority of the JMD, including residues implicated in clathrin-mediated endocytosis and Hakai-dependent ubiquitination of E-cadherin, through its discrete dynamic and static binding sites.

  18. Transcriptional Repression of E-Cadherin by Human Papillomavirus Type 16 E6

    PubMed Central

    D'Costa, Zarina J.; Jolly, Carol; Androphy, Elliot J.; Mercer, Andrew; Matthews, Charles M.; Hibma, Merilyn H.

    2012-01-01

    There is increasing evidence supporting DNA virus regulation of the cell adhesion and tumour suppressor protein, E-cadherin. We previously reported that loss of E-cadherin in human papillomavirus (HPV) type 16-infected epidermis is contributed to by the major viral proto-oncogene E6 and is associated with reduced Langerhans cells density, potentially regulating the immune response. The focus of this study is determining how the HPV16 E6 protein mediates E-cadherin repression. We found that the E-cadherin promoter is repressed in cells expressing E6, resulting in fewer E-cadherin transcripts. On exploring the mechanism for this, repression by increased histone deacetylase activity or by increased binding of trans-repressors to the E-cadherin promoter Epal element was discounted. In contrast, DNA methyltransferase (DNMT) activity was increased in E6 expressing cells. Upon inhibiting DNMT activity using 5-Aza-2′-deoxycytidine, E-cadherin transcription was restored in the presence of HPV16 E6. The E-cadherin promoter was not directly methylated, however a mutational analysis showed general promoter repression and reduced binding of the transactivators Sp1 and AML1 and the repressor Slug. Expression of E7 with E6 resulted in a further reduction in surface E-cadherin levels. This is the first report of HPV16 E6-mediated transcriptional repression of this adhesion molecule and tumour suppressor protein. PMID:23189137

  19. Spatial distribution of cell–cell and cell–ECM adhesions regulates force balance while main­taining E-cadherin molecular tension in cell pairs

    PubMed Central

    Sim, Joo Yong; Moeller, Jens; Hart, Kevin C.; Ramallo, Diego; Vogel, Viola; Dunn, Alex R.; Nelson, W. James; Pruitt, Beth L.

    2015-01-01

    Mechanical linkage between cell–cell and cell–extracellular matrix (ECM) adhesions regulates cell shape changes during embryonic development and tissue homoeostasis. We examined how the force balance between cell–cell and cell–ECM adhesions changes with cell spread area and aspect ratio in pairs of MDCK cells. We used ECM micropatterning to drive different cytoskeleton strain energy states and cell-generated traction forces and used a Förster resonance energy transfer tension biosensor to ask whether changes in forces across cell–cell junctions correlated with E-cadherin molecular tension. We found that continuous peripheral ECM adhesions resulted in increased cell–cell and cell–ECM forces with increasing spread area. In contrast, confining ECM adhesions to the distal ends of cell–cell pairs resulted in shorter junction lengths and constant cell–cell forces. Of interest, each cell within a cell pair generated higher strain energies than isolated single cells of the same spread area. Surprisingly, E-cadherin molecular tension remained constant regardless of changes in cell–cell forces and was evenly distributed along cell–cell junctions independent of cell spread area and total traction forces. Taken together, our results showed that cell pairs maintained constant E-cadherin molecular tension and regulated total forces relative to cell spread area and shape but independently of total focal adhesion area. PMID:25971797

  20. TGF-β signaling links E-cadherin loss to suppression of nucleotide excision repair.

    PubMed

    Qiang, L; Shah, P; Barcellos-Hoff, M H; He, Y Y

    2016-06-23

    E-cadherin is a cell adhesion molecule best known for its function in suppressing tumor progression and metastasis. Here we show that E-cadherin promotes nucleotide excision repair through positively regulating the expression of xeroderma pigmentosum complementation group C (XPC) and DNA damage-binding protein 1 (DDB1). Loss of E-cadherin activates the E2F4 and p130/107 transcription repressor complexes to suppress the transcription of both XPC and DDB1 through activating the transforming growth factor-β (TGF-β) pathway. Adding XPC or DDB1, or inhibiting the TGF-β pathway, increases the repair of ultraviolet (UV)-induced DNA damage in E-cadherin-inhibited cells. In the mouse skin and skin tumors, UVB radiation downregulates E-cadherin. In sun-associated premalignant and malignant skin neoplasia, E-cadherin is downregulated in association with reduced XPC and DDB1 levels. These findings demonstrate a crucial role of E-cadherin in efficient DNA repair of UV-induced DNA damage, identify a new link between epithelial adhesion and DNA repair and suggest a mechanistic link of early E-cadherin loss in tumor initiation. PMID:26477308

  1. E-cadherin expression in colorectal cancer. An immunocytochemical and in situ hybridization study.

    PubMed Central

    Dorudi, S.; Sheffield, J. P.; Poulsom, R.; Northover, J. M.; Hart, I. R.

    1993-01-01

    Expression of the epithelial-specific adhesion molecule E-cadherin has been assessed in paraffin-embedded tissue from a series of 72 colorectal carcinomas. Using immunocytochemistry and in situ hybridization it was found that E-cadherin expression was related inversely to tumor differentiation. Out of 44 well- and moderately differentiated tumors, 36 expressed good positivity, whereas 24 of 28 poorly differentiated tumors were E-cadherin-negative. Classification by Dukes stage revealed a highly significant difference (P << 0.001) between A and B (32 positive, four negative) and C1 and C2 (seven positive, 29 negative) stages in terms of immunoreactivity. Of the 32 lymph node metastases studied, 20 were negative for E-cadherin expression, as were seven of eight liver metastases. These results indicate that the down-regulation of E-cadherin levels in vivo is associated with the dedifferentiation, progression, and metastasis of colorectal cancer. Images Figure 1 Figure 2 PMID:7682766

  2. Vangl2 Regulates E-Cadherin in Epithelial Cells

    PubMed Central

    Nagaoka, Tadahiro; Inutsuka, Ayumu; Begum, Khadiza; hafiz, Khandakar musabbir bin; Kishi, Masashi

    2014-01-01

    E-cadherin belongs to the classic cadherin subfamily of calcium-dependent cell adhesion molecules and is crucial for the formation and function of epithelial adherens junctions. In this study, we demonstrate that Vangl2, a vertebrate regulator of planar cell polarity (PCP), controls E-cadherin in epithelial cells. E-cadherin co-immunoprecipitates with Vangl2 from embryonic kidney extracts, and this association is also observed in transfected fibroblasts. Vangl2 enhances the internalization of E-cadherin when overexpressed. Conversely, the quantitative ratio of E-cadherin exposed to the cell surface is increased in cultured renal epithelial cells derived from Vangl2Lpt/+ mutant mice. Interestingly, Vangl2 is also internalized through protein traffic involving Rab5- and Dynamin-dependent endocytosis. Taken together with recent reports regarding the transport of Frizzled3, MMP14 and nephrin, these results suggest that one of the molecular functions of Vangl2 is to enhance the internalization of specific plasma membrane proteins with broad selectivity. This function may be involved in the control of intercellular PCP signalling or in the PCP-related rearrangement of cell adhesions. PMID:25373475

  3. Slit2-Robo1 signaling promotes the adhesion, invasion and migration of tongue carcinoma cells via upregulating matrix metalloproteinases 2 and 9, and downregulating E-cadherin

    PubMed Central

    Zhao, Yuan; Zhou, Feng-Li; Li, Wei-Ping; Wang, Jing; Wang, Li-Jing

    2016-01-01

    Whether Slit homologue 2 (Slit2) inhibits or promotes tumor cell migration remains controversial, and the role of Slit2-Roundabout 1 (Robo1) signaling in oral cancer remains to be fully elucidated. The aim of the present study was to investigate the role of Slit2-Robo1 signaling in the adhesion, invasion and migration of tongue carcinoma cells, and the mechanism by which Slit2-Robo1 signaling inhibits or promotes tumor cell migration. Tca8113 tongue carcinoma cells were treated with the monoclonal anti-human Robo1 antibody, R5, to inhibit the Slit2-Robo1 signaling pathway, with immunoglobulin (Ig)G2b treatment as a negative control. The expression levels of Slit2 and Robo1 were determined using flow cytometry. The effects of R5 on the adhesion, invasion and migration of Tca8113 tongue carcinoma cells were investigated. Gelatin zymography was used to investigate the activity of matrix metalloproteinase 2 (MMP2) and MMP9. Western blot analysis was used to evaluate the expression levels of E-cadherin in Tca8113 cells treated with 10 µg/ml of either R5 or IgG2b. Slit2 and Robo1 proteins were found to be expressed in the Tca8113 cells. R5 significantly inhibited the adhesion, invasion and migration of Tca8113 cells in vitro. R5 also inhibited the activities of MMP2 and MMP9, and increased the expression of E-cadherin in the Tca8113 cells. These results suggested that Slit2-Robo1 signaling promoted the adhesion, invasion and migration of tongue carcinoma cells by upregulating the expression levels of MMP2 and MMP9 and, downregulating the expression of E-cadherin. PMID:27431199

  4. E-cadherin gene mutations are rare in adenocarcinomas of the oesophagus.

    PubMed

    Wijnhoven, B P; de Both, N J; van Dekken, H; Tilanus, H W; Dinjens, W N

    1999-07-01

    Reduced expression of E-cadherin, a cell-cell adhesion molecule, is observed in oesophageal adenocarcinomas and correlates with less favourable pathological parameters and survival. To determine if genetic events lead to reduced E-cadherin expression in these patients, we screened all 16 exons of the E-cadherin gene for mutations with the polymerase chain reaction single-strand conformation polymorphism analysis (PCR-SSCP) technique in 49 resection specimens, including four loco-regional lymph node metastases, four established cell lines and four xenografts. Fifteen exon-spanning primer pairs were used, and in nine amplicons aberrant bands were detected. Sequencing of the amplicons revealed a one base-pair deletion (codon 120; exon 3) in cell lines JROECL 47 and JROECL 50 leading to a premature downstream stop codon. Polymorphisms were identified for amplicons 1, 4/5, 11, 12, 13, 14 and 16 corresponding with data from the literature. Three new polymorphisms were detected for amplicons 2, 3 and 4/5. Loss of heterozygosity (LOH) of the E-cadherin locus on 16q22.1 was examined with four polymorphic markers. LOH was found in 31 of the 48 informative cases (65%). These results show that, despite the frequent LOH of the E-cadherin locus, mutations in the E-cadherin gene are rare events and can not be held responsible for down-regulation of E-cadherin observed in the majority of adenocarcinomas of the oesophagus. PMID:10408414

  5. Mutations of the E-cadherin gene in human gynecologic cancers.

    PubMed

    Risinger, J I; Berchuck, A; Kohler, M F; Boyd, J

    1994-05-01

    Expression of the E-cadherin cell adhesion molecule is reduced in several types of human carcinomas, and the protein serves as an invasion suppressor in vitro. To determine if mutations of the E-cadherin gene (on chromosome 16q22) contribute to epithelial tumorigenesis, 135 carcinomas of the endometrium and ovary were examined for alterations in the E-cadherin coding region. Four mutations were identified: one somatic nonsense and one somatic missense mutation, both with retention of the wild-type alleles, and two missense mutations with somatic loss of heterozygosity in the tumour tissue. These data support the classification of E-cadherin as a human tumour suppressor gene. PMID:8075649

  6. Fast dissociation kinetics between individual E-cadherin fragments revealed by flow chamber analysis

    PubMed Central

    Perret, Emilie; Benoliel, Anne-Marie; Nassoy, Pierre; Pierres, Anne; Delmas, Véronique; Thiery, Jean-Paul; Bongrand, Pierre; Feracci, Hélène

    2002-01-01

    E-cadherin is the predominant adhesion molecule of epithelia. The interaction between extracellular segments of E-cadherin in the membrane of opposing cells is homophilic and calcium dependent. Whereas it is widely accepted that the specificity of the adhesive interaction is localized to the N-terminal domain, the kinetics of the recognition process are unknown. We report the first quantitative data describing the dissociation kinetics of individual E-cadherin interactions. Aggregation assays indicate that the two outermost domains of E-cadherin (E/EC1–2) retain biological activity when chemically immobilized on glass beads. Cadherin fragment trans-interaction was analysed using a flow chamber technique. Transient tethers had first-order kinetics, suggesting a unimolecular interaction. The unstressed lifetime of individual E-cadherin interactions was as brief as 2 s. A fast off rate and the low tensile strength of the E-cadherin bond may be necessary to support the high selectivity and plasticity of epithelial cell interactions. PMID:12032067

  7. Single Dimer E-Cadherin Interaction Forces Characterized Using Modified AFM Cantilevers

    NASA Astrophysics Data System (ADS)

    Rudnitsky, Robert; Drees, Frauke; Nelson, W. James; Kenny, Thomas

    2002-03-01

    In tissue monolayers, adhesion between cells is accomplished chiefly through the action of [Ca++] dependent cadherin proteins. E-cadherin molecules coalesce into large plaques on contacting membranes of adjacent cells. Using specialized AFM cantilevers functionalized with tethered E-cadherin proteins, we studied the interaction forces of trans dimers from the single bond level through to the higher surface densities found in plaques, with pico-Newton force resolution. The measurements demonstrated the dependence of E-cadherin homoassociation on surface protein density. Previous in-vivo studies established the role of Ca++ in E-cadherin adhesion in whole cells. Advances in AFM force spectroscopy allowed us to characterize the unbinding process under force loads, and to differentiate single and multiple molecular binding events. The data correlates the dependence of E-cadherin adhesion at a molecular level to [Ca++], revealing interaction details that cannot be observed using whole-cell studies. This work is supported by NSF (XYZ on a Chip Program) CMS-9980838, NIH (GMB5227), and the Fannie and John Hertz Foundation.

  8. Adherens Junction and E-Cadherin complex regulation by epithelial polarity.

    PubMed

    Coopman, Peter; Djiane, Alexandre

    2016-09-01

    E-Cadherin-based Adherens Junctions (AJs) are a defining feature of all epithelial sheets. Through the homophilic association of E-Cadherin molecules expressed on neighboring cells, they ensure intercellular adhesion amongst epithelial cells, and regulate many key aspects of epithelial biology. While their adhesive role requires these structures to remain stable, AJs are also extremely plastic. This plasticity allows for the adaptation of the cell to its changing environment: changes in neighbors after cell division, cell death, or cell movement, and changes in cell shape during differentiation. In this review we focus on the recent advances highlighting the critical role of the apico-basal polarity machinery, and in particular of the Par3/Bazooka scaffold, in the regulation and remodeling of AJs. We propose that by regulating key phosphorylation events on the core E-Cadherin complex components, Par3 and epithelial polarity promote meta-stable protein complexes governing the correct formation, localization, and functioning of AJ. PMID:27151512

  9. Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer.

    PubMed

    Carvalho, S; Catarino, T A; Dias, A M; Kato, M; Almeida, A; Hessling, B; Figueiredo, J; Gärtner, F; Sanches, J M; Ruppert, T; Miyoshi, E; Pierce, M; Carneiro, F; Kolarich, D; Seruca, R; Yamaguchi, Y; Taniguchi, N; Reis, C A; Pinho, S S

    2016-03-31

    E-cadherin is a central molecule in the process of gastric carcinogenesis and its posttranslational modifications by N-glycosylation have been described to induce a deleterious effect on cell adhesion associated with tumor cell invasion. However, the role that site-specific glycosylation of E-cadherin has in its defective function in gastric cancer cells needs to be determined. Using transgenic mice models and human clinical samples, we demonstrated that N-acetylglucosaminyltransferase V (GnT-V)-mediated glycosylation causes an abnormal pattern of E-cadherin expression in the gastric mucosa. In vitro models further indicated that, among the four potential N-glycosylation sites of E-cadherin, Asn-554 is the key site that is selectively modified with β1,6 GlcNAc-branched N-glycans catalyzed by GnT-V. This aberrant glycan modification on this specific asparagine site of E-cadherin was demonstrated to affect its critical functions in gastric cancer cells by affecting E-cadherin cellular localization, cis-dimer formation, molecular assembly and stability of the adherens junctions and cell-cell aggregation, which was further observed in human gastric carcinomas. Interestingly, manipulating this site-specific glycosylation, by preventing Asn-554 from receiving the deleterious branched structures, either by a mutation or by silencing GnT-V, resulted in a protective effect on E-cadherin, precluding its functional dysregulation and contributing to tumor suppression. PMID:26189796

  10. Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer

    PubMed Central

    Carvalho, S; Catarino, TA; Dias, AM; Kato, M; Almeida, A; Hessling, B; Figueiredo, J; Gärtner, F; Sanches, JM; Ruppert, T; Miyoshi, E; Pierce, M; Carneiro, F; Kolarich, D; Seruca, R; Yamaguchi, Y; Taniguchi, N; Reis, CA; Pinho, SS

    2016-01-01

    E-cadherin is a central molecule in the process of gastric carcinogenesis and its posttranslational modifications by N-glycosylation have been described to induce a deleterious effect on cell adhesion associated with tumor cell invasion. However, the role that site-specific glycosylation of E-cadherin has in its defective function in gastric cancer cells needs to be determined. Using transgenic mice models and human clinical samples, we demonstrated that N-acetylglucosaminyltransferase V (GnT-V)-mediated glycosylation causes an abnormal pattern of E-cadherin expression in the gastric mucosa. In vitro models further indicated that, among the four potential N-glycosylation sites of E-cadherin, Asn-554 is the key site that is selectively modified with β1,6 GlcNAc-branched N-glycans catalyzed by GnT-V. This aberrant glycan modification on this specific asparagine site of E-cadherin was demonstrated to affect its critical functions in gastric cancer cells by affecting E-cadherin cellular localization, cis-dimer formation, molecular assembly and stability of the adherens junctions and cell–cell aggregation, which was further observed in human gastric carcinomas. Interestingly, manipulating this site-specific glycosylation, by preventing Asn-554 from receiving the deleterious branched structures, either by a mutation or by silencing GnT-V, resulted in a protective effect on E-cadherin, precluding its functional dysregulation and contributing to tumor suppression. PMID:26189796

  11. Localization of E-cadherin in peripheral glia after nerve injury and repair.

    PubMed

    Hasegawa, M; Seto, A; Uchiyama, N; Kida, S; Yamashima, T; Yamashita, J

    1996-04-01

    Peripheral nerve injury results in histological and histochemical changes in neurons and glia. We have recently found that Ca(2+)-dependent cell adhesion molecule E-cadherin plays an important role in the selective fasciculation of a particular subset of unmyelinated sensory fibers. In the present immunohistochemical and immunoblot analyses, the temporal profile of the subcellular expression of this molecule in spinal nerves was examined after crushing, transecting, or ligaturing the sciatic nerve in mice with special attention paid to E-cadherin expression in glial cells. After axotomy of the sciatic nerve, distal axons of the proximal stump and the fibers of the distal stump degenerated, but E-cadherin was still detectable at the outer mesaxons of the myelinated axons as long as they remained morphologically intact. Subsequently, Schwann cells proliferated and migrated to form Schwann cell columns (Büngner's bands) as initial responses to denervation, and expressed E-cadherin at their site of contact with each other and later with sprouting axons. At the initial stage of myelin formation, slender processes of a single Schwann cell interdigitated with an enveloped axons, and expressed E-cadherin at the contact site elaborated by a single Schwann cell. Immunoblot analysis on day 7 revealed that E-cadherin was detected in both the proximal nerve segments and the regenerative distal segments, but was negative in the degenerative distal segments. On the basis of present data, it is suggested that E-cadherin might be involved in the stabilization of the peripheral glial network which provides the guidance of sprouting axons and myelination. PMID:8786402

  12. Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1)

    SciTech Connect

    Berx, G.; Staes, K.; Hengel, J. van

    1995-03-20

    E-cadherin is a Ca{sup 2+}-dependent epithelial cell-cell adhesion molecule. Downregulation of E-cadherin expression often correlates with strong invasive potential and poor prognosis of human carcinomas. By using recombinant {lambda} phage, cosmid, and P1 phage clones, we isolated the full-length human E-cadherin gene (CDH1). The gene spans a region of approximately 100 kb, and its location on chromosome 16q22.1 was confirmed by FISH analysis. Detailed restriction mapping and partial sequence analysis of the gene allowed us to identify 16 exons and a 65-kb-long intron 2. The intron-exon boundaries are highly conserved in comparison with other {open_quotes}classical cadherins.{close_quotes} In intron 1 we identified a high-density CpG island that may be implicated in transcription regulation during embryogenesis and malignancy. 52 refs., 2 figs., 2 tabs.

  13. RhoA-JNK Regulates the E-Cadherin Junctions of Human Gingival Epithelial Cells.

    PubMed

    Lee, G; Kim, H J; Kim, H-M

    2016-03-01

    The junctional epithelium (JE) is unique with regard to its wide intercellular spaces and sparsely developed intercellular junctions. Thus, knowledge of the molecular mechanisms that regulate the formation of the intercellular junctions of the junctional epithelium may be essential to understand the pathophysiology of the JE. HOK-16B cells, a normal human gingival epithelial cell line, were used to identify the molecules involved in the regulation of the formation of intercellular E-cadherin junctions between human gingival epithelial cells. Activation of c-Jun N-terminal kinase (JNK) disrupted the intercellular junctions through the dissociation of E-cadherin. The role of JNK in the formation of these E-cadherin junctions was further confirmed by demonstrating that JNK inhibition induced the formation of intercellular E-cadherin junctions. The upstream signaling of JNK was also examined. Activation of the small GTPase RhoA disrupted the formation of E-cadherin junctions between HOK-16B cells, which was accompanied by JNK activation. Disruption of these intercellular junctions upon RhoA activation was prevented when JNK activity was inhibited. In contrast, RhoA inactivation led to HOK-16B cell aggregation and the formation of intercellular junctions, even under conditions in which the cellular junctions were naturally disrupted by growth on a strongly adhesive surface. Furthermore, the JE of mouse molars had high JNK activity associated with low E-cadherin expression, which was reversed in the other gingival epithelia, including the sulcular epithelium. Interestingly, JNK activity was increased in cells grown on a solid surface, where cells showed higher RhoA activity than those grown on soft surfaces. Together, these results indicate that the decreased formation of intercellular E-cadherin junctions within the JE may be coupled to high JNK activity, which is activated by the upregulation of RhoA on solid tooth surfaces. PMID:26635280

  14. E-cadherin junction formation involves an active kinetic nucleation process

    SciTech Connect

    Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan -Chen; Guo, Zhenhuan; Padmanabhan, Anup; Troyanovsky, Sergey M.; Dustin, Michael L.; Shapiro, Lawrence; Honig, Barry; Zaidel-Bar, Ronen; Groves, Jay T.

    2015-08-19

    Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.

  15. E-cadherin junction formation involves an active kinetic nucleation process

    DOE PAGESBeta

    Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng -han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan -Chen; Guo, Zhenhuan; Padmanabhan, Anup; et al

    2015-08-19

    Epithelial (E)-cadherin-mediated cell–cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest thatmore » the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role.« less

  16. E-cadherin junction formation involves an active kinetic nucleation process

    PubMed Central

    Biswas, Kabir H.; Hartman, Kevin L.; Yu, Cheng-han; Harrison, Oliver J.; Song, Hang; Smith, Adam W.; Huang, William Y. C.; Lin, Wan-Chen; Guo, Zhenhuan; Padmanabhan, Anup; Troyanovsky, Sergey M.; Dustin, Michael L.; Shapiro, Lawrence; Honig, Barry; Zaidel-Bar, Ronen; Groves, Jay T.

    2015-01-01

    Epithelial (E)-cadherin-mediated cell−cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role. PMID:26290581

  17. E-cadherin junction formation involves an active kinetic nucleation process.

    PubMed

    Biswas, Kabir H; Hartman, Kevin L; Yu, Cheng-han; Harrison, Oliver J; Song, Hang; Smith, Adam W; Huang, William Y C; Lin, Wan-Chen; Guo, Zhenhuan; Padmanabhan, Anup; Troyanovsky, Sergey M; Dustin, Michael L; Shapiro, Lawrence; Honig, Barry; Zaidel-Bar, Ronen; Groves, Jay T

    2015-09-01

    Epithelial (E)-cadherin-mediated cell-cell junctions play important roles in the development and maintenance of tissue structure in multicellular organisms. E-cadherin adhesion is thus a key element of the cellular microenvironment that provides both mechanical and biochemical signaling inputs. Here, we report in vitro reconstitution of junction-like structures between native E-cadherin in living cells and the extracellular domain of E-cadherin (E-cad-ECD) in a supported membrane. Junction formation in this hybrid live cell-supported membrane configuration requires both active processes within the living cell and a supported membrane with low E-cad-ECD mobility. The hybrid junctions recruit α-catenin and exhibit remodeled cortical actin. Observations suggest that the initial stages of junction formation in this hybrid system depend on the trans but not the cis interactions between E-cadherin molecules, and proceed via a nucleation process in which protrusion and retraction of filopodia play a key role. PMID:26290581

  18. There are four dynamically and functionally distinct populations of E-cadherin in cell junctions

    PubMed Central

    Erami, Zahra; Timpson, Paul; Yao, Wu; Zaidel-Bar, Ronen; Anderson, Kurt I.

    2015-01-01

    ABSTRACT E-cadherin is a trans-membrane tumor suppressor responsible for epithelial cell adhesion. E-cadherin forms adhesive clusters through combined extra-cellular cis- and trans-interactions and intracellular interaction with the actin cytoskeleton. Here we identify four populations of E-cadherin within cell junctions based on the molecular interactions which determine their mobility and adhesive properties. Adhesive and non-adhesive populations of E-cadherin each consist of mobile and immobile fractions. Up to half of the E-cadherin immobilized in cell junctions is non-adhesive. Incorporation of E-cadherin into functional adhesions require all three adhesive interactions, with deletion of any one resulting in loss of effective cell-cell adhesion. Interestingly, the only interaction which could independently slow the diffusion of E-cadherin was the tail-mediated intra-cellular interaction. The adhesive and non-adhesive mobile fractions of E-cadherin can be distinguished by their sensitivity to chemical cross-linking with adhesive clusters. Our data define the size, mobility, and adhesive properties of four distinct populations of E-cadherin within cell junctions, and support association with the actin cytoskeleton as the first step in adhesion formation. PMID:26471767

  19. There are four dynamically and functionally distinct populations of E-cadherin in cell junctions.

    PubMed

    Erami, Zahra; Timpson, Paul; Yao, Wu; Zaidel-Bar, Ronen; Anderson, Kurt I

    2015-01-01

    E-cadherin is a trans-membrane tumor suppressor responsible for epithelial cell adhesion. E-cadherin forms adhesive clusters through combined extra-cellular cis- and trans-interactions and intracellular interaction with the actin cytoskeleton. Here we identify four populations of E-cadherin within cell junctions based on the molecular interactions which determine their mobility and adhesive properties. Adhesive and non-adhesive populations of E-cadherin each consist of mobile and immobile fractions. Up to half of the E-cadherin immobilized in cell junctions is non-adhesive. Incorporation of E-cadherin into functional adhesions require all three adhesive interactions, with deletion of any one resulting in loss of effective cell-cell adhesion. Interestingly, the only interaction which could independently slow the diffusion of E-cadherin was the tail-mediated intra-cellular interaction. The adhesive and non-adhesive mobile fractions of E-cadherin can be distinguished by their sensitivity to chemical cross-linking with adhesive clusters. Our data define the size, mobility, and adhesive properties of four distinct populations of E-cadherin within cell junctions, and support association with the actin cytoskeleton as the first step in adhesion formation. PMID:26471767

  20. E-Cadherin and Gastric Cancer: Cause, Consequence, and Applications

    PubMed Central

    Liu, Xin

    2014-01-01

    E-cadherin (epithelial-cadherin), encoded by the CDH1 gene, is a transmembrane glycoprotein playing a crucial role in maintaining cell-cell adhesion. E-cadherin has been reported to be a tumor suppressor and to be down regulated in gastric cancer. Besides genetic mutations in CDH1 gene to induce hereditary diffuse gastric cancer (HDGC), epigenetic factors such as DNA hypermethylation also contribute to the reduction of E-cadherin in gastric carcinogenesis. In addition, expression of E-cadherin could be mediated by infectious agents such as H. pylori (Helicobacter pylori). As E-cadherin is vitally involved in signaling pathways modulating cell proliferation, survival, invasion, and migration, dysregulation of E-cadherin leads to dysfunction of gastric epithelial cells and contributes to gastric cancer development. Moreover, changes in its expression could reflect pathological conditions of gastric mucosa, making its role in gastric cancer complicated. In this review, we summarize the functions of E-cadherin and the signaling pathways it regulates. We aim to provide comprehensive perspectives in the molecular mechanism of E-cadherin and its involvement in gastric cancer initiation and progression. We also focus on its applications for early diagnosis, prognosis, and therapy in gastric cancer in order to open new avenues in this field. PMID:25184143

  1. Solid pseudopapillary tumor of the pancreas in a patient with cervical cancer: relation of E-cadherin/β-catenin adhesion complex in their carcinogenesis

    PubMed Central

    Vijay, Adarsh; Ram, Lakshmi; Mathew, Renol Koshy; Chawdhery, Muhammad Zafar

    2015-01-01

    Solid pseudopapillary tumor (SPT) of the pancreas is one of the most uncommon histotypes of all exocrine pancreatic neoplasms. Disorganization of E-cadherin and β-catenin mutations, two key components of the Wnt signal transduction pathway, has been implicated in the development of SPT, but not other pancreatic tumors. Loss of E-cadherin/β-catenin proteins and tyrosine phosphorylation of E-cadherin/β-catenin have been postulated in cervical carcinogenesis and cancer invasion. A 38-year-old married woman, who had undergone brachytherapy, radiotherapy and chemotherapy for cervical cancer in Philippines in 2011, was admitted to our hospital after follow-up CT scan of abdomen in 2012 revealed a lesion in the tail of pancreas. The patient underwent distal pancreatectomy and splenectomy. The pathological diagnosis was SPT of pancreas. We suspect that the concurrent SPT pancreas and cervical cancer in this woman were triggered by a primary insult, a process in which E-cadherin/β-catenin/Wnt-signaling pathway played important roles. PMID:25848087

  2. Small molecule/ML327 mediated transcriptional de-repression of E-cadherin and inhibition of epithelial-to-mesenchymal transition

    PubMed Central

    An, Hanbing; Stoops, Sydney L.; Deane, Natasha G.; Zhu, Jing; Zi, Jinghuan; Weaver, Connie; Waterson, Alex G.; Zijlstra, Andries; Lindsley, Craig W.; Beauchamp, Robert Daniel

    2015-01-01

    Transcriptional repression of E-cadherin is a hallmark of Epithelial-to-Mesenchymal Transition (EMT) and is associated with cancer cell invasion and metastasis. Understanding the mechanisms underlying E-cadherin repression during EMT may provide insights into the development of novel targeted therapeutics for cancer. Here, we report on the chemical probe, ML327, which de-represses E-cadherin transcription, partially reverses EMT, and inhibits cancer cell invasiveness and tumor cell migration in vitro and in vivo. Induction of E-cadherin mRNA expression by ML327 treatment does not require de novo protein synthesis. RNA sequencing analysis revealed that ML327 treatment significantly alters expression of over 2,500 genes within three hours in the presence of the translational inhibitor, cycloheximide. Network analysis reveals Hepatocyte Nuclear Factor 4-alpha (HNF4α) as the most significant upstream transcriptional regulator of multiple genes whose expressions were altered by ML327 treatment. Further, small interfering RNA-mediated depletion of HNF4α markedly attenuates the E-cadherin expression response to ML327. In summary, ML327 represents a valuable tool to understand mechanisms of EMT and may provide the basis for a novel targeted therapeutic strategy for carcinomas. PMID:26082441

  3. Loss of E-cadherin expression is not a prerequisite for c-erbB2-induced epithelial-mesenchymal transition

    PubMed Central

    NILSSON, GISELA M.A.; AKHTAR, NOREEN; KANNIUS-JANSON, MARIE; BAECKSTRÖM, DAN

    2014-01-01

    Recent research into the mechanisms of tumour cell invasiveness has highlighted the parallels between carcinogenesis and epithelial-mesenchymal transition (EMT), originally described as a developmental transdifferentiation program but also implicated in fibrosis and cancer. In a model system for mammary carcinogenesis, we previously observed that induced signalling from a homodimer of the c-erbB2 (HER2) receptor tyrosine kinase in an initially non-malignant mammary cell line caused EMT where i) cell scattering occurred before downregulation of the cell-cell adhesion molecule E-cadherin and ii) the progress of EMT was dramatically delayed when cells were grown at high density. Here, we have further analysed these phenomena. Ectopic expression of E-cadherin concomitant with c-erbB2 signalling was unable to impede the progression of EMT, suggesting that E-cadherin downregulation is not required for EMT. Furthermore, fibroblast-like cells isolated after EMT induced in the presence or absence of ectopic E-cadherin expression showed highly similar morphology and vimentin expression. E-cadherin expressed in these fibroblastic cells had a subcellular localisation similar to that found in epithelial cells, but it exhibited a much weaker attachment to the cytoskeleton, suggesting cytoskeletal rearrangements as an important mechanism in EMT-associated cell scattering. We also investigated whether density-dependent inhibition of EMT is mediated by E-cadherin as a sensor for cell-cell contact, by expressing dominant-negative E-cadherin. While expression of this mutant weakened cell-cell adhesion, it failed to facilitate EMT at high cell densities. These results indicate that loss of E-cadherin expression is a consequence rather than a cause of c-erbB2-induced EMT and that density-dependent inhibition of EMT is not mediated by E-cadherin signalling. PMID:24807161

  4. Adhesion molecules and receptors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adhesion molecules are necessary for leukocyte trafficking and differentiation. They serve to initiate cell-cell interactions under conditions of shear, and they sustain the cell-cell and cell-matrix interactions needed for cellular locomotion. They also can serve directly as signaling molecules act...

  5. p120 Catenin-Mediated Stabilization of E-Cadherin Is Essential for Primitive Endoderm Specification

    PubMed Central

    Haenebalcke, Lieven; Stryjewska, Agata; De Rycke, Riet; Lemeire, Kelly; Huylebroeck, Danny; Stemmler, Marc P.; Wirth, Dagmar; Haigh, Jody J.; van Hengel, Jolanda; van Roy, Frans

    2016-01-01

    E-cadherin-mediated cell-cell adhesion is critical for naive pluripotency of cultured mouse embryonic stem cells (mESCs). E-cadherin-depleted mESC fail to downregulate their pluripotency program and are unable to initiate lineage commitment. To further explore the roles of cell adhesion molecules during mESC differentiation, we focused on p120 catenin (p120ctn). Although one key function of p120ctn is to stabilize and regulate cadherin-mediated cell-cell adhesion, it has many additional functions, including regulation of transcription and Rho GTPase activity. Here, we investigated the role of mouse p120ctn in early embryogenesis, mESC pluripotency and early fate determination. In contrast to the E-cadherin-null phenotype, p120ctn-null mESCs remained pluripotent, but their in vitro differentiation was incomplete. In particular, they failed to form cystic embryoid bodies and showed defects in primitive endoderm formation. To pinpoint the underlying mechanism, we undertook a structure-function approach. Rescue of p120ctn-null mESCs with different p120ctn wild-type and mutant expression constructs revealed that the long N-terminal domain of p120ctn and its regulatory domain for RhoA were dispensable, whereas its armadillo domain and interaction with E-cadherin were crucial for primitive endoderm formation. We conclude that p120ctn is not only an adaptor and regulator of E-cadherin, but is also indispensable for proper lineage commitment. PMID:27556156

  6. p120 Catenin-Mediated Stabilization of E-Cadherin Is Essential for Primitive Endoderm Specification.

    PubMed

    Pieters, Tim; Goossens, Steven; Haenebalcke, Lieven; Andries, Vanessa; Stryjewska, Agata; De Rycke, Riet; Lemeire, Kelly; Hochepied, Tino; Huylebroeck, Danny; Berx, Geert; Stemmler, Marc P; Wirth, Dagmar; Haigh, Jody J; van Hengel, Jolanda; van Roy, Frans

    2016-08-01

    E-cadherin-mediated cell-cell adhesion is critical for naive pluripotency of cultured mouse embryonic stem cells (mESCs). E-cadherin-depleted mESC fail to downregulate their pluripotency program and are unable to initiate lineage commitment. To further explore the roles of cell adhesion molecules during mESC differentiation, we focused on p120 catenin (p120ctn). Although one key function of p120ctn is to stabilize and regulate cadherin-mediated cell-cell adhesion, it has many additional functions, including regulation of transcription and Rho GTPase activity. Here, we investigated the role of mouse p120ctn in early embryogenesis, mESC pluripotency and early fate determination. In contrast to the E-cadherin-null phenotype, p120ctn-null mESCs remained pluripotent, but their in vitro differentiation was incomplete. In particular, they failed to form cystic embryoid bodies and showed defects in primitive endoderm formation. To pinpoint the underlying mechanism, we undertook a structure-function approach. Rescue of p120ctn-null mESCs with different p120ctn wild-type and mutant expression constructs revealed that the long N-terminal domain of p120ctn and its regulatory domain for RhoA were dispensable, whereas its armadillo domain and interaction with E-cadherin were crucial for primitive endoderm formation. We conclude that p120ctn is not only an adaptor and regulator of E-cadherin, but is also indispensable for proper lineage commitment. PMID:27556156

  7. Effects of Cd{sup 2+} on cis-dimer structure of E-cadherin in living cells

    SciTech Connect

    Takeda, Hiroshi

    2014-02-21

    Highlights: • The effects of Cd on the dimer of cadherin in living cells was analyzed. • Cd induced cadherin dimer formation was not detected in living cell with low Ca. • Ca mediated structural cooperativity and allostery in the native cadherin. • Ca concentration-dependent competitive displacement of Cd from cadherin is proposed. - Abstract: E-cadherin, a calcium (Ca{sup 2+})-dependent cell–cell adhesion molecule, plays a key role in the maintenance of tissue integrity. We have previously demonstrated that E-cadherin functions in vivo as a cis-dimer through chemical cross-linking reagents. Ca{sup 2+} plays an important role in the cis-dimer formation of cadherin. However, the molecular mechanisms by which Ca{sup 2+} interacts with the binding sites that regulate cis-dimer structures have not been completely elucidated. As expected for a Ca{sup 2+} antagonist, cadmium (Cd{sup 2+}) disrupts cadherin function by displacing Ca{sup 2+} from its binding sites on the cadherin molecules. We used Cd{sup 2+} as a probe for investigating the role of Ca{sup 2+} in the dynamics of the E-cadherin extracellular region that involve cis-dimer formation and adhesion. While cell–cell adhesion assembly was completely disrupted in the presence of Cd{sup 2+}, the amount of cis-dimers of E-cadherin that formed at the cell surface was not affected. In our “Cd{sup 2+}-switch” experiments, we did not find that Cd{sup 2+}-induced E-cadherin cis-dimer formation in EL cells when they were incubated in low-Ca{sup 2+} medium. In the present study, we demonstrated for the first time the effects of Cd{sup 2+} on the cis-dimer structure of E-cadherin in living cells using a chemical cross-link analysis.

  8. E-cadherin interactome complexity and robustness resolved by quantitative proteomics.

    PubMed

    Guo, Zhenhuan; Neilson, Lisa J; Zhong, Hang; Murray, Paul S; Zanivan, Sara; Zaidel-Bar, Ronen

    2014-12-01

    E-cadherin-mediated cell-cell adhesion and signaling plays an essential role in development and maintenance of healthy epithelial tissues. Adhesiveness mediated by E-cadherin is conferred by its extracellular cadherin domains and is regulated by an assembly of intracellular adaptors and enzymes associated with its cytoplasmic tail. We used proximity biotinylation and quantitative proteomics to identify 561 proteins in the vicinity of the cytoplasmic tail of E-cadherin. In addition, we used proteomics to identify proteins associated with E-cadherin-containing adhesion plaques from a cell-glass interface, which enabled the assignment of cellular localization to putative E-cadherin-interacting proteins. Moreover, by tagging identified proteins with GFP (green fluorescent protein), we determined the subcellular localization of 83 putative E-cadherin-proximal proteins and identified 24 proteins that were previously uncharacterized as part of adherens junctions. We constructed and characterized a comprehensive E-cadherin interaction network of 79 published and 394 previously uncharacterized proteins using a structure-informed database of protein-protein interactions. Finally, we found that calcium chelation, which disrupts the interaction of the extracellular E-cadherin domains, did not disrupt most intracellular protein interactions with E-cadherin, suggesting that the E-cadherin intracellular interactome is predominantly independent of cell-cell adhesion. PMID:25468996

  9. Leucocyte cellular adhesion molecules.

    PubMed

    Yong, K; Khwaja, A

    1990-12-01

    Leucocytes express adhesion promoting receptors which mediate cell-cell and cell-matrix interactions. These adhesive interactions are crucial to the regulation of haemopoiesis and thymocyte maturation, the direction and control of leucocyte traffic and migration through tissues, and in the development of immune and non-immune inflammatory responses. Several families of adhesion receptors have been identified (Table). The leucocyte integrin family comprises 3 alpha beta heterodimeric membrane glycoproteins which share a common beta subunit, designated CD18. The alpha subunits of each of the 3 members, lymphocyte function associated antigen-1 (LFA-1), macrophage antigen-1 (Mac-1) and p150,95 are designated CD11a, b and c respectively. These adhesion molecules play a critical part in the immune and inflammatory responses of leucocytes. The leucocyte integrin family is, in turn, part of the integrin superfamily, members of which are evolutionally, structurally and functionally related. Another Integrin subfamily found on leucocytes is the VLA group, so-called because the 'very late activation antigens' VLA-1 and VLA-2 were originally found to appear late in T-cell activation. Members of this family function mainly as extracellular matrix adhesion receptors and are found both on haemopoietic and non-haemopoietic cells. They play a part in diverse cellular functions including tissue organisation, lymphocyte recirculation and T-cell immune responses. A third integrin subfamily, the cytoadhesins, are receptors on platelets and endothelial cells which bind extracellular matrix proteins. A second family of adhesion receptors is the immunoglobulin superfamily, members of which include CD2, LFA-3 and ICAM-1, which participate in T-cell adhesive interactions, and the antigen-specific receptors of T and B cells, CD4, CD8 and the MHC Class I and II molecules. A recently recognised family of adhesion receptors is the selectins, characterised by a common lectin domain. Leucocyte

  10. Expression of E-cadherin, beta-catenin and Ki-67 antigen and their reciprocal relationships in mammary adenocarcinomas in bitches.

    PubMed

    Nowak, Marcin; Madej, Janusz A; Dziegiel, Piotr

    2007-01-01

    In progression of tumours, resulting from, i.e., release of cells from the parental tumour and development of metastases, expression of cell adhesion molecules (CAM) plays a significant role. CAM, including E-cadherin and the linked to it beta-catenin, determine the extent of adhesion between normal and neoplastically altered cells. Moreover, the unbound form of beta-catenin in a cell nucleus may affect the rate of cell proliferation This study aimed at demonstrating intensity and localisation of E-cadherin and beta-catenin expression as related to expression of the proliferation-associated antigen, Ki-67 in mammary adenocarcinomas of bitches. The study was performed on 35 cases of the above mentioned tumours. On paraffin sections immunohistochemical reactions were performed using monoclonal antibodies directed against E-cadherin, beta-catenin and Ki-67 antigen. In the studies a membranous expression of E-cadherin, a cytoplasmic-nuclear expression of beta-catenin and nuclear expression of Ki-67 antigen were demonstrated. Statistical calculations using Spearman's test demonstrated a pronounced positive correlation between expression of beta-catenin and Ki-67 antigen and absence of correlation between expression of E-cadherin and Ki-67 antigen. No correlation could be detected between expression intensities of E-cadherin and beta-catenin. PMID:17951173

  11. Epithelial Cell Adhesion Molecule

    PubMed Central

    Trzpis, Monika; McLaughlin, Pamela M.J.; de Leij, Lou M.F.H.; Harmsen, Martin C.

    2007-01-01

    The epithelial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of ∼40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally lower level than carcinoma cells. In early studies, EpCAM was proposed to be a cell-cell adhesion molecule. However, recent insights revealed a more versatile role for EpCAM that is not limited only to cell adhesion but includes diverse processes such as signaling, cell migration, proliferation, and differentiation. Cell surface expression of EpCAM may actually prevent cell-cell adhesion. Here, we provide a comprehensive review of the current knowledge on EpCAM biology in relation to other cell adhesion molecules. We discuss the implications of the newly identified functions of EpCAM in view of its prognostic relevance in carcinoma, inflammatory pathophysiology, and tissue development and regeneration as well as its role in normal epithelial homeostasis. PMID:17600130

  12. E-cadherin is important for cell differentiation during osteoclastogenesis.

    PubMed

    Fiorino, Cara; Harrison, Rene E

    2016-05-01

    E-cadherin, a protein responsible for intercellular adhesion between epithelial cells, is also expressed in the monocyte/macrophage lineage. In this study we have explored the involvement of E-cadherin during receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclast differentiation. Osteoclastogenesis involves a period of precursor expansion followed by multiple fusion events to generate a multinuclear osteoclast that is capable of bone resorption. We asked whether E-cadherin participated in early precursor interactions and recognition or was a component of the osteoclast fusion machinery. Here, we show that endogenous E-cadherin expression is the highest during early stages of osteoclast differentiation, with surface expression visible on small precursor cells (fewer than four nuclei per cell) in both RAW 264.7 cells and primary macrophages. Blocking E-cadherin function with neutralizing antibodies prior to the onset of fusion delayed the expression of TRAP, Cathepsin K, DC-STAMP and NFATc1 and significantly diminished multinucleated osteoclast formation. Conversely, E-cadherin-GFP overexpressing macrophages displayed earlier NFATc1 nuclear translocation along with faster formation of multinucleated osteoclasts compared to control macrophages. Through live imaging we identified that disrupting E-cadherin function prolonged the proliferative phase of the precursor population while concomitantly decreasing the proportion of migrating precursors. The lamellipodium and polarized membrane extensions appeared to be the principal sites of fusion, indicating precursor migration was a critical factor contributing to osteoclast fusion. These findings demonstrate that E-cadherin-mediated cell-cell contacts can modulate osteoclast-specific gene expression and prompt differentiating osteoclast precursors toward migratory and fusion activities. PMID:26959175

  13. Anomalous expression of P-cadherin in breast carcinoma. Correlation with E-cadherin expression and pathological features.

    PubMed Central

    Palacios, J.; Benito, N.; Pizarro, A.; Suárez, A.; Espada, J.; Cano, A.; Gamallo, C.

    1995-01-01

    Previous studies on the cell-cell adhesion molecules P- and E-cadherin have shown that P-cadherin is not expressed in breast cancer. In contrast, the expression of E-cadherin is a normal event in these tumors, but a reduction in the levels of this molecule in neoplastic cells is associated with the histological type, high histological grade, greater tumor size, and metastasis. The expression pattern of P- and E-cadherin were immunohistochemically studied in tissue sections from normal breast tissue, benign breast lesions, and 57 infiltrating breast carcinomas. Cadherin expression was analyzed in parallel with pathological features and the immunohistochemical expression of estrogen and progesterone receptors in breast carcinomas. P-cadherin was detected in the myoepithelial cells and E-cadherin in luminal epithelial cells from normal breast and benign breast lesions. P-cadherin expression was detected in 9 of 45 cases (20%) of infiltrating ductal carcinomas of no special type; none of the special histological types that were analyzed (7 infiltrating lobular carcinomas, 3 colloid carcinomas, and 2 infiltrating papillary carcinomas) expressed P-cadherin. In infiltrating ductal carcinomas, P-cadherin expression correlated significantly with a reduction in E-cadherin expression, histological grade (all cases were grade III tumors), and hormone receptor content (8 of 9 cases were estrogen and progesterone receptor negative). Although E-cadherin was not found in the 7 infiltrating lobular carcinomas, it was present in the remaining histological types and was preserved in 15 infiltrating ductal and 3 colloid and 2 papillary carcinomas and was reduced in 30 infiltrating ductal carcinomas. In addition, a reduction in E-cadherin expression was significantly associated with high histological grade and a lack of steroid hormone receptors in infiltrating ductal carcinomas. No apparent relationship was found between P- and E-cadherin expression and tumor size and axillary lymph

  14. E-cadherin, N-cadherin Expression and Histologic Characterization of Canine Choroid Plexus Tumors.

    PubMed

    Reginato, A; Girolami, D; Menchetti, L; Foiani, G; Mandara, M T

    2016-07-01

    Choroid plexus tumors (CPTs) are reported with an increasing incidence in dogs, and they call for a reexamination of histologic features and criteria of classification corresponding to their biological behavior. In this study, the human World Health Organization classification was applied to 16 canine CPTs, and the expression of molecules involved in neoplastic cell adhesion (E-cadherin, N-cadherin), invasion (doublecortin), and proliferation (Ki-67) was investigated. Mitotic index was found to be the main criterion for grading CPTs. Cell density and multilayering of papillae were also statistically associated with histologic grade. Intraventricular spread and parenchymal invasion was observed for tumors showing histologic benign features. E-cadherin was expressed in all CPT grades, independent of tumor invasion. N-cadherin immunolabeling was more expressed in grade I than high-grade CPTs, whereas doublecortin expression was not detected in CPTs. An increasing proliferative activity was observed in relation with histologic grade. PMID:26792846

  15. A novel role for p120 catenin in E-cadherin function

    PubMed Central

    Ireton, Reneé C.; Davis, Michael A.; van Hengel, Jolanda; Mariner, Deborah J.; Barnes, Kirk; Thoreson, Molly A.; Anastasiadis, Panos Z.; Matrisian, Linsey; Bundy, Linda M.; Sealy, Linda; Gilbert, Barbara; van Roy, Frans; Reynolds, Albert B.

    2002-01-01

    Îndirect evidence suggests that p120-catenin (p120) can both positively and negatively affect cadherin adhesiveness. Here we show that the p120 gene is mutated in SW48 cells, and that the cadherin adhesion system is impaired as a direct consequence of p120 insufficiency. Restoring normal levels of p120 caused a striking reversion from poorly differentiated to cobblestone-like epithelial morphology, indicating a crucial role for p120 in reactivation of E-cadherin function. The rescue efficiency was enhanced by increased levels of p120, and reduced by the presence of the phosphorylation domain, a region previously postulated to confer negative regulation. Surprisingly, the rescue was associated with substantially increased levels of E-cadherin. E-cadherin mRNA levels were unaffected by p120 expression, but E-cadherin half-life was more than doubled. Direct p120–E-cadherin interaction was crucial, as p120 deletion analysis revealed a perfect correlation between E-cadherin binding and rescue of epithelial morphology. Interestingly, the epithelial morphology could also be rescued by forced expression of either WT E-cadherin or a p120-uncoupled mutant. Thus, the effects of uncoupling p120 from E-cadherin can be at least partially overcome by artificially maintaining high levels of cadherin expression. These data reveal a cooperative interaction between p120 and E-cadherin and a novel role for p120 that is likely indispensable in normal cells. PMID:12427869

  16. Drosophila E-cadherin is required for the maintenance of ring canals anchoring to mechanically withstand tissue growth.

    PubMed

    Loyer, Nicolas; Kolotuev, Irina; Pinot, Mathieu; Le Borgne, Roland

    2015-10-13

    Intercellular bridges called "ring canals" (RCs) resulting from incomplete cytokinesis play an essential role in intercellular communication in somatic and germinal tissues. During Drosophila oogenesis, RCs connect the maturing oocyte to nurse cells supporting its growth. Despite numerous genetic screens aimed at identifying genes involved in RC biogenesis and maturation, how RCs anchor to the plasma membrane (PM) throughout development remains unexplained. In this study, we report that the clathrin adaptor protein 1 (AP-1) complex, although dispensable for the biogenesis of RCs, is required for the maintenance of the anchorage of RCs to the PM to withstand the increased membrane tension associated with the exponential tissue growth at the onset of vitellogenesis. Here we unravel the mechanisms by which AP-1 enables the maintenance of RCs' anchoring to the PM during size expansion. We show that AP-1 regulates the localization of the intercellular adhesion molecule E-cadherin and that loss of AP-1 causes the disappearance of the E-cadherin-containing adhesive clusters surrounding the RCs. E-cadherin itself is shown to be required for the maintenance of the RCs' anchorage, a function previously unrecognized because of functional compensation by N-cadherin. Scanning block-face EM combined with transmission EM analyses reveals the presence of interdigitated, actin- and Moesin-positive, microvilli-like structures wrapping the RCs. Thus, by modulating E-cadherin trafficking, we show that the sustained E-cadherin-dependent adhesion organizes the microvilli meshwork and ensures the proper attachment of RCs to the PM, thereby counteracting the increasing membrane tension induced by exponential tissue growth. PMID:26424451

  17. Enhanced G2/M Arrest, Caspase Related Apoptosis and Reduced E-Cadherin Dependent Intercellular Adhesion by Trabectedin in Prostate Cancer Stem Cells.

    PubMed

    Acikgoz, Eda; Guven, Ummu; Duzagac, Fahriye; Uslu, Ruchan; Kara, Mikail; Soner, Burak Cem; Oktem, Gulperi

    2015-01-01

    Trabectedin (Yondelis, ET-743) is a marine-derived tetrahydroisoquinoline alkaloid. It is originally derived from the Caribbean marine tunicate Ecteinascidia turbinata and currently produced synthetically. Trabectedin is active against a variety of tumor cell lines growing in culture. The present study focused on the effect of trabectedin in cell proliferation, cell cycle progression, apoptosis and spheroid formation in prostate cancer stem cells (CSCs). Cluster of differentiation (CD) 133+high/CD44+high prostate CSCs were isolated from the DU145 and PC-3 human prostate cancer cell line through flow cytometry. We studied the growth-inhibitory effects of trabectedin and its molecular mechanisms on human prostate CSCs and non-CSCs. DU-145 and PC-3 CSCs were treated with 0.1, 1, 10 and 100 nM trabectedin for 24, 48 and 72 h and the growth inhibition rates were examined using the sphere-forming assay. Annexin-V assay and immunofluorescence analyses were performed for the detection of the cell death. Concentration-dependent effects of trabectedin on the cell cycle were also evaluated. The cells were exposed to the different doses of trabectedin for 24, 48 and 72 h to evaluate the effect of trabectedin on the number and diameter of spheroids. According to the results, trabectedin induced cytotoxicity and apoptosis at the IC50 dose, resulting in a significant increase expression of caspase-3, caspase-8, caspase-9, p53 and decrease expression of bcl-2 in dose-dependent manner. Cell cycle analyses revealed that trabectedin induces dose-dependent G2/M-phase cell cycle arrest, particularly at high-dose treatments. Three-dimensional culture studies showed that trabectedin reduced the number and diameter of spheroids of DU145 and PC3 CSCs. Furthermore, we have found that trabectedin disrupted cell-cell interactions via E-cadherin in prostasphere of DU-145 and PC-3 CSCs. Our results showed that trabectedin inhibits cellular proliferation and accelerates apoptotic events in

  18. Adhesion molecules in cutaneous inflammation.

    PubMed

    Barker, J N

    1995-01-01

    As in other organs, leukocyte adhesion molecules and their ligands play a major role in cutaneous inflammatory events both by directing leukocyte trafficking and by their effects on antigen presentation. Skin biopsies of inflamed skin from patients with diseases such as as psoriasis or atopic dermatitis reveal up-regulation of endothelial cell expression of P- and E-selectin, vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. Studies of evolving lesions following UVB irradiation, Mantoux reaction or application of contact allergen, demonstrate that expression of these adhesion molecules parallels leukocyte infiltration into skin. When cutaneous inflammation is widespread (e.g. in erythroderma), soluble forms of these molecules are detectable in serum. In vitro studies predict that peptide mediators are important regulatory factors for endothelial adhesion molecules. Intradermal injection of the cytokines interleukin 1, tumour necrosis factor alpha and interferon gamma into normal human skin leads to induction of endothelial adhesion molecules with concomitant infiltration of leukocytes. In addition, neuropeptides rapidly induce P-selectin translocation to the cell membrane and expression of E-selectin. Adhesion molecules also play a crucial role as accessory molecules in the presentation of antigen to T lymphocytes by Langerhans' cells. Expression of selectin ligands by Langerhans' cells is up-regulated by various inflammatory stimuli, suggesting that adhesion molecules may be important in Langerhans' cell migration. The skin, because of its accessibility, is an ideal organ in which to study expression of adhesion molecules and their relationship to inflammatory events. Inflammatory skin diseases are common and inhibition of lymphocyte accumulation in skin is likely to prove of great therapeutic benefit. PMID:7587640

  19. A Novel Role of E-Cadherin-Based Adherens Junctions in Neoplastic Cell Dissemination

    PubMed Central

    Gloushankova, Natalya A.

    2015-01-01

    Using confocal microscopy, we analyzed the behavior of IAR-6-1, IAR1170, and IAR1162 transformed epithelial cells seeded onto the confluent monolayer of normal IAR-2 epithelial cells. Live-cell imaging of neoplastic cells stably expressing EGFP and of normal epithelial cells stably expressing mKate2 showed that transformed cells retaining expression of E-cadherin were able to migrate over the IAR-2 epithelial monolayer and invade the monolayer. Transformed IAR cells invaded the IAR-2 monolayer at the boundaries between normal cells. Studying interactions of IAR-6-1 transformed cells stably expressing GFP-E-cadherin with the IAR-2 epithelial monolayer, we found that IAR-6-1 cells established E-cadherin-based adhesions with normal epithelial cells: dot-like dynamic E-cadherin-based adhesions in protrusions and large adherens junctions at the cell sides and rear. A comparative study of a panel of transformed IAR cells that differ by their ability to form E-cadherin-based AJs, either through loss of E-cadherin expression or through expression of a dominant negative E-cadherin mutant, demonstrated that E-cadherin-based AJs are key mediators of the interactions between neoplastic and normal epithelial cells. IAR-6-1DNE cells expressing a dominant-negative mutant form of E-cadherin with the mutation in the first extracellular domain practically lost the ability to adhere to IAR-2 cells and invade the IAR-2 epithelial monolayer. The ability of cancer cells to form E-cadherin-based AJs with the surrounding normal epithelial cells may play an important role in driving cancer cell dissemination in the body. PMID:26207916

  20. Three mechanisms control E-cadherin localization to the zonula adherens.

    PubMed

    Woichansky, Innokenty; Beretta, Carlo Antonio; Berns, Nicola; Riechmann, Veit

    2016-01-01

    E-cadherin localization to the zonula adherens is fundamental for epithelial differentiation but the mechanisms controlling localization are unclear. Using the Drosophila follicular epithelium we genetically dissect E-cadherin transport in an in vivo model. We distinguish three mechanisms mediating E-cadherin accumulation at the zonula adherens. Two membrane trafficking pathways deliver newly synthesized E-cadherin to the plasma membrane. One is Rab11 dependent and targets E-cadherin directly to the zonula adherens, while the other transports E-cadherin to the lateral membrane. Lateral E-cadherin reaches the zonula adherens by endocytosis and targeted recycling. We show that this pathway is dependent on RabX1, which provides a functional link between early and recycling endosomes. Moreover, we show that lateral E-cadherin is transported to the zonula adherens by an apically directed flow within the plasma membrane. Differential activation of these pathways could facilitate cell shape changes during morphogenesis, while their misregulation compromises cell adhesion and tissue architecture in differentiated epithelia. PMID:26960923

  1. Three mechanisms control E-cadherin localization to the zonula adherens

    PubMed Central

    Woichansky, Innokenty; Beretta, Carlo Antonio; Berns, Nicola; Riechmann, Veit

    2016-01-01

    E-cadherin localization to the zonula adherens is fundamental for epithelial differentiation but the mechanisms controlling localization are unclear. Using the Drosophila follicular epithelium we genetically dissect E-cadherin transport in an in vivo model. We distinguish three mechanisms mediating E-cadherin accumulation at the zonula adherens. Two membrane trafficking pathways deliver newly synthesized E-cadherin to the plasma membrane. One is Rab11 dependent and targets E-cadherin directly to the zonula adherens, while the other transports E-cadherin to the lateral membrane. Lateral E-cadherin reaches the zonula adherens by endocytosis and targeted recycling. We show that this pathway is dependent on RabX1, which provides a functional link between early and recycling endosomes. Moreover, we show that lateral E-cadherin is transported to the zonula adherens by an apically directed flow within the plasma membrane. Differential activation of these pathways could facilitate cell shape changes during morphogenesis, while their misregulation compromises cell adhesion and tissue architecture in differentiated epithelia. PMID:26960923

  2. Lysophosphatidic acid regulates adhesion molecules and enhances migration of human oral keratinocytes.

    PubMed

    Thorlakson, Hong H; Schreurs, Olav; Schenck, Karl; Blix, Inger J S

    2016-04-01

    Oral keratinocytes are connected via cell-to-cell adhesions to protect underlying tissues from physical and bacterial damage. Lysophosphatidic acids (LPAs) are a family of phospholipid mediators that have the ability to regulate gene expression, cytoskeletal rearrangement, and cytokine/chemokine secretion, which mediate proliferation, migration, and differentiation. Several forms of LPA are found in saliva and gingival crevicular fluid, but it is unknown how they affect human oral keratinocytes (HOK). The aim of the present study was therefore to examine how different LPA forms affect the expression of adhesion molecules and the migration and proliferation of HOK. Keratinocytes were isolated from gingival biopsies obtained from healthy donors and challenged with different forms of LPA. Quantitative real-time RT-PCR, immunocytochemistry, and flow cytometry were used to analyze the expression of adhesion molecules. Migration and proliferation assays were performed. Lysophosphatidic acids strongly promoted expression of E-cadherin and occludin mRNAs and translocation of E-cadherin protein from the cytoplasm to the membrane. Occludin and claudin-1 proteins were up-regulated by LPA. Migration of HOK in culture was increased, but proliferation was reduced, by the addition of LPA. This indicates that LPA can have a role in the regulation of the oral epithelial barrier by increasing the expression of adhesion molecules of HOK, by promotion of migration and by inhibition of proliferation. PMID:26913569

  3. The clinicopathological significance and potential drug target of E-cadherin in NSCLC.

    PubMed

    Zhong, Kaize; Chen, Weiwen; Xiao, Ning; Zhao, Jian

    2015-08-01

    Human epithelial cadherin (E-cadherin), a member of transmembrane glycoprotein family, encoded by the E-cadherin gene, plays a key role in cell-cell adhesion, adherent junction in normal epithelial tissues, contributing to tissue differentiation and homeostasis. Although previous studies indicated that inactivation of the E-cadherin is mainly induced by hypermethylation of E-cadherin gene, evidence concerning E-cadherin hypermethylation in the carcinogenesis and development of non-small cell lung carcinoma (NSCLC) remains controversial. In this study, we conducted a meta-analysis to quantitatively evaluate the effects of E-cadherin hypermethylation on the incidence and clinicopathological characteristics of NSCLC. A comprehensive search of PubMed and Embase databases was performed up to October 2014. Analyses of pooled data were performed. Odds ratios (ORs) were calculated and summarized. Our meta-analysis combining 18 published articles demonstrated that the hypermethylation frequencies in NSCLC were significantly higher than those in normal control tissues, OR = 3.55, 95 % confidence interval (CI) = 1.98-6.36, p < 0.0001. Further analysis showed that E-cadherin hypermethylation was not strongly associated with the sex or smoking status in NSCLC patients. In addition, E-cadherin hypermethylation was also not strongly associated with pathological types, differentiated status, clinical stages, or metastatic status in NSCLC patients. The results from the current study indicate that the hypermethylation frequency of E-cadherin in NSCLC is strongly associated with NSCLC incidence and it may be an early event in carcinogenesis of NSCLC. We also discussed the potential value of E-cadherin as a drug target that may bring new direction and hope for cancer treatment through gene-targeted therapy. PMID:25758052

  4. Sustained α-catenin Activation at E-cadherin Junctions in the Absence of Mechanical Force.

    PubMed

    Biswas, Kabir H; Hartman, Kevin L; Zaidel-Bar, Ronen; Groves, Jay T

    2016-09-01

    Mechanotransduction at E-cadherin junctions has been postulated to be mediated in part by a force-dependent conformational activation of α-catenin. Activation of α-catenin allows it to interact with vinculin in addition to F-actin, resulting in a strengthening of junctions. Here, using E-cadherin adhesions reconstituted on synthetic, nanopatterned membranes, we show that activation of α-catenin is dependent on E-cadherin clustering, and is sustained in the absence of mechanical force or association with F-actin or vinculin. Adhesions were formed by filopodia-mediated nucleation and micron-scale assembly of E-cadherin clusters, which could be distinguished as either peripheral or central assemblies depending on their relative location at the cell-bilayer adhesion. Whereas F-actin, vinculin, and phosphorylated myosin light chain associated only with the peripheral assemblies, activated α-catenin was present in both peripheral and central assemblies, and persisted in the central assemblies in the absence of actomyosin tension. Impeding filopodia-mediated nucleation and micron-scale assembly of E-cadherin adhesion complexes by confining the movement of bilayer-bound E-cadherin on nanopatterned substrates reduced the levels of activated α-catenin. Taken together, these results indicate that although the initial activation of α-catenin requires micron-scale clustering that may allow the development of mechanical forces, sustained force is not required for maintaining α-catenin in the active state. PMID:27602732

  5. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    SciTech Connect

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.; Parkos, Charles A.; Nusrat, Asma

    2010-07-02

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.

  6. Intestine-specific transcription factor Cdx2 induces E-cadherin function by enhancing the trafficking of E-cadherin to the cell membrane

    PubMed Central

    Funakoshi, Shinsuke; Kong, Jianping; Crissey, Mary Ann; Dang, Long; Dang, Duyen

    2010-01-01

    Cdx2 is an intestine-specific transcription factor required for normal intestinal epithelium development. Cdx2 regulates the expression of intestine-specific genes and induces cell adhesion and columnar morphogenesis. Cdx2 also has tumor-suppressor properties, including the reduction of colon cancer cell proliferation and cell invasion, the latter due to its effects on cell adhesion. E-cadherin is a cell adhesion protein required for adherens junction formation and the establishment of intestinal cell polarity. The objective of this study was to elucidate the mechanism by which Cdx2 regulates E-cadherin function. Two colon cancer cell lines were identified in which Cdx2 expression was associated with increased cell-cell adhesion and diminished cell migration. In both cell lines, Cdx2 did not directly alter E-cadherin levels but increased its trafficking to the cell membrane compartment. Cdx2 enhanced this trafficking by altering receptor tyrosine kinase (RTK) activity. Cdx2 expression diminished phosphorylated Abl and phosphorylated Rac levels, which are downstream effectors of RTKs. Specific chemical inhibition or short interfering RNA (shRNA) knockdown of c-Abl kinase phenocopied Cdx2's cell-cell adhesion effects. In Colo 205 cells, Cdx2 reduced PDGF receptor and IGF-I receptor activation. This was mediated by caveolin-1, which was induced by Cdx2. Targeted shRNA knockdown of caveolin-1 restored PDGF receptor and reversed E-cadherin membrane trafficking, despite Cdx2 expression. We conclude that Cdx2 regulates E-cadherin function indirectly by disrupting RTK activity and enhancing E-cadherin trafficking to the cell membrane compartment. This novel mechanism advances Cdx2's prodifferentiation and antitumor properties and suggests that Cdx2 may broadly regulate RTK activity in normal intestinal epithelium by modulating membrane trafficking of proteins. PMID:20671195

  7. α-Catulin downregulates E-cadherin and promotes melanoma progression and invasion.

    PubMed

    Kreiseder, Birgit; Orel, Lukas; Bujnow, Constantin; Buschek, Stefan; Pflueger, Maren; Schuett, Wolfgang; Hundsberger, Harald; de Martin, Rainer; Wiesner, Christoph

    2013-02-01

    Metastasis is associated with poor prognosis for melanoma responsible for about 90% of skin cancer-related mortality. To metastasize, melanoma cells must escape keratinocyte control, invade across the basement membrane and survive in the dermis by resisting apoptosis before they can intravasate into the circulation. α-Catulin (CTNNAL1) is a cytoplasmic molecule that integrates the crosstalk between nuclear factor-kappa B and Rho signaling pathways, binds to β-catenin and increases the level of both α-catenin and β-catenin and therefore has potential effects on inflammation, apoptosis and cytoskeletal reorganization. Here, we show that α-catulin is highly expressed in melanoma cells. Expression of α-catulin promoted melanoma progression and occurred concomitantly with the downregulation of E-cadherin and the upregulation of expression of mesenchymal genes such as N-cadherin, Snail/Slug and the matrix metalloproteinases 2 and 9. Knockdown of α-catulin promoted adhesion to and inhibited migration away from keratinocytes in an E-cadherin-dependent manner and decreased the transmigration through a keratinocyte monolayer, as well as in Transwell assays using collagens, laminin and fibronectin coating. Moreover, knockdown promoted homotypic spheroid formation and concomitantly increased E-cadherin expression along with downregulation of transcription factors implicated in its repression (Snail/Slug, Twist and ZEB). Consistent with the molecular changes, α-catulin provoked invasion of melanoma cells in a three-dimensional culture assay by the upregulation of matrix metalloproteinases 2 and 9 and the activation of ROCK/Rho. As such, α-catulin may represent a key driver of the metastatic process, implicating potential for therapeutic interference. PMID:22733455

  8. N- and E-cadherins in Xenopus are specifically required in the neural and non-neural ectoderm, respectively, for F-actin assembly and morphogenetic movements

    PubMed Central

    Nandadasa, Sumeda; Tao, Qinghua; Menon, Nikhil R.; Heasman, Janet; Wylie, Christopher

    2009-01-01

    Summary Transmembrane cadherins are calcium-dependent intercellular adhesion molecules. Recently, they have also been shown to be sites of actin assembly during adhesive contact formation. However, the roles of actin assembly on transmembrane cadherins during development are not fully understood. We show here, using the developing ectoderm of the Xenopus embryo as a model, that F-actin assembly is a primary function of both N-cadherin in the neural ectoderm and E-cadherin in the non-neural (epidermal) ectoderm, and that each cadherin is essential for the characteristic morphogenetic movements of these two tissues. However, depletion of N-cadherin and E-cadherin did not cause dissociation in these tissues at the neurula stage, probably owing to the expression of C-cadherin in each tissue. Depletion of each of these cadherins is not rescued by the other, nor by the expression of C-cadherin, which is expressed in both tissues. One possible reason for this is that each cadherin is expressed in a different domain of the cell membrane. These data indicate the combinatorial nature of cadherin function, the fact that N- and E-cadherin play primary roles in F-actin assembly in addition to roles in cell adhesion, and that this function is specific to individual cadherins. They also show how cell adhesion and motility can be combined in morphogenetic tissue movements that generate the form and shape of the embryonic organs. PMID:19279134

  9. E-cadherin is required for cranial neural crest migration in Xenopus laevis.

    PubMed

    Huang, Chaolie; Kratzer, Marie-Claire; Wedlich, Doris; Kashef, Jubin

    2016-03-15

    The cranial neural crest (CNC) is a highly motile and multipotent embryonic cell population, which migrates directionally on defined routes throughout the embryo, contributing to facial structures including cartilage, bone and ganglia. Cadherin-mediated cell-cell adhesion is known to play a crucial role in the directional migration of CNC cells. However, migrating CNC co-express different cadherin subtypes, and their individual roles have yet to be fully explored. In previous studies, the expression of individual cadherin subtypes has been analysed using different methods with varying sensitivities, preventing the direct comparison of expression levels. Here, we provide the first comprehensive and comparative analysis of the expression of six cadherin superfamily members during different phases of CNC cell migration in Xenopus. By applying a quantitative RT-qPCR approach, we can determine the copy number and abundance of each expressed cadherin through different phases of CNC migration. Using this approach, we show for the first time expression of E-cadherin and XB/C-cadherin in CNC cells, adding them as two new members of cadherins co-expressed during CNC migration. Cadherin co-expression during CNC migration in Xenopus, in particular the constant expression of E-cadherin, contradicts the classical epithelial-mesenchymal transition (EMT) model postulating a switch in cadherin expression. Loss-of-function experiments further show that E-cadherin is required for proper CNC cell migration in vivo and also for cell protrusion formation in vitro. Knockdown of E-cadherin is not rescued by co-injection of other classical cadherins, pointing to a specific function of E-cadherin in mediating CNC cell migration. Finally, through reconstitution experiments with different E-cadherin deletion mutants in E-cadherin morphant embryos, we demonstrate that the extracellular domain, but not the cytoplasmic domain, of E-cadherin is sufficient to rescue CNC cell migration in vivo

  10. Drosophila E-cadherin is required for the maintenance of ring canals anchoring to mechanically withstand tissue growth

    PubMed Central

    Loyer, Nicolas; Kolotuev, Irina; Pinot, Mathieu; Le Borgne, Roland

    2015-01-01

    Intercellular bridges called “ring canals” (RCs) resulting from incomplete cytokinesis play an essential role in intercellular communication in somatic and germinal tissues. During Drosophila oogenesis, RCs connect the maturing oocyte to nurse cells supporting its growth. Despite numerous genetic screens aimed at identifying genes involved in RC biogenesis and maturation, how RCs anchor to the plasma membrane (PM) throughout development remains unexplained. In this study, we report that the clathrin adaptor protein 1 (AP-1) complex, although dispensable for the biogenesis of RCs, is required for the maintenance of the anchorage of RCs to the PM to withstand the increased membrane tension associated with the exponential tissue growth at the onset of vitellogenesis. Here we unravel the mechanisms by which AP-1 enables the maintenance of RCs’ anchoring to the PM during size expansion. We show that AP-1 regulates the localization of the intercellular adhesion molecule E-cadherin and that loss of AP-1 causes the disappearance of the E-cadherin–containing adhesive clusters surrounding the RCs. E-cadherin itself is shown to be required for the maintenance of the RCs’ anchorage, a function previously unrecognized because of functional compensation by N-cadherin. Scanning block-face EM combined with transmission EM analyses reveals the presence of interdigitated, actin- and Moesin-positive, microvilli-like structures wrapping the RCs. Thus, by modulating E-cadherin trafficking, we show that the sustained E-cadherin–dependent adhesion organizes the microvilli meshwork and ensures the proper attachment of RCs to the PM, thereby counteracting the increasing membrane tension induced by exponential tissue growth. PMID:26424451

  11. Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA.

    PubMed

    Schmidt, Thomas P; Perna, Anna M; Fugmann, Tim; Böhm, Manja; Jan Hiss; Haller, Sarah; Götz, Camilla; Tegtmeyer, Nicole; Hoy, Benjamin; Rau, Tilman T; Neri, Dario; Backert, Steffen; Schneider, Gisbert; Wessler, Silja

    2016-01-01

    The cell adhesion protein and tumour suppressor E-cadherin exhibits important functions in the prevention of gastric cancer. As a class-I carcinogen, Helicobacter pylori (H. pylori) has developed a unique strategy to interfere with E-cadherin functions. In previous studies, we have demonstrated that H. pylori secretes the protease high temperature requirement A (HtrA) which cleaves off the E-cadherin ectodomain (NTF) on epithelial cells. This opens cell-to-cell junctions, allowing bacterial transmigration across the polarised epithelium. Here, we investigated the molecular mechanism of the HtrA-E-cadherin interaction and identified E-cadherin cleavage sites for HtrA. Mass-spectrometry-based proteomics and Edman degradation revealed three signature motifs containing the [VITA]-[VITA]-x-x-D-[DN] sequence pattern, which were preferentially cleaved by HtrA. Based on these sites, we developed a substrate-derived peptide inhibitor that selectively bound and inhibited HtrA, thereby blocking transmigration of H. pylori. The discovery of HtrA-targeted signature sites might further explain why we detected a stable 90 kDa NTF fragment during H. pylori infection, but also additional E-cadherin fragments ranging from 105 kDa to 48 kDa in in vitro cleavage experiments. In conclusion, HtrA targets E-cadherin signature sites that are accessible in in vitro reactions, but might be partially masked on epithelial cells through functional homophilic E-cadherin interactions. PMID:26983597

  12. Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA

    PubMed Central

    Schmidt, Thomas P.; Perna, Anna M.; Fugmann, Tim; Böhm, Manja; Jan Hiss; Haller, Sarah; Götz, Camilla; Tegtmeyer, Nicole; Hoy, Benjamin; Rau, Tilman T.; Neri, Dario; Backert, Steffen; Schneider, Gisbert; Wessler, Silja

    2016-01-01

    The cell adhesion protein and tumour suppressor E-cadherin exhibits important functions in the prevention of gastric cancer. As a class-I carcinogen, Helicobacter pylori (H. pylori) has developed a unique strategy to interfere with E-cadherin functions. In previous studies, we have demonstrated that H. pylori secretes the protease high temperature requirement A (HtrA) which cleaves off the E-cadherin ectodomain (NTF) on epithelial cells. This opens cell-to-cell junctions, allowing bacterial transmigration across the polarised epithelium. Here, we investigated the molecular mechanism of the HtrA-E-cadherin interaction and identified E-cadherin cleavage sites for HtrA. Mass-spectrometry-based proteomics and Edman degradation revealed three signature motifs containing the [VITA]-[VITA]-x-x-D-[DN] sequence pattern, which were preferentially cleaved by HtrA. Based on these sites, we developed a substrate-derived peptide inhibitor that selectively bound and inhibited HtrA, thereby blocking transmigration of H. pylori. The discovery of HtrA-targeted signature sites might further explain why we detected a stable 90 kDa NTF fragment during H. pylori infection, but also additional E-cadherin fragments ranging from 105 kDa to 48 kDa in in vitro cleavage experiments. In conclusion, HtrA targets E-cadherin signature sites that are accessible in in vitro reactions, but might be partially masked on epithelial cells through functional homophilic E-cadherin interactions. PMID:26983597

  13. In situ phosphorylation of immobilized receptors on biosensor surfaces: application to E-cadherin/beta-catenin interactions.

