Science.gov

Sample records for adhesion proteins vinculin

  1. p38 mitogen-activated protein kinase interacts with vinculin at focal adhesions during fatty acid-stimulated cell adhesion

    PubMed Central

    George, Margaret D.; Wine, Robert N.; Lackford, Brad; Kissling, Grace E.; Akiyama, Steven K.; Olden, Kenneth; Roberts, John D.

    2014-01-01

    Arachidonic acid stimulates cell adhesion by activating α2β1 integrins in a process that depends on protein kinases, including p38 mitogen activated protein kinase. Here, we describe the interaction of cytoskeletal components with key signaling molecules that contribute to spreading of, and morphological changes in, arachidonic acid-treated MDA-MB-435 human breast carcinoma cells. Arachidonic acid-treated cells showed increased attachment and spreading on collagen type IV as measured by electric cell-substrate impedance sensing. Fatty acid-treated cells displayed short cortical actin filaments associated with an increased number of β1 integrin-containing pseudopodia whereas untreated cells displayed elongated stress fibers and fewer clusters of β1 integrins. Confocal microscopy of arachidonic acid-treated cells showed that vinculin and phospho-p38 both appeared enriched in pseudopodia and at the tips of actin filaments, and fluorescence ratio imaging indicated the increase was specific for the phospho-(active) form of p38. Immunoprecipitates of phospho-p38 from extracts of arachidonic acid-treated cells contained vinculin, and GST-vinculin fusion proteins carrying the central region of vinculin bound phospho-p38, whereas fusion proteins expressing the terminal portions of vinculin did not. These data suggest that phospho-p38 associates with particular domains on critical focal adhesion proteins that are involved in tumor cell adhesion and spreading and that this association can be regulated by factors in the tumor microenvironment. PMID:24219282

  2. Mechanosensitive components of integrin adhesions: Role of vinculin

    PubMed Central

    Atherton, Paul; Stutchbury, Ben; Jethwa, Devina; Ballestrem, Christoph

    2016-01-01

    External forces play a key role in shaping development and normal physiology. Aberrant responses to forces, or changes in the nature of such forces, are implicated in a variety of diseases. Cells contain several types of adhesions, linking them to their external environment. It is through these adhesions that forces are both sensed (from the outside inwards) and applied (from inside to out). Furthermore, several adhesion-based proteins are sensitive to changes in intracellular forces, utilising them for activation and regulation. Here, we outline how vinculin, a key component of integrin-mediated adhesions linking the actin cytoskeleton to the extracellular matrix (ECM), is regulated by force and acts as force transducing protein. We discuss the role of vinculin in vivo and its place in health and disease; summarise the proposed mechanisms by which vinculin is recruited to and activated at integrin-ECM adhesions; and discuss recent findings that place vinculin as the major force sensing and transmitting component of cell–matrix adhesion complexes. Finally, we discuss the role of vinculin in regulating the cellular responses to both the physical properties of the external environment and to externally applied physical stimuli. PMID:26607713

  3. Calreticulin modulates cell adhesiveness via regulation of vinculin expression

    PubMed Central

    1996-01-01

    Calreticulin is an ubiquitous and highly conserved high capacity Ca(2+)- binding protein that plays a major role in Ca2+ storage within the lumen of the ER. Here, using L fibroblast cell lines expressing different levels of calreticulin, we show that calreticulin plays a role in the control of cell adhesiveness via regulation of expression of vinculin, a cytoskeletal protein essential for cell-substratum and cell-cell attachments. Both vinculin protein and mRNA levels are increased in cells overexpressing calreticulin and are downregulated in cells expressing reduced level of calreticulin. Abundance of actin, talin, alpha 5 and beta 1 integrins, pp125 focal adhesion kinase, and alpha-catenin is not affected by the differential calreticulin expression. Overexpression of calreticulin increases both cell- substratum and cell-cell adhesiveness of L fibroblasts that, most surprisingly, establish vinculin-rich cell-cell junctions. Upregulation of calreticulin also affects adhesion-dependent phenomena such as cell motility (which decreases) and cell spreading (which increases). Downregulation of calreticulin brings about inverse effects. Cell adhesiveness is Ca2+ regulated. The level of calreticulin expression, however, has no effect on either the resting cytoplasmic Ca2+ concentration or the magnitude of FGF-induced Ca2+ transients. Calreticulin, however, participates in Ca2+ homeostasis as its level of expression affects cell viability at low concentrations of extracellular Ca2+. Consequently, we infer that it is not the Ca2+ storage function of calreticulin that affects cell adhesiveness. Neither endogenous calreticulin nor overexpressed green fluorescent protein-calreticulin construct can be detected outside of the ER. Since all of the adhesion-related effects of differential calreticulin expression can be explained by its regulation of vinculin expression, we conclude that it is the ER-resident calreticulin that affects cellular adhesiveness. PMID:8991101

  4. Bacillus cereus Certhrax ADP-ribosylates vinculin to disrupt focal adhesion complexes and cell adhesion.

    PubMed

    Simon, Nathan C; Barbieri, Joseph T

    2014-04-11

    Bacillus cereus is often associated with mild to moderate gastroenteritis; however, some recent isolates cause inhalational anthrax-like diseases and death. These potential emerging human pathogens express multiple virulence factors. B. cereus strain G9241 expresses anthrax toxin, several polysaccharide capsules, and the novel ADP-ribosyltransferase, Certhrax. In this study, we show that Certhrax ADP-ribosylates Arg-433 of vinculin, a protein that coordinates actin cytoskeleton and extracellular matrix interactions. ADP-ribosylation of vinculin disrupted focal adhesion complexes and redistributed vinculin to the cytoplasm. Exogenous vinculin rescued these phenotypes. This provides a mechanism for strain G9241 to breach host barrier defenses and promote bacterial growth and spread. Certhrax is the first bacterial toxin to add a post-translational modification to vinculin to disrupt the actin cytoskeleton.

  5. Molecular mechanism of vinculin activation and nano-scale spatial organization in focal adhesions

    PubMed Central

    Case, Lindsay B.; Baird, Michelle A.; Shtengel, Gleb; Campbell, Sharon L.; Hess, Harald F.; Davidson, Michael W.; Waterman, Clare M.

    2015-01-01

    Focal adhesions (FAs) link the extracellular matrix (ECM) to the actin cytoskeleton to mediate cell adhesion, migration, mechanosensing and signaling. FAs have conserved nanoscale protein organization, suggesting that the position of proteins within FAs regulates their activity and function. Vinculin binds different FA proteins to mediate distinct cellular functions, but how vinculin’s interactions are spatiotemporally organized within FA is unknown. Using interferometric photo-activation localization (iPALM) super-resolution microscopy to assay vinculin nanoscale localization and a FRET biosensor to assay vinculin conformation, we found that upward repositioning within the FA during FA maturation facilitates vinculin activation and mechanical reinforcement of FA. Inactive vinculin localizes to the lower integrin signaling layer in FA by binding to phospho-paxillin. Talin binding activates vinculin and targets active vinculin higher in FA where vinculin can engage retrograde actin flow. Thus, specific protein interactions are spatially segregated within FA at the nano-scale to regulate vinculin activation and function. PMID:26053221

  6. Comparing the mechanical influence of vinculin, focal adhesion kinase and p53 in mouse embryonic fibroblasts

    SciTech Connect

    Klemm, Anna H.; Diez, Gerold; Alonso, Jose-Luis

    2009-02-13

    Cytoskeletal reorganization is an ongoing process when cells adhere, move or invade extracellular substrates. The cellular force generation and transmission are determined by the intactness of the actomyosin-(focal adhesion complex)-integrin connection. We investigated the intracellular course of action in mouse embryonic fibroblasts deficient in the focal adhesion proteins vinculin and focal adhesion kinase (FAK) and the nuclear matrix protein p53 using magnetic tweezer and nanoparticle tracking techniques. Results show that the lack of these proteins decrease cellular stiffness and affect cell rheological behavior. The decrease in cellular binding strength was higher in FAK- to vinculin-deficient cells, whilst p53-deficient cells showed no effect compared to wildtype cells. The intracellular cytoskeletal activity was lowest in wildtype cells, but increased in the following order when cells lacked FAK+p53 > p53 > vinculin. In summary, cell mechanical processes are differently affected by the focal adhesion proteins vinculin and FAK than by the nuclear matrix protein, p53.

  7. Intact vinculin protein is required for control of cell shape, cell mechanics, and rac-dependent lamellipodia formation

    NASA Technical Reports Server (NTRS)

    Goldmann, Wolfgang H.; Ingber, Donald E.

    2002-01-01

    Studies were carried out using vinculin-deficient F9 embryonic carcinoma (gamma229) cells to analyze the relationship between structure and function within the focal adhesion protein vinculin, in the context of control of cell shape, cell mechanics, and movement. Atomic force microscopy studies revealed that transfection of the head (aa 1-821) or tail (aa 811-1066) domain of vinculin, alone or together, was unable to fully reverse the decrease in cell stiffness, spreading, and lamellipodia formation caused by vinculin deficiency. In contrast, replacement with intact vinculin completely restored normal cell mechanics and spreading regardless of whether its tyrosine phosphorylation site was deleted. Constitutively active rac also only induced extension of lamellipodia when microinjected into cells that expressed intact vinculin protein. These data indicate that vinculin's ability to physically couple integrins to the cytoskeleton, to mechanically stabilize cell shape, and to support rac-dependent lamellipodia formation all appear to depend on its intact three-dimensional structure.

  8. Identification of a new actin binding surface on vinculin that mediates mechanical cell and focal adhesion properties

    PubMed Central

    Thompson, Peter M.; Tolbert, Caitlin E.; Shen, Kai; Kota, Pradeep; Palmer, Sean M.; Plevock, Karen M.; Orlova, Albina; Galkin, Vitold E.; Burridge, Keith; Egelman, Edward H.; Dokholyan, Nikolay V.; Superfine, Richard; Campbell, Sharon L.

    2014-01-01

    SUMMARY Vinculin, a cytoskeletal scaffold protein essential for embryogenesis and cardiovascular function, localizes to focal adhesions and adherens junctions, connecting cell surface receptors to the actin cytoskeleton. While vinculin interacts with many adhesion proteins, its interaction with filamentous actin regulates cell morphology, motility, and mechanotransduction. Disruption of this interaction lowers cell traction forces and enhances actin flow rates. Although a model for the vinculin:actin complex exists, we recently identified actin-binding deficient mutants of vinculin outside sites predicted to bind actin, and developed an alternative model to better define this novel actin-binding surface, using negative-stain EM, discrete molecular dynamics, and mutagenesis. Actin-binding deficient vinculin variants expressed in vinculin knockout fibroblasts fail to rescue cell-spreading defects and reduce cellular response to external force. These findings highlight the importance of this new actin-binding surface and provide the molecular basis for elucidating additional roles of this interaction, including actin-induced conformational changes which promote actin bundling. PMID:24685146

  9. Vinculin tension distributions of individual stress fibers within cell–matrix adhesions

    PubMed Central

    Chang, Ching-Wei; Kumar, Sanjay

    2013-01-01

    Summary Actomyosin stress fibers (SFs) enable cells to exert traction on planar extracellular matrices (ECMs) by tensing focal adhesions (FAs) at the cell–ECM interface. Although it is widely appreciated that the spatial and temporal distribution of these tensile forces play key roles in polarity, motility, fate choice, and other defining cell behaviors, virtually nothing is known about how an individual SF quantitatively contributes to tensile loads borne by specific molecules within associated FAs. We address this key open question by using femtosecond laser ablation to sever single SFs in cells while tracking tension across vinculin using a molecular optical sensor. We show that disruption of a single SF reduces tension across vinculin in FAs located throughout the cell, with enriched vinculin tension reduction in FAs oriented parallel to the targeted SF. Remarkably, however, some subpopulations of FAs exhibit enhanced vinculin tension upon SF irradiation and undergo dramatic, unexpected transitions between tension-enhanced and tension-reduced states. These changes depend strongly on the location of the severed SF, consistent with our earlier finding that different SF pools are regulated by distinct myosin activators. We critically discuss the extent to which these measurements can be interpreted in terms of whole-FA tension and traction and propose a model that relates SF tension to adhesive loads and cell shape stability. These studies represent the most direct and high-resolution intracellular measurements of SF contributions to tension on specific FA proteins to date and offer a new paradigm for investigating regulation of adhesive complexes by cytoskeletal force. PMID:23687380

  10. Vinculin Is a Dually Regulated Actin Filament Barbed End-capping and Side-binding Protein

    PubMed Central

    Le Clainche, Christophe; Dwivedi, Satya Prakash; Didry, Dominique; Carlier, Marie-France

    2010-01-01

    The focal adhesion protein vinculin is an actin-binding protein involved in the mechanical coupling between the actin cytoskeleton and the extracellular matrix. An autoinhibitory interaction between the N-terminal head (Vh) and the C-terminal tail (Vt) of vinculin masks an actin filament side-binding domain in Vt. The binding of several proteins to Vh disrupts this intramolecular interaction and exposes the actin filament side-binding domain. Here, by combining kinetic assays and microscopy observations, we show that Vt inhibits actin polymerization by blocking the barbed ends of actin filaments. In low salt conditions, Vt nucleates actin filaments capped at their barbed ends. We determined that the interaction between vinculin and the barbed end is characterized by slow association and dissociation rate constants. This barbed end capping activity requires C-terminal amino acids of Vt that are dispensable for actin filament side binding. Like the side-binding domain, the capping domain of vinculin is masked by an autoinhibitory interaction between Vh and Vt. In contrast to the side-binding domain, the capping domain is not unmasked by the binding of a talin domain to Vh and requires the dissociation of an additional autoinhibitory interaction. Finally, we show that vinculin and the formin mDia1, which is involved in the processive elongation of actin filaments in focal adhesions, compete for actin filament barbed ends. PMID:20484056

  11. A plastic relationship between vinculin-mediated tension and adhesion complex area defines adhesion size and lifetime

    NASA Astrophysics Data System (ADS)

    Hernández-Varas, Pablo; Berge, Ulrich; Lock, John G.; Strömblad, Staffan

    2015-06-01

    Cell-matrix adhesions are central mediators of mechanotransduction, yet the interplay between force and adhesion regulation remains unclear. Here we use live cell imaging to map time-dependent cross-correlations between vinculin-mediated tension and adhesion complex area, revealing a plastic, context-dependent relationship. Interestingly, while an expected positive cross-correlation dominated in mid-sized adhesions, small and large adhesions display negative cross-correlation. Furthermore, although large changes in adhesion complex area follow vinculin-mediated tension alterations, small increases in area precede vinculin-mediated tension dynamics. Modelling based on this mapping of the vinculin-mediated tension-adhesion complex area relationship confirms its biological validity, and indicates that this relationship explains adhesion size and lifetime limits, keeping adhesions focal and transient. We also identify a subpopulation of steady-state adhesions whose size and vinculin-mediated tension become stabilized, and whose disassembly may be selectively microtubule-mediated. In conclusion, we define a plastic relationship between vinculin-mediated tension and adhesion complex area that controls fundamental cell-matrix adhesion properties.

  12. Expression of chicken vinculin complements the adhesion-defective phenotype of a mutant mouse F9 embryonal carcinoma cell

    PubMed Central

    1993-01-01

    A mutant cell line, derived from the mouse embryonal carcinoma cell line F9, is defective in cell-cell adhesion (compaction) and in cell- substrate adhesion. We have previously shown that neither uvomorulin (E- cadherin) nor integrins are responsible for the mutant phenotype (Calogero, A., M. Samuels, T. Darland, S. A. Edwards, R. Kemler, and E. D. Adamson. 1991. Dev. Biol. 146:499-508). Several cytoskeleton proteins were assayed and only vinculin was found to be absent in mutant (5.51) cells. A chicken vinculin expression vector was transfected into the 5.51 cells together with a neomycin-resistance vector. Clones that were adherent to the substrate were selected in medium containing G418. Two clones, 5.51Vin3 and Vin4, were analyzed by Nomarski differential interference contrast and laser confocal microscopy as well as by biochemical and molecular biological techniques. Both clones adhered well to substrates and both exhibited F- actin stress fibers with vinculin localized at stress fiber tips in focal contacts. This was in marked contrast to 5.51 parental cells, which had no stress fibers and no vinculin. The mutant and complemented F9 cell lines will be useful models for examining the complex interactions between cytoskeletal and cell adhesion proteins. PMID:8491782

  13. α-catenin, vinculin, and F-actin in strengthening E-cadherin cell–cell adhesions and mechanosensing

    PubMed Central

    Dufour, Sylvie; Mège, René-Marc; Thiery, Jean Paul

    2013-01-01

    Classical cadherins play a crucial role in establishing intercellular adhesion, regulating cortical tension, and maintaining mechanical coupling between cells. The mechanosensitive regulation of intercellular adhesion strengthening depends on the recruitment of adhesion complexes at adhesion sites and their anchoring to the actin cytoskeleton. Thus, the molecular mechanisms coupling cadherin-associated complexes to the actin cytoskeleton are actively being studied, with a particular focus on α-catenin and vinculin. We have recently addressed the role of these proteins by analyzing the consequences of their depletion and the expression of α-catenin mutants in the formation and strengthening of cadherin-mediated adhesions. We have used the dual pipette assay to measure the forces required to separate cell doublets formed in suspension. In this commentary, we briefly summarize the current knowledge on the role of α-catenin and vinculin in cadherin-actin cytoskeletal interactions. These data shed light on the tension-dependent contribution of α-catenin and vinculin in a mechanoresponsive complex that promotes the connection between cadherin and the actin cytoskeleton and their requirement in the development of adhesion strengthening. PMID:23739176

  14. α-Catenin and Vinculin Cooperate to Promote High E-cadherin-based Adhesion Strength*

    PubMed Central

    Thomas, William A.; Boscher, Cécile; Chu, Yeh-Shiu; Cuvelier, Damien; Martinez-Rico, Clara; Seddiki, Rima; Heysch, Julie; Ladoux, Benoit; Thiery, Jean Paul; Mege, René-Marc; Dufour, Sylvie

    2013-01-01

    Maintaining cell cohesiveness within tissues requires that intercellular adhesions develop sufficient strength to support traction forces applied by myosin motors and by neighboring cells. Cadherins are transmembrane receptors that mediate intercellular adhesion. The cadherin cytoplasmic domain recruits several partners, including catenins and vinculin, at sites of cell-cell adhesion. Our study used force measurements to address the role of αE-catenin and vinculin in the regulation of the strength of E-cadherin-based adhesion. αE-catenin-deficient cells display only weak aggregation and fail to strengthen intercellular adhesion over time, a process rescued by the expression of αE-catenin or chimeric E-cadherin·αE-catenins, including a chimera lacking the αE-catenin dimerization domain. Interestingly, an αE-catenin mutant lacking the modulation and actin-binding domains restores cadherin-dependent cell-cell contacts but cannot strengthen intercellular adhesion. The expression of αE-catenin mutated in its vinculin-binding site is defective in its ability to rescue cadherin-based adhesion strength in cells lacking αE-catenin. Vinculin depletion or the overexpression of the αE-catenin modulation domain strongly decreases E-cadherin-mediated adhesion strength. This supports the notion that both molecules are required for intercellular contact maturation. Furthermore, stretching of cell doublets increases vinculin recruitment and α18 anti-αE-catenin conformational epitope immunostaining at cell-cell contacts. Taken together, our results indicate that αE-catenin and vinculin cooperatively support intercellular adhesion strengthening, probably via a mechanoresponsive link between the E-cadherin·β-catenin complexes and the underlying actin cytoskeleton. PMID:23266828

  15. Lipid-directed vinculin dimerization.

    PubMed

    Chinthalapudi, Krishna; Patil, Dipak N; Rangarajan, Erumbi S; Rader, Christoph; Izard, Tina

    2015-05-01

    Vinculin localizes to cellular adhesions where it regulates motility, migration, development, wound healing, and response to force. Importantly, vinculin loss results in cancer phenotypes, cardiovascular disease, and embryonic lethality. At the plasma cell membrane, the most abundant phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2), binds the vinculin tail domain, Vt, and triggers homotypic and heterotypic interactions that amplify binding of vinculin to the actin network. Binding of PIP2 to Vt is necessary for maintaining optimal focal adhesions, for organizing stress fibers, for cell migration and spreading, and for the control of vinculin dynamics and turnover of focal adhesions. While the recently determined Vt/PIP2 crystal structure revealed the conformational changes occurring upon lipid binding and oligomerization, characterization of PIP2-induced vinculin oligomerization has been challenging in the adhesion biology field. Here, via a series of novel biochemical assays not performed in previous studies that relied on chemical cross-linking, we characterize the PIP2-induced vinculin oligomerization. Our results show that Vt/PIP2 forms a tight dimer with Vt or with the muscle-specific vinculin isoform, metavinculin, at sites of adhesion at the cell membrane. Insight into how PIP2 regulates clustering and into mechanisms that regulate cell adhesion allows the development for a more definite sensor for PIP2, and our developed techniques can be applied generally and thus open the door for the characterization of many other protein/PIP2 complexes under physiological conditions. PMID:25880222

  16. Lipid-directed vinculin dimerization.

    PubMed

    Chinthalapudi, Krishna; Patil, Dipak N; Rangarajan, Erumbi S; Rader, Christoph; Izard, Tina

    2015-05-01

    Vinculin localizes to cellular adhesions where it regulates motility, migration, development, wound healing, and response to force. Importantly, vinculin loss results in cancer phenotypes, cardiovascular disease, and embryonic lethality. At the plasma cell membrane, the most abundant phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2), binds the vinculin tail domain, Vt, and triggers homotypic and heterotypic interactions that amplify binding of vinculin to the actin network. Binding of PIP2 to Vt is necessary for maintaining optimal focal adhesions, for organizing stress fibers, for cell migration and spreading, and for the control of vinculin dynamics and turnover of focal adhesions. While the recently determined Vt/PIP2 crystal structure revealed the conformational changes occurring upon lipid binding and oligomerization, characterization of PIP2-induced vinculin oligomerization has been challenging in the adhesion biology field. Here, via a series of novel biochemical assays not performed in previous studies that relied on chemical cross-linking, we characterize the PIP2-induced vinculin oligomerization. Our results show that Vt/PIP2 forms a tight dimer with Vt or with the muscle-specific vinculin isoform, metavinculin, at sites of adhesion at the cell membrane. Insight into how PIP2 regulates clustering and into mechanisms that regulate cell adhesion allows the development for a more definite sensor for PIP2, and our developed techniques can be applied generally and thus open the door for the characterization of many other protein/PIP2 complexes under physiological conditions.

  17. Membrane potential and endocytic activity control disintegration of cell-cell adhesion and cell fusion in vinculin-injected MDBK cells.

    PubMed

    Palovuori, Riitta; Myrsky, Essi; Eskelinen, Sinikka

    2004-09-01

    Cell fusion occurs during fertilization and in the formation of organs such as muscles, placenta, and bones. We have developed an experimental model for epithelial cell fusion which permits analysis of the processes during junction disintegration and formation of polykaryons (Palovuori and Eskelinen [2000] Eur. J. Cell. Biol. 79: 961-974). In the present work, we analyzed the process in detail. Cell fusion was achieved by microinjecting into the cytoplasm of kidney epithelial Madin-Darby bovine kidney (MDBK) cells TAMRA-tagged vinculin, which incorporated into lateral membranes, focal adhesions and nucleus, and, prior fusion, induced internalization of actin, cadherin and plakoglobin to small clusters in cytoplasm. Injected vinculin was still visible at lateral membranes after removal of junctional proteins indicating that it was tightly associated and perturbed the cell-cell contact sites resulting in membrane fragmentation. Injection of active Rac together with vinculin induced accumulation of cadherin to the membranes, but did not affect vinculin-membrane association. However, it hampered cell fusion probably by supporting adherens junctions. In order to stop endocytosis, we lowered intracellular pH of vinculin-injected cells to 5.5 with the aid of nigericin in KCl buffer. In acidified cells, injected vinculin delineated lateral membranes as thick layers, cadherin remained in situ, and cell fusion was completely inhibited. Since this treatment also leads to cell depolarization, we checked the vinculin incorporation in a KCl solution containing nigericin at neutral pH. In these circumstances, both endogenous and injected vinculin delineated lateral membranes as very thin discontinuous layers, but still fusion was hampered most likely due to perturbation in the initial vinculin-membrane association. We suggest that vinculin might function as a sensor of the environment triggering cell fusion during development in circumstances where membrane potential and local

  18. Identification of the vinculin-binding site in the cytoskeletal protein alpha-actinin.

    PubMed

    McGregor, A; Blanchard, A D; Rowe, A J; Critchley, D R

    1994-07-01

    Using low-speed sedimentation equilibrium we have established that vinculin binds to alpha-actinin with a Kd of 1.3 x 10(-5) M. Electron microscopy of negatively stained preparations of vinculin revealed spherical particles (diameter 11.2 nm; S.D. 1.7 nm, n = 21), whereas alpha-actinin appeared as a rod-shaped particle (length 33 nm; S.D. 3.3 nm, n = 23). Mixtures of the two proteins contained both 'lollipop'- and 'dumbell'-shaped particles which we interpret as either one or two spherical vinculin molecules associated with the ends of the alpha-actinin rod. We have further defined the vinculin-binding site in alpha-actinin using 125I-vinculin and a gel-blot assay in which proteolytic fragments of alpha-actinin and fragments of alpha-actinin expressed in Escherichia coli were resolved by SDS/PAGE and blotted to nitrocellulose. 125I-vinculin bound to polypeptides derived from the spectrin-like repeat region of alpha-actinin, but did not bind to the actin-binding domain. Binding was inhibited by a 100-fold molar excess of unlabelled vinculin. Using a series of glutathione S-transferase fusion proteins we have mapped the vinculin-binding site to a region toward the C-terminal end of the molecule (alpha-actinin residues 713-749). 125I-vinculin also bound to fusion proteins containing this sequence which had been immobilized on glutathione-agarose beads. The vinculin-binding site is localized in a highly conserved region of the molecule close to the first of two EF-hand calcium-binding motifs. PMID:8037676

  19. The cytoskeletal protein α-catenin unfurls upon binding to vinculin.

    PubMed

    Rangarajan, Erumbi S; Izard, Tina

    2012-05-25

    Adherens junctions (AJs) are essential for cell-cell contacts, morphogenesis, and the development of all higher eukaryotes. AJs are formed by calcium-dependent homotypic interactions of the ectodomains of single membrane-pass cadherin family receptors. These homotypic interactions in turn promote binding of the intracellular cytoplasmic tail domains of cadherin receptors with β-catenin, a multifunctional protein that plays roles in both transcription and AJs. The cadherin receptor-β-catenin complex binds to the cytoskeletal protein α-catenin, which is essential for both the formation and the stabilization of these junctions. Precisely how α-catenin contributes to the formation and stabilization of AJs is hotly debated, although the latter is thought to involve its interactions with the cytoskeletal protein vinculin. Here we report the crystal structure of the vinculin binding domain (VBD) of α-catenin in complex with the vinculin head domain (Vh1). This structure reveals that α-catenin is in a unique unfurled mode allowing dimer formation when bound to vinculin. Finally, binding studies suggest that vinculin must be in an activated state to bind to α-catenin and that this interaction is stabilized by the formation of a ternary α-catenin-vinculin-F-actin complex, which can be formed via the F-actin binding domain of either protein. We propose a feed-forward model whereby α-catenin-vinculin interactions promote their binding to the actin cytoskeleton to stabilize AJs. PMID:22493458

  20. Vinculin Interacts with the Chlamydia Effector TarP Via a Tripartite Vinculin Binding Domain to Mediate Actin Recruitment and Assembly at the Plasma Membrane

    PubMed Central

    Thwaites, Tristan R.; Pedrosa, Antonio T.; Peacock, Thomas P.; Carabeo, Rey A.

    2015-01-01

    The mammalian protein vinculin is often a target of bacterial pathogens to subvert locally host cell actin dynamics. In Chlamydia infection, vinculin has been implicated in RNA interference screens, but the molecular basis for vinculin requirement has not been characterized. In this report, we show that vinculin was involved in the actin recruitment and F-actin assembly at the plasma membrane to facilitate invasion. Vinculin was recruited to the plasma membrane via its interaction with a specific tripartite motif within TarP that resembles the vinculin-binding domain (VBD) found in the Shigella invasion factor IpaA. The TarP-mediated plasma membrane recruitment of vinculin resulted in the localized recruitment of actin. In vitro pulldown assays for protein-protein interaction and imaging-based evaluation of recruitment to the plasma membrane demonstrated the essential role of the vinculin-binding site 1 (VBS1), and the dispensability of VBS2 and VBS3. As further support for the functionality of VBD-vinculin interaction, VBD-mediated actin recruitment required vinculin. Interestingly, while both vinculin and the focal adhesion kinase (FAK) colocalized at the sites of adhesion, the recruitment of one was independent of the other; and the actin recruitment function of the VBD/vinculin signaling axis was independent of the LD/FAK pathway. PMID:26649283

  1. Raver1 Interactions with Vinculin and RNA Suggest a Feed-Forward Pathway in Directing mRNA to Focal Adhesions

    SciTech Connect

    Lee, Jun Hyuck; Rangarajan, Erumbi S.; Yogesha, S.D.; Izard, Tina; Scripps

    2009-09-11

    The translational machinery of the cell relocalizes to focal adhesions following the activation of integrin receptors. This response allows for rapid, local production of components needed for adhesion complex assembly and signaling. Vinculin links focal adhesions to the actin cytoskeleton following its activation by integrin signaling, which severs intramolecular interactions of vinculin's head and tail (Vt) domains. Our vinculin:raver1 crystal structures and binding studies show that activated Vt selectively interacts with one of the three RNA recognition motifs of raver1, that the vinculin:raver1 complex binds to F-actin, and that raver1 binds selectively to RNA, including a sequence found in vinculin mRNA. Further, mutation of residues that mediate interaction of raver1 with vinculin abolish their colocalization in cells. These findings suggest a feed-forward model where vinculin activation at focal adhesions provides a scaffold for recruitment of raver1 and its mRNA cargo to facilitate the production of components of adhesion complexes.

  2. Isolation of peptides from phage-displayed random peptide libraries that interact with the talin-binding domain of vinculin.

    PubMed Central

    Adey, N B; Kay, B K

    1997-01-01

    Peptides isolated from combinatorial libraries typically interact with, and thus help to characterize, biologically relevant binding domains of target proteins. To characterize the binding domains of the focal adhesion protein vinculin, vinculin-binding peptides were isolated from two phage-displayed random peptide libraries. Altogether, five non-similar vinculin-binding peptides were identified. Despite the lack of obvious sequence similarity between the peptides, binding and competition studies indicated that all five interact with the talin-binding domain of vinculin and do not disrupt the binding of alpha-actinin or paxillin to vinculin. The identified peptides and talin bind to vinculin in a comparable manner; both bind to immobilized vinculin, but neither binds to soluble vinculin unless the C-terminus of vinculin has been deleted. An analysis of amino acid variants of one of the peptides has revealed three non-contiguous motifs that also occur in the region of talin previously demonstrated to bind vinculin. Amino acid substitutions within a 127-residue segment of talin capable of binding vinculin confirmed the importance of two of the motifs and suggest that residues critical for binding are within a 16-residue region. This study demonstrates that the vinculin-binding peptides interact with vinculin in a biologically relevant manner and represent an excellent tool for further study of the biochemistry of vinculin. PMID:9182713

  3. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen.

    PubMed

    Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A; Davidson, Michael W; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M; Fabry, Ben

    2015-11-01

    Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton-ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell-ECM adhesion and traction force generation.

  4. Suppression of tumorigenicity in transformed cells after transfection with vinculin cDNA

    PubMed Central

    1992-01-01

    Transfection of chicken vinculin cDNA into two tumor cell lines expressing diminished levels of the endogenous protein, brought about a drastic suppression of their tumorigenic ability. The SV-40-transformed Balb/c 3T3 line (SVT2) contains four times less vinculin than the parental 3T3 cells, and the rat adenocarcinoma BSp73ASML has no detectable vinculin. Restoration of vinculin in these cells, up to the levels found in 3T3 cells, resulted in an apparent increase in substrate adhesiveness, a decrease in the ability to grow in soft agar, and suppression of their capacity to develop tumors after injection into syngeneic hosts or nude mice. These results suggest that vinculin, a cytoplasmic component of cell-matrix and cell-cell adhesions, may have a major suppressive effect on the transformed phenotype. PMID:1400584

  5. Vinculin contributes to Cell Invasion by Regulating Contractile Activation

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2008-07-01

    Vinculin is a component of the focal adhesion complex and is described as a mechano-coupling protein connecting the integrin receptor and the actin cytoskeleton. Vinculin knock-out (k.o.) cells (vin-/-) displayed increased migration on a 2-D collagen- or fibronectin-coated substrate compared to wildtype cells, but the role of vinculin in cell migration through a 3-D connective tissue is unknown. We determined the invasiveness of established tumor cell lines using a 3-D collagen invasion assay. Gene expression analysis of 4 invasive and 4 non-invasive tumor cell lines revealed that vinculin expression was significantly increased in invasive tumor cell lines. To analyze the mechanisms by which vinculin increased cell invasion in a 3-D gel, we studied mouse embryonic fibroblasts wildtype and vin-/- cells. Wildtype cells were 3-fold more invasive compared vin-/- cells. We hypothesized that the ability to generate sufficient traction forces is a prerequisite for tumor cell migration in a 3-D connective tissue matrix. Using traction microscopy, we found that wildtype exerted 3-fold higher tractions on fibronectin-coated polyacrylamide gels compared to vin-/- cells. These results show that vinculin controls two fundamental functions that lead to opposite effects on cell migration in a 2-D vs. a 3-D environment: On the one hand, vinculin stabilizes the focal adhesions (mechano-coupling function) and thereby reduces motility in 2-D. On the other hand, vinculin is also a potent activator of traction generation (mechano-regulating function) that is important for cell invasion in a 3-D environment.

  6. A helping hand: How vinculin contributes to cell-matrix and cell-cell force transfer.

    PubMed

    Dumbauld, David W; García, Andrés J

    2014-01-01

    Vinculin helps cells regulate and respond to mechanical forces. It is a scaffolding protein that tightly regulates its interactions with potential binding partners within adhesive structures-including focal adhesions that link the cell to the extracellular matrix and adherens junctions that link cells to each other-that physically connect the force-generating actin cytoskeleton (CSK) with the extracellular environment. This tight control of binding partner interaction-mediated by vinculin's autoinhibitory head-tail interaction-allows vinculin to rapidly interact and detach in response to changes in the dynamic forces applied through the cell. In doing so, vinculin modulates the structural composition of focal adhesions and the cell's ability to generate traction forces and adhesion strength. Recent evidence suggests that vinculin plays a similar role in regulating the fate and function of cell-cell junctions, further underscoring the importance of this protein. Using our lab's recent work as a starting point, this commentary explores several outstanding questions regarding the nature of vinculin activation and its function within focal adhesions and adherens junctions.

  7. Antibody mapping of functional domains in vinculin.

    PubMed Central

    Westmeyer, A; Ruhnau, K; Wegner, A; Jockusch, B M

    1990-01-01

    We have analyzed the functional domain structure of vinculin, a protein involved in linking microfilaments to the cytoplasmic face of cell membranes in animal cells. For this purpose, we used several monoclonal antibodies raised against chicken gizzard vinculin whose epitopes could be assigned to discrete regions in the vinculin sequence by immunoblotting of proteolytic fragments combined with N-terminal amino acid sequencing. Two of these antibodies induced the disruption of stress fibers and changed the number of morphology of focal contacts after microinjection in chicken embryo fibroblasts. Based on the location of its epitope in comparison with vinculin domains previously identified by other groups, we propose that one of these antibodies (15B7) interferes with the binding of vinculin to talin, the most peripheral of the microfilament proteins. The second antibody (14C10) binds within a region comprising three internal repeats and might therefore distort the inner architecture of vinculin. A third antibody (As3) inhibited the binding of F-actin to vinculin in an in vitro assay but had no effect on the microfilament system in cells. These data emphasize the role of vinculin as a key protein in microfilament-membrane linkage and support previous work on a direct interaction between vinculin and actin. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:1694125

  8. Vinculin controls talin engagement with the actomyosin machinery

    PubMed Central

    Atherton, Paul; Stutchbury, Ben; Wang, De-Yao; Jethwa, Devina; Tsang, Ricky; Meiler-Rodriguez, Eugenia; Wang, Pengbo; Bate, Neil; Zent, Roy; Barsukov, Igor L.; Goult, Benjamin T.; Critchley, David R.; Ballestrem, Christoph

    2015-01-01

    The link between extracellular-matrix-bound integrins and intracellular F-actin is essential for cell spreading and migration. Here, we demonstrate how the actin-binding proteins talin and vinculin cooperate to provide this link. By expressing structure-based talin mutants in talin null cells, we show that while the C-terminal actin-binding site (ABS3) in talin is required for adhesion complex assembly, the central ABS2 is essential for focal adhesion (FA) maturation. Thus, although ABS2 mutants support cell spreading, the cells lack FAs, fail to polarize and exert reduced force on the surrounding matrix. ABS2 is inhibited by the preceding mechanosensitive vinculin-binding R3 domain, and deletion of R2R3 or expression of constitutively active vinculin generates stable force-independent FAs, although cell polarity is compromised. Our data suggest a model whereby force acting on integrin-talin complexes via ABS3 promotes R3 unfolding and vinculin binding, activating ABS2 and locking talin into an actin-binding configuration that stabilizes FAs. PMID:26634421

  9. Vinculin controls talin engagement with the actomyosin machinery.

    PubMed

    Atherton, Paul; Stutchbury, Ben; Wang, De-Yao; Jethwa, Devina; Tsang, Ricky; Meiler-Rodriguez, Eugenia; Wang, Pengbo; Bate, Neil; Zent, Roy; Barsukov, Igor L; Goult, Benjamin T; Critchley, David R; Ballestrem, Christoph

    2015-01-01

    The link between extracellular-matrix-bound integrins and intracellular F-actin is essential for cell spreading and migration. Here, we demonstrate how the actin-binding proteins talin and vinculin cooperate to provide this link. By expressing structure-based talin mutants in talin null cells, we show that while the C-terminal actin-binding site (ABS3) in talin is required for adhesion complex assembly, the central ABS2 is essential for focal adhesion (FA) maturation. Thus, although ABS2 mutants support cell spreading, the cells lack FAs, fail to polarize and exert reduced force on the surrounding matrix. ABS2 is inhibited by the preceding mechanosensitive vinculin-binding R3 domain, and deletion of R2R3 or expression of constitutively active vinculin generates stable force-independent FAs, although cell polarity is compromised. Our data suggest a model whereby force acting on integrin-talin complexes via ABS3 promotes R3 unfolding and vinculin binding, activating ABS2 and locking talin into an actin-binding configuration that stabilizes FAs. PMID:26634421

  10. Dual role of vinculin in barrier-disruptive and barrier-enhancing endothelial cell responses.

    PubMed

    Birukova, Anna A; Shah, Alok S; Tian, Yufeng; Moldobaeva, Nurgul; Birukov, Konstantin G

    2016-06-01

    Endothelial cell (EC) barrier disruption induced by edemagenic agonists such as thrombin is a result of increased actomyosin contraction and enforcement of focal adhesions (FA) anchoring contracting stress fibers, which leads to cell retraction and force-induced disruption of cell junctions. In turn, EC barrier enhancement by oxidized phospholipids (OxPAPC) and other agonists is a result of increased tethering forces due to enforcement of the peripheral actin rim and enhancement of cell-cell adherens junction (AJ) complexes promoting EC barrier integrity. This study tested participation of the mechanosensitive adaptor, vinculin, which couples FA and AJ to actin cytoskeleton, in control of the EC permeability response to barrier disruptive (thrombin) and barrier enhancing (OxPAPC) stimulation. OxPAPC and thrombin induced different patterns of FA remodeling. Knockdown of vinculin attenuated both, OxPAPC-induced decrease and thrombin-induced increase in EC permeability. Thrombin stimulated the vinculin association with FA protein talin and suppressed the interaction with AJ protein, VE-cadherin. In contrast, OxPAPC stimulated the vinculin association with VE-cadherin. Thrombin and OxPAPC induced different levels of myosin light chain (MLC) phosphorylation and caused different patterns of intracellular phospho-MLC distribution. Thrombin-induced talin-vinculin and OxPAPC-induced VE-cadherin-vinculin association were abolished by myosin inhibitor blebbistatin. Expression of the vinculin mutant unable to interact with actin attenuated EC permeability changes and MLC phosphorylation caused by both, thrombin and OxPAPC. These data suggest that the specific vinculin interaction with FA or AJ in different contexts of agonist stimulation is defined by development of regional actyomyosin-based tension and participates in both, the barrier-disruptive and barrier-enhancing endothelial responses. PMID:26923917

  11. What Is Vinculin Needed for in Platelets?

    PubMed Central

    Mitsios, John V.; Prévost, Nicolas; Kasirer-Friede, Ana; Gutierrez, Edgar; Groisman, Alex; Abrams, Charles S.; Wang, Yanfeng; Litvinov, Rustem I.; Zemljic-Harpf, Alice; Ross, Robert S.; Shattil, Sanford J.

    2010-01-01

    Summary Background Vinculin links integrins to the cell cytoskeleton by virtue of its binding to proteins such as talin and F-actin. It has been implicated in the transmission of mechanical forces from the extracellular matrix to the cytoskeleton of migrating cells. Vinculin’s function in platelets is unknown. Objective To determine whether vinculin is required for the functions of platelets and their major integrin, αIIbβ3. Methods The murine vinculin gene (Vcl) was deleted in the megakaryocyte/platelet lineage by breeding Vcl fl/fl mice with Pf4-Cre mice. Platelet and integrin functions were studied in vivo and ex vivo. Results Vinculin was undetectable in platelets from Vcl fl/fl Cre+ mice, as determined by immunoblotting and fluorescence microscopy. Vinculin-deficient megakaryocytes exhibited increased membrane tethers in response to mechanical pulling on αIIbβ3 with laser tweezers, suggesting that vinculin helps to maintain membrane cytoskeleton integrity. Surprisingly, vinculin-deficient platelets displayed normal agonist-induced fibrinogen binding to αIIbβ3, aggregation, spreading, actin polymerization/organization, clot retraction and the ability to form a procoagulant surface. Furthermore, vinculin-deficient platelets adhered to immobilized fibrinogen or collagen normally, both under static and flow conditions. Tail bleeding times were prolonged in 59% of vinculin-deficient mice. However, these mice exhibited no spontaneous bleeding and they formed occlusive platelet thrombi comparable to wild-type littermates in response to carotid artery injury with FeCl3. Conclusion Despite promoting membrane cytoskeleton integrity when mechanical force is applied to αIIbβ3, vinculin is not required for the traditional functions of αIIbβ3 or the platelet actin cytoskeleton. PMID:20670372

  12. Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton

    NASA Technical Reports Server (NTRS)

    Ezzell, R. M.; Goldmann, W. H.; Wang, N.; Parasharama, N.; Ingber, D. E.

    1997-01-01

    Mouse F9 embryonic carcinoma 5.51 cells that lack the cytoskeletal protein vinculin spread poorly on extracellular matrix compared with wild-type F9 cells or two vinculin-transfected clones (5.51Vin3 and Vin4; Samuels et al., 1993, J. Cell Biol. 121, 909-921). In the present study, we used this model system to determine how the presence of vinculin promotes cytoskeletal alterations and associated changes in cell shape. Microscopic analysis of cell spreading at early times, revealed that 5.51 cells retained the ability to form filopodia; however, they could not form lamellipodia, assemble stress fibers, or efficiently spread over the culture substrate. Detergent (Triton X-100) studies revealed that these major differences in cell morphology and cytoskeletal organization did not result from differences in levels of total polymerized or cross-linked actin. Biochemical studies showed that 5.51 cells, in addition to lacking vinculin, exhibited slightly reduced levels of alpha-actinin and paxillin in their detergent-insoluble cytoskeleton. The absence of vinculin correlated with a decrease in the mechanical stiffness of the integrin-cytoskeleton linkage, as measured using cell magnetometry. Furthermore, when vinculin was replaced by transfection in 5.51Vin3 and 5.51Vin4 cells, the levels of cytoskeletal-associated alpha-actinin and paxillin, the efficiency of transmembrane mechanical coupling, and the formation of actin stress fibers were all restored to near wild-type levels. These findings suggest that vinculin may promote cell spreading by stabilizing focal adhesions and transferring mechanical stresses that drive cytoskeletal remodeling, rather than by altering the total level of actin polymerization or cross-linking.

  13. Contact-dependent regulation of vinculin expression in cultured fibroblasts: a study with vinculin-specific cDNA probes.

    PubMed Central

    Bendori, R; Salomon, D; Geiger, B

    1987-01-01

    Vinculin specific cDNA clones were isolated from chicken embryo fibroblast (CEF) cDNA library in lambda gt11. The clones, ranging in size from 2.8 to 5.0 kb, were initially selected by rabbit antibodies to vinculin. Their identity was further confirmed by their specific reactivities with a battery of different vinculin-specific monoclonal antibodies. Southern blot analysis of restriction enzyme digested chicken spleen DNA suggested that all the isolated cDNA clones correspond to the same gene(s). Northern blot hybridization revealed that the vinculin-specific cDNA clones react with a single 6.5 kb mRNA in total cellular RNA preparations of CEF, whole chicken embryos and chicken gizzard smooth muscle. Moreover, fractionation of CEF poly(A)+ RNA by sucrose gradient centrifugation followed by translation in cell free system indicated that the mRNA coding for vinculin has a size of about 6.0-7.0 kb. The identity of these clones was finally confirmed by selection hybridization assay. The isolated vinculin-specific cDNA probes were subsequently used in order to study the effect of substrate adhesiveness on the expression of vinculin. We show here that cells cultured on highly adhesive substrate, such as endothelial extracellular matrix (ECM), form large vinculin-rich focal contacts, while cells grown on poorly adhesive substrate poly(2-hydroxyethyl methacrylate) [poly(HEMA)] contain only small distorted vinculin spots. These morphological differences were accompanied by over 5-fold reduction in vinculin synthesis in cells growing on poly(HEMA), compared to those cultured on the ECM and over 7.5-fold decrease in the levels of vinculin-specific mRNA.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 6. Fig. 7. Fig. 8. PMID:3121302

  14. The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state?

    PubMed

    Murphy-Ullrich, J E

    2001-04-01

    The process of cellular de-adhesion is potentially important for the ability of a cell to participate in morphogenesis and to respond to injurious stimuli. Cellular de-adhesion is induced by the highly regulated matricellular proteins TSP1 and 2, tenascin-C, and SPARC. These proteins induce a rapid transition to an intermediate state of adhesiveness characterized by loss of actin-containing stress fibers and restructuring of the focal adhesion plaque that includes loss of vinculin and alpha-actinin, but not of talin or integrin. This process involves intracellular signaling mediators, which are engaged in response to matrix protein-receptor interactions. Each of these proteins employs different receptors and signaling pathways to achieve this common morphologic endpoint. What is the function of this intermediate adhesive state and what is the physiologic significance of this action of the matricellular proteins? Given that matricellular proteins are expressed in response to injury and during development, one can speculate that the intermediate adhesive state is an adaptive condition that facilitates expression of specific genes that are involved in repair and adaptation. Since cell shape is maintained in weakly adherent cells, this state might induce survival signals to prevent apoptosis due to loss of strong cell adhesion, but yet allow for cell locomotion. The three matricellular proteins considered here might each preferentially facilitate one or more aspects of this adaptive response rather than all of these equally. Currently, we have only preliminary data to support the specific ideas proposed in this article. It will be interesting in the next several years to continue to elucidate the biological roles of the intermediate adhesive state induced by these matricellular proteins. and focal adhesions in a cell that nevertheless maintains a spread, extended morphology and integrin clustering. TSP1, tenascin-C, and SPARC induce the intermediate adhesive state, as

  15. Cytoskeletal and cellular adhesion proteins in zebrafish (Danio rerio) myogenesis.

    PubMed

    Costa, M L; Escaleira, R; Manasfi, M; de Souza, L F; Mermelstein, C S

    2003-08-01

    The current myogenesis and myofibrillogenesis model has been based mostly on in vitro cell culture studies, and, to a lesser extent, on in situ studies in avian and mammalian embryos. While the more isolated artificial conditions of cells in culture permitted careful structural analysis, the actual in situ cellular structures have not been described in detail because the embryos are more difficult to section and manipulate. To overcome these difficulties, we used the optically clear and easy to handle embryos of the zebrafish Danio rerio. We monitored the expression of cytoskeletal and cell-adhesion proteins (actin, myosin, desmin, alpha-actinin, troponin, titin, vimentin and vinculin) using immunofluorescence microscopy and video-enhanced, background-subtracted, differential interference contrast of 24- to 48-h zebrafish embryos. In the mature myotome, the mononucleated myoblasts displayed periodic striations for all sarcomeric proteins tested. The changes in desmin distribution from aggregates to perinuclear and striated forms, although following the same sequence, occurred much faster than in other models. All desmin-positive cells were also positive for myofibrillar proteins and striated, in contrast to that which occurs in cell cultures. Vimentin appeared to be striated in mature cells, while it is developmentally down-regulated in vitro. The whole connective tissue septum between the somites was positive for adhesion proteins such as vinculin, instead of the isolated adhesion plaques observed in cell cultures. The differences in the myogenesis of zebrafish in situ and in cell culture in vitro suggest that some of the previously observed structures and protein distributions in cultures could be methodological artifacts.

  16. Redistribution of microfilament-associated proteins during the formation of focal contacts and adhesions in chick fibroblasts.

    PubMed

    Couchman, J R; Badley, R A; Rees, D A

    1983-12-01

    The roles of the microfilament-associated proteins vinculin, alpha-actinin, myosin and filamin have been studied by immunofluorescence and double fluorescence in conjunction with interference reflection microscopy (IRM), during the development of focal contacts and focal adhesions in a chick fibroblast system which initially has no such adhesion specializations but then develops them sequentially over a 48 h period. Without exception, all focal contacts and focal adhesions contain both vinculin and alpha-actinin at every stage that we can detect by IRM or by double staining to reveal the associated microfilament bundles. Indeed the appearance of small bodies containing alpha-actinin and vinculin is shown to precede focal contact formation in our model system and such structures (not visible by IRM) are proposed to be the precursors of focal contacts and adhesions. Myosin and filamin are distributed generally with some reticular patterning in the early motile cells which lack the focal specializations, but as focal contacts and adhesions form these proteins become progressively recruited into the associated microfilament bundles. Only then do we see the marked depletion that has been reported earlier of diffusely distributed myosin and filamin in the leading lamella. Although this is not initially associated with any change in the motile status of the cells, the recruitment of these microfilament-associated proteins into stress fibres is proposed to occur in preparation for anchorage and bracing of cells to the substratum when they later become stationary. PMID:6421873

  17. The role of the interaction of the vinculin proline-rich linker region with vinexin α in sensing the stiffness of the extracellular matrix.

    PubMed

    Yamashita, Hiroshi; Ichikawa, Takafumi; Matsuyama, Daisuke; Kimura, Yasuhisa; Ueda, Kazumitsu; Craig, Susan W; Harada, Ichiro; Kioka, Noriyuki

    2014-05-01

    Although extracellular matrix (ECM) stiffness is an important aspect of the extracellular microenvironment and is known to direct the lineage specification of stem cells and affect cancer progression, the molecular mechanisms that sense ECM stiffness have not yet been elucidated. In this study, we show that the proline-rich linker (PRL) region of vinculin and the PRL-region-binding protein vinexin are involved in sensing the stiffness of ECM substrates. A rigid substrate increases the level of cytoskeleton-associated vinculin, and the fraction of vinculin stably localizing at focal adhesions (FAs) is larger on rigid ECM than on soft ECM. Mutations in the PRL region or the depletion of vinexin expression impair these responses to ECM stiffness. Furthermore, vinexin depletion impairs the stiffness-dependent regulation of cell migration. These results suggest that the interaction of the PRL region of vinculin with vinexin α plays a crucial role in sensing ECM stiffness and in mechanotransduction.

  18. An Autoinhibited Structure of α-Catenin and Its Implications for Vinculin Recruitment to Adherens Junctions*

    PubMed Central

    Ishiyama, Noboru; Tanaka, Nobutoshi; Abe, Kentaro; Yang, Yoo Jeong; Abbas, Yazan M.; Umitsu, Masataka; Nagar, Bhushan; Bueler, Stephanie A.; Rubinstein, John L.; Takeichi, Masatoshi; Ikura, Mitsuhiko

    2013-01-01

    α-Catenin is an actin- and vinculin-binding protein that regulates cell-cell adhesion by interacting with cadherin adhesion receptors through β-catenin, but the mechanisms by which it anchors the cadherin-catenin complex to the actin cytoskeleton at adherens junctions remain unclear. Here we determined crystal structures of αE-catenin in the autoinhibited state and the actin-binding domain of αN-catenin. Together with the small-angle x-ray scattering analysis of full-length αN-catenin, we deduced an elongated multidomain assembly of monomeric α-catenin that structurally and functionally couples the vinculin- and actin-binding mechanisms. Cellular and biochemical studies of αE- and αN-catenins show that αE-catenin recruits vinculin to adherens junctions more effectively than αN-catenin, partly because of its higher affinity for actin filaments. We propose a molecular switch mechanism involving multistate conformational changes of α-catenin. This would be driven by actomyosin-generated tension to dynamically regulate the vinculin-assisted linkage between adherens junctions and the actin cytoskeleton. PMID:23589308

  19. Membrane and acto-myosin tension promote clustering of adhesion proteins

    PubMed Central

    Delanoë-Ayari, H.; Al Kurdi, R.; Vallade, M.; Gulino-Debrac, D.; Riveline, D.

    2004-01-01

    Physicists have studied the aggregation of adhesive proteins, giving a central role to the elastic properties of membranes, whereas cell biologists have put the emphasis on the cytoskeleton. However, there is a dramatic lack of experimental studies probing both contributions on cellular systems. Here, we tested both mechanisms on living cells. We compared, for the same cell line, the growth of cadherin-GFP patterns on recombinant cadherin-coated surfaces, with the growth of vinculin-GFP patterns on extracellular matrix protein-coated surfaces by using evanescent wave microscopy. In our setup, cadherins are not linked to actin, whereas vinculins are. This property allows us to compare formation of clusters with proteins linked or not to the cytoskeleton and thus study the role of membrane versus cytoskeleton in protein aggregation. Strikingly, the motifs we obtained on both surfaces share common features: they are both elongated and located at the cell edges. We showed that a local force application can impose this symmetry breaking in both cases. However, the origin of the force is different as demonstrated by drug treatment (butanedione monoxime) and hypotonic swelling. Cadherins aggregate when membrane tension is increased, whereas vinculins (cytoplasmic proteins of focal contacts) aggregate when acto-myosin stress fibers are pulling. We propose a mechanism by which membrane tension is localized at cell edges, imposing flattening of membrane and enabling aggregation of cadherins by diffusion. In contrast, cytoplasmic proteins of focal contacts aggregate by opening cryptic sites in focal contacts under acto-myosin contractility. PMID:14982992

  20. Complete sequence of human vinculin and assignment of the gene to chromosome 10

    SciTech Connect

    Weller, P.A.; Corben, E.B.; Patel, B.; Price, G.J.; Critchley, D.R. ); Ogryzko, E.P.; Zhidkova, N.I.; Koteliansky, V.E. ); Spurr, N.K. )

    1990-08-01

    The authors have determined the complete sequence of human vinculin, a cytoskeletal protein associated with cell-cell and cell-matrix junctions. Comparison of human and chicken embryo vinculin sequences shows that both proteins contain 1,066 amino acids and exhibit a high level of sequence identity (>95%). The region of greatest divergence falls within three 112-amino acid repeats spanning residues 259-589. Interestingly, nematode vinculin lacks one of these central repeats. The regions of human vinculin that are N- and C-terminal to the repeats show 54% and 61% sequence identity, respectively, to nematode vinculin. Southern blots of human genomic DNA hybridized with short vinculin cDNA fragments indicate that there is a single vinculin gene. By using a panel of human-rodent somatic cell hybrids, the human vinculin gene was mapped to chromosome 10q11.2-qter.

  1. Adhesives from modified soy protein

    DOEpatents

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  2. Vinculin-dependent actin bundling regulates cell migration and traction forces

    PubMed Central

    Jannie, Karry M.; Ellerbroek, Shawn M.; Zhou, Dennis W.; Chen, Sophia; Crompton, David J.; García, Andrés J.; DeMali, Kris A.

    2015-01-01

    Vinculin binding to actin filaments is thought to be critical for force transduction within a cell, but direct experimental evidence to support this conclusion has been limited . In this study, we found mutation (R1049E) of the vinculin tail impairs its ability to bind F-actin, stimulate actin polymerization, and bundle F-actin in vitro. Further , mutant (R1049E) vinculin expressing cells are altered in cell migration, which is accompanied by changes in cell adhesion, cell spreading, and cell generation of traction forces, providing direct evidence for the critical role of vinculin in mechanotransduction at adhesion sites. Lastly, we herein discuss the viability of models detailing the F-actin-binding surface on vinculin in context of our mutational analysis. PMID:25358683

  3. Crystal structure of vinculin in complex with vinculin binding site 50 (VBS50), the integrin binding site 2 (IBS2) of talin

    SciTech Connect

    Yogesha, S.D.; Rangarajan, Erumbi S.; Vonrhein, Clemens; Bricogne, Gerard; Izard, Tina

    2012-05-10

    The cytoskeletal protein talin activates integrin receptors by binding of its FERM domain to the cytoplasmic tail of {beta}-integrin. Talin also couples integrins to the actin cytoskeleton, largely by binding to and activating the cytoskeletal protein vinculin, which binds to F-actin through the agency of its five-helix bundle tail (Vt) domain. Talin activates vinculin by means of buried amphipathic {alpha}-helices coined vinculin binding sites (VBSs) that reside within numerous four- and five-helix bundle domains that comprise the central talin rod, which are released from their buried locales by means of mechanical tension on the integrin:talin complex. In turn, these VBSs bind to the N-terminal seven-helix bundle (Vh1) domain of vinculin, creating an entirely new helix bundle that severs its head-tail interactions. Interestingly, talin harbors a second integrin binding site coined IBS2 that consists of two five-helix bundle domains that also contain a VBS (VBS50). Here we report the crystal structure of VBS50 in complex with vinculin at 2.3 {angstrom} resolution and show that intramolecular interactions of VBS50 within IBS2 are much more extensive versus its interactions with vinculin. Indeed, the IBS2-vinculin interaction only occurs at physiological temperature and the affinity of VBS50 for vinculin is about 30 times less than other VBSs. The data support a model where integrin binding destabilizes IBS2 to allow it to bind to vinculin.