    PubMed

    Catimel, Bruno; Layton, Meredith; Church, Nicole; Ross, Janine; Condron, Melanie; Faux, Maree; Simpson, Richard J; Burgess, Antony W; Nice, Edouard C

    2006-10-15

    Phosphorylation is a key posttranslational modification for modulating biological interactions. Biosensor technology is ideally suited for examining in real time the role of phosphorylation on protein-protein interactions in signaling pathways. We have developed processes for on-chip phosphorylation of immobilized receptors on biosensor surfaces. These processes have been used to analyze E-cadherin/beta-catenin interactions. Phosphorylation of the intracellular domain (ICD) of E-cadherin modulates its affinity to beta-catenin and consequently the strength of cell-cell adhesion. We have phosphorylated immobilized E-cadherin ICD in situ using casein kinase 1 (CK1), casein kinase 2 (CK2), and src. On-chip phosphorylation of E-cadherin was confirmed using anti-phosphoserine and anti-phosphotyrosine antibodies. The binding of beta-catenin to E-cadherin was analyzed quantitatively. CK1 phosphorylation of E-cadherin increased the binding affinity to beta-catenin from approximately 230 to 4 nM. A similar increase in affinity, from 260 to 4 nM, was obtained with CK2 phosphorylation of E-cadherin. However, phosphorylation by src kinase decreased the affinity constant from approximately 260 nM to 4 microM. Interestingly, phosphorylation of E-cadherin by CK1 or CK2 prevented the inhibition of beta-catenin binding by src phosphorylation. PMID:16945320

  14. E-cadherin interactome complexity and robustness resolved by quantitative proteomics

    PubMed Central

    Guo, Zhenhuan; Neilson, Lisa J; Zhong, Hang; Murray, Paul S; Rao, Megha Vaman; Zanivan, Sara; Zaidel-Bar, Ronen

    2016-01-01

    E-cadherin-mediated cell-cell adhesion and signaling plays an essential role in development and maintenance of healthy epithelial tissues. Adhesiveness is conferred by cadherin extracellular domains, and is regulated by an assembly of adaptors and enzymes associated with the cytoplasmic tail. Here, we employed proximity biotinylation and quantitative proteomics to isolate and identify 612 proteins in the vicinity of E-cadherin’s cytoplasmic tail. We used a structure-informed database of protein-protein interactions to construct the most comprehensive E-cadherin interactome to date, containing 89 known E-cadhesome components and 346 novel proteins. Moreover, through cloning and expression of GFP-tagged fusion proteins we localized 26 of the novel proteins to adherens junctions. Finally, employing calcium depletion and myosin inhibition we show the E-cadherin interactome to be remarkably robust to perturbation and essentially independent of cell-cell junctions or actomyosin contractility. PMID:25468996

  15. Comparative Evaluation of β-Catenin and E-Cadherin Expression in Liquid Aspiration Biopsy Specimens of Thyroid Nodules.

    PubMed

    Isaeva, A V; Zima, A P; Saprina, T V; Kasoyan, K T; Popov, O S; Brynova, O V; Berezkina, I S; Vasil'eva, O A; Ryazantseva, N V; Shabalova, I P; Litvinova, L S; Pak, Yu D; Novitskii, V V

    2016-06-01

    We compared the results of gene molecular and immunocytochemical studies of β-catenin and E-cadherin in different variants of nodular thyroid disease (nodular colloid goiter, follicular thyroid adenocarcinoma, papillary thyroid cancer) and revealed changes of the function of the E-cadherin/β-catenin complex leading to switching from adhesion function of β-catenin in nodular colloid goiter to predominantly transcriptional activity in papillary carcinoma. The results confirm the important role of disturbances in E-cadherin-β-catenin interactions in the mechanisms of malignant transformation of follicular epithelium. PMID:27383156

  16. Suppression of E-cadherin Mediates Gallotannin Induced Apoptosis in Hep G2 Hepatocelluar Carcinoma Cells

    PubMed Central

    Han, Hee Jeong; Kwon, Hee Young; Sohn, Eun Jung; Ko, Hyunsuk; Kim, Bogeun; Jung, Kwon; Lew, Jae Hwan; Kim, Sung-Hoon

    2014-01-01

    Though gallotannin was known to have anti-oxidant and antitumor activity, the underlying antitumor mechanism of gallotannin still remains unclear. Thus, in the present study, antitumor mechanism of gallotannin was elucidated in hepatocellular carcinoma cells. Gallotannin significantly exerted cytotoxicity against Hep G2 and Chang hepatocellular carcinoma cells with the accumulation of the sub-G1 population and increase of terminal deoxynucleotidyltransferasedUTP nick end labeling (TUNEL) positive cells as an apoptotic feature. Also, gallotannin attenuated the expression of pro-caspase9, pro-caspase3, Bcl2 and integrin β1 and cleaved poly(ADP)-ribose polymerase (PARP) in Hep G2 and Chang cancer cells. Furthermore, gallotannin suppressed cell repair motility by wound healing assay and also inhibited cell adhesion in Hep G2 cells. Of note, gallotannin attenuated the expression of epithelial cadherin (E-cadherin) to form cell-cell adhesion from the early stage, and also beta-catenin at late phase in Hep G2 cells. Consistently, Immunofluorescence assay showed that E-cadherin or β-catenin expression was suppressed in a time dependent manner by gallotannin. Furthermore, silencing of E-cadherin by siRNA transfection method enhanced PAPR cleavage, caspase 3 activation and sub G1 population and attenuated the cell adhesion induced by gallotannin in Hep G2 cells. Overall, our findings demonstrate that the disruption of cell adhesion junction by suppression of E-cadherin mediates gallotannin enhanced apoptosis in Hep G2 liver cancer cells. PMID:24795530

  17. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells

    PubMed Central

    Lobos-González, L; Aguilar, L; Diaz, J; Diaz, N; Urra, H; Torres, V; Silva, V; Fitzpatrick, C; Lladser, A; Hoek, K.S.; Leyton, L; Quest, AFG

    2013-01-01

    SUMMARY The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis, and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10(cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10(E-cad) cells reduces subcutaneous tumor formation, and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10(cav1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity and cell migration observed with B16F10(cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. PMID:23470013

  18. E-cadherin determines Caveolin-1 tumor suppression or metastasis enhancing function in melanoma cells.

    PubMed

    Lobos-González, Lorena; Aguilar, Lorena; Diaz, Jorge; Diaz, Natalia; Urra, Hery; Torres, Vicente A; Silva, Veronica; Fitzpatrick, Christopher; Lladser, Alvaro; Hoek, Keith S; Leyton, Lisette; Quest, Andrew F G

    2013-07-01

    The role of caveolin-1 (CAV1) in cancer is highly controversial. CAV1 suppresses genes that favor tumor development, yet also promotes focal adhesion turnover and migration of metastatic cells. How these contrasting observations relate to CAV1 function in vivo is unclear. Our previous studies implicate E-cadherin in CAV1-dependent tumor suppression. Here, we use murine melanoma B16F10 cells, with low levels of endogenous CAV1 and E-cadherin, to unravel how CAV1 affects tumor growth and metastasis and to assess how co-expression of E-cadherin modulates CAV1 function in vivo in C57BL/6 mice. We find that overexpression of CAV1 in B16F10 (cav-1) cells reduces subcutaneous tumor formation, but enhances metastasis relative to control cells. Furthermore, E-cadherin expression in B16F10 (E-cad) cells reduces subcutaneous tumor formation and lung metastasis when intravenously injected. Importantly, co-expression of CAV1 and E-cadherin in B16F10 (cav-1/E-cad) cells abolishes tumor formation, lung metastasis, increased Rac-1 activity, and cell migration observed with B16F10 (cav-1) cells. Finally, consistent with the notion that CAV1 participates in switching human melanomas to a more malignant phenotype, elevated levels of CAV1 expression correlated with enhanced migration and Rac-1 activation in these cells. PMID:23470013

  19. Interactions between E-Cadherin and MicroRNA Deregulation in Head and Neck Cancers: The Potential Interplay

    PubMed Central

    Wong, Thian-Sze; Gao, Wei; Chan, Jimmy Yu-Wai

    2014-01-01

    E-cadherin expression in the head and neck epithelium is essential for the morphogenesis and homeostasis of epithelial tissues. The cadherin-mediated cell-cell contacts are required for the anchorage-dependent growth of epithelial cells. Further, survival and proliferation require physical tethering created by proper cell-cell adhesion. Otherwise, the squamous epithelial cells will undergo programmed cell death. Head and neck cancers can escape from anoikis and enter into the epithelial-mesenchymal transition stages via the modulation of E-cadherin expression with epigenetic mechanisms. At epigenetic level, gene expression control is not dependent on the DNA sequence. In the context of E-cadherin regulation in head and neck cancers, 2 major mechanisms including de novo promoter hypermethylation and microRNA dysregulation are most extensively studied. Both of them control E-cadherin expression at transcription level and subsequently hinder the overall E-cadherin protein level in the head and neck cancer cells. Increasing evidence suggested that microRNA mediated E-cadherin expression in the head and neck cancers by directly/indirectly targeting the transcription suppressors of E-cadherin, ZEB1 and ZEB2. PMID:25161999

  20. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    PubMed Central

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  1. CDH1/E-cadherin and solid tumors. An updated gene-disease association analysis using bioinformatics tools.

    PubMed

    Abascal, María Florencia; Besso, María José; Rosso, Marina; Mencucci, María Victoria; Aparicio, Evangelina; Szapiro, Gala; Furlong, Laura Inés; Vazquez-Levin, Mónica Hebe

    2016-02-01

    Cancer is a group of diseases that causes millions of deaths worldwide. Among cancers, Solid Tumors (ST) stand-out due to their high incidence and mortality rates. Disruption of cell-cell adhesion is highly relevant during tumor progression. Epithelial-cadherin (protein: E-cadherin, gene: CDH1) is a key molecule in cell-cell adhesion and an abnormal expression or/and function(s) contributes to tumor progression and is altered in ST. A systematic study was carried out to gather and summarize current knowledge on CDH1/E-cadherin and ST using bioinformatics resources. The DisGeNET database was exploited to survey CDH1-associated diseases. Reported mutations in specific ST were obtained by interrogating COSMIC and IntOGen tools. CDH1 Single Nucleotide Polymorphisms (SNP) were retrieved from the dbSNP database. DisGeNET analysis identified 609 genes annotated to ST, among which CDH1 was listed. Using CDH1 as query term, 26 disease concepts were found, 21 of which were neoplasms-related terms. Using DisGeNET ALL Databases, 172 disease concepts were identified. Of those, 80 ST disease-related terms were subjected to manual curation and 75/80 (93.75%) associations were validated. On selected ST, 489 CDH1 somatic mutations were listed in COSMIC and IntOGen databases. Breast neoplasms had the highest CDH1-mutation rate. CDH1 was positioned among the 20 genes with highest mutation frequency and was confirmed as driver gene in breast cancer. Over 14,000 SNP for CDH1 were found in the dbSNP database. This report used DisGeNET to gather/compile current knowledge on gene-disease association for CDH1/E-cadherin and ST; data curation expanded the number of terms that relate them. An updated list of CDH1 somatic mutations was obtained with COSMIC and IntOGen databases and of SNP from dbSNP. This information can be used to further understand the role of CDH1/E-cadherin in health and disease. PMID:26674224

  2. Intravital FRAP Imaging using an E-cadherin-GFP Mouse Reveals Disease- and Drug-Dependent Dynamic Regulation of Cell-Cell Junctions in Live Tissue

    PubMed Central

    Erami, Zahra; Herrmann, David; Warren, Sean C.; Nobis, Max; McGhee, Ewan J.; Lucas, Morghan C.; Leung, Wilfred; Reischmann, Nadine; Mrowinska, Agata; Schwarz, Juliane P.; Kadir, Shereen; Conway, James R.W.; Vennin, Claire; Karim, Saadia A.; Campbell, Andrew D.; Gallego-Ortega, David; Magenau, Astrid; Murphy, Kendelle J.; Ridgway, Rachel A.; Law, Andrew M.; Walters, Stacey N.; Grey, Shane T.; Croucher, David R.; Zhang, Lei; Herzog, Herbert; Hardeman, Edna C.; Gunning, Peter W.; Ormandy, Christopher J.; Evans, T.R. Jeffry; Strathdee, Douglas; Sansom, Owen J.; Morton, Jennifer P.; Anderson, Kurt I.; Timpson, Paul

    2015-01-01

    Summary E-cadherin-mediated cell-cell junctions play a prominent role in maintaining the epithelial architecture. The disruption or deregulation of these adhesions in cancer can lead to the collapse of tumor epithelia that precedes invasion and subsequent metastasis. Here we generated an E-cadherin-GFP mouse that enables intravital photobleaching and quantification of E-cadherin mobility in live tissue without affecting normal biology. We demonstrate the broad applications of this mouse by examining E-cadherin regulation in multiple tissues, including mammary, brain, liver, and kidney tissue, while specifically monitoring E-cadherin mobility during disease progression in the pancreas. We assess E-cadherin stability in native pancreatic tissue upon genetic manipulation involving Kras and p53 or in response to anti-invasive drug treatment and gain insights into the dynamic remodeling of E-cadherin during in situ cancer progression. FRAP in the E-cadherin-GFP mouse, therefore, promises to be a valuable tool to fundamentally expand our understanding of E-cadherin-mediated events in native microenvironments. PMID:26725115

  3. ADAM12-directed ectodomain shedding of E-cadherin potentiates trophoblast fusion.

    PubMed

    Aghababaei, M; Hogg, K; Perdu, S; Robinson, W P; Beristain, A G

    2015-12-01

    Trophoblasts, placental cells of epithelial lineage, undergo extensive differentiation to form the cellular components of the placenta. Trophoblast progenitor cell differentiation into the multinucleated syncytiotrophoblast is a key developmental process required for placental function, where defects in syncytiotrophoblast formation and turnover associate with placental pathologies and link to poor pregnancy outcomes. The cellular and molecular processes governing syncytiotrophoblast formation are poorly understood, but require the activation of pathways that direct cell fusion. The protease, A Disintegrin and Metalloproteinase 12 (ADAM12), controls cell fusion in myoblasts and is highly expressed in the placenta localizing to multiple trophoblast populations. However, the importance of ADAM12 in regulating trophoblast fusion is unknown. Here, we describe a function for ADAM12 in regulating trophoblast fusion. Using two distinct trophoblast models of cell fusion, we show that ADAM12 is dynamically upregulated and is under the transcriptional control of protein kinase A. siRNA-directed loss of ADAM12 impedes spontaneous fusion of primary cytotrophoblasts, whereas overexpression of the secreted variant, ADAM12S, potentiates cell fusion in the Bewo trophoblast cell line. Mechanistically, both ectopic and endogenous levels of ADAM12 were shown to control trophoblast fusion through E-cadherin ectodomain shedding and remodeling of intercellular boundaries. This study describes a novel role for ADAM12 in placental development, specifically highlighting its importance in controlling the differentiation of villous cytotrophoblasts into multinucleated cellular structures. Moreover, this work identifies E-cadherin as a novel ADAM12 substrate, and highlights the significance that cell adhesion molecule ectodomain shedding has in normal development. PMID:25909890

  4. Restraining FOXO3-dependent transcriptional BMF activation underpins tumour growth and metastasis of E-cadherin-negative breast cancer.

    PubMed

    Hornsveld, M; Tenhagen, M; van de Ven, R A; Smits, A M M; van Triest, M H; van Amersfoort, M; Kloet, D E A; Dansen, T B; Burgering, B M; Derksen, P W B

    2016-09-01

    Loss of cellular adhesion leads to the progression of breast cancer through acquisition of anchorage independence, also known as resistance to anoikis. Although inactivation of E-cadherin is essential for acquisition of anoikis resistance, it has remained unclear how metastatic breast cancer cells counterbalance the induction of apoptosis without E-cadherin-dependent cellular adhesion. We report here that E-cadherin inactivation in breast cancer cells induces PI3K/AKT-dependent FOXO3 inhibition and identify FOXO3 as a novel and direct transcriptional activator of the pro-apoptotic protein BMF. As a result, E-cadherin-negative breast fail to upregulate BMF upon transfer to anchorage independence, leading to anoikis resistance. Conversely, expression of BMF in E-cadherin-negative metastatic breast cancer cells is sufficient to inhibit tumour growth and dissemination in mice. In conclusion, we have identified repression of BMF as a major cue that underpins anoikis resistance and tumour dissemination in E-cadherin-deficient metastatic breast cancer. PMID:27035620

  5. RPTPα controls epithelial adherens junctions, linking E-cadherin engagement to c-Src-mediated phosphorylation of cortactin.

    PubMed

    Truffi, Marta; Dubreuil, Véronique; Liang, Xuan; Vacaresse, Nathalie; Nigon, Fabienne; Han, Siew Ping; Yap, Alpha S; Gomez, Guillermo A; Sap, Jan

    2014-06-01

    Epithelial junctions are fundamental determinants of tissue organization, subject to regulation by tyrosine phosphorylation. Homophilic binding of E-cadherin activates tyrosine kinases, such as Src, that control junctional integrity. Protein tyrosine phosphatases (PTPs) also contribute to cadherin-based adhesion and signaling, but little is known about their specific identity or functions at epithelial junctions. Here, we report that the receptor PTP RPTPα (human gene name PTPRA) is recruited to epithelial adherens junctions at the time of cell-cell contact, where it is in molecular proximity to E-cadherin. RPTPα is required for appropriate cadherin-dependent adhesion and for cyst architecture in three-dimensional culture. Loss of RPTPα impairs adherens junction integrity, as manifested by defective E-cadherin accumulation and peri-junctional F-actin density. These effects correlate with a role for RPTPα in cellular (c)-Src activation at sites of E-cadherin engagement. Mechanistically, RPTPα is required for appropriate tyrosine phosphorylation of cortactin, a major Src substrate and a cytoskeletal actin organizer. Expression of a phosphomimetic cortactin mutant in RPTPα-depleted cells partially rescues F-actin and E-cadherin accumulation at intercellular contacts. These findings indicate that RPTPα controls cadherin-mediated signaling by linking homophilic E-cadherin engagement to cortactin tyrosine phosphorylation through c-Src. PMID:24652832

  6. Snail controls proliferation of Drosophila ovarian epithelial follicle stem cells, independently of E-cadherin.

    PubMed

    Tseng, Chen-Yuan; Kao, Shih-Han; Hsu, Hwei-Jan

    2016-06-15

    Epithelial stem cells undergo constant self-renewal and differentiation to maintain the homeostasis of epithelial tissues that undergo rapid turnover. Recent studies have shown that the epithelial-mesenchymal transition (EMT), which is primarily mediated by Snail via the suppression of E-cadherin, is able to generate cells with stem cell properties. However, the role of Snail in epithelial stem cells remains unclear. Here, we report that Snail directly controls proliferation of follicle stem cells (FSCs) in Drosophila females. Disruption of Snail expression in FSCs compromises their proliferation, but not their maintenance. Conversely, FSCs with excessive Snail expression display increased proliferation and lifespan, which is accompanied by a moderate decrease in the expression of E-cadherin (required for adhesion of FSCs to their niche) at the junction between their adjacent cells, indicating a conserved role of Snail in E-cadherin inhibition, which promote epithelial cell proliferation. Interestingly, a decrease in E-cadherin in snail-knock down FSCs does not restore the decreased proliferation of snail-knock down FSCs, suggesting that adhesion strength of FSCs to their niche is dispensable for Snail-mediated FSC division. Our results demonstrate that Snail controls epithelial stem cell division independently of its known role in the EMT, which contributes to induction of cancer stem cells. PMID:27141871

  7. Hypotonic stress induces E-cadherin expression in cultured human keratinocytes.

    PubMed

    Kippenberger, Stefan; Loitsch, Stefan; Guschel, Maike; Müller, Jutta; Kaufmann, Roland; Bernd, August

    2005-01-01

    Human epidermis marks the interface between internal and external environments with the major task being to maintain body hydration. Alternating exposure of skin to a dry or humid environment is likely to cause changes in the epidermal water gradient resulting in osmotic alterations of epidermal keratinocytes. The present in vitro approach studied the effect of hypotonicity on cell-cell contact. It was demonstrated that hypotonic stress applied to human epithelial cells (HaCaT, A-431) induced upregulation of E-cadherin at both, the protein and mRNA level. 5'-deletional mutants of the E-cadherin promoter identified an element ranging from -53 to +31 that conveyed strong transactivation under hypotonic stress. In order to define relevant upstream regulators members of the MAP kinase family, the epidermal growth factor receptor (EGFR) and protein kinase B/Akt (PKB/Akt) were investigated. Hypotonic conditions led to a fast activation of ERK1/2, SAPK/JNK, p38, EGFR and PKB/Akt with distinct activation patterns. Experiments using specific inhibitors showed that p38 contributes to the E-cadherin transactivation under hypotonic conditions. Further upstream, adhesion was found to be a prerequisite for E-cadherin transactivation in this model. In summary, the present study provides evidence that E-cadherin is an osmo-sensitive gene that responds to hypotonic stress. The function of this regulation may be found in morphological changes induced by cell swelling. It is likely that induction of E-cadherin contributes to the stabilization between adjacent cells in order to withstand the physical forces induced by hypotonicity. PMID:15620715

  8. Insulin-like growth factor I activates the invasion suppressor function of E-cadherin in MCF-7 human mammary carcinoma cells in vitro.

    PubMed Central

    Bracke, M. E.; Vyncke, B. M.; Bruyneel, E. A.; Vermeulen, S. J.; De Bruyne, G. K.; Van Larebeke, N. A.; Vleminckx, K.; Van Roy, F. M.; Mareel, M. M.

    1993-01-01

    The calcium-dependent cell-cell adhesion molecule E-cadherin has been shown to counteract invasion of epithelial neoplastic cells. Using three monoclonal antibodies, we have demonstrated the presence of E-cadherin at the surface of human MCF-7/6 mammary carcinoma cells by indirect immunofluorescence coupled to flow cytometry and by immunocytochemistry. Nevertheless, MCF-7/6 cells failed to aggregate in a medium containing 1.25 mM CaCl2, and they were invasive after confrontation with embryonic chick heart fragments in organ culture. Treatment of MCF-7/6 cells with 0.5 microgram ml-1 insulin-like growth factor I (IGF-I) led to homotypic aggregation within 5 to 10 min and inhibited invasion in vitro during at least 8 days. The effect of IGF-I on cellular aggregation was insensitive to cycloheximide. However, monoclonal antibodies that interfered with the function of either the IGF-I receptor (alpha IR3) or E-cadherin (HECD-1, MB2) blocked the effect of IGF-I on aggregation. The effects of IGF-I on aggregation and on invasion could be mimicked by 1 microgram ml-1 insulin, but not by 0.5 microgram ml-1 IGF-II. The insulin effects were presumably not mediated by the IGF-I receptor, since they could not be blocked by an antibody against this receptor (alpha IR3). Our results indicate that IGF-I activates the invasion suppressor role of E-cadherin in MCF-7/6 cells. Images Figure 1 Figure 3 Figure 4 Figure 7 Figure 8 Figure 10 PMID:8347483

  9. Control of vascular permeability by adhesion molecules.

    PubMed

    Sarelius, Ingrid H; Glading, Angela J

    2015-01-01

    Vascular permeability is a vital function of the circulatory system that is regulated in large part by the limited flux of solutes, water, and cells through the endothelial cell layer. One major pathway through this barrier is via the inter-endothelial junction, which is driven by the regulation of cadherin-based adhesions. The endothelium also forms attachments with surrounding proteins and cells via 2 classes of adhesion molecules, the integrins and IgCAMs. Integrins and IgCAMs propagate activation of multiple downstream signals that potentially impact cadherin adhesion. Here we discuss the known contributions of integrin and IgCAM signaling to the regulation of cadherin adhesion stability, endothelial barrier function, and vascular permeability. Emphasis is placed on known and prospective crosstalk signaling mechanisms between integrins, the IgCAMs- ICAM-1 and PECAM-1, and inter-endothelial cadherin adhesions, as potential strategic signaling nodes for multipartite regulation of cadherin adhesion. PMID:25838987

  10. Deletion of the E-cadherin gene in hepatitis B virus-positive Chinese hepatocellular carcinomas.

    PubMed

    Slagle, B L; Zhou, Y Z; Birchmeier, W; Scorsone, K A

    1993-10-01

    Frequent allele loss from chromosome 16q was recently described for human tumors of the breast, prostate gland and liver, indicating the possible presence of a tumor-suppressor gene on that chromosome arm. In this study, the chromosome 16 allele status of 38 hepatocellular carcinomas in Chinese patients was determined with restriction-fragment-length polymorphism analysis. Tumor-specific allele loss was detected in 14 (74%) of 19 patients informative for 16p markers and in 22 (85%) of 26 patients informative for 16q markers. Quantitative densitometric analysis revealed reduction to hemizygosity of the E-cadherin cell adhesion gene (localized to 16q22.1) in 18 (64%) of the 28 patients for whom quantitative data were available. Reduced expression of E-cadherin has been associated with invasion and metastasis in several human cell lines and primary tumors, and our results suggest that one mechanism of reduced E-cadherin expression is the loss of one copy of the E-cadherin gene. PMID:8104855

  11. Force via integrins but not E-cadherin decreases Oct3/4 expression in embryonic stem cells

    SciTech Connect

    Uda, Yuhei; Poh, Yeh-Chuin; Chowdhury, Farhan; Wu, Douglas C.; Tanaka, Tetsuya S.; Sato, Masaaki; Wang, Ning

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Force via integrins or cadherins induces similar cell stiffening responses. Black-Right-Pointing-Pointer Force via integrins but not cadherins induces cell spreading. Black-Right-Pointing-Pointer Force via integrins but not cadherins induces differentiation of embryonic stem cells. -- Abstract: Increasing evidence suggests that mechanical factors play a critical role in fate decisions of stem cells. Recently we have demonstrated that a local force applied via Arg-Gly-Asp (RGD) peptides coated magnetic beads to mouse embryonic stem (ES) cells increases cell spreading and cell stiffness and decreases Oct3/4 (Pou5f1) gene expression. However, it is not clear whether the effects of the applied stress on these functions of ES cells can be extended to natural extracellular matrix proteins or cell-cell adhesion molecules. Here we show that a local cyclic shear force applied via fibronectin or laminin to integrin receptors increased cell spreading and stiffness, downregulated Oct3/4 gene expression, and decreased cell proliferation rate. In contrast, the same cyclic force applied via cell-cell adhesion molecule E-cadherin (Cdh1) had no effects on cell spreading, Oct3/4 gene expression, and the self-renewal of mouse ES cells, but induced significant cell stiffening. Our findings demonstrate that biological responses of ES cells to force applied via integrins are different from those to force via E-cadherin, suggesting that mechanical forces might play different roles in different force transduction pathways to shape early embryogenesis.

  12. Comparative analysis of the expression of E-cadherin, β-catenin, and β1 integrin in congenital and acquired cholesteatoma.

    PubMed

    Lee, Dong Wook; Chung, Jae Ho; Lee, Seung Hwan; Park, Chul Won; Kang, Sung-Ho; Oh, Young Ha; Pyo, Ju Yeon

    2016-04-01

    E-cadherin, β-catenin, and β1 integrin are important cell adhesion molecules to maintain epithelial structure and function. We investigated the expression of these cell adhesion molecules in cholesteatomas to understand the role of cell-cell and cell-extracellular matrix interaction in cholesteatomas. An immunohistochemical investigation was carried out on 35 cholesteatoma tissue samples (14 congenital, 21 acquired cholesteatomas) and 10 normal retroauricular skin (RAS) tissues which are obtained during middle ear surgery. The expression rate was measured to find out differences between retroauricular skin and cholesteatoma, as well as between congenital and acquired cholesteatoma. E-cadherin expression rate was significantly lower in the cholesteatoma (spinous layer 88.7 ± 17.9 %, granular layer 54.6 ± 22.6 %) than in the RAS (100 %, 74.4 ± 7.4 %) and in the acquired (83.3 ± 19.4 %, 48.1 ± 22.9 %) than in the congenital (96.7 ± 12.0 %, 64.4 ± 18.8 %). β-catenin expression rate was significantly lower in the cholesteatoma (spinous layer 84.1 ± 17.2 %, granular layer 28.7 ± 30.8 %) than in the RAS (100 %, 75.9 ± 6.1 %) and in the acquired (78.1 ± 17.0 %, 17.1 ± 22.3 %) than in the congenital (93.2 ± 13.5 %, 46.1 ± 34.2 %). The expression pattern of β-catenin is similar to that of E-cadherin. In β1 integrin, there was no significant difference of the expression rate between RAS and cholesteatoma, as well as between congenital and acquired cholesteatoma. In conclusion, the expression of E-cadherin and β-catenin is reduced in cholesteatoma, and the reduction is more pronounced in acquired cholesteatoma than in congenital cholesteatoma. Acquired cholesteatomas showed more aggressive characteristics than congenital cholesteatomas in terms of cell-cell adhesion. PMID:25864182

  13. Adhesion molecules in inflammatory bowel disease.

    PubMed Central

    Jones, S C; Banks, R E; Haidar, A; Gearing, A J; Hemingway, I K; Ibbotson, S H; Dixon, M F; Axon, A T

    1995-01-01

    The ability of leucocytes to adhere to endothelium is essential for leucocyte migration into inflammatory sites. Some of these adhesion molecules are released from the cell surface and can be detected in serum. The soluble adhesion molecules intercellular adhesion molecule 1 (ICAM-1), E selectin, and vascular cell adhesion molecule 1 (VCAM-1) were studied in the serum of patients with Crohn's disease, ulcerative colitis, and healthy controls. A second blood sample was taken from patients with active disease after one month of treatment and a third two months after remission was achieved. Tissue expression of the same adhesion molecules was studied by immunohistology. Circulating VCAM-1 concentrations were significantly higher in patients with active ulcerative colitis (n = 11, median = 165 U/ml) compared with patients with inactive ulcerative colitis (n = 10, median = 117 U/ml, p < 0.005), active Crohn's disease (n = 12, median = 124 U/ml, p < 0.02), and controls (n = 90, median = 50 U/ml, p < 0.0001). Within each disease group there were no significant differences in E selectin or ICAM-1 concentrations between the active and inactive states, however, patients with active Crohn's disease had significantly higher ICAM-1 concentrations (n = 12, median = 273 ng/ml) than controls (n = 28, median = 168, p < 0.003). VCAM-1 concentrations fell significantly from pretreatment values to remission in active ulcerative colitis (p < 0.01). In Crohn's disease there was a significant fall in ICAM-1 both during treatment (p < 0.01) and two months after remission (p < 0.02). Vascular expression of ICAM-1 occurred more often and was more intense in inflamed tissue sections from patients with ulcerative colitis and Crohn's disease than from controls. Vascular labelling with antibody to E selectin also occurred more often in patients with active inflammatory bowel disease. In conclusion, increased circulating concentrations of selected adhesion molecules are associated with

  14. Epithelial DLD-1 Cells with Disrupted E-cadherin Gene Retain the Ability to Form Cell Junctions and Apico-basal Polarity.

    PubMed

    Fujiwara, Miwako; Fujimura, Kihito; Obata, Shuichi; Yanagibashi, Ryo; Sakuma, Tetsushi; Yamamoto, Takashi; Suzuki, Shintaro T

    2015-01-01

    Gene editing methods were applied to the study of E-cadherin function in epithelial cells. The E-cadherin gene in epithelial DLD-1 cells was ablated using TALEN. The resultant cells showed round fibroblast-like morphology and had almost no Ca(2+)-dependent cell aggregation activity. E-cadherin re-expression in the knockout cells restored epithelial cell morphology and strong Ca(2+)-dependent cell-cell adhesion activity, indicating that the knockout cells retained the ability to support cadherin function. The knockout cells showed partial localization of desmoplakin and ZO-1 at intercellular contact sites. The transfectants expressing mutant E-cadherin lacking the cytoplasmic domain showed clear localization of desmoplakin and ZO-1 at cell-cell contact sites, although the cells had only weak Ca(2+)-dependent cell adhesion activity. Electron microscopy revealed the formation of intercellular junctions and apico-basal polarity in these cells. A portion of these cells occasionally formed an epithelial-like structure after prolonged culture. When the cells were treated with blebbistatin, the localization was enhanced. However, the localization was incomplete and contained defects. Double-knockout MDCK cells for the E-cadherin and cadherin-6 genes showed similar results, suggesting that the above properties were general. The present results showed that an epithelial-like structure could be formed without E-cadherin, but that the construction of mature epithelia requires E-cadherin. PMID:26289297

  15. Depletion of E-Cadherin Disrupts Establishment but Not Maintenance of Cell Junctions in Madin-Darby Canine Kidney Epithelial Cells

    PubMed Central

    Capaldo, Christopher T.

    2007-01-01

    E-cadherin forms calcium-dependent homophilic intercellular adhesions between epithelial cells. These contacts regulate multiple aspects of cell behavior, including the organization of intercellular tight junctions (TJs). To distinguish between the roles of E-cadherin in formation versus maintenance of junctions, Madin-Darby canine kidney (MDCK) cells were depleted of E-cadherin by RNA interference. Surprisingly, reducing E-cadherin expression had little effect on the protein levels or localization of adherens junction (AJ) or TJ markers. The cells underwent morphological changes, as the normally flat apical surface swelled into a dome. However, apical–basal polarity was not compromised, transmembrane resistance was normal, and zonula occludin protein 1 dynamics at the TJs were unchanged. Additionally, an E-cadherin/Cadherin-6 double knockdown also failed to disrupt established TJs, although β-catenin was lost from the cell cortex. Nevertheless, cells depleted of E-cadherin failed to properly reestablish cell polarity after junction disassembly. Recovery of cell–cell adhesion, transepithelial resistance, and the localization of TJ and AJ markers were all delayed. In contrast, depletion of α-catenin caused long-term disruption of junctions. These results indicate that E-cadherin and Cadherin-6 function as a scaffold for the construction of polarized structures, and they become largely dispensable in mature junctions, whereas α-catenin is essential for the maintenance of functional junctions. PMID:17093058

  16. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components

    PubMed Central

    Kim, Nam-Gyun; Koh, Eunjin; Chen, Xiao; Gumbiner, Barry M.

    2011-01-01

    Contact inhibition of cell growth is essential for embryonic development and maintenance of tissue architecture in adult organisms, and the growth of tumors is characterized by a loss of contact inhibition of proliferation. The recently identified Hippo signaling pathway has been implicated in contact inhibition of proliferation as well as organ size control. The modulation of the phosphorylation and nuclear localization of Yes-associated protein (YAP) by the highly conserved kinase cascade of the Hippo signaling pathway has been intensively studied. However, cell-surface receptors regulating the Hippo signaling pathway in mammals are not well understood. In this study, we show that Hippo signaling pathway components are required for E-cadherin–dependent contact inhibition of proliferation. Knockdown of the Hippo signaling components or overexpression of YAP inhibits the decrease in cell proliferation caused by E-cadherin homophilic binding at the cell surface, independent of other cell–cell interactions. We also demonstrate that the E-cadherin/catenin complex functions as an upstream regulator of the Hippo signaling pathway in mammalian cells. Expression of E-cadherin in MDA-MB-231 cells restores the density-dependent regulation of YAP nuclear exclusion. Knockdown of β-catenin in densely cultured MCF10A cells, which mainly depletes E-cadherin–bound β-catenin, induces a decrease in the phosphorylation of S127 residue of YAP and its nuclear accumulation. Moreover, E-cadherin homophilic binding independent of other cell interactions is sufficient to control the subcellular localization of YAP. Therefore, Our results indicate that, in addition to its role in cell–cell adhesion, E-cadherin-mediated cell–cell contact directly regulates the Hippo signaling pathway to control cell proliferation. PMID:21730131

  17. Recombinant fragilysin isoforms cause E-cadherin cleavage of intact cells and do not cleave isolated E-cadherin.

    PubMed

    Kharlampieva, Daria; Manuvera, Valentin; Podgorny, Oleg; Grafskaia, Ekaterina; Kovalchuk, Sergey; Pobeguts, Olga; Altukhov, Ilya; Govorun, Vadim; Lazarev, Vassili

    2015-01-01

    The fragilysin (BFT) is a protein secreted by enterotoxigenic Bacteroides fragilis strains. BFT contains zinc-binding motif which was found in the metzincins family of metalloproteinases. In this study, we generated three known recombinant isoforms of BFT using Escherichia coli, tested their activity and examined whether E-cadherin is a substrate for BFTs. BFT treatment of HT-29 cells induced endogenous E-cadherin cleavage, and this BFT activity requires the native structure of zinc-binding motif. At the same time recombinant BFTs did not cleave recombinant E-cadherin or E-cadherin in isolated cell fractions. It indicates that E-cadherin may be not direct substrate for BFT. We also detected and identified proteins released into the cultural medium after HT-29 cells treatment with BFT. The role of these proteins in pathogenesis and cell response to BFT remains to be determined. PMID:25998017

  18. Relation of glypican-3 and E-cadherin expressions to clinicopathological features and prognosis of mucinous and non-mucinous colorectal adenocarcinoma.

    PubMed

    Foda, Abd Al-Rahman Mohammad; Mohammad, Mie Ali; Abdel-Aziz, Azza; El-Hawary, Amira Kamal

    2015-06-01

    Glypican-3 (GPC3) is a member of the membrane-bound heparin sulfate proteoglycans. E-cadherin is an adhesive receptor that is believed to act as a tumor suppressor gene. Many studies had investigated E-cadherin expressions in colorectal carcinoma (CRC) while only one study had investigated GPC3 expression in CRC. This study aims to investigate expression of GCP3 and E-cadherin in colorectal mucinous carcinoma (MA) and non-mucinous adenocarcinoma (NMA) using manual tissue microarray technique. Tumor tissue specimens are collected from 75 cases of MC and 75 cases of NMA who underwent radical surgery from Jan 2007 to Jan 2012 at the Gastroenterology Centre, Mansoura University, Egypt. Their clinicopathological parameters and survival data were revised and analyzed using established statistical methodologies. High-density manual tissue microarrays were constructed using modified mechanical pencil tip technique and immunohistochemistry for GPC3 and E-cadherin was done. NMA showed higher expression of GPC3 than MA with no statistically significant relation. NMA showed a significantly higher E-cadherin expression than MA. GPC3 and E-cadherin positivity rates were significantly interrelated in NMA, but not in MA, group. In NMA group, there was no significant relation between either GPC3 or E-cadherin expression and the clinicopathological features. In a univariate analysis, neither GPC3 nor E-cadherin expression showed a significant impact on disease-free survival (DFS) or overall survival (OS). GPC3 and E-cadherin expressions are not independent prognostic factors in CRC. However, expressions of both are significantly interrelated in NMA patients, suggesting an excellent interplay between both, in contrast to MA. Further molecular studies are needed to further explore the relationship between GCP3 and E-cadherin in colorectal carcinogenesis. PMID:25619476

  19. Peptide Sequence Region That is Essential for the Interactions of the Enterotoxigenic Bacteroides fragilis Metalloproteinase II with E-cadherin

    PubMed Central

    Shiryaev, Sergey A.; Remacle, Albert G.; Cieplak, Piotr; Strongin, Alex Y.

    2015-01-01

    Bacteroides fragilis is a valuable anaerobic commensal and an essential component of the gut microbiome in humans. The presence of a short pathogenicity island in the genome is predominantly associated with the enterotoxigenic strains of B. fragilis. Metallopro-teinase II (MPII) and fragilysin (FRA) are the structurally related enzymes encoded by the pathogenicity island in the enterotoxigenic strains. Accordingly, there is a significant overlap between the cleavage preferences of MPII and FRA. These proteinases, however, are counter-transcribed in the bacterial genome suggesting their distinct and specialized functions in the course of infection. It is well established that FRA directly cleaves E-cadherin, a key protein of the cell-to-cell adhesion junctions in the intestinal epithelium. Counterintuitively, MPII directly binds to, rather than cleaves, E-cadherin. Structural modeling suggested that a potential E-cadherin binding site involves the C-terminal -helical region of the MPII catalytic domain. The sequence of this region is different in MPII and FRA. Here, we employed substitution mutagenesis of this C-terminal -helical region to isolate the MPII mutants with the potentially inactivated E-cadherin binding site. Overall, as a result of our modeling, mutagenesis and binding studies, we determined that the C-terminal ten residue segment is essential for the binding of MPII, but not of FRA3, to E-cadherin, and that the resulting MPII•E-cadherin complex does not impair E-cadherin-dependent cell-to-cell contacts. It is possible to envision that the putative cleavage targets of MPII should be explored not only on the host cell surface but also in B. fragilis. PMID:25964952

  20. α3 Integrin of Cell-Cell Contact Mediates Kidney Fibrosis by Integrin-Linked Kinase in Proximal Tubular E-Cadherin Deficient Mice.

    PubMed

    Zheng, Guoping; Zhang, Jianlin; Zhao, Hong; Wang, Hailong; Pang, Min; Qiao, Xi; Lee, So R; Hsu, Tzu-Ting; Tan, Thian K; Lyons, J Guy; Zhao, Ye; Tian, Xinrui; Loebel, David A F; Rubera, Isabella; Tauc, Michel; Wang, Ya; Wang, Yiping; Wang, Yuan M; Cao, Qi; Wang, Changqi; Lee, Vincent W S; Alexander, Stephen I; Tam, Patrick P L; Harris, David C H

    2016-07-01

    Loss of E-cadherin marks a defect in epithelial integrity and polarity during tissue injury and fibrosis. Whether loss of E-cadherin plays a causal role in fibrosis is uncertain. α3β1 Integrin has been identified to complex with E-cadherin in cell-cell adhesion, but little is known about the details of their cross talk. Herein, E-cadherin gene (Cdh1) was selectively deleted from proximal tubules of murine kidney by Sglt2Cre. Ablation of E-cadherin up-regulated α3β1 integrin at cell-cell adhesion. E-cadherin-deficient proximal tubular epithelial cell displayed enhanced transforming growth factor-β1-induced α-smooth muscle actin (α-SMA) and vimentin expression, which was suppressed by siRNA silencing of α3 integrin, but not β1 integrin. Up-regulation of transforming growth factor-β1-induced α-SMA was mediated by an α3 integrin-dependent increase in integrin-linked kinase (ILK). Src phosphorylation of β-catenin and consequent p-β-catenin-Y654/p-Smad2 transcriptional complex underlies the transcriptional up-regulation of ILK. Kidney fibrosis after unilateral ureteric obstruction or ischemia reperfusion was increased in proximal tubule E-cadherin-deficient mice in comparison to that of E-cadherin intact control mice. The exacerbation of fibrosis was explained by the α3 integrin-dependent increase of ILK, β-catenin nuclear translocation, and α-SMA/proximal tubular-specific Cre double positive staining in proximal tubular epithelial cell. These studies delineate a nonconventional integrin/ILK signaling by α3 integrin-dependent Src/p-β-catenin-Y654/p-Smad2-mediated up-regulation of ILK through which loss of E-cadherin leads to kidney fibrosis. PMID:27182643

  1. Functional loss of E-cadherin and cadherin-11 alleles on chromosome 16q22 in colonic cancer.

    PubMed

    Braungart, E; Schumacher, C; Hartmann, E; Nekarda, H; Becker, K F; Höfler, H; Atkinson, M J

    1999-04-01

    Proteins of the cadherin family regulate cellular adhesion and motility and are believed to act as tumour suppressors. Previous studies have identified frequent mutation and allelic inactivation of the E-cadherin (cadherin-1) locus in diffuse gastric cancer. At least two other cadherin genes, P-cadherin (cadherin-3) and OB-cadherin (cadherin-11), have been mapped close to the E-cadherin gene on chromosome 16q22. As this region of the genome is frequently deleted in malignancy, multiple cadherin loci may be affected by losses of chromosome 16q22. The expression of mRNA transcripts from polymorphic alleles of the E-cadherin and cadherin-11 genes was examined in 30 cases of colonic, gastric, and renal carcinoma. In gastric cancer, loss of expression of one allele was restricted to the E-cadherin locus, whilst in renal carcinoma neither locus was affected. In colonic cancers, loss of expression of one E-cadherin allele was detected in 5 of 22 cases, whilst loss of a cadherin-11 allele was seen in 5 of 23 cases. This functional loss of cadherin gene expression may be due to gene deletion, inactivation or recombination. As no evidence of cadherin gene mutation was observed in the remaining transcripts, we can conclude that these two genes are only indirectly involved in the pathogenesis of colorectal cancer. PMID:10398117

  2. (1)H, (13)C and (15)N backbone assignment of the EC-1 domain of human E-cadherin.

    PubMed

    Prasasty, Vivitri D; Krause, Mary E; Tambunan, Usman S F; Anbanandam, Asokan; Laurence, Jennifer S; Siahaan, Teruna J

    2015-04-01

    The Extracellular 1 (EC1) domain of E-cadherin has been shown to be important for cadherin-cadherin homophilic interactions. Cadherins are responsible for calcium-mediated cell-cell adhesion located at the adherens junction of the biological barriers (i.e., intestinal mucosa and the blood-brain barrier (BBB)). Cadherin peptides can modulate cadherin interactions to improve drug delivery through the BBB. However, the mechanism of modulating the E-cadherin interactions by cadherin peptides has not been fully elucidated. To provide a basis for subsequent examination of the structure and peptide-binding properties of the EC1 domain of human E-cadherin using solution NMR spectroscopy, the (1)H, (13)C and (15)N backbone resonance of the uniformly labeled-EC1 were assigned and the secondary structure was determined based on the chemical shift values. These resonance assignments are essential for assessing protein-ligand interactions and are reported here. PMID:24510398

  3. Cadherin Cell Adhesion System in Canine Mammary Cancer: A Review

    PubMed Central

    Gama, Adelina; Schmitt, Fernando

    2012-01-01

    Cadherin-catenin adhesion complexes play important roles by providing cell-cell adhesion and communication in different organ systems. Abnormal expression of cadherin adhesion molecules constitutes a common phenomenon in canine mammary cancer and has been frequently implicated in tumour progression. This paper summarizes the current knowledge on cadherin/catenin adhesion molecules (E-cadherin, β-catenin, and P-cadherin) in canine mammary cancer, focusing on the putative biological functions and clinical significance of these molecules in this disease. This paper highlights the need for further research studies in this setting in order to elucidate the role of these adhesion molecules during tumour progression and metastasis. PMID:22973534

  4. An Instructive Role for C. elegans HMR-1/E-cadherin in Translating Cell Contact Cues into Cortical Polarity

    PubMed Central

    Klompstra, Diana; Anderson, Dorian C.; Yeh, Justin Y.; Zilberman, Yuliya; Nance, Jeremy

    2015-01-01

    Cell contacts provide spatial cues that polarize early embryos and epithelial cells. The homophilic adhesion protein E-cadherin is required for contact-induced polarity in many cells. However, it is debated whether E-cadherin functions instructively as a spatial cue, or permissively by ensuring adequate adhesion so that cells can sense other contact signals. In C. elegans, contacts polarize early embryonic cells by recruiting the RhoGAP PAC-1 to the adjacent cortex, inducing PAR protein asymmetry. Here we show that HMR-1/E-cadherin, which is dispensable for adhesion, functions together with HMP-1/α-catenin, JAC-1/p120 catenin, and the previously uncharacterized linker PICC-1/CCDC85/DIPA to bind PAC-1 and recruit it to contacts. Mislocalizing the HMR-1 intracellular domain to contact-free surfaces draws PAC-1 to these sites and depolarizes cells, demonstrating an instructive role for HMR-1 in polarization. Our findings identify an E-cadherin-mediated pathway that translates cell contacts into cortical polarity by directly recruiting a symmetry-breaking factor to the adjacent cortex. PMID:25938815

  5. An instructive role for C. elegans E-cadherin in translating cell contact cues into cortical polarity.

    PubMed

    Klompstra, Diana; Anderson, Dorian C; Yeh, Justin Y; Zilberman, Yuliya; Nance, Jeremy

    2015-06-01

    Cell contacts provide spatial cues that polarize early embryos and epithelial cells. The homophilic adhesion protein E-cadherin is required for contact-induced polarity in many cells. However, it is debated whether E-cadherin functions instructively as a spatial cue, or permissively by ensuring adequate adhesion so that cells can sense other contact signals. In Caenorhabditis elegans, contacts polarize early embryonic cells by recruiting the RhoGAP PAC-1 to the adjacent cortex, inducing PAR protein asymmetry. Here we show that the E-cadherin HMR-1, which is dispensable for adhesion, functions together with the α-catenin HMP-1, the p120 catenin JAC-1, and the previously uncharacterized linker PICC-1 (human CCDC85A-C) to bind PAC-1 and recruit it to contacts. Mislocalizing the HMR-1 intracellular domain to contact-free surfaces draws PAC-1 to these sites and depolarizes cells, demonstrating an instructive role for HMR-1 in polarization. Our findings identify an E-cadherin-mediated pathway that translates cell contacts into cortical polarity by directly recruiting a symmetry-breaking factor to the adjacent cortex. PMID:25938815

  6. IL-8 suppresses E-cadherin expression in nasopharyngeal carcinoma cells by enhancing E-cadherin promoter DNA methylation.

    PubMed

    Zhang, Rui-Li; Peng, Li-Xia; Yang, Jun-Ping; Zheng, Li-Sheng; Xie, Ping; Wang, Meng-Yao; Huang, Bi-Jun; Zhao, Hua-Rong; Bao, Yong-Xing; Qian, Chao-Nan

    2016-01-01

    Nasopharyngeal carcinoma (NPC) has the highest metastasis potential among head and neck cancers. Distant metastasis is the major cause of treatment failure. Recent studies from our laboratory have revealed that IL-8 promotes NPC metastasis via activation of AKT signaling and induction of epithelial-mesenchymal transition (EMT) in the cells. In the present study, we found that IL-8 treatment for NPC cells resulted in an accumulation of DNMT1 protein through activating AKT1 pathway and consequent DNMT1 protein stabilization. Then DNMT1 suppressed E-cadherin expression by increasing the methylation of its promoter region. LY-294002 blocked IL-8-induced p-AKT1 activation resulting in reduction of DNMT1 and increase of E-cadherin expression, whereas forced demethylation using 5-aza-2'-deoxycytidine restored E-cadherin expression. In conclusion, our study, for the first time, shows that the IL-8/AKT1 signaling pathway stabilizes DNMT1 protein, consequently enhancing hypermethylation of E-cadherin promoter regions and downregulating E-cadherin protein level in NPC cells. Upon blockage of the IL-8/AKT pathway and inhibition of DNMT1, E-cadherin expression can be reversed. These data suggest that targeting the IL-8/AKT1 signaling pathway and DNMT1 may provide a potential therapeutic approach for blocking NPC metastasis. PMID:26530812

  7. Expression of adhesion molecules in leprosy lesions.

    PubMed Central

    Sullivan, L; Sano, S; Pirmez, C; Salgame, P; Mueller, C; Hofman, F; Uyemura, K; Rea, T H; Bloom, B R; Modlin, R L

    1991-01-01

    Leprosy presents as a clinical spectrum that is precisely paralleled by a spectrum of immunological reactivity. The disease provides a useful and accessible model, in this case in the skin, in which to study the dynamics of cellular immune responses to an infectious pathogen, including the role of adhesion molecules in those responses. In lesions characterized by strong delayed-type hypersensitivity against Mycobacterium leprae (tuberculoid, reversal reaction, and Mitsuda reaction), the overlying epidermis exhibited pronounced keratinocyte intracellular adhesion molecule 1 (ICAM-1) expression and contained lymphocytes expressing the ICAM-1 ligand, LFA-1. Conversely, in lesions in which delayed-type hypersensitivity was lacking (lepromatous), keratinocyte ICAM-1 expression was low and LFA-1+ lymphocytes were rare. Expression of these adhesion molecules on the cells within the dermal granulomas was equivalent throughout the spectrum of leprosy. The percentage of lymphocytes in these granulomas containing mRNA coding for gamma interferon and tumor necrosis factor alpha, synergistic regulators of ICAM-1 expression, paralleled epidermal ICAM-1 expression. In lesions of erythema nodosum leprosum, a reactional state of lepromatous leprosy thought to be due to immune complex deposition, keratinocyte ICAM-1 expression and gamma interferon mRNA+ cells were both prominent. Antibodies to LFA-1 and ICAM-1 blocked the response of both alpha beta and gamma delta T-cell clones in vitro to mycobacteria. Overall, the expression of adhesion molecules by immunocompetent epidermal cells, as well as the cytokines which regulate such expression, correlates with the outcome of the host response to infection. Images PMID:1718871

  8. Quantitative immunohistochemical analyses of the expression of E-cadherin, thrombomodulin, CD44H and CD44v6 in primary tumours of pharynx/larynx squamous cell carcinoma and their lymph node metastases.

    PubMed

    Hernández Gaspar, R; de los Toyos, J R; Alvarez Marcos, C; Riera, J R; Sampedro, A

    1999-01-01

    The quantitative expression of E-cadherin, thrombomodulin, CD44H and CD44v6 in 32 specimens of primary tumours of pharynx/larynx squamous cell carcinoma and their lymph node metastases was studied by immunohistochemistry. With the aim of obtaining comparative and objective data, image acquisition conditions were kept unaltered for all the measurements and the immunostaining intensity was quantified by applying an image processing system. On the one hand, correlations were only observed between CD44H and CD44v6, both in primary tumours and metastases, and between E-cadherin and TM in metastases. On the other hand, statistical analyses of paired data did not show significant differences in the expression of these markers between the two tumour sites. In agreement with previous reports, E-cadherin expression was rather low or negative in primary tumours and metastases of the three poorly differentiated specimens we studied, as well as that of TM, but otherwise some of these samples showed intermediate immunostaining levels of CD44H/CD44v6. It may be concluded from the present study that the quantitative expression of these adhesion molecules in well established lymph node metastases of pharynx/larynx squamous cell carcinoma is essentially unaltered in relation to their primary sites. PMID:10609562

  9. Letter to the Editor: Human Pluripotent Stem Cells Release Oncogenic Soluble E-Cadherin.

    PubMed

    Rosner, Margit; Hengstschläger, Markus

    2016-09-01

    Since their discovery, human pluripotent stem cells (hPSCs) including embryonic and induced pluripotent stem cells hold great promise in disease modeling and regenerative medicine. Despite intensive research and remarkable progress, it is becoming increasingly acknowledged that their yet incomplete, biological characterisation represents one of the major drawbacks to their successful translation into the clinics. The expression of the transmembrane protein E-cadherin in hPSCs is well defined to be pivotal to the maintenance of the pluripotent state by mediating intercellular adhesion and intracellular signaling. Next to these canonical functions, were here report for the first time that hPSCs are subject to matrix metalloproteinase-dependent E-cadherin ectodomain shedding. This generates a ∼80-kD, soluble E-cadherin fragment which is released into the extracellular space, and which is well described to exert paracrine signaling activity and classified as being oncogenic. Collectively, this finding does not only improve our knowledge on the signaling crosstalk between hPSCs and their cellular environment and the type and nature of the paracrine signals produced by these cells, but also has clear implications for the development of efficient and safe stem cell-based therapies. Stem Cells 2016;34:2443-2446. PMID:27399873

  10. Dehydropeptidase 1 promotes metastasis through regulation of E-cadherin expression in colon cancer

    PubMed Central

    Park, Sang Yoon; Lee, Seon-Jin; Cho, Hee Jun; Kim, Tae Woo; Kim, Jong-Tae; Kim, Jae Wha; Lee, Chul-Ho; Kim, Bo-Yeon; Yeom, Young Il; Lim, Jong-Seok; Lee, Younghee; Lee, Hee Gu

    2016-01-01

    Dehydropeptidase 1 (DPEP1) is a zinc-dependent metalloproteinase that is expressed aberrantly in several cancers. The role of DPEP1 in cancer remain controversial. In this study, we demonstrate that DPEP1 functions as a positive regulator for colon cancer cell metastasis. The expression of DPEP1 mRNA and proteins were upregulated in colon cancer tissues compared to normal mucosa. Gain-of-function and loss-of-function approaches were used to examine the malignant phenotype of DPEP1-expressing or DPEP1-depleted cells. DPEP1 expression caused a significant increase in colon cancer cell adhesion and invasion in vitro, and metastasis in vivo. In contrast, DPEP1 depletion induced opposite effects. Furthermore, cilastatin, a DPEP1 inhibitor, suppressed the invasion and metastasis of DPEP1-expressing cells. DPEP1 inhibited the leukotriene D4 signaling pathway and increased the expression of E-cadherin. We also show that DPEP1 mediates TGF-β-induced EMT. TGF-β transcriptionally repressed DPEP1 expression. TGF-β treatment decreased E-cadherin expression and promoted cell invasion in DPEP1-expressing colon cancer cell lines, whereas it did not affect these parameters in DPEP1-depleted cell lines. These results suggest that DPEP1 promotes cancer metastasis by regulating E-cadherin plasticity and that it might be a potential therapeutic target for preventing the progression of colon cancer. PMID:26824987

  11. E-Cadherin Facilitates Protein Kinase D1 Activation and Subcellular Localization.

    PubMed

    Li, Zhuo; Zhang, Chuanyou; Chen, Li; Li, Guosheng; Qu, Ling; Balaji, K C; Du, Cheng

    2016-12-01

    Protein kinase D 1 (PKD1) is a serine/threonine kinase implicated in the regulation of diverse cellular functions including cell growth, differentiation, adhesion and motility. The current model for PKD1 activation involves diacylglycerol (DAG) binding to the C1 domain of PKD1 which results in the translocation of PKD1 to subcellular membranes where PKD1 is phosphorylated and activated by protein kinase C (PKC). In this study, we have identified a novel regulation of PKD1 activation. The epithelial cell membrane protein E-cadherin physically binds to PKD1 which leads to a subcellular redistribution of PKD1. Furthermore, artificial targeting of PKD1 to the membrane leads to PKD1 activation in a PKC-independent manner, indicating that membrane attachment is sufficient enough to activate PKD1. The presence of E-cadherin dynamically regulates PKD1 activation by Bryostatin 1, a potent activator of PKD1, and its substrate phosphorylation specificity, implying a loss of E-cadherin during cancer metastasis could cause the re-distribution PKD1 and re-wiring of PKD1 signaling for distinct functions. The knocking down of PKD1 in lung epithelial cell line A549 results in an epithelial to mesenchymal transition with changes in biomarker expression, cell migration and drug resistance. These results extend our previous understanding of PKD1 regulation and E-cadherin signaling functions and may help to explain the diversified functions of PKD1 in various cells. J. Cell. Physiol. 231: 2741-2748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26991955

  12. Disturbed Homeostasis of Lung Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 During Sepsis

    PubMed Central

    Laudes, Ines J.; Guo, Ren-Feng; Riedemann, Niels C.; Speyer, Cecilia; Craig, Ron; Sarma, J. Vidya; Ward, Peter A.

    2004-01-01

    Cecal ligation and puncture (CLP)-induced sepsis in mice was associated with perturbations in vascular adhesion molecules. In CLP mice, lung vascular binding of 125I-monoclonal antibodies to intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 revealed sharp increases in binding of anti-ICAM-1 and significantly reduced binding of anti-VCAM-1. In whole lung homogenates, intense ICAM-1 up-regulation was found (both in mRNA and in protein levels) during sepsis, whereas very little increase in VCAM-1 could be measured although some increased mRNA was found. During CLP soluble VCAM-1 (sVCAM-1) and soluble ICAM-1 (sICAM-1) appeared in the serum. When mouse dermal microvascular endothelial cells (MDMECs) were incubated with serum from CLP mice, constitutive endothelial VCAM-1 fell in association with the appearance of sVCAM-1 in the supernatant fluids. Under the same conditions, ICAM-1 cell content increased in MDMECs. When MDMECs were evaluated for leukocyte adhesion, exposure to CLP serum caused increased adhesion of neutrophils and decreased adhesion of macrophages and T cells. The progressive build-up in lung myeloperoxidase after CLP was ICAM-1-dependent and independent of VLA-4 and VCAM-1. These data suggest that sepsis disturbs endothelial homeostasis, greatly favoring neutrophil adhesion in the lung microvasculature, thereby putting the lung at increased risk of injury. PMID:15039231

  13. Cleavage of E-cadherin by ADAM10 mediates epithelial cell sorting downstream of EphB signalling.

    PubMed

    Solanas, Guiomar; Cortina, Carme; Sevillano, Marta; Batlle, Eduard

    2011-09-01

    The formation and maintenance of complex organs requires segregation of distinct cell populations into defined territories (that is, cell sorting) and the establishment of boundaries between them. Here we have investigated the mechanism by which Eph/ephrin signalling controls the compartmentalization of cells in epithelial tissues. We show that EphB/ephrin-B signalling in epithelial cells regulates the formation of E-cadherin-based adhesions. EphB receptors interact with E-cadherin and with the metalloproteinase ADAM10 at sites of adhesion and their activation induces shedding of E-cadherin by ADAM10 at interfaces with ephrin-B1-expressing cells. This process results in asymmetric localization of E-cadherin and, as a consequence, in differences in cell affinity between EphB-positive and ephrin-B-positive cells. Furthermore, genetic inhibition of ADAM10 activity in the intestine of mice results in a lack of compartmentalization of Paneth cells within the crypt stem cell niche, a defect that phenocopies that of EphB3-null mice. These results provide important insights into the regulation of cell migration in the intestinal epithelium and may help in the understanding of the nature of the cell sorting process in other epithelial tissues where Eph-ephrin interactions play a central role. PMID:21804545

  14. Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition.

    PubMed

    Li, Qisheng; Sodroski, Catherine; Lowey, Brianna; Schweitzer, Cameron J; Cha, Helen; Zhang, Fang; Liang, T Jake

    2016-07-01

    Hepatitis C virus (HCV) enters the host cell through interactions with a cascade of cellular factors. Although significant progress has been made in understanding HCV entry, the precise mechanisms by which HCV exploits the receptor complex and host machinery to enter the cell remain unclear. This intricate process of viral entry likely depends on additional yet-to-be-defined cellular molecules. Recently, by applying integrative functional genomics approaches, we identified and interrogated distinct sets of host dependencies in the complete HCV life cycle. Viral entry assays using HCV pseudoparticles (HCVpps) of various genotypes uncovered multiple previously unappreciated host factors, including E-cadherin, that mediate HCV entry. E-cadherin silencing significantly inhibited HCV infection in Huh7.5.1 cells, HepG2/miR122/CD81 cells, and primary human hepatocytes at a postbinding entry step. Knockdown of E-cadherin, however, had no effect on HCV RNA replication or internal ribosomal entry site (IRES)-mediated translation. In addition, an E-cadherin monoclonal antibody effectively blocked HCV entry and infection in hepatocytes. Mechanistic studies demonstrated that E-cadherin is closely associated with claudin-1 (CLDN1) and occludin (OCLN) on the cell membrane. Depletion of E-cadherin drastically diminished the cell-surface distribution of these two tight junction proteins in various hepatic cell lines, indicating that E-cadherin plays an important regulatory role in CLDN1/OCLN localization on the cell surface. Furthermore, loss of E-cadherin expression in hepatocytes is associated with HCV-induced epithelial-to-mesenchymal transition (EMT), providing an important link between HCV infection and liver cancer. Our data indicate that a dynamic interplay among E-cadherin, tight junctions, and EMT exists and mediates an important function in HCV entry. PMID:27298373

  15. PC7 and the related proteases Furin and Pace4 regulate E-cadherin function during blastocyst formation

    PubMed Central

    Mesnard, Daniel

    2015-01-01

    The first cell differentiation in mammalian embryos segregates polarized trophectoderm cells from an apolar inner cell mass (ICM). This lineage decision is specified in compacted morulae by cell polarization and adhesion acting on the Yes-associated protein in the Hippo signaling pathway, but the regulatory mechanisms are unclear. We show that morula compaction and ICM formation depend on PC7 and the related proprotein convertases (PCs) Furin and Pace4 and that these proteases jointly regulate cell–cell adhesion mediated by E-cadherin processing. We also mapped the spatiotemporal activity profiles of these proteases by live imaging of a transgenic reporter substrate in wild-type and PC mutant embryos. Differential inhibition by a common inhibitor revealed that all three PCs are active in inner and outer cells, but in partially nonoverlapping compartments. E-cadherin processing by multiple PCs emerges as a novel mechanism to modulate cell–cell adhesion and fate allocation. PMID:26416966

  16. PC7 and the related proteases Furin and Pace4 regulate E-cadherin function during blastocyst formation.

    PubMed

    Bessonnard, Sylvain; Mesnard, Daniel; Constam, Daniel B

    2015-09-28

    The first cell differentiation in mammalian embryos segregates polarized trophectoderm cells from an apolar inner cell mass (ICM). This lineage decision is specified in compacted morulae by cell polarization and adhesion acting on the Yes-associated protein in the Hippo signaling pathway, but the regulatory mechanisms are unclear. We show that morula compaction and ICM formation depend on PC7 and the related proprotein convertases (PCs) Furin and Pace4 and that these proteases jointly regulate cell-cell adhesion mediated by E-cadherin processing. We also mapped the spatiotemporal activity profiles of these proteases by live imaging of a transgenic reporter substrate in wild-type and PC mutant embryos. Differential inhibition by a common inhibitor revealed that all three PCs are active in inner and outer cells, but in partially nonoverlapping compartments. E-cadherin processing by multiple PCs emerges as a novel mechanism to modulate cell-cell adhesion and fate allocation. PMID:26416966

  17. E-cadherin plays an essential role in collective directional migration of large epithelial sheets

    PubMed Central

    Li, Li; Hartley, Robert; Reiss, Bjoern; Sun, Yaohui; Pu, Jin; Wu, Dan; Lin, Francis; Hoang, Trung; Yamada, Soichiro

    2012-01-01

    In wound healing and development, large epithelial sheets migrate collectively, in defined directions, and maintain tight cell–cell adhesion. This type of movement ensures an essential function of epithelia, a barrier, which is lost when cells lose connection and move in isolation. Unless wounded, epithelial sheets in cultures normally do not have overall directional migration. Cell migration is mostly studied when cells are in isolation and in the absence of mature cell–cell adhesion; the mechanisms of the migration of epithelial sheets are less well understood. We used small electric fields (EFs) as a directional cue to instigate and guide migration of epithelial sheets. Significantly, cells in monolayer migrated far more efficiently and directionally than cells in isolation or smaller cell clusters. We demonstrated for the first time the group size-dependent directional migratory response in several types of epithelial cells. Gap junctions made a minimal contribution to the directional collective migration. Breaking down calcium-dependent cell–cell adhesion significantly reduced directional sheet migration. Furthermore, E-cadherin blocking antibodies abolished migration of cell sheets. Traction force analysis revealed an important role of forces that cells in the leading rows exert on the substratum. With EF, the traction forces of the leading edge cells coordinated in directional re-orientation. Our study thus identifies a novel mechanism—E-cadherin dependence and coordinated traction forces of leading cells in collective directional migration of large epithelial sheets. PMID:22410739

  18. Expression of E-cadherin and β-catenin in gastric carcinoma and its correlation with the clinicopathological features and patient survival

    PubMed Central

    Zhou, Yong-Ning; Xu, Cai-Pu; Han, Biao; Li, Min; Qiao, Liang; Fang, Dian-Chun; Yang, Jian-Min

    2002-01-01

    AIM: The E-cadherin-catenin complex is important for cell-cell adhesion of epithelial cells. Impairment of one or more components of this complex is associated with poor differentiation and increased invasiveness of carcinomas. We evaluated the expression pattern of E-cadherin and β-catenin in gastric carcinoma and dysplasia and analyzed their relationship with tumor clinicopathological features and patient survival. METHODS: Immunohistochemical staining of E-cadherin and β-catenin was performed from paraffin specimens of 163 gastric carcinomas, 44 gastric mucosal dysplasia, and 25 intestinal metaplasia, 28 atrophic gastritis and 12 healthy controls. RESULTS: Normal membrane staining was observed in intestinal metaplasia, atrophic gastritis and control biopsy specimens for E-cadherin and β-catenin. 36% and 16% of gastric dysplasia were stained abnormally for E-cadherin and β-catenin respectively. Abnormal expression of E-cadherin and β-catenin was demonstrated in 46% and 44% of gastric carcinoma respectively. Abnormal expression of E-cadherin and β- catenin occurred more significantly in Borrmann III/IV than in Borrmann I/II type (P < 0.005, respectively). A significantly higher proportion of signet-ring, mucinous and tubular adenocarcinomas were abnormally expressed for E-cadherin and β-catenin as compared with papillary adenocarcinomas (χ2 = 8.47, P < 0.005, and χ2 = 7.05, P < 0.01, respectively). Morever, abnormal E-cadherin and β-catenin staining occurred more frequently in diffuse than in intestinal type of tumor (χ2 = 18.18 and 17.79, P < 0.005, respectively). There was a significant correlation between abnormal β-catenin expression and positive lymph node metastasis. A survival advantage was noted in tumors retaining normal membranous expression of β-catenin, independent of type, grade, or stage of the disease (P < 0.0005). CONCLUSION: Abnormal expression of the E-cadherin-catenin complex occurs frequently in gatric carcinoma, closely related to

  19. [Effect of erythromycin on neutrophil adhesion molecules].

    PubMed

    Kusano, S; Mukae, H; Morikawa, T; Asai, T; Sawa, H; Morikawa, N; Oda, H; Sakito, O; Shukuwa, C; Senju, R

    1993-01-01

    The mechanisms of erythromycin (EM) in chronic lower respiratory tract diseases including diffuse panbronchiolitis (DPB) has been reported. In this study we investigated the effect of EM on peripheral neutrophil adhesion molecules such as LFA-1 and Mac-1 obtained from six healthy subjects. Pretreatment of neutrophils with each concentration (10 ng/ml approximately 100 micrograms/ml) of EM resulted in no significant reduction in the expression of LFA-1 alpha, beta and Mac-1. Moreover, EM had no capability of reducing these expressions even when neutrophils were pretreated with 1 microgram/ml of EM at time from 0 to 60 min. These findings indicate that EM does not directly reduce the expression of LFA-1 alpha, beta and Mac-1 on peripheral neutrophil obtained from healthy subjects. PMID:8450276

  20. Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II–dependent manner

    PubMed Central

    le Duc, Quint; Shi, Quanming; Blonk, Iris; Sonnenberg, Arnoud

    2010-01-01

    Cell surface receptors integrate chemical and mechanical cues to regulate a wide range of biological processes. Integrin complexes are the mechanotransducers between the extracellular matrix and the actomyosin cytoskeleton. By analogy, cadherin complexes may function as mechanosensors at cell–cell junctions, but this capacity of cadherins has not been directly demonstrated. Furthermore, the molecular composition of the link between E-cadherin and actin, which is needed to sustain such a function, is unresolved. In this study, we describe nanomechanical measurements demonstrating that E-cadherin complexes are functional mechanosensors that transmit force between F-actin and E-cadherin. Imaging experiments reveal that intercellular forces coincide with vinculin accumulation at actin-anchored cadherin adhesions, and nanomechanical measurements show that vinculin potentiates the E-cadherin mechanosensory response. These investigations directly demonstrate the mechanosensory capacity of the E-cadherin complex and identify a novel function for vinculin at cell–cell junctions. These findings have implications for barrier function, morphogenesis, cell migration, and invasion and may extend to all soft tissues in which classical cadherins regulate cell–cell adhesion. PMID:20584916

  1. E-Cadherin Suppression Directs Cytoskeletal Rearrangement and Intraepithelial Tumor Cell Migration in 3D Human Skin Equivalents

    PubMed Central

    Alt-Holland, Addy; Shamis, Yulia; Riley, Kathleen N.; DesRochers, Teresa M.; Fusenig, Norbert E.; Herman, Ira M.; Garlick, Jonathan A.

    2010-01-01

    The link between loss of cell–cell adhesion, the activation of cell migration, and the behavior of intraepithelial (IE) tumor cells during the early stages of skin cancer progression is not well understood. The current study characterized the migratory behavior of a squamous cell carcinoma cell line (HaCaT-II-4) upon E-cadherin suppression in both 2D, monolayer cultures and within human skin equivalents that mimic premalignant disease. The migratory behavior of tumor cells was first analyzed in 3D tissue context by developing a model that mimics transepithelial tumor cell migration. We show that loss of cell adhesion enabled migration of single, IE tumor cells between normal keratinocytes as a prerequisite for stromal invasion. To further understand this migratory behavior, E-cadherin-deficient cells were analyzed in 2D, monolayer cultures and displayed altered cytoarchitecture and enhanced membrane protrusive activity that was associated with circumferential actin organization and induction of the nonmuscle, β actin isoform. These features were associated with increased motility and random, individual cell migration in response to scrape-wounding. Thus, loss of E-cadherin-mediated adhesion led to the acquisition of phenotypic properties that augmented cell motility and directed the transition from the precancer to cancer in skin-like tissues. PMID:18528437

  2. Immune receptors and adhesion molecules in human pulmonary leptospirosis.

    PubMed

    Del Carlo Bernardi, Fabiola; Ctenas, Bruno; da Silva, Luiz Fernando Ferraz; Nicodemo, Antonio Carlos; Saldiva, Paulo Hilário Nascimento; Dolhnikoff, Marisa; Mauad, Thais

    2012-10-01

    Pulmonary involvement in leptospirosis has been increasingly reported in the last 20 years, being related to the severity and mortality of the disease. The pathogenesis of pulmonary hemorrhage in leptospirosis is not understood. Lung endothelial cells have been proposed as targets in the pathogenesis of lung involvement in leptospirosis through the activation of Toll-like receptor 2 or the complement system, which stimulates the release of cytokines that lead to the activation of adhesion molecules. The aim of this study was to investigate the involvement of immune pathways and of the intercellular and vascular cell adhesion molecules (intercellular adhesion molecule and vascular cell adhesion molecule, respectively) in the lungs of patients with pulmonary involvement of leptospirosis. We studied the lungs of 18 patients who died of leptospirosis and compared them with 2 groups of controls: normal and noninfectious hemorrhagic lungs. Using immunohistochemistry and image analysis, we quantified the expression of the C3a anaphylatoxin receptor, intercellular adhesion molecule, vascular cell adhesion molecule, and Toll-like receptor 2 in small pulmonary vessels and in the alveolar septa. There was an increased expression of intercellular adhesion molecule (P < .03) and C3a anaphylatoxin receptor (P < .008) in alveolar septa in the leptospirosis group compared with the normal and hemorrhagic controls. In the vessels of the leptospirosis group, there was an increased expression of intercellular adhesion molecule (P = .004), vascular cell adhesion molecule (P = .030), and Toll-like receptor 2 (P = .042) compared with the normal group. Vascular cell adhesion molecule expression in vessels was higher in the leptospirosis group compared with the hemorrhagic group (P = .015). Our results indicate that immune receptors and adhesion molecules participate in the phenomena leading to pulmonary hemorrhage in leptospirosis. PMID:22436623

  3. A role for E-cadherin in ensuring cohesive migration of a heterogeneous population of non-epithelial cells

    PubMed Central

    Campbell, Kyra; Casanova, Jordi

    2015-01-01

    Collective cell migration is a key process underlying the morphogenesis of many organs as well as tumour invasion, which very often involves heterogeneous cell populations. Here we investigated how such populations can migrate cohesively in the Drosophila posterior midgut, comprised of epithelial and mesenchymal cells and show a novel role for the epithelial adhesion molecule E-cadherin (E-Cad) in mesenchymal cells. Despite a lack of junctions at the ultrastructure level, reducing E-Cad levels causes mesenchymal cells to detach from one another and from neighbouring epithelial cells; as a result, coordination between the two populations is lost. Moreover, Bazooka and recycling mechanisms are also required for E-Cad accumulation in mesenchymal cells. These results indicate an active role for E-Cad in mediating cohesive and ordered migration of non-epithelial cells, and discount the notion of E-Cad as just an epithelial feature that has to be switched off to enable migration of mesenchymal cells. PMID:26272476

  4. The influence of tobacco smoking on adhesion molecule profiles

    PubMed Central

    Scott, DA; Palmer, RM

    2003-01-01

    Sequential interactions between several adhesion molecules and their ligands regulate lymphocyte circulation and leukocyte recruitment to inflammatory foci. Adhesion molecules are, therefore, central and critical components of the immune and inflammatory system. We review the evidence that tobacco smoking dysregulates specific components of the adhesion cascade, which may be a common factor in several smoking-induced diseases. Smoking causes inappropriate leukocyte activation, leukocyte-endothelial adhesion, and neutrophil entrapment in the microvasculature, which may help initiate local tissue destruction. Appropriate inflammatory reactions may thus be compromised. In addition to smoke-induced alterations to membrane bound endothelial and leukocyte adhesion molecule expression, which may help explain the above phenomena, smoking has a profound influence on circulating adhesion molecule profiles, most notably sICAM-1 and specific sCD44 variants. Elevated concentrations of soluble adhesion molecules may simply reflect ongoing inflammatory processes. However, increasing evidence suggests that specific soluble adhesion molecules are immunomodulatory, and that alterations to soluble adhesion molecule profiles may represent a significant risk factor for several diverse diseases. This evidence is discussed herein.

  5. The influence of tobacco smoking on adhesion molecule profiles

    PubMed Central

    Scott, DA; Palmer, RM

    2003-01-01

    Sequential interactions between several adhesion molecules and their ligands regulate lymphocyte circulation and leukocyte recruitment to inflammatory foci. Adhesion molecules are, therefore, central and critical components of the immune and inflammatory system. We review the evidence that tobacco smoking dysregulates specific components of the adhesion cascade, which may be a common factor in several smoking-induced diseases. Smoking causes inappropriate leukocyte activation, leukocyte-endothelial adhesion, and neutrophil entrapment in the microvasculature, which may help initiate local tissue destruction. Appropriate inflammatory reactions may thus be compromised. In addition to smoke-induced alterations to membrane bound endothelial and leukocyte adhesion molecule expression, which may help explain the above phenomena, smoking has a profound influence on circulating adhesion molecule profiles, most notably sICAM-1 and specific sCD44 variants. Elevated concentrations of soluble adhesion molecules may simply reflect ongoing inflammatory processes. However, increasing evidence suggests that specific soluble adhesion molecules are immunomodulatory, and that alterations to soluble adhesion molecule profiles may represent a significant risk factor for several diverse diseases. This evidence is discussed herein. PMID:19570245

  6. Crystal Structure of Human E-Cadherin-EC1EC2 in Complex with a Peptidomimetic Competitive Inhibitor of Cadherin Homophilic Interaction.

    PubMed

    Nardone, Valentina; Lucarelli, Anna Paola; Dalle Vedove, Andrea; Fanelli, Roberto; Tomassetti, Antonella; Belvisi, Laura; Civera, Monica; Parisini, Emilio

    2016-05-26

    Cadherins are transmembrane cell adhesion proteins whose aberrant expression often correlates with cancer development and proliferation. We report the crystal structure of an E-cadherin extracellular fragment in complex with a peptidomimetic compound that was previously shown to partially inhibit cadherin homophilic adhesion. The structure reveals an unexpected binding mode and allows the identification of a druggable cadherin interface, thus paving the way to a future structure-guided design of cell adhesion inhibitors against cadherin-expressing solid tumors. PMID:27120112

  7. SOLUABLE ADHESION MOLECULES, SURROGATE MARKERS OF CARDIOVASCULAR DISEASE?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adhesion molecules expression on the surface of endothelial and immune cells are important for immune and endothelial cells interaction during the inflammatory process. Several of these adhesion molecules have been identified and are believed to be important in the pathogenesis of atherosclerosis. T...

  8. Adhesion molecules in antibacterial defenses: effects of bacterial extracts.

    PubMed

    Marchant, A; Duchow, J; Goldman, M

    1992-01-01

    Adhesion of polymorphonuclear leukocytes (PMN) to vascular endothelium is one of the first events in their response against local bacterial infection. Different adhesion molecules sequentially mediate PMN adherence to endothelium and extravasation into inflamed tissues. We show that bacterial extracts OM-85 BV and OM-89 increase the expression of adhesion molecules at the surface of PMN and we suggest that this upregulation could be linked to the beneficial effect of bacterial extracts in the prevention of respiratory tract infections. PMID:1439236

  9. Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer

    PubMed Central

    Chen, Chun-Chieh; Sureshbabul, Munisamy; Chen, Huei-Wen; Lin, Yu-Shuang; Lee, Jen-Yi; Hong, Qi-Sheng; Yang, Ya-Chien

    2013-01-01

    Colorectal cancer (CRC) is a serious public health problem that results due to changes of diet and various environmental stress factors in the world. Curcumin is a traditional medicine used for treatment of a wide variety of tumors. However, antimetastasis mechanism of curcumin on CRC has not yet been completely investigated. Here, we explored the underlying molecular mechanisms of curcumin on metastasis of CRC cells in vitro and in vivo. Curcumin significantly inhibits cell migration, invasion, and colony formation in vitro and reduces tumor growth and liver metastasis in vivo. We found that curcumin suppresses Sp-1 transcriptional activity and Sp-1 regulated genes including ADEM10, calmodulin, EPHB2, HDAC4, and SEPP1 in CRC cells. Curcumin inhibits focal adhesion kinase (FAK) phosphorylation and enhances the expressions of several extracellular matrix components which play a critical role in invasion and metastasis. Curcumin reduces CD24 expression in a dose-dependent manner in CRC cells. Moreover, E-cadherin expression is upregulated by curcumin and serves as an inhibitor of EMT. These results suggest that curcumin executes its antimetastasis function through downregulation of Sp-1, FAK, and CD24 and by promoting E-cadherin expression in CRC cells. PMID:23970932

  10. Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer.

    PubMed

    Chen, Chun-Chieh; Sureshbabul, Munisamy; Chen, Huei-Wen; Lin, Yu-Shuang; Lee, Jen-Yi; Hong, Qi-Sheng; Yang, Ya-Chien; Yu, Sung-Liang

    2013-01-01

    Colorectal cancer (CRC) is a serious public health problem that results due to changes of diet and various environmental stress factors in the world. Curcumin is a traditional medicine used for treatment of a wide variety of tumors. However, antimetastasis mechanism of curcumin on CRC has not yet been completely investigated. Here, we explored the underlying molecular mechanisms of curcumin on metastasis of CRC cells in vitro and in vivo. Curcumin significantly inhibits cell migration, invasion, and colony formation in vitro and reduces tumor growth and liver metastasis in vivo. We found that curcumin suppresses Sp-1 transcriptional activity and Sp-1 regulated genes including ADEM10, calmodulin, EPHB2, HDAC4, and SEPP1 in CRC cells. Curcumin inhibits focal adhesion kinase (FAK) phosphorylation and enhances the expressions of several extracellular matrix components which play a critical role in invasion and metastasis. Curcumin reduces CD24 expression in a dose-dependent manner in CRC cells. Moreover, E-cadherin expression is upregulated by curcumin and serves as an inhibitor of EMT. These results suggest that curcumin executes its antimetastasis function through downregulation of Sp-1, FAK, and CD24 and by promoting E-cadherin expression in CRC cells. PMID:23970932

  11. Circulating adhesion molecules in obstructive sleep apnea and cardiovascular disease

    PubMed Central

    Pak, Victoria M.; Grandner, Michael A.; Pack, Allan I.

    2013-01-01

    SUMMARY Over 20 years of evidence indicates a strong association between obstructive sleep apnea (OSA) and cardiovascular disease. Although inflammatory processes have been heavily implicated as an important link between the two, the mechanism for this has not been conclusively established. Atherosclerosis may be one of the mechanisms linking OSA to cardiovascular morbidity. This review addresses the role of circulating adhesion molecules in patients with OSA, and how these may be part of the link between cardiovascular disease and OSA. There is evidence for the role of adhesion molecules in cardiovascular disease risk. Some studies, albeit with small sample sizes, also show higher levels of adhesion molecules in patients with OSA compared to controls. There are also studies that show that levels of adhesion molecules diminish with continuous positive airway pressure therapy. Limitations of these studies include small sample sizes, cross-sectional sampling, and inconsistent control for confounding variables known to influence adhesion molecule levels. There are potential novel therapies to reduce circulating adhesion molecules in patients with OSA to diminish cardiovascular disease. Understanding the role of cell adhesion molecules generated in OSA will help elucidate one mechanistic link to cardiovascular disease in patients with OSA. PMID:23618532

  12. Inhibition of Epithelial to Mesenchymal Transition by E-cadherin Up-regulation via Repression of Slug Transcription and Inhibition of E-cadherin Degradation

    PubMed Central

    Adhikary, Arghya; Chakraborty, Samik; Mazumdar, Minakshi; Ghosh, Swatilekha; Mukherjee, Shravanti; Manna, Argha; Mohanty, Suchismita; Nakka, Kiran Kumar; Joshi, Shruti; De, Abhijit; Chattopadhyay, Samit; Sa, Gaurisankar; Das, Tanya

    2014-01-01

    The evolution of the cancer cell into a metastatic entity is the major cause of death in patients with cancer. It has been acknowledged that aberrant activation of a latent embryonic program, known as the epithelial-mesenchymal transition (EMT), can endow cancer cells with the migratory and invasive capabilities associated with metastatic competence for which E-cadherin switch is a well-established hallmark. Discerning the molecular mechanisms that regulate E-cadherin expression is therefore critical for understanding tumor invasiveness and metastasis. Here we report that SMAR1 overexpression inhibits EMT and decelerates the migratory potential of breast cancer cells by up-regulating E-cadherin in a bidirectional manner. While SMAR1-dependent transcriptional repression of Slug by direct recruitment of SMAR1/HDAC1 complex to the matrix attachment region site present in the Slug promoter restores E-cadherin expression, SMAR1 also hinders E-cadherin-MDM2 interaction thereby reducing ubiquitination and degradation of E-cadherin protein. Consistently, siRNA knockdown of SMAR1 expression in these breast cancer cells results in a coordinative action of Slug-mediated repression of E-cadherin transcription, as well as degradation of E-cadherin protein through MDM2, up-regulating breast cancer cell migration. These results indicate a crucial role for SMAR1 in restraining breast cancer cell migration and suggest the candidature of this scaffold matrix-associated region-binding protein as a tumor suppressor. PMID:25086032

  13. Expression Level of Genes Coding for Cell Adhesion Molecules of Cadherin Group in Colorectal Cancer Patients

    PubMed Central

    Lorenc, Zbigniew; Opiłka, Mieszko Norbert; Kruszniewska-Rajs, Celina; Rajs, Antoni; Waniczek, Dariusz; Starzewska, Małgorzata; Lorenc, Justyna; Mazurek, Urszula

    2015-01-01

    Background Colorectal Cancer (CRC) is one of the most frequently diagnosed neoplasms and also one of the main death causes. Cell adhesion molecules are taking part in specific junctions, contributing to tissue integrality. Lower expression of the cadherins may be correlated with poorer differentiation of the CRC, and its more aggressive phenotype. The aim of the study is to designate the cadherin genes potentially useful for the diagnostics, prognostics, and the treatment of CRC. Material/Method Specimens were collected from 28 persons (14 female and 14 male), who were operated for CRC. The molecular analysis was performed using oligonucleotide microarrays, mRNA used was collected from adenocarcinoma, and macroscopically healthy tissue. The results were validated using qRT-PCR technique. Results Agglomerative hierarchical clustering of normalized mRNA levels has shown 4 groups with statistically different gene expression. The control group was divided into 2 groups, the one was appropriate control (C1), the second (C2) had the genetic properties of the CRC, without pathological changes histologically and macroscopically. The other 2 groups were: LSC (Low stage cancer) and HSC (High stage cancer). Consolidated results of the fluorescency of all of the differential genes, designated two coding E-cadherin (CDH1) with the lower expression, and P-cadherin (CDH3) with higher expression in CRC tissue. Conclusions The levels of genes expression are different for several groups of cadherins, and are related with the stage of CRC, therefore could be potentially the useful marker of the stage of the disease, also applicable in treatment and diagnostics of CRC. PMID:26167814

  14. 1H, 13C and 15N Backbone Assignment of the EC-1 Domain of Human E-Cadherin

    PubMed Central

    Prasasty, Vivitri D.; Krause, Mary E.; Tambunan, Usman S. F.; Anbanandam, Asokan; Laurence, Jennifer S.; Siahaan, Teruna J.

    2014-01-01

    The EC1 domain of E-cadherin has been shown to be important for cadherin-cadherin homophilic interactions. Cadherins are responsible for calcium-mediated cell-cell adhesion located at the adherens junction of the biological barriers (i.e., intestinal mucosa and the blood-brain barrier (BBB). Cadherin peptides can modulate cadherin interactions to improve drug delivery through the blood-brain barriers (BBB). However, the mechanism of modulating the E-cadherin interactions by cadherin peptides has not been fully elucidated. To provide a basis for subsequent examination of the structure and peptide-binding properties of the EC1 domain of human E-cadherin using solution NMR spectroscopy, the 1H, 13C and 15N backbone resonance of the uniformly labeled-EC1 were assigned and the secondary structure was determined based on the chemical shift values. These resonance assignments are essential for assessing protein-ligand interactions and are reported here. PMID:24510398

  15. Cell adhesion molecules and in vitro fertilization.

    PubMed

    Simopoulou, Maria; Nikolopoulou, Elena; Dimakakos, Andreas; Charalabopoulos, Konstantinos; Koutsilieris, Michael

    2014-01-01

    This review addresses issues regarding the need in the in vitro fertilization (IVF) field for further predictive markers enhancing the standing embryo selection criteria. It aims to serve as a source of defining information for an audience interested in factors related to the wide range of multiple roles played by cell adhesion molecules (CAMs) in several aspects of IVF ultimately associated with the success of an IVF cycle. We begin by stressing the importance of enriching the standing embryo selection criteria available aiming for the golden standard: "extract as much information as possible focusing on non-invasive techniques" so as to guide us towards selecting the embryo with the highest implantation potential. We briefly describe the latest trends on how to best select the right embryo, moving closer towards elective single embryo transfer. These trends are: frozen embryo transfer for all, preimplantation genetic screening, non-invasive selection criteria, and time-lapse imaging. The main part of this review is dedicated to categorizing and presenting published research studies focused on the involvement of CAMs in IVF and its final outcome. Specifically, we discuss the association of CAMs with conditions and complications that arise from performing assisted reproductive techniques, such as ovarian hyperstimulation syndrome, the state of the endometrium, and tubal pregnancies, as well as the levels of CAMs in biological materials available in the IVF laboratory such as follicular fluid, trophectoderm, ovarian granulosa cells, oocytes, and embryos. To conclude, since CAMs have been successfully employed as a diagnostic tool in several pathologies in routine clinical work, we suggest that their multi-faceted nature could serve as a prognostic marker in assisted reproduction, aiming to enrich the list of non-invasive selection and predictive criteria in the IVF setting. We propose that in light of the well-documented involvement of CAMs in the developmental

  16. Cell Adhesion Molecules in Chemically-Induced Renal Injury

    PubMed Central

    Prozialeck, Walter C.; Edwards, Joshua R.

    2007-01-01

    Cell adhesion molecules are integral cell-membrane proteins that maintain cell-cell and cell-substrate adhesion, and in some cases, act as regulators of intracellular signaling cascades. In the kidney, cell adhesion molecules such as the cadherins, the catenins, ZO-1, occludin and the claudins are essential for maintaining the epithelial polarity and barrier integrity that are necessary for the normal absorption/excretion of fluid and solutes. A growing volume of evidence indicates that these cell adhesion molecules are important early targets for a variety of nephrotoxic substances including metals, drugs, and venom components. In addition, it is now widely appreciated that molecules such as ICAM-1, the integrins and selectins play important roles in the recruitment of leukocytes and inflammatory responses that are associated with nephrotoxic injury. This review summarizes the results of recent in vitro and in vivo studies indicating that these cell adhesion molecules may be primary molecular targets in many types of chemically-induced renal injury. Some of the specific agents that are discussed include Cd, Hg, Bi, cisplatin, aminoglycoside antibiotics, S-(1,2-dichlorovinyl-L-cysteine) (DCVC) and various venom toxins. This review also includes a discussion of the various mechanisms by which these substances can affect cell adhesion molecules in the kidney. PMID:17316817

  17. N-glycosylation status of E-cadherin controls cytoskeletal dynamics through the organization of distinct β-catenin- and γ-catenin-containing AJs

    PubMed Central

    Jamal, Basem T; Nita-Lazar, Mihai; Gao, Zhennan; Amin, Bakr; Walker, Janice; Kukuruzinska, Maria A

    2010-01-01

    N-glycosylation of E-cadherin has been shown to inhibit cell–cell adhesion. Specifically, our recent studies have provided evidence that the reduction of E-cadherin N-glycosylation promoted the recruitment of stabilizing components, vinculin and serine/threonine protein phosphatase 2A (PP2A), to adherens junctions (AJs) and enhanced the association of AJs with the actin cytoskeleton. Here, we examined the details of how N-glycosylation of E-cadherin affected the molecular organization of AJs and their cytoskeletal interactions. Using the hypoglycosylated E-cadherin variant, V13, we show that V13/β-catenin complexes preferentially interacted with PP2A and with the microtubule motor protein dynein. This correlated with dephosphorylation of the microtubule-associated protein tau, suggesting that increased association of PP2A with V13-containing AJs promoted their tethering to microtubules. On the other hand V13/γ-catenin complexes associated more with vinculin, suggesting that they mediated the interaction of AJs with the actin cytoskeleton. N-glycosylation driven changes in the molecular organization of AJs were physiologically significant because transfection of V13 into A253 cancer cells, lacking both mature AJs and tight junctions (TJs), promoted the formation of stable AJs and enhanced the function of TJs to a greater extent than wild-type E-cadherin. These studies provide the first mechanistic insights into how N-glycosylation of E-cadherin drives changes in AJ composition through the assembly of distinct β-catenin- and γ-catenin-containing scaffolds that impact the interaction with different cytoskeletal components. PMID:20502620

  18. Altered E-Cadherin Levels and Distribution in Melanocytes Precede Clinical Manifestations of Vitiligo.

    PubMed

    Wagner, Roselyne Y; Luciani, Flavie; Cario-André, Muriel; Rubod, Alain; Petit, Valérie; Benzekri, Laila; Ezzedine, Khaled; Lepreux, Sébastien; Steingrimsson, Eirikur; Taieb, A; Gauthier, Yvon; Larue, Lionel; Delmas, Véronique

    2015-07-01

    Vitiligo is the most common depigmenting disorder resulting from the loss of melanocytes from the basal epidermal layer. The pathogenesis of the disease is likely multifactorial and involves autoimmune causes, as well as oxidative and mechanical stress. It is important to identify early events in vitiligo to clarify pathogenesis, improve diagnosis, and inform therapy. Here, we show that E-cadherin (Ecad), which mediates the adhesion between melanocytes and keratinocytes in the epidermis, is absent from or discontinuously distributed across melanocyte membranes of vitiligo patients long before clinical lesions appear. This abnormality is associated with the detachment of the melanocytes from the basal to the suprabasal layers in the epidermis. Using human epidermal reconstructed skin and mouse models with normal or defective Ecad expression in melanocytes, we demonstrated that Ecad is required for melanocyte adhesiveness to the basal layer under oxidative and mechanical stress, establishing a link between silent/preclinical, cell-autonomous defects in vitiligo melanocytes and known environmental stressors accelerating disease expression. Our results implicate a primary predisposing skin defect affecting melanocyte adhesiveness that, under stress conditions, leads to disappearance of melanocytes and clinical vitiligo. Melanocyte adhesiveness is thus a potential target for therapy aiming at disease stabilization. PMID:25634357

  19. e-Cadherin in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Induced Parkinson Disease

    PubMed Central

    Cataldi, Samuela; Codini, Michela; Hunot, Stéphane; Légeron, François-Pierre; Ferri, Ivana; Siccu, Paola; Sidoni, Angelo; Ambesi-Impiombato, Francesco Saverio; Beccari, Tommaso; Curcio, Francesco; Albi, Elisabetta

    2016-01-01

    Today a large number of studies are focused on clarifying the complexity and diversity of the pathogenetic mechanisms inducing Parkinson disease. We used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin that induces Parkinson disease, to evaluate the change of midbrain structure and the behavior of the anti-inflammatory factor e-cadherin, interleukin-6, tyrosine hydroxylase, phosphatase and tensin homolog, and caveolin-1. The results showed a strong expression of e-cadherin, variation of length and thickness of the heavy neurofilaments, increase of interleukin-6, and reduction of tyrosine hydroxylase known to be expression of dopamine cell loss, reduction of phosphatase and tensin homolog described to impair responses to dopamine, and reduction of caveolin-1 known to be expression of epithelial-mesenchymal transition and fibrosis. The possibility that the overexpression of the e-cadherin might be implicated in the anti-inflammatory reaction to MPTP treatment by influencing the behavior of the other analyzed molecules is discussed. PMID:27194825

  20. Cell Adhesion Molecules and Ubiquitination—Functions and Significance

    PubMed Central

    Homrich, Mirka; Gotthard, Ingo; Wobst, Hilke; Diestel, Simone

    2015-01-01

    Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system. PMID:26703751

  1. Adhesion Molecules: Master Controllers of the Circulatory System.

    PubMed

    Schmidt, Eric P; Kuebler, Wolfgang M; Lee, Warren L; Downey, Gregory P

    2016-01-01

    This manuscript will review our current understanding of cellular adhesion molecules (CAMs) relevant to the circulatory system, their physiological role in control of vascular homeostasis, innate and adaptive immune responses, and their importance in pathophysiological (disease) processes such as acute lung injury, atherosclerosis, and pulmonary hypertension. This is a complex and rapidly changing area of research that is incompletely understood. By design, we will begin with a brief overview of the structure and classification of the major groups of adhesion molecules and their physiological functions including cellular adhesion and signaling. The role of specific CAMs in the process of platelet aggregation and hemostasis and leukocyte adhesion and transendothelial migration will be reviewed as examples of the complex and cooperative interplay between CAMs during physiological and pathophysiological processes. The role of the endothelial glycocalyx and the glycobiology of this complex system related to inflammatory states such as sepsis will be reviewed. We will then focus on the role of adhesion molecules in the pathogenesis of specific disease processes involving the lungs and cardiovascular system. The potential of targeting adhesion molecules in the treatment of immune and inflammatory diseases will be highlighted in the relevant sections throughout the manuscript. © 2016 American Physiological Society. Compr Physiol 6:945-973, 2016. PMID:27065171

  2. Expression and cell distribution of the intercellular adhesion molecule, vascular cell adhesion molecule, endothelial leukocyte adhesion molecule, and endothelial cell adhesion molecule (CD31) in reactive human lymph nodes and in Hodgkin's disease.

    PubMed Central

    Ruco, L. P.; Pomponi, D.; Pigott, R.; Gearing, A. J.; Baiocchini, A.; Baroni, C. D.

    1992-01-01

    The immunocytochemical expression of intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), endothelial leukocyte adhesion molecule (ELAM-1), endothelial cell adhesion molecule (EndoCAM CD31), and HLA-DR antigens was investigated in sections of 24 reactive lymph nodes and in 15 cases of Hodgkin's disease. ICAM-1 was detected in sinus macrophages, follicular dendritic reticulum cells (FDRCs), interdigitating reticulum cells (IDRCs), epithelioid macrophages, Hodgkin's cells (HCs), and vascular endothelium. ICAM-1 expression was often associated with that of HLA-DR antigens. VCAM-1 was detected in FDRCs, in fibroblast reticulum cells (FRCs), in macrophages, and in rare blood vessels. EndoCAM (CD31) was constitutively expressed in all types of endothelial cells, sinus macrophages, and in epithelioid granulomas. ELAM-1 was selectively expressed by activated endothelial cells of high endothelium venules (HEVs). When expression of the inducible adhesion molecules ICAM-1, VCAM-1 and ELAM-1 was comparatively evaluated in HEVs, it was found that ICAM-1 + HEVs were present in all reactive and HD nodes, whereas ELAM-1 and/or VCAM-1 were expressed only in those pathologic conditions characterized by high levels of interleukin-1/tumor necrosis factor (IL-1/TNF) production, such as granulomatosis and Hodgkin's disease. In Hodgkin's disease, the expression of ELAM-1/VCAM-1 was more pronounced in cases of nodular sclerosis and was associated with a significantly higher content of perivascular neutrophils. Images Figure 1 Figure 2 PMID:1605306

  3. Immunohistochemical expression of p53, Bcl-2, COX-2, C-erb-B2, EPO-R, beta-catenin, and E-cadherin in non tumoral gastric mucous membrane.

    PubMed

    Sereno, M; García-Cabezas, M A; De Castro, J; Cejas, P; Saenz, E Casado; Belda-Iniesta, C; Feijoo, J Barriuso; Larrauri, J; Nistal, M; Baron, M Gonzalez

    2006-01-01

    Different authors have investigated the immunohistochemical expression of some proteins in the adenocarcinoma of the stomach, including cell cycle regulators proteins like p53 and Bcl-2; growth factors (c-erb-B2 and EPO-R); angiogenesis-related markers such as COX-2 and cellular adhesion molecules (beta-catenin and E-cadherin). While these proteins have been studied in gastric adenocarcinoma, their immunophenotyping in non tumoral gastric mucous membrane remains unexplored. In the present study, we investigated the expression, function and behavior of these proteins in normal gastric mucous membrane to contribute to gain further knowledge on the significance of their loss or overexpression in malignant gastric tumors. PMID:17213037

  4. Assay of Adhesion Under Shear Stress for the Study of T Lymphocyte-Adhesion Molecule Interactions.

    PubMed

    Strazza, Marianne; Azoulay-Alfaguter, Inbar; Peled, Michael; Mor, Adam

    2016-01-01

    Overall, T cell adhesion is a critical component of function, contributing to the distinct processes of cellular recruitment to sites of inflammation and interaction with antigen presenting cells (APC) in the formation of immunological synapses. These two contexts of T cell adhesion differ in that T cell-APC interactions can be considered static, while T cell-blood vessel interactions are challenged by the shear stress generated by circulation itself. T cell-APC interactions are classified as static in that the two cellular partners are static relative to each other. Usually, this interaction occurs within the lymph nodes. As a T cell interacts with the blood vessel wall, the cells arrest and must resist the generated shear stress.(1,2) These differences highlight the need to better understand static adhesion and adhesion under flow conditions as two distinct regulatory processes. The regulation of T cell adhesion can be most succinctly described as controlling the affinity state of integrin molecules expressed on the cell surface, and thereby regulating the interaction of integrins with the adhesion molecule ligands expressed on the surface of the interacting cell. Our current understanding of the regulation of integrin affinity states comes from often simplistic in vitro model systems. The assay of adhesion using flow conditions described here allows for the visualization and accurate quantification of T cell-epithelial cell interactions in real time following a stimulus. An adhesion under flow assay can be applied to studies of adhesion signaling within T cells following treatment with inhibitory or stimulatory substances. Additionally, this assay can be expanded beyond T cell signaling to any adhesive leukocyte population and any integrin-adhesion molecule pair. PMID:27404581

  5. Cell adhesion molecules involved in intrathymic T cell development.

    PubMed

    Patel, D D; Haynes, B F

    1993-08-01

    During stem cell migration to the thymus, intrathymic maturation of T cells, and emigration of mature T cells out of the thymus, intercellular interactions of developing T cells with a myriad of cell types are required for normal T cell development. Intercellular interactions of T cell precursors with endothelial cells, thymic epithelial cells, fibroblasts, thymic macrophages and dendritic cells are all mediated by adhesion molecules on immature T cells binding to ligands on thymic microenvironment cells. While many receptor-ligand interactions that are important in intrathymic T cell development are known, the adhesion molecules that are important for migration of T cell precursors to the thymus and for emigration of mature thymocytes from the thymus are poorly understood. An emerging concept is that select adhesion molecules at discrete stages of T cell maturation participate in and regulate the complex processes of T cell development. PMID:7693023

  6. Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium.

    PubMed

    Hallahan, D; Kuchibhotla, J; Wyble, C

    1996-11-15

    The predominant early histological changes in irradiated tissues are edema and leukocyte infiltration. Cell adhesion molecules (CAMs) are required for the extravasation of leukocytes from the circulation. To study the role of CAMs in the pathogenesis of radiation-mediated inflammation, we quantified the expression of P-selectin, E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 glycoproteins on the surface of irradiated human endothelial cells. We found that E-selectin and ICAM-1 expression increased after irradiation, whereas there was no increased expression of other cytokine-inducible adhesion molecules (P-selectin or vascular cell adhesion molecule-1). We found a dose- and time-dependent increase in radiation-induced expression of both E-selectin and ICAM-1. Furthermore, the threshold dose for E-selectin expression was 1 Gy, whereas the threshold dose for ICAM-1 synthesis was 5 Gy of X-rays. Northern blot analysis of RNA from irradiated endothelial cells demonstrated that ICAM-1 is expressed at 3-6 h following irradiation. No de novo protein synthesis was required for increased ICAM-1 mRNA expression. The 1.1-kb segment of the 5' untranslated region of the ICAM-1 gene was sufficient for X-ray induction of chloramphenicol acetyltransferase reporter gene expression. We measured whether ICAM-1 mediates adhesion of leukocyte to the irradiated endothelium and found that leukocyte adhesion occurred concurrently with ICAM-1 induction. Radiation-mediated leukocyte adhesion was prevented by anti-ICAM-1 blocking antibodies. These data indicate that ICAM-1 participates in the inflammatory response to ionizing radiation. Moreover, radiation induction of these CAMs occurs in the absence of tumor necrosis factor and interleukin 1 production. PMID:8912850

  7. Antioxidants Maintain E-Cadherin Levels to Limit Drosophila Prohemocyte Differentiation

    PubMed Central

    Gao, Hongjuan; Wu, Xiaorong; Simon, LaTonya; Fossett, Nancy

    2014-01-01

    Mitochondrial reactive oxygen species (ROS) regulate a variety of biological processes by networking with signal transduction pathways to maintain homeostasis and support adaptation to stress. In this capacity, ROS have been shown to promote the differentiation of progenitor cells, including mammalian embryonic and hematopoietic stem cells and Drosophila hematopoietic progenitors (prohemocytes). However, many questions remain about how ROS alter the regulatory machinery to promote progenitor differentiation. Here, we provide evidence for the hypothesis that ROS reduce E-cadherin levels to promote Drosophila prohemocyte differentiation. Specifically, we show that knockdown of the antioxidants, Superoxide dismutatase 2 and Catalase reduce E-cadherin protein levels prior to the loss of Odd-skipped-expressing prohemocytes. Additionally, over-expression of E-cadherin limits prohemocyte differentiation resulting from paraquat-induced oxidative stress. Furthermore, two established targets of ROS, Enhancer of Polycomb and FOS, control the level of E-cadherin protein expression. Finally, we show that knockdown of either Superoxide dismutatase 2 or Catalase leads to an increase in the E-cadherin repressor, Serpent. As a result, antioxidants and targets of ROS can control E-cadherin protein levels, and over-expression of E-cadherin can ameliorate the prohemocyte response to oxidative stress. Collectively, these data strongly suggest that ROS promote differentiation by reducing E-cadherin levels. In mammalian systems, ROS promote embryonic stem cell differentiation, whereas E-cadherin blocks differentiation. However, it is not known if elevated ROS reduce E-cadherin to promote embryonic stem cell differentiation. Thus, our findings may have identified an important mechanism by which ROS promote stem/progenitor cell differentiation. PMID:25226030

  8. Pentoxifylline Decreases Serum Level of Adhesion Molecules in Atherosclerosis Patients

    PubMed Central

    Mohammadpour, Amir Hooshang; Falsoleiman, Homa; Shamsara, Jamal; Abadi, Ghazaleh Allah; Rasooli, Ramin; Ramezani, Mohammad

    2014-01-01

    Background: Inflammation is involved in development, progression, and complications of atherosclerotic disease. Clinical studies have indicated that the level of monocyte chemoattractant protein 1 (MCP-1), IL-18, and adhesion molecules correlates with the severity of atherosclerosis and can predict future cardiovascular events. Experimental studies have shown pentoxifylline (PTX) reduces these factors in animal models. The purpose of the present pilot study was to evaluate effect of PTX on a group of inflammatory biomarkers in patients with coronary artery disease (CAD). Methods: Forty patients with angiographically documented CAD, who fulfilled inclusion and exclusion criteria, were entered in the double-blind, randomized, pilot clinical study. The patients were randomly given PTX (400 mg three times daily) or placebo (3 tab/day) for 2 months. Serum concentrations of MCP-1, IL-18, intercellular adhesion Molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) were measured before and at the end of intervention by enzyme-linked immunosorbant assay. Results: Our study showed that the serum levels of ICAM-1 and VCAM-1 was decreased in the study population after two-month treatment (P<0.05). Conclusion: Based on the results of our pilot study, administration of PTX in CAD patients significantly decreases adhesion molecules levels. PMID:24375159

  9. Investigating single molecule adhesion by atomic force spectroscopy.

    PubMed

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-01-01

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment. PMID:25867282

  10. Expression of connexin 43 and E-cadherin in choroidal melanoma

    PubMed Central

    Mou, Ying-Ying; Zhao, Gui-Qiu; Lin, Jin-Yong; Zhao, Jie; Lin, Hong; Hu, Li-Ting; Xu, Qiang; Wang 1, Qing; Sun, Wei-Rong

    2011-01-01

    AIM To investigate the expression of connexin 43 and epithelial cadherin (E-cadherin) in choroidal melanoma, to explore the clinical and pathological implications of expression of these proteins, and to determine their relations with malignant features. METHODS The expression of connexin 43 and E-cadherin in choroidal melanoma were detected by immunohistochemistry and correlated with clinicopathological features. RESULTS Positive rates of connexin 43 in choroidal melanomas and benign pigmented nevus tissues were 75% and 40% respectively with significant differences between the two groups (χ2=5.607, P=0.009). Positive rates of E-cadherin in choroidal melanomas and benign pigmented nevus tissues were 40% and 75% respectively with significant differences between the two groups (χ2=5.214, P=0.010). Significant overexpression of connexin 43 and reduction of E-cadherin expression was associated with the invasion to the sclera, and there were respectively significant differences between without and with scleral invasion groups (χ2=2.880, P=0.040; χ2=2.778, P=0.046). Overexpression of connexin 43 were correlated with tumor cell types and the expression of connexin 43 and E-cadherin may be correlated with each other. CONCLUSION The increased expression of connexin 43 and the decreased expression of E-cadherin may be involved in the process of invasion of choroidal melanoma. The overepression of connexin 43 and reduction of E-cadherin may contribute to the development of choroidal melanoma. PMID:22553632

  11. Modulation of E-cadherin expression promotes migration ability of esophageal cancer cells

    PubMed Central

    Li, Shujun; Qin, Xuebo; Chai, Song; Qu, Changbao; Wang, Xiaolu; Zhang, Helin

    2016-01-01

    Losing the E-cadherin plays an important role in the metastasis of cancer. The regulation of the expression of E-cadherin is unclear. Circadian rhythm alteration is associated with the pathogenesis of a number of cancers. This study aims to investigate the role of one of the circadian proteins, period-2 (Per2) in repressing the expression of E-cadherin in esophageal cancer (esophageal cancer). We observed that the levels of circadian protein Per2 were significantly increased and E-cadherin was significantly decreased in the tissue of human esophageal cancer with metastasis as compared with non-metastatic esophageal cancer. Overexpression of Per2 in the esophageal cancer cells markedly repressed the expression of E-cadherin. The pHDAC1 was detected in human esophageal cancer with metastasis, which was much less in the esophageal cancer tissue without metastasis. Overexpression of Per2 increased the levels of pHDAC1 as well as the E-cadherin repressors at the E-cadherin promoter locus. Overexpression of Per2 markedly increased the migratory capacity of esophageal cancer cells, which was abolished by the inhibition of HDAC1. We conclude that Per-2 plays an important role in the esophageal cancer cell metastasis, which may be a novel therapeutic target for the treatment of esophageal cancer. PMID:26898709

  12. E-cadherin is required for intestinal morphogenesis in the mouse

    PubMed Central

    Bondow, Benjamin J.; Faber, Mary L.; Wojta, Kevin J.; Walker, Emily; Battle, Michele A.

    2012-01-01

    E-cadherin, the primary epithelial adherens junction protein, has been implicated as playing a critical role in nucleating formation of adherens junctions, tight junctions, and desmosomes. In addition to its role in maintaining structural tissue integrity, E-cadherin has also been suggested as an important modulator of cell signaling via interactions with its cytoplasmic binding partners, catenins, as well as with growth factor receptors. Therefore, we proposed that loss of E-cadherin from the developing mouse intestinal epithelium would disrupt intestinal epithelial morphogenesis and function. To test this hypothesis, we used a conditional knockout approach to eliminate E-cadherin specifically in the intestinal epithelium during embryonic development. We found that E-cadherin conditional knockout mice failed to survive, dying within the first 24 hours of birth. Examination of intestinal architecture at E18.5 demonstrated severe disruption to intestinal morphogenesis in animals lacking E-cadherin in the epithelium of the small intestine. We observed changes in epithelial cell shape as well as in the morphology of villi. Although junctional complexes were evident, junctions were abnormal, and barrier function was compromised in E-cadherin mutant intestine. We also identified changes in the epithelial cell populations present in E-cadherin conditional knockout animals. The number of proliferating cells was increased, whereas the number of enterocytes was decreased. Although Wnt/β-catenin target mRNAs were more abundant in mutants compared with controls, the amount of nuclear activated β-catenin protein was dramatically lower in mutants compared with controls. In summary, our data demonstrate that E-cadherin is essential for intestinal epithelial morphogenesis and homeostasis during embryonic development. PMID:22766025

  13. Correlation between methylation of the E-Cadherin gene and malignancy of prostate cancer.

    PubMed

    Zhang, S Q; Zhang, G Q; Zhang, L

    2016-01-01

    Prostate cancer is a common malignant tumor in males with an unclear pathogenic mechanism. As one epigenetic regulation mechanism, DNA methylation of the whole genome and specific gene(s) plays critical roles in pathogenesis, progression, diagnosis, and treatment of prostate cancer. The E-Cadherin gene is involved in cell metabolism and has been suggested to be related with malignancy of multiple tumors. This study investigated the correlation between E-Cadherin methylation and malignancy of prostate cancer. Gradient concentrations of 5-Aza-CdR (5, 10, and 20 mM) were used to treat the prostate cancer cell line (LNCaP), and mRNA level of E-Cadherin was detected by reverse transcription-polymerase chain reaction (RT-PCR). A total of 82 prostate cancer patients were recruited to detect the methylation status of the promoter region of the E-Cadherin gene by pyrophosphate sequencing. Real-time fluorescent quantitative PCR (qRT-PCR) was employed to determine mRNA levels of E-Cadherin. Methylation and mRNA levels of E-Cadherin were analyzed by the SPSS software. With elevated concentrations of 5-Aza-CdR, mRNA levels of E-Cadherin gradually increased. DNA methylation levels of tumor tissues were significantly elevated with increased Gleason score (P < 0.05) and tumor-node-metastasis stage (P < 0.05) but were not related to age, smoking habits, or alcohol consumption (P > 0.05). DNA methylation level was negatively correlated with mRNA expression of the E-Cadherin gene. Methylation in tumor tissues was significantly higher than that in tumor adjacent tissues (P < 0.05). DNA methylation level of the E-Cadherin gene could be an important predictive index for malignancy of prostate cancer. PMID:27420993

  14. Epigenetic regulation of E-cadherin expression by the histone demethylase UTX in colon cancer cells.

    PubMed

    Zha, Lin; Cao, Qiang; Cui, Xin; Li, Fenfen; Liang, Houjie; Xue, Bingzhong; Shi, Hang

    2016-03-01

    Decreased epithelial cadherin (E-cadherin) gene expression, a hallmark of epithelial-mesenchymal transition (EMT), is essential for triggering metastatic advantage of the colon cancer. Genetic mechanisms underlying the regulation of E-cadherin expression in EMT have been extensively investigated; however, much is unknown about the epigenetic mechanism underlying this process. Here, we identified ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX), a histone demethylase involved in demethylating di- or tri-methylated histone 3 lysine 27 (H3K27me2/3), as a positive regulator for the expression of E-cadherin in the colon cancer cell line HCT-116. We showed that inactivation of UTX down-regulated E-cadherin gene expression, while overexpression of UTX did the opposite. Notably, overexpression of UTX inhibited migration and invasion of HCT-116 cells. Moreover, UTX demethylated H3K27me3, a histone transcriptional repressive mark, leading to decreased H3K27me3 at the E-cadherin promoter. Further, UTX interacted with the histone acetyltransferase (HAT) protein CBP and recruited it to the E-cadherin promoter, resulting in increased H3K27 acetylation (H3K27ac), a histone transcriptional active mark. UTX positively regulates E-cadherin expression through coordinated regulation of H3K27 demethylation and acetylation, switching the transcriptional repressive state to the transcriptional active state at the E-cadherin promoter. We conclude that UTX may play a role in regulation of E-cadherin gene expression in HCT-116 cells and that UTX may serve as a therapeutic target against the metastasis in the treatment of colon cancer. PMID:26819089

  15. Mucinous Colorectal Adenocarcinoma: Influence of EGFR and E-Cadherin Expression on Clinicopathologic Features and Prognosis.

    PubMed

    Foda, Abd AlRahman M; AbdelAziz, Azza; El-Hawary, Amira K; Hosni, Ali; Zalata, Khalid R; Gado, Asmaa I

    2015-08-01

    Previous studies have shown conflicting results on epidermal growth factor receptor (EGFR) and E-cadherin expression in colorectal carcinoma and their prognostic significance. To the best of our knowledge, this study is the first to investigate EGFR and E-cadherin expression, interrelation and relation to clinicopathologic, histologic parameters, and survival in rare colorectal mucinous adenocarcinoma (MA). In this study, we studied tumor tissue specimens from 150 patients with colorectal MA and nonmucinous adenocarcinoma (NMA). High-density manual tissue microarrays were constructed using modified mechanical pencil tips technique, and immunohistochemistry for EGFR and E-cadherin was performed. All relations were analyzed using established statistical methodologies. NMA expressed EGFR and E-cadherin in significantly higher rates with significant heterogenous pattern than MA. EGFR and E-cadherin positivity rates were significantly interrelated in both NMA and MA groups. In the NMA group, high EGFR expression was associated with old age, male sex, multiplicity of tumors, lack of mucinous component, and association with schistosomiasis. However, in the MA group, high EGFR expression was associated only with old age and MA subtype rather than signet ring carcinoma subtype. Conversely, high E-cadherin expression in MA cases was associated with old age, fungating tumor configuration, MA subtype, and negative intratumoral lymphocytic response. However, in the NMA cases, none of these factors was statistically significant. In a univariate analysis, neither EGFR nor E-cadherin expression showed a significant impact on disease-free or overall survival. Targeted therapy against EGFR and E-cadherin may not be useful in patients with MA. Neither EGFR nor E-cadherin is an independent prognostic factor in NMA or MA. PMID:26262813

  16. Differential adhesiveness between blood and marrow leukemic cells having similar pattern of VLA adhesion molecule expression.

    PubMed

    Thomas, X; Anglaret, B; Bailly, M; Maritaz, O; Magaud, J P; Archimbaud, E

    1998-10-01

    Functional adhesion of blood and marrow leukemic cells from 14 acute myeloid leukemia patients presenting with hyperleukocytosis was evaluated by performing cytoadhesion assays on purified (extracellular matrix proteins) and non-purified supports (MRC5 fibroblastic cell line). Results, in 30-min chromium release assay, show a mean +/- S.D. adhesion to fibronectin, collagen, and laminin respectively of 30 +/- 17%, 20 +/- 13%, 25 +/- 17% for blood leukemic cells and 18 +/- 11%, 11 +/- 10%, 11 +/- 8% for marrow leukemic cells. These differences between blood and marrow cells were statistically significant (respectively P = 0.005, P = 0.01 and P = 0.002), while no difference was noted regarding adhesion to non-purified supports. The higher adhesion of blood blast cells to purified supports was observed regardless of CD34 expression. No significant difference was observed in the expression of cell surface VLA-molecules (CD29, CD49b, CD49d, CD49e, CD49f) between blood and marrow blast cells. The addition of GM-CSF or G-CSF induced increased adhesion of marrow blasts and decreased adhesion of blood blasts leading to a loss of the difference between blood and marrow cells. In a 60-min chromium release assay, marrow blasts adhered even more than blood leukemic cells to fibronectin. In contrast, marrow blasts from 'aleukemic' acute myeloid leukemia patients did not show any modification regarding their adhesion to extracellular matrix proteins when co-cultured with growth factors. PMID:9766756

  17. Anchoring stem cells in the niche by cell adhesion molecules

    PubMed Central

    2009-01-01

    Adult stem cells generally reside in supporting local micro environments or niches, and intimate stem cell and niche association is critical for their long-term maintenance and function. Recent studies in model organisms especially Drosophila have started to unveil the underlying mechanisms of stem anchorage in the niche at the molecular and cellular level. Two types of cell adhesion molecules are emerging as essential players: cadherin-mediated cell adhesion for keeping stem cells within stromal niches, whereas integrin-mediated cell adhesion for keeping stem cells within epidermal niches. Further understanding stem cell anchorage and release in coupling with environmental changes should provide further insights into homeostasis control in tissues that harbor stem cells. PMID:19421010

  18. E-cadherin inhibits cell surface localization of the pro-migratory 5T4 oncofetal antigen in mouse embryonic stem cells.

    PubMed

    Spencer, Helen L; Eastham, Angela M; Merry, Catherine L R; Southgate, Thomas D; Perez-Campo, Flor; Soncin, Francesca; Ritson, Sarah; Kemler, Rolf; Stern, Peter L; Ward, Christopher M

    2007-08-01

    Epithelial-mesenchymal transition (EMT) events occur during embryonic development and are important for the metastatic spread of epithelial tumors. We show here that spontaneous differentiation of mouse embryonic stem (ES) cells is associated with an E- to N-cadherin switch, up-regulation of E-cadherin repressor molecules (Snail and Slug proteins), gelatinase activity (matrix metalloproteinase [MMP]-2 and -9), and increased cellular motility, all characteristic EMT events. The 5T4 oncofetal antigen, previously shown to be associated with very early ES cell differentiation and altered motility, is also a part of this coordinated process. E- and N-cadherin and 5T4 proteins are independently regulated during ES cell differentiation and are not required for induction of EMT-associated transcripts and proteins, as judged from the study of the respective knockout ES cells. Further, abrogation of E-cadherin-mediated cell-cell contact in undifferentiated ES cells using neutralizing antibody results in a reversible mesenchymal phenotype and actin cytoskeleton rearrangement that is concomitant with translocation of the 5T4 antigen from the cytoplasm to the cell surface in an energy-dependent manner. E-cadherin null ES cells are constitutively cell surface 5T4 positive, and although forced expression of E-cadherin cDNA in these cells is sufficient to restore cell-cell contact, cell surface expression of 5T4 antigen is unchanged. 5T4 and N-cadherin knockout ES cells exhibit significantly decreased motility during EMT, demonstrating a functional role for these proteins in this process. We conclude that E-cadherin protein stabilizes cortical actin cytoskeletal arrangement in ES cells, and this can prevent cell surface localization of the promigratory 5T4 antigen. PMID:17507657

  19. An E-cadherin-mediated hitchhiking mechanism for C. elegans germ cell internalization during gastrulation

    PubMed Central

    Chihara, Daisuke; Nance, Jeremy

    2012-01-01

    Gastrulation movements place endodermal precursors, mesodermal precursors and primordial germ cells (PGCs) into the interior of the embryo. Somatic cell gastrulation movements are regulated by transcription factors that also control cell fate, coupling cell identity and position. By contrast, PGCs in many species are transcriptionally quiescent, suggesting that they might use alternative gastrulation strategies. Here, we show that C. elegans PGCs internalize by attaching to internal endodermal cells, which undergo morphogenetic movements that pull the PGCs into the embryo. We show that PGCs enrich HMR-1/E-cadherin at their surfaces to stick to endoderm. HMR-1 expression in PGCs is necessary and sufficient to ensure internalization, suggesting that HMR-1 can promote PGC-endoderm adhesion through a mechanism other than homotypic trans interactions between the two cell groups. Finally, we demonstrate that the hmr-1 3′ untranslated region promotes increased HMR-1 translation in PGCs. Our findings reveal that quiescent PGCs employ a post-transcriptionally regulated hitchhiking mechanism to internalize during gastrulation, and demonstrate a morphogenetic role for the conserved association of PGCs with the endoderm. PMID:22675206

  20. Effects of photodynamic therapy on adhesion molecules and metastasis.

    PubMed

    Rousset, N; Vonarx, V; Eléouet, S; Carré, J; Kerninon, E; Lajat, Y; Patrice, T

    1999-01-01

    Photodynamic therapy (PDT) induces among numerous cell targets membrane damage and alteration in cancer cell adhesiveness, an important parameter in cancer metastasis. We have previously shown that hematoporphyrin derivative (HPD)-PDT decreases cancer cell adhesiveness to endothelial cells in vitro and that it reduces the metastatic potential of cells injected into rats. The present study analyzes the influence of PDT in vivo on the metastatic potential of cancers cells and in vitro on the expression of molecules involved in adhesion and in the metastatic process. Photofrin and benzoporphyrin derivative monoacid ring A (BPD) have been evaluated on two colon cancer cell lines obtained from the same cancer [progressive (PROb) and regressive (REGb)] with different metastatic properties. Studies of BPD and Photofrin toxicity and phototoxicity are performed by colorimetric MTT assay on PROb and REGb cells to determine the PDT doses inducing around 25% cell death. Flow cytometry is then used to determine adhesion-molecule expression at the cell surface. ICAM-I, MHC-I, CD44V6 and its lectins (àHt1.3, PNA, SNA and UEA) are studied using cells treated either with BPD (50 ng/ml, 457 nm light, 10 J/cm2) or Photofrin (0.5 microgram/ml, 514 nm light, 25 J/cm2). Changes of metastatic patterns of PROb cells have been assessed by the subcutaneous injection of non-lethally treated BPD or Photofrin cells and counting lung metastases. First, we confirm the metastatic potential reduction induced by PDT with respectively a 71 or 96% decrease of the mean number of metastases (as compared with controls) for PROb cells treated with 50 ng/ml BPD and 10 or 20 J/cm2 irradiation. Concerning Photofrin-PDT-treated cells, we find respectively a 90 or 97% decrease (as compared with controls) of the mean number of metastases for PROb cells treated with 0.5 microgram/ml Photofrin and 25 or 50 J/cm2 irradiation. Then, we observe that CD44V6, its lectins (àHt1.3, PNA, SNA) and MHC-I are

  1. A new rabbit monoclonal E-cadherin antibody [EP700Y] shows higher sensitivity than mouse monoclonal E-cadherin [HECD-1] antibody in breast ductal carcinomas and does not stain breast lobular carcinomas.

    PubMed

    Hoang, Laura L; Tang, Ping; Hicks, David G; Chen, Huijiao; Yang, Qi; Haas, Thomas S; Bremer, Ryan E; Tacha, David

    2014-09-01

    Immunohistochemical studies have shown E-cadherin to be expressed in breast carcinomas showing a ductal histology, with a corresponding loss of expression in tumors with a lobular histology. As a result, mouse monoclonal anti-E-cadherin [HECD-1] has been used by pathologists to differentiate between ductal and lobular carcinomas, with currently published sensitivity and specificity rates of approximately 90%. Rabbit monoclonal antibodies may combine the best properties of both mouse monoclonal antibodies and rabbit antisera. Therefore, this study compares the staining sensitivity and specificity of a new rabbit monoclonal E-cadherin and the standard mouse monoclonal E-cadherin [HECD-1] in breast ductal carcinomas, and evaluates a cocktail of rabbit monoclonal E-cadherin and p120 catenin in the discrimination of ductal from lobular carcinomas. The rabbit E-cadherin showed sharper staining and increased sensitivity (80/81, 99%) than the mouse E-cadherin (75/81, 93%). The rabbit E-cadherin achieved a score of 3+ in 85.2% (69/81) of cases as compared with a 3+ in only 21.0% (17/81) of cases stained with mouse E-cadherin. All lobular carcinomas (n=37) were confirmed by the absence of E-cadherin and the diffuse cytoplasmic expression of p120 catenin. Although both the single mouse E-cadherin and dual stain can differentiate ductal from lobular lesions, the dual stain is helpful in challenging cases because of its bright pink p120 catenin and dark brown rabbit E-cadherin staining. The highly sensitive rabbit E-cadherin antibody is the preferred antibody for evaluating ductal carcinomas and for distinguishing ductal versus lobular lesions, and the dual stain was superior to the single E-cadherin stain. PMID:24569788

  2. Allelic imbalance within the E-cadherin gene is an infrequent event in prostate carcinogenesis.

    PubMed

    Murant, S J; Rolley, N; Phillips, S M; Stower, M; Maitland, N J

    2000-01-01

    By exploiting two single nucleotide polymorphisms (SNPs) located within the E-cadherin gene, at 16q22, we have determined the frequency of allelic imbalance at this proposed tumor suppressor locus in a series of human prostatic carcinoma DNA samples. Whereas results with seven highly polymorphic microsatellite markers flanking the E-cadherin locus confirmed the existence of three separate loci on chromosome 16, at which allelic imbalance increased with increasing loss of tumor cell differentiation, no allelic imbalance within the E-cadherin gene was detected either by single-strand conformational polymorphism analysis or by direct sequencing. We conclude that the loss of E-cadherin function observed in prostate cancer is not a result of allelic deletion. Genes Chromosomes Cancer 27:104-109, 2000. PMID:10564592

  3. E-cadherin immunohistochemical expression in mammary gland neoplasms in bitches.

    PubMed

    Rodo, A; Malicka, E

    2008-01-01

    The aim of the study was to investigate E-cadherin expression in correlation with other neoplasm traits such as: histological type, the differentiation grade and proliferative activity. Material for the investigation comprised mammary gland tumours, collected from dogs, the patients of veterinary clinics, during surgical procedures and archival samples. All together 21 adenomas, 32 complex carcinomas, 35 simple carcinomas and 13 solid carcinomas were qualified for further investigation. E-cadherin expression was higher in adenomas as compared with carcinomas but lower in solid carcinomas as compared with simple and complex carcinomas. More over, the expression of E-cadherin decreased with the increase in the neoplasm malignancy and proliferative activity (value of the mitotic index and number of cells showing Ki67). The study has shown that the expression of E-cadherin can be used as a prognostic factor. PMID:18540208

  4. Hypoxia induced E-cadherin involving regulators of Hippo pathway due to HIF-1α stabilization/nuclear translocation in bone metastasis from breast carcinoma

    SciTech Connect

    Maroni, Paola; Matteucci, Emanuela; Drago, Lorenzo; Banfi, Giuseppe; Bendinelli, Paola; Desiderio, Maria Alfonsina

    2015-01-15

    Wwox as a novel molecule in the HIF-1α-HDM2 regulatory loop, necessary for the dynamic regulation of the HIF-1α amount, and we suggested that the reduction of endogenous Wwox free pool under hypoxia might also be due to the interaction with HDM2, sequestering the E3 ubiquitin ligase. We highlighted the importance of nuclear HIF-1α in the biology of metastasis for the mesenchymal-epithelial transition: this phenotype was regulated by Wwox plus hypoxia through E-cadherin target gene, playing a pivotal role in bone metastasis colonization. - Highlights: • E-cadherin accumulates in hypoxic bone metastasis opposite to primary carcinoma. • HIF-1 and PPARγ cooperate in inducing E-cadherin under hypoxia in metastatic cells. • Wwox regulates HIF-1α phosphorylation and nuclear translocation. • Hypoxia plus Wwox prevent HIF-1α degradation via HDM2 forming a regulatory loop.

  5. Immunohistochemical analysis of adhesion molecules in airway biopsies.

    PubMed

    J Wilson, S; T Holgate, S

    2000-01-01

    Adhesion molecules are receptors found on the surface of leukocytes and endothelial cells, which bind to their ligands, either on other cells or on the extracellular matrix. The function of adhesion molecules is to allow leukocytes to interact with other hemopoetic cells or with foreign antigens (Ags) in the blood, to transiently adhere to the vascular endothelium, to migrate between endothelial cells and through the basement membrane into the surrounding tissue, and to adhere to the epithelium. There are three main groups of adhesion molecules: the integrins, immunoglobulin (Ig) supergene family, and the selectins: These are summarized in Table 1 (1-7). Table 1 Summary of Adhesion Molecules Group CD number Name Expressed on Ligand Integrins CD 49a VLA-1 T lymphocytes, fibroblasts, basement membrane Laminin, collagen B1 very late antigens CD 49b VLA-2 Activated T lymphocytes, platelets, fibroblasts, endothelium, epithelium Collagen, laminin CD 49c VLA-3 Epithelium, fibroblasts Laminin, collagen, fibronectin CD 49d VLA-4 Leukocytes, fibroblasts VCAM-1, fibronectin CD 49e VLA-5 Leukocytes, platelets, epithelium Fibronectin CD 49f VLA-6 T lymphocytes, platelets Laminin B2 leukocyte integrins CD 11a LFA-1 Leukocytes ICAM-1, ICAM-2, ICAM-3 CD 11b Mac-1 Macrophages, monocytes, granulocytes ICAM-1, fibrinogen, C3bi CD 11c p150.95 Macrophages, monocytes, granulocytes Fibrinogen, C3bi IG Supergene family CD 54 ICAM-1 Endothelium, leukocytes, epithelium LFA-1 Mac-1 CD 102 ICAM-2 Endothelium, leukocytes LFA-1 CD 106 VCAM-1 Endothelium, dendritic cells, tissue macrophages VLA-4 Selectins CD 62E E selectin Endothelium Sialyl Lewis x CD 62P P selectin Platelets, endothelium Sialyl Lewis x CD 62L L selectin Leukocytes Mannose-6-P, fructose-6-P. PMID:21312133

  6. Isoform 5 of PIPKIγ regulates the endosomal trafficking and degradation of E-cadherin

    PubMed Central

    Schill, Nicholas J.; Hedman, Andrew C.; Choi, Suyong; Anderson, Richard A.

    2014-01-01

    ABSTRACT Phosphatidylinositol phosphate kinases (PIPKs) have distinct cellular targeting, allowing for site-specific synthesis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] to activate specific signaling cascades required for cellular processes. Several C-terminal splice variants of PIPKIγ (also known as PIP5K1C) exist, and have been implicated in a multitude of cellular roles. PI(4,5)P2 serves as a fundamental regulator of E-cadherin transport, and PI(4,5)P2-generating enzymes are important signaling relays in these pathways. We present evidence that the isoform 5 splice variant of PIPKIγ (PIPKIγi5) associates with E-cadherin and promotes its lysosomal degradation. Additionally, we show that the endosomal trafficking proteins SNX5 and SNX6 associate with PIPKIγi5 and inhibit PIPKIγi5-mediated E-cadherin degradation. Following HGF stimulation, activated Src directly phosphorylates PIPKIγi5. Phosphorylation of the PIPKIγi5 C-terminus regulates its association with SNX5 and, consequently, E-cadherin degradation. Additionally, this PIPKIγi5-mediated pathway requires Rab7 to promote degradation of internalized E-cadherin. Taken together, the data indicate that PIPKIγi5 and SNX5 are crucial regulators of E-cadherin sorting and degradation. PIPKIγi5, SNX and phosphoinositide regulation of lysosomal sorting represent a novel area of PI(4,5)P2 signaling and research. PIPKIγi5 regulation of E-cadherin sorting for degradation might have broad implications in development and tissue maintenance, and enhanced PIPKIγi5 function might have pathogenic consequences due to downregulation of E-cadherin. PMID:24610942

  7. E-cadherin Surface Levels in Epithelial Growth Factor-stimulated Cells Depend on Adherens Junction Protein Shrew-1

    PubMed Central

    Gross, Julia Christina; Schreiner, Alexander; Engels, Knut

    2009-01-01

    Gain- and loss-of-function studies indicate that the adherens junction protein shrew-1 acts as a novel modulator of E-cadherin internalization induced by epithelial growth factor (EGF) or E-cadherin function-blocking antibody during epithelial cell dynamics. Knocking down shrew-1 in MCF-7 carcinoma cells preserves E-cadherin surface levels upon EGF stimulation. Overexpression of shrew-1 leads to preformation of an E-cadherin/EGF receptor (EGFR) HER2/src-kinase/shrew-1 signaling complex and accelerated E-cadherin internalization. Shrew-1 is not sufficient to stimulate E-cadherin internalization, but facilitates the actions of EGFR and thus may promote malignant progression in breast cancer cells with constitutive EGFR stimulation by reducing surface E-cadherin expression. PMID:19515834

  8. Matrilysin (Matrix Metalloproteinase-7) Mediates E-Cadherin Ectodomain Shedding in Injured Lung Epithelium

    PubMed Central

    McGuire, John K.; Li, Qinglang; Parks, William C.

    2003-01-01

    Matrilysin (matrix metalloproteinase-7) is highly expressed in lungs of patients with pulmonary fibrosis and other conditions associated with airway and alveolar injury. Although matrilysin is required for closure of epithelial wounds ex vivo, the mechanism of its action in repair is unknown. We demonstrate that matrilysin mediates shedding of E-cadherin ectodomain from injured lung epithelium both in vitro and in vivo. In alveolar-like epithelial cells, transfection of activated matrilysin resulted in shedding of E-cadherin and accelerated cell migration. In vivo, matrilysin co-localized with E-cadherin at the basolateral surfaces of migrating tracheal epithelium, and the reorganization of cell-cell junctions seen in wild-type injured tissue was absent in matrilysin-null samples. E-cadherin ectodomain was shed into the bronchoalveolar lavage fluid of bleomycin-injured wild-type mice, but was not shed in matrilysin-null mice. These findings identify E-cadherin as a novel substrate for matrilysin and indicate that shedding of E-cadherin ectodomain is required for epithelial repair. PMID:12759241

  9. Structural requirements for neural cell adhesion molecule-heparin interaction.

    PubMed Central

    Reyes, A A; Akeson, R; Brezina, L; Cole, G J

    1990-01-01

    Two biological domains have been identified in the amino terminal region of the neural cell adhesion molecule (NCAM): a homophilic-binding domain, responsible for NCAM-NCAM interactions, and a heparin-binding domain (HBD). It is not known whether these two domains exist as distinct structural entities in the NCAM molecule. To approach this question, we have further defined the relationship between NCAM-heparin binding and cell adhesion. A putative HBD consisting of two clusters of basic amino acid residues located close to each other in the linear amino acid sequence of NCAM has previously been identified. Synthetic peptides corresponding to this domain were shown to bind both heparin and retinal cells. Here we report the construction of NCAM cDNAs with targeted mutations in the HBD. Mouse fibroblast cells transfected with the mutant cDNAs express NCAM polypeptides with altered HBD (NCAM-102 and NCAM-104) or deleted HBD (HBD-) at levels similar to those of wild-type NCAM. Mutant NCAM polypeptides purified from transfected cell lines have substantially reduced binding to heparin and fail to promote chick retinal cell attachment. Furthermore, whereas a synthetic peptide that contains both basic amino acid clusters inhibits retinal-cell adhesion to NCAM-coated dishes, synthetic peptides in which either one of the two basic regions is altered to contain only neutral amino acids do not inhibit this adhesion. These results confirm that this region of the NCAM polypeptide does indeed mediate not only the large majority of NCAM's affinity for heparin but also a significant portion of the cell-adhesion-mediating capability of NCAM. Images PMID:2078567

  10. Adhesion molecule-mediated hippo pathway modulates hemangioendothelioma cell behavior.

    PubMed

    Tsuneki, Masayuki; Madri, Joseph A

    2014-12-01

    Hemangioendotheliomas are categorized as intermediate-grade vascular tumors that are commonly localized in the lungs and livers. The regulation of this tumor cell's proliferative and apoptotic mechanisms is ill defined. We recently documented an important role for Hippo pathway signaling via endothelial cell adhesion molecules in brain microvascular endothelial cell proliferation and apoptosis. We found that endothelial cells lacking cell adhesion molecules escaped from contact inhibition and exhibited abnormal proliferation and apoptosis. Here we report on the roles of adherens junction molecule modulation of survivin and the Hippo pathway in the proliferation and apoptosis of a murine hemangioendothelioma (EOMA) cell. We demonstrated reduced adherens junction molecule (CD31 and VE-cadherin) expression, increased survivin and Ajuba expression, and a reduction in Hippo pathway signaling resulting in increased proliferation and decreased activation of effector caspase 3 in postconfluent EOMA cell cultures. Furthermore, we confirmed that YM155, an antisurvivin drug that interferes with Sp1-survivin promoter interactions, and survivin small interference RNA (siRNA) transfection elicited induction of VE-cadherin, decreased Ajuba expression, increased Hippo pathway and caspase activation and apoptosis, and decreased cell proliferation. These findings support the importance of the Hippo pathway in hemangioendothelioma cell proliferation and survival and YM155 as a potential therapeutic agent in this category of vascular tumors. PMID:25266662

  11. Beyond a tumor suppressor: Soluble E-cadherin promotes the progression of cancer.

    PubMed

    Hu, Qi-Ping; Kuang, Jing-Ya; Yang, Qing-Kai; Bian, Xiu-Wu; Yu, Shi-Cang

    2016-06-15

    E-cadherin (E-cad) plays important roles in tumorigenesis as well as in tumor progression, invasion and metastasis. This protein exists in two forms: a membrane-tethered form and a soluble form. Full-length E-cad is membrane tethered. As a type I transmembrane glycoprotein, E-cad mainly mediates adherens junctions between cells and is involved in maintaining the normal structure of epithelial tissues. Soluble E-cad (sE-cad) is the extracellular fragment of the protein that is cleaved from the membrane after proteolysis of full-length E-cad. The production of sE-cad undermines adherens junctions, causing a reduction in cell aggregation capacity; furthermore, sE-cad can diffuse into the extracellular environment and the blood. As a paracrine/autocrine signaling molecule, sE-cad activates or inhibits multiple signaling pathways and participates in the progression of various types of cancer, such as breast cancer, ovarian cancer, and lung cancer, by promoting invasion and metastasis. This article briefly reviews the role of sE-cad in tumorigenesis and tumor progression and its significance in clinical therapeutics. PMID:26704932

  12. Adhesion Molecules Associated with Female Genital Tract Infection

    PubMed Central

    Li, Lin-Xi; Carrascosa, José Manuel; Cabré, Eduard; Dern, Olga; Sumoy, Lauro; Requena, Gerard; McSorley, Stephen J.

    2016-01-01

    Efforts to develop vaccines that can elicit mucosal immune responses in the female genital tract against sexually transmitted infections have been hampered by an inability to measure immune responses in these tissues. The differential expression of adhesion molecules is known to confer site-dependent homing of circulating effector T cells to mucosal tissues. Specific homing molecules have been defined that can be measured in blood as surrogate markers of local immunity (e.g. α4β7 for gut). Here we analyzed the expression pattern of adhesion molecules by circulating effector T cells following mucosal infection of the female genital tract in mice and during a symptomatic episode of vaginosis in women. While CCR2, CCR5, CXCR6 and CD11c were preferentially expressed in a mouse model of Chlamydia infection, only CCR5 and CD11c were clearly expressed by effector T cells during bacterial vaginosis in women. Other homing molecules previously suggested as required for homing to the genital mucosa such as α4β1 and α4β7 were also differentially expressed in these patients. However, CD11c expression, an integrin chain rarely analyzed in the context of T cell immunity, was the most consistently elevated in all activated effector CD8+ T cell subsets analyzed. This molecule was also induced after systemic infection in mice, suggesting that CD11c is not exclusive of genital tract infection. Still, its increase in response to genital tract disorders may represent a novel surrogate marker of mucosal immunity in women, and warrants further exploration for diagnostic and therapeutic purposes. PMID:27272720

  13. Application of APTES-Anti-E-cadherin film for early cancer monitoring.

    PubMed

    Ben Ismail, Manel; Carreiras, Franck; Agniel, Rémy; Mili, Donia; Sboui, Dejla; Zanina, Nahla; Othmane, Ali

    2016-10-01

    Cancer staging is a way to classify cancer according to the extent of the disease in the body. The stage is usually determined by several factors such as the location of the primary tumor, the tumor size, the degree of spread in the surrounding tissues, etc. The study of E-cadherin (EC) expression on cancerous cells of patients has revealed variations in the molecular expression patterns of primary tumors and metastatic tumors. The detection of these cells requires a long procedure involving conventional techniques, thus, the requirement for development of new rapid devices that permit direct and highly sensitive detection stimulates the sensing field progress. Here, we explore if E-cadherin could be used as a biomarker to bind and detect epithelial cancer cells. Hence, the sensitive and specific detection of E-cadherin expressed on epithelial cells is approached by immobilizing anti-E-cadherin antibody (AEC) onto aminosilanized indium-tin oxide (ITO) surface. The immunosensing surfaces have been characterized by electrochemical measurements, wettability and confocal microscopy and their performance has been assessed in the presence of cancer cell lines. Under optimal conditions, the resulting immunosensor displayed a selective detection of E-cadherin expressing cells, which could be detected either by fluorescence or electrochemical techniques. The developed immunosensing surface could provide a simple tool that can be applied to cancer staging. PMID:27423102

  14. XPC inhibits NSCLC cell proliferation and migration by enhancing E-Cadherin expression

    PubMed Central

    Cui, Tiantian; Srivastava, Amit Kumar; Han, Chunhua; Yang, Linlin; Zhao, Ran; Zou, Ning; Qu, Meihua; Duan, Wenrui; Zhang, Xiaoli; Wang, Qi-En

    2015-01-01

    Xeroderma pigmentosum complementation group C (XPC) protein is an important DNA damage recognition factor in nucleotide excision repair. Deletion of XPC is associated with early stages of human lung carcinogenesis, and reduced XPC mRNA levels predict poor patient outcome for non-small cell lung cancer (NSCLC). However, the mechanisms linking loss of XPC expression and poor prognosis in lung cancer are still unclear. Here, we report evidence that XPC silencing drives proliferation and migration of NSCLC cells by down-regulating E-Cadherin. XPC knockdown enhanced proliferation and migration while decreasing E-Cadherin expression in NSCLC cells with an epithelial phenotype. Restoration of E-Cadherin in these cells suppressed XPC knockdown-induced cell growth both in vitro and in vivo. Mechanistic studies showed that the loss of XPC repressed E-Cadherin expression by activating the ERK pathway and upregulating Snail expression. Our findings indicate that XPC silencing-induced reduction of E-Cadherin expression contributes, at least in part, to the poor outcome of NSCLC patients with low XPC expression. PMID:25871391

  15. p63 and E-cadherin Expression in Canine Oral Squamous Cell Carcinoma.

    PubMed

    Mestrinho, L A; Pissarra, H; Faísca, P B; Bragança, M; Peleteiro, M C; Niza, M M R E

    2015-07-01

    The expression of p63 and E-cadherin was studied in 22 oral squamous cell carcinomas in the dog according to immunohistochemical techniques. The association between these markers and clinicopathologic parameters was assessed. All tumor cells studied showed enhanced p63 expression. Regarding E-cadherin expression, 17 of 22 cases (77.3%) showed decreased immunoreactivity, and in 13 of 22 cases (59.1%), its expression was cytoplasmic. Neither p63 nor E-cadherin expression patterns were associated with tumor size, bone invasion, or lymph node metastasis. p63 score was related to proliferating cell nuclear antigen proliferative index (P = .020). A statistically significant correlation between the expression patterns of these 2 markers was noted (P = .026). Furthermore, they were related with tumor grade. An atypical p63 labeling and a cytoplasmic E-cadherin staining were statistically related with a higher tumor grade (P = .022 and P = .017, respectively). These findings suggest that changes in p63 and E-cadherin expression are frequent events in oral squamous cell carcinoma in dogs. PMID:25248518

  16. Slug-upregulated miR-221 promotes breast cancer progression through suppressing E-cadherin expression.

    PubMed

    Pan, Yi; Li, Jing; Zhang, Yaqin; Wang, Nan; Liang, Hongwei; Liu, Yuan; Zhang, Chen-Yu; Zen, Ke; Gu, Hongwei

    2016-01-01

    It is generally regarded that E-cadherin is downregulated during tumorigenesis via Snail/Slug-mediated E-cadherin transcriptional reduction. However, this transcriptional suppressive mechanism cannot explain the failure of producing E-cadherin protein in metastatic breast cancer cells after overexpressing E-cadherin mRNA. Here we reveal a novel mechanism that E-cadherin is post-transcriptionally regulated by Slug-promoted miR-221, which serves as an additional blocker for E-cadherin expression in metastatic tumor cells. Profiling the predicted E-cadherin-targeting miRNAs in breast cancer tissues and cells showed that miR-221 was abundantly expressed in breast tumor and metastatic MDA-MB-231 cells and its level was significantly higher in breast tumor or MDA-MB-231 cells than in distal non-tumor tissue and low-metastatic MCF-7 cells, respectively. MiR-221, which level inversely correlated with E-cadherin level in breast cancer cells, targeted E-cadherin mRNA open reading frame (ORF) and suppressed E-cadherin protein expression. Depleting or increasing miR-221 level in breast cancer cells induced or decreased E-cadherin protein level, leading to suppressing or promoting tumor cell progression, respectively. Moreover, miR-221 was specifically upregulated by Slug but not Snail. TGF-β treatment enhanced Slug activity and thus increased miR-221 level in MCF-7 cells. In summary, our results provide the first evidence that Slug-upregulated miR-221 promotes breast cancer progression via reducing E-cadherin expression. PMID:27174021

  17. Slug-upregulated miR-221 promotes breast cancer progression through suppressing E-cadherin expression

    PubMed Central

    Pan, Yi; Li, Jing; Zhang, Yaqin; Wang, Nan; Liang, Hongwei; Liu, Yuan; Zhang, Chen-Yu; Zen, Ke; Gu, Hongwei

    2016-01-01

    It is generally regarded that E-cadherin is downregulated during tumorigenesis via Snail/Slug-mediated E-cadherin transcriptional reduction. However, this transcriptional suppressive mechanism cannot explain the failure of producing E-cadherin protein in metastatic breast cancer cells after overexpressing E-cadherin mRNA. Here we reveal a novel mechanism that E-cadherin is post-transcriptionally regulated by Slug-promoted miR-221, which serves as an additional blocker for E-cadherin expression in metastatic tumor cells. Profiling the predicted E-cadherin-targeting miRNAs in breast cancer tissues and cells showed that miR-221 was abundantly expressed in breast tumor and metastatic MDA-MB-231 cells and its level was significantly higher in breast tumor or MDA-MB-231 cells than in distal non-tumor tissue and low-metastatic MCF-7 cells, respectively. MiR-221, which level inversely correlated with E-cadherin level in breast cancer cells, targeted E-cadherin mRNA open reading frame (ORF) and suppressed E-cadherin protein expression. Depleting or increasing miR-221 level in breast cancer cells induced or decreased E-cadherin protein level, leading to suppressing or promoting tumor cell progression, respectively. Moreover, miR-221 was specifically upregulated by Slug but not Snail. TGF-β treatment enhanced Slug activity and thus increased miR-221 level in MCF-7 cells. In summary, our results provide the first evidence that Slug-upregulated miR-221 promotes breast cancer progression via reducing E-cadherin expression. PMID:27174021

  18. Direct observation of catch bonds involving cell-adhesion molecules

    NASA Astrophysics Data System (ADS)

    Marshall, Bryan T.; Long, Mian; Piper, James W.; Yago, Tadayuki; McEver, Rodger P.; Zhu, Cheng

    2003-05-01

    Bonds between adhesion molecules are often mechanically stressed. A striking example is the tensile force applied to selectin-ligand bonds, which mediate the tethering and rolling of flowing leukocytes on vascular surfaces. It has been suggested that force could either shorten bond lifetimes, because work done by the force could lower the energy barrier between the bound and free states (`slip'), or prolong bond lifetimes by deforming the molecules such that they lock more tightly (`catch'). Whereas slip bonds have been widely observed, catch bonds have not been demonstrated experimentally. Here, using atomic force microscopy and flow-chamber experiments, we show that increasing force first prolonged and then shortened the lifetimes of P-selectin complexes with P-selectin glycoprotein ligand-1, revealing both catch and slip bond behaviour. Transitions between catch and slip bonds might explain why leukocyte rolling on selectins first increases and then decreases as wall shear stress increases. This dual response to force provides a mechanism for regulating cell adhesion under conditions of variable mechanical stress.

  19. From cell membrane to the nucleus: an emerging role of E-cadherin in gene transcriptional regulation

    PubMed Central

    Du, Wenjun; Liu, Xi; Fan, Guiling; Zhao, Xingsheng; Sun, Yanying; Wang, Tianzhen; Zhao, Ran; Wang, Guangyu; Zhao, Ci; Zhu, Yuanyuan; Ye, Fei; Jin, Xiaoming; Zhang, Fengmin; Zhong, Zhaohua; Li, Xiaobo

    2014-01-01

    E-cadherin is a well-known mediator of cell–cell adherens junctions. However, many other functions of E-cadherin have been reported. Collectively, the available data suggest that E-cadherin may also act as a gene transcriptional regulator. Here, evidence supporting this claim is reviewed, and possible mechanisms of action are discussed. E-cadherin has been shown to modulate the activity of several notable cell signalling pathways, and given that most of these pathways in turn regulate gene expression, we proposed that E-cadherin may regulate gene transcription by affecting these pathways. Additionally, E-cadherin has been shown to accumulate in the nucleus where documentation of an E-cadherin fragment bound to DNA suggests that E-cadherin may directly regulate gene transcription. In summary, from the cell membrane to the nucleus, a role for E-cadherin in gene transcription may be emerging. Studies specifically focused on this potential role would allow for a more thorough understanding of this transmembrane glycoprotein in mediating intra- and intercellular activities. PMID:25164084

  20. Cooperative inhibitory effects of antisense oligonucleotide of cell adhesion molecules and cimetidine on cancer cell adhesion

    PubMed Central

    Tang, Nan-Hong; Chen, Yan-Ling; Wang, Xiao-Qian; Li, Xiu-Jin; Yin, Feng-Zhi; Wang, Xiao-Zhong

    2004-01-01

    AIM: To explore the cooperative effects of antisense oligonucleotide (ASON) of cell adhesion molecules and cimetidine on the expression of E-selectin and ICAM-1 in endothelial cells and their adhesion to tumor cells. METHODS: After treatment of endothelial cells with ASON and/or cimetidine and induction with TNF-α, the protein and mRNA changes of E-selectin and ICAM-1 in endothelial cells were examined by flow cytometry and RT-PCR, respectively. The adhesion rates of endothelial cells to tumor cells were measured by cell adhesion experiment. RESULTS: In comparison with TNF-α inducing group, lipo-ASON and lipo-ASON/cimetidine could significantly decrease the protein and mRNA levels of E-selectin and ICAM-1 in endothelial cells, and lipo-ASON/cimetidine had most significant inhibitory effect on E-selectin expression (from 36.37 ± 1.56% to 14.23 ± 1.07%, P < 0.001). Meanwhile, cimetidine alone could inhibit the expression of E-selectin (36.37 ± 1.56% vs 27.2 ± 1.31%, P < 0.001), but not ICAM-1 (69.34 ± 2.50% vs 68.07 ± 2.10%, P > 0.05)and the two kinds of mRNA, either. Compared with TNF-α inducing group, the rate of adhesion was markedly decreased in lipo-E-selectin ASON and lipo-E-selectin ASON/cimetidine treated groups(P < 0.05), and lipo-E-selectin ASON/cimetidine worked better than lipo-E-selectin ASON alone except for HepG2/ECV304 group (P < 0.05). However, the decrease of adhesion was not significant in lipo-ICAM-1 ASON and lipo-ICAM-1 ASON/cimetidine treated groups except for HepG2/ECV304 group (P > 0.05). CONCLUSION: These data demonstrate that ASON in combination with cimetidine in vitro can significantly reduce the adhesion between endothelial cells and hepatic or colorectal cancer cells, which is stronger than ASON or cimetidine alone. This study provides some useful proofs for gene therapy of antiadhesion. PMID:14695770

  1. Cytoplasmic Tail Regulates the Intercellular Adhesion Function of the Epithelial Cell Adhesion Molecule

    PubMed Central

    Balzar, Maarten; Bakker, Hellen A. M.; Briaire-de-Bruijn, Inge H.; Fleuren, Gert Jan; Warnaar, Sven O.; Litvinov, Sergey V.