  4. Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes.

    PubMed

    Qian, A R; Wang, L; Gao, X; Zhang, W; Hu, L F; Han, J; Li, J B; Di, S M; Shang, Peng

    2012-01-01

    Diamagnetic levitation technology is a novel simulated weightless technique and has recently been applied in life-science research. We have developed a superconducting magnet platform with large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels, namely, μg (diamagnetic levitation), 1g, and 2g for diamagnetic materials. In this study, the effects of LG-HMF on the activity, morphology, and cytoskeleton (actin filament, microtubules, and vimentin intermediate filaments) in osteocyte - like cell line MLO-Y4 were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) methods, hematoxylin-eosin (HE) staining, and laser scanning confocal microscopy (LSCM), respectively. The changes induced by LG-HMF in distribution and expression of focal adhesion (FA) proteins, including vinculin, paxillin, and talin in MLO-Y4 were determined by LSCM and Western blotting. The results showed that LG-HMF produced by superconducting magnet had no lethal effects on MLO-Y4. Compared to control, diamagnetic levitation (μg) affected MLO-Y4 morphology, nucleus size, cytoskeleton architecture, and FA proteins distribution and expression. The study indicates that osteocytes are sensitive to altered gravity and FA proteins (vinculin, paxillin, and talin) may be involved in osteocyte mechanosensation. The diamagnetic levitation may be a novel ground-based space-gravity simulator and can be used for biological experiment at cellular level. PMID:21216704

  5. Vinculin Tail Dimerization and Paxillin Binding

    NASA Astrophysics Data System (ADS)

    Campbell, Sharon

    2006-03-01

    Vinculin is a highly conserved cytoskeletal protein that is essential for regulation of cell morphology and migration, and is a critical component of both cell-cell and cell-matrix complexes. The tail domain of vinculin (Vt) was crystallized as a homodimer and is believed to bind F-actin as a dimer. We have characterized Vt dimerization by Nuclear Magnetic Resonance (NMR) Spectroscopy and identified the dimer interface in solution by chemical shift perturbation. The Vt dimer interface in solution is similar to the crystallographic dimer interface. Interestingly, the Vt dimer interface determined by NMR partially overlaps the paxillin binding region previously defined coarsely by deletion mutagenesis and gel-blot assays. To further characterize the paxillin binding site in Vt and probe relationship between paxillin binding and dimerization, we conducted chemical shift perturbations experiments using a paxillin derived peptide, LD2. Our NMR experiments have confirmed that the paxillin binding site and the Vt dimerization site partially overlap, and we have further characterized both of these two binding interfaces. Information derived from these studies was used to identify mutations in Vt that selectively perturb paxillin binding and Vt self-association. These mutants are currently being characterized for their utility in structural and biological analyses to elucidate the role of paxillin binding and Vt dimerization in vinculin function.

  6. Differential lipid binding of vinculin isoforms promotes quasi-equivalent dimerization.

    PubMed

    Chinthalapudi, Krishna; Rangarajan, Erumbi S; Brown, David T; Izard, Tina

    2016-08-23

    The main cause of death globally remains debilitating heart conditions, such as dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), which are often due to mutations of specific components of adhesion complexes. Vinculin regulates these complexes and plays essential roles in intercalated discs that are necessary for muscle cell function and coordinated movement and in the development and function of the heart. Humans bearing familial or sporadic mutations in vinculin suffer from chronic, progressively debilitating DCM that ultimately leads to cardiac failure and death, whereas autosomal dominant mutations in vinculin can also provoke HCM, causing acute cardiac failure. The DCM/HCM-associated mutants of vinculin occur in the 68-residue insert unique to the muscle-specific, alternatively spliced isoform of vinculin, termed metavinculin (MV). Contrary to studies that suggested that phosphoinositol-4,5-bisphosphate (PIP2) only induces vinculin homodimers, which are asymmetric, we show that phospholipid binding results in a domain-swapped symmetric MV dimer via a quasi-equivalent interface compared with vinculin involving R975. Although one of the two PIP2 binding sites is preserved, the symmetric MV dimer that bridges two PIP2 molecules differs from the asymmetric vinculin dimer that bridges only one PIP2 Unlike vinculin, wild-type MV and the DCM/HCM-associated R975W mutant bind PIP2 in their inactive conformations, and R975W MV fails to dimerize. Mutating selective vinculin residues to their corresponding MV residues, or vice versa, switches the isoform's dimeric constellation and lipid binding site. Collectively, our data suggest that MV homodimerization modulates microfilament attachment at muscular adhesion sites and furthers our understanding of MV-mediated cardiac remodeling. PMID:27503891

  7. Linkage of extracellular plasminogen activator to the fibroblast cytoskeleton: colocalization of cell surface urokinase with vinculin

    PubMed Central

    1988-01-01

    Several cell types display binding sites for [125I]urokinase (Vassalli, J.-D., D. Baccino, D. Belin. 1985. J. Cell Biol. 100:86-92) which in certain cases are occupied with endogenous urokinase. These sites appear to focus urokinase at cell surfaces and hence may participate in tissue matrix destruction and cell invasion. Recently Pollanen et al. (1987) demonstrated that the cell surface urokinase of human fibroblasts and fibrosarcoma cells is deposited underneath the cells in strands, apparently at sites of cell-to-substratum contact. Here, using immunofluorescence double labeling, we show that the urokinase strands present on human foreskin fibroblasts are colocalized with strands of vinculin, an intracellular actin-binding protein that is deposited at cell-to-substratum focal adhesion sites. Thus, this indicates linkage of the plasminogen/plasmin system both to sites of cell adhesion and to the cytoskeleton. The urokinase strands on HT 1080 fibrosarcoma cells are more numerous and have shapes that are more tortuous than those on normal fibroblasts. In intact HT 1080 cells, colocalized vinculin strands are obscured by an intense background of soluble vinculin but are apparent on isolated ventral plasma membranes. Certain properties of the urokinase strands suggest that they are related to the [125I]urokinase-binding sites that have been described by several groups: (a) incubating fibroblasts with dexamethasone for 48 h or at pH 3 at 5 degrees C for 10 min greatly decreases the number and intensity of the urokinase strands; (b) strands reappear when glucocorticoid- treated cells are incubated with exogenous 54-kD (but not 35-kD) urokinase, and this process is inhibited by a previously described 16- amino acid peptide that blocks [125I]urokinase binding to the cells. PMID:3129438

  8. Protein adhesion force dynamics and single adhesion events.

    PubMed Central

    Sagvolden, G

    1999-01-01

    Using the manipulation force microscope, a novel atomic force microscope, the adhesion forces of bovine serum albumin, myoglobin, ferritin, and lysozyme proteins to glass and polystyrene substrates were characterized by following the force necessary to displace an adsorbed protein-covered microsphere over several orders of magnitude in time. This force was consistent with a power law with exponent a = 0.37 +/- 0.03 on polystyrene, indicating that there is no typical time scale for adhesion on this substrate. On glass, the rate of adhesion depended strongly on protein charge. Forces corresponding to single protein adhesion events were identified. The typical rupture force of a single lysozyme, ferritin, bovine serum albumin, and myoglobin protein adhering to glass was estimated to be 90 +/- 10 pN, 115 +/- 13 pN, 277 +/- 44 pN, and 277 +/- 44 pN, respectively, using a model of the experimental system. These forces, as well as the force amplitudes on hydrophobic polystyrene, correlate with protein stiffness. PMID:10388777

  9. Vinculin head-tail interaction defines multiple early mechanisms for cell substrate rigidity sensing.

    PubMed

    Liu, Zengzhen; Bun, Philippe; Audugé, Nicolas; Coppey-Moisan, Maïté; Borghi, Nicolas

    2016-06-13

    Rigidity sensing is a critical determinant of cell fate and behavior but its molecular mechanisms are poorly understood. Focal adhesions (FAs) are complexes that anchor cells to the matrix. Among their components, vinculin undergoes an auto-inhibitory head-tail interaction that regulates the recruitment of, and interactions with its partners in a force-dependent manner. It is unknown, however, whether this mechanism is involved in substrate rigidity sensing. Here, we use a range of quantitative fluorescence microscopies on live human Mesenchymal Stem Cells to address this question. We identify two distinct rigidity-sensing molecular modules in FAs, one of which involves vinculin and talin, is regulated by vinculin head-tail interaction, and targets cell morphology. Vinculin and talin are recruited independently in a rigidity-dependent manner to FAs where they directly interact in a rigidity-independent stoichiometry at a site proximal to talin head. Vinculin head-tail interaction is required on soft substrates to destabilize vinculin and talin in FAs, and to allow hMSCs branching. Another module involves paxillin and FAK, which soft substrates also destabilize, but independently of vinculin head-tail interaction. This multi-modularity may be key to allow a versatile response to complex biomechanical cues.

  10. VASP, zyxin and TES are tension-dependent members of Focal Adherens Junctions independent of the α-catenin-vinculin module

    PubMed Central

    Oldenburg, Joppe; van der Krogt, Gerard; Twiss, Floor; Bongaarts, Annika; Habani, Yasmin; Slotman, Johan A.; Houtsmuller, Adriaan; Huveneers, Stephan; de Rooij, Johan

    2015-01-01

    Mechanical forces are integrated at cadherin-based adhesion complexes to regulate morphology and strength of cell-cell junctions and organization of associated F-actin. A central mechanosensor at the cadherin complex is α-catenin, whose stretching recruits vinculin to regulate adhesion strength. The identity of the F-actin regulating signals that are also activated by mechanical forces at cadherin-based junctions has remained elusive. Here we identify the actin-regulators VASP, zyxin and TES as members of punctate, tensile cadherin-based junctions called Focal Adherens Junctions (FAJ) and show that they display mechanosensitive recruitment similar to that of vinculin. However, this recruitment is not altered by destroying or over-activating the α-catenin/vinculin module. Structured Illumination Microscopy (SIM) indicates that these tension sensitive proteins concentrate at locations within FAJs that are distinct from the core cadherin complex proteins. Furthermore, localization studies using mutated versions of VASP and zyxin indicate that these two proteins require binding to each other in order to localize to the FAJs. We conclude that there are multiple force sensitive modules present at the FAJ that are activated at distinct locations along the cadherin-F-actin axis and regulate specific aspects of junction dynamics. PMID:26611125

  11. Vinculin regulates directionality and cell polarity in two- and three-dimensional matrix and three-dimensional microtrack migration

    PubMed Central

    Rahman, Aniqua; Carey, Shawn P.; Kraning-Rush, Casey M.; Goldblatt, Zachary E.; Bordeleau, Francois; Lampi, Marsha C.; Lin, Deanna Y.; García, Andrés J.; Reinhart-King, Cynthia A.

    2016-01-01

    During metastasis, cells can use proteolytic activity to form tube-like “microtracks” within the extracellular matrix (ECM). Using these microtracks, cells can migrate unimpeded through the stroma. To investigate the molecular mechanisms of microtrack migration, we developed an in vitro three-dimensional (3D) micromolded collagen platform. When in microtracks, cells tend to migrate unidirectionally. Because focal adhesions are the primary mechanism by which cells interact with the ECM, we examined the roles of several focal adhesion molecules in driving unidirectional motion. Vinculin knockdown results in the repeated reversal of migration direction compared with control cells. Tracking the position of the Golgi centroid relative to the position of the nucleus centroid reveals that vinculin knockdown disrupts cell polarity in microtracks. Vinculin also directs migration on two-dimensional (2D) substrates and in 3D uniform collagen matrices, as indicated by reduced speed, shorter net displacement, and decreased directionality in vinculin-deficient cells. In addition, vinculin is necessary for focal adhesion kinase (FAK) activation in three dimensions, as vinculin knockdown results in reduced FAK activation in both 3D uniform collagen matrices and microtracks but not on 2D substrates, and, accordingly, FAK inhibition halts cell migration in 3D microtracks. Together these data indicate that vinculin plays a key role in polarization during migration. PMID:26960796

  12. Plakophilin 2 Affects Cell Migration by Modulating Focal Adhesion Dynamics and Integrin Protein Expression

    PubMed Central

    Koetsier, Jennifer L.; Amargo, Evangeline V.; Todorović, Viktor; Green, Kathleen J.; Godsel, Lisa M.

    2014-01-01

    Plakophilin 2 (PKP2), a desmosome component, modulates the activity and localization of the small GTPase RhoA at sites of cell–cell contact. PKP2 regulates cortical actin rearrangement during junction formation, and its loss is accompanied by an increase in actin stress fibers. We hypothesized that PKP2 may regulate focal adhesion dynamics and cell migration. Here we show that PKP2-deficient cells bind efficiently to the extracellular matrix, but upon spreading display total cell areas ~30% smaller than control cells. Focal adhesions in PKP2-deficient cells are ~2× larger and more stable than in control cells, and vinculin displays an increased time for fluorescence recovery after photobleaching. Furthermore, β4 and β1 integrin protein and mRNA expression is elevated in PKP2-silenced cells. Normal focal adhesion phenotypes can be restored in PKP2-null cells by dampening the RhoA pathway or silencing β1 integrin. However, integrin expression levels are not restored by RhoA signaling inhibition. These data uncover a potential role for PKP2 upstream of β1 integrin and RhoA in integrating cell–cell and cell–substrate contact signaling in basal keratinocytes necessary for the morphogenesis, homeostasis, and reepithelialization of the stratified epidermis. PMID:23884246

  13. Molecular mechanics of mussel adhesion proteins

    NASA Astrophysics Data System (ADS)

    Qin, Zhao; Buehler, Markus J.

    2014-01-01

    Mussel foot protein (mfp), a natural glue produced by marine mussel, is an intriguing material because of its superior ability for adhesion in various environments. For example, a very small amount of this material is sufficient to affix a mussel to a substrate in water, providing structural support under extreme forces caused by the dynamic effects of waves. Towards a more complete understanding of its strength and underwater workability, it is necessary to understand the microscropic mechanisms by which the protein structure interacts with various substrates. However, none of the mussel proteins' structure is known, preventing us from directly using atomistic modeling to probe their structural and mechanical properties. Here we use an advanced molecular sampling technique to identify the molecular structures of two mussel foot proteins (mfp-3 and mfp-5) and use those structures to study their mechanics of adhesion, which is then incorporated into a continuum model. We calculate the adhesion energy of the mussel foot protein on a silica substrate, compute the adhesion strength based on results obtained from molecular modeling, and compare with experimental data. Our results show good agreement with experimental measurements, which validates the multiscale model. We find that the molecular structure of the folded mussel foot protein (ultimately defined by its genetic sequence) favors strong adhesion to substrates, where L-3,4-dihydroxyphenylalanine (or DOPA) protein subunits work in a cooperative manner to enhance adhesion. Our experimental data suggests a peak attachment force of 0.4±0.1 N, which compares favorably with the prediction from the multiscale model of Fc=0.21-0.33 N. The principles learnt from those results could guide the fabrication of new interfacial materials (e.g. composites) to integrate organic with inorganic surfaces in an effective manner.

  14. Vinculin modulation of paxillin–FAK interactions regulates ERK to control survival and motility

    PubMed Central

    Subauste, M. Cecilia; Pertz, Olivier; Adamson, Eileen D.; Turner, Christopher E.; Junger, Sachiko; Hahn, Klaus M.

    2004-01-01

    Cells lacking vinculin are highly metastatic and motile. The reasons for this finding have remained unclear. Both enhanced survival and motility are critical to metastasis. Here, we show that vinculin null (vin−/−) cells and cells expressing a vinculin Y822F mutant have increased survival due to up-regulated activity of extracellular signal–regulated kinase (ERK). This increase is shown to result from vinculin's modulation of paxillin–FAK interactions. A vinculin fragment (amino acids 811–1066) containing the paxillin binding site restored apoptosis and suppressed ERK activity in vin−/− cells. Both vinY822F and vin−/− cells exhibit increased interaction between paxillin and focal adhesion kinase (FAK) and increased paxillin and FAK phosphorylation. Transfection with paxillin Y31FY118F dominant-negative mutant in these cells inhibits ERK activation and restores apoptosis. The enhanced motility of vin−/− and vinY822F cells is also shown to be due to a similar mechanism. Thus, vinculin regulates survival and motility via ERK by controlling the accessibility of paxillin for FAK interaction. PMID:15138291

  15. How Force Might Activate Talin's Vinculin Binding Sites: SMD Reveals a Structural Mechanism

    PubMed Central

    Hytönen, Vesa P; Vogel, Viola

    2008-01-01

    Upon cell adhesion, talin physically couples the cytoskeleton via integrins to the extracellular matrix, and subsequent vinculin recruitment is enhanced by locally applied tensile force. Since the vinculin binding (VB) sites are buried in the talin rod under equilibrium conditions, the structural mechanism of how vinculin binding to talin is force-activated remains unknown. Taken together with experimental data, a biphasic vinculin binding model, as derived from steered molecular dynamics, provides high resolution structural insights how tensile mechanical force applied to the talin rod fragment (residues 486–889 constituting helices H1–H12) might activate the VB sites. Fragmentation of the rod into three helix subbundles is prerequisite to the sequential exposure of VB helices to water. Finally, unfolding of a VB helix into a completely stretched polypeptide might inhibit further binding of vinculin. The first events in fracturing the H1–H12 rods of talin1 and talin2 in subbundles are similar. The proposed force-activated α-helix swapping mechanism by which vinculin binding sites in talin rods are exposed works distinctly different from that of other force-activated bonds, including catch bonds. PMID:18282082

  16. Insights into the Utility of the Focal Adhesion Scaffolding Proteins in the Anaerobic Fungus Orpinomyces sp. C1A

    PubMed Central

    Calkins, Shelby; Youssef, Noha H.

    2016-01-01

    Focal adhesions (FAs) are large eukaryotic multiprotein complexes that are present in all metazoan cells and function as stable sites of tight adhesion between the extracellular matrix (ECM) and the cell’s cytoskeleton. FAs consist of anchor membrane protein (integrins), scaffolding proteins (e.g. α-actinin, talin, paxillin, and vinculin), signaling proteins of the IPP complex (e.g. integrin-linked kinase, α-parvin, and PINCH), and signaling kinases (e.g. focal adhesion kinase (FAK) and Src kinase). While genes encoding complete focal adhesion machineries are present in genomes of all multicellular Metazoa; incomplete machineries were identified in the genomes of multiple non-metazoan unicellular Holozoa, basal fungal lineages, and amoebozoan representatives. Since a complete FA machinery is required for functioning, the putative role, if any, of these incomplete FA machineries is currently unclear. We sought to examine the expression patterns of FA-associated genes in the anaerobic basal fungal isolate Orpinomyces sp. strain C1A under different growth conditions and at different developmental stages. Strain C1A lacks clear homologues of integrin, and the two signaling kinases FAK and Src, but encodes for all scaffolding proteins, and the IPP complex proteins. We developed a protocol for synchronizing growth of C1A cultures, allowing for the collection and mRNA extraction from flagellated spores, encysted germinating spores, active zoosporangia, and late inactive sporangia of strain C1A. We demonstrate that the genes encoding the FA scaffolding proteins α-actinin, talin, paxillin, and vinculin are indeed transcribed under all growth conditions, and at all developmental stages of growth. Further, analysis of the observed transcriptional patterns suggests the putative involvement of these components in alternative non-adhesion-specific functions, such as hyphal tip growth during germination and flagellar assembly during zoosporogenesis. Based on these results

  17. Differences in elasticity of vinculin-deficient F9 cells measured by magnetometry and atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Goldmann, W. H.; Galneder, R.; Ludwig, M.; Xu, W.; Adamson, E. D.; Wang, N.; Ezzell, R. M.; Ingber, D. E. (Principal Investigator)

    1998-01-01

    We have investigated a mouse F9 embryonic carcinoma cell line, in which both vinculin genes were inactivated by homologous recombination, that exhibits defective adhesion and spreading [Coll et al. (1995) Proc. Natl. Acad. Sci. USA 92, 9161-9165]. Using a magnetometer and RGD-coated magnetic microbeads, we measured the local effect of loss and replacement of vinculin on mechanical force transfer across integrins. Vinculin-deficient F9Vin(-/-) cells showed a 21% difference in relative stiffness compared to wild-type cells. This was restored to near wild-type levels after transfection and constitutive expression of increasing amounts of vinculin into F9Vin(-/-) cells. In contrast, the transfection of vinculin constructs deficient in amino acids 1-288 (containing the talin- and alpha-actinin-binding site) or substituting tyrosine for phenylalanine (phosphorylation site, amino acid 822) in F9Vin(-/-) cells resulted in partial restoration of stiffness. Using atomic force microscopy to map the relative elasticity of entire F9 cells by 128 x 128 (n = 16,384) force scans, we observed a correlation with magnetometer measurements. These findings suggest that vinculin may promote cell adhesions and spreading by stabilizing focal adhesions and transferring mechanical stresses that drive cytoskeletal remodeling, thereby affecting the elastic properties of the cell.

  18. An adhesive protein capsule of Escherichia coli.

    PubMed Central

    Orskov, I; Birch-Andersen, A; Duguid, J P; Stenderup, J; Orskov, F

    1985-01-01

    The nature of the adhesive capacity of three hemagglutinating Escherichia coli strains that had earlier been described as nonfimbriated was studied. The strains that were isolated from human disease adhered to human buccal and urinary tract epithelial cells, an adhesion that was not inhibited by D-mannose. By crossed immunoelectrophoresis it was shown that the three strains produced a common antigen, Z1, developed after growth at 37 degrees C but not 18 degrees C. One of the strains produced an additional antigen, Z2, of almost the same electrophoretic mobility in crossed immunoelectrophoresis. A mutant of this strain deficient of its polysaccharide K antigen had maintained the adhesive capacity, indicating that the K antigen was not responsible for adhesion. A further mutant of the acapsular mutant produced a strongly reduced amount of the Z antigens and had lost the ability to adhere. The Z1 (and Z2?) antigens were therefore deemed to be responsible for adhesion. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis of extracts of cells of the three strains, a heavy Coomassie-blue stained line was seen, indicating the presence of a protein subunit of molecular weight slightly above 14,400. By immunoblotting with absorbed antiserum, it was shown that this protein was the same as that detected by crossed immunoelectrophoresis. Protease from Streptomyces griseus, but not trypsin, digested the protein. Heating to 100 degrees C did not affect it. By immunoelectron microscopy of embedded and sectioned bacteria that had first been treated with specific antisera and ferritin-labeled antirabbit immunoglobulin, the protein adhesin-antibody complex was found to surround the bacteria as a heavy capsule. After negative staining with uranylacetate (pH approximately 4), the capsule appeared as a mesh of very fine filaments. The possible role of this capsule in the pathogenesis of disease is discussed. Images PMID:2856913

  19. Soy and cottonseed protein blends as wood adhesives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As an environmentally friendlier alternative to adhesives from petroleum feedstock, soy proteins are currently being formulated as wood adhesives. Cottonseed proteins have also been found to provide good adhesive properties. In at least some cases, cottonseed proteins appear to form greater shear ...

  20. Down-regulation of vinculin upon MK886-induced apoptosis in LN18 glioblastoma cells

    PubMed Central

    Magro, A. D.; Cunningham, C.; Miller, M. R.

    2014-01-01

    Glioblastomas are a type of malignant brain tumor and are among the most difficult cancers to treat. One strategy to treat aggressive cancers is the use of drugs that target multiple signaling pathways. MK886 is a drug known to inhibit both 5-lipoxygenase-activating-protein (FLAP) and peroxisome proliferator activated receptor-α (PPAR-α). The objectives of this study were to investigate the ability of MK886 to induce apoptotic cell death in LN18 glioblastoma cells and to characterize the cell death mechanisms. MK886 induced massive apoptotic LN18 cell death that was manifested by the release of nucleosomes, annexinV binding to phosphatidylserine in the absence of nuclear staining, and changes in the fluorescent intensity of Mito Tracker Deep Red 633 indicating changes in mitochondrial oxidative function and mass. The alteration of the mitochondrial function implied that MK886 induced apoptosis in LN18 cells via a mitochondrial pathway. The broad caspases inhibitor ZVAD-FMK inhibited MK886-induced nucleosome release, but not annexinV binding or MK886-altered mitochondrial function. Real time RT-PCR demonstrated that LN18 cells expressed significant levels of FLAP and PPAR-α mRNAs. A low level of arachidonate 5-lipoxygenase (ALOX-5) mRNA was detected, but little, if any, arachidonate 12-lipoxygenase (ALOX-12) mRNA was present. In addition, MK886-induced apoptosis in LN18 cells was accompanied by a decrease in the protein and mRNA levels of vinculin, but not other focal adhesion proteins. In summary, the data presented here indicate that disruption of the actin-vinculin-cell-cytoskeleton matrix of the LN18 glioblastoma is a component of the MK886 induced apoptosis. In addition, MK886 treated LN18 cells could provide one model in which to investigate drugs that target lipoxygenase and PPAR-α pathways in the chemotherapeutic treatment of glioblastomas. PMID:17949236

  1. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation

    PubMed Central

    Roa-Espitia, Ana L.; Hernández-Rendón, Eva R.; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J.; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto

    2016-01-01

    ABSTRACT Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca2+ dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton. PMID:27402964

  2. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation.

    PubMed

    Roa-Espitia, Ana L; Hernández-Rendón, Eva R; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto; Hernández-González, Enrique O

    2016-01-01

    Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca(2+) dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton. PMID:27402964

  3. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation.

    PubMed

    Roa-Espitia, Ana L; Hernández-Rendón, Eva R; Baltiérrez-Hoyos, Rafael; Muñoz-Gotera, Rafaela J; Cote-Vélez, Antonieta; Jiménez, Irma; González-Márquez, Humberto; Hernández-González, Enrique O

    2016-09-15

    Several focal adhesion proteins are known to cooperate with integrins to link the extracellular matrix to the actin cytoskeleton; as a result, many intracellular signaling pathways are activated and several focal adhesion complexes are formed. However, how these proteins function in mammalian spermatozoa remains unknown. We confirm the presence of focal adhesion proteins in guinea pig spermatozoa, and we explore their role during capacitation and the acrosome reaction, and their relationship with the actin cytoskeleton. Our results suggest the presence of a focal adhesion complex formed by β1-integrin, focal adhesion kinase (FAK), paxillin, vinculin, talin, and α-actinin in the acrosomal region. Inhibition of FAK during capacitation affected the protein tyrosine phosphorylation associated with capacitation that occurs within the first few minutes of capacitation, which caused the acrosome reaction to become increasingly Ca(2+) dependent and inhibited the polymerization of actin. The integration of vinculin and talin into the complex, and the activation of FAK and paxillin during capacitation, suggests that the complex assembles at this time. We identify that vinculin and α-actinin increase their interaction with F-actin while it remodels during capacitation, and that during capacitation focal adhesion complexes are structured. FAK contributes to acrosome integrity, likely by regulating the polymerization and the remodeling of the actin cytoskeleton.

  4. Halogenated DOPA in a Marine Adhesive Protein

    PubMed Central

    Sun, Cheng Jun; Srivastava, Aasheesh; Reifert, Jack R.; Waite, J. Herbert

    2009-01-01

    The sandcastle worm Phragmatopoma californica, a marine polychaete, constructs a tube-like shelter by cementing together sand grains using a glue secreted from the building organ in its thorax. The glue is a mixture of post-translationally modified proteins, notably the cement proteins Pc-1 and Pc-2 with the amino acid, 3,4-dihydroxyphenyl-L-alanine (DOPA). Significant amounts of a halogenated derivative of DOPA were isolated from the worm cement following partial acid hydrolysis and capture of catecholic amino acids by phenylboronate affinity chromatography. Analysis by tandem mass spectrometry and 1H NMR indicates the DOPA derivative to be 2-chloro-4, 5-dihydroxyphenyl-L-alanine. The potential roles of 2-chloro-DOPA in chemical defense and underwater adhesion are considered. PMID:20126508

  5. Halogenated DOPA in a Marine Adhesive Protein.

    PubMed

    Sun, Cheng Jun; Srivastava, Aasheesh; Reifert, Jack R; Waite, J Herbert

    2009-02-01

    The sandcastle worm Phragmatopoma californica, a marine polychaete, constructs a tube-like shelter by cementing together sand grains using a glue secreted from the building organ in its thorax. The glue is a mixture of post-translationally modified proteins, notably the cement proteins Pc-1 and Pc-2 with the amino acid, 3,4-dihydroxyphenyl-L-alanine (DOPA). Significant amounts of a halogenated derivative of DOPA were isolated from the worm cement following partial acid hydrolysis and capture of catecholic amino acids by phenylboronate affinity chromatography. Analysis by tandem mass spectrometry and (1)H NMR indicates the DOPA derivative to be 2-chloro-4, 5-dihydroxyphenyl-L-alanine. The potential roles of 2-chloro-DOPA in chemical defense and underwater adhesion are considered.

  6. Vinculin is a permanent component of the membrane skeleton and is incorporated into the (re)organising cytoskeleton upon platelet activation.