    1998-01-01

    Ep-CAM, an epithelium-specific cell-cell adhesion molecule (CAM) not structurally related to the major families of CAMs, contains a cytoplasmic domain of 26 amino acids. The chemical disruption of the actin microfilaments, but not of the microtubuli or intermediate filaments, affected the localization of Ep-CAM at the cell-cell boundaries, suggesting that the molecule interacts with the actin-based cytoskeleton. Mutated forms of Ep-CAM were generated with the cytoplasmic domain truncated at various lengths. All of the mutants were transported to the cell surface in the transfectants; however, the mutant lacking the complete cytoplasmic domain was not able to localize to the cell-cell boundaries, in contrast to mutants with partial deletions. Both the disruption of the actin microfilaments and a complete truncation of the cytoplasmic tail strongly affected the ability of Ep-CAM to mediate aggregation of L cells. The capability of direct aggregation was reduced for the partially truncated mutants but remained cytochalasin D sensitive. The tail truncation did not affect the ability of the transfectants to adhere to solid-phase-adsorbed Ep-CAM, suggesting that the ability to form stable adhesions and not the ligand specificity of the molecule was affected by the truncation. The formation of intercellular adhesions mediated by Ep-CAM induced a redistribution to the cell-cell boundaries of α-actinin, but not of vinculin, talin, filamin, spectrin, or catenins. Coprecipitation demonstrated direct association of Ep-CAM with α-actinin. Binding of α-actinin to purified mutated and wild-type Ep-CAMs and to peptides representing different domains of the cytoplasmic tail of Ep-CAM demonstrates two binding sites for α-actinin at positions 289 to 296 and 304 to 314 of the amino acid sequence. The results demonstrate that the cytoplasmic domain of Ep-CAM regulates the adhesion function of the molecule through interaction with the actin cytoskeleton via α-actinin. PMID:9671492

  2. Cytoplasmic tail regulates the intercellular adhesion function of the epithelial cell adhesion molecule.

    PubMed

    Balzar, M; Bakker, H A; Briaire-de-Bruijn, I H; Fleuren, G J; Warnaar, S O; Litvinov, S V

    1998-08-01

    Ep-CAM, an epithelium-specific cell-cell adhesion molecule (CAM) not structurally related to the major families of CAMs, contains a cytoplasmic domain of 26 amino acids. The chemical disruption of the actin microfilaments, but not of the microtubuli or intermediate filaments, affected the localization of Ep-CAM at the cell-cell boundaries, suggesting that the molecule interacts with the actin-based cytoskeleton. Mutated forms of Ep-CAM were generated with the cytoplasmic domain truncated at various lengths. All of the mutants were transported to the cell surface in the transfectants; however, the mutant lacking the complete cytoplasmic domain was not able to localize to the cell-cell boundaries, in contrast to mutants with partial deletions. Both the disruption of the actin microfilaments and a complete truncation of the cytoplasmic tail strongly affected the ability of Ep-CAM to mediate aggregation of L cells. The capability of direct aggregation was reduced for the partially truncated mutants but remained cytochalasin D sensitive. The tail truncation did not affect the ability of the transfectants to adhere to solid-phase-adsorbed Ep-CAM, suggesting that the ability to form stable adhesions and not the ligand specificity of the molecule was affected by the truncation. The formation of intercellular adhesions mediated by Ep-CAM induced a redistribution to the cell-cell boundaries of alpha-actinin, but not of vinculin, talin, filamin, spectrin, or catenins. Coprecipitation demonstrated direct association of Ep-CAM with alpha-actinin. Binding of alpha-actinin to purified mutated and wild-type Ep-CAMs and to peptides representing different domains of the cytoplasmic tail of Ep-CAM demonstrates two binding sites for alpha-actinin at positions 289 to 296 and 304 to 314 of the amino acid sequence. The results demonstrate that the cytoplasmic domain of Ep-CAM regulates the adhesion function of the molecule through interaction with the actin cytoskeleton via alpha

  3. The mechanism of binding of neural cell adhesion molecules.

    PubMed

    Hoffman, S; Edelman, G M

    1984-01-01

    The experimental results reviewed in this paper strongly suggest that the molecular mechanism of N-CAM-mediated cell adhesion involves the direct interaction of N-CAM molecules on one cell with N-CAM molecules on a second cell. The rate of this aggregation has a high-order dependence on the local N-CAM concentration, and is inversely related to the sialic acid content of the N-CAM molecules involved. In accordance with their relative sialic acid concentrations, the relative rates of aggregation mediated by E and A forms of N-CAM are A-A greater than A-E greater than E-E. Further removal of sialic acid from N-CAM below the level found in the A form gives little further enhancement of aggregation. These results provide one basis upon which to interpret the modulation hypothesis (Edelman, 1983) for control of N-CAM function, i.e. the adhesive strength of N-CAM bonds in an in vitro system can be altered in a graded manner over a wide range by variations in the local surface density of N-CAM or by chemical modification of N-CAM (differential sialylation). It is important to stress that these results do not preclude the possibility of other forms of modulation of N-CAM function or the function of other molecules in cell-cell interactions. It will be much more difficult to assess the role of N-CAM and the modulation of its function on pattern formation in vivo. It is pertinent to mention, however, that recent experiments on transformed neural cells (Greenberg et al., 1984) show loss of N-CAM following transformation with accompanying loss of aggregation and increased motility of the transformed cells. Aside from the possible implications for metastasis (transformation has for the first time been shown to affect a defined CAM and alter cellular sociology), these findings are consonant with the notion that alteration of surface N-CAM affects expression of other cellular processes. Clearly additional experiments are required to define the mechanisms by which this occurs. In

  4. Exenatide Alters Gene Expression of Neural Cell Adhesion Molecule (NCAM), Intercellular Cell Adhesion Molecule (ICAM), and Vascular Cell Adhesion Molecule (VCAM) in the Hippocampus of Type 2 Diabetic Model Mice

    PubMed Central

    Gumuslu, Esen; Cine, Naci; Gökbayrak, Merve Ertan; Mutlu, Oguz; Celikyurt, Ipek Komsuoglu; Ulak, Guner

    2016-01-01

    Background Glucagon-like peptide-1 (GLP-1), a potent and selective agonist for the GLP-1 receptor, ameliorates the symptoms of diabetes through stimulation of insulin secretion. Exenatide is a potent and selective agonist for the GLP-1 receptor. Cell adhesion molecules are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. Material/Methods The present study demonstrated the effects of exenatide treatment (0.1 μg/kg, subcutaneously, twice daily for 2 weeks) on the gene expression levels of cell adhesion molecules, neural cell adhesion molecule (NCAM), intercellular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) in the brain tissue of diabetic BALB/c male mice by real-time quantitative polymerase chain reaction (PCR). Diabetes was induced by streptozotocin/nicotinamide (STZ-NA) injection to male mice. Results The results of this study revealed that hippocampal gene expression of NCAM, ICAM, and VCAM were found to be up-regulated in STZ-NA-induced diabetic mice compared to those of controls. A significant decrease in the gene expression levels of NCAM, ICAM, and VCAM were determined after 2 weeks of exenatide administration. Conclusions Cell adhesion molecules may be involved in the molecular mechanism of diabetes. Exenatide has a strong beneficial action in managing diabetes induced by STZ/NA by altering gene expression of NCAM, ICAM, and VCAM. PMID:27465247

  5. Effect of PIP3 on Adhesion Molecules and Adhesion of THP-1 Monocytes to HUVEC Treated with High Glucose

    PubMed Central

    Su, Prasenjit Manna; Jain, shil K.

    2014-01-01

    Background Phosphatidylinositol-3,4,5-triphosphate (PIP3), a well-known lipid second messenger, plays a key role in insulin signaling and glucose homeostasis. Using human umbilical vein endothelial cells (HUVEC) and THP-1 monocytes, we tested the hypothesis that PIP3 can downregulate adhesion molecules and monocyte adhesion to endothelial cells. Methods HUVEC and monocytes were exposed to high glucose (HG, 25 mM, 20 h) with or without PIP3 (0-20 nM), or PIT-1 (25 μM), an inhibitor of PIP3. Results Both HG and PIT-1 caused a decrease in cellular PIP3 in monocytes and HUVEC compared to controls. Treatment with PIT-1 and HG also increased the ICAM-1 (intercellular adhesion molecule 1) total protein expression as well as its surface expression in HUVEC, CD11a (a subunit of lymphocyte function-associated antigen 1, LFA-1) total protein expression as well as its surface expression in monocytes, and adhesion of monocytes to HUVEC. Exogenous PIP3 supplementation restored the intracellular PIP3 concentrations, downregulated the expression of adhesion molecules, and reduced the adhesion of monocytes to HUVEC treated with HG. Conclusion This study reports that a decrease in cellular PIP3 is associated with increased expression of adhesion molecules and monocyte-endothelial cell adhesion, and may play a role in the endothelial dysfunction associated with diabetes. PMID:24752192

  6. ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation.

    PubMed

    Lievens, Patricia Marie-Jeanne; Kuznetsova, Tatiana; Kochlamazashvili, Gaga; Cesca, Fabrizia; Gorinski, Natalya; Galil, Dalia Abdel; Cherkas, Volodimir; Ronkina, Natalia; Lafera, Juri; Gaestel, Matthias; Ponimaskin, Evgeni; Dityatev, Alexander

    2016-09-01

    The neural cell adhesion molecule (NCAM) mediates cell-cell and cell-matrix adhesion. It is broadly expressed in the nervous system and regulates neurite outgrowth, synaptogenesis, and synaptic plasticity. Previous in vitro studies revealed that palmitoylation of NCAM is required for fibroblast growth factor 2 (FGF2)-stimulated neurite outgrowth and identified the zinc finger DHHC (Asp-His-His-Cys)-containing proteins ZDHHC3 and ZDHHC7 as specific NCAM-palmitoylating enzymes. Here, we verified that FGF2 controlled NCAM palmitoylation in vivo and investigated molecular mechanisms regulating NCAM palmitoylation by ZDHHC3. Experiments with overexpression and pharmacological inhibition of FGF receptor (FGFR) and Src revealed that these kinases control tyrosine phosphorylation of ZDHHC3 and that ZDHHC3 is phosphorylated by endogenously expressed FGFR and Src proteins. By site-directed mutagenesis, we found that Tyr18 is an FGFR1-specific ZDHHC3 phosphorylation site, while Tyr295 and Tyr297 are specifically phosphorylated by Src kinase in cell-based and cell-free assays. Abrogation of tyrosine phosphorylation increased ZDHHC3 autopalmitoylation, enhanced interaction with NCAM, and upregulated NCAM palmitoylation. Expression of ZDHHC3 with tyrosine mutated in cultured hippocampal neurons promoted neurite outgrowth. Our findings for the first time highlight that FGFR- and Src-mediated tyrosine phosphorylation of ZDHHC3 modulates ZDHHC3 enzymatic activity and plays a role in neuronal morphogenesis. PMID:27247265

  7. Carbohydrate ligands for endothelial - Leukocyte adhesion molecule 1

    SciTech Connect

    Tiemeyer, M.; Swiedler, S.J.; Ishihara, Masayuki; Moreland, M.; Schweingruber, H.; Hirtzer, P.; Brandley, B.K. )

    1991-02-15

    The acute inflammatory response requires that circulating leukocytes bind to and penetrate the vascular wall to access the site of injury. Several receptors have been implicated in this interaction, including a family of putative carbohydrate-binding proteins. The authors report here the identification of an endogenous carbohydrate ligand for one of these receptors, endothelial-leukocyte adhesion molecule 1 (ELAM-1). Radiolabeled COS cells transfected with a plasmid containing the cDNA for ELAM-1 were used as probes to screen glycolipids extracted from human leukocytes. COS cells transfected with this plasmid adhered to a subset of sialylated glycolipids resolved on TLC plates or adsorbed on polyvinyl chloride microtiter wells. Adhesion to these glycolipids required calcium but was not inhibited by heparin, chondroitin sulfate, keratan sulfate, or yeast phosphomannan. Monosaccharide composition, linkage analysis, and fast atom bombardment mass spectrometry of the glycolipids indicate that the ligands for ELAM-1 are terminally sialylated lactosylceramides with a variable number of N-acetyllactosamine repeats and at least one fucosylated N-acetylglucosamine residue.

  8. Ionizing radiation induces human intercellular adhesion molecule-1 in vitro.

    PubMed

    Behrends, U; Peter, R U; Hintermeier-Knabe, R; Eissner, G; Holler, E; Bornkamm, G W; Caughman, S W; Degitz, K

    1994-11-01

    Intercellular adhesion molecule-1 (ICAM-1) plays a central role in various inflammatory reactions and its expression is readily induced by inflammatory stimuli such as cytokines or ultraviolet irradiation. We have investigated the effect of ionizing radiation (IR) on human ICAM-1 expression in human cell lines and skin cultures. ICAM-1 mRNA levels in HL60, HaCaT, and HeLa cells were elevated at 3-6 h after irradiation and increased with doses from 10-40 Gy. The rapid induction of ICAM-1 occurred at the level of transcription, was independent of de novo protein synthesis, and did not involve autocrine stimuli including tumor necrosis factor-alpha and interleukin-1. IR also induced ICAM-1 cell surface expression within 24 h. Immunohistologic analysis of cultured human split skin revealed ICAM-1 upregulation on epidermal keratinocytes and dermal microvascular endothelial cells 24 h after exposure to 6 Gy. In conclusion, we propose ICAM-1 as an important radiation-induced enhancer of immunologic cell adhesion, which contributes to inflammatory reactions after local and total body irradiation. PMID:7963663

  9. Cell adhesion molecule control of planar spindle orientation.

    PubMed

    Tuncay, Hüseyin; Ebnet, Klaus

    2016-03-01

    Polarized epithelial cells align the mitotic spindle in the plane of the sheet to maintain tissue integrity and to prevent malignant transformation. The orientation of the spindle apparatus is regulated by the immobilization of the astral microtubules at the lateral cortex and depends on the precise localization of the dynein-dynactin motor protein complex which captures microtubule plus ends and generates pulling forces towards the centrosomes. Recent developments indicate that signals derived from intercellular junctions are required for the stable interaction of the dynein-dynactin complex with the cortex. Here, we review the molecular mechanisms that regulate planar spindle orientation in polarized epithelial cells and we illustrate how different cell adhesion molecules through distinct and non-overlapping mechanisms instruct the cells to align the mitotic spindle in the plane of the sheet. PMID:26698907

  10. Serum polysialylated neural cell adhesion molecule in childhood neuroblastoma.

    PubMed Central

    Glüer, S.; Schelp, C.; Madry, N.; von Schweinitz, D.; Eckhardt, M.; Gerardy-Schahn, R.

    1998-01-01

    Neuroblastoma cells express the polysialylated form of the neural cell adhesion molecule (NCAM), which normally becomes restricted to a few neural tissues after embryogenesis. In this study, we investigated serum levels of polysialylated NCAM in 14 children with different grades and stages of neuroblastoma using an immunoluminescence assay, and compared the results to 269 healthy control subjects. Simultaneously, the polysialylated NCAM content of the tumours was determined by immunohistochemistry. Serum levels were dramatically elevated (more than sixfold) in children with advanced stages and fatal courses of disease, whereas children with differentiated tumour types and limited disease had low or normal levels. Serum concentrations correlated with the polysialylated NCAM content of the tumours, and they decreased during successful therapy. We therefore suggest polysialylated NCAM to be a useful marker monitoring childhood neuroblastoma. Images Figure 2 Figure 3 PMID:9662259

  11. The role of endothelial cell adhesion molecules P-selectin, E-selectin and intercellular adhesion molecule-1 in leucocyte recruitment induced by exogenous methylglyoxal

    PubMed Central

    Su, Yang; Lei, Xi; Wu, Lingyun; Liu, Lixin

    2012-01-01

    Methylglyoxal (MG) is a reactive dicarbonyl metabolite formed during glucose, protein and fatty acid metabolism. In hyperglycaemic conditions, increased MG level has been linked to the development of diabetes and its vascular complications at the macrovascular and microvascular levels where inflammation plays a role. To study the mechanism of MG-induced inflammation in vivo, we applied MG locally to healthy mice and used intravital microscopy to investigate the role of endothelial cell adhesion molecules in MG-induced leucocyte recruitment in cremasteric microvasculature. Administration of MG (25 and 50 mg/kg) to the tissue dose-dependently induced leucocyte recruitment at 4·0–5·5 hr, with 84–92% recruited cells being neutrophils. Such MG treatment up-regulated the expression of endothelial cell adhesion molecules P-selectin, E-selectin, intercellular adhesion molecule-1, but not vascular cell adhesion molecule-1. Activation of the nuclear factor-κB signalling pathway contributed to MG-induced up-regulation of these adhesion molecules and leucocyte recruitment. The role of the up-regulated endothelial cell adhesion molecules in MG-induced leucocyte recruitment was determined by applying specific functional blocking antibodies to MG-treated animals and observing changes in leucocyte recruitment parameters. Our data demonstrate that the up-regulation of P-selectin, E-selectin and intercellular adhesion molecule-1 contributes to the increased leucocyte rolling flux, reduced leucocyte rolling velocity, and increased leucocyte adhesion, respectively. Our results reveal the role of endothelial cell adhesion molecules in MG-induced leucocyte recruitment in microvasculature, an inflammatory condition related to diabetic vascular complications. PMID:22681228

  12. Pathogenic Actions of Cell Adhesion Molecule 1 in Pulmonary Emphysema and Atopic Dermatitis

    PubMed Central

    Yoneshige, Azusa; Hagiyama, Man; Fujita, Mitsugu; Ito, Akihiko

    2015-01-01

    Cell adhesion mediated by adhesion molecules is of central importance in the maintenance of tissue homeostasis. Therefore, altered expression of adhesion molecules leads to the development of various tissue disorders involving cell activation, degeneration, and apoptosis. Nevertheless, it still remains unclear what initiates the altered expression of adhesion molecules and how the subsequent pathological cascades proceed. In this regard, cell adhesion molecule 1 (CADM1) is one of the candidates that is involved in the development of pathological lesions; it is an intercellular adhesion molecule that is expressed in various types of cells such as pulmonary cells, neurons, and mast cells. Recent studies have revealed that alterations in the transcriptional or post-transcriptional expressions of CADM1 correlate with the pathogenesis of pulmonary diseases and allergic diseases. In this review, we specifically focus on how CADM1 is involved in the development of pathological lesions in pulmonary emphysema and atopic dermatitis. PMID:26636084

  13. E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells

    PubMed Central

    Theys, Jan; Jutten, Barry; Habets, Roger; Paesmans, Kim; Groot, Arjan J.; Lambin, Philippe; Wouters, Brad G.

    2016-01-01

    Background and purpose Hypoxia is a hallmark of solid cancers and associated with metastases and treatment failure. During tumor progression epithelial cells often acquire mesenchymal features, a phenomenon known as epithelial-to-mesenchymal transition (EMT). Intratumoral hypoxia has been linked to EMT induction. We hypothesized that signals from the tumor microenvironment such as growth factors and tumor oxygenation collaborate to promote EMT and thereby contribute to radioresistance. Materials and methods Gene expression changes under hypoxia were analyzed using microarray and validated by qRT-PCR. Conversion of epithelial phenotype upon hypoxic exposure, TGFβ addition or oncogene activation was investigated by Western blot and immunofluorescence. Cell survival following ionizing radiation was assayed using clonogenic survival. Results Upon hypoxia, TGFβ addition or EGFRvIII expression, MCF7, A549 and NMuMG epithelial cells acquired a spindle shape and lost cell–cell contacts. Expression of epithelial markers such as E-cadherin decreased, whereas mesenchymal markers such as vimentin and N-cadherin increased. Combining hypoxia with TGFβ or EGFRvIII expression, lead to more rapid and pronounced EMT-like phenotype. Interestingly, E-cadherin expression and the mesenchymal appearance were reversible upon reoxygenation. Mesenchymal conversion and E-cadherin loss were associated with radioresistance. Conclusions Our findings describe a mechanism by which the tumor microenvironment may contribute to tumor radioresistance via E-cadherin loss and EMT. PMID:21680037

  14. Soy Components Genistein and Lunasin Regulate E-Cadherin and Wnt Signaling in Mammary Epithelial Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhanced Wnt/beta-catenin signaling and loss of E-cadherin expression are considered hallmarks of tumorigenesis. We previously showed by microarray gene profiling that dietary intake of soy-based AIN-93G diets altered components of Wnt/beta-catenin signaling in rat mammary epithelial cells. To furth...

  15. Polarized E-cadherin endocytosis directs actomyosin remodeling during embryonic wound repair

    PubMed Central

    Hunter, Miranda V.; Lee, Donghoon M.; Harris, Tony J.C.

    2015-01-01

    Embryonic epithelia have a remarkable ability to rapidly repair wounds. A supracellular actomyosin cable around the wound coordinates cellular movements and promotes wound closure. Actomyosin cable formation is accompanied by junctional rearrangements at the wound margin. We used in vivo time-lapse quantitative microscopy to show that clathrin, dynamin, and the ADP-ribosylation factor 6, three components of the endocytic machinery, accumulate around wounds in Drosophila melanogaster embryos in a process that requires calcium signaling and actomyosin contractility. Blocking endocytosis with pharmacological or genetic approaches disrupted wound repair. The defect in wound closure was accompanied by impaired removal of E-cadherin from the wound edge and defective actomyosin cable assembly. E-cadherin overexpression also resulted in reduced actin accumulation around wounds and slower wound closure. Reducing E-cadherin levels in embryos in which endocytosis was blocked rescued actin localization to the wound margin. Our results demonstrate a central role for endocytosis in wound healing and indicate that polarized E-cadherin endocytosis is necessary for actomyosin remodeling during embryonic wound repair. PMID:26304727

  16. Estrogen-mediated down-regulation of E-cadherin in breast cancer cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    E-cadherin is an important mediator of cell-cell interactions, and has been shown to play a crucial role in breast tumor suppression. Its inactivation occurs through instability at its chromosomal locus and mutations, but also through epigenetic mechanisms such as promoter hypermethylation and trans...

  17. Polarized E-cadherin endocytosis directs actomyosin remodeling during embryonic wound repair.

    PubMed

    Hunter, Miranda V; Lee, Donghoon M; Harris, Tony J C; Fernandez-Gonzalez, Rodrigo

    2015-08-31

    Embryonic epithelia have a remarkable ability to rapidly repair wounds. A supracellular actomyosin cable around the wound coordinates cellular movements and promotes wound closure. Actomyosin cable formation is accompanied by junctional rearrangements at the wound margin. We used in vivo time-lapse quantitative microscopy to show that clathrin, dynamin, and the ADP-ribosylation factor 6, three components of the endocytic machinery, accumulate around wounds in Drosophila melanogaster embryos in a process that requires calcium signaling and actomyosin contractility. Blocking endocytosis with pharmacological or genetic approaches disrupted wound repair. The defect in wound closure was accompanied by impaired removal of E-cadherin from the wound edge and defective actomyosin cable assembly. E-cadherin overexpression also resulted in reduced actin accumulation around wounds and slower wound closure. Reducing E-cadherin levels in embryos in which endocytosis was blocked rescued actin localization to the wound margin. Our results demonstrate a central role for endocytosis in wound healing and indicate that polarized E-cadherin endocytosis is necessary for actomyosin remodeling during embryonic wound repair. PMID:26304727

  18. β-elemene decreases cell invasion by upregulating E-cadherin expression in MCF-7 human breast cancer cells.

    PubMed

    Zhang, Xian; Zhang, Yang; Li, Yinghua

    2013-08-01

    Inactivation of E-cadherin results in cell migration and invasion, hence leading to cancer aggressiveness and metastasis. Downregulation of E-cadherin is closely correlated with a poor prognosis in invasive breast cancer. Thus, re-introducing E-cadherin is a novel strategy for cancer therapy. The aim of the present study was to determine the effects of the traditional Chinese medicine, β-elemene (ELE), on E-cadherin expression, cell migration and invasion in the breast cancer cell line MCF-7. MCF-7 cells were treated with 50 and 100 µg/ml ELE. E-cadherin mRNA was analyzed by reverse transcription‑polymerase chain reaction. E-cadherin protein levels were determined by immunofluorescence and western blot assays. Cell motility was measured by a Transwell assay. ELE increased both the protein and mRNA levels of E-cadherin, accompanied by decreased cell migration and invasion. Further analysis demonstrated that ELE upregulated estrogen receptor‑α (ERα) and metastasis-associated protein 3 (MTA3), and decreased the nuclear transcription factor Snail. In conclusion, our results demonstrate that ELE decreases cell migration and invasion by upregulating E-cadherin expression via controlling the ERα/MTA3/Snail signaling pathway. PMID:23732279

  19. Adhesion Molecule Expression in Human Endothelial Cells under Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Rudimov, E. G.; Andreeva, E. R.; Buravkova, L. B.

    2013-02-01

    High gravisensitivity of endothelium is now well recognized. Therefore, the microgravity can be one of the main factors affecting the endothelium in space flight. In this work we studied the effects of gravity vector randomization (3D-clinorotation in RPM) on the viability of endothelial cells from human umbilical vein (HUVEC) and the expression of adhesion molecules on its surface. After RPM exposure, HUVEC conditioning medium was collected for cytokines evaluation, a part of vials was used for immunocytochemistry and other one - for cytofluorimetric analysis of ICAM-I, VCAM-I, PECAM-I, E-selectin, Endoglin, VE-cadherin expression. The viability of HUVEC and constitutive expression of EC marker molecules PECAM-I and Endoglin were similar in all experimental groups both after 6 and 24 hrs of exposure. There were no differences in ICAM-I and E-selectin expression on HUVEC in 3 groups after 6 hrs of exposure. 24 hrs incubation has provoked decrease in ICAM-I and E-selectin expression. Thus, gravity vector randomization can lead to the disruption of ECs monolayer.

  20. An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis

    PubMed Central

    Dong, Xintong; Liu, Oliver W.; Howell, Audrey S.; Shen, Kang

    2014-01-01

    Summary Robust dendrite morphogenesis is a critical step in the development of reproducible neural circuits. However, little is known about the extracellular cues that pattern complex dendrite morphologies. In the model nematode C. elegans, the sensory neuron PVD establishes stereotypical, highly-branched dendrite morphology. Here, we report the identification of a tripartite ligand-receptor complex of membrane adhesion molecules that is both necessary and sufficient to instruct spatially restricted growth and branching of PVD dendrites. The ligand complex SAX-7/L1CAM and MNR-1 function at defined locations in the surrounding hypodermal tissue, while DMA-1 acts as the cognate receptor on PVD. Mutations in this complex lead to dramatic defects in the formation, stabilization, and organization of the dendritic arbor. Ectopic expression of SAX-7 and MNR-1 generates a predictable, unnaturally patterned dendritic tree in a DMA-1 dependent manner. Both in vivo and in vitro experiments indicate that all three molecules are needed for interaction. PMID:24120131

  1. E-Cadherin repression increases amount of cancer stem cells in human A549 lung adenocarcinoma and stimulates tumor growth.

    PubMed

    Farmakovskaya, M; Khromova, N; Rybko, V; Dugina, V; Kopnin, B; Kopnin, P

    2016-04-17

    Here we show that cancer stem cells amount in human lung adenocarcinoma cell line A549 depends on E-cadherin expression. In fact, downregulation of E-cadherin expression enhanced expression of pluripotent genes (c-MYC, NESTIN, OCT3/4 and SOX2) and enriched cell population with the cells possessing the properties of so-called 'cancer stem cells' via activation of Wnt/β-catenin signaling. Repression of E-cadherin also stimulated cell proliferation and migration in vitro, decreased cell amount essential for xenografts formation in nude mice, increased tumors vascularization and growth. On the other hand, E-cadherin upregulation caused opposite effects i.e. diminished the number of cancer stem cells, decreased xenograft vascularization and decelerated tumor growth. Therefore, agents restoring E-cadherin expression may be useful in anticancer therapy. PMID:26940223

  2. Down-regulation of MUC1 in cancer cells inhibits cell migration by promoting E-cadherin/catenin complex formation

    SciTech Connect

    Yuan Zhenglong; Wong, Sandy; Borrelli, Alexander; Chung, Maureen A.

    2007-10-26

    MUC1, a tumor associated glycoprotein, is over-expressed in most cancers and can promote proliferation and metastasis. The objective of this research was to study the role of MUC1 in cancer metastasis and its potential mechanism. Pancreatic (PANC1) and breast (MCF-7) cancer cells with stable 'knockdown' of MUC1 expression were created using RNA interference. {beta}-Catenin and E-cadherin protein expression were upregulated in PANC1 and MCF-7 cells with decreased MUC1 expression. Downregulation of MUC1 expression also induced {beta}-catenin relocation from the nucleus to the cytoplasm, increased E-cadherin/{beta}-catenin complex formation and E-cadherin membrane localization in PANC1 cells. PANC1 cells with 'knockdown' MUC1 expression had decreased in vitro cell invasion. This study suggested that MUC1 may affect cancer cell migration by increasing E-cadherin/{beta}-catenin complex formation and restoring E-cadherin membrane localization.

  3. HER-2/neu and E-cadherin Expression and Microsatellite Instability in Gastric Dysplasia

    PubMed Central

    Ahmadi, L; Kamkari, S; Mokarram, P; Lankarani, K Bagheri; Tabibi, N; Ashktorab, H; Vasei, M

    2011-01-01

    BACKGROUND Gastric dysplasia (GD) is a precursor lesion of gastric adenocarcinoma. Intestinal type gastric carcinoma commonly shows microsatellite instability (MSI) and the diffuse type is associated with down regulation of E-cadherin. HER-2/neu is over-expressed in some cases of gastric cancer. In this study, MSI and expression rates of HER-2/neu and E-cadherin in GD were evaluated. METHODS Paraffin blocks of 21 cases of low grade dysplasia (LD), 11 cases of high grade dysplasia (HD) and 25 cases of indefinite for dysplasia (ID) were collected. After deparaffinization and antigen retrieval, the sections were incubated with antibodies against E-cadherin, hMLH1, hMSH2 and HER-2/neu. The streptavidin-biotin complex method was used followed by peroxidase enzyme development with diaminobenzidine. RESULTS HER-2/neu was positive in six cases of HD (50%), four LD (21%) and two ID (9%). E-cadherin was absent in two cases of LD and showed normal expression in all HD and ID cases. hMLH1 expression was absent or markedly decreased only in the zones of dysplasia in HD (3/11), LD (3/21) and ID (4/25). Absence or diminished expression of hMSH2 was seen in HD (3/11), LD (2/21) and ID (3/25) cases. HER-2/neu expression showed close association with diminished expression of hMLH1 or hMSH2 (p < 0.05). CONCLUSION Stepwise increase in the expression rate of HER-2/neu was seen in ID, LD and HD cases implying its role in cancer evolution. The absence of hMLH1 and hMSH2 in GD may predispose individuals to over-expression of other oncogenes such as HER-2/neu. Abnormal expression of E-cadherin is not a frequent finding in GD. PMID:25197528

  4. Heterogeneity of cell adhesion molecules in the developing nervous system

    SciTech Connect

    Williams, R.K.

    1985-01-01

    Cell-surface molecules, especially glycoproteins, are believed to mediate interactions between developing neurons and their environment. These interactions include pathfinding by growing processes, recognition of appropriate targets, and formation of synaptic structures. In order to identify neuronal cell-surface molecules, monoclonal antibodies (Mab's) were prepared against synaptic fractions from adult rat brain. From this group three monoclonal antibodies, designated 3C5.59, 3G5.34, and 3G6.41, that react with cell-surface antigens of embryonic neurons were selected for further study. In immunofluoresence experiments each of these antibodies strongly reacted with the processes of cultured granule cell neurons, the major class of small cerebellar neurons, cultured from developing rat cerebellum. Mab's 3C5.59 and 3G5.34 reacted only with neurons in the cerebellar cultures. Mab 3G6.41, however, also reacted with cultured brain astrocytes. On frozen sections Mab's 3G5.34 and 3G6.41 also strongly stained the molecular layer, the site of active granule cell axon growth, in the developing cerebellum. Monoclonal and polyclonal antibodies specific for the neural cell adhesion molecule (N-CAM) were used to compare the two glycoproteins recognized by Mab 3G6.41 with N-CAM. Band 1, another large neuronal cell-surface glycoprotein was originally identified in mouse N18 neuroblastoma cells. In this study /sup 125/I-labeled N18-derived band 1 was tested for binding to 9 plant lectins and Limulus polyphemus agglutinin coupled to agarose beads. Band 1 solubilized from brain also specifically bound to LCA-agarose, indicating that mannose containing sugar moieties are present on band 1 from brain.

  5. Purification, composition, and structure of macrophage adhesion molecule

    SciTech Connect

    Remold-O'Donnell, E.; Savage, B.

    1988-01-12

    Macrophage adhesion molecule (MAM) is a surface heterodimer consisting of the trypsin- and plasmin-sensitive glycopeptide gp160 (MAM-..cap alpha..) and the glycopeptide gp93 (MAM-..beta..). MAM, which is the guinea pig analog of Mo1 and Mac-1, was purified from detergent lysates of peritoneal neutrophils by lentil lectin chromatography and M2-antibody chromatography. The pure heterodimer molecule was dissociated by acidic conditions (pH 3.5), and MAM-..cap alpha.. and MAM-..beta.. were separated by M7-antibody chromatography. MAM-..beta.. is an approx. 640 amino acid residue polypeptide with exceptionally high cysteine content. At 7.2 residues per 100 amino acids, Cys/2 of MAM-..beta.. is more than 3 times the mean for 200 purified proteins. Reactivity with six ..beta..-subunit-specific /sup 125/I-labeled monoclonal antibodies recognizing at least four epitopes demonstrated that intrapeptide disulfide bonds are required to maintain the structure of MAM-..beta... All six antibodies failed to react when MAM-..beta.. was treated with reducing agents. MAM-..beta.. is 18% carbohydrate; the major monosaccharides are mannose, N-acetylglucosamine, galactose, and sialic acid. MAM-..beta.. is estimated to contain five to six N-linked carbohydrate units. MAM-..cap alpha.. is an approx. 1100-residue polypeptide with lower Cys/2 content (2.0 residues per 100 amino acid residues). MAM-..cap alpha.. is 21% carbohydrate. The major monosaccharides are mannose, N-acetylglucosamine, galactose, and sialic acid; the mannose content is higher in MAM-..cap alpha.. than MAM-..beta.. is estimated to contain 12 N-linked carbohydrate units.

  6. CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer

    PubMed Central

    Caldeira, José Roberto F; Prando, Érika C; Quevedo, Francisco C; Neto, Francisco A Moraes; Rainho, Cláudia A; Rogatto, Silvia R

    2006-01-01

    Background The E-cadherin gene (CDH1) maps, at chromosome 16q22.1, a region often associated with loss of heterozygosity (LOH) in human breast cancer. LOH at this site is thought to lead to loss of function of this tumor suppressor gene and was correlated with decreased disease-free survival, poor prognosis, and metastasis. Differential CpG island methylation in the promoter region of the CDH1 gene might be an alternative way for the loss of expression and function of E-cadherin, leading to loss of tissue integrity, an essential step in tumor progression. Methods The aim of our study was to assess, by Methylation-Specific Polymerase Chain Reaction (MSP), the methylation pattern of the CDH1 gene and its possible correlation with the expression of E-cadherin and other standard immunohistochemical parameters (Her-2, ER, PgR, p53, and K-67) in a series of 79 primary breast cancers (71 infiltrating ductal, 5 infiltrating lobular, 1 metaplastic, 1 apocrine, and 1 papillary carcinoma). Results CDH1 hypermethylation was observed in 72% of the cases including 52/71 ductal, 4/5 lobular carcinomas and 1 apocrine carcinoma. Reduced levels of E-cadherin protein were observed in 85% of our samples. Although not statistically significant, the levels of E-cadherin expression tended to diminish with the CDH1 promoter region methylation. In the group of 71 ductal cancinomas, most of the cases of showing CDH1 hypermethylation also presented reduced levels of expression of ER and PgR proteins, and a possible association was observed between CDH1 methylation and ER expression (p = 0.0301, Fisher's exact test). However, this finding was not considered significant after Bonferroni correction of p-value. Conclusion Our preliminary findings suggested that abnormal CDH1 methylation occurs in high frequencies in infiltrating breast cancers associated with a decrease in E-cadherin expression in a subgroup of cases characterized by loss of expression of other important genes to the mammary

  7. Circulating intercellular adhesion molecule-1 in patients with systemic sclerosis.

    PubMed

    Sfikakis, P P; Tesar, J; Baraf, H; Lipnick, R; Klipple, G; Tsokos, G C

    1993-07-01

    In view of recent data demonstrating increased expression of intercellular adhesion molecule-1 (ICAM-1) in the skin of patients with systemic sclerosis (SSc) we studied whether levels of soluble ICAM-1 (s-ICAM-1) shed into the circulation are increased in patients with this disorder. We also compared blood levels of s-ICAM-1 in SSc with those in systemic lupus erythematosus (SLE) and we investigated any possible association of s-ICAM-1 with soluble IL-2 receptor (s-IL 2R) levels, the latter being considered as a marker of lymphocyte activation. Patients with SSc had increased levels of sICAM-1 compared with healthy control subjects (mean +/- SEM, 587 +/- 34 versus 373 +/- 27 ng/ml, P < 0.0001). Patients with diffuse rapidly progressive disease had the highest s-ICAM-1 levels. No association was observed between the extent of skin or internal organ involvement and s-ICAM-1 levels. Patients with digital ulcers had significantly elevated s-ICAM-1, but not s-IL 2R, levels. No correlation was detected between individual s-ICAM-1 and S-IL 2R levels in SSc patients. These novel findings suggest that circulating s-ICAM-1 levels may be a useful marker of endothelial activation in SSc; however, further studies are needed to determine the role of ICAM-1 in the pathogenesis of this disorder. PMID:8099861

  8. PDLIM1 Stabilizes the E-Cadherin/β-Catenin Complex to Prevent Epithelial-Mesenchymal Transition and Metastatic Potential of Colorectal Cancer Cells.

    PubMed

    Chen, Hai-Ning; Yuan, Kefei; Xie, Na; Wang, Kui; Huang, Zhao; Chen, Yan; Dou, Qianhui; Wu, Min; Nice, Edouard C; Zhou, Zong-Guang; Huang, Canhua

    2016-03-01

    Metastasis is a major cause of death in patients with colorectal cancer, and increasing evidence supports the contribution of the epithelial-mesenchymal transition (EMT) to cancer progression. The dissociation of the E-cadherin/β-catenin adhesion complex represents a key step in EMT and promotes cancer invasion and metastasis, but the upstream signaling pathways regulating this interaction are poorly understood. Here, we show that PDLIM1, a member of the PDZ and LIM protein family, was downregulated in highly metastatic colorectal cancer cells and liver metastases from colorectal cancer patients. We found that loss of PDLIM1 promoted the expression of EMT markers and increased the invasive and migratory properties of multiple colorectal cancer cell lines. Furthermore, PDLIM1 knockdown increased colon-derived liver metastasis in an orthotopic colorectal cancer model and promoted distant metastatic colonization in an experimental lung metastasis model. Mechanistic investigations revealed that PDLIM1 interacted with and stabilized the E-cadherin/β-catenin complex, thereby inhibiting the transcriptional activity of β-catenin and preventing EMT. Accordingly, PDLIM1 overexpression attenuated EMT of colorectal cancer cells. Moreover, the downregulation of PDLIM1 in colorectal cancer samples correlated with reduced E-cadherin and membrane β-catenin levels, and was associated with shorter overall survival. In conclusion, our study demonstrates that PDLIM1 suppresses EMT and metastatic potential of colorectal cancer cells by stabilizing β-catenin at cell-cell junctions, and its loss in metastatic tissues may represent a potential prognostic marker of aggressive disease. PMID:26701804

  9. Loss of intercellular adhesion leads to differential accumulation of hypericin in bladder cancer

    NASA Astrophysics Data System (ADS)

    Lucky, S. Sasidharan; Bhuvaneswari, Ramaswamy; Chin, William W. L.; Lau, Weber K. O.; Olivo, Malini C. D.

    2009-06-01

    Photodynamic diagnosis (PDD) exploits the photoactive nature of certain compounds, namely photosensitizers, in order to enhance the visual demarcation between normal and neoplastic tissue. Hypericin is one such potent photosensitizer that preferentially accumulate in neoplastic tissue, and fluoresce in the visible spectrum when illuminated with light of an appropriate wavelength. In our study, we investigated the role of E-cadherin in the selective permeation of hypericin in bladder cancer tissues. Clinical studies were done on a series of 43 histologically graded bladder cancer biopsy specimens, obtained from 28 patients who received intravesical instillations with 8μM hypericin solution for at least 2 hours. Immunohistochemical staining was used to assess the expression of E-cadherin, in the cryosectioned tissues. Hypericin uptake was examined by fluorescence microscopy. Immunohistochemical staining showed a clear expression of E-cadherin along the urothelial lining of the normal and pre-malignant tissues. Partial expression of these cell adhesion molecules were still observed in malignant tissues, however there was a loss of expression to variable extends along the urothelium. Thus, loss of intercellular adhesion can be associated with enhanced hypericin permeation through paracellular diffusion.

  10. E-cadherin Is Critical for Collective Sheet Migration and Is Regulated by the Chemokine CXCL12 Protein During Restitution*

    PubMed Central

    Hwang, Soonyean; Zimmerman, Noah P.; Agle, Kimberle A.; Turner, Jerrold R.; Kumar, Suresh N.; Dwinell, Michael B.

    2012-01-01

    Chemokines and other immune mediators enhance epithelial barrier repair. The intestinal barrier is established by highly regulated cell-cell contacts between epithelial cells. The goal of these studies was to define the role for the chemokine CXCL12 in regulating E-cadherin during collective sheet migration during epithelial restitution. Mechanisms regulating E-cadherin were investigated using Caco2BBE and IEC-6 model epithelia. Genetic knockdown confirmed a critical role for E-cadherin in in vitro restitution and in vivo wound repair. During restitution, both CXCL12 and TGF-β1 tightened the monolayer by decreasing the paracellular space between migrating epithelial cells. However, CXCL12 differed from TGF-β1 by stimulating the significant increase in E-cadherin membrane localization during restitution. Chemokine-stimulated relocalization of E-cadherin was paralleled by an increase in barrier integrity of polarized epithelium during restitution. CXCL12 activation of its cognate receptor CXCR4 stimulated E-cadherin localization and monolayer tightening through Rho-associated protein kinase activation and F-actin reorganization. These data demonstrate a key role for E-cadherin in intestinal epithelial restitution. PMID:22549778

  11. Small Molecule Agonists of Cell Adhesion Molecule L1 Mimic L1 Functions In Vivo.

    PubMed

    Kataria, Hardeep; Lutz, David; Chaudhary, Harshita; Schachner, Melitta; Loers, Gabriele

    2016-09-01

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery after injury, leading to severe disabilities in motor functions and pain. Peripheral nerve injury impairs motor, sensory, and autonomic functions, particularly in cases where nerve gaps are large and chronic nerve injury ensues. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration after acute injury. We screened libraries of known drugs for small molecule agonists of L1 and evaluated the effect of hit compounds in cell-based assays in vitro and in mice after femoral nerve and spinal cord injuries in vivo. We identified eight small molecule L1 agonists and showed in cell-based assays that they stimulate neuronal survival, neuronal migration, and neurite outgrowth and enhance Schwann cell proliferation and migration and myelination of neurons in an L1-dependent manner. In a femoral nerve injury mouse model, enhanced functional regeneration and remyelination after application of the L1 agonists were observed. In a spinal cord injury mouse model, L1 agonists improved recovery of motor functions, being paralleled by enhanced remyelination, neuronal survival, and monoaminergic innervation, reduced astrogliosis, and activation of microglia. Together, these findings suggest that application of small organic compounds that bind to L1 and stimulate the beneficial homophilic L1 functions may prove to be a valuable addition to treatments of nervous system injuries. PMID:26253722

  12. Involvement of the MEK/ERK pathway in EGF-induced E-cadherin down-regulation.

    PubMed

    Tashiro, Etsu; Henmi, Shizuka; Odake, Hiroyuki; Ino, Seitaro; Imoto, Masaya

    2016-09-01

    E-cadherin is a major component of the epithelial adherens junction. However, the regulatory mechanism of E-cadherin expression is still poorly understood. In this study, we found that EGF decreased E-cadherin expression at both mRNA and protein levels in colorectal carcinoma LoVo cells. Since E-cadherin down-regulation is a well-known hallmark of the EMT (Epithelial-Mesenchymal Transition), we investigated whether EGF induced E-cadherin down-regulation during the EMT. EGF was unable to affect the expression of mesenchymal markers (such as N-cadherin, vimentin or fibronectin) or EMT-regulating transcription factors (such as SNAIL, SLUG, ZEB1, ZEB2 or TWIST), suggesting that EGF induced E-cadherin down-regulation via an EMT-independent mechanism. On the other hand, the MEK inhibitor U0126 was found to suppress EGF-induced E-cadherin down-regulation at the transcriptional level, suggesting that the MEK/ERK pathway is involved in EGF-induced E-cadherin down-regulation. Moreover, we also found that EGF disrupted cell-cell contact, stimulated cells to form an elongated shape with filamentous protrusions, and induced cell migration in LoVo cells. These effects were suppressed by U0126. Therefore, EGF is suggested to induce E-cadherin down-regulation at the transcriptional level through the MEK/ERK pathway, which might result in, at least in part, the induction of cellular morphological changes and cell migration in LoVo cells. PMID:27369075

  13. Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin

    PubMed Central

    Wakae-Takada, N.; Xuan, S.; Watanabe, K.; Meda, P.; Leibel, R. L.

    2014-01-01

    Aims/hypothesis In rodents and humans, the rate of beta cell proliferation declines rapidly after birth; formation of the islets of Langerhans begins perinatally and continues after birth. Here, we tested the hypothesis that increasing levels of E-cadherin during islet formation mediate the decline in beta cell proliferation rate by contributing to a reduction of nuclear β-catenin and D-cyclins. Methods We examined E-cadherin, nuclear β-catenin, and D-cyclin levels, as well as cell proliferation during in vitro and in vivo formation of islet cell aggregates, using β-TC6 cells and transgenic mice with green fluorescent protein (GFP)-labelled beta cells, respectively. We tested the role of E-cadherin using antisense-mediated reductions of E-cadherin in β-TC6 cells, and mice segregating for a beta cell-specific E-cadherin knockout (Ecad [also known as Cdh1] βKO). Results In vitro, pseudo-islets of β-TC6 cells displayed increased E-cadherin but decreased nuclear β-catenin and cyclin D2, and reduced rates of cell proliferation, compared with monolayers. Antisense knockdown of E-cadherin increased cell proliferation and levels of cyclins D1 and D2. After birth, beta cells showed increased levels of E-cadherin, but decreased levels of D-cyclin, whereas islets of Ecad βKO mice showed increased levels of D-cyclins and nuclear β-catenin, as well as increased beta cell proliferation. These islets were significantly larger than those of control mice and displayed reduced levels of connexin 36. These changes correlated with reduced insulin response to ambient glucose, both in vitro and in vivo. Conclusions/interpretation The findings support our hypothesis by indicating an important role of E-cadherin in the control of beta cell mass and function. PMID:23354125

  14. Lateral Mobility of E-cadherin Enhances Rac1 Response in Epithelial Cells

    PubMed Central

    Tsai, J.; Kam, L.C.

    2010-01-01

    The fluidity of cellular membranes imparts lateral mobility of proteins across the cell surface. To understand the impact of lateral mobility on cell-cell communication, a protein consisting of the extracellular recognition domains of E-cadherin was associated with the surface of silica beads by either tethering to a bead-supported lipid bilayer or direct adsorption, resulting in laterally mobile and immobile presentations of this protein. These beads were then seeded onto the upper surface of MDCK cells. Functional engagement of these beads was compared by measurement of Rac1 recruitment around the bead. Lateral mobility enhanced recognition of E-cadherin, promoting cell response to the beads at lower per-area concentrations than their immobilized counterparts. A more complete understanding of how lateral mobility of membrane-associated proteins influences molecular recognition, and potentially other downstream responses, could provide new strategies for the design of materials and devices intended to capture the architecture of natural tissues. PMID:20368760

  15. The Characteristics and Prognostic Effect of E-Cadherin Expression in Colorectal Signet Ring Cell Carcinoma

    PubMed Central

    Wang, Renjie; Ma, Xiaoji; Li, Yaqi; He, Yiping; Huang, Dan; Cai, Sanjun; Peng, Junjie

    2016-01-01

    Purpose Signet ring cell carcinoma (SRCC) is rare. The aim of this study is to understand the clinicopathological features and identify the possible prognostic factors in colorectal SRCC. Methods Patients with SRCC who underwent primary lesion resection at Fudan University Shanghai Cancer Center from September 2008 to July 2014 were retrospectively analyzed. Patient’s gender, age, tumor location, depth of invasion, lymph node metastasis, synchronous distant metastasis, perineural invasion, lymphovascular invasion, and E-cadherin expression were studied with prognosis, and the correlation between E-cadherin expression and clinicopathological features were analyzed. All clinicopathological and molecular factors were put into multivariate analysis using Cox proportional hazards model for detecting independent prognostic factors. Results 59 patients accounting for 0.89% of total colorectal cancer patients met the criteria and were enrolled in the study. The median survival time is 28.9 months, and the 3-year survival rate is 62.7%. SRCC were seen more common in young male patients. Advanced stage was more common in SRCC, 58 (98.3%) patients had T3/T4 lesions, 52 (88.1%) patients had lymph node metastasis, and 14 (23.7%) patients had distant metastasis. Distant metastases were seen more common in peritoneal cavity. Distant metastasis (HR = 4.194, 95% CI: 1.297–13.567), lymphovascular invasion (HR = 2.888, 95% CI: 1.115–7.483), and E-cadherin expression (HR = 0.272, 95% CI: 0.096–0.768) were independent predictors for survival. Conclusions SRCC is a rare subtype of colorectal cancer with poor prognosis. Distant metastasis, lymphovascular invasion, and E-cadherin expression can predict prognosis of colorectal SRCCs independently. More precise therapy and more close surveillance are needed for these patients. PMID:27509205

  16. Phospholipase Cδ1 induces E-cadherin expression and suppresses malignancy in colorectal cancer cells

    PubMed Central

    Satow, Reiko; Hirano, Tamaki; Batori, Ryosuke; Nakamura, Tomomi; Murayama, Yumi; Fukami, Kiyoko

    2014-01-01

    Colorectal cancer (CRC) is one of the most common causes of cancer-related deaths worldwide, and Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in CRC predict the ineffectiveness of EGF receptor-targeted therapy. Previous transcriptional microarray analysis suggests the association between phospholipase Cδ1 (PLCδ1) expression and KRAS mutation status in CRC. However, both the roles and the regulatory mechanisms of PLCδ1 in CRC are not known. Here, we found that the expression of PLCδ1, one of the most basal PLCs, is down-regulated in CRC specimens compared with normal colon epithelium by immunohistochemistry. Furthermore, we examined the roles of PLCδ1 in CRC cell lines that harbor an activating KRAS mutation. Ectopic expression of PLCδ1 in CRC cells induced the expression of E-cadherin, whereas knockdown of PLCδ1 repressed the expression of E-cadherin. Moreover, the overexpression of PLCδ1 suppressed the expression of several mesenchymal genes and reduced cell motility, invasiveness, and in vivo tumorigenicity of SW620 CRC cells. We also showed that PLCδ1 expression is repressed by the KRAS/mitogen-activated protein kinase kinase (MEK) pathway. Furthermore, PLCδ1 suppressed the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 through E-cadherin induction in CRC cells, suggesting the presence of a negative regulatory loop between KRAS/MEK/ERK signaling and PLCδ1. These data indicate that PLCδ1 has tumor-suppressive functions in CRC through E-cadherin induction and KRAS/MEK/ERK signal attenuation. PMID:25197077

  17. Salt-inducible kinase 1 regulates E-cadherin expression and intercellular junction stability.

    PubMed

    Eneling, Kristina; Brion, Laura; Pinto, Vanda; Pinho, Maria J; Sznajder, Jacob I; Mochizuki, Naoki; Emoto, Kazuo; Soares-da-Silva, Patricio; Bertorello, Alejandro M

    2012-08-01

    The protein kinase liver kinase B1 (LKB1) regulates cell polarity and intercellular junction stability. Also, LKB1 controls the activity of salt-inducible kinase 1 (SIK1). The role and relevance of SIK1 and its downstream effectors in linking the LKB1 signals within these processes are partially understood. We hypothesize that SIK1 may link LKB1 signals to the maintenance of epithelial junction stability by regulating E-cadherin expression. Results from our studies using a mouse lung alveolar epithelial (MLE-12) cell line or human renal proximal tubule (HK2) cell line transiently or stably lacking the expression of SIK1 (using SIK1 siRNAs or shRNAs), or with its expression abrogated (sik1(+/+) vs. sik1(-/-) mice), indicate that suppression of SIK1 (∼40%) increases the expression of the transcriptional repressors Snail2 (∼12-fold), Zeb1 (∼100%), Zeb2 (∼50%), and TWIST (∼20-fold) by activating cAMP-response element binding protein. The lack of SIK1 and activation of transcriptional repressors decreases the availability of E-cadherin (mRNA and protein expression by ∼100 and 80%, respectively) and the stability of intercellular junctions in epithelia (decreases in transepithelial resistance). Furthermore, LKB1-mediated increases in E-cadherin expression are impaired in cells where SIK1 has been disabled. We conclude that SIK1 is a key regulator of E-cadherin expression, and thereby contributes to the stability of intercellular junctions. PMID:22522110

  18. Notch1-Snail1-E-cadherin pathway in metastatic hepatocellular carcinoma.

    PubMed

    Wang, Xiao Qi; Zhang, Wu; Lui, Eric L H; Zhu, Yongqiang; Lu, Ping; Yu, Xiaoming; Sun, Jisan; Yang, Sitian; Poon, Ronnie T P; Fan, Sheung Tat

    2012-08-01

    Notch signaling, a critical pathway for tissue development, also contributes to tumorigenesis in many cancers, but its pathological function in liver cancer is not well defined. In our study, Notch1 expression and its clinicopathological parameters were evaluated in 82 human hepatocellular carcinoma (HCC) patients. Plasmid-based siNotch1 shRNA was transiently or stably transfected into metastatic HCC cells and subsequently evaluated for the effects on orthotopic liver tumor metastasis in a mouse model as well as the effects on downstream pathways. Aberrant high expression of Notch1 was significantly associated with metastatic disease parameters in HCC patients, such as tumor-node-metastasis Stages III-IV and tumor venous invasion. Knocking-down Notch1 reduced cell motility in vitro and orthotopic tumor metastasis from the liver to the lung in vivo in a mouse model. In metastatic HCC cells, abnormal expression of Notch1 was associated with increased expression of Snail1 and repressed expression of E-cadherin; the Notch1-Snail1-E-cadherin association can also be found in HCC patient tumors. Inhibition of Notch1 by shRNA abolished Snail1 expression, which further resulted in the re-establishment of repressed E-cadherin in metastatic HCC cells. Thus, abnormal Notch1 expression was strongly associated with HCC metastatic disease, which might be mediated through the Notch1-Snail1-E-cadherin pathway. Knock-down of Notch1 reversed HCC tumor metastasis in a mouse model. Therefore, these data suggest that effective targeting of Notch signaling might also inhibit tumor metastasis. PMID:22052196

  19. Alterations of MEN1 and E-cadherin/β-catenin complex in sporadic pulmonary carcinoids

    PubMed Central

    VESCHI, SERENA; LATTANZIO, ROSSANO; ACETO, GITANA MARIA; CURIA, MARIA CRISTINA; MAGNASCO, SALVATORE; ANGELUCCI, DOMENICO; CAMA, ALESSANDRO; PIANTELLI, MAURO; BATTISTA, PASQUALE

    2012-01-01

    Pulmonary carcinoids, distinct in typical and atypical, represent 2–5% of all primary lung tumors. The aim of this study was to investigate the molecular alterations correlated with the development of this form of neoplasms. A collection of 38 paraffin-embedded apparently sporadic carcinoids was investigated, through a combined study, for protein expression/localization of menin, p53, β-catenin and E-cadherin and for mutational analysis of the MEN1, TP53 and CTNNB1 genes. Menin was expressed in 71% of cases, with a prevalent cytoplasmic (c) localization, β-catenin was expressed in 68.4% of cases, of which 36.8% with a membranous (m) and 31.6% with a cytoplasmic localization. Membranous E-cadherin immunoreactivity was detected in 84.2% cases, nuclear p53 expression in 5.3% of cases. Positive correlation was found between c-menin and c-β-catenin expression (rho=0.439, P=0.008). In addition, m-β-catenin showed a positive correlation with both c-β-catenin and E-cadherin expression (rho=0.380, P=0.022 and rho=0.360, P=0.040, respectively). With regard to the E-cadherin/β-catenin complex, we found also a significant positive correlation between c-menin and ‘disarrayed’ β-catenin expression (rho=0.481, P= 0.007). MEN1 gene variants were characterized in 34% of cases. c-menin was more highly expressed in tumors with MEN1 variants, compared to tumors without MEN1 variants (P=0.023). Three nucleotide variants of TP53 were also detected. This study confirms the involvement of the MEN1 gene in the development of sporadic pulmonary carcinoids, demonstrates the accumulation of menin in the cytoplasm, and indicates that the disarrayed pattern of the complex significantly correlates with c-menin accumulation. PMID:22825745

  20. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons.

    PubMed

    Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2016-01-01

    Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail. PMID:26909348

  1. Cleavage of E-cadherin and β-catenin by calpain affects Wnt signaling and spheroid formation in suspension cultures of human pluripotent stem cells.

    PubMed

    Konze, Sarah A; van Diepen, Laura; Schröder, Anke; Olmer, Ruth; Möller, Hanna; Pich, Andreas; Weißmann, Robert; Kuss, Andreas W; Zweigerdt, Robert; Buettner, Falk F R

    2014-04-01

    The envisioned clinical and industrial use of human pluripotent stem cells and their derivatives has given major momentum to the establishment of suspension culture protocols that enable the mass production of cells. Understanding molecular changes accompanying the transfer from adherent to suspension culture is of utmost importance because this information can have a direct effect on the development of optimized culture conditions. In this study we assessed the gene expression of human embryonic stem cells and induced pluripotent stem cells grown in surface-adherent culture (two-dimensional) versus free-floating suspension culture spheroids (three-dimensional). We combined a quantitative proteomic approach based on stable isotope labeling by amino acids in cell culture with deep-sequencing-based transcriptomics. Cells in three-dimensional culture showed reduced expression of proteins forming structural components of cell-cell and cell-extracellular matrix junctions. However, fully unexpected, we found up-regulation of secreted inhibitors of the canonical Wnt signaling pathway and, concomitantly, a reduction in the level of active β-catenin and in the expression of Wnt target genes. In Western blot analyses the cysteine protease calpain was shown to cleave E-cadherin and β-catenin under three-dimensional culture conditions. Our data allowed the development of a model in which calpain cleavage of E-cadherin induces the disintegration of focal cell contacts and generates a 100-kDa E-cadherin fragment required for the formation of three-dimensional cell-cell contacts in spheroids. The parallel release of β-catenin and its potential activation by calpain cleavage are counterbalanced by the overexpression of soluble Wnt pathway inhibitors. According to this model, calpain has a key function in the interplay between E-cadherin and β-catenin-mediated intercellular adhesion and the canonical Wnt signaling pathway. Supporting this model, we show that pharmacological

  2. Cleavage of E-Cadherin and β-Catenin by Calpain Affects Wnt Signaling and Spheroid Formation in Suspension Cultures of Human Pluripotent Stem Cells*

    PubMed Central

    Konze, Sarah A.; van Diepen, Laura; Schröder, Anke; Olmer, Ruth; Möller, Hanna; Pich, Andreas; Weißmann, Robert; Kuss, Andreas W.; Zweigerdt, Robert; Buettner, Falk F. R.

    2014-01-01

    The envisioned clinical and industrial use of human pluripotent stem cells and their derivatives has given major momentum to the establishment of suspension culture protocols that enable the mass production of cells. Understanding molecular changes accompanying the transfer from adherent to suspension culture is of utmost importance because this information can have a direct effect on the development of optimized culture conditions. In this study we assessed the gene expression of human embryonic stem cells and induced pluripotent stem cells grown in surface-adherent culture (two-dimensional) versus free-floating suspension culture spheroids (three-dimensional). We combined a quantitative proteomic approach based on stable isotope labeling by amino acids in cell culture with deep-sequencing-based transcriptomics. Cells in three-dimensional culture showed reduced expression of proteins forming structural components of cell–cell and cell–extracellular matrix junctions. However, fully unexpected, we found up-regulation of secreted inhibitors of the canonical Wnt signaling pathway and, concomitantly, a reduction in the level of active β-catenin and in the expression of Wnt target genes. In Western blot analyses the cysteine protease calpain was shown to cleave E-cadherin and β-catenin under three-dimensional culture conditions. Our data allowed the development of a model in which calpain cleavage of E-cadherin induces the disintegration of focal cell contacts and generates a 100-kDa E-cadherin fragment required for the formation of three-dimensional cell–cell contacts in spheroids. The parallel release of β-catenin and its potential activation by calpain cleavage are counterbalanced by the overexpression of soluble Wnt pathway inhibitors. According to this model, calpain has a key function in the interplay between E-cadherin and β-catenin-mediated intercellular adhesion and the canonical Wnt signaling pathway. Supporting this model, we show that

  3. Cutaneous histiocytic sarcoma with E-cadherin expression in a Pembroke Welsh Corgi dog.

    PubMed

    Hirako, Ayano; Sugiyama, Akihiko; Sakurai, Masashi; Ozaki, Kiyokazu; Sakai, Hiroki; Takeuchi, Takashi; Morita, Takehito; Moore, Peter F

    2015-09-01

    An 11-year-old male neutered Pembroke Welsh Corgi dog displayed a mass measuring 7.5 cm × 6.6 cm × 1.6 cm in the skin. Neoplastic tissue was nonencapsulated, and the neoplastic cells showed infiltrative growth into the surrounding tissue on microscopic examination. The neoplastic tissue was mainly located from the dermis to the subcutis. Epidermotropism of neoplastic cells was not observed. The tissue was composed of irregular, solid nests of round to polygonal cells. Nests were separated by fine fibrovascular stroma. Mitotic index was high (7.90 ± 0.38 per high power field) and extensive necrosis was observed in the neoplastic tissue. Vascular invasion was often observed in the neoplastic tissue. Neoplastic cells were positive for vimentin, HLA-DR antigen, Iba1, CD18, and E-cadherin, but cells did not express cytokeratin, S100, CD20, CD79α, CD3, MUM-1, lambda light chain, kappa light chain, lysozyme, CD204, or CD11d by immunohistochemistry. Electron microscopic analysis revealed dendrites on these cells. From the above-mentioned findings, the tumor was diagnosed as a cutaneous histiocytic sarcoma with E-cadherin expression. It is possible that neoplastic cells in the present case were derived from cutaneous Langerhans cell. To our knowledge, cutaneous histiocytic sarcoma with E-cadherin expression in domestic animals has not been previously diagnosed in domestic animals. PMID:26330395

  4. Quantification of topological features in cell meshes to explore E-cadherin dysfunction.

    PubMed

    Mestre, Tânia; Figueiredo, Joana; Ribeiro, Ana Sofia; Paredes, Joana; Seruca, Raquel; Sanches, João Miguel

    2016-01-01

    In cancer, defective E-cadherin leads to cell detachment, migration and metastization. Further, alterations mediated by E-cadherin dysfunction affect cell topology and tissue organization. Herein, we propose a novel quantitative approach, based on microscopy images, to analyse abnormal cellular distribution patterns. We generated undirected graphs composed by sets of triangles which accurately reproduce cell positioning and structural organization within each image. Network analysis was developed by exploring triangle geometric features, namely area, edges length and formed angles, as well as their variance, when compared with the respective equilateral triangles. We generated synthetic networks, mimicking the diversity of cell-cell interaction patterns, and evaluated the applicability of the selected metrics to study topological features. Cells expressing wild-type E-cadherin and cancer-related mutants were used to validate our strategy. Specifically, A634V, R749W and P799R cancer-causing mutants present more disorganized spatial distribution when compared with wild-type cells. Moreover, P799R exhibited higher length and angle distortions and abnormal cytoskeletal organization, suggesting the formation of very dynamic and plastic cellular interactions. Hence, topological analysis of cell network diagrams is an effective tool to quantify changes in cell-cell interactions and, importantly, it can be applied to a myriad of processes, namely tissue morphogenesis and cancer. PMID:27151223

  5. Quantification of topological features in cell meshes to explore E-cadherin dysfunction

    PubMed Central

    Mestre, Tânia; Figueiredo, Joana; Ribeiro, Ana Sofia; Paredes, Joana; Seruca, Raquel; Sanches, João Miguel

    2016-01-01

    In cancer, defective E-cadherin leads to cell detachment, migration and metastization. Further, alterations mediated by E-cadherin dysfunction affect cell topology and tissue organization. Herein, we propose a novel quantitative approach, based on microscopy images, to analyse abnormal cellular distribution patterns. We generated undirected graphs composed by sets of triangles which accurately reproduce cell positioning and structural organization within each image. Network analysis was developed by exploring triangle geometric features, namely area, edges length and formed angles, as well as their variance, when compared with the respective equilateral triangles. We generated synthetic networks, mimicking the diversity of cell-cell interaction patterns, and evaluated the applicability of the selected metrics to study topological features. Cells expressing wild-type E-cadherin and cancer-related mutants were used to validate our strategy. Specifically, A634V, R749W and P799R cancer-causing mutants present more disorganized spatial distribution when compared with wild-type cells. Moreover, P799R exhibited higher length and angle distortions and abnormal cytoskeletal organization, suggesting the formation of very dynamic and plastic cellular interactions. Hence, topological analysis of cell network diagrams is an effective tool to quantify changes in cell-cell interactions and, importantly, it can be applied to a myriad of processes, namely tissue morphogenesis and cancer. PMID:27151223

  6. Persisting and Increasing Neutrophil Infiltration Associates with Gastric Carcinogenesis and E-cadherin Downregulation.

    PubMed

    Fu, Hualin; Ma, Yue; Yang, Meng; Zhang, Chunlei; Huang, Hai; Xia, Ying; Lu, Lungen; Jin, Weilin; Cui, Daxiang

    2016-01-01

    H. pylori-induced chronic inflammation is considered the most important cause of gastric cancer. The actual process how chronic inflammation triggers gastric carcinogenesis is still not clear. In this study, neutrophils and relative markers in gastric cancer development were examined with immunohistochemistry and fluorescence RNA in situ hybridization methods. On average, 24 times more neutrophils were found in gastric cancer tissues and about 9 times more neutrophils were found in gastric intestinal metaplasia tissues comparing to normal gastric tissue controls. CagA(+) H. pylori infection in cancer adjacent tissues or EBV infection in cancer tissues did not increase neutrophil infiltration into gastric cancer tissues significantly. Neutrophil density was positively correlated with cell proliferation while negatively correlated with E-cadherin intensity. E-cadherin is also transcriptionally downregulated in gastric cancer tissues comparing to adjacent tissue controls. The increased neutrophils in the gastric cancer tissues appear to be related to increased chemoattractant IL-8 levels. In gastric cancers, neutrophil numbers were higher comparing to cancer adjacent tissues and not associated with patient ages, tumor invasion depth, tumor staging, metastasis or cancer types. The conclusion is that persisting and increasing neutrophil infiltration is associated with E-cadherin downregulation, cell proliferation and gastric carcinogenesis. PMID:27412620

  7. Persisting and Increasing Neutrophil Infiltration Associates with Gastric Carcinogenesis and E-cadherin Downregulation

    PubMed Central

    Fu, Hualin; Ma, Yue; Yang, Meng; Zhang, Chunlei; Huang, Hai; Xia, Ying; Lu, Lungen; Jin, Weilin; Cui, Daxiang

    2016-01-01

    H. pylori-induced chronic inflammation is considered the most important cause of gastric cancer. The actual process how chronic inflammation triggers gastric carcinogenesis is still not clear. In this study, neutrophils and relative markers in gastric cancer development were examined with immunohistochemistry and fluorescence RNA in situ hybridization methods. On average, 24 times more neutrophils were found in gastric cancer tissues and about 9 times more neutrophils were found in gastric intestinal metaplasia tissues comparing to normal gastric tissue controls. CagA+ H. pylori infection in cancer adjacent tissues or EBV infection in cancer tissues did not increase neutrophil infiltration into gastric cancer tissues significantly. Neutrophil density was positively correlated with cell proliferation while negatively correlated with E-cadherin intensity. E-cadherin is also transcriptionally downregulated in gastric cancer tissues comparing to adjacent tissue controls. The increased neutrophils in the gastric cancer tissues appear to be related to increased chemoattractant IL-8 levels. In gastric cancers, neutrophil numbers were higher comparing to cancer adjacent tissues and not associated with patient ages, tumor invasion depth, tumor staging, metastasis or cancer types. The conclusion is that persisting and increasing neutrophil infiltration is associated with E-cadherin downregulation, cell proliferation and gastric carcinogenesis. PMID:27412620

  8. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  9. Intercellular adhesion molecule 1 knockout abrogates radiation induced pulmonary inflammation.

    PubMed

    Hallahan, D E; Virudachalam, S

    1997-06-10

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  10. Drosophila MAGI interacts with RASSF8 to regulate E-Cadherin-based adherens junctions in the developing eye.

    PubMed

    Zaessinger, Sophie; Zhou, Yanxiang; Bray, Sarah J; Tapon, Nicolas; Djiane, Alexandre

    2015-03-15

    Morphogenesis is crucial during development to generate organs and tissues of the correct size and shape. During Drosophila late eye development, interommatidial cells (IOCs) rearrange to generate the highly organized pupal lattice, in which hexagonal ommatidial units pack tightly. This process involves the fine regulation of adherens junctions (AJs) and of adhesive E-Cadherin (E-Cad) complexes. Localized accumulation of Bazooka (Baz), the Drosophila PAR3 homolog, has emerged as a critical step to specify where new E-Cad complexes should be deposited during junction remodeling. However, the mechanisms controlling the correct localization of Baz are still only partly understood. We show here that Drosophila Magi, the sole fly homolog of the mammalian MAGI scaffolds, is an upstream regulator of E-Cad-based AJs during cell rearrangements, and that Magi mutant IOCs fail to reach their correct position. We uncover a direct physical interaction between Magi and the Ras association domain protein RASSF8 through a WW domain-PPxY motif binding, and show that apical Magi recruits the RASSF8-ASPP complex during AJ remodeling in IOCs. We further show that this Magi complex is required for the cortical recruitment of Baz and of the E-Cad-associated proteins α- and β-catenin. We propose that, by controlling the proper localization of Baz to remodeling junctions, Magi and the RASSF8-ASPP complex promote the recruitment or stabilization of E-Cad complexes at junction sites. PMID:25725070

  11. Pharmacoproteomic analysis reveals that metapristone (RU486 metabolite) intervenes E-cadherin and vimentin to realize cancer metastasis chemoprevention

    PubMed Central

    Yu, Suhong; Yan, Cuicui; Yang, Xingtian; He, Sudang; Liu, Jian; Qin, Chongtao; Huang, Chuanzhong; Lu, Yusheng; Tian, Zhongping; Jia, Lee

    2016-01-01

    Metapristone is the most predominant biological active metabolite of mifepristone, and being developed as a novel cancer metastasis chemopreventive agent by us. Despite its prominent metastasis chemopreventive effect, the underlying mechanism remains elusive. Our study, for the first time, demonstrated that metapristone had the ability to prevent breast cancer cells from migration, invasion, and interfere with their adhesion to endothelial cells. To explore the underlying mechanism of metapristone, we employed the iTRAQ technique to assess the effect of metapristone on MDA-MB-231 cells. In total, 5,145 proteins were identified, of which, 311 proteins showed significant differences in metapristone-treated cells compared to the control group (P-value < 0.05). Bioinformatic analysis showed many differentially expressed proteins (DEPs) functionally associated with post-translational modification, chaperones, translation, transcription, replication, signal transduction, etc. Importantly, many of the DEPs, such as E-cadherin, vimentin, TGF-β receptor I/II, smad2/3, β-catenin, caveolin, and dystroglycan were associated with TGF-β and Wnt signaling pathways, which were also linked to epithelial-to-mesenchymal transition (EMT) process. Further validation of the epithelial marker “E-caderin” and mesenchymal marker “vimetin” were carried out using immunoblot and immunofluorescence. These results have revealed a novel mechanism that metapristone-mediated metastasis chemoprevention is through intervening the EMT-related signaling pathways. PMID:26932781

  12. Pharmacoproteomic analysis reveals that metapristone (RU486 metabolite) intervenes E-cadherin and vimentin to realize cancer metastasis chemoprevention.

    PubMed

    Yu, Suhong; Yan, Cuicui; Yang, Xingtian; He, Sudang; Liu, Jian; Qin, Chongtao; Huang, Chuanzhong; Lu, Yusheng; Tian, Zhongping; Jia, Lee

    2016-01-01

    Metapristone is the most predominant biological active metabolite of mifepristone, and being developed as a novel cancer metastasis chemopreventive agent by us. Despite its prominent metastasis chemopreventive effect, the underlying mechanism remains elusive. Our study, for the first time, demonstrated that metapristone had the ability to prevent breast cancer cells from migration, invasion, and interfere with their adhesion to endothelial cells. To explore the underlying mechanism of metapristone, we employed the iTRAQ technique to assess the effect of metapristone on MDA-MB-231 cells. In total, 5,145 proteins were identified, of which, 311 proteins showed significant differences in metapristone-treated cells compared to the control group (P-value < 0.05). Bioinformatic analysis showed many differentially expressed proteins (DEPs) functionally associated with post-translational modification, chaperones, translation, transcription, replication, signal transduction, etc. Importantly, many of the DEPs, such as E-cadherin, vimentin, TGF-β receptor I/II, smad2/3, β-catenin, caveolin, and dystroglycan were associated with TGF-β and Wnt signaling pathways, which were also linked to epithelial-to-mesenchymal transition (EMT) process. Further validation of the epithelial marker "E-caderin" and mesenchymal marker "vimetin" were carried out using immunoblot and immunofluorescence. These results have revealed a novel mechanism that metapristone-mediated metastasis chemoprevention is through intervening the EMT-related signaling pathways. PMID:26932781

  13. Campylobacter jejuni outer membrane vesicle-associated proteolytic activity promotes bacterial invasion by mediating cleavage of intestinal epithelial cell E-cadherin and occludin.