    PubMed

    Asijee, G M; Sturk, A; Bruin, T; Wilkinson, J M; Ten Cate, J W

    1990-04-20

    Vinculin, a 130-kDa protein discovered in chicken gizzard smooth-muscle cells and subsequently also described in platelets, is believed to be involved in membrane-cytoskeleton interactions. In this study we investigated vinculin distribution in human blood platelets. Two skeletal fractions and a remaining cytosolic fraction were prepared with a recently described Triton X-100 lysis buffer causing minimal post-lysis breakdown by proteolysis. The presence of vinculin was demonstrated in the membrane skeleton and cytosol of resting and thrombin-activated human platelets. Upon thrombin stimulation vinculin also appeared in the cytoskeleton. this cytoskeletal incorporation was completed during the early stages of platelet aggregation and secretion, when the uptake of myosin, actin-binding protein and talin was still not maximal. We conclude therefore, that vinculin may play an important role in the structural (re)organisation of the human platelet cytoskeleton upon platelet activation.

  7. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    PubMed Central

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-01-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives. PMID:26508080

  8. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    NASA Astrophysics Data System (ADS)

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-10-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives.

  9. Investigation of modified cottonseed protein adhesives for wood composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several modified cottonseed protein isolates were studied and compared to corresponding soy protein isolates for their adhesive properties when bonded to wood composites. Modifications included treatments with alkali, guanidine hydrochloride, sodium dodecyl sulfate (SDS), and urea. Wood composites...

  10. Nitric-oxide synthase is a mechanical signal transducer that modulates talin and vinculin expression

    NASA Technical Reports Server (NTRS)

    Tidball, J. G.; Spencer, M. J.; Wehling, M.; Lavergne, E.

    1999-01-01

    Mechanical stimuli can cause changes in muscle mass and structure which indicate that mechanisms exist for transducing mechanical stimuli into signals that influence gene expression. Myotendinous junctions show adaptations to modified muscle loading which suggest that these are transcriptionally distinct domains in muscle fibers that may experience local regulation of expression of structural proteins that are concentrated at these sites. Vinculin and talin are cytoskeletal proteins that are highly enriched at myotendinous junctions that we hypothesize to be subject to local transcriptional regulation. Our findings show that mechanical stimulation of muscle cells in vivo and in vitro causes an increase in the expression of vinculin and talin that is mediated by nitric oxide. Furthermore, nitric oxide-stimulated increases in vinculin and talin expression occur through a protein kinase G-dependent pathway and therefore differ from other mechanisms through which nitric oxide has been shown previously to modulate transcription. Analysis of vinculin mRNA distribution in mechanically stimulated muscle fibers shows that the mRNA is highly concentrated at myotendinous junctions, which supports the hypothesis that myotendinous junctions are distinct domains in which the expression of cytoskeletal proteins is modulated by mechanical stimuli through a nitric oxide and protein kinase G-dependent pathway.

  11. Characterization of canine platelet adhesion to extracellular matrix proteins.

    PubMed

    Pelagalli, Alessandra; Pero, Maria Elena; Mastellone, Vincenzo; Cestaro, Anna; Signoriello, Simona; Lombardi, Pietro; Avallone, Luigi

    2011-07-01

    Canine platelets have been extensively studied but little is known about specific aspects such as adhesion. Platelet adhesion is a critical step during haemostasis and thrombosis as well as during inflammatory and immunopathogenic responses. The aim of this study was to evaluate the adhesive properties of canine platelets using fibrinogen and collagen as substrates immobilized on plates. Adhesion was monitored for 120 min and the effect of adenosine 5'-diphosphate (ADP) was assayed. The results showed that canine platelets displayed good adhesion activity that was significantly time-dependent. Moreover, ADP was able to enhance platelet adhesion in a dose-dependent manner. The findings aid knowledge of the adhesion process and suggest a specific role of surface platelet receptors in mediating the interaction with extracellular matrix proteins.

  12. Novel Vinculin Binding Site of the IpaA Invasin of Shigella*♦

    PubMed Central

    Park, HaJeung; Valencia-Gallardo, Cesar; Sharff, Andrew; Van Nhieu, Guy Tran; Izard, Tina

    2011-01-01

    Internalization of Shigella into host epithelial cells, where the bacteria replicates and spreads to neighboring cells, requires a type 3 secretion system (T3SS) effector coined IpaA. IpaA binds directly to and activates the cytoskeletal protein vinculin after injection in the host cell cytosol, and this was previously thought to be directed by two amphipathic α-helical vinculin-binding sites (VBS) found in the C-terminal tail domain of IpaA. Here, we report a third VBS, IpaA-VBS3, that is located N-terminal to the other two VBSs of IpaA and show that one IpaA molecule can bind up to three vinculin molecules. Biochemical in vitro Shigella invasion assays and the 1.6 Å crystal structure of the vinculin·IpaA-VBS3 complex showed that IpaA-VBS3 is functionally redundant with the other two IpaA-VBSs in cell invasion and in activating the latent F-actin binding functions of vinculin. Multiple VBSs in IpaA are reminiscent of talin, which harbors 11 VBSs. However, most of the talin VBSs have low affinity and are buried in helix bundles, whereas all three of the VBSs of IpaA are high affinity, readily available, and in close proximity to each other in the IpaA structure. Although deletion of IpaA-VBS3 has no detectable effects on Shigella invasion of epithelial cells, deletion of all three VBSs impaired bacterial invasion to levels found in an ipaA null mutant strain. Thus, IpaA-directed mimicry of talin in activating vinculin occurs through three high affinity VBSs that are essential for Shigella pathogenesis. PMID:21525010

  13. Novel Vinculin Binding Site of the IpaA Invasin of Shigella

    SciTech Connect

    Park, HaJeung; Valencia-Gallardo, Cesar; Sharff, Andrew; Van Nhieu, Guy Tran; Izard, Tina

    2012-10-25

    Internalization of Shigella into host epithelial cells, where the bacteria replicates and spreads to neighboring cells, requires a type 3 secretion system (T3SS) effector coined IpaA. IpaA binds directly to and activates the cytoskeletal protein vinculin after injection in the host cell cytosol, and this was previously thought to be directed by two amphipathic {alpha}-helical vinculin-binding sites (VBS) found in the C-terminal tail domain of IpaA. Here, we report a third VBS, IpaA-VBS3, that is located N-terminal to the other two VBSs of IpaA and show that one IpaA molecule can bind up to three vinculin molecules. Biochemical in vitro Shigella invasion assays and the 1.6 {angstrom} crystal structure of the vinculin {center_dot} IpaA-VBS3 complex showed that IpaA-VBS3 is functionally redundant with the other two IpaA-VBSs in cell invasion and in activating the latent F-actin binding functions of vinculin. Multiple VBSs in IpaA are reminiscent of talin, which harbors 11 VBSs. However, most of the talin VBSs have low affinity and are buried in helix bundles, whereas all three of the VBSs of IpaA are high affinity, readily available, and in close proximity to each other in the IpaA structure. Although deletion of IpaA-VBS3 has no detectable effects on Shigella invasion of epithelial cells, deletion of all three VBSs impaired bacterial invasion to levels found in an ipaA null mutant strain. Thus, IpaA-directed mimicry of talin in activating vinculin occurs through three high affinity VBSs that are essential for Shigella pathogenesis.

  14. Soy protein isolate molecular level contributions to bulk adhesive properties

    NASA Astrophysics Data System (ADS)

    Shera, Jeanne Norton

    Increasing environmental awareness and the recognized health hazards of formaldehyde-based resins has prompted a strong demand for environmentally-responsible adhesives for wood composites. Soy protein-based adhesives have been shown to be commercially viable with 90-day shelf stability and composite physical properties comparable to those of commercial formaldehyde-based particleboards. The main research focus is to isolate and characterize the molecular level features in soy protein isolate responsible for providing mechanical properties, storage stability, and water resistance during adhesive formulation, processing, and wood composite fabrication. Commercial composite board will be reviewed to enhance our understanding of the individual components and processes required for particleboard production. The levels of protein structure will be defined and an overview of current bio-based technology will be presented. In the process, the logic for utilizing soy protein as a sole binder in the adhesive will be reinforced. Variables such as adhesive components, pH, divalent ions, blend aging, protein molecular weight, formulation solids content, and soy protein functionalization will relate the bulk properties of soy protein adhesives to the molecular configuration of the soybean protein. This work has demonstrated that when intermolecular beta-sheet interactions and protein long-range order is disrupted, viscosity and mechanical properties decrease. Storage stability can be maintained through the stabilization of intermolecular beta-sheet interactions. When molecular weight is reduced through enzymatic digestion, long-range order is disrupted and viscosity and mechanical properties decrease accordingly. Processibility and physical properties must be balanced to increase solids while maintaining low viscosity, desirable mechanical properties, and adequate storage stability. The structure of the soybean protein must be related to the particleboard bulk mechanical

  15. Spatial distribution of proteins in the quagga mussel adhesive apparatus.

    PubMed

    Rees, David J; Hanifi, Arash; Manion, Joseph; Gantayet, Arpita; Sone, Eli D

    2016-01-01

    The invasive freshwater mollusc Dreissena bugensis (quagga mussel) sticks to underwater surfaces via a proteinacious 'anchor' (byssus), consisting of a series of threads linked to adhesive plaques. This adhesion results in the biofouling of crucial underwater industry infrastructure, yet little is known about the proteins responsible for the adhesion. Here the identification of byssal proteins extracted from freshly secreted byssal material is described. Several new byssal proteins were observed by gel electrophoresis. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to characterize proteins in different regions of the byssus, particularly those localized to the adhesive interface. Byssal plaques and threads contain in common a range of low molecular weight proteins, while several proteins with higher mass were observed only in the plaque. At the adhesive interface, a plaque-specific ~8.1 kDa protein had a relative increase in signal intensity compared to the bulk of the plaque, suggesting it may play a direct role in adhesion.

  16. Intrinsic Surface-Drying Properties of Bio-adhesive Proteins

    PubMed Central

    Akdogan, Yasar; Wei, Wei; Huang, Kuo-Ying; Kageyama, Yoshiyuki; Danner, Eric W.; Miller, Dusty R.; Martinez Rodriguez, Nadine R.; Herbert Waite, J.

    2014-01-01

    Sessile marine mussels must “dry” underwater surfaces before adhering to them. Synthetic adhesives have yet to overcome this fundamental challenge. Previous studies of bio-inspired adhesion have largely been performed under applied compressive forces but these are poor predictors of an adhesive’s ability to spontaneously penetrate surface hydration layers. In a force-free approach to measuring molecular-level interaction via the surface water diffusivity, different mussel foot proteins were found to have differential abilities to evict hydration layers from the surfaces—a necessary step for adsorption and adhesion. It was anticipated that Dopa would mediate dehydration given its efficacy forbio-inspired wet adhesion. Instead, hydrophobic side-chains are found to be a critical component in bringing about protein-surface intimacy. This is the first direct measurement of interfacial water dynamics during force-free adsorptive interactions at solid surfaces, and offers guidance for engineering wet adhesives and coatings. PMID:25168789

  17. Polymer adhesion at surfaces: biological adhesive proteins and their synthetic mimics

    NASA Astrophysics Data System (ADS)

    Messersmith, Phillip

    2008-03-01

    Mussels are famous for their ability to permanently adhere to a wide variety of wet surfaces, such as rocks, metal and polymer ship hulls, and wood structures. They accomplish this through specialized proteins collectively referred to as mussel adhesive proteins (MAPs). The biophysical aspects of MAP adhesion is being revealed through the use of single molecule force measurements. The results provide insight into the adhesive roles of key amino acids found in these proteins, including the magnitude of adhesive forces, cooperative effects, and their self-healing properties. This molecular-level information is being incorporated into designs of biomimetic polymer coatings for a variety of applications. Our biomimetic approach to polymer design will be illustrated by a few examples where adhesive constituents found in MAPs are exploited to make wet-adhesive polymer coatings. In addition, small molecule analogs of MAPs can be used to apply thin functional films onto virtually any material surface using a facile approach. These coatings have a variety of potential uses in microelectronics, water treatment, prevention of environmental biofouling, and for control of biointerfacial phenomena at the surfaces of medical/diagnostic devices.

  18. Novel protein-repellent dental adhesive containing 2-methacryloyloxyethyl phosphorylcholine

    PubMed Central

    Zhang, Ning; Melo, Mary Anne S.; Bai, Yuxing; Xu, Hockin H. K.

    2015-01-01

    Objectives Biofilms at tooth-restoration margins can produce acids and cause secondary caries. A protein-repellent adhesive resin can potentially inhibition bacteria attachment and biofilm growth. However, there has been no report on protein-repellent dental resins. The objectives of this study were to develop a protein-repellent bonding agent incorporating 2-methacryloyloxyethyl phosphorylcholine (MPC), and to investigate its resistance to protein adsorption and biofilm growth for the first time. Methods MPC was incorporated into Scotchbond Multi-Purpose (SBMP) at 0%, 3.75%, 7.5%, 11.25%, and 15% by mass. Extracted human teeth were used to measure dentin shear bond strengths. Protein adsorption onto resins was determined by a micro bicinchoninic acid (BCA) method. A dental plaque microcosm biofilm model with human saliva as inoculum was used to measure biofilm metabolic activity and colony-forming unit (CFU) counts. Results Adding 7.5% MPC into primer and adhesive did not decrease the dentin bond strength, compared to control (p > 0.1). Incorporation of 7.5% of MPC achieved the lowest protein adsorption, which was 20-fold less than that of control. Incorporation of 7.5% of MPC greatly reduced bacterial adhesion, yielding biofilm total microorganism, total streptococci, and mutans streptococci CFU that were an order of magnitude less than control. Conclusions A protein-repellent dental adhesive resin was developed for the first time. Incorporation of MPC into primer and adhesive at 7.5% by mass greatly reduced the protein adsorption and bacterial adhesion, without compromising the dentin bond strength. The novel protein-repellent primer and adhesive are promising to inhibit biofilm formation and acid production, to protect the tooth-restoration margins and prevent secondary caries. PMID:25234652

  19. Adhesion Proteins - An Impact on Skeletal Myoblast Differentiation

    PubMed Central

    Przewoźniak, Marta; Czaplicka, Iwona; Czerwińska, Areta M.; Markowska-Zagrajek, Agnieszka; Moraczewski, Jerzy; Stremińska, Władysława; Jańczyk-Ilach, Katarzyna; Ciemerych, Maria A.; Brzoska, Edyta

    2013-01-01

    Formation of mammalian skeletal muscle myofibers, that takes place during embryogenesis, muscle growth or regeneration, requires precise regulation of myoblast adhesion and fusion. There are few evidences showing that adhesion proteins play important role in both processes. To follow the function of these molecules in myoblast differentiation we analysed integrin alpha3, integrin beta1, ADAM12, CD9, CD81, M-cadherin, and VCAM-1 during muscle regeneration. We showed that increase in the expression of these proteins accompanies myoblast fusion and myotube formation in vivo. We also showed that during myoblast fusion in vitro integrin alpha3 associates with integrin beta1 and ADAM12, and also CD9 and CD81, but not with M-cadherin or VCAM-1. Moreover, we documented that experimental modification in the expression of integrin alpha3 lead to the modification of myoblast fusion in vitro. Underexpression of integrin alpha3 decreased myoblasts' ability to fuse. This phenomenon was not related to the modifications in the expression of other adhesion proteins, i.e. integrin beta1, CD9, CD81, ADAM12, M-cadherin, or VCAM-1. Apparently, aberrant expression only of one partner of multiprotein adhesion complexes necessary for myoblast fusion, in this case integrin alpha3, prevents its proper function. Summarizing, we demonstrated the importance of analysed adhesion proteins in myoblast fusion both in vivo and in vitro. PMID:23671573

  20. Regulation of Embryonic Cell Adhesion by the Prion Protein

    PubMed Central

    Schrock, Yvonne; Geiss, Corinna; Luncz, Lydia; Thomanetz, Venus; Stuermer, Claudia A. O

    2009-01-01

    Prion proteins (PrPs) are key players in fatal neurodegenerative disorders, yet their physiological functions remain unclear, as PrP knockout mice develop rather normally. We report a strong PrP loss-of-function phenotype in zebrafish embryos, characterized by the loss of embryonic cell adhesion and arrested gastrulation. Zebrafish and mouse PrP mRNAs can partially rescue this knockdown phenotype, indicating conserved PrP functions. Using zebrafish, mouse, and Drosophila cells, we show that PrP: (1) mediates Ca+2-independent homophilic cell adhesion and signaling; and (2) modulates Ca+2-dependent cell adhesion by regulating the delivery of E-cadherin to the plasma membrane. In vivo time-lapse analyses reveal that the arrested gastrulation in PrP knockdown embryos is due to deficient morphogenetic cell movements, which rely on E-cadherin–based adhesion. Cell-transplantation experiments indicate that the regulation of embryonic cell adhesion by PrP is cell-autonomous. Moreover, we find that the local accumulation of PrP at cell contact sites is concomitant with the activation of Src-related kinases, the recruitment of reggie/flotillin microdomains, and the reorganization of the actin cytoskeleton, consistent with a role of PrP in the modulation of cell adhesion via signaling. Altogether, our data uncover evolutionarily conserved roles of PrP in cell communication, which ultimately impinge on the stability of adherens cell junctions during embryonic development. PMID:19278297

  1. Simulated Microgravity Alters Actin Cytoskeleton and Integrin-Mediated Focal Adhesions of Cultured Human Mesenchymal Stromal Cells

    NASA Astrophysics Data System (ADS)

    Gershovich, P. M.; Gershovic, J. G.; Buravkova, L. B.

    2008-06-01

    Cytoskeletal alterations occur in several cell types including lymphocytes, glial cells, and osteoblasts, during spaceflight and under simulated microgravity (SMG) (3, 4). One potential mechanism for cytoskeletal gravisensitivity is disruption of extracellular matrix (ECM) and integrin interactions. Focal adhesions are specialized sites of cell-matrix interaction composed of integrins and the diversity of focal adhesion-associated cytoplasmic proteins including vinculin, talin, α-actinin, and actin filaments (4, 5). Integrins produce signals essential for proper cellular function, survival and differentiation. Therefore, we investigated the effects of SMG on F-actin cytoskeleton structure, vinculin focal adhesions, expression of some integrin subtypes and cellular adhesion molecules (CAMs) in mesenchymal stem cells derived from human bone marrow (hMSCs). Simulated microgravity was produced by 3D-clinostat (Dutch Space, Netherlands). Staining of actin fibers with TRITC-phalloidin showed reorganization even after 30 minutes of simulated microgravity. The increasing of cells number with abnormal F-actin was observed after subsequent terms of 3D-clinorotation (6, 24, 48, 120 hours). Randomization of gravity vector altered dimensional structure of stress fibers and resulted in remodeling of actin fibers inside the cells. In addition, we observed vinculin redistribution inside the cells after 6 hours and prolonged terms of clinorotation. Tubulin fibers in a contrast with F-actin and vinculin didn't show any reorganization even after long 3Dclinorotation (120 hours). The expression of integrin α2 increased 1,5-6-fold in clinorotated hMSCs. Also we observed decrease in number of VCAM-1-positive cells and changes in expression of ICAM-1. Taken together, our findings indicate that SMG leads to microfilament and adhesion alterations of hMSCs most probably associated with involvement of some integrin subtypes.

  2. Vasodilator-stimulated phosphoprotein (VASP) regulates actin polymerization and contraction in airway smooth muscle by a vinculin-dependent mechanism.

    PubMed

    Wu, Yidi; Gunst, Susan J

    2015-05-01

    Vasodilator-stimulated phosphoprotein (VASP) can catalyze actin polymerization by elongating actin filaments. The elongation mechanism involves VASP oligomerization and its binding to profilin, a G-actin chaperone. Actin polymerization is required for tension generation during the contraction of airway smooth muscle (ASM); however, the role of VASP in regulating actin dynamics in ASM is not known. We stimulated ASM cells and tissues with the contractile agonist acetylcholine (ACh) or the adenylyl cyclase activator, forskolin (FSK), a dilatory agent. ACh and FSK stimulated VASP Ser(157) phosphorylation by different kinases. Inhibition of VASP Ser(157) phosphorylation by expression of the mutant VASP S157A in ASM tissues suppressed VASP phosphorylation and membrane localization in response to ACh, and also inhibited contraction and actin polymerization. ACh but not FSK triggered the formation of VASP-VASP complexes as well as VASP-vinculin and VASP-profilin complexes at membrane sites. VASP-VASP complex formation and the interaction of VASP with vinculin and profilin were inhibited by expression of the inactive vinculin mutant, vinculin Y1065F, but VASP phosphorylation and membrane localization were unaffected. We conclude that VASP phosphorylation at Ser(157) mediates its localization at the membrane, but that VASP Ser(157) phosphorylation and membrane localization are not sufficient to activate its actin catalytic activity. The interaction of VASP with activated vinculin at membrane adhesion sites is a necessary prerequisite for VASP-mediated molecular processes necessary for actin polymerization. Our results show that VASP is a critical regulator of actin dynamics and tension generation during the contractile activation of ASM.

  3. Adhesion

    MedlinePlus

    ... as the shoulder Eyes Inside the abdomen or pelvis Adhesions can become larger or tighter over time. ... Other causes of adhesions in the abdomen or pelvis include: Appendicitis , most often when the appendix breaks ...

  4. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.

    PubMed

    Burke, Kelly A; Roberts, Dane C; Kaplan, David L

    2016-01-11

    Silk fibroin from the domesticated silkworm Bombyx mori is a naturally occurring biopolymer with charged hydrophilic terminal regions that end-cap a hydrophobic core consisting of repeating sequences of glycine, alanine, and serine residues. Taking inspiration from mussels that produce proteins rich in L-3,4-dihydroxyphenylalanine (DOPA) to adhere to a variety of organic and inorganic surfaces, the silk fibroin was functionalized with catechol groups. Silk fibroin was selected for its high molecular weight, tunable mechanical and degradation properties, aqueous processability, and wide availability. The synthesis of catechol-functionalized silk fibroin polymers containing varying amounts of hydrophilic polyethylene glycol (PEG, 5000 g/mol) side chains was carried out to balance silk hydrophobicity with PEG hydrophilicity. The efficiency of the catechol functionalization reaction did not vary with PEG conjugation over the range studied, although tuning the amount of PEG conjugated was essential for aqueous solubility. Adhesive bonding and cell compatibility of the resulting materials were investigated, where it was found that incorporating as little as 6 wt % PEG prior to catechol functionalization resulted in complete aqueous solubility of the catechol conjugates and increased adhesive strength compared with silk lacking catechol functionalization. Furthermore, PEG-silk fibroin conjugates maintained their ability to form β-sheet secondary structures, which can be exploited to reduce swelling. Human mesenchymal stem cells (hMSCs) proliferated on the silks, regardless of PEG and catechol conjugation. These materials represent a protein-based approach to catechol-based adhesives, which we envision may find applicability as biodegradable adhesives and sealants. PMID:26674175

  5. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.

    PubMed

    Burke, Kelly A; Roberts, Dane C; Kaplan, David L

    2016-01-11

    Silk fibroin from the domesticated silkworm Bombyx mori is a naturally occurring biopolymer with charged hydrophilic terminal regions that end-cap a hydrophobic core consisting of repeating sequences of glycine, alanine, and serine residues. Taking inspiration from mussels that produce proteins rich in L-3,4-dihydroxyphenylalanine (DOPA) to adhere to a variety of organic and inorganic surfaces, the silk fibroin was functionalized with catechol groups. Silk fibroin was selected for its high molecular weight, tunable mechanical and degradation properties, aqueous processability, and wide availability. The synthesis of catechol-functionalized silk fibroin polymers containing varying amounts of hydrophilic polyethylene glycol (PEG, 5000 g/mol) side chains was carried out to balance silk hydrophobicity with PEG hydrophilicity. The efficiency of the catechol functionalization reaction did not vary with PEG conjugation over the range studied, although tuning the amount of PEG conjugated was essential for aqueous solubility. Adhesive bonding and cell compatibility of the resulting materials were investigated, where it was found that incorporating as little as 6 wt % PEG prior to catechol functionalization resulted in complete aqueous solubility of the catechol conjugates and increased adhesive strength compared with silk lacking catechol functionalization. Furthermore, PEG-silk fibroin conjugates maintained their ability to form β-sheet secondary structures, which can be exploited to reduce swelling. Human mesenchymal stem cells (hMSCs) proliferated on the silks, regardless of PEG and catechol conjugation. These materials represent a protein-based approach to catechol-based adhesives, which we envision may find applicability as biodegradable adhesives and sealants.

  6. LINKIN, a new transmembrane protein necessary for cell adhesion

    PubMed Central

    Kato, Mihoko; Chou, Tsui-Fen; Yu, Collin Z; DeModena, John; Sternberg, Paul W

    2014-01-01

    In epithelial collective migration, leader and follower cells migrate while maintaining cell–cell adhesion and tissue polarity. We have identified a conserved protein and interactors required for maintaining cell adhesion during a simple collective migration in the developing C. elegans male gonad. LINKIN is a previously uncharacterized, transmembrane protein conserved throughout Metazoa. We identified seven atypical FG–GAP domains in the extracellular domain, which potentially folds into a β-propeller structure resembling the α-integrin ligand-binding domain. C. elegans LNKN-1 localizes to the plasma membrane of all gonadal cells, with apical and lateral bias. We identified the LINKIN interactors RUVBL1, RUVBL2, and α-tubulin by using SILAC mass spectrometry on human HEK 293T cells and testing candidates for lnkn-1-like function in C. elegans male gonad. We propose that LINKIN promotes adhesion between neighboring cells through its extracellular domain and regulates microtubule dynamics through RUVBL proteins at its intracellular domain. DOI: http://dx.doi.org/10.7554/eLife.04449.001 PMID:25437307

  7. CCM1 and the second life of proteins in adhesion complexes

    PubMed Central

    van den Berg, Maaike CW; Burgering, Boudewijn MT

    2014-01-01

    It is well recognized that a number of proteins present within adhesion complexes perform discrete signaling functions outside these adhesion complexes, including transcriptional control. In this respect, β-catenin is a well-known example of an adhesion protein present both in cadherin complexes and in the nucleus where it regulates the TCF transcription factor. Here we discuss nuclear functions of adhesion complex proteins with a special focus on the CCM-1/KRIT-1 protein, which may turn out to be yet another adhesion complex protein with a second life. PMID:24714220

  8. Cell adhesion in zebrafish myogenesis: distribution of intermediate filaments, microfilaments, intracellular adhesion structures and extracellular matrix.

    PubMed

    Costa, Manoel L; Escaleira, Roberta C; Jazenko, Fernanda; Mermelstein, Claudia S

    2008-10-01

    To overcome the limitations of in vitro studies, we have been studying myogenesis in situ in zebrafish embryos, at a sub-cellular level. While in previous works we focused on myofibrillogenesis and some aspects of adhesion structures, here we describe in more detail cell adhesion structures and interactions among cytoskeletal components, membrane and extracellular matrix during zebrafish muscle development. We studied the intermediate filaments, and we describe the full range of desmin distribution in zebrafish development, from perinuclear to striated, until its deposition around the intersomite septa of older somites. This adhesion structure, positive for desmin and actin, has not been previously observed in myogenesis in vitro. We also show that actin is initially located in the intersomite septum region whereas it is confined to the myofibrils later on. While actin localization changes during development, the adhesion complex proteins vinculin, paxillin, talin, dystrophin, laminin and fibronectin always appear exclusively at the intersomite septa, and appear to be co-distributed, even though the extracellular proteins accumulates before the intracellular ones. Contrary to the adhesion proteins, that are continuously distributed, desmin and sarcomeric actin form triangular aggregates among the septa and the cytoskeleton. We studied the cytoskeletal linker plectin as well, and we show that it has a distribution similar to desmin and not to actin. We conclude that the in situ adhesion structures differ from their in vitro counterparts, and that the actual zebrafish embryo myogenesis is quite different than that which occurs in in vitro systems.

  9. Adhesion and structure properties of protein nanomaterials containing hydrophobic and charged amino acids.

    PubMed

    Shen, Xinchun; Mo, Xiaoqun; Moore, Robyn; Frazier, Shawnalea J; Iwamoto, Takeo; Tomich, John M; Sun, Xiuzhi Susan

    2006-03-01

    Protein polymers are being used or considered for biobased adhesives and coating materials. Most adhesives derived from macro protein molecules work through receptors or cross-links to bring about adhesion. The adhesion mechanism of protein polymers would lead to better understanding of adhesives and the discovery of new practical properties of protein polymers at both nano- and macro-scales. The objective of this research work was to study adhesion properties of protein polymers at nanoscale (a peptide adhesive with nanometer-scale units that range in size of several nanometers, defined as protein nanomaterial). Seven protein nanomaterial samples with different degrees of adhesive strength were designed and synthesized using solid phase chemistries. All protein nanomaterials contain a common hydrophobic core flanked by charged amino acid sequences. The adhesion properties of the protein nanomaterials were investigated at different pH values and curing temperatures. The protein nanomaterials self aggregate and interact with the wood surface. The protein nanomaterial KKK-FLIVIGSII-KKK identified in this study had high adhesive strength toward wood. It had the highest shear strength at pH 12, with an amino acid sequence that was very hydrophobic and uncharged. This protein nanomaterial underwent structural analyses using circular dichroism, laser-Fourier transform infrared, and laser desorption mass spectrometry. At pH 12 this peptide adopted a pH-induced beta-like conformation. Adhesive strength reflects contributions of both hydrogen bonding and van der Waals interactions. Ionic and covalent bonds do not appear to be significant factors for adhesion in this study.