    PubMed

    Elmi, Abdi; Nasher, Fauzy; Jagatia, Heena; Gundogdu, Ozan; Bajaj-Elliott, Mona; Wren, Brendan; Dorrell, Nick

    2016-04-01

    Outer membrane vesicles (OMVs) play an important role in the pathogenicity of Gram-negative bacteria. Campylobacter jejuni produces OMVs that trigger IL-8, IL-6, hBD-3 and TNF-α responses from T84 intestinal epithelial cells and are cytotoxic to Caco-2 IECs and Galleria mellonella larvae. Proteomic analysis of 11168H OMVs identified the presence of three proteases, HtrA, Cj0511 and Cj1365c. In this study, 11168H OMVs were shown to possess proteolytic activity that was reduced by pretreatment with specific serine protease inhibitors. OMVs isolated from 11168H htrA, Cj0511 or Cj1365c mutants possess significantly reduced proteolytic activity. 11168H OMVs are able to cleave both E-cadherin and occludin, but this cleavage is reduced with OMVs pretreated with serine protease inhibitors and also with OMVs isolated from htrA or Cj1365c mutants. Co-incubation of T84 monolayers with 11168H OMVs results in a visible reduction in both E-cadherin and occludin. The addition of 11168H OMVs to the co-culture of live 11168H bacteria with T84 cells results in enhanced levels of bacterial adhesion and invasion in a time-dependent and dose-dependent manner. Further investigation of the cleavage of host cell structural proteins by C. jejuni OMVs should enhance our understanding of the interactions of this important pathogen with intestinal epithelial cells. PMID:26451973

  14. EGCG Inhibits Proliferation, Invasiveness and Tumor Growth by Up-Regulation of Adhesion Molecules, Suppression of Gelatinases Activity, and Induction of Apoptosis in Nasopharyngeal Carcinoma Cells

    PubMed Central

    Fang, Chih-Yeu; Wu, Chung-Chun; Hsu, Hui-Yu; Chuang, Hsin-Ying; Huang, Sheng-Yen; Tsai, Ching-Hwa; Chang, Yao; Tsao, George Sai-Wah; Chen, Chi-Long; Chen, Jen-Yang

    2015-01-01

    (−)-Epigallocatechin-3-gallate (EGCG), a major green tea polyphenol, has been shown to inhibit the proliferation of a variety of tumor cells. Epidemiological studies have shown that drinking green tea can reduce the incidence of nasopharyngeal carcinoma (NPC), yet the underlying mechanism is not well understood. In this study, the inhibitory effect of EGCG was tested on a set of Epstein Barr virus-negative and -positive NPC cell lines. Treatment with EGCG inhibited the proliferation of NPC cells but did not affect the growth of a non-malignant nasopharyngeal cell line, NP460hTert. Moreover, EGCG treated cells had reduced migration and invasive properties. The expression of the cell adhesion molecules E-cadherin and β-catenin was found to be up-regulated by EGCG treatment, while the down-regulation of matrix metalloproteinases (MMP)-2 and MMP-9 were found to be mediated by suppression of extracellular signal-regulated kinase (ERK) phosphorylation and AP-1 and Sp1 transactivation. Spheroid formation by NPC cells in suspension was significantly inhibited by EGCG. Oral administration of EGCG was capable of suppressing tumor growth in xenografted mice bearing NPC tumors. Treatment with EGCG was found to elevate the expression of p53 and p21, and eventually led to apoptosis of NPC cells via caspase 3 activation. The nuclear translocation of NF-κB and β-catenin was also suppressed by EGCG treatment. These results indicate that EGCG can inhibit the proliferation and invasiveness, and induce apoptosis, of NPC cells, making it a promising agent for chemoprevention or adjuvant therapy of NPC. PMID:25625511

  15. The structural analysis of adhesions mediated by Ep-CAM.

    PubMed

    Balzar, M; Prins, F A; Bakker, H A; Fleuren, G J; Warnaar, S O; Litvinov, S V

    1999-01-10

    The epithelial cell adhesion molecule Ep-CAM is capable of mediating Ca2+-independent homotypic cell-cell adhesion when introduced into cells lacking their own means of cell-cell interactions. We used (confocal) immunofluorescent and (immuno-) electron microscopy to investigate the structural organization of Ep-CAM-mediated adhesions and their relation to other types of intercellular adhesions. Ep-CAM-transfected cell lines, cells of epithelial origin, and epithelial tissues were analyzed. In transfected L cells Ep-CAM brings the opposing intercellular membranes into a close proximity (approximately 10-14 nm) at sporadic contacts; however, no structures resembling junctional complexes were observed. In L cells cotransfected with Ep-CAM and E-cadherin, both molecules localize at the sites of cell-cell contact, forming independent adhesion sites with no Ep-CAM detectable within the structurally distinguishable cadherin-mediated adherens junctions. In well-differentiated carcinoma cell lines Ep-CAM colocalized with E-cadherin practically along the whole lateral domain; however, no colocalization was observed between Ep-CAM and the components of the tight junction complex (occludin and ZO-1), desmosomes (desmoplakins I/II), or cell-substrate adhesions (beta1 integrins). This was confirmed by analysis of polarized epithelium of normal colon where Ep-CAM was present at the lateral membrane including the adherens junction areas, but was fully excluded from the apical cell membrane (microvilli), tight junctions, and desmosomes. We conclude that (1) Ep-CAM does not form junctional complexes in L cells, (2) in epithelial cells, cell surface Ep-CAM is present at the lateral cell membrane, but is excluded from tight junctions and desmosomes, and (3) in epithelial cells, Ep-CAM is present within adhesions mediated by the classic cadherins (especially E-cadherin) with both types of molecules remaining as independent clusters. The colocalization with cadherins might be important

  16. Homophilic Adhesion Mechanism of Neurofascin, a Member of the L1 Family of Neural Cell Adhesion Molecules

    SciTech Connect

    Liu, Heli; Focia, Pamela J.; He, Xiaolin

    2012-02-13

    The L1 family neural cell adhesion molecules play key roles in specifying the formation and remodeling of the neural network, but their homophilic interaction that mediates adhesion is not well understood. We report two crystal structures of a dimeric form of the headpiece of neurofascin, an L1 family member. The four N-terminal Ig-like domains of neurofascin form a horseshoe shape, akin to several other immunoglobulin superfamily cell adhesion molecules such as hemolin, axonin, and Dscam. The neurofascin dimer, captured in two crystal forms with independent packing patterns, reveals a pair of horseshoes in trans-synaptic adhesion mode. The adhesion interaction is mediated mostly by the second Ig-like domain, which features an intermolecular {beta}-sheet formed by the joining of two individual GFC {beta}-sheets and a large but loosely packed hydrophobic cluster. Mutagenesis combined with gel filtration assays suggested that the side chain hydrogen bonds at the intermolecular {beta}-sheet are essential for the homophilic interaction and that the residues at the hydrophobic cluster play supplementary roles. Our structures reveal a conserved homophilic adhesion mode for the L1 family and also shed light on how the pathological mutations of L1 affect its structure and function.

  17. Characteristics of bladder transitional cell carcinoma with E-cadherin and N-cadherin double-negative expression

    PubMed Central

    LUO, YANG; ZHU, YONG-TONG; MA, LI-LI; PANG, SHI-YU; WEI, LI-JIE; LEI, CHENG-YONG; HE, CHENG-WU; TAN, WAN-LONG

    2016-01-01

    The aim of the present study was to examine the characteristics of bladder transitional cell carcinoma with E-cadherin and N-cadherin double-negative expression. An immunofluorescence assay was used to detect E-cadherin and N-cadherin expression in infiltrative bladder cancer tissues, and immunofluorescence and western blot analysis were used to detect E-cadherin and N-cadherin expression in human urinary bladder grade II carcinoma 5637, transitional cell carcinoma UMUC-3 and invasive bladder carcinoma EJ cells. Cell proliferation, migration, invasion and plate colony formation assays were used to detect the proliferative, migratory and invasive abilities and the efficiency of plate colony formation of 5637, UMUC3 and EJ cells. A tumor xenograft formation assay was used to evaluate the tumorigenic abilities of 5637, UMUC-3 and EJ cells in vivo. E-cadherin and N-cadherin double-negative expression was identified in various pathological grades of infiltrative bladder cancers. E-cadherin positive and N-cadherin negative expression was exhibited by 5637 cells. By contrast, E-cadherin negative and N-cadherin positive expression was exhibited by EJ cells, and E-cadherin and N-cadherin double-negative expression was exhibited by UMUC-3 cells. The ability of cells to proliferate, migrate, invade, and the efficiency of plate colony formation and tumorigenic abilities of the cells were significantly different among 5637, UMUC-3 and EJ cells. These cell characteristics were significantly increased in UMUC-3 cells compared with 5637 cells; however, the characteristics were significantly decreased compared with EJ cells. The biological characteristics of bladder cancer cells with E-cadherin and N-cadherin double-negative expression was between bladder cancer cells that exhibited a E-cadherin positive and N-cadherin negative expression, and bladder cancer cells that exhibited E-cadherin negative and N-cadherin positive expression. The present study deduces that the status of E-cadherin

  18. Transcriptional regulation of E-cadherin and oncoprotein E7 by valproic acid in HPV positive cell lines

    PubMed Central

    Faghihloo, Ebrahim; Akbari, Abolfazl; Adjaminezhad-Fard, Fatemeh; Mokhtari-Azad, Talat

    2016-01-01

    Objective(s): Valproic acid (VPA) has proven to be as one of the most promising useful drug with anticancer properties. In this study, we investigate the VPA effects on E-cadherin expression in HeLa, TC1, MKN45, and HCT116 cell lines. This study assesses the effects of VPA on human papillomavirus E7 expression in HPV positive cell lines. Materials and Methods: Cell lines were treated by 2 mmol/l VPA and expression of E-cadherin and E7 was analyzed by quantitative real-time PCR. Student’s t test and ANOVA were used to determine changes in expression levels. Results: The results revealed that mean of E-cadherin expression is increased by VPA 1.8 times in HCT116 and MKN45 cell lines, also the mean of E-cadherin mRNA levels is up-regulated 2.9 times in HeLa and TC1 cell lines. So, E-cadherin augmentation induced by VPA in HeLa and TC-1, HPV positive cell lines, is higher than HPV negative cell lines MKN45 and HCT116. The mean of HPV E7 expression is decreased by VPA, 4.6 times in in HeLa and TC-1 cell lines. Conclusion: This study demonstrates that re-expression of E-cadherin by VPA in HPV positive cell lines is more than HPV negative cell lines. Whereas, HPV E7 reduces the expression of E-cadherin, reduction of HPV E7 expression by VPA is related to more augmentation of E-cadherin in HPV positive cell lines. So, this study demonstrates that VPA has more anticancer properties in HPV positive cell lines, and could potentially be a promising candidate for cervical cancer treatment. PMID:27482340

  19. Fate of E-cadherin in Early RPE Cultures: Transient Accumulation of Truncated Peptides at Nonjunctional Sites

    PubMed Central

    Burke, Janice M.; Hong, Jeehee

    2006-01-01

    Purpose E-cadherin is known to accumulate variably and slowly at junctions of cultured human RPE cells. The intent of this investigation was to determine what limits E-cadherin protein accumulation in RPE cells by analyzing cultures at early postplating intervals when junctions of the dominant cadherin (N-cadherin) are first forming. Methods RPE cell lines hTERT-RPE1 and ARPE-19 and RPE cultures established from human donors were analyzed within 48 hours after plating for E-cadherin gene and protein expression (by RT-PCR and Western blotting, respectively) and for protein distribution (by immunofluorescence and immunoelectron microscopy), including codistribution with markers for organelles. Cell surface localization was analyzed by biotinylation and trypsin cleavage of extracellular cadherin domains. Results The E-cadherin gene was constitutively expressed by RPE cultures, but the protein did not accumulate substantially in early RPE cultures. Instead small amounts of newly synthesized E-cadherin were detectable only transiently, peaking within a few hours after plating, at which time the protein was in the form of peptides of variable size rather the predicted 120-kDa molecular mass. Immunoreactive E-cadherin peptides did not traffic to the cell surface and localize to junctions. Rather they codistributed with several organelles including the endoplasmic reticulum (ER; but not the Golgi), sites of protein degradation (proteasomes, lysosomes, and autophagosomes) and unusual compartments (centrosomes and apposed to subdomains of the mitochondrial network). Conclusions The results suggest that in RPE cells posttranscriptional mechanisms involving altered protein processing and rapid turnover exist to limit E-cadherin accumulation. The consequence may be to limit E-cadherin-specific inductive properties in the RPE, a cell type in which N-cadherin is the normal dominant cadherin. PMID:16877438

  20. Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepithelial migration.

    PubMed

    Sumagin, Ronen; Parkos, Charles A

    2015-01-01

    Epithelial adhesion molecules play essential roles in regulating cellular function and maintaining mucosal tissue homeostasis. Some form epithelial junctional complexes to provide structural support for epithelial monolayers and act as a selectively permeable barrier separating luminal contents from the surrounding tissue. Others serve as docking structures for invading viruses and bacteria, while also regulating the immune response. They can either obstruct or serve as footholds for the immune cells recruited to mucosal surfaces. Currently, it is well appreciated that adhesion molecules collectively serve as environmental cue sensors and trigger signaling events to regulate epithelial function through their association with the cell cytoskeleton and various intracellular adapter proteins. Immune cells, particularly neutrophils (PMN) during transepithelial migration (TEM), can modulate adhesion molecule expression, conformation, and distribution, significantly impacting epithelial function and tissue homeostasis. This review discusses the roles of key intestinal epithelial adhesion molecules in regulating PMN trafficking and outlines the potential consequences on epithelial function. PMID:25838976

  1. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction.

    PubMed

    Sager, Hendrik B; Dutta, Partha; Dahlman, James E; Hulsmans, Maarten; Courties, Gabriel; Sun, Yuan; Heidt, Timo; Vinegoni, Claudio; Borodovsky, Anna; Fitzgerald, Kevin; Wojtkiewicz, Gregory R; Iwamoto, Yoshiko; Tricot, Benoit; Khan, Omar F; Kauffman, Kevin J; Xing, Yiping; Shaw, Taylor E; Libby, Peter; Langer, Robert; Weissleder, Ralph; Swirski, Filip K; Anderson, Daniel G; Nahrendorf, Matthias

    2016-06-01

    Myocardial infarction (MI) leads to a systemic surge of vascular inflammation in mice and humans, resulting in secondary ischemic complications and high mortality. We show that, in ApoE(-/-) mice with coronary ligation, increased sympathetic tone up-regulates not only hematopoietic leukocyte production but also plaque endothelial expression of adhesion molecules. To counteract the resulting arterial leukocyte recruitment, we developed nanoparticle-based RNA interference (RNAi) that effectively silences five key adhesion molecules. Simultaneously encapsulating small interfering RNA (siRNA)-targeting intercellular cell adhesion molecules 1 and 2 (Icam1 and Icam2), vascular cell adhesion molecule 1 (Vcam1), and E- and P-selectins (Sele and Selp) into polymeric endothelial-avid nanoparticles reduced post-MI neutrophil and monocyte recruitment into atherosclerotic lesions and decreased matrix-degrading plaque protease activity. Five-gene combination RNAi also curtailed leukocyte recruitment to ischemic myocardium. Therefore, targeted multigene silencing may prevent complications after acute MI. PMID:27280687

  2. Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepithelial migration

    PubMed Central

    Sumagin, Ronen; Parkos, Charles A

    2014-01-01

    Epithelial adhesion molecules play essential roles in regulating cellular function and maintaining mucosal tissue homeostasis. Some form epithelial junctional complexes to provide structural support for epithelial monolayers and act as a selectively permeable barrier separating luminal contents from the surrounding tissue. Others serve as docking structures for invading viruses and bacteria, while also regulating the immune response. They can either obstruct or serve as footholds for the immune cells recruited to mucosal surfaces. Currently, it is well appreciated that adhesion molecules collectively serve as environmental cue sensors and trigger signaling events to regulate epithelial function through their association with the cell cytoskeleton and various intracellular adapter proteins. Immune cells, particularly neutrophils (PMN) during transepithelial migration (TEM), can modulate adhesion molecule expression, conformation, and distribution, significantly impacting epithelial function and tissue homeostasis. This review discusses the roles of key intestinal epithelial adhesion molecules in regulating PMN trafficking and outlines the potential consequences on epithelial function. PMID:25838976

  3. Modulation of lens cell adhesion molecules by particle beams.

    PubMed

    McNamara, M P; Bjornstad, K A; Chang, P Y; Chou, W; Lockett, S J; Blakely, E A

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  4. Modulation of lens cell adhesion molecules by particle beams

    NASA Technical Reports Server (NTRS)

    McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.

    2001-01-01

    Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast

  5. Prognostic significance of reduced immunohistochemical expression of E-cadherin in endometrial cancer-results of a meta-analysis

    PubMed Central

    Zheng, Xing; Du, Xue-Lian; Jiang, Tao

    2015-01-01

    Objective: Previous studies which investigated the relationship between reduced E-cadherin and prognosis of endometrial cancer were ambiguous and conflicting. Therefore, the aim of the present study was to evaluate the relationship between reduced expression of E-cadherin and endometrial cancer by meta-analysis approach. Method: AfterPubmed and Embasewere deliberately searched via the internet, 8 pieces of literaturewere totally included in final meta-analysis. After the data had been abstracted, the pulled odds ratio (OR) and hazard ratio (HR) were calculated by STATA with random or fixed effect model depending on their heterogeneity. The publication bias of included literature were tested by Begg’s funnel plot and Egger’s test. Results: The pulled data showed that the reduced expression of E-cadherin was significantly associated with overall survival (OS), HR=2.42, 95% CI: 1.50-3.89. The clinical parameters such as lymph node metastasis (LNM), myometrial invasion (MI), International Federation of Gynecology and Obstetrics (FIGO) stage, histological type and pathological type were also significantly associated with reduced expression of E-cadherin. The results of publication biasshowed there were no significant publication bias. Conclusion: Endometrial cancer patients with reduced expression of E-cadherin may have a poorer prognosis than those with normal or higher expression of E-cadherin. PMID:26770483

  6. Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression.

    PubMed

    Ren, Guangwen; Zhao, Xin; Zhang, Liying; Zhang, Jimin; L'Huillier, Andrew; Ling, Weifang; Roberts, Arthur I; Le, Anh D; Shi, Songtao; Shao, Changshun; Shi, Yufang

    2010-03-01

    Cell-cell adhesion mediated by ICAM-1 and VCAM-1 is critical for T cell activation and leukocyte recruitment to the inflammation site and, therefore, plays an important role in evoking effective immune responses. However, we found that ICAM-1 and VCAM-1 were critical for mesenchymal stem cell (MSC)-mediated immunosuppression. When MSCs were cocultured with T cells in the presence of T cell Ag receptor activation, they significantly upregulated the adhesive capability of T cells due to the increased expression of ICAM-1 and VCAM-1. By comparing the immunosuppressive effect of MSCs toward various subtypes of T cells and the expression of these adhesion molecules, we found that the greater expression of ICAM-1 and VCAM-1 by MSCs, the greater the immunosuppressive capacity that they exhibited. Furthermore, ICAM-1 and VCAM-1 were found to be inducible by the concomitant presence of IFN-gamma and inflammatory cytokines (TNF-alpha or IL-1). Finally, MSC-mediated immunosuppression was significantly reversed in vitro and in vivo when the adhesion molecules were genetically deleted or functionally blocked, which corroborated the importance of cell-cell contact in immunosuppression by MSCs. Taken together, these findings reveal a novel function of adhesion molecules in immunoregulation by MSCs and provide new insights for the clinical studies of antiadhesion therapies in various immune disorders. PMID:20130212

  7. Ferulic acid attenuates adhesion molecule expression in gamma-radiated human umbilical vascular endothelial cells.

    PubMed

    Ma, Zeng-Chun; Hong, Qian; Wang, Yu-Guang; Tan, Hong-Ling; Xiao, Cheng-Rong; Liang, Qian-De; Cai, Shao-Hua; Gao, Yue

    2010-01-01

    Radiation induces an important inflammatory response in the irradiated organs, characterized by leukocyte infiltration and vascular changes. Since adhesion molecules play an important role in facilitating the immune response at the inflammation sites, interfering with the expression of these molecules may be an important therapeutic target of radiation induced inflammation. Many adhesion molecules such as intercellular cell adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) have been identified in radiation. Ferulic acid (FA), an effective radioprotector during radiotherapy, is widely used in endothelium protection. The present study examined the effect of FA on the induction of adhesion molecules by gamma-radiation and the mechanisms of its effect in gamma-irradiated human umbilical vein endothelial cells (HUVECs). HUVECs were pretreated for 18 h with FA and then exposed to 10 Gy radiation. The result of cell adhesion assay showed FA inhibited radiation-induced U937 adhesion to HUVECs. FA prevented induction of ICAM-1 and VCAM-1 expression in a concentration-dependent manner after stimulation with radiation at the level of mRNA and protein. Inhibitors of the extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) pathways were used to determine which pathway was involved in FA action; the result showed that the inhibitory effect of FA on adhesion molecule expression was mediated by the blockade of JNK. FA appears to be a potential therapeutic agent for treating various inflammatory disorders including radiation induced inflammation. PMID:20460750

  8. N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion

    SciTech Connect

    A Fogel; Y Li; Q Wang; T Lam; Y Modis; T Biederer

    2011-12-31

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.

  9. Syndecan-2 enhances E-cadherin shedding and fibroblast-like morphological changes by inducing MMP-7 expression in colon cancer cells.

    PubMed

    Jang, Bohee; Jung, Hyejung; Chung, Heesung; Moon, Byung-In; Oh, Eok-Soo

    2016-08-12

    E-cadherin plays a mechanical role in mediating cell-cell interactions and maintaining epithelial tissue integrity, and the loss of E-cadherin function has been implicated in cancer progression and metastasis. Syndecan-2, a cell-surface heparan sulfate proteoglycan, is upregulated during the development of colon cancer. Here, we assessed the functional relationship between E-cadherin and syndecan-2. We found that stable overexpression of syndecan-2 in a human colorectal adenocarcinoma cell line (HT29) enhanced the proteolytic shedding of E-cadherin to conditioned-media. Either knockdown of matrix metalloproteinase 7 (MMP-7) or inhibition of MMP-7 activity using GM6001 significantly reduced the extracellular shedding of E-cadherin, suggesting that syndecan-2 mediates E-cadherin shedding via MMP-7. Consistent with this notion, enhancement of MMP-7 expression by interleukin-1α treatment increased the shedding of E-cadherin. Conversely, the specific reduction of either syndecan-2 or MMP-7 reduced the shedding of E-cadherin. HT29 cells overexpressing syndecan-2 showed significantly lower cell-surface expression of E-cadherin, decreased cell-cell contact, a more fibroblastic cell morphology, and increased expression levels of ZEB-1. Taken together, these data suggest that syndecan-2 induces extracellular shedding of E-cadherin and supports the acquisition of a fibroblast-like morphology by regulating MMP-7 expression in a colon cancer cell line. PMID:27270030

  10. Activated macrophages down-regulate expression of E-cadherin in hepatocellular carcinoma cells via NF-κB/Slug pathway.

    PubMed

    Wang, Xianteng; Wang, Hao; Li, Guosheng; Song, Yonghong; Wang, Shurong; Zhu, Faliang; Guo, Chun; Zhang, Lining; Shi, Yongyu

    2014-09-01

    Hepatocellular carcinomas are an aggressive malignancy mainly due to metastasis or postsurgical recurrence. Expression of E-cadherin is strongly reduced in Hepatocellular carcinoma (HCC) tissues, and its downregulation is connected to invasiveness and metastasis in hepatocellular carcinomas. The previous study showed that the supernatant from activated macrophages can downregulate the expression of E-cadherin in HCC cells. The partial known molecular mechanism is that tyrosine kinases c-Src- and EGFR phosphorylate β-catenin and E-cadherin leading to destabilization of E-cadherin/β-catenin complex. The aim of this study is to clarify other mechanism by which activated macrophages downregulate the expression of E-cadherin. We detect the expression of E-cadherin and macrophage infiltration in hepatocellular carcinoma tissues by double-staining immunohistochemistry and evaluate the relationship between macrophages and E-cadherin expression in hepatocellular carcinoma cells in vitro experiments. We found that reduced expression of E-cadherin was associated with macrophage infiltration along the border between the tumor nest and stroma in hepatocellular carcinoma tissues. Besides, protein expression of E-cadherin was significantly decreased in hepatocellular carcinoma cells co-cultured with macrophages derived from THP-1 cells. Consistently, mRNA expression of E-cadherin was also decreased in cancer cells co-cultured with THP-1-differentiated macrophages. Moreover, the downregulation of E-cadherin expression was companied by upregulation of Slug expression in cancer cells with conditional medium from THP-1-differentiated macrophage culture. The change in expression of E-cadherin and Slug was abrogated when NF-κB signaling pathway was blocked. All the findings suggested that macrophages contributed to the decreased expression of E-cadherin by NF-κB/Slug pathway in hepatocellular carcinomas. PMID:24894673

  11. Targeting Endothelial Adhesion Molecule Transcription for Treatment of Inflammatory Disease: A Proof-of-Concept Study

    PubMed Central

    Ashander, Liam M.; Appukuttan, Binoy; Ma, Yuefang; Gardner-Stephen, Dione; Smith, Justine R.

    2016-01-01

    Targeting the endothelial adhesion molecules that control leukocyte trafficking into a tissue has been explored as a biological therapy for inflammatory diseases. However, these molecules also participate in leukocyte migration for immune surveillance, and inhibiting the physiological level of an adhesion molecule might promote infection or malignancy. We explored the concept of targeting endothelial adhesion molecule transcription during inflammation in a human system. Intercellular adhesion molecule 1 (ICAM-1) mediates leukocyte migration across the retinal endothelium in noninfectious posterior uveitis. We observed an increase in the transcription factor, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NF-κB1), in parallel with ICAM-1, in human retinal endothelial cells treated with tumor necrosis factor-alpha (TNF-α), and identified putative binding sites for NF-κB1 within the ICAM-1 regulatory region. We targeted induced NF-κB1 expression in endothelial cells with small interfering (si)RNA. Knockdown of NF-κB1 significantly decreased cell surface expression of ICAM-1 protein induced by TNF-α but did not reduce constitutive ICAM-1 expression. Consistently, NF-κB1 knockdown significantly reduced leukocyte binding to cell monolayers in the presence of TNF-α but did not impact baseline binding. Findings of this proof-of-concept study indicate that induced transcription of endothelial adhesion molecules might be targeted therapeutically for inflammatory disease in humans. PMID:27293321

  12. [The expression level of adhesion molecules on neutrophils depending at segmentation of their nuclei].

    PubMed

    Kashutin, S L; Danilov, S I; Vereshchagina, E N; Kluchareva, S V

    2013-11-01

    The article deals with results of detection of expression level of adhesion molecules on neutrophils and segmentation of their nuclei. It is established that in conditions of absence of antigen stimulation neutrophils of circulating pool express molecules of L-selectin in 53.34%, LFA-1 molecules in 65.64%, ICAM-1 in 40.51%, LE4-3 in 58.72% and PECAM-1 in 59.74%. The full readiness to realization of phase of sliding, strong adhesion and immediately transmigration itselfis detected in neutrophils with five segments in nucleus. PMID:24640111

  13. Homeoprotein Six2 promotes breast cancer metastasis via transcriptional and epigenetic control of E-cadherin expression

    PubMed Central

    Wang, Chu-An; Drasin, David; Pham, Catherine; Jedlicka, Paul; Zaberezhnyy, Vadym; Guney, Michelle; Li, Howard; Nemenoff, Raphael; Costello, James C.; Tan, Aik-Choon; Ford, Heide L.

    2014-01-01

    Misexpression of developmental transcription factors occurs often in human cancers, where embryonic programs may be reinstated in a context that promotes or sustains malignant development. In this study, we report the involvement of the kidney development transcription factor Six2 in the metastatic progression of human breast cancer. We found that Six2 promoted breast cancer metastasis by a novel mechanism involving both transcriptional and epigenetic regulation of E-cadherin. Downregulation of E-cadherin by Six2 was necessary for its ability to increase soft agar growth and in vivo metastasis in an immune competent mouse model of breast cancer. Mechanistic investigations showed that Six2 represses E-cadherin expression by upregulating Zeb2, in part through a microRNA-mediated mechanism, and by stimulating promoter methylation of the E-cadherin gene (Cdh1). Clinically, SIX2 expression correlated inversely with CDH1 expression in human breast cancer specimens, corroborating the disease relevance of their interaction. Our findings establish Six2 as a regulator of metastasis in human breast cancers and demonstrate an epigenetic function for SIX family transcription factors in metastatic progression through the regulation of E-cadherin. PMID:25348955

  14. Loss of functional E-cadherin renders cells more resistant to the apoptotic agent taxol in vitro

    SciTech Connect

    Ferreira, Paulo; Oliveira, Maria Jose; Beraldi, Eliana; Mateus, Ana Rita; Nakajima, Takashi; Gleave, Martin; Yokota, Jun; Carneiro, Fatima; Huntsman, David; Seruca, Raquel; Suriano, Gianpaolo . E-mail: gsuriano@ipatimup.pt

    2005-10-15

    Experimental evidence supports a role for E-cadherin in suppressing invasion, metastasis, and proliferation. Germline mutations of the E-cadherin represent the genetic cause of hereditary diffuse gastric cancer (HDGC). In this type of tumor, isolated cancer cells permeate the basal membrane and paradoxically survive in the gastric wall in the absence of contact with neighbor epithelial cells or with the extracellular matrix. This suggests that upon E-cadherin deregulation, cells acquired resistance to apoptosis. To test this hypothesis, CHO cells stably expressing either wild-type E-cadherin or the HDGC-related germline mutations T340A and V832M were seeded either on a thin layer of collagen type I or on plastic and then subjected to the apoptotic agent taxol. We found that in vitro functional E-cadherin renders cells more sensitive to the effect of taxol. Our results also indicate that this effect is associated to decreased level of the anti-apoptotic bcl-2 protein.

  15. Interaction of E-cadherin and PTEN regulates morphogenesis and growth arrest in human mammary epithelial cells

    SciTech Connect

    Fournier, Marcia V.; Fata, Jimmie E.; Martin, Katherine J.; Yaswen, Paul; Bissell, Mina J.

    2009-06-03

    PTEN is a dual function phosphatase with tumor suppressor function compromised in a wide spectrum of cancers. Because tissue polarity and architecture are crucial modulators of normal and malignant behavior, we postulated that PTEN may play a role in maintenance of tissue integrity. We used two non-malignant human mammary epithelial cell lines (HMECs) that form polarized, growth-arrested structures (acini) when cultured in 3-dimensional laminin-rich extracellular matrix gels (3D lrECM). As acini begin to form, PTEN accumulates in both the cytoplasm, and at cell-cell contacts where it colocalizes with E-cadherin/{beta}-catenin complex. Reduction of PTEN levels by shRNA in lrECM prevents formation of organized breast acini and disrupts growth arrest. Importantly, disruption of acinar polarity and cell-cell contact by E-cadherin function-blocking antibodies reduces endogenous PTEN protein levels and inhibits its accumulation at cell-cell contacts. Conversely, in SKBR3 breast cancer cells lacking endogenous E-cadherin expression, exogenous introduction of E-cadherin gene causes induction of PTEN expression and its accumulation at sites of cell interactions. These studies provide evidence that E-cadherin regulates both the PTEN protein levels and its recruitment to cell-cell junctions in 3D lrECM indicating a dynamic reciprocity between architectural integrity and the levels and localization of PTEN. This interaction thus appears to be a critical integrator of proliferative and morphogenetic signaling in breast epithelial cells.

  16. E-cadherin-negative acinar cell carcinoma of the pancreas: report of a case showing a solid pseudopapillary growth pattern.

    PubMed

    Tajima, Shogo; Waki, Michihiko; Azuma, Masaki; Koda, Kenji; Ohata, Akihiko

    2016-09-01

    E-cadherin expression patterns in acinar cell carcinomas (ACCs) of the pancreas have not been well documented. Herein, we present a hitherto undescribed case of E-cadherin-negative ACC with a solid pseudopapillary growth pattern in a 65-year-old man. We used an antibody against the extracellular domain of E-cadherin. As a further unusual status in ACC, faint β-catenin expression was observed in the cytoplasm of carcinoma cells. Morphological distinction from a solid pseudopapillary neoplasm (SPN) of the pancreas might be problematic in such a case, because of their similarities concerned with the growth pattern and E-cadherin negativity. Without nuclear accumulation of β-catenin, a diagnosis of SPN was almost excluded. Immunoreactivity for trypsin and BCL10 made an accurate diagnosis of ACC to this case. The tumor recurred 10 months post-surgery as rapidly enlarging masses in the liver, presumably indicating the aggressiveness of the E-cadherin-negative phenotype among ACCs. PMID:25600280

  17. Colorectal adenocarcinoma with mucinous component: relation of MMP-13, EGFR, and E-cadherin expressions to clinicopathological features and prognosis.

    PubMed

    Foda, Abd Al-Rahman Mohammad; El-Hawary, Amira Kamal; Aziz, Azza Abdel

    2015-06-01

    The aim of this study was to compare colorectal adenocarcinoma with mucinous component, ordinary adenocarcinoma (OA) and mucinous adenocarcinoma (MA) regarding clinicopathological parameters, survival, EGFR, MMP-13, and E-cadherin. We studied tumor tissue specimens from 28 patients with adenocarcinoma with mucinous component, 47 with OA, and 56 with MA, who underwent radical surgery from January 2007 to January 2012 at the Gastroenterology Centre, Mansoura University, Egypt. High density manual tissue microarrays were constructed and immunohistochemistry for EGFR, MMP-13, and E-cadherin was done. Colorectal adenocarcinoma with mucinous component (AWMC) was significantly associated with more perineural invasion, lower EGFR, and MMP-13 expressions than OA, with no difference in E-cadherin expression. Conversely, only microscopic abscess formation was significantly more with colorectal AWMC than MC with no difference in EGFR, MMP-13 and E-cadherin expression between both groups. Colorectal AWMC showed a better survival than MA with no difference with OA. In a univariate analysis, EGFR, MMP-13, and E-cadherin expressions did not show a significant impact on disease-free or overall survival in patients with colorectal AWMC. Colorectal AWMC remains a vague entity that resembles OA in some clinicopathological and molecular respects as well as MA. PMID:25907382

  18. Intercellular adhesion molecule 1: recent findings and new concepts involved in mammalian spermatogenesis

    PubMed Central

    Mruk, Dolores D.; Xiao, Xiang; Lydka, Marta; Li, Michelle W.M.; Bilinska, Barbara; Cheng, C. Yan

    2013-01-01

    Spermatogenesis, the process of spermatozoa production, is regulated by several endocrine factors, including testosterone, follicle stimulating hormone, luteinizing hormone and estradiol 17β. For spermatogenesis to reach completion, developing germ cells must traverse the seminiferous epithelium while remaining transiently attached to Sertoli cells. If germ cell adhesion were to be compromised for a period of time longer than usual, germ cells would slough the seminiferous epithelium and infertility would result. Presently, Sertoli-germ cell adhesion is known to be mediated largely by classical and desmosomal cadherins. More recent studies, however, have begun to expand long-standing concepts and to examine the roles of other proteins such as intercellular adhesion molecules. In this review, we focus on the biology of intercellular adhesion molecules in the mammalian testis, hoping that this information is useful in the design of future studies. PMID:23942142

  19. The neural cell adhesion molecule (NCAM) heparin binding domain binds to cell surface heparan sulfate proteoglycans.

    PubMed

    Kallapur, S G; Akeson, R A

    1992-12-01

    The neural cell adhesion molecule (NCAM) has been strongly implicated in several aspects of neural development. NCAM mediated adhesion has been proposed to involve a homophilic interaction between NCAMs on adjacent cells. The heparin binding domain (HBD) is an amino acid sequence within NCAM and has been shown to be involved in NCAM mediated adhesion but the relationship of this domain to NCAM segments mediating homophilic adhesion has not been defined. In the present study, a synthetic peptide corresponding to the HBD has been used as a substrate to determine its role in NCAM mediated adhesion. A neural cell line expressing NCAM (B35) and its derived clone which does not express NCAM (B35 clone 3) adhered similarly to plates coated with HBD peptide. A polyclonal antiserum to NCAM inhibited B35 cell-HBD peptide adhesion by only 10%, a value not statistically different from inhibition caused by preimmune serum. Both these experiments suggested no direct NCAM-HBD interactions. To test whether the HBD peptide bound to cell surface heparan sulfate proteoglycans (HSPG), HSPG synthesis was inhibited using beta-D-xyloside. After treatment, B35 cell adhesion to the HBD peptide, but not to control substrates, was significantly decreased. B35 cell adhesion to the HBD peptide could be inhibited by 10(-7) M heparin but not chondroitin sulfate. Preincubation of the substrate (HBD peptide) with heparin caused dramatic reduction of B35 cell-HBD peptide adhesion whereas preincubation of B35 cells with heparin caused only modest reductions in cell-HBD adhesion. Furthermore, inhibition of HSPG sulfation with sodium chlorate also decreased the adhesion of B35 cells to the HBD peptide. These results strongly suggest that, within the assay system, the NCAM HBD does not participate in homophilic interactions but binds to cell surface heparan sulfate proteoglycan. This interaction potentially represents an important mechanism of NCAM adhesion and further supports the view that NCAM has

  20. Circulating intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1 (VCAM-1) in human malignancies.

    PubMed Central

    Banks, R. E.; Gearing, A. J.; Hemingway, I. K.; Norfolk, D. R.; Perren, T. J.; Selby, P. J.

    1993-01-01

    Cellular adhesion molecules have been implicated in tumour progression and metastasis. This study examines for the first time the serum concentrations of circulating VCAM-1 and E-selectin in a consecutive series of 110 cancer patients seen in a general medical oncology clinic, and confirms and extends previous studies reporting measurement of circulating ICAM-1. Soluble ICAM-1 and VCAM-1 levels were significantly higher in all the patient groups compared with the controls whereas soluble E-selectin was significantly higher in the ovarian, breast and GI cancer groups and lower in the myeloma group. The significance of these results together with the possible sources and stimuli for release of these adhesion molecules are discussed. PMID:7686390

  1. Integrins and adhesion molecules as targets to treat inflammatory bowel disease.

    PubMed

    Bravatà, Ivana; Allocca, Mariangela; Fiorino, Gionata; Danese, Silvio

    2015-12-01

    Inflammatory bowel diseases (IBD) present a typically relapsing-remitting behavior and are characterized by a disabling and progressive course. Anti-tumor necrosis factor (TNF)-α agents have drastically changed the therapeutic management of IBD. However, a significant proportion of patients does not have a primary response, some patients lose response overtime and/or experience side effects. Recently, anti-adhesion molecules were investigated and showed efficacy with a good safety profile. Vedolizumab was recently approved for both Crohn's disease (CD) and ulcerative colitis (UC) and several other molecules are under evaluation in this field. Anti-adhesion molecules could represent a potential therapeutic option for future therapy in IBD. In this review we report the efficacy and safety of major anti-adhesion drugs in active IBD patients. PMID:26687159

  2. Immunohistochemical Analysis of E-Cadherin, p53 and Inhibin-α Expression in Hydatidiform Mole and Hydropic Abortion.

    PubMed

    Erol, Onur; Süren, Dinç; Tutuş, Birsel; Toptaş, Tayfun; Gökay, Ahmet Arda; Derbent, Aysel Uysal; Özel, Mustafa Kemal; Sezer, Cem

    2016-07-01

    The purpose of this study was to investigate the role of E-cadherin, p53, and inhibin-α immunostaining in the differential diagnosis of hydropic abortion (HA), partial hydatidiform mole (PHM), and complete hydatidiform mole (CHM). E-cadherin, p53, and inhibin-α protein expression patterns were investigated immunohistochemically using paraffin -embedded tissue sections from histologically diagnosed cases of HA (n = 23), PHM (n = 24), and CHM (n = 23). Expression patterns of these markers were scored semi-quantitatively according to the staining intensity, percentage of positive cells, and immunoreactivity score. Classification of cases was established on histologic criteria and supported by the molecular genotyping. Immunostaining allowed the identification of specific cell types with E-cadherin, p53, and inhibin-α expression in all cases. E-cadherin expression was detected on the cell surface of villous cytotrophoblasts. We observed a marked decline in the expression of E-cadherin from HAs to PHMs to CHMs. The p53-positive reaction was restricted to the nucleus of villous cytotrophoblasts. Significantly increased p53 expression was observed in CHMs, compared with HAs and PHMs. The expression of inhibin-α was localised in the cytoplasm of villous syncytiotrophoblasts, and the expression of this marker was significantly higher in PHMs and CHMs than HAs. In conclusion, immunohistochemical analysis of E-cadherin, p53, and inhibin-α expression could serve as a useful adjunct to conventional methods in the differential diagnosis of HA, PHM, and CHM. PMID:26683836

  3. ADHESION AND REPULSION MOLECULES IN DEVELOPMENTAL NEUROTOXIC INJURY

    EPA Science Inventory

    Work during the next year will focus on establishing structural and functional correlations between the changes in Eph/ephrin expression and MeHg exposure. We have begun to characterize the cellular expression of the specific molecules using in situ hybridization ...

  4. Immunohistochemical detection of cytokines and cell adhesion molecules in the synovial membrane.

    PubMed

    Parker, A; Smith, M D

    1999-06-01

    This paper describes the immunohistochemical techniques which can be used to detect cytokines and cell adhesion molecules in synovial membrane tissue, including a list of reagents and possible problems in each technique. It also describes three methods of quantitation of the resultant immunohistochemical detection, including the recent innovation computer-assisted digital video image analysis, and lists the advantages and disadvantages of each quantitation technique. This information will be a useful summary for any scientist interested in applying such techniques to the detection of cytokines and cell adhesion molecules in human tissue sections. PMID:10420385

  5. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1.

    PubMed

    Brown, Alan; Turner, Louise; Christoffersen, Stig; Andrews, Katrina A; Szestak, Tadge; Zhao, Yuguang; Larsen, Sine; Craig, Alister G; Higgins, Matthew K

    2013-02-22

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria. The PfEMP1 family of adhesive proteins is responsible for this sequestration by mediating interactions with diverse human ligands. In addition, as the primary targets of acquired, protective immunity, the PfEMP1s are potential vaccine candidates. PfEMP1s contain large extracellular ectodomains made from CIDR (cysteine-rich interdomain regions) and DBL (Duffy-binding-like) domains and show extensive variation in sequence, size, and domain organization. Here we use biophysical methods to characterize the entire ∼300-kDa ectodomain from IT4VAR13, a protein that interacts with the host receptor, intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLβ domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1 ectodomain in complex with its ligand. They show that it combines a modular domain arrangement consisting of individual ligand binding domains, with a defined higher order architecture that exposes the ICAM-1 binding surface to allow adhesion. PMID:23297413

  6. CCN4 induces vascular cell adhesion molecule-1 expression in human synovial fibroblasts and promotes monocyte adhesion.

    PubMed

    Liu, Ju-Fang; Hou, Sheng-Mou; Tsai, Chun-Hao; Huang, Chun-Yin; Hsu, Chin-Jung; Tang, Chih-Hsin

    2013-05-01

    CCN4 is a cysteine-rich protein that belongs to the Cyr61, CTGF, Nov family of matricellular proteins. Here, we investigated the intracellular signaling pathways involved in CCN4-induced vascular cell adhesion molecule-1 expression in human osteoarthritis synovial fibroblasts. Stimulation of OASFs with CCN4 induced VCAM-1 expression. CCN4-induced VCAM-1 expression was attenuated by αvβ5 or α6β1 integrin antibody, Syk inhibitor, PKCδ inhibitor (rottlerin), JNK inhibitor (SP600125), and AP-1 inhibitors (curcumin and tanshinone). Stimulation of cells with CCN4 increased Syk, PKCδ, and JNK activation. Treatment of OASFs with CCN4 also increased c-Jun phosphorylation, AP-1-luciferase activity, and c-Jun binding to the AP-1 element in the VCAM-1 promoter. Moreover, up-regulation of VCAM-1 increased the adhesion of monocytes to OASF monolayers, and this adhesion was attenuated by transfection with a VCAM-1 siRNA. Our results suggest that CCN4 increases VCAM-1 expression in human OASFs via the Syk, PKCδ, JNK, c-Jun, and AP-1 signaling pathways. The CCN4-induced VCAM-1 expression promoted monocyte adhesion to human OASFs. PMID:23313051

  7. Downregulated MicroRNA-200a in Meningiomas Promotes Tumor Growth by Reducing E-Cadherin and Activating the Wnt/β-Catenin Signaling Pathway▿

    PubMed Central

    Saydam, Okay; Shen, Yiping; Würdinger, Thomas; Senol, Ozlem; Boke, Elvan; James, Marianne F.; Tannous, Bakhos A.; Stemmer-Rachamimov, Anat O.; Yi, Ming; Stephens, Robert M.; Fraefel, Cornel; Gusella, James F.; Krichevsky, Anna M.; Breakefield, Xandra O.

    2009-01-01

    Meningiomas, one of the most common human brain tumors, are derived from arachnoidal cells associated with brain meninges, are usually benign, and are frequently associated with neurofibromatosis type 2. Here, we define a typical human meningioma microRNA (miRNA) profile and characterize the effects of one downregulated miRNA, miR-200a, on tumor growth. Elevated levels of miR-200a inhibited meningioma cell growth in culture and in a tumor model in vivo. Upregulation of miR-200a decreased the expression of transcription factors ZEB1 and SIP1, with consequent increased expression of E-cadherin, an adhesion protein associated with cell differentiation. Downregulation of miR-200a in meningiomas and arachnoidal cells resulted in increased expression of β-catenin and cyclin D1 involved in cell proliferation. miR-200a was found to directly target β-catenin mRNA, thereby inhibiting its translation and blocking Wnt/β-catenin signaling, which is frequently involved in cancer. A direct correlation was found between the downregulation of miR-200a and the upregulation of β-catenin in human meningioma samples. Thus, miR-200a appears to act as a multifunctional tumor suppressor miRNA in meningiomas through effects on the E-cadherin and Wnt/β-catenin signaling pathways. This reveals a previously unrecognized signaling cascade involved in meningioma tumor development and highlights a novel molecular interaction between miR-200a and Wnt signaling, thereby providing insights into novel therapies for meningiomas. PMID:19703993

  8. Drosophila p120-catenin is crucial for endocytosis of the dynamic E-cadherin-Bazooka complex.

    PubMed

    Bulgakova, Natalia A; Brown, Nicholas H

    2016-02-01

    The intracellular functions of classical cadherins are mediated through the direct binding of two catenins: β-catenin and p120-catenin (also known as CTNND1 in vertebrates, and p120ctn in Drosophila). Whereas β-catenin is crucial for cadherin function, the role of p120-catenin is less clear and appears to vary between organisms. We show here that p120-catenin has a conserved role in regulating the endocytosis of cadherins, but that its ancestral role might have been to promote endocytosis, followed by the acquisition of a new inhibitory role in vertebrates. In Drosophila, p120-catenin facilitates endocytosis of the dynamic E-cadherin-Bazooka subcomplex, which is followed by its recycling. The absence of p120-catenin stabilises this subcomplex at the membrane, reducing the ability of cells to exchange neighbours in embryos and expanding cell-cell contacts in imaginal discs. PMID:26698216

  9. Decreased soluble cell adhesion molecules after tirofiban infusion in patients with unstable angina pectoris

    PubMed Central

    Ercan, Ertugrul; Bozdemir, Huseyin; Tengiz, Istemihan; Sekuri, Cevad; Aliyev, Emil; Akilli, Azem; Akin, Mustafa

    2004-01-01

    Aim The inflammatory response, initiated by neutrophil and monocyte adhesion to endothelial cells, is important in the pathogenesis of acute coronary syndromes. Platelets play an important role in inflammatory process by interacting with monocytes and neutrophils. In this study, we investigated the effect of tirofiban on the levels of cell adhesion molecules (soluble intercellular adhesion molecule-1, sICAM-1, and vascular cell adhesion molecule-1, sVCAM-1) in patients with unstable angina pectoris (AP). Methods Thirty-five patients with unstable AP (Group I), ten patients with stable AP (Group II) and ten subjects who had angiographycally normal coronary arteries (Group III) were included the study. Group I was divided into two subgroups for the specific treatment regimens: Group IA (n = 15) received tirofiban and Group IB (n = 20) did not. Blood samples for investigating the cell adhesion molecules were drawn at zero time (baseline; 0 h) in all patients and at 72 h in Group I. Results The baseline levels of sICAM-1 and sVCAM-1 were higher in Group I than in Groups II and III. They were higher in Group IA than in Group IB. However, the sICAM-1 and sVCAM-1 levels decreased significantly in Group IA after tirofiban infusion. In contrast, these levels remained unchanged or were increased above the baseline value in Group IB at 72 h. Conclusion The levels of cell adhesion molecules in patients with unstable AP decreased significantly after tirofiban infusion. Inhibition of platelet function by specific glycoprotein IIb/IIIa antagonists may decrease platelet-mediated inflammation and the ischemic end-point. PMID:15059285

  10. Ionizing radiation mediates expression of cell adhesion molecules in distinct histological patterns within the lung.

    PubMed

    Hallahan, D E; Virudachalam, S

    1997-06-01

    Inflammatory cell infiltration of the lung is a predominant histopathological change that occurs during radiation pneumonitis. Emigration of inflammatory cells from the circulation requires the interaction between cell adhesion molecules on the vascular endothelium and molecules on the surface of leukocytes. We studied the immunohistochemical pattern of expression of cell adhesion molecules in lungs from mice treated with thoracic irradiation. After X-irradiation, the endothelial leukocyte adhesion molecule 1 (ELAM-1; E-selectin) was primarily expressed in the pulmonary endothelium of larger vessels and minimally in the microvascular endothelium. Conversely, the intercellular adhesion molecule 1 (ICAM-1; CD54) was expressed in the pulmonary capillary endothelium and minimally in the endothelium of larger vessels. Radiation-mediated E-selectin expression was first observed at 6 h, whereas ICAM-1 expression initially increased at 24 h after irradiation. ICAM-1 and E-selectin expression persisted for several days. P-selectin is constitutively expressed in Weibel-Palade bodies in the endothelium, which moved to the vascular lumen within 30 min after irradiation. P-selectin was not detected in the pulmonary endothelium at 6 h after irradiation. The radiation dose required for increased cell adhesion molecule expression within the pulmonary vascular endothelium was 2 Gy, and expression increased in a dose-dependent manner. These data demonstrate that ICAM-1 and E-selectin expression is increased in the pulmonary endothelium following thoracic irradiation. The pattern of expression of E-selectin, P-selectin, and ICAM-1 is distinct from one another. PMID:9187101

  11. Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.

    1994-01-01

    Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to Carcinoembryonic Antigen (CEA), an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.

  12. Effect of ultraviolet light on the expression of adhesion molecules and T lymphocyte adhesion to human dermal microvascular endothelial cells.

    PubMed

    Chung, Kee Yang; Chang, Nam Soo; Park, Yoon Kee; Lee, Kwang Hoon

    2002-04-01

    In order to determine the effect of ultraviolet radiation (UVR) on the cell adhesion molecules expressed in human dermal microvascular endothelial cells (HDMEC), the cells were exposed to varying UVR doses and the cell surface was examined for expression of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM- 1), and E-selectin. The effect of UVB irradiation on the binding of T lymphocytes to HDMEC was also examined. UVA irradiation did not affect the surface expression of ICAM-1, VCAM-1, or E-selectin on the HDMEC. However, following UVB exposure, ELISA demonstrated a significant increase in the baseline ICAM-1 cell surface expression on the HDMEC. However, no induction of either E-selectin or VCAM-1 was noted. UVB also significantly augmented ICAM-1 induction by IL-1alpha and TNF-alpha. VCAM-1 was induced by stimulating HDMEC with IL-1alpha following a UVB irradiation dose of 100 mJ/cm2. Flow cytometric analysis of the HDMEC stimulated with IL-1alpha for 24h demonstrated that 12% of the cells expressed VCAM-1 but either IL-1alpha or UVB irradiation alone failed to induce VCAM-1 expression. Enhancement of T cell-HDMEC binding by IL-1alpha or TNF-alpha treatment was not significantly affected after UVB irradiation. This study demonstrated that UVB irradiation can alter ICAM-1 and VCAM-1 expression on the HDMEC surface and that augmentation of ICAM-1 expression and the IL-1alpha-dependent induction of VCAM-1 following UVB exposure might be important steps in the pathogenesis of sunburn. PMID:11971210

  13. Reduction in cellular and vascular rejection by blocking leukocyte adhesion molecule receptors.

    PubMed Central

    Sadahiro, M.; McDonald, T. O.; Allen, M. D.

    1993-01-01

    Whether antibody blockage of leukocyte receptors for intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 would prevent cardiac graft rejection was studied in a rabbit heterotopic transplant model. Monoclonal antibody 60.3, anti-CD18 (intercellular adhesion molecule-1 receptor, Group 1, n = 10) and monoclonal antibody HP1/2, anti-VLA-alpha 4 (vascular cell adhesion molecule-1 receptor, Group 2, n = 10) were administered to transplanted unimmunosuppressed animals. At 7 days, donor heart histology was compared to transplanted untreated controls (Group 3, n = 11). Peripheral white blood cell counts on postoperative day 2 were significantly higher in both treatment groups than controls. Significant increases in circulating neutrophils occurred in Group 1 (P < or = 0.05); lymphocytes predominated in Group 2 (P < or = 0.05). A significant reduction in cellular rejection was seen in Group 1 (P < or = 0.05) but not Group 2 hearts. Group 1 hearts demonstrated localization of lymphocytes to perivenular collections, whereas Group 2 hearts evidenced diffuse interstitial infiltration. Both treatment groups demonstrated a reduction in transplant arteritis compared to controls. Results suggest that monoclonal antibody 60.3 (anti-CD18) may hold promise as a therapeutic agent for both cellular and vascular rejection. Monoclonal antibody HP1/2 (anti-VLA-alpha 4) may reduce vascular rejection disproportionate to cellular rejection. Images Figure 2 Figure 3 Figure 4 PMID:8096120

  14. Two waves of neutrophil emigration in response to corneal epithelial abrasion: Distinct adhesion molecule requirements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PURPOSE: Corneal abrasion results in an inflammatory response characterized by leukocyte emigration into the corneal stroma. Adhesion molecules play a critical role in leukocyte emigration to wound sites, but differences are evident in different vascular beds. In this study, the contributions of two...

  15. Adhesion molecules in peritoneal dissemination: function, prognostic relevance and therapeutic options.

    PubMed

    Sluiter, Nina; de Cuba, Erienne; Kwakman, Riom; Kazemier, Geert; Meijer, Gerrit; Te Velde, Elisabeth Atie

    2016-06-01

    Peritoneal dissemination is diagnosed in 10-25 % of colorectal cancer patients. Selected patients are treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. For these patients, earlier diagnosis, optimised selection criteria and a personalised approach are warranted. Biomarkers could play a crucial role here. However, little is known about possible candidates. Considering tumour cell adhesion as a key step in peritoneal dissemination, we aim to provide an overview of the functional importance of adhesion molecules in peritoneal dissemination and discuss the prognostic, diagnostic and therapeutic options of these candidate biomarkers. A systematic literature search was conducted according to the PRISMA guidelines. In 132 in vitro, ex vivo and in vivo studies published between 1995 and 2013, we identified twelve possibly relevant adhesion molecules in various cancers that disseminate peritoneally. The most studied molecules in tumour cell adhesion are integrin α2β1, CD44 s and MUC16. Furthermore, L1CAM, EpCAM, MUC1, sLe(x) and Le(x), chemokine receptors, Betaig-H3 and uPAR might be of clinical importance. ICAM1 was found to be less relevant in tumour cell adhesion in the context of peritoneal metastases. Based on currently available data, sLe(a) and MUC16 are the most promising prognostic biomarkers for colorectal peritoneal metastases that may help improve patient selection. Different adhesion molecules appear expressed in haematogenous and transcoelomic spread, indicating two different attachment processes. However, our extensive assessment of available literature reveals that knowledge on metastasis-specific genes and their possible candidates is far from complete. PMID:27074785

  16. E-cadherin expression and prognosis of head and neck squamous cell carcinoma: evidence from 19 published investigations

    PubMed Central

    Ren, Xusheng; Wang, Jianning; Lin, Xuefen; Wang, Xuxia

    2016-01-01

    Objective The objective of this study was to review the published literature and investigate whether E-cadherin gene is a prognostic factor in head and neck squamous cell carcinoma by conducting a meta-analysis. Methods Studies were identified from the databases Embase, Medline, and Cochrane Library by using the keywords “E-cadherin gene” and “head and neck cancer”. Overall survival (OS) and disease-free survival (DFS) were the primary outcome measurements. Results Our literature review identified 1,458 articles; 19 studies with a total number of 2,012 cases were eligible for inclusion in the meta-analysis. The hazard ratio (HR) for OS of patients with decreased expression of E-cadherin gene was 0.57 (95% CI =0.37, 0.89; P=0.000). However, statistical heterogeneity was unacceptably high (I2=74.5%, P=0.000). After sensitivity analysis, heterogeneity became acceptable, and the effect measure was still significant (I2=7.0%; HR =0.52; 95% CI =0.40, 0.66; P=0.000). The HR for DFS was 0.53 (95% CI =0.42, 0.67; P=0.000). Conclusion This meta-analysis showed clear evidence that high E-cadherin gene expression is a positive prognostic factor of head and neck squamous cell carcinoma, resulting in better OS and DFS. However, this conclusion must be interpreted with caution due to a few limitations. PMID:27217768

  17. PTK6 Inhibition Suppresses Metastases of Triple-Negative Breast Cancer via SNAIL-Dependent E-Cadherin Regulation.

    PubMed

    Ito, Koichi; Park, Sun Hee; Nayak, Anupma; Byerly, Jessica H; Irie, Hanna Y

    2016-08-01

    Patients with triple-negative breast cancers (TNBC) are at high risk for recurrent or metastatic disease despite standard treatment, underscoring the need for novel therapeutic targets and strategies. Here we report that protein tyrosine kinase 6 (PTK6) is expressed in approximately 70% of TNBCs where it acts to promote survival and metastatic lung colonization. PTK6 downregulation in mesenchymal TNBC cells suppressed migration and three-dimensional culture growth, and enhanced anoikis, resistance to which is considered a prerequisite for metastasis. PTK6 downregulation restored E-cadherin levels via proteasome-dependent degradation of the E-cadherin repressor SNAIL. Beyond being functionally required in TNBC cells, kinase-active PTK6 also suppressed E-cadherin expression, promoted cell migration, and increased levels of mesenchymal markers in nontransformed MCF10A breast epithelial cells, consistent with a role in promoting an epithelial-mesenchymal transition (EMT). SNAIL downregulation and E-cadherin upregulation mediated by PTK6 inhibition induced anoikis, leading to impaired metastatic lung colonization in vivo Finally, effects of PTK6 downregulation were phenocopied by treatment with a recently developed PTK6 kinase inhibitor, further implicating kinase activity in regulation of EMT and metastases. Our findings illustrate the clinical potential for PTK6 inhibition to improve treatment of patients with high-risk TNBC. Cancer Res; 76(15); 4406-17. ©2016 AACR. PMID:27302163

  18. Aberrant Methylation of the E-Cadherin Gene Promoter Region in the Endometrium of Women With Uterine Fibroids.

    PubMed

    Li, Yan; Ran, Ran; Guan, Yingxia; Zhu, Xiaoxiong; Kang, Shan

    2016-08-01

    A uterine fibroid is a leiomyoma that originates from the smooth muscle layer of the uterus. A variety of endometrial abnormalities are associated with uterine fibroids. This study aims to investigate the methylation status of the E-cadherin gene (CDH1) promoter region in the endometrium of patients with uterine fibroids. The methylation of CDH1 was studied using methylation-specific polymerase chain reaction in the endometrial tissue of 102 patients with uterine fibroids and 50 control patients. The E-cadherin expression was examined by flow cytometry. The methylation rate of CDH1 promoter region was 33.3% in the endometrium of patients with uterine fibroids and 8% in the endometrium of women without fibroids. The frequency of CDH1 promoter methylation in the endometrium of patients with fibroids was significantly higher than that in the endometrium of women without fibroids (P = .001). Furthermore, the E-cadherin expression level in methylation-positive tissues was significantly lower than that in methylation-negative tissues (P = .017). These results suggest that epigenetic aberration of CDH1 may occur in the endometrium of patients with fibroids, which may be associated with E-cadherin protein expression in endometrial tissue. PMID:26880767

  19. Reduced E-cadherin expression as a cause of distinctive signet-ring cell variant in colorectal carcinoma.

    PubMed Central

    Kim, Hee Cheol; Kim, Ho Jeong; Kim, Jin Cheon

    2002-01-01

    Colorectal signet-ring cell carcinoma (SRCC) is a rare type of adenocarcinoma and presents with distinctive clinicopathological features. This study was performed to assess the biological characteristics of colorectal SRCC regarding the E-cadherin expression. Seventeen patients with primary colorectal SRCC were identified and their clinicopathological characteristics were analyzed. The mean age of the 17 patients was 45.3 yr (14-68). Immunohistochemical staining of E-cadherin and beta-catenin were performed in ten colorectal SRCCs and in 30 ordinary colorectal adenocarcinomas as control. Primary colorectal SRCC occurred in 0.7% of 2,388 colorectal adenocarcinomas. Most patients had advanced stage tumor at surgery (stage III and IV, AJCC: 82%). Five-year survival rate was 16%. Peritoneal seeding was the most common recurrence pattern (41%) and liver metastasis was not identified. All SRCCs showed a markedly reduced or absent expression of E-cadherin on immunohistochemical staining, whereas seven (23.3%) of ordinary carcinomas showed reduced expression, thereby indicating a significant difference between the two groups (p<0.005). In immunohistochemical staining for beta-catenin, eight of ten SRCCs showed reduced membrane expression that did not attain statistical significance compared to ordinary adenocarcinomas. It is suggested that aberrant E-cadherin expression may explain the distinct clinicopathological features in primary colorectal SRCC. PMID:11850584

  20. BCL6 induces EMT by promoting the ZEB1-mediated transcription repression of E-cadherin in breast cancer cells.

    PubMed

    Yu, Jin-Mei; Sun, Wei; Hua, Fang; Xie, Jing; Lin, Heng; Zhou, Dan-Dan; Hu, Zhuo-Wei

    2015-09-01

    B-cell CLL/lymphoma 6 (BCL6), a transcriptional repressor, is involved in the development and progression of breast cancers with uncertain mechanism. The purpose of this study is to investigate the potential effect and mechanism of BCL6 in the regulation of epithelial-mesenchymal transition (EMT), a critical cellular process for controlling the development and progression of breast cancers. We found that BCL6 promoted invasion, migration and growth by stimulating EMT in breast cancer cells. BCL6 induced EMT by enhancing the expression of transcriptional repressor ZEB1 which bound to the E-cadherin promoter and repressing the E-cadherin transcription. Deletion of ZEB1 protected against the pro-EMT roles of BCL6 by restoring the expression of E-cadherin in these cells. Moreover, inhibition of BCL6 with BCL6 inhibitor 79-6 suppressed these functions of BCL6 in breast cancer cells. These findings indicate that BCL6 promotes EMT via enhancing the ZEB1-mediated transcriptional repression of E-cadherin in breast cancer cells. Targeting BCL6 has therapeutic potential against the development and progression of breast cancer. PMID:26049022

  1. Functional dissection of the Clostridium botulinum type B hemagglutinin complex: identification of the carbohydrate and E-cadherin binding sites.

    PubMed

    Sugawara, Yo; Yutani, Masahiro; Amatsu, Sho; Matsumura, Takuhiro; Fujinaga, Yukako

    2014-01-01

    Botulinum neurotoxin (BoNT) inhibits neurotransmitter release in motor nerve endings, causing botulism, a condition often resulting from ingestion of the toxin or toxin-producing bacteria. BoNTs are always produced as large protein complexes by associating with a non-toxic protein, non-toxic non-hemagglutinin (NTNH), and some toxin complexes contain another non-toxic protein, hemagglutinin (HA), in addition to NTNH. These accessory proteins are known to increase the oral toxicity of the toxin dramatically. NTNH has a protective role against the harsh conditions in the digestive tract, while HA is considered to facilitate intestinal absorption of the toxin by intestinal binding and disruption of the epithelial barrier. Two specific activities of HA, carbohydrate and E-cadherin binding, appear to be involved in these processes; however, the exact roles of these activities in the pathogenesis of botulism remain unclear. The toxin is conventionally divided into seven serotypes, designated A through G. In this study, we identified the amino acid residues critical for carbohydrate and E-cadherin binding in serotype B HA. We constructed mutants defective in each of these two activities and examined the relationship of these activities using an in vitro intestinal cell culture model. Our results show that the carbohydrate and E-cadherin binding activities are functionally and structurally independent. Carbohydrate binding potentiates the epithelial barrier-disrupting activity by enhancing cell surface binding, while E-cadherin binding is essential for the barrier disruption. PMID:25340348

  2. E-cadherin expression in macrophages dampens their inflammatory responsiveness in vitro, but does not modulate M2-regulated pathologies in vivo

    PubMed Central

    Van den Bossche, Jan; Laoui, Damya; Naessens, Thomas; Smits, Hermelijn H.; Hokke, Cornelis H.; Stijlemans, Benoît; Grooten, Johan; De Baetselier, Patrick; Van Ginderachter, Jo A.

    2015-01-01

    IL-4/IL-13-induced alternatively activated macrophages (M(IL-4/IL-13), AAMs or M2) are known to express E-cadherin, enabling them to engage in heterotypic cellular interactions and IL-4-driven macrophage fusion in vitro. Here we show that E-cadherin overexpression in Raw 264.7 macrophages inhibits their inflammatory response to LPS stimulation, as demonstrated by a reduced secretion of inflammatory mediators like interleukin (IL)-6, tumor necrosis factor (TNF) and nitric oxide (NO). To study the function of E-cadherin in M(IL-4/IL-13) macrophages in vivo, we generated macrophage-specific E-cadherin-deficient C57BL/6 mice. Using this new tool, we analyzed immunological parameters during two typical AAM-associated Th2-driven diseases and assessed Th2-associated granuloma formation. Although E-cadherin is strongly induced in AAMs during Taenia crassiceps helminth infections and allergic airway inflammation, its deletion in macrophages does not affect the course of both Th2 cytokine-driven diseases. Moreover, macrophage E-cadherin expression is largely redundant for granuloma formation around Schistosoma mansoni ova. Overall, we conclude that E-cadherin is a valuable AAM marker which suppresses the inflammatory response when overexpressed. Yet E-cadherin deletion in macrophages does not affect M(LPS+IFNγ) and M(IL-4) polarization in vitro, nor in vivo macrophage function, at least in the conditions tested. PMID:26226941

  3. The differential adhesion hypothesis: a direct evaluation.

    PubMed

    Foty, Ramsey A; Steinberg, Malcolm S

    2005-02-01

    The differential adhesion hypothesis (DAH), advanced in the 1960s, proposed that the liquid-like tissue-spreading and cell segregation phenomena of development arise from tissue surface tensions that in turn arise from differences in intercellular adhesiveness. Our earlier measurements of liquid-like cell aggregate surface tensions have shown that, without exception, a cell aggregate of lower surface tension tends to envelop one of higher surface tension to which it adheres. We here measure the surface tensions of L cell aggregates transfected to express N-, P- or E-cadherin in varied, measured amounts. We report that in these aggregates, in which cadherins are essentially the only cell-cell adhesion molecules, the aggregate surface tensions are a direct, linear function of cadherin expression level. Taken together with our earlier results, the conclusion follows that the liquid-like morphogenetic cell and tissue rearrangements of cell sorting, tissue spreading and segregation represent self-assembly processes guided by the diminution of adhesive-free energy as cells tend to maximize their mutual binding. This conclusion relates to the physics governing these morphogenetic phenomena and applies independently of issues such as the specificities of intercellular adhesives. PMID:15649477

  4. Intercellular Adhesion Molecule-1 (ICAM-1) in the Pathogenesis of Asthma

    NASA Astrophysics Data System (ADS)

    Wesgner, Craig D.; Gundel, Robert H.; Reilly, Patricia; Haynes, Nancy; Letts, L. Gordon; Rothlein, Robert

    1990-01-01

    Airway eosinophilia, epithelial desquamation, and hyperresponsiveness are characteristics of the airway inflammation underlying bronchial asthma. The contribution of intercellular adhesion molecule-1 (ICAM-1) to eosinophil migration and airway responsiveness was studied. ICAM-1 partially mediated eosinophil adhesion to endothelium in vitro and was upregulated on inflamed bronchial endothelium in vivo. ICAM-1 expression was also upregulated on inflamed airway epithelium in vitro and in vivo. In a primate model of asthma, a monoclonal antibody to ICAM-1 attenuated airway eosinophilia and hyperresponsiveness. Thus, antagonism of ICAM-1 may provide a therapeutic approach to reducing airway inflammation, hyperresponsiveness, and asthma symptoms.

  5. Soluble fms-like tyrosine kinase-1 and endothelial adhesion molecules (intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1) as predictive markers for blood pressure reduction after renal sympathetic denervation.

    PubMed

    Dörr, Oliver; Liebetrau, Christoph; Möllmann, Helge; Gaede, Luise; Troidl, Christian; Rixe, Johannes; Hamm, Christian; Nef, Holger

    2014-05-01

    Renal sympathetic denervation (RSD) is a treatment option for patients with resistant arterial hypertension, but in some patients it is not successful. Predictive parameters on the success of RSD remain unknown. The angiogenic factors soluble fms-like tyrosine kinase-1 (sFLT-1), intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) are known to be associated with endothelial dysfunction, vascular remodeling, and hypertension. We evaluated whether sFLT-1, ICAM-1, and VCAM-1 are predictive markers for blood pressure reduction after RSD. Consecutive patients (n=55) undergoing renal denervation were included. Venous serum samples for measurement of sFlt-1, ICAM-1, and VCAM-1 were collected before and 6 months after RSD. A therapeutic response was defined as an office systolic blood pressure reduction of >10 mm Hg 6 months after RSD. A significant mean office systolic blood pressure reduction of 31.2 mm Hg was observed in 46 patients 6 months after RSD. Nine patients were classified as nonresponders, with a mean systolic blood pressure reduction of 4.6 mm Hg. At baseline, sFLT-1 levels were significantly higher in responders than in nonresponders (P<0.001) as were ICAM-1 (P<0.001) and VCAM-1 levels (P<0.01). The areas under the curve for sFLT-1, ICAM-1, and VCAM-1 were 0.82 (interquartile range, 0.718-0.921; P<0.001), 0.754 (0.654-0.854; P<0.001), and 0.684 (0.564-804; P=0.01), respectively, demonstrating prediction of an RSD response. Responders showed significantly higher serum levels of sFLT-1, ICAM-1, and VCAM-1 at baseline compared with nonresponders. Thus, this study identified for the first time potential biomarkers with a predictive value indicating a responder or nonresponder before renal denervation. PMID:24470464

  6. Cell adhesion molecules and actin cytoskeleton at immune synapses and kinapses.

    PubMed

    Dustin, Michael L

    2007-10-01

    The immunological synapse is a stable adhesive junction between a polarized immune effector cell and an antigen-bearing cell. Immunological synapses are often observed to have a striking radial symmetry in the plane of contact with a prominent central cluster of antigen receptors surrounded by concentric rings of adhesion molecules and actin-rich projections. There is a striking similarity between the radial zones of the immunological synapse and the dynamic actinomyosin modules employed by migrating cells. Breaking the symmetry of an immunological synapse generates a moving adhesive junction that can be defined as a kinapse, which facilitates signal integration by immune cells while moving over the surface of antigen-presenting cells. PMID:17923403

  7. Inhibition of gamma-irradiation induced adhesion molecules and NO production by alginate in human endothelial cells.

    PubMed

    Son, E W; Cho, C K; Rhee, D K; Pyo, S

    2001-10-01

    Inflammation is a frequent radiation-induced reaction following therapeutic irradiation. Treatment of human umbilical endothelial cells (HUVEC) with gamma-irradiation (gammaIR) induces the expression of adhesion proteins such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Since the upregulation of these proteins on endothelial cell surface has been known to be associated with inflammation, interfering with the expression of adhesion molecules is an important therapeutic target. In the present study, we demonstrate that high mannuronic acid-containing alginate (HMA) inhibits gammaIR induced expression of ICAM-1, VCAM-1, and E-selectin on HUVEC in a dose dependent manner. HMA also inhibited gammaIR induced production of Nitric oxide (NO). These data suggest that HMA has therapeutic potential for the treatment of various inflammatory disorder associated with an increase of endothelial leukocyte adhesion molecules. PMID:11693551

  8. The coffee diterpene kahweol inhibits tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in human endothelial cells

    SciTech Connect

    Kim, Hyung Gyun; Kim, Ji Young; Hwang, Yong Pil; Lee, Kyung Jin; Lee, Kwang Youl; Kim, Dong Hee; Kim, Dong Hyun; Jeong, Hye Gwang . E-mail: hgjeong@chosun.ac.kr

    2006-12-15

    Endothelial cells produce adhesion molecules after being stimulated with various inflammatory cytokines. These adhesion molecules play an important role in the development of atherogenesis. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of kahweol, a coffee-specific diterpene. This study examined the effects of kahweol on the cytokine-induced monocyte/human endothelial cell interaction, which is a crucial early event in atherogenesis. Kahweol inhibited the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppressed the TNF{alpha}-induced protein and mRNA expression of the cell adhesion molecules, VCAM-1 and ICAM-1. Furthermore, kahweol inhibited the TNF{alpha}-induced JAK2-PI3K/Akt-NF-{kappa}B activation pathway in these cells. Overall, kahweol has anti-inflammatory and anti-atherosclerotic activities, which occurs partly by down-regulating the pathway that affects the expression and interaction of the cell adhesion molecules on endothelial cells.

  9. Intraepithelial lymphocytes express junctional molecules in murine small intestine

    SciTech Connect

    Inagaki-Ohara, Kyoko . E-mail: INAGAKI@med.miyazaki-u.ac.jp; Sawaguchi, Akira; Suganuma, Tatsuo; Matsuzaki, Goro; Nawa, Yukifumi

    2005-06-17

    Intestinal intraepithelial lymphocytes (IEL) that reside at basolateral site regulate the proliferation and differentiation of epithelial cells (EC) for providing a first line of host defense in intestine. However, it remains unknown how IEL interact and communicate with EC. Here, we show that IEL express junctional molecules like EC. We identified mRNA expression of the junctional molecules in IEL such as zonula occludens (ZO)-1, occludin and junctional adhesion molecule (JAM) (tight junction), {beta}-catenin and E-cadherin (adherens junction), and connexin26 (gap junction). IEL constitutively expressed occludin and E-cadherin at protein level, while other T cells in the thymus, spleen, liver, mesenteric lymph node, and Peyer's patches did not. {gamma}{delta} IEL showed higher level of these expressions than {alpha}{beta} IEL. The expression of occludin was augmented by anti-CD3 Ab stimulation. These results suggest the possibility of a novel role of IEL concerning epithelial barrier and communication between IEL and EC.

  10. Modulation of Blood–Brain Barrier Permeability in Mice Using Synthetic E-Cadherin Peptide

    PubMed Central

    2015-01-01

    The present work characterizes the effects of synthetic E-cadherin peptide (HAV) on blood–brain barrier (BBB) integrity using various techniques including magnetic resonance imaging (MRI) and near-infrared fluorescent imaging (NIRF). The permeability of small molecular weight permeability marker gadolinium diethylenetriaminepentaacetate (Gd-DTPA) contrast agent, the large molecular weight permeability marker, IRDye 800CW PEG, and the P-glycoprotein (P-gp) efflux transporter contrast agent, rhodamine 800 (R800), were examined in the presence and absence of HAV peptide. The results consistently demonstrated that systemic iv administration of HAV peptide resulted in a reversible disruption of BBB integrity and enhanced the accumulation of all the dyes examined. The magnitude of increase ranged from 2-fold to 5-fold depending on the size and the properties of the permeability markers. The time frame for BBB disruption with HAV peptide was rapid, occurring within 3–6 min following injection of the peptide. Furthermore, modulation of BBB permeability was reversible with the barrier integrity being restored within 60 min of the injection. The increased BBB permeability observed following HAV peptide administration was not attributable to changes in cerebral blood flow. These studies support the potential use of cadherin peptides to rapidly and reversibly modulate BBB permeability of a variety of therapeutic agents. PMID:24495091

  11. Correlation of E-cadherin expression with differentiation grade and histological type in breast carcinoma.

    PubMed Central

    Gamallo, C.; Palacios, J.; Suarez, A.; Pizarro, A.; Navarro, P.; Quintanilla, M.; Cano, A.

    1993-01-01

    Recently, a correlation has been suggested between a loss of E-cadherin (E-CD) and increased invasiveness of neoplastic cells. In this study, E-CD expression in breast cancer was investigated using an affinity-purified antibody (ECCD-2) in an immunoenzymatic (avidin-biotin-alkaline phosphatase) test. Intensity and extension of E-CD immunoreactivity were evaluated in 61 breast carcinomas and correlated with their histological type and grade, nodal involvement, and hormonal receptor status. Histological types were infiltrating ductal carcinoma of no special type (n = 54) and infiltrating lobular carcinoma (n = 7). All infiltrating ductal carcinomas of no special type except two grade 3 carcinomas showed positive immunoreactivity that was variable among different cases. Grade 1 breast carcinomas (n = 10) showed greater immunoreactivity than grade 2 (n = 25) and grade 3 (n = 19) carcinomas. E-CD immunoreactivity correlated positively with the degree of tubular formation and inversely with the mitoses number. None of the infiltrating lobular carcinomas expressed E-CD in their infiltrating cells, whereas they showed only weak immunostains in areas of atypical lobular hyperplasia and lobular carcinoma in situ. These results indicate that E-CD expression correlates with histological type and grade in breast carcinomas. Images Figure 1 Figure 2 Figure 3 PMID:7682767

  12. Insulin Resistance May Contribute to Upregulation of Adhesion Molecules on Endothelial Cells in Psoriatic Plaques.

    PubMed

    Schlüter, Kathrin; Diehl, Sandra; Lang, Victoria; Kaufmann, Roland; Boehncke, Wolf-Henning; Bürger, Claudia

    2016-02-01

    Psoriasis primarily affects the skin, but also has a systemic dimension and is associated with severe comorbidities. Since endothelial cells play an important role in psoriasis as well as in the development of cardiovascular comorbidities, we investigated whether a common mechanism, namely cytokine-induced insulin resistance, underlies both pathologies. Activation of the insulin pathway was studied in psoriatic skin and dermal endothelial cells. Expression of adhesion molecules was assessed by flow cytometry, as well as their biological function in flow chamber experiments. The phosphorylation status of Akt, a central kinase in the insulin pathway, suggests that endothelial cells within psoriatic plaques are rendered insulin resistant by pro-inflammatory cytokines. Insulin counteracts the expression of adhesion molecules, but has limited effects on interactions between T cells and endothelial cells. Pro-inflammatory cytokines induce insulin resistance in endothelial cells, which may contribute to the development of the inflammatory infiltrate in psoriasis. PMID:26315601

  13. L1 cell adhesion molecule as a therapeutic target in cancer.

    PubMed

    Yu, Xinzhe; Yang, Feng; Fu, De-Liang; Jin, Chen

    2016-03-01

    L1 cell adhesion molecule (L1CAM) is the prototype member of the L1-family of closely related neural adhesion molecules. L1CAM is differentially expressed in the normal nervous system as well as pathological tissues and displays a wide range of biological activities. In human malignancies, L1CAM plays a vital role in tumor growth, invasion and metastasis. Recently, increasing evidence has suggested that L1CAM exerts a variety of functions at different steps of tumor progression through a series of signaling pathways. In addition, L1CAM has been identified as a promising target for cancer therapy by using synthetic and natural inhibitors. In this review, we provide an up-to-date overview of the role of L1CAM involved in cancers and the rationale for L1CAM as a novel molecular target for cancer therapy. PMID:26781307

  14. Markedly diminished epidermal keratinocyte expression of intercellular adhesion molecule-1 (ICAM-1) in Sezary syndrome

    SciTech Connect

    Nickoloff, B.J.; Griffiths, E.M.; Baadsgaard, O.; Voorhees, J.J.; Hanson, C.A.; Cooper, K.D. )

    1989-04-21

    In mucosis fungoides the malignant T cells express lymphocyte function-associated antigen-1, which allows them to bind to epidermal keratinocytes expressing the gamma interferon-inducible intercellular adhesion molecule-1. In this report, a patient with leukemic-stage mucosis fungoides (Sezary syndrome) had widespread erythematous dermal infiltrates containing malignant T cells, but without any epidermotropism. The authors discovered that the T cells expressed normal amounts of functional lymphocyte function-associated antigen-1, but the keratinocytes did not express significant levels of intercellular adhesion molecule-1, which was probably due to the inability of the malignant T cells to produce gamma interferon. These results support the concept that the inability of malignant T cells to enter the epidermis may contribute to emergence of more clinically aggressive T-cell clones that are no longer confined to the skin, but infiltrate the blood, lymph nodes, and viscera, as is seen in Sezary syndrome.

  15. Association between two single base polymorphisms of intercellular adhesion molecule 1 gene and inflammatory bowel disease

    PubMed Central

    Habibi, Manijeh; Naderi, Nosratllah; Farnood, Alma; Balaii, Hedieh; Dadaei, Tahereh; Almasi, Shohreh; Zojaji, Homayoun; Asadzadeh Aghdae, Hamid; Zali, Mohammad Reza

    2016-01-01

    Aim: The present study evaluated the association between G241R and K469E polymorphisms of intercellular adhesion molecule 1 gene and inflammatory bowel disease in Iranian population. Background: Inflammatory bowel disease including ulcerative colitis and Crohn’s disease, is a chronic idiopathic inflammatory disease of the gastrointestinal tract. There are two single base polymorphisms of intercellular adhesion molecule 1gene, G241R and K469E, reported to be associated with inflammatory disorders. Patients and methods: In this case-control study, 156 inflammatory bowel disease patients (110 ulcerative colitis and 46 Crohn’s disease patients) and 131 healthy controls were enrolled. Two polymorphisms of intercellular adhesion molecule 1 gene, including G241R and K469E, were assessed by polymerase chain reaction followed by restriction fragment length polymorphism. Results: The E469 allele of K469E polymorphism was significantly more frequent in Crohn’s disease patients compared to controls (P< 0.05, OR= 1.83; 95% CI: 1.13 to 2.96). The mutant homozygote genotype of K469E polymorphism (E/E) was also significantly more frequent in Crohn’s disease patients compared to controls (P< 0.05, OR= 4.23; 95% CI: 1.42 to 12.59). No difference was observed in the frequency of K469E polymorphism among ulcerative colitis patients compared to controls. There were no significant differences in genotype and allele frequencies of G241R polymorphism among ulcerative colitis and Crohn’s disease patients compared to control subjects. Conclusion: According to our findings, K469E polymorphism of intercellular adhesion molecule 1 gene may probably participate in the pathogenesis of Crohn’s disease in Iran. PMID:27099667

  16. Characterization of the inflammatory infiltrate and expression of endothelial cell adhesion molecules in lupus erythematosus tumidus.

    PubMed

    Kuhn, Annegret; Sonntag, Monika; Lehmann, Percy; Megahed, Mosaad; Vestweber, Dietmar; Ruzicka, Thomas

    2002-03-01

    Lupus erythematosus tumidus (LET) is a disease with characteristic clinical and histopathologic features that has not always been considered a subset of cutaneous lupus erythematosus (CLE). Although LET was first mentioned in the literature in 1930, it has rarely been documented, and immunohistochemical studies have never been performed. The aim of the present study was to characterize the inflammatory infiltrate and to analyze the expression of endothelial cell adhesion molecules in skin specimens from patients with LET and to compare the results with those from patients with other variants of CLE, such as discoid lupus erythematosus (DLE) and subacute cutaneous lupus erythematosus (SCLE). Cryostat sections of lesional skin specimens from ten patients with LET demonstrated an infiltrate composed of more than 75% CD4+, CD8+, and HLA-DR+ cells. Interestingly, CD45RO+ cells, in contrast to CD45RA+ cells, were the prevailing inflammatory cell population. Compared with skin specimens from patients with DLE and SCLE, the mean expression of CD4+ and CD8+ cells was higher (but not significantly so) in LET, and no differences were observed with the other three antibodies. Furthermore, in contrast to controls, intercellular adhesion molecule-1, vascular adhesion molecule-1, E-selectin, and P-selectin showed the same expression pattern in skin specimens from patients with DLE, SCLE, and LET. In conclusion, the inflammatory infiltrate of LET primarily consists of CD4+/CD8+ lymphocytes. Furthermore, expression of endothelial cell adhesion molecules was equally upregulated in LET compared with the expression in DLE and SCLE, suggesting a similar immunopathomechanism of these subtypes of CLE. PMID:12071156

  17. The control of tumor vessels: what you would not expect from a neural adhesion molecule

    PubMed Central

    Angiolini, Francesca; Cavallaro, Ugo

    2015-01-01

    The neural adhesion molecule L1 is involved in development and plasticity of the nervous system. We recently reported aberrant expression of L1 in the vasculature of various human tumor types. Genetic and functional inactivation of endothelial L1 in a mouse tumor model resulted in decreased tumor angiogenesis and promoted vascular normalization. Thus, endothelial L1 might represent a novel therapeutic target for vessel-targeted treatments of solid tumors. PMID:27308446

  18. Prognostic and Clinicopathological Significance of Downregulated E-Cadherin Expression in Patients with Non-Small Cell Lung Cancer (NSCLC): A Meta-Analysis

    PubMed Central

    Xian, Lei

    2014-01-01

    Background Many studies have investigated the prognostic role of E-cadherin in patients with NSCLC; however, the result still remains inconclusive. An up-to data system review and meta-analysis was necessary to give a comprehensive evaluation of prognostic role of E-cadherin in NSCLC. Methods Eligible studies were searched in Pubmed, Embase and Web of Science databases. The inclusion criteria were studies that assessed the relationship between E-cadherin expression detected by immunohistochemistry (IHC) and the prognosis or clinicopathological features in patients with NSCLC. Subgroup analysis according to race, percentage of reduced/negative E-cadherin expression, histological type, and sample size were also conducted. Odds ratio (OR) or hazard ratio (HR) with 95% confidence interval (CI) were calculated to examine the risk or hazard association. Results A total of 29 studies including 4010 patients were qualified for analysis. The analysis suggested that downregulated E-cadherin expression was significant associated with unfavorable overall survival (OS) and disease-free survival/progression-free survival (DFS/PFS) in patients with NSCLC. Subgroup analysis by race, percentage of reduced/negative E-cadherin expression, sample size also found the significant association in OS. When only the stage I NSCLC were considered, downregulated E-cadherin expression still had an unfavorable impact on OS. Additionally, downregulated E-cadherin expression was significantly associated with differentiation grade, lymphnode metastasis, vascular invasion, and TNM stage. Conclusion Downregulated E-cadherin expression detected by IHC seems to correlate with tumour progression and could serve as an important prognostic factor in patients with NSCLC. PMID:24978478

  19. The surface energy of various biomaterials coated with adhesion molecules used in cell culture.

    PubMed

    Harnett, Elaine M; Alderman, John; Wood, Terri

    2007-03-15

    This study calculates the surface energy of polystyrene tissue culture plastic, silicon, silicon dioxide and indium tin oxide, all of which have applications in tissue culture. The adhesion molecules: collagen, fibronectin, poly-L-ornithine and poly-D-lysine, were coated onto these various surfaces, and the surface energy of the coated substrates calculated. Coating with fibronectin was found to produce a monopolar acidic surface while poly-D-lysine, poly-L-ornithine and collagen coatings were found to produce monopolar basic surfaces. The calculated surface energy components of the coated materials were then used to give a quantitative determination of the magnitude of their hydrophobicity. It was concluded that collagen, polylysine and polyornithine could provide a hydrophobic or hydrophilic surface depending on the underlying substrates they were coated on. The measurement obtained for fibronectin, unlike the other adhesion molecules, was independent of the underlying surface and remained hydrophobic on all substrates tested. Wetting experiments were carried out on the coated substrates, using the tissue culture medium Dulbeccos modified eagles medium, both containing and not containing serum proteins, and saline solution. These liquids that are commonly used in tissue culture, were then used to provide information how these liquids behave on various substrates coated with the adhesion molecules. Results show that fibronectin coated surfaces represent the most phobic surface for all three liquids. The findings of this study can be used in cell manipulation studies and provide a valuable data set for the biomedical and research industries. PMID:17207976

  20. Correlation between the levels of circulating adhesion molecules and atherosclerosis in type-2 diabetic normotensive patients

    PubMed Central

    Vargas-Robles, Hilda; Serrano, Alberto Maceda; Lozano-Nuevo, Jose Juan; Escalante-Acosta, Bruno Alfonso

    2009-01-01

    Endothelial dysfunction is a common feature in type-2 diabetic patients and is associated with inflammation, increased levels of circulating soluble adhesion molecules and atherosclerosis. The aim of this study was to evaluate the relationship between the levels of circulating soluble adhesion molecules and the degree of atherosclerosis in normotensive type-2 diabetic patients. Results: We found significant correlations between ICAM-1 (r = 0.69, p < 0.001 95% IC 0.65 to 0.82) and VCAM-1 (r = 0.4, p < 0.03, 95% IC 0.65 to 0.82) levels and maximal carotid artery intimal-medial thickness, whereas no correlation was observed with E-selectin. Methods: We studied 30 normotensive type-2 diabetic patients in whom VCAM-1, ICAM-1 and E-selectin were measured by ELISA. Additionally, the intimal-medial thickness of both the common and internal carotid arteries was measured (B-mode ultrasound). The levels of circulating adhesion molecules and maximal carotid artery intimal-medial thicknesses were correlated using the Spearman correlation coefficient test. Statistical analysis was performed with ANOVA. Conclusion: Our results suggest that ICAM-1 and VCAM-1 are markers associated, and correlated with the degree of atherosclerosis in normotensive type-2 diabetic patients. PMID:19717975

  1. Differential Associations between CDH13 Genotypes, Adiponectin Levels, and Circulating Levels of Cellular Adhesive Molecules

    PubMed Central

    Teng, Ming-Sheng; Wu, Semon; Hsu, Lung-An; Chou, Hsin-Hua; Ko, Yu-Lin

    2015-01-01

    CDH13 gene variants with lower adiponectin levels are paradoxically associated with a more favorable metabolic profile. We investigated the statistical association between CDH13 locus variants and adiponectin levels by examining 12 circulating inflammation marker levels and adiposity status in 530 Han Chinese people in Taiwan. After adjustments for clinical covariates, adiponectin levels were positively associated with soluble vascular cell adhesion molecule-1 (sVCAM1) levels and negatively associated with adiposity status and levels of C-reactive protein (CRP), soluble E-selectin (sE-selectin), and soluble intercellular adhesion molecule-1 (sICAM1). In addition, minor alleles of the CDH13 rs12051272 polymorphism were found to have lower adiponectin levels and higher CRP, sE-selectin, sICAM1, and sVCAM1 levels as well as higher body mass indices and waist circumferences in participants (all P < 0.05). In a subgroup analysis stratified by sex, significant associations between CDH13 genotypes and sE-selectin levels occurred only in men (P = 3.9 × 10−4 and interaction P = 0.005). CDH13 locus variants and adiponectin levels are associated with circulating levels of cellular adhesion molecules and adiposity status in a differential manner that interacts with sex. These results provide further evidence for the crucial role of adiponectin levels and CDH13 gene variants in immune-mediated and inflammatory diseases. PMID:26600672

  2. Mobilization of NK cells by exercise: downmodulation of adhesion molecules on NK cells by catecholamines.

    PubMed

    Nagao, F; Suzui, M; Takeda, K; Yagita, H; Okumura, K

    2000-10-01

    The change of plasma catecholamine concentration correlates with the change of natural killer (NK) activity and NK cell number in peripheral blood mononuclear cells (PBMC) during and after moderate exercise. We studied the causal relation between exercise-induced catecholamine and expression of adhesion molecules on NK cells during and after exercise. The expression of CD44 and CD18 on CD3(-)CD56(+) NK cells was significantly reduced during exercise (P < 0.01). When PBMC were stimulated with 10(-8)M norepinephrine in vitro, the expression of these adhesion molecules on CD3(-)CD56(+) NK cells was downmodulated within 30 min. The binding capacity of NK cells to a CD44 ligand, hyaluronate, was reduced by the stimulation with norepinephrine (P < 0.01). The intravenous injection of norepinephrine in mice decreased the expression of CD44 and CD18 on CD3(-)NK1.1(+) cells (P < 0.01) and increased the number of CD3(-)NK1.1(+) cells in PBMC (P < 0.01). These findings suggest that exercise-induced catecholamines modulate the expression of adhesion molecules on NK cells, resulting in the mobilization of NK cells into the circulation. PMID:11003990

  3. Vascular activation of adhesion molecule mRNA and cell surface expression by ionizing radiation.

    PubMed

    Heckmann, M; Douwes, K; Peter, R; Degitz, K

    1998-01-10

    During cutaneous inflammatory reactions the recruitment of circulating leukocytes into the tissue critically depends on the regulated expression of endothelial cell adhesion molecules (CAMs). Various proinflammatory stimuli upregulate endothelial CAMs, including cytokines and UV irradiation. We have investigated the effects of ionizing radiation (IR) on endothelial CAM expression. Organ cultures of normal human skin as well as cultured human dermal microvascular endothelial cells (HDMEC) were exposed to IR. Expression of three major endothelial CAMs was studied in skin organ cultures by immunohistochemistry and in cell culture by Northern blot analysis and flow cytometry. In skin organ cultures vascular immunoreactivity for ICAM-1, E-selectin, and VCAM-1 was strongly induced 24 h after exposure to 5 or 10 Gy of IR, while immunoreactivity for CD31/PECAM-1, a constitutively expressed endothelial cell adhesion molecule, remained unchanged. In cultured HDMEC IR upregulated ICAM-1, VCAM-1, and E-selectin mRNAs and cell surface expression in a time- and dose-dependent fashion. Cellular morphology and viability remained unaltered by IR up to 24 h postirradiation. This study characterizes microvascular activation of adhesion molecule expression in response to ionizing radiation in a clinically relevant IR dose range. The findings also underscore the ability of endothelial cells to integrate environmental electromagnetic stimuli. PMID:9457067

  4. Radiation-induced normal tissue injury: role of adhesion molecules in leukocyte-endothelial cell interactions.

    PubMed

    Quarmby, S; Kumar, P; Kumar, S

    1999-07-30

    The late onset of necrosis and fibrosis in normal tissues can be a serious consequence of radiotherapy in cancer patients. Because radiation-induced vascular injury precedes the tissue damage, vascular injury is regarded as crucial in the pathogenesis of tissue damage. An understanding of the processes responsible is essential to develop strategies for the amelioration of radiation-induced normal tissue damage. Leukocyte infiltration is commonly observed at sites of irradiation and is likely to lead to the acceleration and/or induction of parenchymal atrophy, fibrosis and necrosis in normal tissues following radiotherapy. The molecular mechanisms mediating leukocyte infiltration of tissues during inflammation have been studied extensively. It is now well established that cell adhesion molecules (CAMs) expressed on leukocytes and endothelial cells control the trafficking of leukocytes from the blood vessel lumen in these conditions. CAMs including E (endothelial), P (platelet) and L (leukocyte)-selectins, intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), beta1 and beta2 integrins and CD31 are involved in the cascade of events resulting in rolling, arrest and transmigration of leukocytes through the inflamed endothelium. Whether a similar sequence of molecular events induces leukocyte sequestration in irradiated normal tissues is not known. This review is focussed on the role of CAMs in radiation-induced leukocyte infiltration of normal tissues and the therapeutic implications of these findings. PMID:10399956

  5. The neural adhesion molecule TAG-1 modulates responses of sensory axons to diffusible guidance signals.

    PubMed

    Law, Chris O; Kirby, Rebecca J; Aghamohammadzadeh, Soheil; Furley, Andrew J W

    2008-08-01

    When the axons of primary sensory neurons project into the embryonic mammalian spinal cord, they bifurcate and extend rostrocaudally before sending collaterals to specific laminae according to neuronal subclass. The specificity of this innervation has been suggested to be the result both of differential sensitivity to chemorepellants expressed in the ventral spinal cord and of the function of Ig-like neural cell adhesion molecules in the dorsal horn. The relationship between these mechanisms has not been addressed. Focussing on the pathfinding of TrkA+ NGF-dependent axons, we demonstrate for the first time that their axons project prematurely into the dorsal horn of both L1 and TAG-1 knockout mice. We show that axons lacking TAG-1, similar to those lacking L1, are insensitive to wild-type ventral spinal cord (VSC)-derived chemorepellants, indicating that adhesion molecule function is required in the axons, and that this loss of response is explained in part by loss of response to Sema3A. We present evidence that TAG-1 affects sensitivity to Sema3A by binding to L1 and modulating the endocytosis of the L1/neuropilin 1 Sema3A receptor complex. However, TAG-1 appears to affect sensitivity to other VSC-derived chemorepellants via an L1-independent mechanism. We suggest that this dependence of chemorepellant sensitivity on the functions of combinations of adhesion molecules is important to ensure that axons project via specific pathways before extending to their final targets. PMID:18550718

  6. The blot rolling assay: a method for identifying adhesion molecules mediating binding under shear conditions.

    PubMed

    Sackstein, Robert; Fuhlbrigge, Robert

    2006-01-01

    Adhesive interactions of cells with blood vessel walls under flow conditions are critical to a variety of processes, including hemostasis, leukocyte trafficking, tumor metastasis, and atherosclerosis. We have developed a new technique for the observation of binding interactions under shear, which we have termed the "blot rolling assay." In this method, molecules in a complex mixture are resolved by gel electrophoresis and transferred to a membrane. This membrane can be rendered semitransparent and incorporated into a parallel-plate flow chamber apparatus. Cells or particles bearing adhesion proteins of interest are then introduced into the chamber under controlled flow, and their interactions with individual components of the immobilized substrates can be visualized in real time. The substrate molecules can be identified by staining with specific antibodies or by excising the relevant band(s) and performing mass spectrometry or microsequencing of the isolated material. Thus, this method allows for the identification, within a complex mixture and without previous isolation or purification, of both known and novel adhesion molecules capable of binding under shear conditions. PMID:16799202

  7. Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity

    PubMed Central

    Shin, Hyewon; van Riesen, Christoph; Whitcomb, Daniel; Warburton, Julia M.; Jo, Jihoon; Kim, Doyoun; Kim, Sun Gyun; Um, Seung Min; Kwon, Seok-kyu; Kim, Myoung-Hwan; Roh, Junyeop Daniel; Woo, Jooyeon; Jun, Heejung; Lee, Dongmin; Mah, Won; Kim, Hyun; Kaang, Bong-Kiun; Cho, Kwangwook; Rhee, Jeong-Seop; Choquet, Daniel; Kim, Eunjoon

    2016-01-01

    Summary Synaptic adhesion molecules regulate synapse development and plasticity through mechanisms including trans-synaptic adhesion and recruitment of diverse synaptic proteins. We report here that the immunoglobulin superfamily member 11 (IgSF11), a homophilic adhesion molecule preferentially expressed in the brain, is a novel and dual-binding partner of the postsynaptic scaffolding protein PSD-95 and AMPAR glutamate receptors (AMPARs). IgSF11 requires PSD-95 binding for its excitatory synaptic localization. In addition, IgSF11 stabilizes synaptic AMPARs, as shown by IgSF11 knockdown-induced suppression of AMPAR-mediated synaptic transmission and increased surface mobility of AMPARs, measured by high-throughput, single-molecule tracking. IgSF11 deletion in mice leads to suppression of AMPAR-mediated synaptic transmission in the dentate gyrus and long-term potentiation in the CA1 region of the hippocampus. IgSF11 does not regulate the functional characteristics of AMPARs, including desensitization, deactivation, or recovery. These results suggest that IgSF11 regulates excitatory synaptic transmission and plasticity through its tripartite interactions with PSD-95 and AMPARs. PMID:26595655

  8. [Allergens-induced sensitization alters airway epithelial adhesion molecules expression in mice].

    PubMed

    Zeng, Dan; Tan, Mei-Ling; Xiang, Yang; Qin, Xiao-Qun; Zhu, Li-Ming; Dai, Ai-Guo

    2015-12-25

    To explore the relationship between the epithelial adhesion molecules and immune responses of airway epithelium, we observed the expression of integrin β4 and intercellular adhesion molecule-1 (ICAM-1) in the mice airway epithelium after sensitization with allergens. BALB/c mice were sensitized with intraperitoneal injection of ovalbumin (OVA) or house dust mite (HDM) and then developed airway hyper-responsiveness as determined by barometric whole-body plethysmography. Both OVA and HDM sensitization led to increases of the number of peripheral leukocytes as well as inflammatory cells infiltration in lungs. OVA sensitized mice showed more severe inflammatory cells infiltration than HDM sensitized mice. Immunohistochemistry analysis of mice lung tissues revealed that sensitization with both allergens also led to a decrease of integrin β4 expression and an increase of ICAM-1 expression in airway epithelia. OVA sensitized mice showed a more significant increase of ICAM-1 expression compared with HDM sensitized mice. siRNA mediated silencing of integrin β4 gene in 16HBE cells resulted in an up-regulation of ICAM-1 expression. Our results indicate a possible role of airway epithelial adhesion molecules in allergen-induced airway immune responses. PMID:26701635

  9. Micromanipulation of adhesion of phorbol 12-myristate-13-acetate-stimulated T lymphocytes to planar membranes containing intercellular adhesion molecule-1.

    PubMed Central

    Tözeren, A; Mackie, L H; Lawrence, M B; Chan, P Y; Dustin, M L; Springer, T A

    1992-01-01

    This paper presents an analytical and experimental methodology to determine the physical strength of cell adhesion to a planar membrane containing one set of adhesion molecules. In particular, the T lymphocyte adhesion due to the interaction of the lymphocyte function associated molecule 1 on the surface of the cell, with its counter-receptor, intercellular adhesion molecule-1 (ICAM-1), on the planar membrane, was investigated. A micromanipulation method and mathematical analysis of cell deformation were used to determine (a) the area of conjugation between the cell and the substrate and (b) the energy that must be supplied to detach a unit area of the cell membrane from its substrate. T lymphocytes stimulated with phorbol 12-myristate-13-acetate (PMA) conjugated strongly with the planar membrane containing purified ICAM-1. The T lymphocytes attached to the planar membrane deviated occasionally from their round configuration by extending pseudopods but without changing the size of the contact area. These adherent cells were dramatically deformed and then detached when pulled away from the planar membrane by a micropipette. Detachment occurred by a gradual decrease in the radius of the contact area. The physical strength of adhesion between a PMA-stimulated T lymphocyte and a planar membrane containing 1,000 ICAM-1 molecules/micron 2 was comparable to the strength of adhesion between a cytotoxic T cell and its target cell. The comparison of the adhesive energy density, measured at constant cell shape, with the model predictions suggests that the physical strength of cell adhesion may increase significantly when the adhesion bonds in the contact area are immobilized by the actin cytoskeleton. Images FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 8 FIGURE 9 PMID:1358239

  10. A Pathway for the Control of Anoikis Sensitivity by E-Cadherin and Epithelial-to-Mesenchymal Transition▿‡

    PubMed Central

    Kumar, Sanjeev; Park, Sun Hee; Cieply, Benjamin; Schupp, Jane; Killiam, Elizabeth; Zhang, Fan; Rimm, David L.; Frisch, Steven M.

    2011-01-01

    Detachment of epithelial cells from matrix or attachment to an inappropriate matrix engages an apoptotic response known as anoikis, which prevents metastasis. Cellular sensitivity to anoikis is compromised during the oncogenic epithelial-to-mesenchymal transition (EMT), through unknown mechanisms. We report here a pathway through which EMT confers anoikis resistance. NRAGE (neurotrophin receptor-interacting melanoma antigen) interacted with a component of the E-cadherin complex, ankyrin-G, maintaining NRAGE in the cytoplasm. Oncogenic EMT downregulated ankyrin-G, enhancing the nuclear localization of NRAGE. The oncogenic transcriptional repressor protein TBX2 interacted with NRAGE, repressing the tumor suppressor gene p14ARF. P14ARF sensitized cells to anoikis; conversely, the TBX2/NRAGE complex protected cells against anoikis by downregulating this gene. This represents a novel pathway for the regulation of anoikis by EMT and E-cadherin. PMID:21746881

  11. Streptococcus oralis and Candida albicans Synergistically Activate μ-Calpain to Degrade E-cadherin From Oral Epithelial Junctions.

    PubMed

    Xu, Hongbin; Sobue, Takanori; Bertolini, Martinna; Thompson, Angela; Dongari-Bagtzoglou, Anna

    2016-09-15

    Streptococcus oralis forms robust mucosal biofilms with Candida albicans that have increased pathogenic potential. In this study, using oral epithelial cultures, organotypic oral mucosal constructs, and a mouse model of oral infection, we demonstrated that S. oralis augmented C. albicans invasion through epithelial junctions. C. albicans and S. oralis decreased epithelial E-cadherin levels by synergistically increasing µ-calpain, a proteolytic enzyme that targets E-cadherin. In the mouse coinfection model this was accompanied by increased fungal kidney dissemination. Coinfection with a secreted aspartyl protease (sap) mutant sap2456 and S. oralis increased μ-calpain and triggered mucosal invasion and systemic dissemination, suggesting that fungal protease activity is not required for invasion during coinfection. We conclude that C. albicans and S. oralis synergize to activate host enzymes that cleave epithelial junction proteins and increase fungal invasion. PMID:27190184

  12. Regulatory Variants and Disease: The E-Cadherin −160C/A SNP as an Example

    PubMed Central

    Li, Gongcheng; Pan, Tiejun; Guo, Dan

    2014-01-01

    Single nucleotide polymorphisms (SNPs) occurring in noncoding sequences have largely been ignored in genome-wide association studies (GWAS). Yet, amounting evidence suggests that many noncoding SNPs especially those that are in the vicinity of protein coding genes play important roles in shaping chromatin structure and regulate gene expression and, as such, are implicated in a wide variety of diseases. One of such regulatory SNPs (rSNPs) is the E-cadherin (CDH1) promoter −160C/A SNP (rs16260) which is known to affect E-cadherin promoter transcription by displacing transcription factor binding and has been extensively scrutinized for its association with several diseases especially malignancies. Findings from studying this SNP highlight important clinical relevance of rSNPs and justify their inclusion in future GWAS to identify novel disease causing SNPs. PMID:25276428

  13. Epithelial Cell Adhesion Molecule (Ep-CAM) Modulates Cell–Cell Interactions Mediated by Classic Cadherins

    PubMed Central

    Litvinov, Sergey V.; Balzar, Maarten; Winter, Manon J.; Bakker, Hellen A.M.; Bruijn, Inge H. Briaire-de; Prins, Frans; Fleuren, Gert Jan; Warnaar, Sven O.

    1997-01-01

    The contribution of noncadherin-type, Ca2+-independent cell–cell adhesion molecules to the organization of epithelial tissues is, as yet, unclear. A homophilic, epithelial Ca2+-independent adhesion molecule (Ep-CAM) is expressed in most epithelia, benign or malignant proliferative lesions, or during embryogenesis. Here we demonstrate that ectopic Ep-CAM, when expressed in cells interconnected by classic cadherins (E- or N-cadherin), induces segregation of the transfectants from the parental cell type in coaggregation assays and in cultured mixed aggregates, respectively. In the latter assay, Ep-CAM–positive transfectants behave like cells with a decreased strength of cell–cell adhesion as compared to the parental cells. Using transfectants with an inducible Ep-CAM–cDNA construct, we demonstrate that increasing expression of Ep-CAM in cadherin-positive cells leads to the gradual abrogation of adherens junctions. Overexpression of Ep-CAM has no influence on the total amount of cellular cadherin, but affects the interaction of cadherins with the cytoskeleton since a substantial decrease in the detergent-insoluble fraction of cadherin molecules was observed. Similarly, the detergent-insoluble fractions of α- and β-catenins decreased in cells overexpressing Ep-CAM. While the total β-catenin content remains unchanged, a reduction in total cellular α-catenin is observed as Ep-CAM expression increases. As the cadherin-mediated cell–cell adhesions diminish, Ep-CAM–mediated intercellular connections become predominant. An adhesion-defective mutant of Ep-CAM lacking the cytoplasmic domain has no effect on the cadherin-mediated cell–cell adhesions. The ability of Ep-CAM to modulate the cadherin-mediated cell–cell interactions, as demonstrated in the present study, suggests a role for this molecule in development of the proliferative, and probably malignant, phenotype of epithelial cells, since an increase of Ep-CAM expression was observed in vivo in

  14. Epithelial cell adhesion molecule (Ep-CAM) modulates cell-cell interactions mediated by classic cadherins.

    PubMed

    Litvinov, S V; Balzar, M; Winter, M J; Bakker, H A; Briaire-de Bruijn, I H; Prins, F; Fleuren, G J; Warnaar, S O

    1997-12-01

    The contribution of noncadherin-type, Ca2+-independent cell-cell adhesion molecules to the organization of epithelial tissues is, as yet, unclear. A homophilic, epithelial Ca2+-independent adhesion molecule (Ep-CAM) is expressed in most epithelia, benign or malignant proliferative lesions, or during embryogenesis. Here we demonstrate that ectopic Ep-CAM, when expressed in cells interconnected by classic cadherins (E- or N-cadherin), induces segregation of the transfectants from the parental cell type in coaggregation assays and in cultured mixed aggregates, respectively. In the latter assay, Ep-CAM-positive transfectants behave like cells with a decreased strength of cell-cell adhesion as compared to the parental cells. Using transfectants with an inducible Ep-CAM-cDNA construct, we demonstrate that increasing expression of Ep-CAM in cadherin-positive cells leads to the gradual abrogation of adherens junctions. Overexpression of Ep-CAM has no influence on the total amount of cellular cadherin, but affects the interaction of cadherins with the cytoskeleton since a substantial decrease in the detergent-insoluble fraction of cadherin molecules was observed. Similarly, the detergent-insoluble fractions of alpha- and beta-catenins decreased in cells overexpressing Ep-CAM. While the total beta-catenin content remains unchanged, a reduction in total cellular alpha-catenin is observed as Ep-CAM expression increases. As the cadherin-mediated cell-cell adhesions diminish, Ep-CAM-mediated intercellular connections become predominant. An adhesion-defective mutant of Ep-CAM lacking the cytoplasmic domain has no effect on the cadherin-mediated cell-cell adhesions. The ability of Ep-CAM to modulate the cadherin-mediated cell-cell interactions, as demonstrated in the present study, suggests a role for this molecule in development of the proliferative, and probably malignant, phenotype of epithelial cells, since an increase of Ep-CAM expression was observed in vivo in association

  15. The Epithelial Cell Adhesion Molecule (Ep-CAM) as a Morphoregulatory Molecule Is a Tool in Surgical Pathology

    PubMed Central

    Winter, Manon J.; Nagtegaal, Iris D.; van Krieken, J. Han J. M.; Litvinov, Sergey V.

    2003-01-01

    Cell adhesion receptors (CAMs) are actively involved in regulating various cell processes, including growth, differentiation, and cell death. Therefore, CAMs represent a large group of morphoregulating molecules, mediating cross-talk between cells and of cells with their environment. From this perspective, CAMs do contribute to cells and tissue organization, and in diseased tissue, to the disease development and biological characteristics. Therefore, observed changes in expression patterns of adhesion molecules may contribute to establish a diagnosis. A distinct shift in expression patterns in neoplastic epithelium has been described, for example for cadherins, integrins, and CD44. A relatively novel cell CAM, Ep-CAM, was first reported to be a pan-carcinoma antigen, although it is rather a marker of epithelial lineage. Several antibodies directed to Ep-CAM have been generated, and many epithelial tissues and their neoplastic appendages have been studied. This article outlines the results of these studies. Based on the results of these studies, we conclude that Ep-CAM immunohistochemistry can be a useful tool in the diagnosis of disturbed epithelial tissues. PMID:14633587

  16. Adhesion

    MedlinePlus

    ... adhesions Ovarian cyst References Munireddy S, Kavalukas SL, Barbul A. Intra-abdominal healing: gastrointestinal tract and adhesions. Surg Clin N Am Kulaylat MN, Dayton, MT. Surgical complications. In: Townsend CM Jr, Beauchamp RD, Evers BM, Mattox KL, ...

  17. Adhesion molecules in atopic dermatitis: patch tests elicited by house dust mite.

    PubMed

    Jung, K; Linse, F; Pals, S T; Heller, R; Moths, C; Neumann, C

    1997-10-01

    Different T-helper subsets, which are characterized by the secretion of distinct cytokines (Th1, Th2), have been found in house dust mite-exposed skin of sensitized individuals and in nickel-specific T lymphocytes from nickel contact allergic and non-allergic individuals. In order to evaluate the role which adhesion molecules may play in the homing of different T-cell subsets into allergen-exposed skin of atopic and normal individuals, we compared the expression pattern of adhesion molecules in patch test reactions to house dust mite antigen (D.pt.), nickel sulfate (Ni) and the irritant anthralin. Biopsies were taken at various time points after application of these agents and studied by immuncytochemistry. To exclude an endogenous difference in adhesion molecule expression in atopic and non-atopic skin, sequential biopsies from Ni patch tests of 2 normal individuals were also included in this study. The expression of E-selectin, P-selectin, CD31, VCAM-1 and ICAM-1 on endothelial cells and other cells in the skin was quantified by microscopic evaluation. Skin homing T cells were also quantified using antibodies to CD3, CD4, CD8, UCHL-1, L-selectin and the cutaneous lymphocyte antigen (CLA). Independent of the eliciting substance, all lesions showed an upregulation of all adhesion molecules tested, with the exception of CD62. The appearance of E-selectin and an increase in ICAM-1 and VCAM-1 expression were first observed at 12 h after application of the various agents. In parallel, the number of CLA+ and L-selectin+ lymphocytes increased steadily. No principle differences could be established between the various types of skin reactions in atopic individuals, nor did the skin of patients with AD differ from normal controls. Our results provide evidence that differential expression of adhesion molecules does not play a major part in observed differential homing of Th1 and Th2-cell subsets into patch test sites provoked by house dust mite and nickel sulfate in atopic

  18. Osteopontin, E-cadherin, and β-catenin expression as prognostic biomarkers in patients with radically resected gastric cancer.

    PubMed

    Di Bartolomeo, Maria; Pietrantonio, Filippo; Pellegrinelli, Alessandro; Martinetti, Antonia; Mariani, Luigi; Daidone, Maria Grazia; Bajetta, Emilio; Pelosi, Giuseppe; de Braud, Filippo; Floriani, Irene; Miceli, Rosalba

    2016-04-01

    A correlation between osteopontin, E-cadherin, β-catenin, and cyclooxygenase 2 overexpression and poor clinicopathological features and prognosis has been previously suggested in gastric cancer. This translational study was aimed at assessing the correlation of these immunohistochemical biomarkers with outcome in patients with radically resected gastric cancer. We analyzed osteopontin, E-cadherin, β-catenin, and cyclooxygenase 2 expression by immunohistochemistry in 346 primary gastric tumor tissue samples from patients enrolled in the ITACA-S trial. This phase III study randomized patients with radically resected gastric cancer to receive adjuvant chemotherapy with either 5-fluorouracil and leucovorin or a sequential regimen of infusional 5-fluorouracil and leucovorin plus irinotecan followed by cisplatin and docetaxel. High expression of osteopontin was correlated with high histological grade, diffuse histotype, and peritoneal relapse, but not with TNM stage. Moreover, osteopontin overexpression was associated with higher risk of tumor recurrence and metastases, and was an independent prognostic factor for both relapse-free and overall survival of gastric cancer patients following adjuvant chemotherapy. Abnormal E-cadherin expression and abnormal β-catenin expression were correlated with more advanced disease stage, and as a consequence, with poor outcome. Our results suggest that osteopontin overexpression is a valuable independent predictor of tumor recurrence and survival in patients with radically resected gastric cancer. PMID:25862567

  19. Enhanced Biological Functions of Human Mesenchymal Stem-Cell Aggregates Incorporating E-Cadherin-Modified PLGA Microparticles.

    PubMed

    Zhang, Yan; Mao, Hongli; Gao, Chao; Li, Suhua; Shuai, Qizhi; Xu, Jianbin; Xu, Ke; Cao, Lei; Lang, Ren; Gu, Zhongwei; Akaike, Toshihiro; Yang, Jun

    2016-08-01

    Mesenchymal stem cells (MSCs) have emerged as a promising source of multipotent cells for various cell-based therapies due to their unique properties, and formation of 3D MSC aggregates has been explored as a potential strategy to enhance therapeutic efficacy. In this study, poly(lactic-co-glycolic acid) (PLGA) microparticles modified with human E-cadherin fusion protein (hE-cad-PLGA microparticles) have been fabricated and integrated with human MSCs to form 3D cell aggregates. The results show that, compared with the plain PLGA, the hE-cad-PLGA microparticles distribute within the aggregates more evenly and further result in a more significant improvement of cellular proliferation and secretion of a series of bioactive factors due to the synergistic effects from the bioactive E-cadherin fragments and the PLGA microparticles. Meanwhile, the hE-cad-PLGA microparticles incorporated in the aggregates upregulate the phosphorylation of epidermal growth factor receptors and activate the AKT and ERK1/2 signaling pathways in the MSCs. Additionally, the E-cadherin/β-catenin cellular membrane complex in the MSCs is markedly stimulated by the hE-cad-PLGA microparticles. Therefore, engineering 3D cell aggregates with hE-cad-PLGA microparticles can be a promising method for ex vivo multipotent stem-cell expansion with enhanced biological functions and may offer a novel route to expand multipotent stem-cell-based clinical applications. PMID:27245478

  20. Vascular cell adhesion molecule-1 and the integrin VLA-4 mediate adhesion of human B cell precursors to cultured bone marrow adherent cells.

    PubMed Central

    Ryan, D H; Nuccie, B L; Abboud, C N; Winslow, J M

    1991-01-01

    Adhesion of B cell precursors to accessory cells in the bone marrow microenvironment may be required for normal early B cell development. Human bone marrow B cell precursors adhere more avidly than mature B cells to bone marrow-derived fibroblasts. To determine the mechanism of this adhesion, expression of adhesion proteins on human B precursor cells and cell lines was measured by flow cytometry. The very late antigen (VLA) integrins VLA-4 and VLA-5 were the only adhesion proteins expressed at higher levels in B cell precursors than mature B cells. Antibodies to the alpha and beta chains of VLA-4, but not VLA-5, significantly blocked binding to bone marrow-derived fibroblasts of immature B cells and cell lines. Although fibronectin is a ligand for VLA-4, anti-fibronectin antibody and a soluble fibronectin fragment containing the VLA-4 binding domain did not block adhesion, suggesting that VLA-4 is involved in adhesion of B cell precursors, but not as a fibronectin receptor. Vascular cell adhesion molecule-1 (VCAM-1), the other known counterreceptor for VLA-4, was identified on bone marrow-derived fibroblasts, and anti-VCAM-1 significantly blocked adhesion of normal B cell precursors to bone marrow-derived fibroblasts, indicating that VLA-4/VCAM-1 interactions are important in adhesion of B cell precursors to the bone marrow microenvironment. Images PMID:1715889

  1. Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis

    SciTech Connect

    Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.

    2015-02-15

    We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through

  2. Alternate RASSF1 Transcripts Control SRC Activity, E-Cadherin Contacts, and YAP-Mediated Invasion.

    PubMed

    Vlahov, Nikola; Scrace, Simon; Soto, Manuel Sarmiento; Grawenda, Anna M; Bradley, Leanne; Pankova, Daniela; Papaspyropoulos, Angelos; Yee, Karen S; Buffa, Francesca; Goding, Colin R; Timpson, Paul; Sibson, Nicola; O'Neill, Eric

    2015-12-01

    Tumor progression to invasive carcinoma is associated with activation of SRC family kinase (SRC, YES, FYN) activity and loss of cellular cohesion. The hippo pathway-regulated cofactor YAP1 supports the tumorigenicity of RAS mutations but requires both inactivation of hippo signaling and YES-mediated phosphorylation of YAP1 for oncogenic activity. Exactly how SRC kinases are activated and hippo signaling is lost in sporadic human malignancies remains unknown. Here, we provide evidence that hippo-mediated inhibition of YAP1 is lost upon promoter methylation of the RAS effector and hippo kinase scaffold RASSF1A. We find that RASSF1A promoter methylation reduces YAP phospho-S127, which derepresses YAP1, and actively supports YAP1 activation by switching RASSF1 transcription to the independently transcribed RASSF1C isoform that promotes Tyr kinase activity. Using affinity proteomics, proximity ligation, and real-time molecular visualization, we find that RASSF1C targets SRC/YES to epithelial cell-cell junctions and promotes tyrosine phosphorylation of E-cadherin, β-catenin, and YAP1. RASSF1A restricts SRC activity, preventing motility, invasion, and tumorigenesis in vitro and in vivo, with epigenetic inactivation correlating with increased inhibitory pY527-SRC in breast tumors. These data imply that distinct RASSF1 isoforms have opposing functions, which provide a biomarker for YAP1 activation and explain correlations of RASSF1 methylation with advanced invasive disease in humans. The ablation of epithelial integrity together with subsequent YAP1 nuclear localization allows transcriptional activation of β-catenin/TBX-YAP/TEAD target genes, including Myc, and an invasive phenotype. These findings define gene transcript switching as a tumor suppressor mechanism under epigenetic control. PMID:26549256

  3. Alternate RASSF1 Transcripts Control SRC Activity, E-Cadherin Contacts, and YAP-Mediated Invasion

    PubMed Central

    Vlahov, Nikola; Scrace, Simon; Soto, Manuel Sarmiento; Grawenda, Anna M.; Bradley, Leanne; Pankova, Daniela; Papaspyropoulos, Angelos; Yee, Karen S.; Buffa, Francesca; Goding, Colin R.; Timpson, Paul; Sibson, Nicola; O’Neill, Eric

    2015-01-01

    Summary Tumor progression to invasive carcinoma is associated with activation of SRC family kinase (SRC, YES, FYN) activity and loss of cellular cohesion. The hippo pathway-regulated cofactor YAP1 supports the tumorigenicity of RAS mutations but requires both inactivation of hippo signaling and YES-mediated phosphorylation of YAP1 for oncogenic activity. Exactly how SRC kinases are activated and hippo signaling is lost in sporadic human malignancies remains unknown. Here, we provide evidence that hippo-mediated inhibition of YAP1 is lost upon promoter methylation of the RAS effector and hippo kinase scaffold RASSF1A. We find that RASSF1A promoter methylation reduces YAP phospho-S127, which derepresses YAP1, and actively supports YAP1 activation by switching RASSF1 transcription to the independently transcribed RASSF1C isoform that promotes Tyr kinase activity. Using affinity proteomics, proximity ligation, and real-time molecular visualization, we find that RASSF1C targets SRC/YES to epithelial cell-cell junctions and promotes tyrosine phosphorylation of E-cadherin, β-catenin, and YAP1. RASSF1A restricts SRC activity, preventing motility, invasion, and tumorigenesis in vitro and in vivo, with epigenetic inactivation correlating with increased inhibitory pY527-SRC in breast tumors. These data imply that distinct RASSF1 isoforms have opposing functions, which provide a biomarker for YAP1 activation and explain correlations of RASSF1 methylation with advanced invasive disease in humans. The ablation of epithelial integrity together with subsequent YAP1 nuclear localization allows transcriptional activation of β-catenin/TBX-YAP/TEAD target genes, including Myc, and an invasive phenotype. These findings define gene transcript switching as a tumor suppressor mechanism under epigenetic control. PMID:26549256

  4. Distinct E-cadherin-based complexes regulate cell behaviour through miRNA processing or Src and p120 catenin activity.

    PubMed

    Kourtidis, Antonis; Ngok, Siu P; Pulimeno, Pamela; Feathers, Ryan W; Carpio, Lomeli R; Baker, Tiffany R; Carr, Jennifer M; Yan, Irene K; Borges, Sahra; Perez, Edith A; Storz, Peter; Copland, John A; Patel, Tushar; Thompson, E Aubrey; Citi, Sandra; Anastasiadis, Panos Z

    2015-09-01

    E-cadherin and p120 catenin (p120) are essential for epithelial homeostasis, but can also exert pro-tumorigenic activities. Here, we resolve this apparent paradox by identifying two spatially and functionally distinct junctional complexes in non-transformed polarized epithelial cells: one growth suppressing at the apical zonula adherens (ZA), defined by the p120 partner PLEKHA7 and a non-nuclear subset of the core microprocessor components DROSHA and DGCR8, and one growth promoting at basolateral areas of cell-cell contact containing tyrosine-phosphorylated p120 and active Src. Recruitment of DROSHA and DGCR8 to the ZA is PLEKHA7 dependent. The PLEKHA7-microprocessor complex co-precipitates with primary microRNAs (pri-miRNAs) and possesses pri-miRNA processing activity. PLEKHA7 regulates the levels of select miRNAs, in particular processing of miR-30b, to suppress expression of cell transforming markers promoted by the basolateral complex, including SNAI1, MYC and CCND1. Our work identifies a mechanism through which adhesion complexes regulate cellular behaviour and reveals their surprising association with the microprocessor. PMID:26302406

  5. Control of E-cadherin apical localisation and morphogenesis by a SOAP-1/AP-1/clathrin pathway in C. elegans epidermal cells.

    PubMed

    Gillard, Ghislain; Shafaq-Zadah, Massiullah; Nicolle, Ophélie; Damaj, Raghida; Pécréaux, Jacques; Michaux, Grégoire

    2015-05-01

    E-cadherin (E-cad) is the main component of epithelial junctions in multicellular organisms, where it is essential for cell-cell adhesion. The localisation of E-cad is often strongly polarised in the apico-basal axis. However, the mechanisms required for its polarised distribution are still largely unknown. We performed a systematic RNAi screen in vivo to identify genes required for the strict E-cad apical localisation in C. elegans epithelial epidermal cells. We found that the loss of clathrin, its adaptor AP-1 and the AP-1 interactor SOAP-1 induced a basolateral localisation of E-cad without affecting the apico-basal diffusion barrier. We further found that SOAP-1 controls AP-1 localisation, and that AP-1 is required for clathrin recruitment. Finally, we also show that AP-1 controls E-cad apical delivery and actin organisation during embryonic elongation, the final morphogenetic step of embryogenesis. We therefore propose that a molecular pathway, containing SOAP-1, AP-1 and clathrin, controls the apical delivery of E-cad and morphogenesis. PMID:25858456

  6. Distinct E-cadherin-based complexes regulate cell behaviour through miRNA processing or Src and p120 catenin activity

    PubMed Central

    Kourtidis, Antonis; Ngok, Siu P.; Pulimeno, Pamela; Feathers, Ryan W.; Carpio, Lomeli R.; Baker, Tiffany R.; Carr, Jennifer M.; Yan, Irene K.; Borges, Sahra; Perez, Edith A.; Storz, Peter; Copland, John A.; Patel, Tushar; Thompson, E. Aubrey; Citi, Sandra; Anastasiadis, Panos Z.

    2016-01-01

    E-cadherin and p120 catenin (p120) are essential for epithelial homeostasis, but can also exert pro-tumorigenic activities. Here, we resolve this apparent paradox by identifying two spatially and functionally distinct junctional complexes in non-transformed polarized epithelial cells: one growth suppressing at the apical zonula adherens (ZA), defined by the p120 partner PLEKHA7 and a non-nuclear subset of the core microprocessor components DROSHA and DGCR8, and one growth promoting at basolateral areas of cell–cell contact containing tyrosine-phosphorylated p120 and active Src. Recruitment of DROSHA and DGCR8 to the ZA is PLEKHA7 dependent. The PLEKHA7–microprocessor complex co-precipitates with primary microRNAs (pri-miRNAs) and possesses pri-miRNA processing activity. PLEKHA7 regulates the levels of select miRNAs, in particular processing of miR-30b, to suppress expression of cell transforming markers promoted by the basolateral complex, including SNAI1, MYC and CCND1. Our work identifies a mechanism through which adhesion complexes regulate cellular behaviour and reveals their surprising association with the microprocessor. PMID:26302406

  7. Transition of Immunohistochemical Expression of E-Cadherin and Vimentin from Premalignant to Malignant Lesions of Oral Cavity and Oropharynx

    PubMed Central

    Akhtar, Kafil; Ara, Anjum; Siddiqui, Shahid A; Sherwani, Rana K

    2016-01-01

    Objectives We sought to study the expression of epithelial-to-mesenchymal transition markers E-cadherin and vimentin in precancerous lesions of the oral cavity and oropharynx and to use the specific pattern of expression to predict invasiveness. Methods This cross-sectional study looked at 87 cases of oral and oropharyngeal lesions obtained between December 2012 and November 2014 in the Department of Pathology, Jawaharlal Nehru Medical College, Aligarh Muslim University, India. Fifty-three biopsies from the buccal mucosa, tongue, and pharynx and 34 resected oral specimens were evaluated for premalignant and malignant lesions using hematoxylin and eosin and immunohistochemical stains. Immunohistochemical expression of epithelial marker E-cadherin and mesenchymal marker vimentin was evaluated wherever possible. Slides were examined for staining pattern (cytoplasmic or membrane), proportion, and intensity of staining of tumor cells. Patients follow-up and therapy related changes were also studied. Results There were 64 premalignant and 23 malignant cases in our study with 65 (74.7%) cases seen in males and 22 (25.3%) cases seen in females. The majority of malignant cases, (n = 15; 64.2%) were seen in the fifth and sixth decades of life while most of the premalignant lesions (n = 36; 56.4%) were seen in the fourth and fifth decade. Amongst the 64 premalignant oral lesions, leukoplakia comprised of 14 cases (21.9%), of which three cases had associated mild to moderate dysplasia. The majority of premalignant lesions showed strong E-cadherin expression and decreased expression of vimentin with negative and weak expression in both dysplasias and carcinoma in situ (p = 0.013). E-cadherin expression was significantly reduced in invasive carcinomas compared to dysplasias and carcinoma in situ and the difference in immunoreactivity was statistically significant (p < 0.050). Vimentin expression increased as the tumor progressed from dysplasias to carcinoma in situ to invasive

  8. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules.

    PubMed

    Halberg, Kenneth A; Rainey, Stephanie M; Veland, Iben R; Neuert, Helen; Dornan, Anthony J; Klämbt, Christian; Davies, Shireen-Anne; Dow, Julian A T

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell-cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border. PMID:27072072

  9. Expression and structural studies of fasciclin I, an insect cell adhesion molecule.

    PubMed

    Wang, W C; Zinn, K; Bjorkman, P J

    1993-01-15

    Fasciclin I is a lipid-linked cell-surface glycoprotein that can act as a homophilic adhesion molecule in tissue culture cells. It is thought to be involved in growth cone guidance in the embryonic insect nervous system. To facilitate structure-function studies, we have generated Chinese hamster ovary (CHO) cell lines expressing high levels of cell surface grasshopper and Drosophila fasciclin I. Grasshopper fasciclin I released by phospholipase C cleavage was purified on an immunoaffinity column and single crystals were obtained that diffracted to approximately 5-A resolution. We also generated CHO and Drosophila S2 cell lines that produce a secreted form of fasciclin I. Fasciclin I expressed in S2 cells contains significantly less carbohydrate than the protein expressed in CHO cells, and may therefore be more suitable for crystallization. Biochemical characterization of purified fasciclin I indicates that the extracellular portion exists as a monomer in solution. Circular dichroism studies suggest that fasciclin I is primarily alpha-helical. Its structure is therefore different from other known cell adhesion molecules, which are predicted to be elongated beta-sheet structures. This suggests that fasciclin I may define a new structural motif used to mediate adhesive interactions between cell surfaces. PMID:8419345

  10. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules

    PubMed Central

    Halberg, Kenneth A.; Rainey, Stephanie M.; Veland, Iben R.; Neuert, Helen; Dornan, Anthony J.; Klämbt, Christian; Davies, Shireen-Anne; Dow, Julian A. T.

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell–cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border. PMID:27072072

  11. Platelet endothelial cell adhesion molecule-1 and mechanotransduction in vascular endothelial cells.

    PubMed

    Fujiwara, K

    2006-04-01

    Endothelial cells are known to respond to mechanical forces such as fluid shear stress and cyclic stretch, but elucidating the mechanism for mechanosensing has been difficult. Experimental data indicate that there are probably several sensing mechanisms. We have recently proposed a novel mechanoresponse mechanism that involves platelet endothelial cell adhesion molecule-1 (PECAM-1). When endothelial cells are stimulated by fluid shear stress, PECAM-1 is tyrosine phosphorylated and activates the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signalling cascade. The same signalling events occurred when we applied pulling force directly on PECAM-1 on the endothelial cell surface using magnetic beads coated with antibodies against the external domain of PECAM-1. These results appear to indicate that PECAM-1 is a mechanotransduction molecule. To our knowledge, this is the first mammalian molecule that is shown to respond to mechanical force directly exerted to it. PMID:16594905

  12. Adhesive hierarchy involving the cell adhesion molecules L1, CD24, and alpha 6 integrin in murine neuroblastoma N2A cells.

    PubMed

    Kadmon, G; Imhof, B A; Altevogt, P; Schachner, M

    1995-09-01

    The aggregation rate of resuspended neuroblastoma N2A cells depends on the density of the cells in culture prior to their resuspension: isolated, fast growing cells have a weak tendency to aggregate whereas confluent, slowly growing cells reaggregate very strongly. L1 antibody 557 strongly inhibited the slow aggregation of isolated, fast growing cells but not the reaggregation of confluent cells. CD24 (nectadrin) antibodies did not affect the aggregation of isolated or confluent cells but stimulated the aggregation of subconfluent cells. In all stages aggregation was not inhibited when antibody 557 was used together with CD24 antibodies at 37 degrees C in the presence of divalent cations. EA-1 antibody to alpha 6 integrin chain stimulated the aggregation of subconfluent cells but inhibited the reaggregation of confluent cells. Therefore, L1 appears to be an early recognition molecule mediating weak primary adhesion. CD24 appears to participate in activating secondary adhesion mechanisms during primary adhesion, possibly in cooperation with L1, and alpha 6 integrin seems to serve as a secondary, strong adhesion molecule that in early adhesion phases also mediates the activation of itself or of other adhesion mechanisms. These results indicate that neural cells might employ a strategy of adhesion cascade in establishing stable contacts. PMID:7669058

  13. Identification of two structural types of calcium-dependent adhesion molecules in the chicken embryo.

    PubMed Central

    Crittenden, S L; Rutishauser, U; Lilien, J

    1988-01-01

    By using an immunological and peptide mapping approach two calcium-dependent cell-cell adhesion molecules (calCAMs) in the embryonic chicken are compared. A third closely related molecule is identified and compared to the two calCAMs. One of the calCAMs appears to be identical to the previously identified adhesion molecule N-cadherin, originally identified in chicken retina and localized to neural tissues. The second is the same as L-CAM, originally identified in chicken liver but localized to a variety of epithelial tissues. The third, also found in liver, is similar to L-CAM but is much closer in structure to N-cadherin. It is, however, immunologically distinct from N-cadherin. We therefore refer to this newly identified molecule as CRM-L for cadherin-related molecule in liver. CRM-L, N-cadherin, and L-CAM are all cell-surface proteins with a similar stability to tryptic digestion in the presence of calcium. CRM-L has the same molecular mass and isoelectric point as N-cadherin but is distinct from L-CAM in these properties. Two-dimensional peptide maps of complete tryptic digests reveal that CRM-L shares 69% of its peptides with N-cadherin and 20% with L-CAM. On the basis of these data, we suggest that there are at least two distinguishable types of calCAMs in the chicken embryo: one represented by the closely related molecules N-cadherin and CRM-L, and another represented by L-CAM. Images PMID:3368455

  14. Expression of Tenascin C, EGFR, E-Cadherin, and TTF-1 in Medullary Thyroid Carcinoma and the Correlation with RET Mutation Status

    PubMed Central

    Steiner, Florian; Hauser-Kronberger, Cornelia; Rendl, Gundula; Rodrigues, Margarida; Pirich, Christian

    2016-01-01

    Tenascin C expression correlates with tumor grade and indicates worse prognosis in several tumors. Epidermal growth factor receptor (EGFR) plays an important role in driving proliferation in many tumors. Loss of E-cadherin function is associated with tumor invasion and metastasis. Thyroid transcription factor-1 (TTF-1) is involved in rearranged during transfection (RET) transcription in Hirschsprung’s disease. Tenascin C, EGFR, E-cadherin, TTF-1-expression, and their correlations with RET mutation status were investigated in 30 patients with medullary thyroid carcinoma (MTC) (n = 26) or C-cell hyperplasia (n = 4). Tenascin C was found in all, EGFR in 4/26, E-cadherin in 23/26, and TTF-1 in 25/26 MTC. Tenascin C correlated significantly with tumor proliferation (overall, r = 0.61, p < 0.005; RET-mutated, r = 0.81, p < 0.01). E-cadherin showed weak correlation, whereas EGFR and TTF-1 showed no significant correlation with tumor proliferation. EGFR, E-cadherin, and TTF-1 showed weak correlation with proliferation of RET-mutated tumors. Correlation between TTF-1 and tenascin C, E-cadherin, and EGFR was r = −0.10, 0.37, and 0.21, respectively. In conclusion, MTC express tenascin C, E-cadherin, and TTF-1. Tenascin C correlates significantly with tumor proliferation, especially in RET-mutated tumors. EGFR is low, and tumors expressing EGFR do not exhibit higher proliferation. TTF-1 does not correlate with RET mutation status and has a weak correlation with tenascin C, E-cadherin, and EGFR expression. PMID:27409604

  15. Expression of Tenascin C, EGFR, E-Cadherin, and TTF-1 in Medullary Thyroid Carcinoma and the Correlation with RET Mutation Status.

    PubMed

    Steiner, Florian; Hauser-Kronberger, Cornelia; Rendl, Gundula; Rodrigues, Margarida; Pirich, Christian

    2016-01-01

    Tenascin C expression correlates with tumor grade and indicates worse prognosis in several tumors. Epidermal growth factor receptor (EGFR) plays an important role in driving proliferation in many tumors. Loss of E-cadherin function is associated with tumor invasion and metastasis. Thyroid transcription factor-1 (TTF-1) is involved in rearranged during transfection (RET) transcription in Hirschsprung's disease. Tenascin C, EGFR, E-cadherin, TTF-1-expression, and their correlations with RET mutation status were investigated in 30 patients with medullary thyroid carcinoma (MTC) (n = 26) or C-cell hyperplasia (n = 4). Tenascin C was found in all, EGFR in 4/26, E-cadherin in 23/26, and TTF-1 in 25/26 MTC. Tenascin C correlated significantly with tumor proliferation (overall, r = 0.61, p < 0.005; RET-mutated, r = 0.81, p < 0.01). E-cadherin showed weak correlation, whereas EGFR and TTF-1 showed no significant correlation with tumor proliferation. EGFR, E-cadherin, and TTF-1 showed weak correlation with proliferation of RET-mutated tumors. Correlation between TTF-1 and tenascin C, E-cadherin, and EGFR was r = -0.10, 0.37, and 0.21, respectively. In conclusion, MTC express tenascin C, E-cadherin, and TTF-1. Tenascin C correlates significantly with tumor proliferation, especially in RET-mutated tumors. EGFR is low, and tumors expressing EGFR do not exhibit higher proliferation. TTF-1 does not correlate with RET mutation status and has a weak correlation with tenascin C, E-cadherin, and EGFR expression. PMID:27409604

  16. Disruption of E-Cadherin by Matrix Metalloproteinase Directly Mediates Epithelial-Mesenchymal Transition Downstream of Transforming Growth Factor-β1 in Renal Tubular Epithelial Cells

    PubMed Central

    Zheng, Guoping; Lyons, James Guy; Tan, Thian Kui; Wang, Yiping; Hsu, Tzu-Ting; Min, Danqing; Succar, Lena; Rangan, Gopala K.; Hu, Min; Henderson, Beric R.; Alexander, Stephen I.; Harris, David C.H.

    2009-01-01

    Epithelial-mesenchymal transition (EMT) plays an important role in organ fibrosis, including that of the kidney. Loss of E-cadherin expression is a hallmark of EMT; however, whether the loss of E-cadherin is a consequence or a cause of EMT remains unknown, especially in the renal system. In this study, we show that transforming growth factor (TGF)-β1-induced EMT in renal tubular epithelial cells is dependent on proteolysis. Matrix metalloproteinase-mediated E-cadherin disruption led directly to tubular epithelial cell EMT via Slug. TGF-β1 induced the proteolytic shedding of E-cadherin, which caused the nuclear translocation of β-catenin, the transcriptional induction of Slug, and the repression of E-cadherin transcription in tubular epithelial cells. These findings reveal a direct role for E-cadherin and for matrix metalloproteinases in causing EMT downstream of TGF-β1 in fibrotic disease. Specific inhibition rather than activation of matrix metalloproteinases may offer a novel approach for treatment of fibrotic disease. PMID:19590041

  17. ERβ1 inhibits the migration and invasion of breast cancer cells through upregulation of E-cadherin in a Id1-dependent manner

    SciTech Connect

    Zhou, Yan; Ming, Jia; Xu, Yan; Zhang, Yi; Jiang, Jun

    2015-02-06

    Highlights: • Expression of ERβ1 was positively correlated with E-cadherin in breast cancer cell. • ERβ1 upregulates E-cadherin expression in breast cancer cell lines. • ERβ1 upregulates E-cadherin expression in a Id1-dependent manner. - Abstract: ERβ1 is a member of the nuclear receptor superfamily of ligand-regulated transcription factors. It plays an important role in regulating the progression of breast cancer. However, the mechanisms of ERβ1 in tumorigenesis, metastasis and prognosis are still not fully clear. In this study, we showed that the expression of ERβ1 was positively correlated with E-cadherin expression in breast cancer cell lines. In addition, we found that ERβ1 upregulates E-cadherin expression in breast cancer cell lines. Furthermore, we also found that ERβ1 inhibits the migration and invasion of breast cancer cells and upregulated E-cadherin expression in a Id1-dependent manner. Taken together, our study provides further understanding of the molecular mechanism of ERβ1 in tumor metastasis and suggests the feasibility of developing novel therapeutic approaches to target Id1 to inhibit breast cancer metastasis.

  18. A colorectal cell line with alterations in E-cadherin and epithelial biology may be an in vitro model of colitis.

    PubMed Central

    Perry, I; Hardy, R; Jones, T; Jankowski, J

    1999-01-01

    BACKGROUND: It has been shown previously in ulcerative colitis tissue that E-cadherin can occasionally be mutated in the extracellular domain early in neoplastic progression. E-cadherin is known to maintain differentiation and inhibits invasion in vivo. AIMS: To assess the mechanisms by which such dysfunction occurs. METHODS: Four human colorectal cancer cell lines, HCA-7 colonies 1, 3, 6, and 30, derived from a single heterogeneous colorectal cancer were studied. The HCA-7 cell line has p53 mutations and a random errors of replication "positive" phenotype, as is seen in early colitis associated cancers or hereditary nonpolyposis coli cancer (HNPCC). RESULTS: Cell lines 6 and 30 expressed E-cadherin abundantly and this correlated positively with their degree of differentiation and organisation; however, both cell lines had loss of heterozygosity of E-cadherin. Interestingly, E-cadherin production was downregulated in the poorly differentiated cell line 1, and this was associated with major chromosomal rearrangements of 16q. This cell line also had a mutation in the homophilic binding domain of exon 4, which was associated with disaggregation by low titres of a function blocking antibody, and an invasive phenotype. CONCLUSIONS: These multiple biological alterations further characterise the complex association that E-cadherin has with tumour heterogeneity and suggest that this series of cell lines may be a useful model of colitis associated or HNPCC associated tumorigenesis. PMID:10694944

  19. Neutrophil transmigration under shear flow conditions in vitro is junctional adhesion molecule-C independent.

    PubMed

    Sircar, Monica; Bradfield, Paul F; Aurrand-Lions, Michel; Fish, Richard J; Alcaide, Pilar; Yang, Lin; Newton, Gail; Lamont, Deanna; Sehrawat, Seema; Mayadas, Tanya; Liang, Tony W; Parkos, Charles A; Imhof, Beat A; Luscinskas, Francis W

    2007-05-01

    Endothelial cell junctional adhesion molecule (JAM)-C has been proposed to regulate neutrophil migration. In the current study, we used function-blocking mAbs against human JAM-C to determine its role in human leukocyte adhesion and transendothelial cell migration under flow conditions. JAM-C surface expression in HUVEC was uniformly low, and treatment with inflammatory cytokines TNF-alpha, IL-1beta, or LPS did not increase its surface expression as assessed by FACS analysis. By immunofluorescence microscopy, JAM-C staining showed sparse localization to cell-cell junctions on resting or cytokine-activated HUVEC. Surprisingly, staining of detergent-permeabilized HUVEC revealed a large intracellular pool of JAM-C that showed little colocalization with von Willebrand factor. Adhesion studies in an in vitro flow model showed that functional blocking JAM-C mAb alone had no inhibitory effect on polymorphonuclear leukocyte (PMN) adhesion or transmigration, whereas mAb to ICAM-1 significantly reduced transmigration. Interestingly, JAM-C-blocking mAbs synergized with a combination of PECAM-1, ICAM-1, and CD99-blocking mAbs to inhibit PMN transmigration. Overexpression of JAM-C by infection with a lentivirus JAM-C GFP fusion protein did not increase adhesion or extent of transmigration of PMN or evoke a role for JAM-C in transendothelial migration. These data suggest that JAM-C has a minimal role, if any, in PMN transmigration in this model and that ICAM-1 is the preferred endothelial-expressed ligand for PMN beta(2) integrins during transendothelial migration. PMID:17442972

  20. Syntenin-1 and Ezrin Proteins Link Activated Leukocyte Cell Adhesion Molecule to the Actin Cytoskeleton*

    PubMed Central

    Tudor, Cicerone; te Riet, Joost; Eich, Christina; Harkes, Rolf; Smisdom, Nick; Bouhuijzen Wenger, Jessica; Ameloot, Marcel; Holt, Matthew; Kanger, Johannes S.; Figdor, Carl G.; Cambi, Alessandra; Subramaniam, Vinod

    2014-01-01

    Activated leukocyte cell adhesion molecule (ALCAM) is a type I transmembrane protein member of the immunoglobulin superfamily of cell adhesion molecules. Involved in important pathophysiological processes such as the immune response, cancer metastasis, and neuronal development, ALCAM undergoes both homotypic interactions with other ALCAM molecules and heterotypic interactions with the surface receptor CD6 expressed at the T cell surface. Despite biochemical and biophysical evidence of a dynamic association between ALCAM and the actin cytoskeleton, no detailed information is available about how this association occurs at the molecular level. Here, we exploit a combination of complementary microscopy techniques, including FRET detected by fluorescence lifetime imaging microscopy and single-cell force spectroscopy, and we demonstrate the existence of a preformed ligand-independent supramolecular complex where ALCAM stably interacts with actin by binding to syntenin-1 and ezrin. Interaction with the ligand CD6 further enhances these multiple interactions. Altogether, our results propose a novel biophysical framework to understand the stabilizing role of the ALCAM supramolecular complex engaged to CD6 during dendritic cell-T cell interactions and provide novel information on the molecular players involved in the formation and signaling of the immunological synapse at the dendritic cell side. PMID:24662291

  1. Altered expression of adhesion molecules on peripheral blood leukocytes in feline infectious peritonitis.

    PubMed

    Olyslaegers, Dominique A J; Dedeurwaerder, Annelike; Desmarets, Lowiese M B; Vermeulen, Ben L; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-10-25

    Feline infectious peritonitis (FIP) is a fatal, coronavirus-induced systemic disease in domestic and wild felids. The pathology associated with FIP (multifocal granulomatous vasculitis) is considered to be elicited by exaggerated activation and subsequent extravasation of leukocytes. As changes in the expression of adhesion molecules on circulating leukocytes precede their margination and emigration, we reasoned that the expression of leukocyte adhesion molecules may be altered in FIP. In present study, the expression of principal adhesion molecules involved in leukocyte transmigration (CD15s, CD11a, CD11b, CD18, CD49d, and CD54) on peripheral blood leukocytes from cats with naturally occurring FIP (n=15) and controls (n=12) was quantified by flow cytometry using a formaldehyde-based rapid leukocyte preparation technique. T- and B-lymphocytes from FIP patients exhibit higher expression of both subunits (CD11a and CD18) composing the β2 integrin lymphocyte function-associated antigen (LFA)-1. In addition, the expression of the α4 subunit (CD49d) of the β1 integrin very late antigen (VLA)-4 was elevated on B-lymphocytes from FIP patients. The expression of CD11b and CD18, that combine to form the β2 integrin macrophage-1 antigen (Mac-1), was elevated on monocytes, whereas the density of CD49d was reduced on this population in FIP. Granulocytes of FIP cats displayed an increased expression of the α chain of Mac-1 (CD11b). These observations suggest that leukocytes from FIP patients show signs of systemic activation causing them to extravasate into surrounding tissues and ultimately contribute to pyogranuloma formation seen in FIP. PMID:23910523

  2. Drug-induced expression of intercellular adhesion molecule-1 on lesional keratinocytes in fixed drug eruption.

    PubMed Central

    Teraki, Y.; Moriya, N.; Shiohara, T.

    1994-01-01

    The mechanism(s) and the factor(s) that contribute to preferential localization of fixed drug eruption (FDE) lesions to certain skin sites remain speculative. Previous studies suggested that populations of T cells residing in the lesional epidermis may be involved in selective destruction of the epidermis in FDE. In this study, to define the earliest cellular and molecular events with potential relevance to activation of the epidermal T cells, expression of adhesion molecules on keratinocytes (KC) and vascular endothelium was examined sequentially in the lesional skin of FDE patients after challenge with the causative drug. Rapid and intense intercellular adhesion molecule-1 (ICAM-1) expression was induced on the vascular endothelium and KC as early as 1.5 hours after challenge, at which time E-selectin and vascular cell adhesion molecule-1 (VCAM-1) were not up-regulated. In vitro studies using skin organ culture showed that the lesional KC and endothelium responded more rapidly and intensely to express ICAM-1 to tumor necrosis factor-alpha or interferon-gamma compared with those in the nonlesional skin. Surprisingly, such selective induction of KC ICAM-1 restricted to the lesional skin was also observed after exposure to the causative drug alone in skin organ culture. Pretreatment of the lesional skin with anti-tumor necrosis factor completely abrogated in vitro induction of KC ICAM-1 expression by the drug. Drug-induced, TNF-alpha-dependent KC ICAM-1 expression in the lesional skin suggests that induction of ICAM-1 expression by the lesional KC after ingestion of the drug would probably provide a localized initiating stimulus for activation of the disease-associated epidermal T cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7915886

  3. Concentration of soluble adhesion molecules in cerebrospinal fluid and serum of epilepsy patients.

    PubMed

    Luo, Jing; Wang, Wei; Xi, Zhiqin; Dan, Chen; Wang, Liang; Xiao, Zheng; Wang, Xuefeng

    2014-12-01

    Mounting evidence supports the involvement of brain inflammation and the associated blood-brain barrier damage from which spontaneous and recurrent seizures originate. Detection of the soluble form of adhesion molecules (AM) has also been proven to predict outcomes in central nervous system (CNS) disorders. A recent study has shown that expression of AM in brain vessels was upregulated 24 h after kainic acid (KA) induced seizures. The aim of the present study was to investigate soluble AM levels in the cerebrospinal fluid (CSF) and serum of epilepsy patients. Paired CSF and serum samples were analyzed by sandwich enzyme-linked immunosorbent assay (ELISA) to determine the concentrations of soluble vascular cell adhesion molecule-1 (sVCAM-1) and soluble intercellular adhesion molecule-1 (sICAM-1). Increased serum concentrations of sICAM-1 were present in epileptic patients (41 localization-related of unknown etiology, 19 idiopathic generalized). Serum sICAM-1 level in drug-refractory epilepsy was elevated as compared to new diagnosis epilepsy and drug-responsive epilepsy. CSF sVCAM-1 and serum sVCAM-1 concentrations in the epilepsy group were higher as compared to the neurosis group. Moreover, CSF sVCAM-1 and serum sVCAM-1 concentrations in drug-refractory epilepsy were raised as compared to drug-responsive epilepsy and new diagnosis epilepsy. However, there were no significant differences in concentrations of CSF sICAM-1 between the epilepsy and neurosis groups. Our results suggest that sVCAM-1 and sICAM-1 could play an important role in the drug-refractory epilepsy. PMID:25001004

  4. Soluble cell adhesion molecules in human Chagas' disease: association with disease severity and stage of infection.

    PubMed

    Laucella, S; De Titto, E H; Segura, E L; Orn, A; Rottenberg, M E

    1996-12-01

    Formation of inflammatory lesions, one of the pathologic consequences of infection with Trypanosoma cruzi, involves intricate cell-cell interactions in which cell adhesion molecules (CAMs) are involved. Sera from 56 Chagas' disease patients grouped according to disease severity were studied for the presence of soluble intercellular adhesion molecule-1 (s-ICAM-1), soluble endothelial selectin (s-E-selectin), soluble vascular cell adhesion molecule-1 (s-VCAM-1), soluble platelet selectin (s-P-selectin), and s-CD44 were studied to determine if they could be used alone or in different combinations as markers for specific diagnostic procedures. Comparisons were made between congenitally, acutely, and chronically infected patients and aged-matched, noninfected individuals, as well as between patients with chronic Chagas' disease grouped according to the severity of their heart-related pathology. No differences in levels of s-CAMs were detected between sera from children with congenital T. cruzi infection and sera from noninfected infants born from chagasic mothers. In contrast, titers of s-ICAM-1, s-VCAM-1, s-selectin, and s-CD44 but not s-P-selectin were significantly increased in sera from patients during the acute phase of infection with T. cruzi. Titers of s-VCAM-1 and s-P-selectin were increased in chronically infected patients. A positive association with disease severity in sera from patients with chronic disease was observed for the levels of s-P-selectin. In contrast, we found no association between clinical symptoms and levels of s-VCAM-1. Patients with chronic disease with severe cardiopathy also showed diminished levels of s-CD44 in comparison with healthy controls or patients with mild disease. The results are discussed in the context of pathology of Chagas' disease. PMID:9025689

  5. Propranolol affects stress-induced leukocytosis and cellular adhesion molecule expression.

    PubMed

    Kühlwein, E C; Irwin, M R; Ziegler, M G; Woods, V L; Kennedy, B; Mills, P J

    2001-12-01

    In this study, the impact of the beta-adrenergic antagonist propranolol on resting and acute psychological- and physical-stress-induced circulating leukocyte numbers and the density of cellular adhesion molecules was investigated. In a randomized double-blind crossover design, 45 healthy volunteers performed a 15-min public speaking task and 21 subjects performed a 16-min bicycle exercise after 5 days of ingesting a placebo and after 5 days of ingesting 100 mg/day propranolol. One week of ingesting propranolol modestly elevated the numbers of CD62L+ (P<0.019) but not CD62L- T-lymphocytes. Moreover, propranolol preferentially blunted-psychological stress-induced increases in naïve T-helper (CD4+CD62L+; P<0.049) and naïve T-cytotoxic lymphocytes (CD8+CD62L+; P<0.003), as well as activated T-cytotoxic lymphocytes (CD8+CD29+; P<0.005). However, exercise-induced increases in leukocyte numbers were enhanced following propranolol treatment (P<0.04). In contrast to the effect on the numbers of adhesion-molecule-bearing cells, there was only a modest effect of propranolol on stress-induced alterations of the density of CD62L, CD54 and CD11a. In this study, propranolol treatment interfered with the adrenergic regulation of circulating leukocyte numbers by blunting psychological stress effects but enhancing exercise effects. Propranolol affected the cell activation status to a lesser extent, as reflected by the density of adhesion molecules. PMID:11822472

  6. Neurite Fasciculation Mediated by Complexes of Axonin-1 and Ng Cell Adhesion Molecule

    PubMed Central

    Kunz, Stefan; Spirig, Marianne; Ginsburg, Claudia; Buchstaller, Andrea; Berger, Philipp; Lanz, Rainer; Rader, Christoph; Vogt, Lorenz; Kunz, Beat; Sonderegger, Peter

    1998-01-01

    Neural cell adhesion molecules composed of immunoglobulin and fibronectin type III-like domains have been implicated in cell adhesion, neurite outgrowth, and fasciculation. Axonin-1 and Ng cell adhesion molecule (NgCAM), two molecules with predominantly axonal expression exhibit homophilic interactions across the extracellular space (axonin- 1/axonin-1 and NgCAM/NgCAM) and a heterophilic interaction (axonin-1–NgCAM) that occurs exclusively in the plane of the same membrane (cis-interaction). Using domain deletion mutants we localized the NgCAM homophilic binding in the Ig domains 1-4 whereas heterophilic binding to axonin-1 was localized in the Ig domains 2-4 and the third FnIII domain. The NgCAM–NgCAM interaction could be established simultaneously with the axonin-1–NgCAM interaction. In contrast, the axonin-1–NgCAM interaction excluded axonin-1/axonin-1 binding. These results and the examination of the coclustering of axonin-1 and NgCAM at cell contacts, suggest that intercellular contact is mediated by a symmetric axonin-12/NgCAM2 tetramer, in which homophilic NgCAM binding across the extracellular space occurs simultaneously with a cis-heterophilic interaction of axonin-1 and NgCAM. The enhanced neurite fasciculation after overexpression of NgCAM by adenoviral vectors indicates that NgCAM is the limiting component for the formation of the axonin-12/NgCAM2 complexes and, thus, neurite fasciculation in DRG neurons. PMID:9852159

  7. Intercellular Adhesion Molecule-1–Dependent Neutrophil Adhesion to Endothelial Cells Induces Caveolae-Mediated Pulmonary Vascular Hyperpermeability

    PubMed Central

    Hu, Guochang; Vogel, Stephen M.; Schwartz, David E.; Malik, Asrar B.; Minshall, Richard D.