  10. Use of additives to enhance the properties of cottonseed protein as wood adhesives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy protein is currently being used commercially as a “green” wood adhesive. Previous work in this laboratory has shown that cottonseed protein isolate, tested on maple wood veneer, produced higher adhesive strength and hot water resistance relative to soy protein. In the present study, cottonseed...

  11. Role of dystrophins and utrophins in platelet adhesion process.

    PubMed

    Cerecedo, Doris; Mondragón, Ricardo; Cisneros, Bulmaro; Martínez-Pérez, Francisco; Martínez-Rojas, Dalila; Rendón, Alvaro

    2006-07-01

    Platelets are crucial at the site of vascular injury, adhering to the sub-endothelial matrix through receptors on their surface, leading to cell activation and aggregation to form a haemostatic plug. Platelets display focal adhesions as well as stress fibres to contract and facilitate expulsion of growth and pro-coagulant factors contained in the granules and to constrict the clot. The interaction of F-actin with different actin-binding proteins determines the properties and composition of the focal adhesions. Recently, we demonstrated the presence of dystrophin-associated protein complex corresponding to short dystrophin isoforms (Dp71d and Dp71) and the uthophin gene family (Up400 and Up71), which promote shape change, adhesion, aggregation, and granule centralisation. To elucidate participation of both complexes during the platelet adhesion process, their potential association with integrin beta-1 fraction and the focal adhesion system (alpha-actinin, vinculin and talin) was evaluated by immunofluorescence and immunoprecipitation assays. It was shown that the short dystrophin-associated protein complex participated in stress fibre assembly and in centralisation of cytoplasmic granules, while the utrophin-associated protein complex assembled and regulated focal adhesions. The simultaneous presence of dystrophin and utrophin complexes indicates complementary structural and signalling mechanisms to the actin network, improving the platelet haemostatic role.

  12. Expression of epithelial adhesion proteins and integrins in chronic inflammation.

    PubMed Central

    Haapasalmi, K.; Mäkelä, M.; Oksala, O.; Heino, J.; Yamada, K. M.; Uitto, V. J.; Larjava, H.

    1995-01-01

    Epithelial cell behavior in chronic inflammation is poorly characterized. During inflammation of tooth-supporting structures (periodontal disease), increased proliferation of epithelial cells into the inflamed connective tissue stroma is commonly seen. In some areas ulceration and degeneration take place. We studied alterations in the expression of adhesion molecules and integrins during chronic periodontal inflammation. In inflamed tissue, laminin-1 and type IV collagen were still present in the basement membrane and surrounding blood vessels, but they were also found extravascularly in inflamed connective tissue stroma. Type VII collagen and laminin-5 (also known as kalinin, epiligrin, or nicein) were poorly preserved in the basement membrane zone, but both were found in unusual streak-like distributions in the subepithelial connective tissue stroma in inflamed tissue. Both fibronectin and tenascin were substantially decreased in chronically inflamed connective tissue, showing only punctate staining at the basement membrane zone. Integrins of the beta 1 family showed two distinct staining patterns in epithelial cells during chronic inflammation; focal losses of beta 1 integrins (alpha 2 beta 1 and alpha 3 beta 1) were found in most areas, while in other areas the entire pocket epithelium was found to be strongly positive for beta 1 integrins. No members of the alpha v integrin family were found in any epithelia studied. Expression of the alpha 6 beta 4 integrin was high in basal cells of healthy tissue, but weak in epithelium associated with chronic inflammation. Chronic inflammation therefore involves alterations in both adhesion proteins and integrins expressed by epithelial cells. Basement membrane components found at abnormal sites in stroma in chronic inflammation might serve as new adhesive ligands for various cell types in inflamed stroma. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:7541610

  13. Boronate Complex Formation with Dopa Containing Mussel Adhesive Protein Retards pH-Induced Oxidation and Enables Adhesion to Mica

    PubMed Central

    Israelachvili, Jacob N.; Chen, Yunfei; Waite, J. Herbert

    2014-01-01

    The biochemistry of mussel adhesion has inspired the design of surface primers, adhesives, coatings and gels for technological applications. These mussel-inspired systems often focus on incorporating the amino acid 3,4-dihydroxyphenyl-L-alanine (Dopa) or a catecholic analog into a polymer. Unfortunately, effective use of Dopa is compromised by its susceptibility to auto-oxidation at neutral pH. Oxidation can lead to loss of adhesive function and undesired covalent cross-linking. Mussel foot protein 5 (Mfp-5), which contains ∼30 mole % Dopa, is a superb adhesive under reducing conditions but becomes nonadhesive after pH-induced oxidation. Here we report that the bidentate complexation of borate by Dopa to form a catecholato-boronate can be exploited to retard oxidation. Although exposure of Mfp-5 to neutral pH typically oxidizes Dopa, resulting in a>95% decrease in adhesion, inclusion of borate retards oxidation at the same pH. Remarkably, this Dopa-boronate complex dissociates upon contact with mica to allow for a reversible Dopa-mediated adhesion. The borate protection strategy allows for Dopa redox stability and maintained adhesive function in an otherwise oxidizing environment. PMID:25303409

  14. Affixing plant sections without protein based adhesives for protease histochemistry.

    PubMed

    Jona, R; Griglione, R

    1999-01-01

    To submit a section of plant tissue to histochemical analysis using protease, the protein based adhesives which keep the slices attached to the slides must be replaced because they are attacked by the enzyme and the slices are washed off the slides. We devised a method to keep the slices attached to the slides during histochemical extractions and subsequent staining. Slides are frosted on two lateral zones by spreading on them a fluoride paste composed of 15 g barium sulfate, 15 g ammonium difluoride, 8 g oxalic acid, 40 ml glycerine and 12 ml deionized water using a thin paint brush. After removing the paste with tap water and drying the slides, the sections are placed on the central clear zone of the slide and covered with an ethyl-cellulose film that keeps the slices in place and allows the reagents to act through it. To do this, the slides are dipped into 0.5% ethyl cellulose (ETC) prepared in a 4:1 mixture of toluene and absolute ethanol. The ETC coating is layered three times to improve its firmness and its ability to retain the slices on the slides. To obtain perfect adhesion, the slide should be oven dried (40-50 C for 10-15 min) to remove any trace of humidity before applying each layer of ETC. Subsequently the sections can be extracted and stained without undue loss of material. PMID:10190256

  15. Adhesions

    MedlinePlus

    ... surfaces so they can shift easily as the body moves. Adhesions cause tissues and organs to stick together. They might connect the loops of the intestines to each other, to nearby ... can occur anywhere in the body. But they often form after surgery on the ...

  16. Protein-based underwater adhesives and the prospects for their biotechnological production.

    PubMed

    Stewart, Russell J

    2011-01-01

    Biotechnological approaches to practical production of biological protein-based adhesives have had limited success over the last several decades. Broader efforts to produce recombinant adhesive proteins may have been limited by early disappointments. More recent synthetic polymer approaches have successfully replicated some aspects of natural underwater adhesives. For example, synthetic polymers, inspired by mussels, containing the catecholic functional group of 3,4-L-dihydroxyphenylalanine adhere strongly to wet metal oxide surfaces. Synthetic complex coacervates inspired by the Sandcastle worm are water-borne adhesives that can be delivered underwater without dispersing. Synthetic approaches offer several advantages, including versatile chemistries and scalable production. In the future, more sophisticated mimetic adhesives may combine synthetic copolymers with recombinant or agriculture-derived proteins to better replicate the structural and functional organization of natural adhesives.

  17. Direct role of interrod spacing in mediating cell adhesion on Sr-HA nanorod-patterned coatings.

    PubMed

    Zhou, Jianhong; Han, Yong; Lu, Shemin

    2014-01-01

    The process in which nanostructured surfaces mediate cell adhesion is not well understood, and may be indirect (via protein adsorption) or direct. We prepared Sr-doped hydroxyapatite (Sr1-HA) 3D nanorods (with interrod spacing of 67.3 ± 3.8, 95.7 ± 4.2, and 136.8 ± 8.7 nm) and 2D nanogranulate patterned coatings on titanium. Employing the coatings under the same surface chemistry and roughness, we investigated the indirect/direct role of Sr1-HA nanotopographies in the regulation of osteoblast adhesion in both serum-free and serum-containing Dulbecco's Modified Eagle/Ham's Medium. The results reveal that the number of adherent cells, cell-secreted anchoring proteins (fibronectin, vitronectin, and collagen), vinculin and focal adhesion kinase (FAK) denoted focal adhesion (FA) contact, and gene expression of vinculin, FAK, and integrin subunits (α2, α5, αv, β1, and β3), undergo significant changes in the inter-nanorod spacing and dimensionality of Sr1-HA nanotopographies in the absence of serum; they are significantly enhanced on the <96 nm spaced nanorods and more pronounced with decreasing interrod spacing. However, they are inhibited on the >96 nm spaced nanorods compared to nanogranulated 2D topography. Although the adsorption of fibronectin and vitronectin from serum are higher on 136.8 ± 8.7 nm spaced nanorod patterned topography than nanogranulated topography, cell adhesion is inhibited on the former compared to the latter in the presence of serum, further suggesting that reduced cell adhesion is independent of protein adsorption. It is clearly indicated that 3D nanotopography can directly modulate cell adhesion by regulating integrins, which subsequently mediate anchoring proteins' secretion and FA formation rather than via protein adsorption. PMID:24634585

  18. Allosteric Coupling in the Bacterial Adhesive Protein FimH*

    PubMed Central

    Rodriguez, Victoria B.; Kidd, Brian A.; Interlandi, Gianluca; Tchesnokova, Veronika; Sokurenko, Evgeni V.; Thomas, Wendy E.

    2013-01-01

    The protein FimH is expressed by the majority of commensal and uropathogenic strains of Escherichia coli on the tips of type 1 fimbriae and mediates adhesion via a catch bond to its ligand mannose. Crystal structures of FimH show an allosteric conformational change, but it remains unclear whether all of the observed structural differences are part of the allosteric mechanism. Here we use the protein structural analysis tool RosettaDesign combined with human insight to identify and synthesize 10 mutations in four regions that we predicted would stabilize one of the conformations of that region. The function of each variant was characterized by measuring binding to the ligand mannose, whereas the allosteric state was determined using a conformation-specific monoclonal antibody. These studies demonstrated that each region investigated was indeed part of the FimH allosteric mechanism. However, the studies strongly suggested that some regions were more tightly coupled to mannose binding and others to antibody binding. In addition, we identified many FimH variants that appear locked in the low affinity state. Knowledge of regulatory sites outside the active and effector sites as well as the ability to make FimH variants locked in the low affinity state may be crucial to the future development of novel antiadhesive and antimicrobial therapies using allosteric regulation to inhibit FimH. PMID:23821547

  19. Aberrant Glycosylation of Plasma Proteins in Severe Preeclampsia Promotes Monocyte Adhesion

    PubMed Central

    Kazanjian, Avedis A.; Tinnemore, Deborah; Gafken, Philip R.; Ogata, Yuko; Napolitano, Peter G.; Stallings, Jonathan D.; Ippolito, Danielle L.

    2014-01-01

    Glycosylation of plasma proteins increases during pregnancy. Our objectives were to investigate an anti-inflammatory role of these proteins in normal pregnancies and determine whether aberrant protein glycosylation promotes monocyte adhesion in preeclampsia. Plasma was prospectively collected from nonpregnant controls and nulliparous patients in all 3 trimesters. Patients were divided into cohorts based on the applicable postpartum diagnosis. U937 monocytes were preconditioned with enzymatically deglycosylated plasma, and monocyte adhesion to endothelial cell monolayers was quantified by spectrophotometry. Plasma from nonpregnant controls, first trimester normotensives, and first trimester patients with mild preeclampsia inhibited monocyte–endothelial cell adhesion (P < .05), but plasma from first trimester patients with severe preeclampsia and second and third trimester normotensives did not. Deglycosylating plasma proteins significantly increased adhesion in all the cohorts. These results support a role of plasma glycoprotein interaction in monocyte–endothelial cell adhesion and could suggest a novel therapeutic target for severe preeclampsia. PMID:23757314

  20. Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II–dependent manner

    PubMed Central

    le Duc, Quint; Shi, Quanming; Blonk, Iris; Sonnenberg, Arnoud

    2010-01-01

    Cell surface receptors integrate chemical and mechanical cues to regulate a wide range of biological processes. Integrin complexes are the mechanotransducers between the extracellular matrix and the actomyosin cytoskeleton. By analogy, cadherin complexes may function as mechanosensors at cell–cell junctions, but this capacity of cadherins has not been directly demonstrated. Furthermore, the molecular composition of the link between E-cadherin and actin, which is needed to sustain such a function, is unresolved. In this study, we describe nanomechanical measurements demonstrating that E-cadherin complexes are functional mechanosensors that transmit force between F-actin and E-cadherin. Imaging experiments reveal that intercellular forces coincide with vinculin accumulation at actin-anchored cadherin adhesions, and nanomechanical measurements show that vinculin potentiates the E-cadherin mechanosensory response. These investigations directly demonstrate the mechanosensory capacity of the E-cadherin complex and identify a novel function for vinculin at cell–cell junctions. These findings have implications for barrier function, morphogenesis, cell migration, and invasion and may extend to all soft tissues in which classical cadherins regulate cell–cell adhesion. PMID:20584916

  1. Direct role of interrod spacing in mediating cell adhesion on Sr-HA nanorod-patterned coatings

    PubMed Central

    Zhou, Jianhong; Han, Yong; Lu, Shemin

    2014-01-01

    The process in which nanostructured surfaces mediate cell adhesion is not well understood, and may be indirect (via protein adsorption) or direct. We prepared Sr-doped hydroxyapatite (Sr1-HA) 3D nanorods (with interrod spacing of 67.3±3.8, 95.7±4.2, and 136.8±8.7 nm) and 2D nanogranulate patterned coatings on titanium. Employing the coatings under the same surface chemistry and roughness, we investigated the indirect/direct role of Sr1-HA nanotopographies in the regulation of osteoblast adhesion in both serum-free and serum-containing Dulbecco’s Modified Eagle/Ham’s Medium. The results reveal that the number of adherent cells, cell-secreted anchoring proteins (fibronectin, vitronectin, and collagen), vinculin and focal adhesion kinase (FAK) denoted focal adhesion (FA) contact, and gene expression of vinculin, FAK, and integrin subunits (α2, α5, αv, β1, and β3), undergo significant changes in the inter-nanorod spacing and dimensionality of Sr1-HA nanotopographies in the absence of serum; they are significantly enhanced on the <96 nm spaced nanorods and more pronounced with decreasing interrod spacing. However, they are inhibited on the >96 nm spaced nanorods compared to nanogranulated 2D topography. Although the adsorption of fibronectin and vitronectin from serum are higher on 136.8±8.7 nm spaced nanorod patterned topography than nanogranulated topography, cell adhesion is inhibited on the former compared to the latter in the presence of serum, further suggesting that reduced cell adhesion is independent of protein adsorption. It is clearly indicated that 3D nanotopography can directly modulate cell adhesion by regulating integrins, which subsequently mediate anchoring proteins’ secretion and FA formation rather than via protein adsorption. PMID:24634585

  2. Molecular Architecture of a Complex between an Adhesion Protein from the Malaria Parasite and Intracellular Adhesion Molecule 1*

    PubMed Central

    Brown, Alan; Turner, Louise; Christoffersen, Stig; Andrews, Katrina A.; Szestak, Tadge; Zhao, Yuguang; Larsen, Sine; Craig, Alister G.; Higgins, Matthew K.

    2013-01-01

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria. The PfEMP1 family of adhesive proteins is responsible for this sequestration by mediating interactions with diverse human ligands. In addition, as the primary targets of acquired, protective immunity, the PfEMP1s are potential vaccine candidates. PfEMP1s contain large extracellular ectodomains made from CIDR (cysteine-rich interdomain regions) and DBL (Duffy-binding-like) domains and show extensive variation in sequence, size, and domain organization. Here we use biophysical methods to characterize the entire ∼300-kDa ectodomain from IT4VAR13, a protein that interacts with the host receptor, intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLβ domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1 ectodomain in complex with its ligand. They show that it combines a modular domain arrangement consisting of individual ligand binding domains, with a defined higher order architecture that exposes the ICAM-1 binding surface to allow adhesion. PMID:23297413

  3. Protein Recovery from Secondary Paper Sludge and Its Potential Use as Wood Adhesive

    NASA Astrophysics Data System (ADS)

    Pervaiz, Muhammad

    Secondary sludge is an essential part of biosolids produced through the waste treatment plant of paper mills. Globally paper mills generate around 3.0 million ton of biosolids and in the absence of beneficial applications, the handling and disposal of this residual biomass poses a serious environmental and economic proposition. Secondary paper sludges were investigated in this work for recovery of proteins and their use as wood adhesive. After identifying extracellular polymeric substances as adhesion pre-cursors through analytical techniques, studies were carried out to optimize protein recovery from SS and its comprehensive characterization. A modified physicochemical protocol was developed to recover protein from secondary sludge in substantial quantities. The combined effect of French press and sonication techniques followed by alkali treatment resulted in significant improvement of 44% in the yield of solubilized protein compared to chemical methods. The characterization studies confirmed the presence of common amino acids in recovered sludge protein in significant quantities and heavy metal concentration was reduced after recovery process. The sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed the presence of both low and high molecular weight protein fractions in recovered sludge protein. After establishing the proof-of-concept in the use of recovered sludge protein as wood adhesive, the bonding mechanism of protein adhesives with cellulose substrate was further elucidated in a complementary protein-modification study involving soy protein isolate and its glycinin fractions. The results of this study validated the prevailing bonding theories by proving that surface wetting, protein structure, and type of wood play important role in determining final adhesive strength. Recovered sludge protein was also investigated for its compatibility to formulate hybrid adhesive blends with formaldehyde and bio-based polymers. Apart from chemical

  4. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces.

    PubMed

    Xu, Li-Chong; Siedlecki, Christopher A

    2007-08-01

    Atomic force microscopy (AFM) was used to directly measure the adhesion forces between three test proteins and low density polyethylene (LDPE) surfaces treated by glow discharge plasma to yield various levels of water wettability. The adhesion of proteins to the LDPE substrates showed a step dependence on the wettability of surfaces as measured by the water contact angle (theta). For LDPE surfaces with theta> approximately 60-65 degrees , stronger adhesion forces were observed for bovine serum albumin, fibrinogen and human FXII than for the surfaces with theta<60 degrees . Smaller adhesion forces were observed for FXII than for the other two proteins on all surfaces although trends were identical. Increasing the contact time from 0 to 50s for each protein-surface combination increased the adhesion force regardless of surface wettability. Time varying adhesion data was fit to an exponential model and free energies of protein unfolding were calculated. This data, viewed in light of previously published studies, suggests a 2-step model of protein denaturation, an early stage on the order of seconds to minutes where the outer surface of the protein interacts with the substrate and a second stage involving movement of hydrophobic amino acids from the protein core to the protein/surface interface. Impact statement: The work described in this manuscript shows a stark transition between protein adherent and protein non-adherent materials in the range of water contact angles 60-65 degrees , consistent with known changes in protein adsorption and activity. Time-dependent changes in adhesion force were used to calculate unfolding energies relating to protein-surface interactions. This analysis provides justification for a 2-step model of protein denaturation on surfaces. PMID:17466368

  5. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review

    PubMed Central

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-01-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

  6. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review.

    PubMed

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-02-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

  7. Embedded proteins and sacrificial bonds provide the strong adhesive properties of gastroliths

    NASA Astrophysics Data System (ADS)

    Thormann, Esben; MizunoPresent Address: Nihon L'Oreal, Research; Innovation Center, 3-2-1 Sakado, Takatsu, Kawasaki, Kanagawa, Japan., Hiroyasu; Jansson, Kjell; Hedin, Niklas; Fernández, M. Soledad; Arias, José Luis; Rutland, Mark W.; PaiPresent Address: CenterFunctional Nanomaterials, Brookhaven National Laboratory, 735 Brookhaven Avenue, Upton, New York 11973., Ranjith Krishna; Bergström, Lennart

    2012-06-01

    The adhesive properties of gastroliths from a freshwater crayfish (Cherax quadricarinatus) were quantified by colloidal probe atomic force microscopy (AFM) between heavily demineralized gastrolith microparticles and gastrolith substrates of different composition. Combined AFM and transmission electron microscopy studies demonstrated that the sequential detachment and large adhesion energies that characterise the adhesive behaviour of a native gastrolith substrate are dominated by sacrificial bonds between chitin fibres and between chitin fibres and CaCO3. The sacrificial bonds were shown to be strongly related to the gastrolith proteins and when the majority of these proteins were removed by ethylenediaminetetraacetic acid (EDTA), the sequential detachment disappeared and the adhesive energy was reduced by more than two orders of magnitude.The adhesive properties of gastroliths from a freshwater crayfish (Cherax quadricarinatus) were quantified by colloidal probe atomic force microscopy (AFM) between heavily demineralized gastrolith microparticles and gastrolith substrates of different composition. Combined AFM and transmission electron microscopy studies demonstrated that the sequential detachment and large adhesion energies that characterise the adhesive behaviour of a native gastrolith substrate are dominated by sacrificial bonds between chitin fibres and between chitin fibres and CaCO3. The sacrificial bonds were shown to be strongly related to the gastrolith proteins and when the majority of these proteins were removed by ethylenediaminetetraacetic acid (EDTA), the sequential detachment disappeared and the adhesive energy was reduced by more than two orders of magnitude. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30536d

  8. Induction of focal adhesions and motility in Drosophila S2 cells.

    PubMed

    Ribeiro, Susana A; D'Ambrosio, Michael V; Vale, Ronald D

    2014-12-01

    Focal adhesions are dynamic structures that interact with the extracellular matrix on the cell exterior and actin filaments on the cell interior, enabling cells to adhere and crawl along surfaces. We describe a system for inducing the formation of focal adhesions in normally non-ECM-adherent, nonmotile Drosophila S2 cells. These focal adhesions contain the expected molecular markers such as talin, vinculin, and p130Cas, and they require talin for their formation. The S2 cells with induced focal adhesions also display a nonpolarized form of motility on vitronectin-coated substrates. Consistent with findings in mammalian cells, the degree of motility can be tuned by changing the stiffness of the substrate and was increased after the depletion of PAK3, a p21-activated kinase. A subset of nonmotile, nonpolarized cells also exhibited focal adhesions that rapidly assembled and disassembled around the cell perimeter. Such cooperative and dynamic fluctuations of focal adhesions were decreased by RNA interference (RNAi) depletion of myosin II and focal adhesion kinase, suggesting that this behavior requires force and focal adhesion maturation. These results demonstrate that S2 cells, a cell line that is well studied for cytoskeletal dynamics and readily amenable to protein manipulation by RNAi, can be used to study the assembly and dynamics of focal adhesions and mechanosensitive cell motility.

  9. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics.

    PubMed

    Webster, T J; Ergun, C; Doremus, R H; Siegel, R W; Bizios, R

    2000-09-01

    Osteoblast, fibroblast, and endothelial cell adhesion on nanophase (that is, materials with grain sizes less than 100 nm) alumina, titania, and hydroxyapatite (HA) was investigated using in vitro cellular models. Osteoblast adhesion was significantly (p < 0.01) greater after 4 h on nanophase alumina, titania, and HA than it was on conventional formulations of the same ceramics. In contrast, compared to conventional alumina, titania, and HA, after 4 h fibroblast adhesion was significantly (p < 0.01) less on nanophase ceramics. Examination of the underlying mechanism(s) of cell adhesion on nanophase ceramics revealed that these ceramics adsorbed significantly (p < 0.01) greater quantities of vitronectin, which, subsequently, may have contributed to the observed select enhanced adhesion of osteoblasts. Select enhanced osteoblast adhesion was independent of surface chemistry and material phase but was dependent on the surface topography (specifically on grain and pore size) of nanophase ceramics. The capability of synthesizing and processing nanomaterials with tailored (through, for example, specific grain and pore size) structures and topographies to control select subsequent cell functions provides the possibility of designing the novel proactive biomaterials (that is, materials that elicit specific, timely, and desirable responses from surrounding cells and tissues) necessary for improved implant efficacy.

  10. Cloning and expression of recombinant adhesive protein Mefp-1 of the blue mussel, Mytilus edulis

    DOEpatents

    Silverman, Heather G.; Roberto, Francisco F.

    2006-01-17

    The present invention comprises a Mytilus edulis cDNA sequenc having a nucleotide sequence that encodes for the Mytilus edulis foot protein-1 (Mefp-1), an example of a mollusk foot protein. Mefp-1 is an integral component of the blue mussels' adhesive protein complex, which allows the mussel to attach to objects underwater. The isolation, purification and sequencing of the Mefp-1 gene will allow researchers to produce Mefp-1 protein using genetic engineering techniques. The discovery of Mefp-1 gene sequence will also allow scientists to better understand how the blue mussel creates its waterproof adhesive protein complex.

  11. Cloning and expression of recombinant adhesive protein MEFP-2 of the blue mussel, Mytilus edulis

    DOEpatents

    Silverman, Heather G.; Roberto, Francisco F.

    2006-02-07

    The present invention includes a Mytilus edulis cDNA having a nucleotide sequence that encodes for the Mytilus edulis foot protein-2 (Mefp-2), an example of a mollusk foot protein. Mefp-2 is an integral component of the blue mussels' adhesive protein complex, which allows the mussel to attach to objects underwater. The isolation, purification and sequencing of the Mefp-2 gene will allow researchers to produce Mefp-2 protein using genetic engineering techniques. The discovery of Mefp-2 gene sequences will also allow scientists to better understand how the blue mussel creates its waterproof adhesive protein complex.

  12. Expression of Functional Recombinant Mussel Adhesive Protein Mgfp-5 in Escherichia coli

    PubMed Central

    Hwang, Dong Soo; Yoo, Hyo Jin; Jun, Jong Hyub; Moon, Won Kyu; Cha, Hyung Joon

    2004-01-01

    Mussel adhesive proteins have been suggested as a basis for environmentally friendly adhesives for use in aqueous conditions and in medicine. However, attempts to produce functional and economical recombinant mussel adhesive proteins (mainly foot protein type 1) in several systems have failed. Here, the cDNA coding for Mytilus galloprovincialis foot protein type 5 (Mgfp-5) was isolated for the first time. Using this cDNA, we produced a recombinant Mgfp-5 fused with a hexahistidine affinity ligand, which was expressed in a soluble form in Escherichia coli and was highly purified using affinity chromatography. The adhesive properties of purified recombinant Mgfp-5 were compared with the commercial extracted mussel adhesive Cell-Tak by investigating adhesion force using atomic force microscopy, material surface coating, and quartz crystal microbalance. Even though further macroscale assays are needed, these microscale assays showed that recombinant Mgfp-5 has significant adhesive ability and may be useful as a bioadhesive in medical or underwater environments. PMID:15184131

  13. Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity

    PubMed Central

    1994-01-01

    The molecular mechanisms whereby hyaluronan (HA) stimulates cell motility was investigated in a C-H-ras transformed 10T 1/2 fibroblast cell line (C3). A significant (p < 0.001) stimulation of C3 cell motility with HA (10 ng/ml) was accompanied by an increase in protein tyrosine phosphorylation as detected by anti-phosphotyrosine antibodies using immunoblot analysis and immunofluorescence staining of cells. Tyrosine phosphorylation of several proteins was found to be both rapid and transient with phosphorylation occurring within 1 min of HA addition and dissipating below control levels 10-15 min later. These responses were also elicited by an antibody generated against a peptide sequence within the HA receptor RHAMM. Treatment of cells with tyrosine kinase inhibitors (genistein, 10 micrograms/ml or herbimycin A, 0.5 micrograms/ml) or microinjection of anti-phosphotyrosine antibodies inhibited the transient protein tyrosine phosphorylation in response to HA as well as prevented HA stimulation of cell motility. To determine a link between HA-stimulated tyrosine phosphorylation and the resulting cell locomotion, cytoskeletal reorganization was examined in C3 cells plated on fibronectin and treated with HA or anti-RHAMM antibody. These agents caused a rapid assembly and disassembly of focal adhesions as revealed by immunofluorescent localization of vinculin. The time course with which HA and antibody induced focal adhesion turnover exactly paralleled the induction of transient protein tyrosine phosphorylation. In addition, phosphotyrosine staining colocalized with vinculin within structures in the lamellapodia of these cells. Notably, the focal adhesion kinase, pp125FAK, was rapidly phosphorylated and dephosphorylated after HA stimulation. These results suggest that HA stimulates locomotion via a rapid and transient protein tyrosine kinase signaling event mediated by RHAMM. They also provide a possible molecular basis for focal adhesion turnover, a process that is

  14. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    SciTech Connect

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier; Noppe, Gauthier; Horman, Sandrine; Morel, Nicole

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  15. Role of surface layer collagen binding protein from indigenous Lactobacillus plantarum 91 in adhesion and its anti-adhesion potential against gut pathogen.