    2009-01-01

    We investigated the role of caveolae in the mechanism of increased pulmonary vascular permeability and edema formation induced by the activation of polymorphonuclear neutrophils (PMNs). We observed that the increase in lung vascular permeability induced by the activation of PMNs required caveolin-1, the caveolae scaffold protein. The permeability increase induced by PMN activation was blocked in caveolin-1 knockout mice and by suppressing caveolin-1 expression in rats. The response was also dependent on Src phosphorylation of caveolin-1 known to activate caveolae-mediated endocytosis in endothelial cells. To address the role of PMN interaction with endothelial cells, we used an intercellular adhesion molecule (ICAM)-1 blocking monoclonal antibody. Preventing the ICAM-1–mediated PMN binding to endothelial cells abrogated Src phosphorylation of caveolin-1, as well as the increase in endothelial permeability. Direct ICAM-1 activation by crosslinking recapitulated these responses, suggesting that ICAM-1 activates caveolin-1 signaling responsible for caveolae-mediated endothelial hyperpermeability. Our results provide support for the novel concept that a large component of pulmonary vascular hyperpermeability induced by activation of PMNs adherent to the vessel wall is dependent on signaling via caveolin-1 and increased caveolae-mediated transcytosis. Thus, it is important to consider the role of the transendothelial vesicular permeability pathway that contributes to edema formation in developing therapeutic interventions against PMN-mediated inflammatory diseases such as acute lung injury. PMID:18511851

  8. Regulation of platelet biology by platelet endothelial cell adhesion molecule-1.

    PubMed

    Jones, Chris I; Moraes, Leonardo A; Gibbins, Jonathan M

    2012-01-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1), an immunoreceptor tyrosine-based inhibitory motif containing receptor, plays diverse and apparently contradictory roles in regulating the response of platelets to stimuli; inhibiting platelet response to immunoreceptor tyrosine-based activation motif and G protein-coupled receptor signalling following stimulation with collagen, adenosine diphosphate, and thrombin, as well as enhancing integrin outside-in signalling. These dual, and opposing, roles suggest an important and complex role for PECAM-1 in orchestrating platelet response to vascular damage. Indeed, during thrombus formation, the influence of PECAM-1 on the multiple signalling pathways combines leading to a relatively large inhibitory effect on thrombus formation. PMID:22035359

  9. The clinical spectrum of mutations in L1, a neuronal cell adhesion molecule

    SciTech Connect

    Fransen, E.; Vits, L.; Van Camp, G.; Willems, P.J.

    1996-07-12

    Mutations in the gene encoding the neuronal cell adhesion molecule L1 are responsible for several syndromes with clinical overlap, including X-linked hydrocephalus (XLH, HSAS), MASA (mental retardation, aphasia, shuffling gait, adducted thumbs) syndrome, complicated X-linked spastic paraplegia (SP 1), X-linked mental retardation-clasped thumb (MR-CT) syndrome, and some forms of X-linked agenesis of the corpus callosum (ACC). We review 34 L1 mutations in patients with these phenotypes. 22 refs., 3 figs., 4 tabs.

  10. The diagnostic, predictive, and prognostic role of serum epithelial cell adhesion molecule (EpCAM) and vascular cell adhesion molecule-1 (VCAM-1) levels in breast cancer.

    PubMed

    Karabulut, S; Tas, F; Tastekin, D; Karabulut, M; Yasasever, C T; Ciftci, R; Güveli, M; Fayda, M; Vatansever, S; Serilmez, M; Disci, R; Aydıner, A

    2014-09-01

    The purpose of this study was to determine the clinical significance of vascular cell adhesion molecule-1 (VCAM-1) and epithelial cell adhesion molecule (EpCAM) in breast cancer (BC) patients. Ninety-six BC patients and 30 age- and sex-matched healthy controls were enrolled into this study. Pretreatment serum markers were determined by the solid-phase sandwich (enzyme-linked immunosorbent assay (ELISA)). The median age at diagnosis was 48 years (range 29-80 years). Majority of the patients (71 %) had luminal subtype, and 38.5 % had metastatic disease. Twenty-nine (30 %) patients showed tumor progression, and 20 (21 %) patients died during follow-up. Median progression-free survival (PFS) and overall survival (OS) were 8.6 ± 1.7 and 35.5 ± 1.5 months, respectively. The baseline serum EpCAM levels of the patients were significantly higher than those of the controls (p < 0.001). There was no significant difference in the serum levels of VCAM-1 between the patients and controls (p = 0.47). No significant correlation was detected between the levels of the serum markers and other clinical parameters (p > 0.05). Patients with HER-2-positive and triple-negative tumors had significantly poorer PFS (p = 0.04 and p = 0.001, respectively), while metastatic disease and chemotherapy unresponsiveness had significantly adverse effect on OS analysis (p < 0.001 and p < 0.001, respectively). Neither serum VCAM-1 levels nor serum EpCAM levels were identified to have a prognostic role on either PFS or OS (VCAM-1 p = 0.76 and p = 0.32; EpCAM p = 0.16 and p = 0.69, respectively). Even though any predictive or prognostic role could not be determined for both markers, serum levels of EpCAM were found to have diagnostic value in BC patients. PMID:24891186

  11. Prognostic implications of epithelial to mesenchymal transition related proteins (E-cadherin, Snail) and hypoxia inducible factor 1α in endometrioid endometrial carcinoma.

    PubMed

    Abouhashem, Nehal S; Ibrahim, Doaa Abdelaziz; Mohamed, Abdel Motaleb

    2016-06-01

    The epithelial-mesenchymal transition (EMT) is an important step in the invasion and metastasis of cancer. E-cadherin downregulation, which is essentially controlled by EMT-mediated proteins such as Snail, is a main molecular feature of this process. Tumor hypoxia is one of the essential biological phenomena that are associated with the development and progression of various solid tumors. Recently, hypoxia and hypoxia-inducible factor 1α (HIF-1α) signaling pathway were identified to have an essential role in the regulation of EMT phenotype. The aim of the study was to evaluate the prognostic impact of EMT-related proteins (E-cadherin, Snail) and HIF-1α in endometrioid endometrial carcinoma (EEC) among Egyptian women. Immunohistochemical evaluation of E-cadherin, Snail, and HIF-1α expression was performed using 50 cases of EEC. The relationship between protein expression and clinicopathological features was investigated. The frequency of immunopositivity for E-cadherin, Snail, and HIF-1α in our cases of EEC was 82%, 28%, and 66%, respectively. Reduced E-cadherin and increased nuclear expression of Snail as well as HIF-1α were significantly associated with histopathologic grade, clinical stage myometrial invasion, and lymph node involvement. Statistical analysis showed a positive correlation between HIF-1α overexpression and Snail upregulation (τ= +0.252, P= .025); however, E-cadherin expression level was inversely correlated with enhanced Snail expression (τ= -0.450, P< .001) as well as with HIF-1α overexpression (τ= -0.439, P< .001). The overall survival and progression-free survival were inversely related to Snail immunoreactivity and positively related to E-cadherin expression. E-cadherin and Snail have a predictive value in EEC. In conclusion, the current study reveals that both Snail and HIF-1α expressions are significantly associated with poor prognosis in EEC; however, E-cadherin expression is considered a marker of good prognosis. E-cadherin and

  12. Abrogation of Junctional Adhesion Molecule-A Expression Induces Cell Apoptosis and Reduces Breast Cancer Progression

    PubMed Central

    Murakami, Masato; Giampietro, Costanza; Giannotta, Monica; Corada, Monica; Torselli, Ilaria; Orsenigo, Fabrizio; Cocito, Andrea; d'Ario, Giovanni; Mazzarol, Giovanni; Confalonieri, Stefano; Di Fiore, Pier Paolo; Dejana, Elisabetta

    2011-01-01

    Intercellular junctions promote homotypic cell to cell adhesion and transfer intracellular signals which control cell growth and apoptosis. Junctional adhesion molecule-A (JAM-A) is a transmembrane immunoglobulin located at tight junctions of normal epithelial cells of mammary ducts and glands. In the present paper we show that JAM-A acts as a survival factor for mammary carcinoma cells. JAM-A null mice expressing Polyoma Middle T under MMTV promoter develop significantly smaller mammary tumors than JAM-A positive mice. Angiogenesis and inflammatory or immune infiltrate were not statistically modified in absence of JAM-A but tumor cell apoptosis was significantly increased. Tumor cells isolated from JAM-A null mice or 4T1 cells incubated with JAM-A blocking antibodies showed reduced growth and increased apoptosis which paralleled altered junctional architecture and adhesive function. In a breast cancer clinical data set, tissue microarray data show that JAM-A expression correlates with poor prognosis. Gene expression analysis of mouse tumor samples showed a correlation between genes enriched in human G3 tumors and genes over expressed in JAM-A +/+ mammary tumors. Conversely, genes enriched in G1 human tumors correlate with genes overexpressed in JAM-A−/− tumors. We conclude that down regulation of JAM-A reduces tumor aggressive behavior by increasing cell susceptibility to apoptosis. JAM-A may be considered a negative prognostic factor and a potential therapeutic target. PMID:21695058

  13. Alteration of the retinotectal map in Xenopus by antibodies to neural cell adhesion molecules.

    PubMed Central

    Fraser, S E; Murray, B A; Chuong, C M; Edelman, G M

    1984-01-01

    The neural cell adhesion molecule (N-CAM) mediates neuron-neuron adhesion, is ubiquitous in the nervous system of developing and mature vertebrates, and undergoes major alterations in both amount and distribution during development. Perturbation of homophilic (N-CAM to N-CAM) binding by univalent fragments of specific anti-N-CAM antibodies has previously been found to alter neural tissue patterns in vitro. To show that significant alterations can also occur in vivo, antibodies to Xenopus N-CAM were embedded in agarose microcylinders and implanted in the tecta of juvenile Xenopus laevis frogs that were undergoing regeneration of their retinotectal projections; 1 week later, the effects of implantation on the projection pattern from the optic nerve were determined. Both polyclonal and monoclonal antibodies to N-CAM distorted the retinotectal projection pattern and greatly decreased the precision of the projection; these alterations recovered to near normal after an additional 3 weeks. Similar but smaller effects were obtained when normally developing froglets received tectal implants. In control animals, implants of immunoglobulins from preimmune serum and monoclonal antibodies not directed against N-CAM had little or no effect on the pattern. The results suggest that neuronal adhesion mediated by N-CAM is important in establishing and maintaining the precision and topography of neural patterns. Images PMID:6588385

  14. Expression and role of adhesion molecule CD18 on bovine neutrophils.

    PubMed

    Nagahata, H; Nochi, H; Tamoto, K; Noda, H; Kociba, G J

    1995-01-01

    Expression of CD18 on bovine neutrophils in response to stimulation by zymosan activated serum (ZAS) and phorbol myristate acetate (PMA) and the effects of monoclonal antibodies (MAB) recognizing CD18 or bovine neutrophil surface antigens (S2G8 and S5F8G10) on adherence, chemotactic responses and phagocytosis of bovine neutrophils were evaluated. CD18 expression of neutrophils was increased after ZAS and PMA treatment by 12.2 and 54.2% respectively, and were significantly (p < 0.05, p < 0.01) different from those of untreated neutrophils. CD18 expression by neutrophils from a Holstein-Friesian heifer affected with leukocyte adhesion deficiency was within negative controls when stimulated by ZAS and PMA. Adherence, chemotactic responses, and phagocytosis were significantly decreased (p < 0.01) in neutrophils continuously treated with anti-CD18 MAB (MHM 23). Adherence was also significantly decreased in anti-CD18 pretreated neutrophils. Significant (p < 0.01) differences of chemotactic responses and phagocytosis of neutrophils were found between neutrophils pretreated and continuously treated with anti-CD18 MAB (MHM 23). Monoclonal antibodies to other surface antigens did not significantly alter neutrophil adherence, chemotaxis or phagocytosis. This study demonstrated that CD18 expression on bovine neutrophils is increased significantly by stimulation with ZAS and PMA and that the adhesion molecule CD18 plays an important role in adhesion-related functions. PMID:7704836

  15. Expression and role of adhesion molecule CD18 on bovine neutrophils.

    PubMed Central

    Nagahata, H; Nochi, H; Tamoto, K; Noda, H; Kociba, G J

    1995-01-01

    Expression of CD18 on bovine neutrophils in response to stimulation by zymosan activated serum (ZAS) and phorbol myristate acetate (PMA) and the effects of monoclonal antibodies (MAB) recognizing CD18 or bovine neutrophil surface antigens (S2G8 and S5F8G10) on adherence, chemotactic responses and phagocytosis of bovine neutrophils were evaluated. CD18 expression of neutrophils was increased after ZAS and PMA treatment by 12.2 and 54.2% respectively, and were significantly (p < 0.05, p < 0.01) different from those of untreated neutrophils. CD18 expression by neutrophils from a Holstein-Friesian heifer affected with leukocyte adhesion deficiency was within negative controls when stimulated by ZAS and PMA. Adherence, chemotactic responses, and phagocytosis were significantly decreased (p < 0.01) in neutrophils continuously treated with anti-CD18 MAB (MHM 23). Adherence was also significantly decreased in anti-CD18 pretreated neutrophils. Significant (p < 0.01) differences of chemotactic responses and phagocytosis of neutrophils were found between neutrophils pretreated and continuously treated with anti-CD18 MAB (MHM 23). Monoclonal antibodies to other surface antigens did not significantly alter neutrophil adherence, chemotaxis or phagocytosis. This study demonstrated that CD18 expression on bovine neutrophils is increased significantly by stimulation with ZAS and PMA and that the adhesion molecule CD18 plays an important role in adhesion-related functions. Images Fig. 2. Fig. 3. Fig. 4. PMID:7704836

  16. Diatomic molecules and metallic adhesion, cohesion, and chemisorption - A single binding-energy relation

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1983-01-01

    Potential-energy relations involving a few parameters in simple analytic forms have been found to represent well the energetics of a wide variety of diatomic molecules. However, such two-atom potential functions are not appropriate for metals. It is well known that, in the case of metals, there exist strong volume-dependent forces which can never be expressed as pairwise interactions. The present investigation has the objective to show that, in spite of the observation concerning metals, a single binding-energy relation can be found which accurately describes diatomic molecules as well as adhesion, cohesion, and chemisorption on metals. This universality reveals a commonality between the molecular and metallic bond.

  17. Celastrol inhibits TGF-β1-induced epithelial–mesenchymal transition by inhibiting Snail and regulating E-cadherin expression

    SciTech Connect

    Kang, Hyereen; Lee, Minjae; Jang, Sung-Wuk

    2013-08-09

    Highlights: •We investigated the effects of celastrol on TGF-β1-induced EMT in epithelial cells. •Celastrol regulates TGF-β1-induced morphological changes and E-cadherin expression. •Celastrol inhibits TGF-β1-induced Snail expression. •Celastrol strongly suppresses TGF-β1-induced invasion in MDCK and A549 cells. -- Abstract: The epithelial–mesenchymal transition (EMT) is a pivotal event in the invasive and metastatic potentials of cancer progression. Celastrol inhibits the proliferation of a variety of tumor cells including leukemia, glioma, prostate, and breast cancer; however, the possible role of celastrol in the EMT is unclear. We investigated the effect of celastrol on the EMT. Transforming growth factor-beta 1 (TGF-β1) induced EMT-like morphologic changes and upregulation of Snail expression. The downregulation of E-cadherin expression and upregulation of Snail in Madin–Darby Canine Kidney (MDCK) and A549 cell lines show that TGF-β1-mediated the EMT in epithelial cells; however, celastrol markedly inhibited TGF-β1-induced morphologic changes, Snail upregulation, and E-cadherin expression. Migration and invasion assays revealed that celastrol completely inhibited TGF-β1-mediated cellular migration in both cell lines. These findings indicate that celastrol downregulates Snail expression, thereby inhibiting TGF-β1-induced EMT in MDCK and A549 cells. Thus, our findings provide new evidence that celastrol suppresses lung cancer invasion and migration by inhibiting TGF-β1-induced EMT.

  18. Dimethoxy Curcumin Induces Apoptosis by Suppressing Survivin and Inhibits Invasion by Enhancing E-Cadherin in Colon Cancer Cells.

    PubMed

    Chen, Dong; Dai, Fang; Chen, Zhehang; Wang, Saisai; Cheng, Xiaobin; Sheng, Qinsong; Lin, Jianjiang; Chen, Wenbin

    2016-01-01

    BACKGROUND Dimethoxy curcumin (DMC) is a kind of lipophilic analog of curcumin with great improvement in chemical and metabolic stability. DMC has been studied in breast and renal cancer, but no research in colon cancer has been found yet. MATERIAL AND METHODS Two colon cancer cells (HT-29 and SW480) and one normal human colon mucosal epithelial cell (NCM460) were used in this study. We studied the effect of DMC on the proliferation in vitro and in vivo. Transwell migration assay was used to estimate the inhibition of DMC on invasion. Moreover, the expressions of PARP, caspase-3, survivin and E-cadherin were detected to uncover the related signaling pathways by western blotting assay both in vitro and in vivo. RESULTS DMC significantly inhibited the growth of colon cancer cells in dose-dependent manner; IC50 for DMC was calculated to be 43.4, 28.2 and 454.8µM on HT-29, SW480 and NCM460. DMC significantly increased the apoptosis in both HT-29 (p=0.0051) and SW480 (p=0.0013) cells in vitro, and significantly suppressed the growth of both cell lines in vivo. Moreover, DMC reduced the number of migrated cells in both HT-29 (p=0.007) and SW480 (p=0.004) cells. By western blotting analysis, the cleavage of pro-caspases-3 and PARP were clearly induced by DMC to their active form, while the expression of survivin was reduced and E-cadherin was enhanced in both cells in vitro and in vivo. CONCLUSIONS DMC may exert an effective anti-tumor effect in colon cancer cells by down-regulating survivin and upregulating E-cadherin. PMID:27614381

  19. Immunolocalization of E-cadherin and β-catenin in the cyclic and early pregnant canine endometrium.

    PubMed

    Payan-Carreira, R; Pires, M A; Santos, C; Holst, B Ström; Colaço, J; Rodriguez-Martinez, H

    2016-09-01

    Putative changes in E-cadherin and β-catenin during implantation in dogs are of interest to study, as they are relevant proteins for epithelial integrity. E-cadherin and β-catenin were immunolocalized in the canine endometrium during the estrous cycle and early pregnancy, using monoclonal antibodies. Both proteins were detected in all types of endometrial epithelia (surface epithelium [SE], superficial glandular, and deep glandular epithelia) at all stages of the estrous cycle and in early placental structures. E-cadherin depicted a gradient of intensity apparently being lowest in the SE to progressively increase toward the deepness of the endometrial glands, regardless of the stage of estrous cycle. The overall immunostaining was, however, weaker at diestrus. In pregnant samples, the trophoblast was conspicuously immunolabeled compared with the endometrial surface lining epithelium. In the latter, the cytoplasmic pattern predominated over the membrane-bound, as was also seen in the decidual cells of the placental labyrinth. In the early placenta, only trophoblast cells and lacunae retained membrane signals. β-Catenin membrane labeling appeared relatively constant throughout the cycle, although a tendency toward a decrease in intensity was detected at the secretory stages. In addition, a dislocation of the immunoreaction from membrane to the cytoplasm was observed in both the SE and the glandular epithelia at particular stages of the cycle. In early pregnancy, a loss of the membranous pattern was observed in the SE and labyrinth, but neither on trophoblast nor in lacunae. The results show the existence of a softening of the adherens junctional complex in progestagen-dominated stages favoring embryo-maternal interactions and endometrial invasion during canine implantation. PMID:27155731

  20. CRH suppressed TGFβ1-induced Epithelial-Mesenchymal Transition via induction of E-cadherin in breast cancer cells.

    PubMed

    Jin, Lai; Chen, Jiandong; Li, Li; Li, Chuanhua; Chen, Cheng; Li, Shengnan

    2014-04-01

    Since its discovery in biopsies from breast cancer patients, the effect of corticotropin-releasing hormone (CRH) on carcinoma progression is still unclear. Transforming growth factorβ1 (TGFβ1) promotes Epithelial-Mesenchymal Transition (EMT) and induces Snail1 and Twist1 expressions. Loss of epithelial cadherin (E-cadherin) mainly repressed by Snail1 and Twist1, has been considered as hallmark of Epithelial-Mesenchymal Transition (EMT). Two breast cancer cell lines, MCF-7 and MDA-MB-231 were used to investigate the effect of CRH on TGFβ1-induced EMT by transwell chamber. And HEK293 cells were transiently transfected with CRHR1 or CRHR2 to explore the definite effects of CRH receptor. We reported that CRH inhibited migration of human breast cancer cells through downregulation of Snail1 and Twist1, and subsequent upregulation of E-cadherin. CRH inhibited TGFβ1-mediated migration of MCF-7 via both CRHR1 and CRHR2 while this inhibition in MDA-MB-231 was mainly via CRHR2. Ectopic re-expression of CRHR1 or CRHR2 respectively in HEK293 cells increased E-cadherin expression after CRH stimulation. Furthermore, CRH repressed expression of mesenchymal marker, N-cadherin and induced expression of Occludin, inhibiting EMT in MCF-7 & MDA-MB-231. Our results suggest that CRH may function as a tumor suppressor, at least partly by regulating TGFβ1-mediated EMT. These results may contribute to uncovering the effect of CRH in breast tumorigenesis and progression. PMID:24412750

  1. Effect of Cell Adhesion Molecule 1 Expression on Intracellular Granule Movement in Pancreatic α Cells.

    PubMed

    Yokawa, Satoru; Furuno, Tadahide; Suzuki, Takahiro; Inoh, Yoshikazu; Suzuki, Ryo; Hirashima, Naohide

    2016-09-01

    Although glucagon secreted from pancreatic α cells plays a role in increasing glucose concentrations in serum, the mechanism regulating glucagon secretion from α cells remains unclear. Cell adhesion molecule 1 (CADM1), identified as an adhesion molecule in α cells, has been reported not only to communicate among α cells and between nerve fibers, but also to prevent excessive glucagon secretion from α cells. Here, we investigated the effect of CADM1 expression on the movement of intracellular secretory granules in α cells because the granule transport is an important step in secretion. Spinning disk microscopic analysis showed that granules moved at a mean velocity of 0.236 ± 0.010 μm/s in the mouse α cell line αTC6 that expressed CADM1 endogenously. The mean velocity was significantly decreased in CADM1-knockdown (KD) cells (mean velocity: 0.190 ± 0.016 μm/s). The velocity of granule movement decreased greatly in αTC6 cells treated with the microtubule-depolymerizing reagent nocodazole, but not in αTC6 cells treated with the actin-depolymerizing reagent cytochalasin D. No difference in the mean velocity was observed between αTC6 and CADM1-KD cells treated with nocodazole. These results suggest that intracellular granules in pancreatic α cells move along the microtubule network, and that CADM1 influences their velocity. PMID:27262873

  2. Host-related carcinoembryonic antigen cell adhesion molecule 1 promotes metastasis of colorectal cancer.

    PubMed

    Arabzadeh, A; Chan, C; Nouvion, A-L; Breton, V; Benlolo, S; DeMarte, L; Turbide, C; Brodt, P; Ferri, L; Beauchemin, N

    2013-02-14

    Liver metastasis is the predominant cause of colorectal cancer (CRC)-related mortality in developed countries. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a cell adhesion molecule with reduced expression in early phases of CRC development and thus functions as a tumor growth inhibitor. However, CEACAM1 is upregulated in metastatic colon cancer, suggesting a bimodal role in CRC progression. To investigate the role of this protein in the host metastatic environment, Ceacam1(-/-) mice were injected intrasplenically with metastatic MC38 mouse CRC cells. A significant reduction in metastatic burden was observed in Ceacam1(-/-) compared with wild-type (WT) livers. Intravital microscopy showed decreased early survival of MC38 cells in Ceacam1(-/-) endothelial environment. Metastatic cell proliferation within the Ceacam1(-/-) livers was also diminished. Bone marrow-derived cell recruitment, attenuation of immune infiltrates and diminished CCL2, CCL3 and CCL5 chemokine production participated in the reduced Ceacam1(-/-) metastatic phenotype. Transplantations of WT bone marrow (BM) into Ceacam1(-/-) mice fully rescued metastatic development, whereas Ceacam1(-/-) BM transfer into WT mice showed reduced metastatic burden. Chimeric immune cell profiling revealed diminished recruitment of CD11b(+)Gr1(+) myeloid-derived suppressor cells (MDSCs) to Ceacam1(-/-) metastatic livers and adoptive transfer of MDSCs confirmed the involvement of these immune cells in reduction of liver metastasis. CEACAM1 may represent a novel metastatic CRC target for treatment. PMID:22469976

  3. HOXA9 Methylation by PRMT5 Is Essential for Endothelial Cell Expression of Leukocyte Adhesion Molecules

    PubMed Central

    Bandyopadhyay, Smarajit; Harris, Daniel P.; Adams, Gregory N.; Lause, Gregory E.; McHugh, Anne; Tillmaand, Emily G.; Money, Angela; Willard, Belinda; Fox, Paul L.

    2012-01-01

    The induction of proinflammatory proteins in stimulated endothelial cells (EC) requires activation of multiple transcription programs. The homeobox transcription factor HOXA9 has an important regulatory role in cytokine induction of the EC-leukocyte adhesion molecules (ELAM) E-selectin and vascular cell adhesion molecule 1 (VCAM-1). However, the mechanism underlying stimulus-dependent activation of HOXA9 is completely unknown. Here, we elucidate the molecular mechanism of HOXA9 activation by tumor necrosis factor alpha (TNF-α) and show an unexpected requirement for arginine methylation by protein arginine methyltransferase 5 (PRMT5). PRMT5 was identified as a TNF-α-dependent binding partner of HOXA9 by mass spectrometry. Small interfering RNA (siRNA)-mediated depletion of PRMT5 abrogated stimulus-dependent HOXA9 methylation with concomitant loss in E-selectin or VCAM-1 induction. Chromatin immunoprecipitation analysis revealed that PRMT5 is recruited to the E-selectin promoter following transient HOXA9 binding to its cognate recognition sequence. PRMT5 induces symmetric dimethylation of Arg140 on HOXA9, an event essential for E-selectin induction. In summary, PRMT5 is a critical coactivator component in a newly defined, HOXA9-containing transcription complex. Moreover, stimulus-dependent methylation of HOXA9 is essential for ELAM expression during the EC inflammatory response. PMID:22269951

  4. Association of adipokines and adhesion molecules with indicators of obesity in women undergoing mammography screening

    PubMed Central

    2012-01-01

    Background The soluble cell adhesion molecules and adipokines are elevated in patients with obesity, hypertension, type 2 diabetes mellitus, breast cancer and atherosclerosis. Objective To investigate the relationship between anthropometric profile, dietary intake, lipid profile and fasting glycemia with serum levels of adipokines (adiponectin and PAI-1) and adhesion molecules (ICAM-1 and VCAM-1) in women without breast cancer undergoing routine mammographic screening. Design Transversal study. Subjects One hundred and forty-five women over 40-years old participated in this study. Results In 39.3% of cases the BMI was above 30 kg/m2; 46.9% had hypertension, 14.5% had type 2 Diabetes Mellitus, 31.7% had dyslipidemia and 88.3% presented a waist-to-hip ratio ≥ 0.8. A linear correlation was found between serum levels of PAI-1 and triglycerides, between serum levels of PAI-1 and WHR and between serum levels of VCAM-1 and BMI. Conclusion We found a high prevalence of obesity and metabolic syndrome. PAI-1 and VCAM-1 levels were correlated with clinical indicators of obesity and overweight. PMID:23113882

  5. Lutheran/basal cell adhesion molecule accelerates progression of crescentic glomerulonephritis in mice

    PubMed Central

    Huang, Jin; Filipe, Anne; Rahuel, Cécile; Bonnin, Philippe; Mesnard, Laurent; Guérin, Coralie; Wang, Yu; Le Van Kim, Caroline; Colin, Yves; Tharaux, Pierre-Louis

    2014-01-01

    Migration of circulating leukocytes from the vasculature into the surrounding tissue is an important component of the inflammatory response. Among the cell surface molecules identified as contributing to leukocyte extravasation is VCAM-1, expressed on activated vascular endothelium, which participates in all stages of leukocyte–endothelial interaction by binding to leukocyte surface expressed integrin VLA-4. However, not all VLA-4-mediated events can be linked to VCAM-1. A novel interaction between VLA-4 and endothelial Lutheran (Lu) blood group antigens and basal cell adhesion molecule (BCAM) proteins has been recently shown, suggesting that Lu/BCAM may have a role in leukocyte recruitments in inflamed tissues. Here, we assessed the participation of Lu/BCAM in the immunopathogenesis of crescentic glomerulonephritis. High expression of Lu/BCAM in glomeruli of mice with rapidly progressive glomerulonephritis suggests a potential role for the local expression of Lu/BCAM in nephritogenic recruitment of leukocytes. Genetic deficiency of Lu/BCAM attenuated glomerular accumulation of T cells and macrophages, crescent formation, and proteinuria, correlating with reduced fibrin and platelet deposition in glomeruli. Furthermore, we found a pro-adhesive interaction between human monocyte α4β1 integrin and Lu/BCAM proteins. Thus, Lu/BCAM may have a critical role in facilitating the accumulation of monocytes and macrophages, thereby exacerbating renal injury. PMID:24429403

  6. FGF inhibits neurite outgrowth over monolayers of astrocytes and fibroblasts expressing transfected cell adhesion molecules.

    PubMed

    Williams, E J; Mittal, B; Walsh, F S; Doherty, P

    1995-11-01

    We have cultured cerebellar neurons on monolayers of cortical astrocytes in control medium or medium containing recombinant basic fibroblast growth factor (FGF). FGF was found to inhibit neurite outgrowth, with a significant effect seen at 0.5 ng/ml and a maximal effect at 10 ng/ml. FGF increased the production of arachidonic acid (AA) in cerebellar neurons, and when added directly to cultures or generated endogenously via activation of phospholipase A2 using melittin, this second messenger could mimic the inhibitory effect of FGF. FGF and AA could also specifically inhibit neurite outgrowth stimulated by three cell adhesion molecules (NCAM, N-cadherin and L1) expressed in transfected fibroblasts, or in the case of L1 bound to a tissue culture substratum. These data demonstrate that, in certain cellular contexts, FGF can act as an inhibitory cue for axonal growth and that arachidonic acid is the second messenger responsible for this activity. We discuss the possibility that arachidonic acid inhibits neurite outgrowth by desensitising the second messenger pathway underlying neuronal responsiveness to cell adhesion molecules. PMID:8586663

  7. Erythromycin exerts in vivo anti-inflammatory activity downregulating cell adhesion molecule expression

    PubMed Central

    Sanz, María-Jesús; Nabah, Yafa Naim Abu; Cerdá-Nicolás, Miguel; O'Connor, José-Enrique; Issekutz, Andrew C; Cortijo, Julio; Morcillo, Esteban J

    2004-01-01

    Macrolides have long been used as anti-bacterial agents; however, there is some evidence that may exert anti-inflammatory activity. Therefore, erythromycin was used to characterize the mechanisms involved in their in vivo anti-inflammatory activity. Erythromycin pretreatment (30 mg kg−1 day−1 for 1 week) reduced the lipopolysaccharide (LPS; intratracheal, 0.4 mg kg−1)-induced increase in neutrophil count and elastase activity in the bronchoalveolar lavage fluid (BALF) and lung tissue myeloperoxidase activity, but failed to decrease tumor necrosis factor-α and macrophage-inflammatory protein-2 augmented levels in BALF. Erythromycin pretreatment also prevented lung P-selectin, E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) mRNA upregulation in response to airway challenge with LPS. Mesentery superfusion with LPS (1 μg ml−1) induced a significant increase in leukocyte–endothelial cell interactions at 60 min. Erythromycin pretreatment abolished the increases in these parameters. LPS exposure of the mesentery for 4 h caused a significant increase in leukocyte rolling flux, adhesion and emigration, which were inhibited by erythromycin by 100, 93 and 95%, respectively. Immunohistochemical analysis showed that LPS exposure of the mesentery for 4 h caused a significant enhancement in P-selectin, E-selectin, ICAM-1 and VCAM-1 expression that was downregulated by erythromycin pretreatment. Flow cytometry analysis indicated that erythromycin pretreatment inhibited LPS-induced CD11b augmented expression in rat neutrophils. In conclusion, erythromycin inhibits leukocyte recruitment in the lung and this effect appears mediated through downregulation of CAM expression. Therefore, macrolides may be useful in the control of neutrophilic pulmonary diseases. PMID:15665859

  8. Epidermal growth factor down-regulates the expression of neutrophil gelatinase-associated lipocalin (NGAL) through E-cadherin in pancreatic cancer cells

    PubMed Central

    Tong, Zhimin; Chakraborty, Subhankar; Sung, Bokyung; Koolwal, Pooja; Kaur, Sukhwinder; Aggarwal, Bharat B.; Mani, Sendurai A.; Bresalier, Robert S.; Batra, Surinder K.; Guha, Sushovan

    2010-01-01

    BACKGROUND Our group previously reported that neutrophil gelatinase-associated lipocalin (NGAL) overexpression significantly blocked invasion and angiogenesis of pancreatic ductal adenocarcinoma (PDAC) and also demonstrated a loss of NGAL expression in the advanced stages of PDAC. However, little is known regarding mechanisms of NGAL regulation in PDAC. As EGF-EGFR axis is significantly upregulated in PDAC, we examined EGF-mediated NGAL regulation in these cells. METHODS NGAL-positive AsPC-1 and BxPC-3 cells were used as model system. Quantitative RT-PCR, western blot analysis, and immunofluorescence studies were used to investigate EGF-mediated effects on NGAL expression. E-cadherin expression was manipulated using lentiviral overexpression or shRNA constructs. NGAL promoter activity was assessed by luciferase-reporter assay and electrophoretic mobility shift assay (EMSA). RESULTS NGAL expression was positively associated with tumor differentiation and was significantly downregulated after EGF treatment along with a concomitant reduction of E-cadherin expression in PDAC cells. E-cadherin downregulation was partly through the EGF receptor (EGFR)-dependent MEK-ERK signaling pathway. In addition, E-cadherin downregulation reduced NGAL expression in PDAC cells, whereas overexpression of E-cadherin led to increased NGAL expression and partly rescued inhibition of NGAL expression by EGF. Furthermore, EGF in part through E-cadherin reduced NGAL promoter activity by blocking NF-κB activation. CONCLUSIONS We demonstrated for the first time that EGF potently blocked NGAL expression in PDAC cells. This effect is partly mediated through activation of the EGFR-MEK-ERK signaling pathway, which in turn downregulated E-cadherin with a subsequent reduction in NF-κB activation. Our findings illustrate a novel mechanism by which EGF regulates NGAL expression in PDAC. PMID:24048788

  9. E-cadherin and β-catenin expression in well-differentiated and moderately-differentiated oral squamous cell carcinoma: relations with clinical variables.

    PubMed

    Rosado, Pablo; Lequerica-Fernández, Paloma; Fernández, Soledad; Allonca, Eva; Villallaín, Lucas; de Vicente, Juan C

    2013-03-01

    The aim of this study was to establish the expression and localisation of E-cadherin and β-catenin in oral squamous cell carcinomas (SCC) so that we could correlate the findings with prognostically-relevant clinicopathological variables. E-cadherin and β-catenin expression in normal oral mucosa and in oral squamous cell carcinomas were examined immunohistochemically, and their association with clinicopathological factors and prognosis were then analysed in 69 patients who had been operated on for oral SCC. E-cadherin expression was found in all 69 cases: in 11 cases (16%) it was weak; in 21 (30%) moderate, and in 37 (54%) high. β-Catenin expression was found in 64 cases (93%): in 18 cases (26%) cell-membrane expression was weak; in 26 (38%) it was moderate; in 19 (28%) it was high, and in one case (1%) there was cytoplasmic staining. No nuclear staining was detected. E-cadherin was significantly associated with histological grade (p=0.002) and alcohol consumption (p=0.05), and β-catenin was significantly associated with nodal stage (p=0.02), TNM stage (p=0.009), and E-cadherin expression (p=0.01). However, none of them were independent prognostic factors in the disease-specific survival analysis. E-cadherin is closely linked to β-catenin expression in oral SCC and to tumour differentiation. Alcohol consumption could increase the aggressiveness of SCC, leading to reduced expression of E-cadherin. β-catenin could be an early marker for the identification of occult metastases in patients with oral SCC. PMID:22525043

  10. Vascular Cell Adhesion Molecule-1 Expression and Signaling During Disease: Regulation by Reactive Oxygen Species and Antioxidants

    PubMed Central

    Marchese, Michelle E.; Abdala-Valencia, Hiam

    2011-01-01

    Abstract The endothelium is immunoregulatory in that inhibiting the function of vascular adhesion molecules blocks leukocyte recruitment and thus tissue inflammation. The function of endothelial cells during leukocyte recruitment is regulated by reactive oxygen species (ROS) and antioxidants. In inflammatory sites and lymph nodes, the endothelium is stimulated to express adhesion molecules that mediate leukocyte binding. Upon leukocyte binding, these adhesion molecules activate endothelial cell signal transduction that then alters endothelial cell shape for the opening of passageways through which leukocytes can migrate. If the stimulation of this opening is blocked, inflammation is blocked. In this review, we focus on the endothelial cell adhesion molecule, vascular cell adhesion molecule-1 (VCAM-1). Expression of VCAM-1 is induced on endothelial cells during inflammatory diseases by several mediators, including ROS. Then, VCAM-1 on the endothelium functions as both a scaffold for leukocyte migration and a trigger of endothelial signaling through NADPH oxidase-generated ROS. These ROS induce signals for the opening of intercellular passageways through which leukocytes migrate. In several inflammatory diseases, inflammation is blocked by inhibition of leukocyte binding to VCAM-1 or by inhibition of VCAM-1 signal transduction. VCAM-1 signal transduction and VCAM-1-dependent inflammation are blocked by antioxidants. Thus, VCAM-1 signaling is a target for intervention by pharmacological agents and by antioxidants during inflammatory diseases. This review discusses ROS and antioxidant functions during activation of VCAM-1 expression and VCAM-1 signaling in inflammatory diseases. Antioxid. Redox Signal. 15, 1607–1638. PMID:21050132

  11. Glucosyltransferases of Viridans Group Streptococci Modulate Interleukin-6 and Adhesion Molecule Expression in Endothelial Cells and Augment Monocytic Cell Adherence

    PubMed Central

    Yeh, Chiou-Yueh; Chen, Jen-Yang; Chia, Jean-San

    2006-01-01

    Recruitment of monocytes plays important roles during vegetation formation and endocardial inflammation in the pathogenesis of infective endocarditis (IE). Bacterial antigens or modulins can activate endothelial cells through the expression of cytokines or adhesion molecules and modulate the recruitment of leukocytes. We hypothesized that glucosyltransferases (GTFs), modulins of viridans group streptococci, may act directly to up-regulate the expression of adhesion molecules and also interleukin-6 (IL-6) to augment monocyte attachment to endothelial cells. Using primary cultured human umbilical vein endothelial cells (HUVECs) as an in vitro model, we demonstrated that GTFs (in the cell-bound or free form) could specifically modulate the expression of IL-6, and also adhesion molecules, in a dose- and time-dependent manner. Results of inhibition assays suggested that enhanced expression of adhesion molecules was dependent on the activation of nuclear factor κB (NF-κB) and extracellular signal-regulated kinase and that p38 mitogen-activated protein kinase pathways also contributed to the release of IL-6. Streptococcus-infected HUVECs or treatment with purified IL-6 plus soluble IL-6 receptor α enhanced the expression of ICAM-1 and the adherence of the monocytic cell line U937. These results suggest that streptococcal GTFs might play an important role in recruiting monocytic cells during inflammation in IE through induction of adhesion molecules and IL-6, a cytokine involved in transition from neutrophil to monocyte recruitment. PMID:16428777

  12. Novel strategies for the treatment of inflammatory bowel disease: Selective inhibition of cytokines and adhesion molecules

    PubMed Central

    Nakamura, Kazuhiko; Honda, Kuniomi; Mizutani, Takahiro; Akiho, Hirotada; Harada, Naohiko

    2006-01-01

    The etiology of inflammatory bowel disease (IBD) has not yet been clarified and immunosuppressive agents which non-specifically reduce inflammation and immunity have been used in the conventional therapies for IBD. Evidence indicates that a dysregulation of mucosal immunity in the gut of IBD causes an overproduction of inflammatory cytokines and trafficking of effector leukocytes into the bowel, thus leading to an uncontrolled intestinal inflammation. Such recent advances in the understanding of the pathogenesis of IBD created a recent trend of novel biological therapies which specifically inhibit the molecules involved in the inflammatory cascade. Major targets for such treatment are inflammatory cytokines and their receptors, and adhesion molecules. A chimeric anti-TNF-α monoclonal antibody, infliximab, has become a standard therapy for CD and it is also likely to be beneficial for UC. Several anti-TNF reagents have been developed but most of them seem to not be as efficacious as infliximab. A humanized anti-TNF monoclonal antibody, adalimumab may be useful for the treatment of patients who lost responsiveness or developed intolerance to infliximab. Antibodies against IL-12 p40 and IL-6 receptor could be alternative new anti-cytokine therapies for IBD. Anti-interferon-γ and anti-CD25 therapies were developed, but the benefit of these agents has not yet been established. The selective blocking of migration of leukocytes into intestine seems to be a nice approach. Antibodies against α4 integrin and α4β7 integrin showed benefit for IBD. Antisense oligonucleotide of intercellular adhesion molecule 1 (ICAM-1) may be efficacious for IBD. Clinical trials of such compounds have been either recently reported or are currently underway. In this article, we review the efficacy and safety of such novel biological therapies for IBD. PMID:16937430

  13. Adhesion and migration of polymorphonuclear leukocytes across human brain microvessel endothelial cells are differentially regulated by endothelial cell adhesion molecules and modulate monolayer permeability.

    PubMed

    Wong, Donald; Prameya, Rukmini; Dorovini-Zis, Katerina

    2007-03-01

    The mechanisms by which polymorphonuclear leukocytes (PMN) cross the human blood-brain barrier have not been fully elucidated. Using a well characterized in vitro model of the human BBB, we examined the role of endothelial cell adhesion molecules on the adhesion and transendothelial migration of PMN across primary cultures of human brain microvessel endothelial cells (HBMEC). A small number of PMN (0.06%) adhered to unstimulated HBMEC, and the basal adhesion was not affected by anti-adhesion molecule antibodies. Treatment of HBMEC with tumor necrosis factor (TNF)-alpha resulted in increased PMN adhesion that was significantly inhibited by blocking antibodies to E-selectin and ICAM-1, but not VCAM-1 or PECAM-1. A very small number of adherent PMN migrated across unstimulated HBMEC monolayers. Migration increased 2 to 20 fold following stimulation of HBMEC with TNF-alpha. Monoclonal antibody blocking studies showed that PMN used ICAM-1, but not VCAM-1, E-selectin or PECAM-1 to move across activated monolayers. Anti-adhesion molecule antibodies did not diminish the basal PMN migration. Ultrastructurally, PMN often aggregated on top and between adjacent endothelial cells and adhered by first extending pseudopodia along the apical endothelial surface. They then flattened and inserted themselves between endothelial cells in order to migrate across the monolayers. At the end of the migration period, the cultures resumed their continuity with no evidence of disruption. Transendothelial migration of PMN decreased the transendothelial electrical resistance and increased the permeability to horseradish peroxidase, which penetrated alongside the migrating leukocytes. A blocking antibody to ICAM-1 that greatly decreased migration, had no effect on the permeability changes. These studies provide insights into the mechanisms that regulate the entry of PMN into the brain and the increased permeability of the BBB in CNS inflammation. PMID:17291598

  14. Determining β2-Integrin and Intercellular Adhesion Molecule 1 Binding Kinetics in Tumor Cell Adhesion to Leukocytes and Endothelial Cells by a Gas-driven Micropipette Assay*

    PubMed Central

    Fu, Changliang; Tong, Chunfang; Wang, Manliu; Gao, Yuxin; Zhang, Yan; Lü, Shouqin; Liang, Shile; Dong, Cheng; Long, Mian

    2011-01-01

    Interactions between polymorphonuclear neutrophils (PMNs) and tumor cells have been reported to facilitate the adhesion and subsequent extravasation of tumor cells through the endothelium under blood flow, both of which are mediated by binding β2-integrin to intercellular adhesion molecule 1 (ICAM-1). Here the adhesions between human WM9 metastatic melanoma cells, PMNs, and human pulmonary microvascular endothelial cells (HPMECs) were quantified by a gas-driven micropipette aspiration technique (GDMAT). Our data indicated that the cellular binding affinity of PMN-WM9 pair was 3.9-fold higher than that of the PMN-HPMEC pair. However, the effective binding affinities per molecular pair were comparable between the two cell pairs no matter whether WM9 cells or HPMECs were quiescent or cytokine-activated, indicating that the stronger adhesion between PMN-WM9 pair is mainly attributed to the high expression of ICAM-1 on WM9 cells. These results proposed an alternative mechanism, where WM9 melanoma cells adhere first with PMNs near vessel-wall regions and then bind to endothelial cells via PMNs under blood flow. In contrast, the adhesions between human MDA-MB-231 metastatic breast carcinoma cells and PMNs showed a comparable cellular binding affinity to PMN-HPMEC pair because the ICAM-1 expressions on MDA-MB-231 cells and HPMECs are similar. Furthermore, differences were observed in the intrinsic forward and reverse rates of the β2-integrin-ICAM-1 bond between PMN-TC and PMN-EC pairs. This GDMAT assay enables us to quantify the binding kinetics of cell adhesion molecules physiologically expressed on nucleated cells. The findings also further the understanding of leukocyte-facilitated tumor cell adhesion from the viewpoint of molecular binding kinetics. PMID:21840991

  15. Impact of p120-catenin isoforms 1A and 3A on epithelial mesenchymal transition of lung cancer cells expressing E-cadherin in different subcellular locations.

    PubMed

    Zhang, Yijun; Zhao, Yue; Jiang, Guiyang; Zhang, Xiupeng; Zhao, Huanyu; Wu, Junhua; Xu, Ke; Wang, Enhua

    2014-01-01

    The epithelial mesenchymal transition (EMT) is an important process in tumor development. Despite previous investigations, it remains unclear how p120-catenin (p120ctn) isoforms 1A and 3A affect the EMT of tumor cells. Here we investigated expression of p120ctn, E-cadherin and vimentin in 78 human non-small cell lung cancer (NSCLC) samples by immunohistochemistry and found that p120ctn membrane expression positively correlated with E-cadherin expression (P<0.001) and negatively correlated with vimentin expression and lymph node metastasis (P<0.05). Meanwhile, p120ctn cytoplasmic expression negatively correlated with E-cadherin expression (P<0.001) and positively correlated with vimentin expression and lymph node metastasis (P<0.05). Cells expressing high (H460 and SPC) and low (H1299 and LK2) levels of p120ctn were screen to investigate its impact on EMT. E-cadherin was restricted to the cell membrane in H460 and H1299 cells, whereas it was expressed in the cytoplasm of SPC and LK2 cells. Ablation of endogenous p120ctn isoform 1A in cells expressing high levels of the protein resulted in decreased E-cadherin expression, increased N-cadherin, vimentin and snail expression and enhanced invasiveness in H460 cells. Meanwhile, completely opposite results were observed in SPC cells. Furthermore, transfection of in H1299 cells expressing low p120ctn levels with the p120ctn isoform 1A plasmid resulted in increased E-cadherin expression, decreased N-cadherin, vimentin and snail expression and weakened invasiveness, while LK2 cells showed completely opposite results. Both cell lines expressing low p120ctn levels and transfected with the p120ctn isoform 3A plasmid appeared to have increased E-cadherin expression, decreased N-cadherin, vimentin and snail expression and weakened invasiveness. In conclusion, in cells with membrane E-cadherin, both p120ctn isoforms 1A and 3A inhibited EMT and decreased cell invasiveness. In cells with cytoplasmic E-cadherin, p120ctn isoform 1A

  16. Carcinoma cells induce lumen filling and EMT in epithelial cells through soluble E-cadherin-mediated activation of EGFR.

    PubMed

    Patil, Pratima U; D'Ambrosio, Julia; Inge, Landon J; Mason, Robert W; Rajasekaran, Ayyappan K

    2015-12-01

    In epithelial cancers, carcinoma cells coexist with normal cells. Although it is known that the tumor microenvironment (TME) plays a pivotal role in cancer progression, it is not completely understood how the tumor influences adjacent normal epithelial cells. In this study, a three-dimensional co-culture system comprising non-transformed epithelial cells (MDCK) and transformed carcinoma cells (MSV-MDCK) was used to demonstrate that carcinoma cells sequentially induce preneoplastic lumen filling and epithelial-mesenchymal transition (EMT) in epithelial cysts. MMP-9 secreted by carcinoma cells cleaves cellular E-cadherin (encoded by CDH1) from epithelial cells to generate soluble E-cadherin (sE-cad), a pro-oncogenic protein. We show that sE-cad induces EGFR activation, resulting in lumen filling in MDCK cysts. Long-term sE-cad treatment induced EMT. sE-cad caused lumen filling by induction of the ERK signaling pathway and triggered EMT through the sustained activation of the AKT pathway. Although it is known that sE-cad induces MMP-9 release and consequent EGFR activation in tumor cells, our results, for the first time, demonstrate that carcinoma cells can induce sE-cad shedding in adjacent epithelial cells, which leads to EGFR activation and the eventual transdifferentiation of the normal epithelial cells. PMID:26483386

  17. Expression of RKIP, E-cadherin and NF-kB p65 in esophageal squamous cell carcinoma and their correlations.

    PubMed

    Ping, Fu-Min; Liu, Gui-Jing; Liu, Zhi-Jun; Li, Hai-Bin; Zhai, Jian-Wen; Li, Shu-Xia; Liu, Yue-Mei; Li, Bao-Wei; Wei, Hong

    2015-01-01

    To detect the expression of RKIP, E-cadherin and NF-kB p65 in esophageal squamous cell carcinoma (ESCC) and study their correlations. Steptavidin-peroxidase (S-P) method was employed to detect the expressions of RKIP, E-cadherin and NF-kB p65 in ESCC tissues from 77 cases and paracancerous tissues from 77 cases. The correlations between their expressions and clinicopathological indices and between the expressions of these proteins themselves were analyzed. The expressions of RKIP and E-cadherin in ESCC tissues were obviously lower than those in the paracancerous tissues (P<0.01); the expressions in ESCC tissues from cases with lymph node metastasis were lower than those from cases without lymph node metastasis (P<0.01); the expression of RKIP was positively correlated with the expression of E-cadherin in ESCC tissues (P<0.01). The expression of NF-kB p65 in ESCC tissues was correlated with clinical staging, lymph node metastasis and tumor differentiation (P<0.01); the expression of RKIP was negatively correlated with the expression of NF-kB p65 in ESCC tissues (P<0.05). Downregulation or depletion of RKIP was related to the onset and progression of ESCC, and facilitated the invasion and metastasis of ESCC by downregulating E-cadherin and upregulating NF-kB p65. PMID:26617724

  18. Expression of RKIP, E-cadherin and NF-kB p65 in esophageal squamous cell carcinoma and their correlations

    PubMed Central

    Ping, Fu-Min; Liu, Gui-Jing; Liu, Zhi-Jun; Li, Hai-Bin; Zhai, Jian-Wen; Li, Shu-Xia; Liu, Yue-Mei; Li, Bao-Wei; Wei, Hong

    2015-01-01

    To detect the expression of RKIP, E-cadherin and NF-kB p65 in esophageal squamous cell carcinoma (ESCC) and study their correlations. Steptavidin-peroxidase (S-P) method was employed to detect the expressions of RKIP, E-cadherin and NF-kB p65 in ESCC tissues from 77 cases and paracancerous tissues from 77 cases. The correlations between their expressions and clinicopathological indices and between the expressions of these proteins themselves were analyzed. The expressions of RKIP and E-cadherin in ESCC tissues were obviously lower than those in the paracancerous tissues (P<0.01); the expressions in ESCC tissues from cases with lymph node metastasis were lower than those from cases without lymph node metastasis (P<0.01); the expression of RKIP was positively correlated with the expression of E-cadherin in ESCC tissues (P<0.01). The expression of NF-kB p65 in ESCC tissues was correlated with clinical staging, lymph node metastasis and tumor differentiation (P<0.01); the expression of RKIP was negatively correlated with the expression of NF-kB p65 in ESCC tissues (P<0.05). Downregulation or depletion of RKIP was related to the onset and progression of ESCC, and facilitated the invasion and metastasis of ESCC by downregulating E-cadherin and upregulating NF-kB p65. PMID:26617724

  19. Distinct roles of secreted HtrA proteases from gram-negative pathogens in cleaving the junctional protein and tumor suppressor E-cadherin.

    PubMed

    Hoy, Benjamin; Geppert, Tim; Boehm, Manja; Reisen, Felix; Plattner, Patrick; Gadermaier, Gabriele; Sewald, Norbert; Ferreira, Fatima; Briza, Peter; Schneider, Gisbert; Backert, Steffen; Wessler, Silja

    2012-03-23

    The periplasmic chaperone and serine protease HtrA is important for bacterial stress responses and protein quality control. Recently, we discovered that HtrA from Helicobacter pylori is secreted and cleaves E-cadherin to disrupt the epithelial barrier, but it remained unknown whether this maybe a general virulence mechanism. Here, we show that important other pathogens including enteropathogenic Escherichia coli, Shigella flexneri, and Campylobacter jejuni, but not Neisseria gonorrhoeae, cleaved E-cadherin on host cells. HtrA deletion in C. jejuni led to severe defects in E-cadherin cleavage, loss of cell adherence, paracellular transmigration, and basolateral invasion. Computational modeling of HtrAs revealed a conserved pocket in the active center exhibiting pronounced proteolytic activity. Differential E-cadherin cleavage was determined by an alanine-to-glutamine exchange in the active center of neisserial HtrA. These data suggest that HtrA-mediated E-cadherin cleavage is a prevalent pathogenic mechanism of multiple gram-negative bacteria representing an attractive novel target for therapeutic intervention to combat bacterial infections. PMID:22337879

  20. Elevated Src family kinase activity stabilizes E-cadherin-based junctions and collective movement of head and neck squamous cell carcinomas

    PubMed Central

    Veracini, Laurence; Grall, Dominique; Schaub, Sébastien; Divonne, Stéphanie Beghelli-de la Forest; Etienne-Grimaldi, Marie-Christine; Milano, Gérard; Bozec, Alexandre; Babin, Emmanuel; Sudaka, Anne; Thariat, Juliette; Van Obberghen-Schilling, Ellen

    2015-01-01

    EGF receptor (EGFR) overexpression is thought to drive head and neck carcinogenesis however clinical responses to EGFR-targeting agents have been modest and alternate targets are actively sought to improve results. Src family kinases (SFKs), reported to act downstream of EGFR are among the alternative targets for which increased expression or activity in epithelial tumors is commonly associated to the dissolution of E-cadherin-based junctions and acquisition of a mesenchymal-like phenotype. Robust expression of total and activated Src was observed in advanced stage head and neck tumors (N=60) and in head and neck squamous cell carcinoma lines. In cultured cancer cells Src co-localized with E-cadherin in cell-cell junctions and its phosphorylation on Y419 was both constitutive and independent of EGFR activation. Selective inhibition of SFKs with SU6656 delocalized E-cadherin and disrupted cellular junctions without affecting E-cadherin expression and this effect was phenocopied by knockdown of Src or Yes. These findings reveal an EGFR-independent role for SFKs in the maintenance of intercellular junctions, which likely contributes to the cohesive invasion E-cadherin-positive cells in advanced tumors. Further, they highlight the need for a deeper comprehension of molecular pathways that drive collective cell invasion, in absence of mesenchymal transition, in order to combat tumor spread. PMID:25779657

  1. The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases.

    PubMed

    Tsai, Chi-Neu; Tsai, Chia-Lung; Tse, Ka-Po; Chang, Hwan-You; Chang, Yu-Sun

    2002-07-23

    The latent membrane protein (LMP1) of Epstein-Barr virus (EBV) is expressed in EBV-associated nasopharyngeal carcinoma, which is notoriously metastatic. Although it is established that LMP1 represses E-cadherin expression and enhances the invasive ability of carcinoma cells, the mechanism underlying this repression remains to be elucidated. In this study, we demonstrate that LMP1 induces the expression and activity of the DNA methyltransferases 1, 3a, and 3b, using real-time reverse transcription-PCR and enzyme activity assay. This results in hypermethylation of the E-cadherin promoter and down-regulation of E-cadherin gene expression, as revealed by methylation-specific PCR, real-time reverse transcription-PCR and Western blotting data. The DNA methyltransferase inhibitor, 5'-Aza-2'dC, restores E-cadherin promoter activity and protein expression in LMP1-expressing cells, which in turn blocks cell migration ability, as demonstrated by the Transwell cell migration assay. Our findings suggest that LMP1 down-regulates E-cadherin gene expression and induces cell migration activity by using cellular DNA methylation machinery. PMID:12110730

  2. EZH2 promotes cell migration and invasion but not alters cell proliferation by suppressing E-cadherin, partly through association with MALAT-1 in pancreatic cancer

    PubMed Central

    Han, Ting; Jiao, Feng; Hu, Hai; Yuan, Cuncun; Wang, Lei; Jin, Zi-Liang; Song, Wei-feng; Wang, Li-Wei

    2016-01-01

    Enhancer of zeste homolog 2 (EZH2) is an essential component of the polycomb repressive complex 2 (PRC2), which is required for epigenetic silencing of target genes, including those affecting cancer progression. Its role in pancreatic cancer remains to be clarified; therefore, we investigated the effects of aberrantly expressed EZH2 on pancreatic cancer. We found that EZH2 expression is up-regulated in pancreatic cancer tissues and positively correlated with lymph node metastasis and advanced clinical stage in pancreatic cancer patients. EZH2 knockdown in pancreatic cancer cell lines inhibited cell migration and invasion, but did not alter cell proliferation. Silencing of EZH2 also increased E-cadherin expression in vitro, and E-cadherin expression was inversely correlated with EZH2 expression in pancreatic cancer tissue samples. Patients with high EZH2 and low E-cadherin expression had the worst prognosis. RIP and ChIP assays suggest that EZH2 is recruited to the E-cadherin promoter by the long non-coding RNA, MALAT-1 (metastasis associated in lung adenocarcinoma transcript 1), where it represses E-cadherin expression. Our results show that EZH2-based therapies may be an option for the treatment of pancreatic cancer. PMID:26848980

  3. Elevated Src family kinase activity stabilizes E-cadherin-based junctions and collective movement of head and neck squamous cell carcinomas.

    PubMed

    Veracini, Laurence; Grall, Dominique; Schaub, Sébastien; Beghelli-de la Forest Divonne, Stéphanie; Etienne-Grimaldi, Marie-Christine; Milano, Gérard; Bozec, Alexandre; Babin, Emmanuel; Sudaka, Anne; Thariat, Juliette; Van Obberghen-Schilling, Ellen

    2015-04-10

    EGF receptor (EGFR) overexpression is thought to drive head and neck carcinogenesis however clinical responses to EGFR-targeting agents have been modest and alternate targets are actively sought to improve results. Src family kinases (SFKs), reported to act downstream of EGFR are among the alternative targets for which increased expression or activity in epithelial tumors is commonly associated to the dissolution of E-cadherin-based junctions and acquisition of a mesenchymal-like phenotype. Robust expression of total and activated Src was observed in advanced stage head and neck tumors (N=60) and in head and neck squamous cell carcinoma lines. In cultured cancer cells Src co-localized with E-cadherin in cell-cell junctions and its phosphorylation on Y419 was both constitutive and independent of EGFR activation. Selective inhibition of SFKs with SU6656 delocalized E-cadherin and disrupted cellular junctions without affecting E-cadherin expression and this effect was phenocopied by knockdown of Src or Yes. These findings reveal an EGFR-independent role for SFKs in the maintenance of intercellular junctions, which likely contributes to the cohesive invasion E-cadherin-positive cells in advanced tumors. Further, they highlight the need for a deeper comprehension of molecular pathways that drive collective cell invasion, in absence of mesenchymal transition, in order to combat tumor spread. PMID:25779657

  4. A comparative phenotypical analysis of rheumatoid nodules and rheumatoid synovium with special reference to adhesion molecules and activation markers

    PubMed Central

    Elewaut, D.; De Keyser, F.; De Wever, N.; Baeten, D.; Van Damme, N.; Verbruggen, G.; Cuvelier, C.; Veys, E.

    1998-01-01

    OBJECTIVES—(1)To analyse the in situ expression of adhesion molecules in rheumatoid nodules. (2) To compare the endothelial expression of adhesion molecules in synovial tissue and subcutaneous nodules obtained from the same patients. (3) To compare the expression of adhesion molecules and activation markers on T cell lines from nodules and synovium.
METHODS—(1) Immunohistochemical analysis by APAAP technique of E selectin, CD44, ICAM-1, PECAM-1, and VCAM-1 was performed on 10 rheumatoid nodules from seven patients with rheumatoid arthritis (RA); nodules and synovium were simultaneously analysed from three patients. (2) T cell lines were generated from RA nodules (n=7) and synovium (n=7) by interleukin 2 expansion, and subsequently characterised by flow cytometry for surface expression of αEβ7, α4β7, CD44, L selectin, LFA-1a, PECAM-1, and CD30.
RESULTS—(1) In rheumatoid nodules, the palisading layer strongly stains for ICAM-1 and PECAM-1, but less pronounced for CD44. VCAM-1 staining was usually negative. ICAM-1 is upregulated in the vessels surrounding the central zone of fibrinoid necrosis. The immunohistological picture in different nodules derived from the same patient was similar. (2) The endothelial expression of adhesion molecules is comparable in RA nodules and synovium on an individual level, except for E selectin, which is overexpressed in nodule endothelium. (3) T cell lines from nodules and synovium display similar adhesion molecule profiles. However, the expression of CD30, a T cell activation marker linked with Th2 subsets, is higher in nodules compared with synovium.
CONCLUSION—These data support a recirculation hypothesis of T cells between articular and extra-articular manifestations in RA, although the activation state of the T cells in each of these localisations may differ.

 Keywords: T cells; adhesion molecules; rheumatoid nodules; rheumatoid synovium PMID:9797554

  5. Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles

    NASA Astrophysics Data System (ADS)

    Andersson, Magnus; Axner, Ove; Uhlin, Bernt Eric; Fällman, Erik

    2006-08-01

    Instrumentation and methodologies for single molecule force spectroscopy on bacterial adhesion organelles by the use of force measuring optical tweezers have been developed. A thorough study of the biomechanical properties of fimbrial adhesion organelles expressed by uropathogenic E. coli, so-called pili, is presented. Steady-state as well as dynamic force measurements on P pili, expressed by E. coli causing pyelonephritis, have revealed, among other things, various unfolding and refolding properties of the helical structure of P pili, the PapA rod. Based on these properties an energy landscape model has been constructed by which specific biophysical properties of the PapA rod have been extracted, e.g. the number of subunits, the length of a single pilus, bond lengths and activation energies for bond opening and closure. Moreover, long time repetitive measurements have shown that the rod can be unfolded and refolded repetitive times without losing its intrinsic properties. These properties are believed to be of importance for the bacteria's ability to maintain close contact with host cells during initial infections. The results presented are considered to be of importance for the field of biopolymers in general and the development of new pharmaceuticals towards urinary tract infections in particular. The results show furthermore that the methodology can be used to gain knowledge of the intrinsic biomechanical function of adhesion organelles. The instrumentation is currently used for characterization of type 1 pili, expressed by E. coli causing cystitis, i.e. infections in the bladder. The first force spectrometry investigations of these pili will be presented.

  6. Expression of neural cell adhesion molecule in normal and neoplastic human neuroendocrine tissues.

    PubMed Central

    Jin, L.; Hemperly, J. J.; Lloyd, R. V.

    1991-01-01

    The neural cell adhesion molecule (N-CAM) is a group of cell surface glycoproteins involved in direct cell--cell adhesion. N-CAM expression in normal and neoplastic tissues was examined with specific antibodies and oligonucleotide probes by immunohistochemistry and in situ hybridization. Most neuroendocrine cells and tumors with secretory granules expressed N-CAM protein and mRNA. Parathyroid adenomas (4) were somewhat unusual, because N-CAM mRNA, but not protein, was detected in some of these benign neoplasms. Most non-neuroendocrine cells and tumors did not express N-CAM, although uterine smooth muscle and an adrenal cortical carcinoma were both positive. Western blots disclosed proteins of 180, 140, and 120 kd in normal adult brain, whereas two pheochromocytomas, a null cell adenoma, and a gastrinoma had proteins of approximately 180 and 140 kd. These results indicate that N-CAM protein and mRNA are widely expressed in neuroendocrine cells and neoplasms. N-CAM oligonucleotide probes as well as antibodies against N-CAM can be used as broad-spectrum neuroendocrine markers. In addition, these molecular probes can be used to examine the role of N-CAM in the development and regulation of neuroendocrine tissues. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:2012179

  7. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation

    SciTech Connect

    Capkovic, Katie L.; Stevenson, Severin; Johnson, Marc C.; Thelen, Jay J.; Cornelison, D.D.W.

    2008-04-15

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression.

  8. Neural cell adhesion molecule (NCAM) marks adult myogenic cells committed to differentiation.

    PubMed

    Capkovic, Katie L; Stevenson, Severin; Johnson, Marc C; Thelen, Jay J; Cornelison, D D W

    2008-04-15

    Although recent advances in broad-scale gene expression analysis have dramatically increased our knowledge of the repertoire of mRNAs present in multiple cell types, it has become increasingly clear that examination of the expression, localization, and associations of the encoded proteins will be critical for determining their functional significance. In particular, many signaling receptors, transducers, and effectors have been proposed to act in higher-order complexes associated with physically distinct areas of the plasma membrane. Adult muscle stem cells (satellite cells) must, upon injury, respond appropriately to a wide range of extracellular stimuli: the role of such signaling scaffolds is therefore a potentially important area of inquiry. To address this question, we first isolated detergent-resistant membrane fractions from primary satellite cells, then analyzed their component proteins using liquid chromatography-tandem mass spectrometry. Transmembrane and juxtamembrane components of adhesion-mediated signaling pathways made up the largest group of identified proteins; in particular, neural cell adhesion molecule (NCAM), a multifunctional cell-surface protein that has previously been associated with muscle regeneration, was significant. Immunohistochemical analysis revealed that not only is NCAM localized to discrete areas of the plasma membrane, it is also a very early marker of commitment to terminal differentiation. Using flow cytometry, we have sorted physically homogeneous myogenic cultures into proliferating and differentiating fractions based solely upon NCAM expression. PMID:18308302

  9. N-glycosylation controls the function of junctional adhesion molecule-A

    PubMed Central

    Scott, David W.; Tolbert, Caitlin E.; Graham, David M.; Wittchen, Erika; Bear, James E.; Burridge, Keith

    2015-01-01

    Junctional adhesion molecule-A (JAM-A) is an adherens and tight junction protein expressed by endothelial and epithelial cells. JAM-A serves many roles and contributes to barrier function and cell migration and motility, and it also acts as a ligand for the leukocyte receptor LFA-1. JAM-A is reported to contain N-glycans, but the extent of this modification and its contribution to the protein’s functions are unknown. We show that human JAM-A contains a single N-glycan at N185 and that this residue is conserved across multiple mammalian species. A glycomutant lacking all N-glycans, N185Q, is able to reach the cell surface but exhibits decreased protein half-life compared with the wild- type protein. N-glycosylation of JAM-A is required for the protein’s ability to reinforce barrier function and contributes to Rap1 activity. We further show that glycosylation of N185 is required for JAM-A–mediated reduction of cell migration. Finally, we show that N-glycosylation of JAM-A regulates leukocyte adhesion and LFA-1 binding. These findings identify N-glycosylation as critical for JAM-A’s many functions. PMID:26224316

  10. The homophilic adhesion molecule sidekick-1 contributes to augmented podocyte aggregation in HIV-associated nephropathy.

    PubMed

    Kaufman, Lewis; Yang, Guozhe; Hayashi, Kayo; Ashby, James R; Huang, Li; Ross, Michael J; Klotman, Mary E; Klotman, Paul E

    2007-05-01

    The collapsing glomerulopathy of HIV-associated nephropathy (HIVAN) is characterized by podocyte dedifferentiation and proliferation. In affected glomeruli, proliferating podocytes adhere in aggregates to form glomerular pseudocrescents and fill an enlarged Bowman's space. Previously, we reported that sidekick-1 (sdk-1), an adhesion molecule of the immunoglobulin superfamily, was highly up-regulated in HIV-1 transgenic podocytes. In the current work, we explore how sdk-1 overexpression contributes to HIVAN pathogenesis. Murine podocytes infected with HIV-1 virus expressed significantly more sdk-1 than control-infected cells. Podocytes stably transfected with an sdk-1 expression construct grew in large aggregates with a simplified morphology characterized by a disorganized actin cytoskeleton, changes similar to podocytes in HIVAN. In contrast to controls, HIV-1 infected podocytes adhered to stably transfected sdk-1 podocyte aggregates in mixing studies. Furthermore, substrate-released cell sheets of wild-type podocytes were readily dissociated by mechanical stress, whereas HIV-1 podocytes remained in aggregates. The number of HIV-1 podocyte aggregates was significantly reduced in cells expressing a short hairpin RNA (shRNA) construct specific for sdk-1 compared with cells expressing control shRNA. Finally, in a HIVAN mouse model, sdk-1 protein was detected in podocytes in collapsed glomerular tufts and in glomerular pseudocrescents. These findings suggest that sdk-1 is an important mediator of cellular adhesion in HIV-infected podocytes and may contribute to podocyte clustering that is characteristic of pseudocrescent formation in HIVAN. PMID:17307840

  11. The cell adhesion molecule nectin-1 is critical for normal enamel formation in mice

    PubMed Central

    Barron, Martin J.; Brookes, Steven J.; Draper, Clare E.; Garrod, David; Kirkham, Jennifer; Shore, Roger C.; Dixon, Michael J.

    2008-01-01

    Nectin-1 is a member of a sub-family of immunoglobulin-like adhesion molecules and a component of adherens junctions. In the current study, we have shown that mice lacking nectin-1 exhibit defective enamel formation in their incisor teeth. Although the incisors of nectin-1-null mice were hypomineralized, the protein composition of the enamel matrix was unaltered. While strong immunostaining for nectin-1 was observed at the interface between the maturation-stage ameloblasts and the underlying cells of the stratum intermedium (SI), its absence in nectin-1-null mice correlated with separation of the cell layers at this interface. Numerous, large desmosomes were present at this interface in wild-type mice; however, where adhesion persisted in the mutant mice, the desmosomes were smaller and less numerous. Nectins have been shown to regulate tight junction formation; however, this is the first report showing that they may also participate in the regulation of desmosome assembly. Importantly, our results show that integrity of the SI–ameloblast interface is essential for normal enamel mineralization. PMID:18703497

  12. Human cell adhesion molecules: annotated functional subtypes and overrepresentation of addiction-associated genes.

    PubMed

    Zhong, Xiaoming; Drgonova, Jana; Li, Chuan-Yun; Uhl, George R

    2015-09-01

    Human cell adhesion molecules (CAMs) are essential for proper development, modulation, and maintenance of interactions between cells and cell-to-cell (and matrix-to-cell) communication about these interactions. Despite the differential functional significance of these roles, there have been surprisingly few systematic studies to enumerate the universe of CAMs and identify specific CAMs in distinct functions. In this paper, we update and review the set of human genes likely to encode CAMs with searches of databases, literature reviews, and annotations. We describe likely CAMs and functional subclasses, including CAMs that have a primary function in information exchange (iCAMs), CAMs involved in focal adhesions, CAM gene products that are preferentially involved with stereotyped and morphologically identifiable connections between cells (e.g., adherens junctions, gap junctions), and smaller numbers of CAM genes in other classes. We discuss a novel proposed mechanism involving selective anchoring of the constituents of iCAM-containing lipid rafts in zones of close neuronal apposition to membranes expressing iCAM binding partners. We also discuss data from genetic and genomic studies of addiction in humans and mouse models to highlight the ways in which CAM variation may contribute to a specific brain-based disorder such as addiction. Specific examples include changes in CAM mRNA splicing mediated by differences in the addiction-associated splicing regulator RBFOX1/A2BP1 and CAM expression in dopamine neurons. PMID:25988664

  13. Circulating adhesion molecules after short-term exposure to particulate matter among welders

    PubMed Central

    Fang, S C; Eisen, E A; Cavallari, J M; Mittleman, M A; Christiani, D C

    2011-01-01

    Background Studies from several countries indicate that welders experience increased risk of mortality and morbidity from ischaemic heart disease. Although the underlying mechanisms are unclear, vascular responses to particulate matter contained in welding fumes may play a role. To investigate this, we studied the acute effects of welding fume exposure on the endothelial component of vascular function, as measured by circulating adhesion molecules involved in leukocyte adhesion (sICAM-1 and sVCAM-1) and coagulation (vWF). Methods A panel of 26 male welders was studied repeatedly across a 6 h work-shift on a high exposure welding day and/or a low exposure non-welding day. Personal PM2.5 exposure was measured throughout the work-shift. Blood samples were collected in the morning (baseline) prior to the exposure period, immediately after the exposure period, and the following morning. To account for the repeated measurements, we used linear mixed models to evaluate the effects of welding (binary) and PM2.5 (continuous) exposure on each blood marker, adjusting for baseline blood marker concentration, smoking, age and time of day. Results Welding and PM2.5 exposure were significantly associated with a decrease in sVCAM-1 in the afternoon and the following morning and an increase in vWF in the afternoon. Conclusions The data suggest that welding and short-term occupational exposure to PM2.5 may acutely affect the endothelial component of vascular function. PMID:19736177

  14. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina.

    PubMed

    Yamagata, Masahito; Weiner, Joshua A; Sanes, Joshua R

    2002-09-01

    A major determinant of specific connectivity in the central nervous system is that synapses made by distinct afferent populations are restricted to particular laminae in their target area. We identify Sidekick (Sdk)-1 and -2, homologous transmembrane immunoglobulin superfamily molecules that mediate homophilic adhesion in vitro and direct laminar targeting of neurites in vivo. sdk-1 and -2 are expressed by nonoverlapping subsets of retinal neurons; each sdk is expressed by presynaptic (amacrine and bipolar) and postsynaptic (ganglion) cells that project to common inner plexiform (synaptic) sublaminae. Sdk proteins are concentrated at synaptic sites, and Sdk-positive synapses are restricted to the 2 (of > or =10) sublaminae to which sdk-expressing cells project. Ectopic expression of Sdk in Sdk-negative cells redirects their processes to a Sdk-positive sublamina. These results implicate Sdks as determinants of lamina-specific synaptic connectivity. PMID:12230981

  15. Effects of Gravitational Mechanical Unloading in Endothelial Cells: Association between Caveolins, Inflammation and Adhesion Molecules

    PubMed Central

    Grenon, S. Marlene; Jeanne, Marion; Aguado-Zuniga, Jesus; Conte, Michael S.; Hughes-Fulford, Millie

    2013-01-01

    Mechanical forces including gravity affect endothelial cell (ECs) function, and have been implicated in vascular disease as well as physiologic changes associated with low gravity environments. The goal of this study was to investigate the impact of gravitational mechanical unloading on ECs phenotype as determined by patterns of gene expression. Human umbilical vascular endothelial cells were exposed to 1-gravity environment or mechanical unloading (MU) for 24 hours, with or without periods of mechanical loading (ML). MU led to a significant decrease in gene expression of several adhesion molecules and pro-inflammatory cytokines. On the contrary, eNOS, Caveolin-1 and -2 expression were significantly increased with MU. There was a decrease in the length and width of the cells with MU. Addition of ML during the MU period was sufficient to reverse the changes triggered by MU. Our results suggest that gravitational loading could dramatically affect vascular endothelial cell function. PMID:23511048

  16. Expression of the cluster 1 antigen (neural cell adhesion molecule) in neuroectodermal tumours.

    PubMed Central

    Patel, K.; Frost, G.; Kiely, F.; Phimister, E.; Coakham, H. B.; Kemshead, J. T.