    PubMed

    Yadav, Ashok Kumar; Tyagi, Ashish; Kaushik, Jai Kumar; Saklani, Asha Chandola; Grover, Sunita; Batish, Virender Kumar

    2013-12-14

    Human feacal isolates were ascertain as genus Lactobacillus using specific primer LbLMA1/R16-1 and further identified as Lactobacillus plantarum with species specific primers Lpl-3/Lpl-2. 25 L. plantarum strains were further assessed for hydrophobicity following the microbial adhesion to hydrocarbons (MATH) method and colonization potentials based on their adherence to immobilized human collagen type-1. Surface proteins were isolated from selected L. plantarum 91(Lp91) strain. The purified collagen binding protein (Cbp) protein was assessed for its anti-adhesion activity against enteric Escherichia coli 0157:H7 pathogen on immobilized collagen. Four L. plantarum strains displayed high degree of hydrophobicity and significant adhesion to collagen. A 72 kDa protein was purified which reduced 59.71% adhesion of E. coli 0157:H7 on immobilized collagen as compared to control well during adhesion assay. Cbp protein is the major influencing factor in inhibition of E. coli 0157:H7 adhesion with extracellular matrix (ECM) components. Hydrophobicity and adhesion potential are closely linked attributes precipitating in better colonization potential of the lactobacillus strains. Cbp is substantiated as a crucial surface protein contributing in adhesion of lactobacillus strains. The study can very well be the platform for commercialization of indigenous probiotic strain once their functional attributes are clinically explored.

  16. Image Analysis for the Quantitative Comparison of Stress Fibers and Focal Adhesions

    PubMed Central

    Elosegui-Artola, Alberto; Jorge-Peñas, Alvaro; Moreno-Arotzena, Oihana; Oregi, Amaia; Lasa, Marta; García-Aznar, José Manuel; De Juan-Pardo, Elena M.; Aldabe, Rafael

    2014-01-01

    Actin stress fibers (SFs) detect and transmit forces to the extracellular matrix through focal adhesions (FAs), and molecules in this pathway determine cellular behavior. Here, we designed two different computational tools to quantify actin SFs and the distribution of actin cytoskeletal proteins within a normalized cellular morphology. Moreover, a systematic cell response comparison between the control cells and those with impaired actin cytoskeleton polymerization was performed to demonstrate the reliability of the tools. Indeed, a variety of proteins that were present within the string beginning at the focal adhesions (vinculin) up to the actin SFs contraction (non-muscle myosin II (NMMII)) were analyzed. Finally, the software used allows for the quantification of the SFs based on the relative positions of FAs. Therefore, it provides a better insight into the cell mechanics and broadens the knowledge of the nature of SFs. PMID:25269086

  17. Strong underwater adhesives made by self-assembling multi-protein nanofibres.

    PubMed

    Zhong, Chao; Gurry, Thomas; Cheng, Allen A; Downey, Jordan; Deng, Zhengtao; Stultz, Collin M; Lu, Timothy K

    2014-10-01

    Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly and structure-function relationships of these natural amyloid fibres remains limited. Thus, designing biomimetic amyloid-based adhesives remains challenging. Here, we report strong and multi-functional underwater adhesives obtained from fusing mussel foot proteins (Mfps) of Mytilus galloprovincialis with CsgA proteins, the major subunit of Escherichia coli amyloid curli fibres. These hybrid molecular materials hierarchically self-assemble into higher-order structures, in which, according to molecular dynamics simulations, disordered adhesive Mfp domains are exposed on the exterior of amyloid cores formed by CsgA. Our fibres have an underwater adhesion energy approaching 20.9 mJ m(-2), which is 1.5 times greater than the maximum of bio-inspired and bio-derived protein-based underwater adhesives reported thus far. Moreover, they outperform Mfps or curli fibres taken on their own and exhibit better tolerance to auto-oxidation than Mfps at pH ≥ 7.0.

  18. Strong underwater adhesives made by self-assembling multi-protein nanofibres

    NASA Astrophysics Data System (ADS)

    Zhong, Chao; Gurry, Thomas; Cheng, Allen A.; Downey, Jordan; Deng, Zhengtao; Stultz, Collin M.; Lu, Timothy K.

    2014-10-01

    Many natural underwater adhesives harness hierarchically assembled amyloid nanostructures to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Despite recent advances, our understanding of the molecular design, self-assembly and structure-function relationships of these natural amyloid fibres remains limited. Thus, designing biomimetic amyloid-based adhesives remains challenging. Here, we report strong and multi-functional underwater adhesives obtained from fusing mussel foot proteins (Mfps) of Mytilus galloprovincialis with CsgA proteins, the major subunit of Escherichia coli amyloid curli fibres. These hybrid molecular materials hierarchically self-assemble into higher-order structures, in which, according to molecular dynamics simulations, disordered adhesive Mfp domains are exposed on the exterior of amyloid cores formed by CsgA. Our fibres have an underwater adhesion energy approaching 20.9 mJ m-2, which is 1.5 times greater than the maximum of bio-inspired and bio-derived protein-based underwater adhesives reported thus far. Moreover, they outperform Mfps or curli fibres taken on their own and exhibit better tolerance to auto-oxidation than Mfps at pH ≥ 7.0.

  19. Adhesive proteins of stalked and acorn barnacles display homology with low sequence similarities.

    PubMed

    Jonker, Jaimie-Leigh; Abram, Florence; Pires, Elisabete; Varela Coelho, Ana; Grunwald, Ingo; Power, Anne Marie

    2014-01-01

    Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins 'sticky' has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the acorn barnacles (order Sessilia) by providing the first protein analysis of a stalked barnacle adhesive, Lepas anatifera (order Lepadiformes). It was possible to separate the L. anatifera adhesive into at least 10 protein bands using SDS-PAGE. Intense bands were present at approximately 30, 70, 90 and 110 kilodaltons (kDa). Mass spectrometry for protein identification was followed by de novo sequencing which detected 52 peptides of 7-16 amino acids in length. None of the peptides matched published or unpublished transcriptome sequences, but some amino acid sequence similarity was apparent between L. anatifera and closely-related Dosima fascicularis. Antibodies against two acorn barnacle proteins (ab-cp-52k and ab-cp-68k) showed cross-reactivity in the adhesive glands of L. anatifera. We also analysed the similarity of adhesive proteins across several barnacle taxa, including Pollicipes pollicipes (a stalked barnacle in the order Scalpelliformes). Sequence alignment of published expressed sequence tags clearly indicated that P. pollicipes possesses homologues for the 19 kDa and 100 kDa proteins in acorn barnacles. Homology aside, sequence similarity in amino acid and gene sequences tended to decline as taxonomic distance increased, with minimum similarities of 18-26%, depending on the gene. The results indicate that some adhesive proteins (e.g. 100 kDa) are more conserved within barnacles than others (20 kDa).

  20. Adhesive Proteins of Stalked and Acorn Barnacles Display Homology with Low Sequence Similarities

    PubMed Central

    Jonker, Jaimie-Leigh; Abram, Florence; Pires, Elisabete; Varela Coelho, Ana; Grunwald, Ingo; Power, Anne Marie

    2014-01-01

    Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins ‘sticky’ has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the acorn barnacles (order Sessilia) by providing the first protein analysis of a stalked barnacle adhesive, Lepas anatifera (order Lepadiformes). It was possible to separate the L. anatifera adhesive into at least 10 protein bands using SDS-PAGE. Intense bands were present at approximately 30, 70, 90 and 110 kilodaltons (kDa). Mass spectrometry for protein identification was followed by de novo sequencing which detected 52 peptides of 7–16 amino acids in length. None of the peptides matched published or unpublished transcriptome sequences, but some amino acid sequence similarity was apparent between L. anatifera and closely-related Dosima fascicularis. Antibodies against two acorn barnacle proteins (ab-cp-52k and ab-cp-68k) showed cross-reactivity in the adhesive glands of L. anatifera. We also analysed the similarity of adhesive proteins across several barnacle taxa, including Pollicipes pollicipes (a stalked barnacle in the order Scalpelliformes). Sequence alignment of published expressed sequence tags clearly indicated that P. pollicipes possesses homologues for the 19 kDa and 100 kDa proteins in acorn barnacles. Homology aside, sequence similarity in amino acid and gene sequences tended to decline as taxonomic distance increased, with minimum similarities of 18–26%, depending on the gene. The results indicate that some adhesive proteins (e.g. 100 kDa) are more conserved within barnacles than others (20 kDa). PMID:25295513

  1. Evidence for an actin-containing cytoplasmic precursor of the focal contact and the timing of incorporation of vinculin at the focal contact

    PubMed Central

    1987-01-01

    The distribution of F-actin and vinculin in chicken embryo fibroblasts has been examined by nitrobenzoxadiazol (NBD)-phallacidin and indirect immunofluorescent staining, respectively, and related to the process of focal contact formation by recording the motility of the cell with differential interference contrast (DIC) or interference reflection microscopy (IRM) before fixation for staining. Linear cytoplasmic precursors of the focal contact, present within unattached lamellipodia, stained intensely with NBD-phallacidin. Without exception new focal contacts, 8 s and older at fixation, were associated with either a longer F-actin rib in the lamellipodium or, in older contacts, an F-actin structure of similar dimensions to the contact. This change in distribution of F-actin over the new contacts was accounted for by the segregation of the structural precursor into an attached part over the focal contact and a separate motile part. These results show that F- actin accumulates in the precursor adjacent to areas of the membrane competent to form the focal contact, and are consistent with the interpretation that this F-actin contributes to the initial adhesion plaque associated with the new contact. Vinculin was essentially absent from motile lamellipodia, showed no preferential association with F- actin rich precursors or very young focal contacts, but accumulated over new contacts during a 90-s period. Therefore, the association of F- actin with the membrane that precedes and persists in the initial focal contact is independent of vinculin, and the role of vinculin in development of the focal contact remains unclear. PMID:3121637

  2. Plant protein interactions studied using AFM force spectroscopy: nanomechanical and adhesion properties.

    PubMed

    Fahs, Ahmad; Louarn, Guy

    2013-07-21

    The present work was focused on the nanomechanical and adhesion properties of the napin (2S albumin) and cruciferin (12S globulin) rapeseed (Brassica napus L.) proteins, respectively, a low and high molecular weight seed protein. Using chemically modified AFM tips, force spectroscopy experiments demonstrated notable differences in the tip-protein interaction strength with regard to the nature of the protein and pH of the aqueous environment. The results clearly underline the role of residence time and electrostatic interactions in the protein-protein adhesion force. Although the nanomechanical experiments concerned more than a single molecule, unfolding length and force characteristics of the rapeseed proteins have been statistically found to be sensitive to the structural properties of the protein. This study provides insight into the characterization of rapeseed proteins and then a better knowledge of their interaction and assembling at the nanoscale range.

  3. Plant protein interactions studied using AFM force spectroscopy: nanomechanical and adhesion properties.

    PubMed

    Fahs, Ahmad; Louarn, Guy

    2013-07-21

    The present work was focused on the nanomechanical and adhesion properties of the napin (2S albumin) and cruciferin (12S globulin) rapeseed (Brassica napus L.) proteins, respectively, a low and high molecular weight seed protein. Using chemically modified AFM tips, force spectroscopy experiments demonstrated notable differences in the tip-protein interaction strength with regard to the nature of the protein and pH of the aqueous environment. The results clearly underline the role of residence time and electrostatic interactions in the protein-protein adhesion force. Although the nanomechanical experiments concerned more than a single molecule, unfolding length and force characteristics of the rapeseed proteins have been statistically found to be sensitive to the structural properties of the protein. This study provides insight into the characterization of rapeseed proteins and then a better knowledge of their interaction and assembling at the nanoscale range. PMID:23732983

  4. Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae.

    PubMed

    Gohad, Neeraj V; Aldred, Nick; Hartshorn, Christopher M; Jong Lee, Young; Cicerone, Marcus T; Orihuela, Beatriz; Clare, Anthony S; Rittschof, Dan; Mount, Andrew S

    2014-07-11

    Thoracian barnacles rely heavily upon their ability to adhere to surfaces and are environmentally and economically important as biofouling pests. Their adhesives have unique attributes that define them as targets for bio-inspired adhesive development. With the aid of multi-photon and broadband coherent anti-Stokes Raman scattering microscopies, we report that the larval adhesive of barnacle cyprids is a bi-phasic system containing lipids and phosphoproteins, working synergistically to maximize adhesion to diverse surfaces under hostile conditions. Lipids, secreted first, possibly displace water from the surface interface creating a conducive environment for introduction of phosphoproteins while simultaneously modulating the spreading of the protein phase and protecting the nascent adhesive plaque from bacterial biodegradation. The two distinct phases are contained within two different granules in the cyprid cement glands, implying far greater complexity than previously recognized. Knowledge of the lipidic contribution will hopefully inspire development of novel synthetic bioadhesives and environmentally benign antifouling coatings.

  5. Anionic deep cavitands enable the adhesion of unmodified proteins at a membrane bilayer.

    PubMed

    Ghang, Yoo-Jin; Perez, Lizeth; Morgan, Melissa A; Si, Fang; Hamdy, Omar M; Beecher, Consuelo N; Larive, Cynthia K; Julian, Ryan R; Zhong, Wenwan; Cheng, Quan; Hooley, Richard J

    2014-12-28

    An anionic self-folding deep cavitand is capable of immobilizing unmodified proteins and enzymes at a supported lipid bilayer interface, providing a simple, soft bioreactive surface that allows enzymatic function under mild conditions. The adhesion is based on complementary charge interactions, and the hosts are capable of binding enzymes such as trypsin at the bilayer interface: the catalytic activity is retained upon adhesion, allowing selective reactions to be performed at the membrane surface. PMID:25366572

  6. Effects of ECM Protein Mimetics on Adhesion and Proliferation of Chorion Derived Mesenchymal Stem Cells

    PubMed Central

    Kim, Ji-Hyun; Jekarl, Dong Wook; Kim, Myungshin; Oh, Eun-Jee; Kim, Yonggoo; Park, In Yang; Shin, Jong Chul

    2014-01-01

    Background: We evaluated the effects of fibronectin, collagen, cadherin, and laminin based extracellular matrix (ECM) protein mimetics coated with mussel derived adhesive protein (MAP) on adhesion and proliferation of chorionic mesenchymal stem cells (cMSCs). Methods: Human placental chorionic tissues from term third-trimester pregnancies (n=3) were used. The cMSCs were cultured on rationally designed ECM protein mimetics coated with MAP on plastic surfaces with the addition of reduced fetal bovine serum (0.5%, 1% FBS). Adhesion capabilities were monitored by a real time cell analysis system (RTCA) utilizing an impedance method. Proliferation capabilities were monitored by RTCA and MTS assay. Results: Of the ECM protein mimetics tested, GRGDSP(FN) coated surfaces exhibited the highest adhesion and proliferation capabilities on RTCA at FBS concentration of 0.5% and 1%. When 0.5% FBS was added to ECM protein mimetics during the MTS assay, GRGDSP(FN), REDV(FN), and collagen mimetics, GPKGAAGEPGKP(ColI) showed higher cMSCs proliferation compared with the control. When 1% FBS was added, GRGDSP(FN) and TAIPSCPEGTVPLYS(ColIV) showed significant cMSCs proliferation capacity. Conclusions: Fibronectin mimetics, GRGDSP(FN) amino acid sequence showed the highest adhesion and proliferation capabilities. In addition, results from RTCA assessment of cell viability correlated well with the tetrazolium-based MTS assay. PMID:24516355

  7. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    PubMed

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  8. Wheat proteins enhance stability and function of adhesion molecules in cryopreserved hepatocytes.

    PubMed

    Grondin, Mélanie; Hamel, Francine; Averill-Bates, Diana A; Sarhan, Fathey

    2009-01-01

    Cryopreserved hepatocytes with good hepatospecific functions upon thawing are important for clinical transplantation and for in vitro drug toxicity testing. However, cryopreservation reduces viability and certain hepatospecific functions, but the most pronounced change is diminished attachment efficiency of hepatocytes. Adhesion of cells to the extracellular matrix and cell-cell contacts are crucial for many aspects of cellular function. These processes are partly mediated and controlled by cellular adhesion molecules. The mechanisms responsible for reduced attachment efficiency of cryopreserved hepatocytes are not well understood. To address this question, we investigated the effect of a new cryopreservation procedure, using wheat proteins (WPs) or mixtures of recombinant forms of wheat freezing tolerance-associated proteins, on the stability of three important adhesion molecules (beta1-integrin, E-cadherin, and beta-catenin). Immunoblot analyses revealed that the levels of beta1-integrin, E-cadherin, and beta-catenin were much lower in cryopreserved rat hepatocytes, when compared to fresh cells. Protein expression of the adhesion molecules was generally lower in cells cryopreserved with DMSO, compared to WPs. Moreover, the stability of the adhesion molecules was not affected by cryopreservation to the same degree, with more pronounced decreases occurring for beta1-integrin (62-74%) > beta-catenin (51-58%) > E-cadherin (21-37%). However, when hepatocytes were cryopreserved with partially purified WPs (SulWPE, AcWPE) or with mixtures of recombinant wheat proteins, there was a clear protective effect against the loss of protein expression of beta1-integrin, E-cadherin, and beta-catenin. Protein expression was only 10-20% lower than that observed in fresh hepatocytes. These findings clearly demonstrate that WPs, and more particularly, partially purified WPs and recombinant wheat proteins, were more efficient for cryopreservation of rat hepatocytes by maintaining good

  9. Diblock Copolymer Foams with Adhesive Nano-domains Promote Stem Cell Differentiation

    NASA Astrophysics Data System (ADS)

    Engler, Adam

    2012-02-01

    Adhesions play an important role in cell behavior, including differentiation. Substrates are typically modified with homogeneous protein coatings; extracellular matrices in vivo provide heterogeneous adhesive sites. To mimic adhesive heterogeneity, internal phase emulsion foams were polymerized with polystyrene-polyacrylic acid (PAA) and polystyrene-polyethylene oxide (PEO) to determine if interface de-mixing would form patch-like surfaces. PEO/PAA mole ratios were confirmed by XPS and water contact angle while spatial distribution was measured by chemical force spectroscopy. This method confirmed the presence of patch-like PAA domains. Protein differentially adsorbs on PEO and PAA, so adsorption on foam mixtures was copolymer ratio dependent. Bone marrow-derived mesenchymal stem cell (BMSC) adhesion was ratio dependent, but the highest density and vinculin expression was observed for 75PEO/25PAA. BMSCs appeared to change lineage expression the most on this composition, suggesting that this foam, which exhibits small adhesive PAA domains, may be more biomemetic than uniformally adhesive scaffolds, e.g. 0PEO/100PAA.

  10. Rapid functional analysis in Xenopus oocytes of Po protein adhesive interactions.

    PubMed

    Yoshida, M; Colma, D R

    2001-06-01

    We have developed a coupled Xenopus oocyte expression system for evaluating the functional effects of mutations in known or suspected adhesion molecules, which allows for a very rapid assessment of intercellular adhesion. As a model protein, we first used Protein zero (Po), an adhesion molecule that mediates self-adhesion of the Schwann cell plasma membrane to form compact myelin in the mammalian PNS. A wide variety of mutations in Po cause certain human peripheral neuropathies, such as the Charcot-Marie-Tooth disease (CMT) type 1B and Dejerine-Sottas syndrome (DSS). After wild-type Po mRNA is injected, the protein is synthesized and correctly targeted to the oocyte cell surface. When two oocytes are paired, wild-type Po redistributes and concentrates at the cell-cell apposition region, and by electron microscopy, the oocyte pairs show close cell-cell appositions and are devoid of the microvilli that are observed in uninjected oocyte pairs. These are hallmark features of highly adhesive cell:cell interfaces. Several point mutations in Po were engineered, corresponding to the molecular defects in the CMT type 1B or DSS. The proteins encoded by these mutations reached the cell surface but failed to concentrate at the oocyte interface. Po carrying a point mutation that is found in DSS is not targeted on the plasma membrane and fail to accumulate at the cell-cell contact site. PMID:11519730

  11. Intraperitoneal administration of activated protein C prevents postsurgical adhesion band formation.

    PubMed

    Dinarvand, Peyman; Hassanian, Seyed Mahdi; Weiler, Hartmut; Rezaie, Alireza R

    2015-02-19

    Postsurgical peritoneal adhesion bands are the most important causes of intestinal obstruction, pelvic pain, and female infertility. In this study, we used a mouse model of adhesion and compared the protective effect of activated protein C (APC) to that of the Food and Drug Administration-approved antiadhesion agent, sodium hyaluronate/carboxymethylcellulose (Seprafilm) by intraperitoneal administration of either APC or Seprafilm to experimental animals. Pathological adhesion bands were graded on day 7, and peritoneal fluid concentrations of tissue plasminogen activator (tPA), d-dimer, thrombin-antithrombin complex, and cytokines (IL-1β, IL-6, interferon-γ, tumor necrosis factor-α, transforming growth factor-β1) were evaluated. Inflammation scores were also measured based on histologic data obtained from peritoneal tissues. Relative to Seprafilm, intraperitoneal administration of human APC led to significantly higher reduction of postsurgical adhesion bands. Moreover, a markedly lower inflammation score was obtained in the adhesive tissues of the APC-treated group, which correlated with significantly reduced peritoneal concentrations of proinflammatory cytokines and an elevated tPA level. Further studies using variants of human APC with or without protease-activated receptor 1 (PAR1) signaling function and mutant mice deficient for either endothelial protein C receptor (EPCR) or PAR1 revealed that the EPCR-dependent signaling activity of APC is primarily responsible for its protective activity in this model. These results suggest APC has therapeutic potential for preventing postsurgical adhesion bands. PMID:25575539

  12. Secreted Frizzled-related protein 1 (sFRP1) regulates spermatid adhesion in the testis via dephosphorylation of focal adhesion kinase and the nectin-3 adhesion protein complex

    PubMed Central

    Wong, Elissa W. P.; Lee, Will M.; Cheng, C. Yan

    2013-01-01

    Development of spermatozoa in adult mammalian testis during spermatogenesis involves extensive cell migration and differentiation. Spermatogonia that reside at the basal compartment of the seminiferous epithelium differentiate into more advanced germ cell types that migrate toward the apical compartment until elongated spermatids are released into the tubule lumen during spermiation. Apical ectoplasmic specialization (ES; a testis-specific anchoring junction) is the only cell junction that anchors and maintains the polarity of elongating/elongated spermatids (step 8–19 spermatids) in the epithelium. Little is known regarding the signaling pathways that trigger the disassembly of the apical ES at spermiation. Here, we show that secreted Frizzled-related protein 1 (sFRP1), a putative tumor suppressor gene that is frequently down-regulated in multiple carcinomas, is a crucial regulatory protein for spermiation. The expression of sFRP1 is tightly regulated in adult rat testis to control spermatid adhesion and sperm release at spermiation. Down-regulation of sFRP1 during testicular development was found to coincide with the onset of the first wave of spermiation at approximately age 45 d postpartum, implying that sFRP1 might be correlated with elongated spermatid adhesion conferred by the apical ES before spermiation. Indeed, administration of sFRP1 recombinant protein to the testis in vivo delayed spermiation, which was accompanied by down-regulation of phosphorylated (p)-focal adhesion kinase (FAK)-Tyr397 and retention of nectin-3 adhesion protein at the apical ES. To further investigate the functional relationship between p-FAK-Tyr397 and localization of nectin-3, we overexpressed sFRP1 using lentiviral vectors in the Sertoli-germ cell coculture system. Consistent with the in vivo findings, overexpression of sFRP1 induced down-regulation of p-FAK-Tyr397, leading to a decline in phosphorylation of nectin-3. In summary, this report highlights the critical role of s

  13. Adhesion properties of Lactobacillus rhamnosus mucus-binding factor to mucin and extracellular matrix proteins.

    PubMed

    Nishiyama, Keita; Nakamata, Koichi; Ueno, Shintaro; Terao, Akari; Aryantini, Ni Putu Desy; Sujaya, I Nengah; Fukuda, Kenji; Urashima, Tadasu; Yamamoto, Yuji; Mukai, Takao

    2015-01-01

    We previously described potential probiotic Lactobacillus rhamnosus strains, isolated from fermented mare milk produced in Sumbawa Island, Indonesia, which showed high adhesion to porcine colonic mucin (PCM) and extracellular matrix (ECM) proteins. Recently, mucus-binding factor (MBF) was found in the GG strain of L. rhamnosus as a mucin-binding protein. In this study, we assessed the ability of recombinant MBF protein from the FSMM22 strain, one of the isolates of L. rhamnosus from fermented Sumbawa mare milk, to adhere to PCM and ECM proteins by overlay dot blot and Biacore assays. MBF bound to PCM, laminin, collagen IV, and fibronectin with submicromolar dissociation constants. Adhesion of the FSMM22 mbf mutant strain to PCM and ECM proteins was significantly less than that of the wild-type strain. Collectively, these results suggested that MBF contribute to L. rhamnosus host colonization via mucin and ECM protein binding.

  14. Viscoelasticity in wild-type and vinculin-deficient (5.51) mouse F9 embryonic carcinoma cells examined by atomic force microscopy and rheology.

    PubMed

    Goldmann, W H; Ezzell, R M

    1996-07-10

    We have been studying mouse F9 embryonic carcinoma cells which contain no detectable vinculin protein (5.51 cells), and compared them with F9 wild-type cells. Employing atomic force microscopy, we probed the elastic properties of individual F9 wild-type and 5.51 cells by measuring the dynamic response of controlled loads of the cantilever tip. An elastic modulus (Young) of approximately 3.8 and approximately 2.5 kPa was calculated for wild-type and 5.51 cells, respectively. Using disc rheometry, we detected a marked change in shear of a 1000g pellet of approximately 55 x 10(6) cells between wild-type and 5.51 mutants. These differences are attributed to the loss of vinculin and altered cytoskeletal organization in these cells.

  15. Viscoelasticity in wild-type and vinculin-deficient (5.51) mouse F9 embryonic carcinoma cells examined by atomic force microscopy and rheology.

    PubMed

    Goldmann, W H; Ezzell, R M

    1996-07-10

    We have been studying mouse F9 embryonic carcinoma cells which contain no detectable vinculin protein (5.51 cells), and compared them with F9 wild-type cells. Employing atomic force microscopy, we probed the elastic properties of individual F9 wild-type and 5.51 cells by measuring the dynamic response of controlled loads of the cantilever tip. An elastic modulus (Young) of approximately 3.8 and approximately 2.5 kPa was calculated for wild-type and 5.51 cells, respectively. Using disc rheometry, we detected a marked change in shear of a 1000g pellet of approximately 55 x 10(6) cells between wild-type and 5.51 mutants. These differences are attributed to the loss of vinculin and altered cytoskeletal organization in these cells. PMID:8660960

  16. A self-assembled monolayer-based micropatterned array for controlling cell adhesion and protein adsorption.

    PubMed

    Kim, Dong Jin; Lee, Jong Min; Park, Jin-Goo; Chung, Bong Geun

    2011-05-01

    We developed a surface micropatterning technique to control the cell adhesion and protein adsorption. This micropatterned array system was fabricated by a photolithography technique and self-assembled monolayer (SAM) deposition. It was hypothesized that the wettability and functional terminal group would regulate cell adhesion and protein adsorption. To demonstrate this hypothesis, glass-based micropatterned arrays with various functional terminal groups, such as amine (NH(2)) group (3-aminopropyl-triethoxysilane, APT), methyl (CH(3)) group (trichlorovinylsilane, TVS), and fluorocarbon (CF(3)) group (trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane, FOTS), were used. The contact angle was measured to determine the hydrophilic and hydrophobic properties of materials, demonstrating that TVS and FOTS were hydrophobic, whereas APTs were relatively hydrophilic. The cell adhesion was significantly affected by the wettability, showing that the cells were not adhered to hydrophobic surfaces, such as TVS and FOTS. Thus, the cells were selectively adhered to glass substrates within TVS- and FOTS-based micropatterned arrays. However, the cells were randomly adhered to APTs-based micropatterned arrays due to hydrophilic property of APTs. Furthermore, the protein adsorption of the SAM-based micropatterned array was analyzed, showing that the protein was more absorbed to the TVS surface. The surface functional terminal group enabled the control of protein adsorption. Therefore, this SAM-based micropatterned array system enabled the control of cell adhesion and protein adsorption and could be a potentially powerful tool for regulating the cell-cell interactions in a well-defined microenvironment.

  17. Corneal Cell Adhesion to Contact Lens Hydrogel Materials Enhanced via Tear Film Protein Deposition

    PubMed Central

    Elkins, Claire M.; Qi, Qin M.; Fuller, Gerald G.

    2014-01-01

    Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS), borate buffered saline (BBS), or Sensitive Eyes Plus Saline Solution (Sensitive Eyes), either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes) exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo. PMID:25144576

  18. The Role of Crk Adaptor Proteins in T-Cell Adhesion and Migration

    PubMed Central

    Braiman, Alex; Isakov, Noah

    2015-01-01

    Crk adaptor proteins are key players in signal transduction from a variety of cell surface receptors. They are involved in early steps of lymphocyte activation through their SH2-mediated transient interaction with signal transducing effector molecules, such as Cbl, ZAP-70, CasL, and STAT5. In addition, they constitutively associate, via their SH3 domain, with effector molecules, such as C3G, that mediate cell adhesion and regulate lymphocyte extravasation and recruitment to sites of inflammation. Recent studies demonstrated that the conformation and function of CrkII is subjected to a regulation by immunophilins, which also affect CrkII-dependent T-cell adhesion to fibronectin and migration toward chemokines. This article addresses mechanisms that regulate CrkII conformation and function, in general, and emphasizes the role of Crk proteins in receptor-coupled signaling pathways that control T-lymphocyte adhesion and migration to inflammatory sites. PMID:26500649

  19. Substrate, focal adhesions, and actin filaments: a mechanical unit with a weak spot for mechanosensitive proteins

    NASA Astrophysics Data System (ADS)

    Kirchenbüchler, David; Born, Simone; Kirchgeßner, Norbert; Houben, Sebastian; Hoffmann, Bernd; Merkel, Rudolf

    2010-05-01

    Mechanosensing is a vital prerequisite for dynamic remodeling of focal adhesions and cytoskeletal structures upon substrate deformation. For example, tissue formation, directed cell orientation or cell differentiation are regulated by such mechanosensing processes. Focal adhesions and the actin cytoskeleton are believed to be involved in these processes, but where mechanosensing molecules are located and how elastic substrate, focal adhesions and the cytoskeleton couple with each other upon substrate deformation still remains obscure. To approach these questions we have developed a sensitive method to apply defined spatially decaying deformation fields to cells cultivated on ultrasoft elastic substrates and to accurately quantify the resulting displacements of the actin cytoskeleton, focal adhesions, as well as the substrate. Displacement fields were recorded in live cell microscopy by tracking either signals from fluorescent proteins or marker particles in the substrate. As model cell type we used myofibroblasts. These cells are characterized by highly stable adhesion and force generating structures but are still able to detect mechanical signals with high sensitivity. We found a rigid connection between substrate and focal adhesions. Furthermore, stress fibers were found to be barely extendable almost over their whole lengths. Plastic deformation took place only at the very ends of actin filaments close to focal adhesions. As a result, this area became elongated without extension of existing actin filaments by polymerization. Both ends of the stress fibers were mechanically coupled with detectable plastic deformations on either site. Interestingly, traction force dependent substrate deformation fields remained mostly unaffected even when stress fiber elongations were released. These data argue for a location of mechanosensing proteins at the ends of actin stress fibers and describe, except for these domains, the whole system to be relatively rigid for tensile

  20. Dominant-negative effect on adhesion by myelin Po protein truncated in its cytoplasmic domain

    PubMed Central

    1996-01-01

    The myelin Po protein is believed to hold myelin together via interactions of both its extracellular and cytoplasmic domains. We have already shown that the extracellular domains of Po can interact in a homophilic manner (Filbin, M.T., F.S. Walsh, B.D. Trapp, J.A. Pizzey, and G.I. Tennekoon. 1990. Nature (Lond.). 344:871-872). In addition, we have shown that for this homophilic adhesion to take place, the cytoplasmic domain of Po must be intact and most likely interacting with the cytoskeleton; Po proteins truncated in their cytoplasmic domains are not adhesive (Wong, M.H., and M.T. Filbin, 1994. J. Cell Biol. 126:1089-1097). To determine if the presence of these truncated forms of Po could have an effect on the functioning of the full-length Po, we coexpressed both molecules in CHO cells. The adhesiveness of CHO cells expressing both full-length Po and truncated Po was then compared to cells expressing only full-length Po. In these coexpressors, both the full-length and the truncated Po proteins were glycosylated. They reached the surface of the cell in approximately equal amounts as shown by an ELISA and surface labeling, followed by immunoprecipitation. Furthermore, the amount of full-length Po at the cell surface was equivalent to other cell lines expressing only full-length Po that we had already shown to be adhesive. Therefore, there should be sufficient levels of full-length Po at the surface of these coexpressors to measure adhesion of Po. However, as assessed by an aggregation assay, the coexpressors were not adhesive. By 60 min they had not formed large aggregates and were indistinguishable from the control transfected cells not expressing Po. In contrast, in the same time, the cells expressing only the full-length Po had formed large aggregates. This indicates that the truncated forms of Po have a dominant-negative effect on the adhesiveness of the full-length Po. Furthermore, from cross-linking studies, full-length Po, when expressed alone but not when

  1. Nuclear magnetic resonance spectroscopy of mussel adhesive protein repeating peptide segment.

    PubMed

    Olivieri, M P; Wollman, R M; Alderfer, J L

    1997-12-01

    Mussel adhesive protein (MAP) is the adhesive agent used by the common blue sea mussel (Mytilus edulis) to attach the animal to various underwater surfaces. It is generally composed of 75 to 85 repeating decameric units with the reported primary sequence NH2-Ala(1)-Lyst(2)-Pro(3)-Ser(4)-Tyr(5)-Hyp(6)-Hyp(7)-Thr(8)-DOPA( 9)- Lys(10)-COOH. This study examines this peptide's solution-state conformation using proton nuclear magnetic resonance (NMR) spectroscopy. NMR and molecular modeling of the decamer before and after molecular dynamics calculations in water suggests a conformation that retains an overall bent helix.

  2. An integrated transcriptomic and proteomic analysis of sea star epidermal secretions identifies proteins involved in defense and adhesion.

    PubMed

    Hennebert, Elise; Leroy, Baptiste; Wattiez, Ruddy; Ladurner, Peter

    2015-10-14

    Sea stars rely on epidermal secretions to cope with their benthic life. Their integument produces a mucus, which represents the first barrier against invaders; and their tube feet produce adhesive secretions to pry open mussels and attach strongly but temporarily to rocks. In this study, we combined high-throughput sequencing of expressed mRNA and mass-spectrometry-based identification of proteins to establish the first proteome of mucous and adhesive secretions from the sea star Asterias rubens. We show that the two secretions differ significantly, the major adhesive proteins being only present in trace amounts in the mucus secretion. Except for 41 proteins which were present in both secretions, a total of 34 and 244 proteins were identified as specific of adhesive secretions and mucus, respectively. We discuss the role of some of these proteins in the adhesion of sea stars as well as in their protection against oxygen reactive species and microorganisms. In addition, 58% of the proteins identified in adhesive secretions did not present significant similarity to other known proteins, revealing a list of potential novel sea star adhesive proteins uncharacterized so far. The panel of proteins identified in this study offers unprecedented opportunities for the development of sea star-inspired biomimetic materials.

  3. Novel Role for Vinculin in Ventricular Myocyte Mechanics and Dysfunction

    PubMed Central

    Tangney, Jared R.; Chuang, Joyce S.; Janssen, Matthew S.; Krishnamurthy, Adarsh; Liao, Peter; Hoshijima, Masahiko; Wu, Xin; Meininger, Gerald A.; Muthuchamy, Mariappan; Zemljic-Harpf, Alice; Ross, Robert S.; Frank, Lawrence R.; McCulloch, Andrew D.; Omens, Jeffrey H.

    2013-01-01

    Vinculin (Vcl) plays a key structural role in ventricular myocytes that, when disrupted, can lead to contractile dysfunction and dilated cardiomyopathy. To investigate the role of Vcl in myocyte and myocardial function, cardiomyocyte-specific Vcl knockout mice (cVclKO) and littermate control wild-type mice were studied with transmission electron microscopy (TEM) and in vivo magnetic resonance imaging (MRI) tagging before the onset of global ventricular dysfunction. MRI revealed significantly decreased systolic strains transverse to the myofiber axis in vivo, but no changes along the muscle fibers or in fiber tension in papillary muscles from heterozygous global Vcl null mice. Myofilament lattice spacing from TEM was significantly greater in cVclKO versus wild-type hearts fixed in the unloaded state. AFM in Vcl heterozygous null mouse myocytes showed a significant decrease in membrane cortical stiffness. A multiscale computational model of ventricular mechanics incorporating cross-bridge geometry and lattice mechanics showed that increased transverse systolic stiffness due to increased lattice spacing may explain the systolic wall strains associated with Vcl deficiency, before the onset of ventricular dysfunction. Loss of cardiac myocyte Vcl may decrease systolic transverse strains in vivo by decreasing membrane cortical tension, which decreases transverse compression of the lattice thereby increasing interfilament spacing and stress transverse to the myofibers. PMID:23561539

  4. The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins.

    PubMed

    Lord, Megan S; Cheng, Bill; McCarthy, Simon J; Jung, MoonSun; Whitelock, John M

    2011-10-01

    Chitosan has been shown to promote initial wound closure events to prevent blood loss. Platelet adhesion and activation are crucial early events in these processes after traumatic bleeding leading to thrombus formation. Platelet adhesion to chitosan was found to be enhanced in the presence of adsorbed plasma and extracellular matrix proteins and was found to be primarily mediated by α(IIb)β(3) integrins, while α(2)β(1) integrins were found to be involved in platelet adhesion to collagen and perlecan. Platelets were found to be activated by chitosan, as shown by an increase in the expression of α(IIb)β(3) integrins and P-selectin, while the extent of activation was modulated by the presence of proteins including perlecan and fibrinogen. Collagen-coated chitosan was found to activate platelets to the same extent as either chitosan or collagen alone. These data support the role of plasma and extracellular matrix proteins in promoting chitosan mediated platelet adhesion and activation supporting the hypothesis that chitosan promotes wound healing via these interactions.

  5. Corneal epithelial adhesion strength to tethered-protein/peptide modified hydrogel surfaces.

    PubMed

    Wallace, Christopher; Jacob, Jean T; Stoltz, Albert; Bi, Jingjing; Bundy, Kirk

    2005-01-01

    In this study, we investigated the suitability of microjet impingement for use on hydrogel materials to determine the cellular adhesion strength of corneal epithelial cells grown on novel hydrogels with extracellular matrix proteins (laminin and/or fibronectin) or a peptide sequence (fibronectin adhesion promoting peptide, FAP) tethered to their surface with poly(ethylene glycol) chains. The deformation of the hydrogel surface in response to the force of the microjet was analyzed both visually and mathematically. After the results of these experiments and calculations determined that no deformation occurred and that the pressure required for indentation (1.25 x 10(6) Pa) was three factors of 10 greater than the maximum pressure of the microjet, the relative mean adhesion strength of primary rabbit corneal epithelial cells grown on the novel poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogels was determined and compared with that of the same type of cells grown on control glass surfaces. Only confluent cell layers were tested. Cells grown on control glass surfaces adhered with a mean relative adhesion strength of 488 +/- 28 dynes/cm2. Under identical conditions, cells grown on laminin- and FAP-tethered hydrogel surfaces were unable to be removed, indicating an adhesion strength greater than 516 dynes/cm2. Cells grown on fibronectin- and fibronectin/laminin (1:1)-tethered surfaces showed significantly lower relative adhesion strengths (201 +/- 50 and 189 +/- 11 dynes/cm2, respectively), compared with laminin- and FAP-tethered surfaces (p = 0.001). Our results demonstrate that the microjet impingement method of cell adhesion analysis is applicable to hydrogel substrates. Additionally, analysis of our test surfaces indicates that fibronectin tethered to this hydrogel in the quantity and by the method used here does not induce stable ligand/receptor bonding to the epithelial cell membrane to the same degree as does laminin or FAP. PMID:15534866

  6. Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive.

    PubMed

    Li, Xin; Li, Yonghui; Zhong, Zhikai; Wang, Donghai; Ratto, Jo A; Sheng, Kuichuan; Sun, Xiuzhi Susan

    2009-07-01

    Soybean protein is a renewable and abundant material that offers an alternative to formaldehyde-based resins. In this study, soybean protein was modified with sodium dodecyl sulfate (SDS) as an adhesive for wood fiber medium density fiberboard (MDF) preparation. Second-order response surface regression models were used to study the effects and interactions of initial moisture content (IMC) of coated wood fiber, press time (PT) and temperature on mechanical and water soaking properties of MDF. Results showed that IMC of coated fiber was the dominant influencing factor. Mechanical and soaking properties improved as IMC increased and reached their highest point at an IMC of 35%. Press time and temperature also had a significant effect on mechanical and water soaking properties of MDF. Second-order regression results showed that there were strong relationships between mechanical and soaking properties of MDF and processing parameters. Properties of MDF made using soybean protein adhesive are similar to those of commercial board.

  7. The oxidase activity of vascular adhesion protein-1 (VAP-1) is essential for function.

    PubMed

    Noonan, Thomas; Lukas, Susan; Peet, Gregory W; Pelletier, Josephine; Panzenbeck, Mark; Hanidu, Adedayo; Mazurek, Suzanne; Wasti, Ruby; Rybina, Irina; Roma, Teresa; Kronkaitis, Anthony; Shoultz, Alycia; Souza, Donald; Jiang, Huiping; Nabozny, Gerald; Modis, Louise Kelly

    2013-01-01

    Vascular adhesion protein-1 (VAP-1) has been implicated in the pathogenesis of inflammatory diseases and is suggested to play a role in immune cell trafficking. It is not clear whether this effect is mediated by the oxidase activity or by other features of the protein such as direct adhesion. In order to study the role of VAP-1 oxidase activity in vivo, we have generated mice carrying an oxidase activity-null VAP-1 protein. We demonstrate that the VAP-1 oxidase null mutant mice have a phenotype similar to the VAP-1 null mice in animal models of sterile peritonitis and antibody induced arthritis suggesting that the oxidase activity is responsible for the inflammatory function of VAP-1.

  8. Distinct biophysical mechanisms of focal adhesion kinase mechanoactivation by different extracellular matrix proteins.

    PubMed

    Seong, Jihye; Tajik, Arash; Sun, Jie; Guan, Jun-Lin; Humphries, Martin J; Craig, Susan E; Shekaran, Asha; García, Andrés J; Lu, Shaoying; Lin, Michael Z; Wang, Ning; Wang, Yingxiao

    2013-11-26

    Matrix mechanics controls cell fate by modulating the bonds between integrins and extracellular matrix (ECM) proteins. However, it remains unclear how fibronectin (FN), type 1 collagen, and their receptor integrin subtypes distinctly control force transmission to regulate focal adhesion kinase (FAK) activity, a crucial molecular signal governing cell adhesion/migration. Here we showed, using a genetically encoded FAK biosensor based on fluorescence resonance energy transfer, that FN-mediated FAK activation is dependent on the mechanical tension, which may expose its otherwise hidden FN synergy site to integrin α5. In sharp contrast, the ligation between the constitutively exposed binding motif of type 1 collagen and its receptor integrin α2 was surprisingly tension-independent to induce sufficient FAK activation. Although integrin α subunit determines mechanosensitivity, the ligation between α subunit and the ECM proteins converges at the integrin β1 activation to induce FAK activation. We further discovered that the interaction of the N-terminal protein 4.1/ezrin/redixin/moesin basic patch with phosphatidylinositol 4,5-biphosphate is crucial during cell adhesion to maintain the FAK activation from the inhibitory effect of nearby protein 4.1/ezrin/redixin/moesin acidic sites. Therefore, different ECM proteins either can transmit or can shield from mechanical forces to regulate cellular functions, with the accessibility of ECM binding motifs by their specific integrin α subunits determining the biophysical mechanisms of FAK activation during mechanotransduction.

  9. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly.

    PubMed

    Horton, Edward R; Byron, Adam; Askari, Janet A; Ng, Daniel H J; Millon-Frémillon, Angélique; Robertson, Joseph; Koper, Ewa J; Paul, Nikki R; Warwood, Stacey; Knight, David; Humphries, Jonathan D; Humphries, Martin J

    2015-12-01

    Integrin receptor activation initiates the formation of integrin adhesion complexes (IACs) at the cell membrane that transduce adhesion-dependent signals to control a multitude of cellular functions. Proteomic analyses of isolated IACs have revealed an unanticipated molecular complexity; however, a global view of the consensus composition and dynamics of IACs is lacking. Here, we have integrated several IAC proteomes and generated a 2,412-protein integrin adhesome. Analysis of this data set reveals the functional diversity of proteins in IACs and establishes a consensus adhesome of 60 proteins. The consensus adhesome is likely to represent a core cell adhesion machinery, centred around four axes comprising ILK-PINCH-kindlin, FAK-paxillin, talin-vinculin and α-actinin-zyxin-VASP, and includes underappreciated IAC components such as Rsu-1 and caldesmon. Proteomic quantification of IAC assembly and disassembly detailed the compositional dynamics of the core cell adhesion machinery. The definition of this consensus view of integrin adhesome components provides a resource for the research community. PMID:26479319

  10. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly

    PubMed Central

    Askari, Janet A.; Ng, Daniel H. J.; Millon-Frémillon, Angélique; Robertson, Joseph; Koper, Ewa J.; Paul, Nikki R.; Warwood, Stacey; Knight, David; Humphries, Jonathan D.; Humphries, Martin J.

    2015-01-01

    Integrin receptor activation initiates the formation of integrin adhesion complexes (IACs) at the cell membrane that transduce adhesion-dependent signals to control a multitude of cellular functions. Proteomic analyses of isolated IACs have revealed an unanticipated molecular complexity; however, a global view of the consensus composition and dynamics of IACs is currently lacking. Here, we have integrated several IAC proteomes and generated a 2,412-protein integrin adhesome. Analysis of this dataset reveals the functional diversity of proteins in IACs and establishes a consensus adhesome of 60 proteins. The consensus adhesome likely represents a core cell adhesion machinery, centred around four axes comprising ILK-PINCH-kindlin, FAK-paxillin, talin-vinculin and α-actinin-zyxin-VASP, and includes underappreciated IAC components such as Rsu-1 and caldesmon. Proteomic quantification of IAC assembly and disassembly detailed the compositional dynamics of the core cell adhesion machinery. The definition of this consensus view of integrin adhesome components provides a resource for the research community. PMID:26479319

  11. Adhesion of Fusobacterium necrophorum to bovine endothelial cells is mediated by outer membrane proteins.

    PubMed

    Kumar, Amit; Gart, Elena; Nagaraja, T G; Narayanan, Sanjeev

    2013-03-23

    Fusobacterium necrophorum, a Gram-negative anaerobe, is frequently associated with suppurative and necrotic infections of animals and humans. The organism is a major bovine pathogen, and in cattle, the common fusobacterial infections are hepatic abscesses, foot rot, and necrotic laryngitis. The species comprises two subspecies: F. necrophorum subsp. necrophorum and F. necrophorum subsp. funduliforme. Bacterial adhesion to the host cell surface is a critical initial step in the pathogenesis, and outer membrane proteins (OMP) play an important role in adhesion and establishment of certain Gram-negative bacterial infections. The means by which F. necrophorum attaches to epithelial or endothelial cells has not been determined. We evaluated whether OMP of F. necrophorum, isolated from a liver abscess, mediated adhesion to bovine endothelial cells (adrenal gland capillary endothelial cell line). The extent of binding of subsp. necrophorum to the endothelial cells was higher than that of F. necrophorum subsp. funduliforme. Trypsin treatment of bacterial cells decreased their binding to endothelial cells indicating the protein nature of adhesins. Preincubation of endothelial cells with OMP extracted from F. necrophorum decreased the binding of bacterial cells. In addition, binding of each subspecies to endothelial cells was inhibited by polyclonal antibodies raised against respective OMP and the antibody-mediated inhibition was subspecies specific. The western blot analysis of OMP bound to endothelial cells with anti-OMP antibodies showed four OMP of 17, 24, 40 and 74 kDa. We conclude that OMP of F. necrophorum play a role in adhesion of bacterial cells to the endothelial cells.

  12. The gene expression of human endothelial cells is modulated by subendothelial extracellular matrix proteins: short-term response to laminar shear stress.

    PubMed

    Chlupac, Jaroslav; Filova, Elena; Havlikova, Jana; Matejka, Roman; Riedel, Tomas; Houska, Milan; Brynda, Eduard; Pamula, Elzbieta; Rémy, Murielle; Bareille, Reine; Fernandez, Philippe; Daculsi, Richard; Bourget, Chantal; Bacakova, Lucie; Bordenave, Laurence

    2014-08-01

    Vascular surgery for atherosclerosis is confronted by the lack of a suitable bypass material. Tissue engineering strives to produce bio-artificial conduits to provide resistance to thrombosis. The objectives of our study were to culture endothelial cells (EC) on composite assemblies of extracellular matrix proteins, and to evaluate the cellular phenotype under flow. Cell-adhesive assemblies were fabricated on glass slides as combinations of collagen (Co), laminin (LM), and fibronectin (FN), resulting in three samples: Co, Co/LM, and Co/FN. Surface topography, roughness, and wettability were determined. Human saphenous vein EC were harvested from cardiac patients, cultured on the assemblies and submitted to laminar shear stress (SS) of 12 dyn/cm(2) for 40, 80, and 120 min. Cell retention was assessed and qRT-PCR of adhesion genes (VE-cadherin, vinculin, KDR, CD-31 or PECAM-1, β1-integrins) and metabolic genes (t-PA, NF-κB, eNOS and MMP-1) was performed. Quantitative immunofluorescence of VE cadherin, vinculin, KDR, and vonWillebrand factor was performed after 2 and 6 h of flow. Static samples were excluded from shearing. The cells reached confluence with similar growth curves. The cells on Co/LM and Co/FN were resistant to flow up to 120 min but minor desquamation occurred on Co corresponding with temporary downregulation of VE cadherin and vinculin-mRNA and decreased fluorescence of vinculin. The cells seeded on Co/LM initially more upregulated vinculin-mRNA and also the inflammatory factor NF-κB, and the cells plated on Co/FN changed the expression profile minimally in comparison with the static control. Fluorescence of VE cadherin and vonWillebrand factor was enhanced on Co/FN. The cells cultured on Co/LM and Co/FN increased the vinculin fluorescence and expressed more VE cadherin and KDR-mRNA than the cells on Co. The cells plated on Co/FN upregulated the mRNA of VE cadherin, CD-31, and MMP 1 to a greater extent than the cells on Co/LM and they

  13. The Gene Expression of Human Endothelial Cells Is Modulated by Subendothelial Extracellular Matrix Proteins: Short-Term Response to Laminar Shear Stress

    PubMed Central

    Filova, Elena; Havlikova, Jana; Matejka, Roman; Riedel, Tomas; Houska, Milan; Brynda, Eduard; Pamula, Elzbieta; Rémy, Murielle; Bareille, Reine; Fernandez, Philippe; Daculsi, Richard; Bourget, Chantal; Bacakova, Lucie; Bordenave, Laurence

    2014-01-01

    Vascular surgery for atherosclerosis is confronted by the lack of a suitable bypass material. Tissue engineering strives to produce bio-artificial conduits to provide resistance to thrombosis. The objectives of our study were to culture endothelial cells (EC) on composite assemblies of extracellular matrix proteins, and to evaluate the cellular phenotype under flow. Cell-adhesive assemblies were fabricated on glass slides as combinations of collagen (Co), laminin (LM), and fibronectin (FN), resulting in three samples: Co, Co/LM, and Co/FN. Surface topography, roughness, and wettability were determined. Human saphenous vein EC were harvested from cardiac patients, cultured on the assemblies and submitted to laminar shear stress (SS) of 12 dyn/cm2 for 40, 80, and 120 min. Cell retention was assessed and qRT-PCR of adhesion genes (VE-cadherin, vinculin, KDR, CD-31 or PECAM-1, β1-integrins) and metabolic genes (t-PA, NF-κB, eNOS and MMP-1) was performed. Quantitative immunofluorescence of VE cadherin, vinculin, KDR, and vonWillebrand factor was performed after 2 and 6 h of flow. Static samples were excluded from shearing. The cells reached confluence with similar growth curves. The cells on Co/LM and Co/FN were resistant to flow up to 120 min but minor desquamation occurred on Co corresponding with temporary downregulation of VE cadherin and vinculin-mRNA and decreased fluorescence of vinculin. The cells seeded on Co/LM initially more upregulated vinculin-mRNA and also the inflammatory factor NF-κB, and the cells plated on Co/FN changed the expression profile minimally in comparison with the static control. Fluorescence of VE cadherin and vonWillebrand factor was enhanced on Co/FN. The cells cultured on Co/LM and Co/FN increased the vinculin fluorescence and expressed more VE cadherin and KDR-mRNA than the cells on Co. The cells plated on Co/FN upregulated the mRNA of VE cadherin, CD-31, and MMP 1 to a greater extent than the cells on Co/LM and they enhanced

  14. Mussel adhesive protein provides cohesive matrix for collagen type-1α

    PubMed Central

    Martinez Rodriguez, Nadine R.; Das, Saurabh; Kaufman, Yair; Wei, Wei; Israelachvili, Jacob N.; Waite, J. Herbert

    2015-01-01

    Understanding the interactions between collagen and adhesive mussel foot proteins (mfps) can lead to improved medical and dental adhesives, particularly for collagen-rich tissues. Here we investigated interactions between collagen type-1, the most abundant loadbearing animal protein, and mussel foot protein-3 (mfp-3) using a quartz crystal microbalance and surface forces apparatus (SFA). Both hydrophilic and hydrophobic variants of mfp-3 were exploited to probe the nature of the interaction between the protein and collagen. Our chief findings are: 1) mfp-3 is an effective chaperone for tropocollagen adsorption to TiO2 and mica surfaces; 2) at pH 3, collagen addition between two mfp-3 films (Wc = 5.4 ± 0.2 mJ/m2) increased their cohesion by nearly 35%; 3) oxidation of Dopa in mfp-3 by periodate did not abolish the adhesion between collagen and mfp-3 films, and 4) collagen bridging between both hydrophilic and hydrophobic mfp-3 variant films is equally robust, suggesting that hydrophobic interactions play a minor role. Extensive H-bonding, π-cation and electrostatic interactions are more plausible to explain the reversible bridging of mfp-3 films by collagen. PMID:25770997

  15. Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion

    NASA Astrophysics Data System (ADS)

    Amarpuri, Gaurav; Chaurasia, Vishal; Jain, Dharamdeep; Blackledge, Todd A.; Dhinojwala, Ali

    2015-03-01

    Modern orb-weaving spiders use micron-sized glue droplets on their viscid silk to retain prey in webs. A combination of low molecular weight salts and proteins makes the glue viscoelastic and humidity responsive in a way not easily achieved by synthetic adhesives. Optically, the glue droplet shows a heterogeneous structure, but the spatial arrangement of its chemical components is poorly understood. Here, we use optical and confocal Raman microscopy to show that salts and proteins are present ubiquitously throughout the droplet. The distribution of adhesive proteins in the peripheral region explains the superior prey capture performance of orb webs as it enables the entire surface area of the glue droplet to act as a site for prey capture. The presence of salts throughout the droplet explains the recent Solid-State NMR results that show salts directly facilitate protein mobility. Understanding the function of individual glue components and the role of the droplet's macro-structure can help in designing better synthetic adhesives for humid environments.

  16. Antioxidant efficacy and adhesion rescue by a recombinant mussel foot protein-6.

    PubMed

    Nicklisch, Sascha C T; Das, Saurabh; Martinez Rodriguez, Nadine R; Waite, J Herbert; Israelachvili, Jacob N

    2013-01-01

    Mytilus foot protein type 6 (mfp-6) is crucial for maintaining the reducing conditions needed for optimal wet adhesion in marine mussels. In this report, we describe the expression and production of a recombinant Mytilus californianus foot protein type 6 variant 1 (rmfp-6.1) fused with a hexahistidine affinity tag in Escherichia coli and its purification by affinity chromatography. Recombinant mfp-6 showed high purification yields of 5-6 mg L(-1) cell culture and excellent solubility in low pH buffers that retard oxidation of its many thiol groups. Purified rmfp-6.1 protein showed high 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity when compared with vitamin C. Using the highly sensitive surface forces apparatus (SFA) technique to measure interfacial surface forces in the nano-Newton range, we show that rmfp-6.1 is also able to rescue the oxidation-dependent adhesion loss of mussel foot protein 3 (mfp-3) at pH 3. The adhesion rescue is related to a reduction of dopaquinone back to 3,4-dihydroxyphenyl-l-alanine in mfp-3, which is the reverse reaction observed during the detrimental enzymatic browning process in fruits and vegetables. Broadly viewed, rmfp-6.1 has potential as a versatile antioxidant for applications ranging from personal products to antispoilants for perishable foods during processing and storage. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1587-1593, 2013. PMID:24106182

  17. Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion.

    PubMed

    Amarpuri, Gaurav; Chaurasia, Vishal; Jain, Dharamdeep; Blackledge, Todd A; Dhinojwala, Ali

    2015-01-01

    Modern orb-weaving spiders use micron-sized glue droplets on their viscid silk to retain prey in webs. A combination of low molecular weight salts and proteins makes the glue viscoelastic and humidity responsive in a way not easily achieved by synthetic adhesives. Optically, the glue droplet shows a heterogeneous structure, but the spatial arrangement of its chemical components is poorly understood. Here, we use optical and confocal Raman microscopy to show that salts and proteins are present ubiquitously throughout the droplet. The distribution of adhesive proteins in the peripheral region explains the superior prey capture performance of orb webs as it enables the entire surface area of the glue droplet to act as a site for prey capture. The presence of salts throughout the droplet explains the recent Solid-State NMR results that show salts directly facilitate protein mobility. Understanding the function of individual glue components and the role of the droplet's macro-structure can help in designing better synthetic adhesives for humid environments. PMID:25761668

  18. Interactions of the Protein-tyrosine Phosphatase-α with the Focal Adhesion Targeting Domain of Focal Adhesion Kinase Are Involved in Interleukin-1 Signaling in Fibroblasts*

    PubMed Central

    Wang, Qin; Wang, Yongqiang; Fritz, Dominik; Rajshankar, Dhaarmini; Downey, Gregory P.; McCulloch, Christopher A.