    1991-01-01

    In this study, we have investigated the expression of the neural cell adhesion molecule (NCAM) in the human brain, primary brain tumours and neuroblastoma. Adult brain was found to express discrete isoforms of 180, 170, 140 and 120 kDa, which on neuraminidase treatment resolved into bands of 180, 170, 140, 120 and 95 kDa. Primary brain tumours such as Schwannoma and medulloblastoma expressed embryonic NCAM characterised by a high level of glycosylation, whereas other tumours, e.g. astrocytoma, meningioma, glioma and oligodendroglioma expressed adult NCAM. Post-neuraminidase treatment, differential expression of the 180, 170, 140, 120 and 95 kDa isoforms were noted in these various tumour types. On the other hand, neuroblastoma cell lines were found to express only embryonic NCAM, which after neuraminidase treatment resulted in differential presence of only 180, 140 and 120 kDa proteins. Images Figure 1 Figure 2 PMID:2039710

  17. Junctional adhesion molecule-C (JAM-C) regulates polarized neutrophil transendothelial cell migration in vivo

    PubMed Central

    Woodfin, Abigail; Voisin, Mathieu-Benoit; Beyrau, Martina; Colom, Bartomeu; Caille, Dorothée; Diapouli, Frantzeska-Maria; Nash, Gerard B; Chavakis, Triantafyllos; Albelda, Steven M.; Rainger, G Ed; Meda, Paolo; Imhof, Beat A.; Nourshargh, Sussan

    2011-01-01

    Neutrophil migration into inflamed tissues is a fundamental component of innate immunity. A decisive step in this process is the polarised migration of blood neutrophils through endothelial cells (ECs) lining the venular lumen (transendothelial cell migration; TEM) in a luminal to abluminal direction. Using real-time confocal imaging we report that neutrophils can exhibit disrupted polarised TEM (“hesitant” and “reverse”) in vivo. These events were noted in inflammation following ischemia-reperfusion injury, characterised by reduced expression of junctional adhesion molecule C (JAM-C) from EC junctions, and were enhanced by EC JAM-C blockade or genetic deletion. The results identify JAM-C as a key regulator of polarised neutrophil TEM in vivo and suggest that reverse TEM neutrophils can contribute to dissemination of systemic inflammation. PMID:21706006

  18. Functional role of endothelial adhesion molecules in the early stages of brain metastasis

    PubMed Central

    Soto, Manuel Sarmiento; Serres, Sébastien; Anthony, Daniel C.; Sibson, Nicola R.

    2014-01-01

    Background Cellular adhesion molecules (CAMs), which are normally associated with leukocyte trafficking, have also been shown to play an essential role in tumor metastasis to non-CNS sites. However, the role played by CAMs in brain metastasis is largely unexplored. It is known that leukocyte recruitment to the brain is very atypical and that mechanisms of disease in peripheral tissues cannot be extrapolated to the brain. Here, we have established the spatiotemporal expression of 12 key CAMs in the initial phases of tumor seeding in 2 different models of brain metastasis. Methods BALB/c or SCID mice were injected intracardially (105 cells/100 μL phosphate-buffered saline with either 4T1-GFP or MDA231BR-GFP cells, respectively (n = 4–6/group), and expression of the CAMs was determined by immunohistochemistry and immunofluorescence colocalisation. Results Endothelial expression of E-selectin, VCAM-1, ALCAM, ICAM-1, VLA-4, and β4 integrin was markedly increased early in tumor seeding. At the same time, the natural ligands to these adhesion molecules were highly expressed on the metastatic tumor cells both in vitro and in vivo. Two of these ligands showed particularly high tumor cell expression (ALCAM and VLA-4), and consequently their functional role in tumor seeding was determined. Antibody neutralization of either ALCAM or VLA-4 significantly reduced tumor seeding within the brain (>60% decrease in tumor number/mm2 brain; P < .05–0.01). Conclusions These findings suggest that ALCAM/ALCAM and VLA-4/VCAM-1 interactions play an important functional role in the early stages of metastasis seeding in the brain. Moreover, this work identifies a specific subset of ligand-receptor interactions that may yield new therapeutic and diagnostic targets for brain metastasis. PMID:24311639

  19. Release of soluble intercellular adhesion molecule 1 into bile and serum in murine endotoxin shock.

    PubMed

    Jaeschke, H; Essani, N A; Fisher, M A; Vonderfecht, S L; Farhood, A; Smith, C W

    1996-03-01

    Neutrophil-induced liver injury during endotoxemia is dependent on the adhesion molecules Mac-1 (CD11b/CD18) on neutrophils and its counterreceptor on endothelial cells and hepatocytes, intercellular adhesion molecule 1 (ICAM-1). To investigate a potential release of a soluble form of ICAM-1 (sICAM-1), animals received 100 micrograms/kg Salmonella abortus equi endotoxin alone or in combination with 700 mg/kg galactosamine. In endotoxin-sensitive mice (C3Heb/FeJ), injection of endotoxin did not cause liver injury but induced a time-dependent increase of sICAM-1 in serum (300%) and in bile (615%) without affecting bile flow. In galactosamine/endotoxin-treated animals, which developed liver injury, the increase in both compartments was only 97% and 104%, respectively. In either case, the increase in sICAM-1 concentrations paralleled the enhanced ICAM-1 expression in the liver. The endotoxin-resistant strain (C3H/HeJ) did not show elevated sICAM-1 levels in serum or bile after endotoxin administration. In contrast, the intravenous injection of murine tumor necrosis factor alpha (TNF-alpha), interleukin-1 alpha (IL-1 alpha) or IL-1 beta (13-23 micrograms/kg) into endotoxin-resistant mice induced a 225% to 364% increase in serum sICAM-1 and a 370% elevation of the biliary efflux of sICAM-1, again independent of changes in bile flow. These data indicate that cytokines are major inducers of sICAM-1 formation during endotoxemia in vivo. The described experimental model can be used to investigate the role of sICAM-1 in the pathophysiology of inflammatory liver disease. PMID:8617433

  20. Evaluation of soluble adhesion molecules in the diagnosis of amoebiasis, giardiasis and toxoplasmosis.

    PubMed

    el-Shazly, A M; Soliman, M; el-Kalla, M R; Rezk, H; el-Nemr, H; Handoussa, A E; el-Aaty, H E; Morsy, T A

    2001-12-01

    A total of 47 patients with toxoplasmosis (21 cases) with amoebic liver abscess (14 cases) and with giardiasis (12 cases) as well as 14 healthy control were subjected to thorough history taking, clinical examination, stool & urine analysis, complete blood picture, ESR, C-reactive protein, ASO, widal test, blood cultures, liver function tests, serum creatinine, hepatitis viral markers, rheumatoid factor, auto-antibodies, stool culture, rectal snip, chest X-ray, abdominal sonar, level of serum adhesion molecules (sICAM-1, sELAM-1), ELISA detection of Toxoplasma antibodies in serum, liver biopsy, detection and counting of Giardia cysts. In toxoplasmosis group, highly significant increase in serum levels of sICAM-1 (P<0.01) and significant increase in serum levels of sELAM-1 (P<0.05) in comparison to control. However, only sICAM-1 levels were significantly increased in IgM cases more than in IgG cases. In amoebic liver abscess group, both sICAM-1 and sELAM-1 significantly increased when compared with control. In giardiasis group, highly significant increase of serum levels of sELAM-1 was noticed than in control group (P<0.01), while sICAM-1 showed no significant difference (P>0.05). There was no correlation between sELAM-1 and number of cysts in the stool (intensity of infection). Soluble forms of adhesion molecules especially sICAM-1 have the potentiality as good markers of endothelial damage, severity of disease and to less extend load of infection. PMID:11775096

  1. Soluble Adhesion Molecules in Patients Coinfected with HIV and HCV: A Predictor of Outcome

    PubMed Central

    Aldámiz-Echevarría, Teresa; Berenguer, Juan; Miralles, Pilar; Jiménez-Sousa, María A.; Carrero, Ana; Pineda-Tenor, Daniel; Díez, Cristina; Tejerina, Francisco; Pérez-Latorre, Leire; Bellón, José M.; Resino, Salvador

    2016-01-01

    Background Higher serum levels of adhesion molecules (sICAM-1 and sVCAM-1) are associated with advanced liver fibrosis in patients coinfected with human immunodeficiency virus and hepatitis C virus. We assessed the relationship between serum levels of adhesion molecules and liver-related events (LRE) or death, in coinfected patients. Methods We studied clinical characteristics and outcomes of 182 coinfected patients with a baseline liver biopsy (58 with advanced fibrosis) and simultaneous plasma samples who were followed for median of 9 years. We used receiver-operating characteristic (ROC) curves to calculate optimized cutoff values (OCV) of sICAM-1 and sVCAM-1, defined as the values with the highest combination of sensitivity and specificity for LRE. We used multivariate regression analysis to test the association between OCVs of sICAM-1 and sVCAM-1 and outcomes. The variables for adjustment were age, HIV transmission category, liver fibrosis, baseline CD4+ T-cell counts, antiretroviral therapy, and sustained virologic response (SVR). Results During the study period 51 patients had SVR, 19 had LRE, and 16 died. The OCVs for LRE were 5.68 Log pg/mL for sICAM-1 and 6.25 Log pg/mL for sVCAM-1, respectively. The adjusted subhazard ratio (aSHR) (95% confidence interval [CI]) of death or LRE, whichever occurred first, for sICAM-1 and sVCAM-1 > OCV were 3.98 ([1.14; 13.89], P = 0.030) and 2.81 ([1.10; 7.19], respectively (P = 0.030). Conclusions Serum levels of sICAM-1 and sVCAM-1 can serve as markers of outcome in HIV/HCV-coinfected patients. Therapies targeting necroinflammatory damage and fibrogenesis may have a role in the management chronic hepatitis C. PMID:26849641

  2. Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level

    PubMed Central

    Schvartzman, Mark; Palma, Matteo; Sable, Julia; Abramson, Justin; Hu, Xian; Sheetz, Michael P.; Wind, Shalom J.

    2011-01-01

    The ability to control the placement of individual molecules promises to enable a wide range of applications and is a key challenge in nanoscience and nanotechnology. Many biological interactions, in particular, are sensitive to the precise geometric arrangement of proteins. We have developed a technique which combines molecular-scale nanolithography with site-selective biochemistry to create biomimetic arrays of individual protein binding sites. The binding sites can be arranged in heterogeneous patterns of virtually any possible geometry with a nearly unlimited number of degrees of freedom. We have used these arrays to explore how the geometric organization of the extracellular matrix (ECM) binding ligand RGD (Arg-Gly-Asp) affects cell adhesion and spreading. Systematic variation of spacing, density and cluster size of individual integrin binding sites was used to elicit different cell behavior. Cell spreading assays on arrays of different geometric arrangements revealed a dramatic increase in spreading efficiency when at least 4 liganded sites were spaced within 60 nm or less, with no dependence on global density. This points to the existence of a minimal matrix adhesion unit for fibronectin defined in space and stoichiometry. Developing an understanding of the ECM geometries that activate specific cellular functional complexes is a critical step toward controlling cell behavior. Potential practical applications range from new therapeutic treatments to the rational design of tissue scaffolds that can optimize healing without scarring. More broadly, spatial control at the single-molecule level can elucidate factors controlling individual molecular interactions and can enable synthesis of new systems based on molecular-scale architectures. PMID:21319842

  3. The Neuroplastin adhesion molecules: key regulators of neuronal plasticity and synaptic function.

    PubMed

    Beesley, Philip W; Herrera-Molina, Rodrigo; Smalla, Karl-Heinz; Seidenbecher, Constanze

    2014-11-01

    The Neuroplastins Np65 and Np55 are neuronal and synapse-enriched immunoglobulin superfamily molecules that play important roles in a number of key neuronal and synaptic functions including, for Np65, cell adhesion. In this review we focus on the physiological roles of the Neuroplastins in promoting neurite outgrowth, regulating the structure and function of both inhibitory and excitatory synapses in brain, and in neuronal and synaptic plasticity. We discuss the underlying molecular and cellular mechanisms by which the Neuroplastins exert their physiological effects and how these are dependent upon the structural features of Np65 and Np55, which enable them to bind to a diverse range of protein partners. In turn this enables the Neuroplastins to interact with a number of key neuronal signalling cascades. These include: binding to and activation of the fibroblast growth factor receptor; Np65 trans-homophilic binding leading to activation of p38 MAPK and internalization of glutamate (GluR1) receptor subunits; acting as accessory proteins for monocarboxylate transporters, thus affecting neuronal energy supply, and binding to GABAA α1, 2 and 5 subunits, thus regulating the composition and localization of GABAA receptors. An emerging theme is the role of the Neuroplastins in regulating the trafficking and subcellular localization of specific binding partners. We also discuss the involvement of Neuroplastins in a number of pathophysiological conditions, including ischaemia, schizophrenia and breast cancer and the role of a single nucleotide polymorphism in the human Neuroplastin (NPTN) gene locus in impairment of cortical development and cognitive functions. Neuroplastins are neuronal cell adhesion molecules, which induce neurite outgrowth and play important roles in synaptic maturation and plasticity. This review summarizes the functional implications of Neuroplastins for correct synaptic membrane protein localization, neuronal energy supply, expression of LTP and LTD

  4. The Synaptic Cell Adhesion Molecule, SynCAM1, Mediates Astrocyte-to-Astrocyte and Astrocyte-to-GnRH Neuron Adhesiveness in the Mouse Hypothalamus

    PubMed Central

    Sandau, Ursula S.; Mungenast, Alison E.; McCarthy, Jack; Biederer, Thomas; Corfas, Gabriel

    2011-01-01

    We previously identified synaptic cell adhesion molecule 1 (SynCAM1) as a component of a genetic network involved in the hypothalamic control of female puberty. Although it is well established that SynCAM1 is a synaptic adhesion molecule, its contribution to hypothalamic function is unknown. Here we show that, in addition to the expected neuronal localization illustrated by its presence in GnRH neurons, SynCAM1 is expressed in hypothalamic astrocytes. Cell adhesion assays indicated that SynCAM is recognized by both GnRH neurons and astrocytes as an adhesive partner and promotes cell-cell adhesiveness via homophilic, extracellular domain-mediated interactions. Alternative splicing of the SynCAM1 primary mRNA transcript yields four mRNAs encoding membrane-spanning SynCAM1 isoforms. Variants 1 and 4 are predicted to be both N and O glycosylated. Hypothalamic astrocytes and GnRH-producing GT1-7 cells express mainly isoform 4 mRNA, and sequential N- and O-deglycosylation of proteins extracted from these cells yields progressively smaller SynCAM1 species, indicating that isoform 4 is the predominant SynCAM1 variant expressed in astrocytes and GT1-7 cells. Neither cell type expresses the products of two other SynCAM genes (SynCAM2 and SynCAM3), suggesting that SynCAM-mediated astrocyte-astrocyte and astrocyte-GnRH neuron adhesiveness is mostly mediated by SynCAM1 homophilic interactions. When erbB4 receptor function is disrupted in astrocytes, via transgenic expression of a dominant-negative erbB4 receptor form, SynCAM1-mediated adhesiveness is severely compromised. Conversely, SynCAM1 adhesive behavior is rapidly, but transiently, enhanced in astrocytes by ligand-dependent activation of erbB4 receptors, suggesting that erbB4-mediated events affecting SynCAM1 function contribute to regulate astrocyte adhesive communication. PMID:21486931

  5. Epidermal growth factor-like repeats mediate lateral and reciprocal interactions of Ep-CAM molecules in homophilic adhesions.

    PubMed

    Balzar, M; Briaire-de Bruijn, I H; Rees-Bakker, H A; Prins, F A; Helfrich, W; de Leij, L; Riethmüller, G; Alberti, S; Warnaar, S O; Fleuren, G J; Litvinov, S V

    2001-04-01

    Ep-CAM is a new type of cell adhesion molecule (CAM) which does not structurally resemble the members of the four major families (cadherins, integrins, selectins, and CAMs of the immunoglobulin superfamily) and mediates Ca(2+)-independent, homophilic adhesions. The extracellular domain of Ep-CAM consists of a cysteine-rich region, containing two type II epidermal growth factor (EGF)-like repeats, followed by a cysteine-poor region. We generated mutated Ep-CAM forms with various deletions in the extracellular domain. These deletion mutants, together with monoclonal antibodies recognizing different epitopes in the extracellular domain, were used to investigate the role of the EGF-like repeats in the formation of intercellular contacts mediated by Ep-CAM molecules. We established that both EGF-like repeats are required for the formation of Ep-CAM-mediated homophilic adhesions, including the accumulation of Ep-CAM molecules at the cell-cell boundaries, and the anchorage of the Ep-CAM adhesion complex to F-actin via alpha-actinin. Deletion of either EGF-like repeat was sufficient to inhibit the adhesion properties of the molecule. The first EGF-like repeat of Ep-CAM is required for reciprocal interactions between Ep-CAM molecules on adjacent cells, as was demonstrated with blocking antibodies. The second EGF-like repeat was mainly required for lateral interactions between Ep-CAM molecules. Lateral interactions between Ep-CAM molecules result in the formation of tetramers, which might be the first and necessary step in the formation of Ep-CAM-mediated intercellular contacts. PMID:11259604

  6. Epidermal Growth Factor-Like Repeats Mediate Lateral and Reciprocal Interactions of Ep-CAM Molecules in Homophilic Adhesions

    PubMed Central

    Balzar, M.; Briaire-de Bruijn, I. H.; Rees-Bakker, H. A. M.; Prins, F. A.; Helfrich, W.; de Leij, L.; Riethmüller, G.; Alberti, S.; Warnaar, S. O.; Fleuren, G. J.; Litvinov, S. V.

    2001-01-01

    Ep-CAM is a new type of cell adhesion molecule (CAM) which does not structurally resemble the members of the four major families (cadherins, integrins, selectins, and CAMs of the immunoglobulin superfamily) and mediates Ca2+-independent, homophilic adhesions. The extracellular domain of Ep-CAM consists of a cysteine-rich region, containing two type II epidermal growth factor (EGF)-like repeats, followed by a cysteine-poor region. We generated mutated Ep-CAM forms with various deletions in the extracellular domain. These deletion mutants, together with monoclonal antibodies recognizing different epitopes in the extracellular domain, were used to investigate the role of the EGF-like repeats in the formation of intercellular contacts mediated by Ep-CAM molecules. We established that both EGF-like repeats are required for the formation of Ep-CAM-mediated homophilic adhesions, including the accumulation of Ep-CAM molecules at the cell-cell boundaries, and the anchorage of the Ep-CAM adhesion complex to F-actin via α-actinin. Deletion of either EGF-like repeat was sufficient to inhibit the adhesion properties of the molecule. The first EGF-like repeat of Ep-CAM is required for reciprocal interactions between Ep-CAM molecules on adjacent cells, as was demonstrated with blocking antibodies. The second EGF-like repeat was mainly required for lateral interactions between Ep-CAM molecules. Lateral interactions between Ep-CAM molecules result in the formation of tetramers, which might be the first and necessary step in the formation of Ep-CAM-mediated intercellular contacts. PMID:11259604

  7. Cryptotanshinone inhibits oxidized LDL-induced adhesion molecule expression via ROS dependent NF-κB pathways.

    PubMed

    Zhao, Wenwen; Wu, Chuanhong; Chen, Xiuping

    2016-05-01

    Adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, play important roles in the initial stage of atherosclerosis. Cryptotanshinone (CPT), a natural compound isolated from Salvia miltiorrhiza Bunge, exhibits anti-atherosclerotic activity although the underlying mechanisms remain elusive. In this study, the protective effect of CPT against oxidized low-density lipoprotein (ox-LDL)-induced adhesion molecule expression was investigated in human umbilical vein endothelial cells. Ox-LDL significantly induced ICAM-1, VCAM-1, and E-selectin expression at the mRNA and protein levels but reduced eNOS phosphorylation and NO generation, which were reversed by CPT pretreatment. Sodium nitroprusside, a NO donor, N-acetyl-L-cysteine (NAC), a reactive oxygen species (ROS) scavenger, and BAY117082, a NF-κB inhibitor, inhibited ox-LDL-induced ICAM-1, VCAM-1, and E-selectin expression. Ox-LDL-induced ROS production was significantly inhibited by CPT and NAC. Furthermore, ox-LDL activated the NF-κB signaling pathway by inducing phosphorylation of IKKβ and IκBα, promoting the interaction of IKKβ and IκBα, and increasing p65 nuclear translocation, which were significantly inhibited by CPT. In addition, CPT, NAC, and BAY117082 inhibited ox-LDL-induced membrane expression of ICAM-1, VCAM-1, E-selectin, and endothelial-monocyte adhesion and restored eNOS phosphorylation and NO generation. Results suggested that CPT inhibited ox-LDL-induced adhesion molecule expression by decreasing ROS and inhibiting the NF-κB pathways, which provides new insight into the anti-atherosclerotic mechanism of CPT. PMID:26647279

  8. Quantification of mutant E-cadherin using bioimaging analysis of in situ fluorescence microscopy. A new approach to CDH1 missense variants

    PubMed Central

    Sanches, João Miguel; Figueiredo, Joana; Fonseca, Martina; Durães, Cecília; Melo, Soraia; Esménio, Sofia; Seruca, Raquel

    2015-01-01

    Missense mutations result in full-length proteins containing an amino acid substitution that can be neutral or deleterious, interfering with the normal conformation, localization, and function of a protein. A striking example is the presence of CDH1 (E-cadherin gene) germline missense variants in hereditary diffuse gastric cancer (HDGC), which represent a clinical burden for genetic counseling and surveillance of mutation carriers and their families. CDH1 missense variants can compromise not only the function of E-cadherin but also its expression pattern. Here, we propose a novel method to characterize E-cadherin signature in order to identify cases with E-cadherin deregulation and functional impairment. The strategy includes a bioimaging pipeline to quantify the expression level and characterize the distribution of the protein from in situ immunofluorescence images. The algorithm computes 1D (dimension intensity) radial and internuclear fluorescence profiles to generate expression outlines and 2D virtual cells representing a typical cell within the populations analyzed. Using this new approach, we verify that cells expressing mutant forms of E-cadherin display fluorescence profiles distinct from those of the wild-type cells. Mutant proteins showed a significantly decrease of fluorescence intensity at the membrane and often abnormal expression peaks in the cytoplasm, reflecting the underlying molecular mechanism of trafficking deregulation. Our results suggest employing this methodology as a complementary approach to evaluate the pathogenicity of E-cadherin missense variants. Moreover, it can be applied to a wide range of proteins and, more importantly, to diseases characterized by aberrant protein expression or trafficking deregulation. PMID:25388006

  9. TCF12 protein functions as transcriptional repressor of E-cadherin, and its overexpression is correlated with metastasis of colorectal cancer.

    PubMed

    Lee, Chun-Chung; Chen, Wei-Shone; Chen, Chia-Chi; Chen, Li-Li; Lin, Yi-Shing; Fan, Chi-Shuan; Huang, Tze-Sing

    2012-01-20

    A correlation of TCF12 mRNA overexpression with colorectal cancer (CRC) metastasis was suggested by microarray data and validated by the survey of 120 patients. Thirty-three (27.5%) of the 120 patients showed tumor TCF12 mRNA overexpression and had a higher rate of metastatic occurrence (p = 0.020) and a poorer survival outcome (p = 0.014). Abundant TCF12 levels were also observed in human CRC cell lines such as SW620 and LoVo, but a relatively low level was detected in SW480 cells. Knockdown of TCF12 expression in SW620 and LoVo cells drastically reduced their activities of migration, invasion, and metastasis. Tight cell-cell contact and an increase in E-cadherin but a concomitant decrease in fibronectin were observed in TCF12-knockdown cells. Connexin 26, connexin 43, and gap-junction activity were also increased upon TCF12-knockdown. In contrast, ectopic TCF12 overexpression in SW480 cells facilitated fibronectin expression and cell migration and invasion activities but diminished cellular levels of E-cadherin, connexin 26, connexin 43, and gap junction. A physical association of TCF12 with the E-cadherin promoter was evidenced by chromatin immunoprecipitation assay. TCF12 was tightly correlated with cellular expression of Bmi1 and EZH2 and was co-immunoprecipitable with Bmi1 and EZH2, suggesting that TCF12 transcriptionally suppressed E-cadherin expression via polycomb group-repressive complexes. Clinically, TCF12 mRNA overexpression was also correlated with E-cadherin mRNA down-regulation in the tumor tissues of our 120 patients (p = 0.013). These studies suggested that TCF12 functioned as a transcriptional repressor of E-cadherin and its overexpression was significantly correlated with the occurrence of CRC metastasis. PMID:22130667

  10. Quantification of mutant E-cadherin using bioimaging analysis of in situ fluorescence microscopy. A new approach to CDH1 missense variants.

    PubMed

    Sanches, João Miguel; Figueiredo, Joana; Fonseca, Martina; Durães, Cecília; Melo, Soraia; Esménio, Sofia; Seruca, Raquel

    2015-08-01

    Missense mutations result in full-length proteins containing an amino acid substitution that can be neutral or deleterious, interfering with the normal conformation, localization, and function of a protein. A striking example is the presence of CDH1 (E-cadherin gene) germline missense variants in hereditary diffuse gastric cancer (HDGC), which represent a clinical burden for genetic counseling and surveillance of mutation carriers and their families. CDH1 missense variants can compromise not only the function of E-cadherin but also its expression pattern. Here, we propose a novel method to characterize E-cadherin signature in order to identify cases with E-cadherin deregulation and functional impairment. The strategy includes a bioimaging pipeline to quantify the expression level and characterize the distribution of the protein from in situ immunofluorescence images. The algorithm computes 1D (dimension intensity) radial and internuclear fluorescence profiles to generate expression outlines and 2D virtual cells representing a typical cell within the populations analyzed. Using this new approach, we verify that cells expressing mutant forms of E-cadherin display fluorescence profiles distinct from those of the wild-type cells. Mutant proteins showed a significantly decrease of fluorescence intensity at the membrane and often abnormal expression peaks in the cytoplasm, reflecting the underlying molecular mechanism of trafficking deregulation. Our results suggest employing this methodology as a complementary approach to evaluate the pathogenicity of E-cadherin missense variants. Moreover, it can be applied to a wide range of proteins and, more importantly, to diseases characterized by aberrant protein expression or trafficking deregulation. PMID:25388006

  11. ID2 predicts poor prognosis in breast cancer, especially in triple-negative breast cancer, and inhibits E-cadherin expression

    PubMed Central

    Li, Kai; Yao, Ling; Chen, Li; Cao, Zhi-Gang; Yu, San-Jian; Kuang, Xia-Ying; Hu, Xin; Shao, Zhi-Ming

    2014-01-01

    Background Inhibitors of DNA-binding (ID) proteins are known as important modulators in the regulation of cell proliferation and differentiation. This study sought to investigate the prognostic value of ID proteins in breast cancer. Methods The prognostic role of ID proteins in human breast cancer was investigated in 250 breast cancers, via tissue microarrays. The messenger (m)RNA and protein levels of E-cadherin were examined by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blotting, in cells overexpressing IDs. Dual-luciferase report assay was used to investigate the potential mechanism, and a migration assay was performed to investigate the influence of IDs on cell migratory activity. Results The survival analysis with Kaplan–Meier and Cox regression showed that ID2 expression level, which correlated with estrogen receptor status and E-cadherin abundance, served as an independent prognostic factor for disease-free survival (DFS) (P=0.013). The prognostic value of ID2 for DFS was most significant in triple-negative breast cancer patients (P=0.009). We also found that ID2 was negatively correlated with E-cadherin expression by correlation analysis (P=0.020, Pearson’s R=−0.155). Subsequently, we explored the biological rationale and uncovered that the enforced expression of ID proteins could suppress E-cadherin expression significantly, thus increasing the migration ability of mammary epithelial cells. Then using a combination of ID2 and E-cadherin expression, the patients were classified into four subgroups with different DFS (P=0.023). Conclusion The overexpression of ID2 can be used as a prognostic marker in breast cancer patients, especially in triple-negative breast cancer patients. ID proteins were still, unexpectedly, revealed to inhibit E-cadherin abundance. PMID:24971018

  12. Hypoxia facilitates tumour cell detachment by reducing expression of surface adhesion molecules and adhesion to extracellular matrices without loss of cell viability.

    PubMed Central

    Hasan, N. M.; Adams, G. E.; Joiner, M. C.; Marshall, J. F.; Hart, I. R.

    1998-01-01

    The effects of acute hypoxia on integrin expression and adhesion to extracellular matrix proteins were investigated in two human melanoma cell lines, HMB-2 and DX3, and a human adenocarcinoma cell line, HT29. Exposure to hypoxia caused a significant down-regulation of cell surface integrins and an associated decrease in cell adhesion. Loss of cell adhesion and integrin expression were transient and levels returned to normal within 24 h of reoxygenation. Other cell adhesion molecules, such as CD44 and N-CAM, were also down-regulated after exposure of cells to hypoxia. Acute exposure to hypoxia of cells at confluence caused rapid cell detachment. Cell detachment preceded loss of viability. Detached HMB-2 and DX3 cells completely recovered upon reoxygenation, and floating cells re-attached and continued to grow irrespective of whether they were left in the original glass dishes or transferred to new culture vessels, while detached HT29 cells partly recovered upon reoxygenation. Cell detachment after decreased adhesion appears to be a stress response, which may be a factor enabling malignant cells to escape hypoxia in vivo, with the potential to form new foci of tumour growth. PMID:9667649

  13. Osteoblast adhesion to orthopaedic implant alloys: effects of cell adhesion molecules and diamond-like carbon coating.

    PubMed

    Kornu, R; Maloney, W J; Kelly, M A; Smith, R L

    1996-11-01

    In total joint arthroplasty, long-term outcomes depend in part on the biocompatibility of implant alloys. This study analyzed effects of surface finish and diamond-like carbon coating on osteoblast cell adhesion to polished titanium-aluminum-vanadium and polished or grit-blasted cobalt-chromium-molybdenum alloys. Osteoblast binding was tested in the presence and absence of the cell adhesion proteins fibronectin, laminin, fibrinogen, and vitronectin and was quantified by measurement of DNA content. Although adherence occurred in serum-free medium, maximal osteoblast binding required serum and was similar for titanium and cobalt alloys at 2 and 12 hours. With the grit-blasted cobalt alloy, cell binding was reduced 48% (p < 0.05) by 24 hours. Coating the alloys with diamond-like carbon did not alter osteoblast adhesion, whereas fibronectin pretreatment increased cell binding 2.6-fold (p < 0.05). In contrast, fibrinogen, vitronectin, and laminin did not enhance cell adhesion. These results support the hypothesis that cell adhesion proteins can modify cell binding to orthopaedic alloys. Although osteoblast binding was not affected by the presence of diamond-like carbon, this coating substance may influence other longer term processes, such as bone formation, and deserves further study. PMID:8982128

  14. Osteoblast adhesion to orthopaedic implant alloys: Effects of cell adhesion molecules and diamond-like carbon coating

    SciTech Connect

    Kornu, R.; Kelly, M.A.; Smith, R.L.; Maloney, W.J.

    1996-11-01

    In total joint arthroplasty, long-term outcomes depend in part on the biocompatibility of implant alloys. This study analyzed effects of surface finish and diamond-like carbon coating on osteoblast cell adhesion to polished titanium-aluminum-vanadium and polished or grit-blasted cobalt-chromium-molybdenum alloys. Osteoblast binding was tested in the presence and absence of the cell adhesion proteins fibronectin, laminin, fibrinogen, and vitronectin and was quantified by measurement of DNA content. Although adherence occurred in serum-free medium, maximal osteoblast binding required serum and was similar for titanium and cobalt alloys at 2 and 12 hours. With the grit-blasted cobalt alloy, cell binding was reduced 48% (p < 0.05) by 24 hours. Coating the alloys with diamond-like carbon did not alter osteoblast adhesion, whereas fibronectin pretreatment increased cell binding 2.6-fold (p < 0.05). In contrast, fibrinogen, vitronectin, and laminin did not enhance cell adhesion. These results support the hypothesis that cell adhesion proteins can modify cell binding to orthopaedic alloys. Although osteoblast binding was not affected by the presence of diamond-like carbon, this coating substance may influence other longer term processes, such as bone formation, and deserves further study. 40 refs., 4 figs.

  15. Simultaneous knockdown of uPA and MMP9 can reduce breast cancer progression by increasing cell-cell adhesion and modulating EMT genes.

    PubMed

    Moirangthem, Anuradha; Bondhopadhyay, Banashree; Mukherjee, Mala; Bandyopadhyay, Arghya; Mukherjee, Narendranath; Konar, Karabi; Bhattacharya, Shubham; Basu, Anupam

    2016-01-01

    In cancer progression, proteolytic enzymes like serine proteases and metalloproteinases degrade the basement membrane enabling the tumor cells to invade the adjacent tissues. Thus, invasion and metastasis are augmented by these enzymes. Simultaneous silencing of uPA and MMP9 in breast cancer cells decreased the wound healing, migratory, invasive and adhesive capacity of the cells. After simultaneous down regulation, cells were seen to be arrested in the cell cycle. There was a remarkable increase in the expression of cell to cell adhesion molecule E-cadherin, and decrease in Vimentin and Snail expression. In addition, there was a significant decrease in the expression of the stem cell marker Oct-4. In the breast tumor samples it has been observed that, tumors, expressing higher level of uPA and MMP9, express less amount of E-cadherin. It has also been observed that few tumors also show, Vimentin positive in the ductal epithelial area. Thus, our model can help for checking the aggressive tumor invasion by blocking of uPA and MMP9. Our present observations also give the concept of the presence of aggressive epithelial cells with mesenchymal nature in the tumor micro-environment, altering the expression of EMT genes. PMID:26906973

  16. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    SciTech Connect

    Kouchi, Zen; Fujiwara, Yuki; Yamaguchi, Hideki; Nakamura, Yoshikazu; Fukami, Kiyoko

    2011-05-20

    Highlights: {yields} We analyzed Phosphatidylinositol 5-phosphate kinase II{beta} (PIPKII{beta}) function in cancer. {yields} PIPKII{beta} is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. {yields} PIPKII{beta} suppresses cellular motility through E-cadherin induction in SW480 cells. {yields} Nuclear PIP{sub 2} but not plasma membrane-localized PIP{sub 2} mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1{alpha},25-dihydroxyvitamin D{sub 3} (1{alpha},25(OH){sub 2}D{sub 3}) has anti-cancer activity in several colon cancers. 1{alpha},25(OH){sub 2}D{sub 3} induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however, its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKII{beta}) but not PIPKII{alpha} is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLC{delta}1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P{sub 2}) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLC{delta}1 PHD inhibited 1{alpha},25(OH){sub 2}D{sub 3}-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P{sub 2} production mediates E-cadherin expression through PIPKII{beta} in a VDR-dependent manner. PIPKII{beta} is also involved in the suppression of the cell motility induced by 1{alpha},25(OH){sub 2}D{sub 3}. These results indicate that PIPKII{beta}-mediated PI(4,5)P{sub 2} signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.

  17. Thyroid hormone-dependent transcriptional repression of neural cell adhesion molecule during brain maturation.

    PubMed Central

    Iglesias, T; Caubín, J; Stunnenberg, H G; Zaballos, A; Bernal, J; Muñoz, A

    1996-01-01

    Thyroid hormone (T3) is a main regulator of brain development acting as a transcriptional modulator. However, only a few T3-regulated brain genes are known. Using an improved whole genome PCR approach, we have isolated seven clones encoding sequences expressed in neonatal rat brain which are under the transcriptional control of T3. Six of them, including the neural cell adhesion molecule NCAM, alpha-tubulin and four other unidentified sequences (RBA3, RBA4, RBB3 and RBB5) were found to be upregulated in the hypothyroid brain, whereas another (RBE7) was downregulated. Binding sites for the T3 receptor (T3R/c-erbA) were identified in the isolated clones by gel-shift and footprinting assays. Sites in the NCAM (in an intron), alpha-tubulin (in an exon) and RBA4 clones mediated transcriptional regulation by T3 when inserted upstream of a reporter construct. However, no effect of the NCAM clone was found when located downstream of another reporter gene. Northern blotting and in situ hybridization studies showed a higher expression of NCAM in the brain of postnatal hypothyroid rats. Since NCAM is an important morphoregulatory molecule, abnormal NCAM expression is likely to contribute to the alterations present in the brain of thyroid-deficient humans and experimental animals. Images PMID:8861959

  18. Impact of neural cell adhesion molecule deletion on regeneration after mouse spinal cord injury.

    PubMed

    Saini, Vedangana; Loers, Gabriele; Kaur, Gurcharan; Schachner, Melitta; Jakovcevski, Igor

    2016-07-01

    The neural cell adhesion molecule (NCAM) plays important functional roles in development of the nervous system. We investigated the influence of a constitutive ablation of NCAM on the outcome of spinal cord injury. Transgenic mice lacking NCAM (NCAM-/-) were subjected to severe compression injury of the lower thoracic spinal cord using wild-type (NCAM+/+) littermates as controls. According to the single-frame motion analysis, the NCAM-/- mice showed reduced locomotor recovery in comparison to control mice at 3 and 6 weeks after injury, indicating an overall positive impact of NCAM on recovery after injury. Also the Basso Mouse Scale score was lower in NCAM-/- mice at 3 weeks after injury, whereas at 6 weeks after injury the difference between genotypes was not statistically significant. Worse locomotor function was associated with decreased monoaminergic and cholinergic innervation of the spinal cord caudal to the injury site and decreased axonal regrowth/sprouting at the site of injury. Astrocytic scar formation at the injury site, as assessed by immunohistology for glial fibrillary acidic protein at and around the lesion site was increased in NCAM-/- compared with NCAM+/+ mice. Migration of cultured monolayer astrocytes from NCAM-/- mice was reduced as assayed by scratch wounding. Numbers of Iba-1 immunopositive microglia were not different between genotypes. We conclude that constitutive NCAM deletion in young adult mice reduces recovery after spinal cord injury, validating the hypothesized beneficial role of this molecule in recovery after injury. PMID:27178448

  19. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment

    PubMed Central

    Klamer, Sofieke; Voermans, Carlijn

    2014-01-01

    Maintenance of haematopoietic stem cells and differentiation of committed progenitors occurs in highly specialized niches. The interactions of haematopoietic stem and progenitor cells (HSPCs) with cells, growth factors and extracellular matrix (ECM) components of the bone marrow (BM) microenvironment control homeostasis of HSPCs. We only start to understand the complexity of the haematopoietic niche(s) that comprises endosteal, arterial, sinusoidal, mesenchymal and neuronal components. These distinct niches produce a broad range of soluble factors and adhesion molecules that modulate HSPC fate during normal hematopoiesis and BM regeneration. Adhesive interactions between HSPCs and the microenvironment will influence their localization and differentiation potential. In this review we highlight the current understanding of the functional role of ECM- and adhesion (regulating) molecules in the haematopoietic niche during homeostatic and regenerative hematopoiesis. This knowledge may lead to the improvement of current cellular therapies and more efficient development of future cellular products. PMID:25482635

  20. Equid herpesvirus 1 infection of endothelial cells requires activation of putative adhesion molecules: an in vitro model

    PubMed Central

    SMITH, D; HAMBLIN, A; EDINGTON, N

    2002-01-01

    Antisera to activated equine endothelial cells, which detected surface molecules of 116 kD, 97 kD, 42 kD and 38 kD, were made to investigate the role of endothelial adhesion molecules in equid herpes virus 1 infection. These putative adhesion molecules could be induced by 17-β oestradiol, chorionic gonadotrophin, or IL-2, as well as by LPS and PWM. In an in vitro flow system, using equine veins or arteries, equid herpesvirus 1 in leucocytes was only transferred to infect endothelial cells if both leucocytes and endothelial cells expressed these surface molecules. Blocking of the membrane molecules with polyclonal antibodies prevented transfer of virus to the endothelial cells, indicating that the adhesion molecules had a key role in effecting transfer of virus. These in vitro observations give particular insight into the reports that in the natural course of infection in horses infection of endothelial cells is restricted to certain tissues, and in a wider context the results illustrate the complexity of factors that may direct tissue tropism. PMID:12165084

  1. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    SciTech Connect

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu . E-mail: dxliu001@yahoo.com

    2007-07-13

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.

  2. The Neural Cell Adhesion Molecule-Derived Peptide FGL Facilitates Long-Term Plasticity in the Dentate Gyrus in Vivo

    ERIC Educational Resources Information Center

    Dallerac, Glenn; Zerwas, Meike; Novikova, Tatiana; Callu, Delphine; Leblanc-Veyrac, Pascale; Bock, Elisabeth; Berezin, Vladimir; Rampon, Claire; Doyere, Valerie

    2011-01-01

    The neural cell adhesion molecule (NCAM) is known to play a role in developmental and structural processes but also in synaptic plasticity and memory of the adult animal. Recently, FGL, a NCAM mimetic peptide that binds to the Fibroblast Growth Factor Receptor 1 (FGFR-1), has been shown to have a beneficial impact on normal memory functioning, as…

  3. Constitutive and cytokine-induced expression of human leukocyte antigens and cell adhesion molecules by human myotubes.

    PubMed Central

    Michaelis, D.; Goebels, N.; Hohlfeld, R.

    1993-01-01

    Understanding the immunobiology of muscle is relevant to muscular autoimmune diseases and to gene therapies based on myoblast transfer. We have investigated the constitutive and cytokine-induced intra- and extracellular expression of histocompatibility human leukocyte antigens (HLA) and cell adhesion molecules by multinucleated human myotubes using immunofluorescence microscopy. Myotubes constitutively expressed HLA class I but not HLA class II. Exposure to interferon-gamma, but not tumor necrosis factor-alpha, induced HLA-DR in the cytoplasm and on the surface membrane of approximately 40 to 95% of cultured myotubes. Surface expression was strongest in perinuclear membrane areas, and cytoplasmic expression was strongest at branching points and at the tips of myotubes. HLA-DP and HLA-DQ were not expressed in detectable amounts. Both interferon-gamma and tumor necrosis factor-alpha induced the intercellular adhesion molecule-1 (CD54) in the cytoplasm and on the surface of nearly all myotubes. The distribution of intercellular adhesion molecule-1 and HLA-DR was similar but not identical in double-positive myotubes. The leukocyte function-associated (LFA) adhesion molecules LFA-1 (CD11a/CD18), LFA-2 (CD2), and LFA-3 (CD58) could not be detected in the cytoplasm or on the surface. Our results indicate that cytokine-induced myotubes can participate in immune interactions with T lymphocytes. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8214008

  4. Age-Related Cognitive Impairments in Mice with a Conditional Ablation of the Neural Cell Adhesion Molecule

    ERIC Educational Resources Information Center

    Bisaz, Reto; Boadas-Vaello, Pere; Genoux, David; Sandi, Carmen

    2013-01-01

    Most of the mechanisms involved in neural plasticity support cognition, and aging has a considerable effect on some of these processes. The neural cell adhesion molecule (NCAM) of the immunoglobulin superfamily plays a pivotal role in structural and functional plasticity and is required to modulate cognitive and emotional behaviors. However,…

  5. Functional dissection of the C. elegans cell adhesion molecule SAX-7, a homologue of human L1.

    PubMed

    Pocock, Roger; Bénard, Claire Y; Shapiro, Lawrence; Hobert, Oliver

    2008-01-01

    Cell adhesion molecules of the Immunoglobulin superfamily (IgCAMs) play important roles in neuronal development, homeostasis and disease. Here, we use an animal in vivo assay system to study the function of sax-7, the Caenorhabditis elegans homologue of the human L1 IgCAM, a homophilic adhesion molecule involved in several neurological diseases. We show that the 6 Ig/5 FnIII domain protein SAX-7 acts autonomously in the nervous system to maintain axon position in the ventral nerve cord of the nematode. As previously reported, sax-7 is also required to maintain the relative positioning of neuronal cell bodies in several head ganglia. We use the loss of cellular adhesiveness in sax-7 null mutants as an assay system to investigate the contribution of individual domains and sequence motifs to the function of SAX-7, utilizing transgenic rescue approaches. By shortening the hinge region between the Ig1+2 and Ig3+4 domains, we improve the adhesive function of SAX-7, thereby providing support for a previously proposed autoinhibitory "horseshoe" conformation of IgCAMs. However, we find that Ig3+4 are the only Ig domains required and sufficient for the adhesive function of SAX-7. Previous models of L1-type IgCAMs that invoke an important role of the first two Ig domains in controlling adhesion therefore do not appear to apply to SAX-7. Moreover, we find that neither the 5 FnIII domains, nor the protease cleavage site embedded in them, are required for the adhesive function of SAX-7. Lastly, we show that of the several protein binding motifs present in the intracellular region of SAX-7, only its ankyrin binding motif is required and also solely sufficient to confer the adhesive functions of SAX-7. PMID:17933550

  6. Cell adhesion molecules in the pathogenesis of and host defence against microbial infection.

    PubMed Central

    Kerr, J R

    1999-01-01

    Eukaryotic cell adhesion molecules (CAMs) are used by various cells and extracellular molecules in host defence against infection. They are involved in many processes including recognition by circulating phagocytes of a site of inflammation, transmigration through the endothelial barrier, diapedesis through basement membrane and extracellular matrix, and release of effector mechanisms at the infected site. CAMs involved in leucocyte-endothelial cell interaction include the selectins, integrins, and members of the immunoglobulin superfamily. However, CAMs are also used by various microorganisms (protozoa, fungi, bacteria, and viruses) during their pathogenesis. For example, bacteria that utilise CAMs include Mycobacterium tuberculosis, Listeria monocytogenes, Yersinia spp, enteropathogenic Escherichia coli, Shigella spp, Neisseria spp, Bordetella spp, and Borrelia burgdorferi. In addition, CAMs are involved in the pathogenetic effects of the RTX toxins of Pasteurella haemolytica, Actinobacillus actinomycetemcomitans, and the superantigen exotoxins of Staphylococcus aureus and Streptococcus pyogenes. A recurrent and topical theme of potential importance within the bacterial group is the intimate relation between CAMs, bacterial protein receptors, and type III secretion systems. For example, the IpaBCD protein complex is secreted by the type III system of Shigella flexneri and interacts with alpha 5 beta 1 integrin on the eukaryotic cell surface, followed by Rho mediated internalisation; this illustrates the relevance of cellular microbiology. CAMs might prove to be novel therapeutic targets. Comparative genomics has provided the knowledge of shared virulence determinants among diverse bacterial genera, and will continue to deepen our understanding of microbial pathogenesis, particularly in the context of the interaction of prokaryotic and eukaryotic molecules. PMID:10694943

  7. Maintenance and induction of murine embryonic stem cell differentiation using E-cadherin-Fc substrata without colony formation

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Yuan; Akaike, Toshihiro

    2013-03-01

    Induced embryonic stem (ES) cells are expected to be promising cell resources for the observation of the cell behaviors in developmental biology as well as the implantation in cell treatments in human diseases. A recombinant E-cadherin substratum was developed as a cell recognizable substratum to maintain the ES cells' self-renewal and pluripotency at single cell level. Furthermore, the generation of various cell lineages in different germ layers, including hepatic or neural cells, was achieved on the chimeric protein layer precisely and effectively. The induction and isolation of specific cell population was carried out with the enhancing effect of other artificial extracellular matrices (ECMs) in enzyme-free process. The murine ES cell-derived cells showed highly morphological similarities and functional expressions to matured hepatocytes or neural progenitor cells.

  8. Recognition molecules myelin-associated glycoprotein and tenascin-C inhibit integrin-mediated adhesion of neural cells to collagen.

    PubMed

    Bachmann, M; Conscience, J F; Probstmeier, R; Carbonetto, S; Schachner, M

    1995-03-01

    Because of the importance of collagens in mediating cell-substrate interactions and the association of collagens with neural recognition molecules in the peripheral nervous system, the ability of neural recognition molecules to modify the substrate properties of collagens, in particular collagen type I, for cell adhesion was determined. Two cell lines, the N2A neuroblastoma and PC12 pheochromocytoma, were investigated for their capacity to adhere to different collagen types in the absence or presence of several neural recognition molecules. Adhesion of N2A or PC12 cells and membrane vesicles from PC12 cells to collagen type I was reduced when the collagen had been preincubated prior to its application as substrate with the extracellular domain of myelin-associated glycoprotein (s-MAG) or, as control, fibroblast tenascin-C (F-tenascin). In mixture with other collagen types, s-MAG was only able to reduce the adhesiveness of collagen types III and V, but not of collagen types II and IV. F-tenascin reduced the adhesiveness of all collagen types tested. In contrast to F-tenascin, s-MAG had to be present during fibrillogenesis to exert its effect, indicating that it must be coassembled into the collagen fibril to block the binding site. Cell adhesion to collagen type I was dependent on Mg2+ or Mn2+ and inhibited by a monoclonal antibody to the alpha 1 integrin subunit. The combined observations indicate that s-MAG and F-tenascin interfere with cell binding, most probably by modifying the integrin binding site, and that the two molecules act by different mechanisms, both leading to reduction of adhesion. PMID:7542351

  9. Aberrations of a cell adhesion molecule CADM4 in renal clear cell carcinoma.

    PubMed

    Nagata, Masayoshi; Sakurai-Yageta, Mika; Yamada, Daisuke; Goto, Akiteru; Ito, Akihiko; Fukuhara, Hiroshi; Kume, Haruki; Morikawa, Teppei; Fukayama, Masashi; Homma, Yukio; Murakami, Yoshinori

    2012-03-15

    Renal clear cell carcinoma (RCCC) is the most frequent subpopulation of renal cell carcinoma and is derived from the proximal uriniferous tubules. We have previously reported that an actin-binding protein, 4.1B/DAL-1, is expressed in renal proximal tubules, whereas it is inactivated in 45% of RCCC by promoter methylation. In the lung and several epithelial tissues, 4.1B is shown to associate with a tumor suppressor protein, CADM1, belonging to the immunoglobulin-superfamily cell adhesion molecules. Here, we demonstrate by immunohistochemistry that another member of the CADM-family protein, CADM4, as well as 4.1B is expressed specifically in human proximal tubules, while CADM1 and 4.1N, another member of the 4.1 proteins, are expressed in the distal tubules. Immunoprecipitation analysis coupled with Western blotting revealed that CADM4 associated with 4.1B, while CADM1 associated with 4.1N in the lysate from normal human kidney, implicating that a cascade of CADM4 and 4.1B plays an important role in normal cell adhesion of the proximal tubules. On the other hand, CADM4 expression was lost or markedly reduced in 7 of 10 (70%) RCC cell lines and 28 of 40 (70%) surgically resected RCCC, including 10 of 16 (63%) tumors with T1a. CADM4 expression was more preferentially lost in RCCC with vascular infiltration (p = 0.04), suggesting that loss of CADM4 is involved in tumor invasion. Finally, introduction of CADM4 into an RCC cell line, 786-O, dramatically suppressed tumor formation in nude mice. These findings suggest that CADM4 is a novel tumor suppressor candidate in RCCC acting with its binding partner 4.1B. PMID:21544807

  10. Dynamics of unbinding of cell adhesion molecules: transition from catch to slip bonds.

    PubMed

    Barsegov, V; Thirumalai, D

    2005-02-01

    The unbinding dynamics of complexes involving cell-adhesion molecules depends on the specific ligands. Atomic force microscopy measurements have shown that for the specific P-selectin-P-selectin glycoprotein ligand (sPSGL-1) the average bond lifetime t initially increases (catch bonds) at low (< or =10 pN) constant force, f, and decreases when f > 10 pN (slip bonds). In contrast, for the complex with G1 anti-P-selectin monoclonal antibody t monotonically decreases with f. To quantitatively map the energy landscape of such complexes we use a model that considers the possibility of redistribution of population from one force-free state to another force-stabilized bound state. The excellent agreement between theory and experiments allows us to extract energy landscape parameters by fitting the calculated curves to the lifetime measurements for both sPSGL-1 and G1. Surprisingly, the unbinding transition state for P-selectin-G1 complex is close (0.32 nm) to the bound state, implying that the interaction is brittle, i.e., once deformed, the complex fractures. In contrast, the unbinding transition state of the P-selectin-sPSGL-1 complex is far (approximately 1.5 nm) from the bound state, indicative of a compliant structure. Constant f energy landscape parameters are used to compute the distributions of unbinding times and unbinding forces as a function of the loading rate, rf. For a given rf, unbinding of sPSGL-1 occurs over a broader range of f with the most probable f being an order of magnitude less than for G1. The theory for cell adhesion complexes can be used to predict the outcomes of unbinding of other protein-protein complexes. PMID:15701706

  11. Increased neutrophil adherence and adhesion molecule mRNA expression in endothelial cells during selenium deficiency.

    PubMed

    Maddox, J F; Aherne, K M; Reddy, C C; Sordillo, L M

    1999-05-01

    Leukocyte aggregation and activation on endothelial cells (EC) are important preliminary events in leukocyte migration into tissue and subsequent inflammation. Thus, an increase in leukocyte adherence has the potential to affect inflammatory disease outcome. Selenium (Se) is an integral part of the antioxidant enzyme glutathione peroxidase (GSH-Px) and plays an important role in the maintenance of the redox state of a cell. Se supplementation in the bovine has been shown to improve the outcome of acute mastitis caused by coliform bacteria, in part by enhancing the speed of neutrophil migration into the affected mammary gland. However, the mechanisms by which Se modulates neutrophil migration have not been elucidated. Therefore, an in vitro model of Se deficiency in primary bovine mammary artery EC was used to examine the impact of Se status on the adhesive properties of EC. The effect of Se on functional activities was examined by measuring neutrophil adherence to Se-deficient and Se-supplemented EC. Se-deficient EC showed significantly enhanced neutrophil adherence when stimulated with tumor necrosis factor alpha (TNF-alpha) for 4 or 24 h, interleukin-1 for 12 h, or H2O2 for 20 min (P < 0.05). To determine the mechanisms underlying these changes in neutrophil adherence, the expression of EC adhesion molecules, ICAM-1, E-selectin, and P-selectin were examined at the molecular level by a competitive reverse transcription-polymerase chain reaction. Results revealed higher mRNA expression for E-selectin and ICAM-1 in Se-deficient EC stimulated with TNF-alpha for 3 and 6 h, and greater expression of P-selectin mRNA in Se-supplemented EC with 3-h TNF-alpha stimulation. These studies provide new information to establish the role of Se nutrition in the initiation of leukocyte adherence to endothelium. PMID:10331495

  12. Differential mouse-strain specific expression of Junctional Adhesion Molecule (JAM)-B in placental structures.

    PubMed

    Stelzer, Ina Annelies; Mori, Mayumi; DeMayo, Francesco; Lydon, John; Arck, Petra Clara; Solano, Maria Emilia

    2016-03-01

    The junctional adhesion molecule (JAM)-B, a member of the immunoglobulin superfamily, is involved in stabilization of interendothelial cell-cell contacts, formation of vascular tubes, homeostasis of stem cell niches and promotion of leukocyte adhesion and transmigration. In the human placenta, JAM-B protein is abundant and mRNA transcripts are enriched in first-trimester extravillous trophoblast in comparison to the villous trophoblast. We here aimed to elucidate the yet unexplored spatio-temporal expression of JAM-B in the mouse placenta. We investigated and semi-quantified JAM-B protein expression by immunohistochemistry in early post-implantation si tes and in mid- to late gestation placentae of various murine mating combinations. Surprisingly, the endothelium of the placental labyrinth was devoid of JAM-B expression. JAM-B was mainly present in spongiotrophoblast cells of the junctional zone, as well as in the fetal vessels of the chorionic plate, the umbilical cord and in maternal myometrial smooth muscle. We observed a strain-specific placental increase of JAM-B protein expression from mid- to late gestation in Balb/c-mated C57BL/6 females, which was absent in DBA/2J-mated Balb/c females. Due to the essential role of progesterone during gestation, we further assessed a possible modulation of JAM-B in mid-gestational placentae deficient in the progesterone receptor (Pgr(-/-)) and observed an increased expression of JAM-B in Pgr(-/-) placentae, compared to Pgr(+/+) tissue samples. We propose that JAM-B is an as yet underappreciated trophoblast lineage-specific protein, which is modulated via the progesterone receptor and shows unique strain-specific kinetics. Future work is needed to elucidate its possible contribution to placental processes necessary to ensuring its integrity, ultimately facilitating placental development and fetal growth. PMID:26914234

  13. Dynamics of unbinding of cell adhesion molecules: Transition from catch to slip bonds

    PubMed Central

    Barsegov, V.; Thirumalai, D.

    2005-01-01

    The unbinding dynamics of complexes involving cell-adhesion molecules depends on the specific ligands. Atomic force microscopy measurements have shown that for the specific P-selectin–P-selectin glycoprotein ligand (sPSGL-1) the average bond lifetime 〈t〉 initially increases (catch bonds) at low (≤10 pN) constant force, f, and decreases when f > 10 pN (slip bonds). In contrast, for the complex with G1 anti-P-selectin monoclonal antibody 〈t〉 monotonically decreases with f. To quantitatively map the energy landscape of such complexes we use a model that considers the possibility of redistribution of population from one force-free state to another force-stabilized bound state. The excellent agreement between theory and experiments allows us to extract energy landscape parameters by fitting the calculated curves to the lifetime measurements for both sPSGL-1 and G1. Surprisingly, the unbinding transition state for P-selectin–G1 complex is close (0.32 nm) to the bound state, implying that the interaction is brittle, i.e., once deformed, the complex fractures. In contrast, the unbinding transition state of the P-selectin–sPSGL-1 complex is far (≈ 1.5 nm) from the bound state, indicative of a compliant structure. Constant f energy landscape parameters are used to compute the distributions of unbinding times and unbinding forces as a function of the loading rate, rf. For a given rf, unbinding of sPSGL-1 occurs over a broader range of f with the most probable f being an order of magnitude less than for G1. The theory for cell adhesion complexes can be used to predict the outcomes of unbinding of other protein–protein complexes. PMID:15701706

  14. Cytoplasmic domain mutations of the L1 cell adhesion molecule reduce L1-ankyrin interactions.

    PubMed

    Needham, L K; Thelen, K; Maness, P F

    2001-03-01

    The neural adhesion molecule L1 mediates the axon outgrowth, adhesion, and fasciculation that are necessary for proper development of synaptic connections. L1 gene mutations are present in humans with the X-linked mental retardation syndrome CRASH (corpus callosum hypoplasia, retardation, aphasia, spastic paraplegia, hydrocephalus). Three missense mutations associated with CRASH syndrome reside in the cytoplasmic domain of L1, which contains a highly conserved binding region for the cytoskeletal protein ankyrin. In a cellular ankyrin recruitment assay that uses transfected human embryonic kidney (HEK) 293 cells, two of the pathologic mutations located within the conserved SFIGQY sequence (S1224L and Y1229H) strikingly reduced the ability of L1 to recruit 270 kDa ankyrinG protein that was tagged with green fluorescent protein (ankyrin-GFP) to the plasma membrane. In contrast, the L1 missense mutation S1194L and an L1 isoform lacking the neuron-specific sequence RSLE in the cytoplasmic domain were as effective as RSLE-containing neuronal L1 in the recruitment of ankyrin-GFP. Ankyrin binding by L1 was independent of cell-cell interactions. Receptor-mediated endocytosis of L1 regulates intracellular signal transduction, which is necessary for neurite outgrowth. In rat B35 neuroblastoma cell lines stably expressing L1 missense mutants, antibody-induced endocytosis was unaffected by S1224L or S1194L mutations but appeared to be enhanced by the Y1229H mutation. These results suggested a critical role for tyrosine residue 1229 in the regulation of L1 endocytosis. In conclusion, specific mutations within key residues of the cytoplasmic domain of L1 (Ser(1224), Tyr(1229)) destabilize normal L1-ankyrin interactions and may influence L1 endocytosis to contribute to the mechanism of neuronal dysfunction in human X-linked mental retardation. PMID:11222639

  15. Effects of antioxidant supplementation on insulin sensitivity, endothelial adhesion molecules, and oxidative stress in normal-weight and overweight young adults.

    PubMed

    Vincent, Heather K; Bourguignon, Cheryl M; Weltman, Arthur L; Vincent, Kevin R; Barrett, Eugene; Innes, Karen E; Taylor, Ann G

    2009-02-01

    The objective of the study was to determine whether short-term antioxidant (AOX) supplementation affects insulin sensitivity, endothelial adhesion molecule levels, and oxidative stress in overweight young adults. A randomized, double-blind, controlled study tested the effects of AOXs on measures of insulin sensitivity (homeostasis model assessment [HOMA]) and quantitative insulin sensitivity check index), endothelial adhesion molecules (soluble intercellular adhesion molecule-1, vascular adhesion molecule, and endothelial-leukocyte adhesion molecule-1), adiponectin, and oxidative stress (lipid hydroperoxides) in overweight and normal-weight individuals (N = 48, 18-30 years). Participants received either AOX (vitamin E, 800 IU; vitamin C, 500 mg; beta-carotene, 10 mg) or placebo for 8 weeks. The HOMA values were initially higher in the overweight subjects and were lowered with AOX by week 8 (15% reduction, P = .02). Adiponectin increased in both AOX groups. Soluble intercellular adhesion molecule-1 and endothelial-leukocyte adhesion molecule-1 decreased in overweight AOX-treated groups by 6% and 13%, respectively (P < .05). Plasma lipid hydroperoxides were reduced by 0.31 and 0.70 nmol/mL in the normal-weight and overweight AOX-treated groups, respectively, by week 8 (P < .05). Antioxidant supplementation moderately lowers HOMA and endothelial adhesion molecule levels in overweight young adults. A potential mechanism to explain this finding is the reduction in oxidative stress by AOX. Long-term studies are needed to determine whether AOXs are effective in suppressing diabetes or vascular activation over time. PMID:19154960

  16. Surface functionalization of inorganic nano-crystals with fibronectin and E-cadherin chimera synergistically accelerates trans-gene delivery into embryonic stem cells

    SciTech Connect

    Kutsuzawa, K.; Chowdhury, E.H.; Nagaoka, M.; Maruyama, K.; Akiyama, Y.; Akaike, T. . E-mail: takaike@bio.titech.ac.jp

    2006-11-24

    Stem cells holding great promises in regenerative medicine have the potential to be differentiated to a specific cell type through genetic manipulation. However, conventional ways of gene transfer to such progenitor cells suffer from a number of disadvantages particularly involving safety and efficacy issues. Here, we report on the development of a bio-functionalized inorganic nano-carrier of DNA by embedding fibronectin and E-cadherin chimera on the carrier, leading to its high affinity interactions with embryonic stem cell surface and accelerated trans-gene delivery for subsequent expression. While only apatite nano-particles were very inefficient in transfecting embryonic stem cells, fibronectin-anchored particles and to a more significant extent, fibronectin and E-cadherin-Fc-associated particles dramatically enhanced trans-gene delivery with a value notably higher than that of commercially available lipofection system. The involvement of both cell surface integrin and E-cadherin in mediating intracellular localization of the hybrid carrier was verified by blocking integrin binding site with excess free fibronectin and up-regulating both integrin and E-cadherin through PKC activation. Thus, the new establishment of a bio-functional hybrid gene-carrier would promote and facilitate development of stem cell-based therapy in regenerative medicine.

  17. PTEN Loss in E-Cadherin-Deficient Mouse Mammary Epithelial Cells Rescues Apoptosis and Results in Development of Classical Invasive Lobular Carcinoma.

    PubMed

    Boelens, Mirjam C; Nethe, Micha; Klarenbeek, Sjoerd; de Ruiter, Julian R; Schut, Eva; Bonzanni, Nicola; Zeeman, Amber L; Wientjens, Ellen; van der Burg, Eline; Wessels, Lodewyk; van Amerongen, Renée; Jonkers, Jos

    2016-08-23

    Invasive lobular carcinoma (ILC) is an aggressive breast cancer subtype with poor response to chemotherapy. Besides loss of E-cadherin, a hallmark of ILC, genetic inactivation of PTEN is frequently observed in patients. Through concomitant Cre-mediated inactivation of E-cadherin and PTEN in mammary epithelium, we generated a mouse model of classical ILC (CLC), the main histological ILC subtype. While loss of E-cadherin induced cell dissemination and apoptosis, additional PTEN inactivation promoted cell survival and rapid formation of invasive mammary tumors that recapitulate the histological and molecular features, estrogen receptor (ER) status, growth kinetics, metastatic behavior, and tumor microenvironment of human CLC. Combined inactivation of E-cadherin and PTEN is sufficient to cause CLC development. These CLCs showed significant tumor regression upon BEZ235-mediated inhibition of PI3K signaling. In summary, this mouse model provides important insights into CLC development and suggests inhibition of phosphatidylinositol 3-kinase (PI3K) signaling as a potential therapeutic strategy for targeting CLC. PMID:27524621

  18. OLA1 contributes to epithelial-mesenchymal transition in lung cancer by modulating the GSK3β/snail/E-cadherin signaling

    PubMed Central

    Zhang, Jiawei; Yuan, Shuai; Liao, Chen; Jeyabal, Prince V.S; Rubio, Valentina; Chen, Huarong; Li, Yafei; Shi, Zheng-Zheng

    2016-01-01

    Obg-like ATPase 1 (OLA1) belongs to the Obg family of P-loop NTPases, and may serve as a “molecular switch” regulating multiple cellular processes. Aberrant expression of OLA1 has been observed in several human malignancies. However, the role of OLA1 in cancer progression remains poorly understood. In this study, we used the Kaplan-Meier plotter search tool to show that increased expression of OLA1 mRNA was significantly associated with shorter overall survival in lung cancer patients. By immunohistochemical analysis we discovered that levels of OLA1 protein in lung cancer tissues were positively correlated with TNM stage and lymph node metastasis, but negatively correlated with the epithelial-mesenchymal transition (EMT) marker E-cadherin. Knockdown of OLA1 in a lung adenocarcinoma cell line rendered the cells more resistant to TGF- β-induced EMT and the accompanied repression of E-cadherin. Furthermore, our results demonstrated that OLA1 is a GSK3 β-interacting protein and inhibits GSK3 β activity by mediating its Ser9 phosphorylation. During EMT, OLA1 plays an important role in suppressing the GSK3 β-mediated degradation of Snail protein, which in turn promotes downregulation of E-cadherin. These data suggest that OLA1 contributes to EMT by modulating the GSK3 β/Snail/E-cadherin signaling, and its overexpression is associated with clinical progression and poor survival in lung cancer patients. PMID:26863455

  19. CD133 expression correlates with membrane beta-catenin and e-cadherin loss from human hair follicle placodes during morphogenesis

    PubMed Central

    Gay, Denise; Yang, Chao-Chun; Plikus, Maksim; Ito, Mayumi; Rivera, Charlotte; Treffeisen, Elsa; Doherty, Laura; Spata, Michelle; Millar, Sarah E.; Cotsarelis, George

    2014-01-01

    Genetic studies suggest that the major events of human hair follicle development are similar to those in mice, but detailed analyses of this process are lacking. In mice, hair follicle placode ‘budding’ is initiated by invagination of Wnt-induced epithelium into the underlying mesenchyme. Modification of adherens junctions is clearly required for budding. Snail-mediated downregulation of adherens junction component E-cadherin is important for placode budding in mice. Beta-catenin, another adherens junction component, has been more difficult to study due to its essential functions in Wnt signaling, a prerequisite for hair follicle placode induction. Here, we show that a subset of human invaginating hair placode cells expresses the stem cell marker CD133 during early morphogenesis. CD133 associates with membrane beta-catenin in early placodes and its continued expression correlates with loss of beta-catenin and E-cadherin from the cell membrane at a time when E-cadherin transcriptional repressors Snail and Slug are not implicated. Stabilization of CD133 via anti-CD133 antibody treatment of human fetal scalp explants depresses beta-catenin and E-cadherin membrane localization. We discuss this unique correlation and suggest a hypothetical model whereby CD133 promotes morphogenesis in early hair follicle placodes through the localized removal of membrane beta-catenin proteins and subsequent adherens junction dissolution. PMID:25010141

  20. An hTERT/ZEB1 complex directly regulates E-cadherin to promote epithelial-to-mesenchymal transition (EMT) in colorectal cancer.

    PubMed

    Qin, Yong; Tang, Bo; Hu, Chang-Jiang; Xiao, Yu-Feng; Xie, Rui; Yong, Xin; Wu, Yu Yun; Dong, Hui; Yang, Shi-Ming

    2016-01-01

    In human cancer, high telomerase expression is correlated with tumor aggressiveness and metastatic potential. Telomerase activation occurs through telomerase reverse transcriptase (hTERT) induction, which contributes to malignant transformation by stabilizing telomeres. Previous studies have shown that hTERT can promote tumor invasion and metastasis of gastric cancer, liver cancer and esophageal cancer. Epithelial-to-mesenchymal transition (EMT), a requirement for tumor invasion and metastasis, plays a key role in cancer progression. Although hTERT promotes EMT through Wnt signaling in several cancers, it is unknown if other signaling pathways are involved. In the present study, we found that hTERT and ZEB1 form a complex, which directly binds to the E-cadherin promoter, and then inhibits E-cadherin expression and promots EMT in colorectal cancer cells. hTERT overexpression in HCT116 and SW480 cells could induce E-cadherin down-regulation. However, E-cadherin expression was recovered when ZEB1 function was impaired even during hTERT overexpression. Taken together, our findings suggest that hTERT can promote cancer metastasis by stimulating EMT through the ZEB1 pathway and therefore inhibiting them may prevent cancer progression. PMID:26540342

  1. E-cadherin in non-tumor epithelium adjacent to oral cancer as risk marker for the development of multiple tumors.

    PubMed

    González-Moles, M A; Bravo, M; Ruiz-Avila, I; Gil-Montoya, J A; Acebal, F; Esteban, F

    2013-03-01

    Our aim was to find out whether the loss of E-cadherin is a risk factor for the development of multiple tumours in the oral cavity and whether it could serve as a diagnostic marker for oral premalignant fields. We studied 77 oral squamous cell carcinomas (SCC) with associated non-tumour epithelia from 61 patients. Immunohistochemical studies (antibody NHC-38) were used to investigate E-cadherin expression, which was completely lost in basal (48% of cases) and parabasal (43%) layers of non-tumour epithelia close to the tumour and in basal (47%) and parabasal (38%) layers of non-tumour epithelia distant from the tumour. In multiple tumours E-cadherin expression was significantly lower than in single tumours in the basal, parabasal layers, and the middle third of close (p=0.002, <0.001, <0.001) and distant (p=0.041, p<0.001, p=0.005) non-tumour epithelia, respectively. Downregulation of E-cadherin may be valuable as a risk marker for the development of multiple tumours in the oral cavity and for the diagnosis of premalignant fields. PMID:22658605

  2. The adhesion molecule PECAM-1 enhances the TGF-β-mediated inhibition of T cell function.

    PubMed

    Newman, Debra K; Fu, Guoping; Adams, Tamara; Cui, Weiguo; Arumugam, Vidhyalakshmi; Bluemn, Theresa; Riese, Matthew J

    2016-03-01

    Transforming growth factor-β (TGF-β) is an immunosuppressive cytokine that inhibits the proinflammatory functions of T cells, and it is a major factor in abrogating T cell activity against tumors. Canonical TGF-β signaling results in the activation of Smad proteins, which are transcription factors that regulate target gene expression. We found that the cell surface molecule platelet endothelial cell adhesion molecule-1 (PECAM-1) facilitated noncanonical (Smad-independent) TGF-β signaling in T cells. Subcutaneously injected tumor cells that are dependent on TGF-β-mediated suppression of immunity for growth grew more slowly in PECAM-1(-/-) mice than in their wild-type counterparts. T cells isolated from PECAM-1(-/-) mice demonstrated relative insensitivity to the TGF-β-dependent inhibition of interferon-γ (IFN-γ) production, granzyme B synthesis, and cellular proliferation. Similarly, human T cells lacking PECAM-1 demonstrated decreased sensitivity to TGF-β in a manner that was partially restored by reexpression of PECAM-1. Co-incubation of T cells with TGF-β and a T cell-activating antibody resulted in PECAM-1 phosphorylation on an immunoreceptor tyrosine-based inhibitory motif (ITIM) and the recruitment of the inhibitory Src homology 2 (SH2) domain-containing tyrosine phosphatase-2 (SHP-2). Such conditions also induced the colocalization of PECAM-1 with the TGF-β receptor complex as identified by coimmunoprecipitation, confocal microscopy, and proximity ligation assays. These studies indicate a role for PECAM-1 in enhancing the inhibitory functions of TGF-β in T cells and suggest that therapeutic targeting of the PECAM-1-TGF-β inhibitory axis represents a means to overcome TGF-β-dependent immunosuppression within the tumor microenvironment. PMID:26956486

  3. Netrin-1 induces local translation of down syndrome cell adhesion molecule in axonal growth cones.

    PubMed

    Jain, Shruti; Welshhans, Kristy

    2016-07-01

    Down syndrome cell adhesion molecule (DSCAM) plays an important role in many neurodevelopmental processes such as axon guidance, dendrite arborization, and synapse formation. DSCAM is located in the Down syndrome trisomic region of human chromosome 21 and may contribute to the Down syndrome brain phenotype, which includes a reduction in the formation of long-distance connectivity. The local translation of a select group of mRNA transcripts within growth cones is necessary for the formation of appropriate neuronal connectivity. Interestingly, we have found that Dscam mRNA is localized to growth cones of mouse hippocampal neurons, and is dynamically regulated in response to the axon guidance molecule, netrin-1. Furthermore, netrin-1 stimulation results in an increase in locally translated DSCAM protein in growth cones. Deleted in colorectal cancer (DCC), a netrin-1 receptor, is required for the netrin-1-induced increase in Dscam mRNA local translation. We also find that two RNA-binding proteins-fragile X mental retardation protein (FMRP) and cytoplasmic polyadenylation element binding protein (CPEB)-colocalize with Dscam mRNA in growth cones, suggesting their regulation of Dscam mRNA localization and translation. Finally, overexpression of DSCAM in mouse cortical neurons results in a severe stunting of axon outgrowth and branching, suggesting that an increase in DSCAM protein results in a structural change having functional consequences. Taken together, these results suggest that netrin-1-induced local translation of Dscam mRNA during embryonic development may be an important mechanism to regulate axon growth and guidance in the developing nervous system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 799-816, 2016. PMID:26518186

  4. House dust mite extracts activate cultured human dermal endothelial cells to express adhesion molecules and secrete cytokines.

    PubMed

    Arlian, Larry G; Elder, B Laurel; Morgan, Marjorie S

    2009-05-01

    The human skin contacts molecules from house dust mites that are ubiquitous in many environments. These mite-derived molecules may penetrate the skin epidermis and dermis and contact microvascular endothelial cells and influence their function. The purpose of this study was to determine the response of normal human dermal microvascular endothelial cells to extracts of the dust mites, Dermatophagoides farinae, D. pteronyssinus, and Euroglyphus maynei with and without endotoxin (lipopolysaccharide). Endothelial cells were stimulated with mite extracts and the expression of surface molecules and the secretion of cytokines were measured in the absence and presence of polymyxin B to bind endotoxin. All three mite extracts stimulated endothelial cells to express intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin and to secrete interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP-1), and granulocyte/macrophage colony stimulating factor (GM-CSF). Euroglyphus maynei-induced expression of all the cell surface molecules was not inhibited when the endotoxin activity in the mite extract was inhibited. In contrast, endothelial cells challenged with D. farinae or D. pteronyssinus extract depleted of endotoxin activity expressed only constitutive levels of ICAM-1, VCAM-1, and E-selectin. D. farinae and E. maynei extracts depleted of endotoxin activity still induced secretion of IL-8 and MCP-1 but at reduced levels. Only constitutive amounts of IL-6, G-CSF, and GM-CSF were secreted in response to any of the endotoxin-depleted mite extracts. Extracts of D. farinae, D. pteronyssinus, and E. maynei contain both endotoxins and other molecules that can stimulate expression of cell adhesion molecules and chemokine receptors and the secretion of cytokines by normal human microvascular endothelial cells. PMID:19496432

  5. Posttranslational modification of E-cadherin by core fucosylation regulates Src activation and induces epithelial-mesenchymal transition-like process in lung cancer cells.

    PubMed

    Shao, Kang; Chen, Zhong Yi; Gautam, Suraj; Deng, Nian Hui; Zhou, You; Wu, Xing Zhong

    2016-02-01

    E-cadherin is often dysregulated in aggressive lung cancer, the mechanism of which cannot always be explained at the level of transcription. In 66 patients with lung cancer, immunohistochemical staining demonstrated that co-localization of E-cadherin and core fucose by Lens culinaris agglutinin was significantly less extensive in tumor than in nontumor tissue. Through gain and loss of fucosylation experiments in the giant lung carcinoma cell lines 95C and 95D, our results revealed that E-cadherin core fucosylation in 95C cells overexpressing α-1, 6-fucosyltransferase (Fut8) inhibited Fut8-95C cell migration, whereas knockdown of Fut8 in 95D cells enhanced migration of short-interfering RNA-targeting Fut8 (siFut8)-95D cells. The level of active Src (phosphorylated Src [Y416]) was significantly reduced in Fut8-95C cells, but elevated in siFut8-95D cells. In protein complexes immunoprecipitated from Fut8-95C cell lysates with anti-E-cadherin, less phosphorylated Src (Y416) and more β-catenin were observed, but immunoprecipitates from siFut8-95D cells, containing less core fucosylated E-cadherin, contained an elevated level of phospho-Src Y416. In Fut8-95C cells, phosphorylation of Akt (Y315, Y326) and GSK-3β (S9) was significantly reduced, but β-catenin (S37) phosphorylation was enhanced. Expression of N-cadherin and Snail1 was also reduced in Fut8-95C cells, but significantly increased in siFut8-95D cells. Intriguingly, when Src kinase activity was inhibited by treatment of cells with PP2 and SU6656, regulation of N-cadherin, Snail1 and cell migration by E-cadherin core fucosylation was abrogated in both Fut8-95C and siFut8-95D cells. Therefore, posttranslational modification of E-cadherin by less core fucosylation recruited and activated Src, and induced an epithelial-mesenchymal transition-like process in lung cancer cells. PMID:26443198

  6. 293 cells express both epithelial as well as mesenchymal cell adhesion molecules

    PubMed Central

    I