    2014-01-01

    Interleukin-1 (IL-1) signaling in fibroblasts is mediated through focal adhesions, organelles that are enriched with adaptor and cytoskeletal proteins that regulate signal transduction. We examined interactions of the focal adhesion kinase (FAK) with protein-tyrosine phosphatase-α (PTP-α) in IL-1 signaling. In wild type and FAK knock-out mouse embryonic fibroblasts, we found by immunoblotting, immunoprecipitation, immunostaining, and gene silencing that FAK is required for IL-1-mediated sequestration of PTPα to focal adhesions. Immunoprecipitation and pulldown assays of purified proteins demonstrated a direct interaction between FAK and PTPα, which was dependent on the FAT domain of FAK and by an intact membrane-proximal phosphatase domain of PTPα. Recruitment of PTPα to focal adhesions, IL-1-induced Ca2+ release from the endoplasmic reticulum, ERK activation, and IL-6, MMP-3, and MMP-9 expression were all blocked in FAK knock-out fibroblasts. These processes were restored in FAK knock-out cells transfected with wild type FAK, FAT domain, and FRNK. Our data indicate that IL-1-induced signaling through focal adhesions involves interactions between the FAT domain of FAK and PTPα. PMID:24821720

  19. Interactions of the protein-tyrosine phosphatase-α with the focal adhesion targeting domain of focal adhesion kinase are involved in interleukin-1 signaling in fibroblasts.

    PubMed

    Wang, Qin; Wang, Yongqiang; Fritz, Dominik; Rajshankar, Dhaarmini; Downey, Gregory P; McCulloch, Christopher A

    2014-06-27

    Interleukin-1 (IL-1) signaling in fibroblasts is mediated through focal adhesions, organelles that are enriched with adaptor and cytoskeletal proteins that regulate signal transduction. We examined interactions of the focal adhesion kinase (FAK) with protein-tyrosine phosphatase-α (PTP-α) in IL-1 signaling. In wild type and FAK knock-out mouse embryonic fibroblasts, we found by immunoblotting, immunoprecipitation, immunostaining, and gene silencing that FAK is required for IL-1-mediated sequestration of PTPα to focal adhesions. Immunoprecipitation and pulldown assays of purified proteins demonstrated a direct interaction between FAK and PTPα, which was dependent on the FAT domain of FAK and by an intact membrane-proximal phosphatase domain of PTPα. Recruitment of PTPα to focal adhesions, IL-1-induced Ca(2+) release from the endoplasmic reticulum, ERK activation, and IL-6, MMP-3, and MMP-9 expression were all blocked in FAK knock-out fibroblasts. These processes were restored in FAK knock-out cells transfected with wild type FAK, FAT domain, and FRNK. Our data indicate that IL-1-induced signaling through focal adhesions involves interactions between the FAT domain of FAK and PTPα.

  20. Application of tung oil to improve adhesion strength and water resistance of cottonseed meal and protein adhesives on maple veneer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cottonseed meal-based products show promise in serving as environment-friendly wood adhesives. However, their practical utilization is currently limited due to low durability and water resistant properties. In this research, we tested the improvement of adhesion strength and water resistance of cott...

  1. Endocytosis Regulates Cell Soma Translocation and the Distribution of Adhesion Proteins in Migrating Neurons

    PubMed Central

    Shieh, Jennifer C.; Schaar, Bruce T.; Srinivasan, Karpagam; Brodsky, Frances M.; McConnell, Susan K.

    2011-01-01

    Newborn neurons migrate from their birthplace to their final location to form a properly functioning nervous system. During these movements, young neurons must attach and subsequently detach from their substrate to facilitate migration, but little is known about the mechanisms cells use to release their attachments. We show that the machinery for clathrin-mediated endocytosis is positioned to regulate the distribution of adhesion proteins in a subcellular region just proximal to the neuronal cell body. Inhibiting clathrin or dynamin function impedes the movement of migrating neurons both in vitro and in vivo. Inhibiting dynamin function in vitro shifts the distribution of adhesion proteins to the rear of the cell. These results suggest that endocytosis may play a critical role in regulating substrate detachment to enable cell body translocation in migrating neurons. PMID:21445347

  2. Adhesion of phospholipid vesicles to Chinese hamster fibroblasts: Role of cell surface proteins

    PubMed Central

    Pagano, RE; Takeichi, M

    1977-01-01

    The adhesion of artificially generated lipid membrane vesicles to Chinese hamster V79 fibroblasts in suspension was used as a model system for studying membrane interactions. Below their gel-liquid crystalline phase transition temperature, vesicles comprised of dipalmitoyl lecithin (DPL) or dimyristoyl lecithin (DML) absorbed to the surfaces of EDTA- dissociated cells. These adherent vesicles could not be removed by repeated washings of the treated cells but could be released into the medium by treatment with trypsin. EM autoradiographic studies of cells treated with[(3)H]DML or [(3)H]DPL vesicles showed that most of the radioactive lipids were confined to the cell periphery. Scanning electron microscopy and fluorescence microscopy further confirmed the presence of adherent vesicles at the cell surface. Adhesion of DML or DPL vesicles to EDTA-dissociated cells modified the lactoperoxidase-catalyzed iodination pattern of the cell surface proteins; the inhibition of labeling of two proteins with an approximately 60,000- dalton mol wt was particularly evident. Incubation of cells wit h (3)H-lipid vesicles followed by sodium dodecyl sulfate (SDS)- polyacrylamide gel electrophoresis showed that some of the (3)H-lipid migrated preferentially with these approximately 60,000-mol wt proteins. Studies of the temperature dependence of vesicle uptake and subsequent release by trypsin showed that DML or DPL vesicle adhesion to EDTA- dissociated cells increased with decreasing temperatures. In contrast, cells trypsinized before incubation with vesicles showed practically no temperature dependence of vesicle uptake. These results suggest two pathways for adhesion of lipid vesicles to the cell surface-a temperature-sensitive one involving cell surface proteins, and a temperature-independent one. These findings are discussed in terms of current models for cell-cell interactions. PMID:407233

  3. Interaction of alpha-actinin with the cadherin/catenin cell-cell adhesion complex via alpha-catenin

    PubMed Central

    1995-01-01

    Cadherins are Ca(2+)-dependent, cell surface glycoproteins involved in cell-cell adhesion. Extracellularly, transmembrane cadherins such as E- , P-, and N-cadherin self-associate, while intracellularly they interact indirectly with the actin-based cytoskeleton. Several intracellular proteins termed catenins, including alpha-catenin, beta- catenin, and plakoglobin, are tightly associated with these cadherins and serve to link them to the cytoskeleton. Here, we present evidence that in fibroblasts alpha-actinin, but not vinculin, colocalizes extensively with the N-cadherin/catenin complex. This is in contrast to epithelial cells where both cytoskeletal proteins colocalize extensively with E-cadherin and catenins. We further show that alpha- actinin, but not vinculin, coimmunoprecipitates specifically with alpha- and beta-catenin from N- and E-cadherin-expressing cells, but only if alpha-catenin is present. Moreover, we show that alpha-actinin coimmunoprecipitates with the N-cadherin/catenin complex in an actin- independent manner. We therefore propose that cadherin/catenin complexes are linked to the actin cytoskeleton via a direct association between alpha-actinin and alpha-catenin. PMID:7790378

  4. L1-CAM and N-CAM: From Adhesion Proteins to Pharmacological Targets.

    PubMed

    Colombo, Federico; Meldolesi, Jacopo

    2015-11-01

    L1 cell adhesion molecule (L1-CAM) and neural cell adhesion molecule (N-CAM), key members of the immunoglobulin-like CAM (Ig-CAM) family, were first recognized to play critical roles in surface interactions of neurons, by binding with each other and with extracellular matrix (ECM) proteins. Subsequently, adhesion was recognized to include signaling due to both activation of β-integrin, with the generation of intracellular cascades, and integration with the surface cytoskeleton. The importance of the two Ig-CAMs was revealed by their activation of the tyrosine kinase receptors of fibroblast growth factor (FGF), epidermal growth factor (EGF), and nerve growth factor (NGF). Based on these complex signaling properties, L1-CAM and N-CAM have become of great potential pharmacological interest in neurons and cancers. Treatment of neurodegenerative disorders and cognitive deficits of neurons is aimed to increase the cell Ig-CAM tone, possibly provided by synthetic/mimetic peptides. In cancer cells, where Ig-CAMs are often overexpressed, the proteins are employed for prognosis. The approaches to therapy are based on protein downregulation, antibodies, and adoptive immunotherapy. PMID:26478212

  5. Lectin Receptor Kinases Participate in Protein-Protein Interactions to Mediate Plasma Membrane-Cell Wall Adhesions in Arabidopsis1

    PubMed Central

    Gouget, Anne; Senchou, Virginie; Govers, Francine; Sanson, Arnaud; Barre, Annick; Rougé, Pierre; Pont-Lezica, Rafael; Canut, Hervé

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces. PMID:16361528

  6. The L1 family of cell adhesion molecules: a sickening number of mutations and protein functions.

    PubMed

    Hortsch, Michael; Nagaraj, Kakanahalli; Mualla, Rula

    2014-01-01

    L1-type proteins are transmembrane cell adhesion molecules with an evolutionary well-conserved protein domain structure of usually six immunoglobulin and five fibronectin type III domains. By engaging in many different protein-protein interactions they are involved in a multitude of molecular functions and are important players during the formation and maintenance of metazoan nervous systems. As a result, mutations in L1-type genes cause a great variety of phenotypes, most of which are neurological in nature. In humans, mutations in the L1CAM gene are responsible for L1 syndrome and other L1-type genes have been implicated in conditions as varied as mental retardation, autism, schizophrenia, multiple sclerosis, and other disorders. Equally, the overexpression of L1-type proteins appears to have deleterious effects in various types of human tumor cells, where they generally contribute to an increase in cell mobility and metastatic potential. PMID:25300138

  7. Cellular localization and trafficking of vascular adhesion protein-1 as revealed by an N-terminal GFP fusion protein.

    PubMed

    Weston, Chris J; Shepherd, Emma L; Adams, David H

    2013-06-01

    Recent studies of vascular adhesion protein-1 (VAP-1) have greatly advanced our understanding of the important role this protein plays in the establishment and progression of inflammatory disease. To facilitate more detailed studies on the function of VAP-1, we developed a GFP-fusion protein that enabled us to monitor the trafficking of the protein in three selected cell types: hepatic sinusoidal endothelial cells, liver myofibroblasts and an hepatic stellate cell line (LX-2). The fusion protein was detected as punctate cytoplasmic GFP staining, but was present only at low levels at the cell surface in all cell types studied. The subcellular distribution of the protein was not altered in a catalytically inactive mutant form of the protein (Tyr471Phe) or in the presence of exogenous VAP-1 substrate (methylamine) or inhibitor (semicarbazide). The GFP-VAP-1 protein was localized to the Golgi apparatus (GM-130), endoplasmic reticulum (GRP94) and early endosomes (EEA-1). Additional staining for VAP-1 revealed that the overexpressed protein was also present in vesicles that were negative for GFP fluorescent signal and did not express EEA-1. We propose that these vesicles are responsible for recycling the fusion protein and that the fluorescence of the GFP moiety is quenched at the low pH within these vesicles. This feature of the protein makes it well suited for live cell imaging studies where we wish to track protein that is being actively trafficked within the cell in preference to that which is being recycled.

  8. Bacterial adhesion to protein-coated surfaces: An AFM and QCM-D study

    NASA Astrophysics Data System (ADS)

    Strauss, Joshua; Liu, Yatao; Camesano, Terri A.

    2009-09-01

    Bacterial adhesion to biomaterials, mineral surfaces, or other industrial surfaces is strongly controlled by the way bacteria interact with protein layers or organic matter and other biomolecules that coat the materials. Despite this knowledge, many studies of bacterial adhesion are performed under clean conditions, instead of in the presence of proteins or organic molecules. We chose fetal bovine serum (FBS) as a model protein, and prepared FBS films on quartz crystals. The thickness of the FBS layer was characterized using atomic force microscopy (AFM) imaging under liquid and quartz crystal microbalance with dissipation (QCM-D). Next, we characterized how the model biomaterial surface would interact with the nocosomial pathogen Staphylococcus epidermidis. An AFM probe was coated with S. epidermidis cells and used to probe a gold slide that had been coated with FBS or another protein, fibronectin (FN). These experiments show that AFM and QCM-D can be used in complementary ways to study the complex interactions between bacteria, proteins, and surfaces.

  9. In vitro investigation of protein adsorption and platelet adhesion on inorganic biomaterial surfaces

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Lü, Xiaoying; Jingwu, Ma; Huang, Nan

    2008-11-01

    The aim of this paper was to study the surface properties, protein adsorption and platelet adhesion behaviors of diamond-like carbon (DLC) and titanium (Ti) films. The surface energy and microstructures of these films were characterized by contact angle measurement and atomic force microscopy (AFM). A modified Coomassie brilliant blue (CBB) protein assay was used to study the amount of adsorbed proteins. Platelet adhesion was assessed by scanning electron microscopy (SEM). The AFM results show that the DLC film is smoother than Ti. Protein adsorption results from CBB protein assay show that the ratio of adsorbed albumin (Alb) to IgG ( RA/I) on DLC is larger than Ti, which coincide with the sequence of the ratio of interfacial tension between solid surface and Alb ( γS,Alb) to interfacial tension between surface and IgG ( γS,IgG) ( γS,Alb/ γS,IgG). The DLC film has a preferential adsorption for Alb. The results suggest that the ratio of γS,Alb/ γS,IgG may indicate an Alb/IgG affinity ratio of materials. More platelets adhere on Ti film than on DLC, which may correspond to the surface roughness of materials. The conclusion is the blood compatibility of DLC seems to be better than Ti.

  10. Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin

    PubMed Central

    Chamma, Ingrid; Letellier, Mathieu; Butler, Corey; Tessier, Béatrice; Lim, Kok-Hong; Gauthereau, Isabel; Choquet, Daniel; Sibarita, Jean-Baptiste; Park, Sheldon; Sainlos, Matthieu; Thoumine, Olivier

    2016-01-01

    The advent of super-resolution imaging (SRI) has created a need for optimized labelling strategies. We present a new method relying on fluorophore-conjugated monomeric streptavidin (mSA) to label membrane proteins carrying a short, enzymatically biotinylated tag, compatible with SRI techniques including uPAINT, STED and dSTORM. We demonstrate efficient and specific labelling of target proteins in confined intercellular and organotypic tissues, with reduced steric hindrance and no crosslinking compared with multivalent probes. We use mSA to decipher the dynamics and nanoscale organization of the synaptic adhesion molecules neurexin-1β, neuroligin-1 (Nlg1) and leucine-rich-repeat transmembrane protein 2 (LRRTM2) in a dual-colour configuration with GFP nanobody, and show that these proteins are diffusionally trapped at synapses where they form apposed trans-synaptic adhesive structures. Furthermore, Nlg1 is dynamic, disperse and sensitive to synaptic stimulation, whereas LRRTM2 is organized in compact and stable nanodomains. Thus, mSA is a versatile tool to image membrane proteins at high resolution in complex live environments, providing novel information about the nano-organization of biological structures. PMID:26979420

  11. Promyelocytic Leukemia (PML) Protein Plays Important Roles in Regulating Cell Adhesion, Morphology, Proliferation and Migration

    PubMed Central

    Tang, Mei Kuen; Liang, Yong Jia; Chan, John Yeuk Hon; Wong, Sing Wan; Chen, Elve; Yao, Yao; Gan, Jingyi; Xiao, Lihai; Leung, Hin Cheung; Kung, Hsiang Fu; Wang, Hua; Lee, Kenneth Ka Ho

    2013-01-01

    PML protein plays important roles in regulating cellular homeostasis. It forms PML nuclear bodies (PML-NBs) that act like nuclear relay stations and participate in many cellular functions. In this study, we have examined the proteome of mouse embryonic fibroblasts (MEFs) derived from normal (PML+/+) and PML knockout (PML−/−) mice. The aim was to identify proteins that were differentially expressed when MEFs were incapable of producing PML. Using comparative proteomics, total protein were extracted from PML−/− and PML+/+ MEFs, resolved by two dimensional electrophoresis (2-DE) gels and the differentially expressed proteins identified by LC-ESI-MS/MS. Nine proteins (PML, NDRG1, CACYBP, CFL1, RSU1, TRIO, CTRO, ANXA4 and UBE2M) were determined to be down-regulated in PML−/− MEFs. In contrast, ten proteins (CIAPIN1, FAM50A, SUMO2 HSPB1 NSFL1C, PCBP2, YWHAG, STMN1, TPD52L2 and PDAP1) were found up-regulated. Many of these differentially expressed proteins play crucial roles in cell adhesion, migration, morphology and cytokinesis. The protein profiles explain why PML−/− and PML+/+ MEFs were morphologically different. In addition, we demonstrated PML−/− MEFs were less adhesive, proliferated more extensively and migrated significantly slower than PML+/+ MEFs. NDRG1, a protein that was down-regulated in PML−/− MEFs, was selected for further investigation. We determined that silencing NDRG1expression in PML+/+ MEFs increased cell proliferation and inhibited PML expression. Since NDRG expression was suppressed in PML−/− MEFs, this may explain why these cells proliferate more extensively than PML+/+ MEFs. Furthermore, silencing NDRG1expression also impaired TGF-β1 signaling by inhibiting SMAD3 phosphorylation. PMID:23555679

  12. Recombinant Probiotic Expressing Listeria Adhesion Protein Attenuates Listeria monocytogenes Virulence In Vitro

    PubMed Central

    Koo, Ok Kyung; Amalaradjou, Mary Anne Roshni; Bhunia, Arun K.

    2012-01-01

    Background Listeria monocytogenes, an intracellular foodborne pathogen, infects immunocompromised hosts. The primary route of transmission is through contaminated food. In the gastrointestinal tract, it traverses the epithelial barrier through intracellular or paracellular routes. Strategies to prevent L. monocytogenes entry can potentially minimize infection in high-risk populations. Listeria adhesion protein (LAP) aids L. monocytogenes in crossing epithelial barriers via the paracellular route. The use of recombinant probiotic bacteria expressing LAP would aid targeted clearance of Listeria from the gut and protect high-risk populations from infection. Methodology/Principal Findings The objective was to investigate the ability of probiotic bacteria or LAP-expressing recombinant probiotic Lactobacillus paracasei (LbpLAP) to prevent L. monocytogenes adhesion, invasion, and transwell-based transepithelial translocation in a Caco-2 cell culture model. Several wild type probiotic bacteria showed strong adhesion to Caco-2 cells but none effectively prevented L. monocytogenes infection. Pre-exposure to LbpLAP for 1, 4, 15, or 24 h significantly (P<0.05) reduced adhesion, invasion, and transepithelial translocation of L. monocytogenes in Caco-2 cells, whereas pre-exposure to parental Lb. paracasei had no significant effect. Similarly, LbpLAP pre-exposure reduced L. monocytogenes translocation by as much as 46% after 24 h. LbpLAP also prevented L. monocytogenes-mediated cell damage and compromise of tight junction integrity. Furthermore, LbpLAP cells reduced L. monocytogenes-mediated cell cytotoxicity by 99.8% after 1 h and 79% after 24 h. Conclusions/Significance Wild type probiotic bacteria were unable to prevent L. monocytogenes infection in vitro. In contrast, LbpLAP blocked adhesion, invasion, and translocation of L. monocytogenes by interacting with host cell receptor Hsp60, thereby protecting cells from infection. These data show promise for the use of recombinant

  13. International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors.

    PubMed

    Hamann, Jörg; Aust, Gabriela; Araç, Demet; Engel, Felix B; Formstone, Caroline; Fredriksson, Robert; Hall, Randy A; Harty, Breanne L; Kirchhoff, Christiane; Knapp, Barbara; Krishnan, Arunkumar; Liebscher, Ines; Lin, Hsi-Hsien; Martinelli, David C; Monk, Kelly R; Peeters, Miriam C; Piao, Xianhua; Prömel, Simone; Schöneberg, Torsten; Schwartz, Thue W; Singer, Kathleen; Stacey, Martin; Ushkaryov, Yuri A; Vallon, Mario; Wolfrum, Uwe; Wright, Mathew W; Xu, Lei; Langenhan, Tobias; Schiöth, Helgi B

    2015-01-01

    The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.

  14. Fabrication of a Dual Substrate Display to Test Roles of Cell Adhesion Proteins in Vesicle Targeting to Plasma Membrane Domains

    PubMed Central

    Hunt, Stephen J.; Nelson, W. James

    2009-01-01

    While much is known of the molecular machinery involved in protein sorting during exocytosis, less is known about the spatial regulation of exocytosis at the plasma membrane (PM). This study outlines a novel method, Dual Substrate Display, used to formally test the hypothesis that E-cadherin-mediated adhesion directs basolateral vesicle exocytosis to specific sites at the PM. We show that vesicles containing the basolateral marker protein VSV-G preferentially target to sites of adhesion to E-cadherin rather than collagen VI or a control peptide. These results support the hypothesis that E-cadherin adhesion initiates signaling at the PM resulting in targeted sites for exocytosis. PMID:17803993

  15. Talin determines the nanoscale architecture of focal adhesions.

    PubMed

    Liu, Jaron; Wang, Yilin; Goh, Wah Ing; Goh, Honzhen; Baird, Michelle A; Ruehland, Svenja; Teo, Shijia; Bate, Neil; Critchley, David R; Davidson, Michael W; Kanchanawong, Pakorn

    2015-09-01

    Insight into how molecular machines perform their biological functions depends on knowledge of the spatial organization of the components, their connectivity, geometry, and organizational hierarchy. However, these parameters are difficult to determine in multicomponent assemblies such as integrin-based focal adhesions (FAs). We have previously applied 3D superresolution fluorescence microscopy to probe the spatial organization of major FA components, observing a nanoscale stratification of proteins between integrins and the actin cytoskeleton. Here we combine superresolution imaging techniques with a protein engineering approach to investigate how such nanoscale architecture arises. We demonstrate that talin plays a key structural role in regulating the nanoscale architecture of FAs, akin to a molecular ruler. Talin diagonally spans the FA core, with its N terminus at the membrane and C terminus demarcating the FA/stress fiber interface. In contrast, vinculin is found to be dispensable for specification of FA nanoscale architecture. Recombinant analogs of talin with modified lengths recapitulated its polarized orientation but altered the FA/stress fiber interface in a linear manner, consistent with its modular structure, and implicating the integrin-talin-actin complex as the primary mechanical linkage in FAs. Talin was found to be ∼97 nm in length and oriented at ∼15° relative to the plasma membrane. Our results identify talin as the primary determinant of FA nanoscale organization and suggest how multiple cellular forces may be integrated at adhesion sites. PMID:26283369

  16. Talin determines the nanoscale architecture of focal adhesions

    PubMed Central

    Liu, Jaron; Wang, Yilin; Goh, Wah Ing; Goh, Honzhen; Baird, Michelle A.; Ruehland, Svenja; Teo, Shijia; Bate, Neil; Critchley, David R.; Davidson, Michael W.; Kanchanawong, Pakorn

    2015-01-01

    Insight into how molecular machines perform their biological functions depends on knowledge of the spatial organization of the components, their connectivity, geometry, and organizational hierarchy. However, these parameters are difficult to determine in multicomponent assemblies such as integrin-based focal adhesions (FAs). We have previously applied 3D superresolution fluorescence microscopy to probe the spatial organization of major FA components, observing a nanoscale stratification of proteins between integrins and the actin cytoskeleton. Here we combine superresolution imaging techniques with a protein engineering approach to investigate how such nanoscale architecture arises. We demonstrate that talin plays a key structural role in regulating the nanoscale architecture of FAs, akin to a molecular ruler. Talin diagonally spans the FA core, with its N terminus at the membrane and C terminus demarcating the FA/stress fiber interface. In contrast, vinculin is found to be dispensable for specification of FA nanoscale architecture. Recombinant analogs of talin with modified lengths recapitulated its polarized orientation but altered the FA/stress fiber interface in a linear manner, consistent with its modular structure, and implicating the integrin–talin–actin complex as the primary mechanical linkage in FAs. Talin was found to be ∼97 nm in length and oriented at ∼15° relative to the plasma membrane. Our results identify talin as the primary determinant of FA nanoscale organization and suggest how multiple cellular forces may be integrated at adhesion sites. PMID:26283369

  17. In Vivo Detection of Vascular Adhesion Protein-1 in Experimental Inflammation

    PubMed Central

    Jaakkola, Kimmo; Nikula, Tuomo; Holopainen, Riikka; Vähäsilta, Tommi; Matikainen, Marja-Terttu; Laukkanen, Marja-Leena; Huupponen, Risto; Halkola, Lauri; Nieminen, Lauri; Hiltunen, Jukka; Parviainen, Sakari; Clark, Michael R.; Knuuti, Juhani; Savunen, Timo; Kääpä, Pekka; Voipio-Pulkki, Liisa Maria; Jalkanen, Sirpa

    2000-01-01

    Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible endothelial glycoprotein which mediates leukocyte-endothelial cell interactions. To study the pathogenetic significance of VAP-1 in inflammatory disorders, an in vivo immunodetection method was used to detect the regulation of luminally expressed VAP-1 in experimental skin and joint inflammation in the pig and dog. Moreover, VAP-1 was studied as a potential target to localize inflammation by radioimmunoscintigraphy. Up-regulation of VAP-1 in experimental dermatitis and arthritis could be visualized by specifically targeted immunoscintigraphy. Moreover, the translocation of VAP-1 to the functional position on the endothelial surface was only seen in inflamed tissues. These results suggest that VAP-1 is both an optimal candidate for anti-adhesive therapy and a potential target molecule for imaging inflammation. PMID:10934150

  18. Mechanical Activation of a Multimeric Adhesive Protein Through Domain Conformational Change

    NASA Astrophysics Data System (ADS)

    Wijeratne, Sithara S.; Botello, Eric; Yeh, Hui-Chun; Zhou, Zhou; Bergeron, Angela L.; Frey, Eric W.; Patel, Jay M.; Nolasco, Leticia; Turner, Nancy A.; Moake, Joel L.; Dong, Jing-fei; Kiang, Ching-Hwa

    2013-03-01

    The mechanical force-induced activation of the adhesive protein von Willebrand factor (VWF), which experiences high hydrodynamic forces, is essential in initiating platelet adhesion. The importance of the mechanical force-induced functional change is manifested in the multimeric VWF’s crucial role in blood coagulation, when high fluid shear stress activates plasma VWF (PVWF) multimers to bind platelets. Here, we showed that a pathological level of high shear stress exposure of PVWF multimers results in domain conformational changes, and the subsequent shifts in the unfolding force allow us to use force as a marker to track the dynamic states of the multimeric VWF. We found that shear-activated PVWF multimers are more resistant to mechanical unfolding than nonsheared PVWF multimers, as indicated in the higher peak unfolding force. These results provide insight into the mechanism of shear-induced activation of PVWF multimers.

  19. Force Activation of a Multimeric Adhesive Protein through Domain Conformational Change

    NASA Astrophysics Data System (ADS)

    Wijeratne Sithara S

    The force-induced activation of adhesive proteins such as von Willebrand factor (VWF), which experience high hydrodynamic forces, is essential in initiating platelet adhesion. The importance of the mechanical force induced functional change is manifested in the multimeric VWF's crucial role in blood coagulation, when high fluid shear stress activates pVWF multimers to bind platelets. Here we showed that a pathological level of high shear flow exposure of pVWF multimers results in domain conformational changes, and the subsequent shifts in the unfolding force allow us to use force as a marker to track the dynamic states of multimeric VWF. We found that shear-activated pVWF multimers (spVWF) are more resistant to mechanical unfolding than non-sheared pVWF multimers, as indicated in the higher peak unfolding force. These results provide insight into the mechanism of shear-induced activation of pVWF multimers.

  20. Flocculation protein structure and cell-cell adhesion mechanism in Saccharomyces cerevisiae.

    PubMed

    Goossens, Katty; Willaert, Ronnie

    2010-11-01

    Cell-cell adhesion occurs in a broad spectrum of biological processes, of which yeast flocculation is an area of interest for evolutionary scientists to brewers and winemakers. The flocculation mechanism is based on a lectin-carbohydrate interaction but is not yet fully understood, although the first model dates back to the 1950s. This review will update the current understanding of the complex mechanism behind yeast flocculation. Moreover, modern technologies to measure the forces involved in single carbohydrate-lectin interactions, are discussed. The Flo1 protein has been extensively described as the protein responsible for strong flocculation. Recently, more research has been directed to the detailed analysis of this flocculin. Due to the advances in the field of bioinformatics, more information about Flo1p could be obtained via structurally or functionally related proteins. Here, we review the current knowledge of the Flo1 protein, with a strong emphasis towards its structure.

  1. Expression of mutant amyloid precursor proteins decreases adhesion and delays differentiation of Hep-1 cells.

    PubMed

    Kusiak, J W; Lee, L L; Zhao, B

    2001-03-30

    The amyloid precursor protein (APP) is a type I integral membrane protein and is processed to generate several intra-cellular and secreted fragments. The physiological role of APP and its processed fragments is unclear. Several mutations have been discovered in APP, which are causative of early-onset, familial, neurological disease, including Alzheimer's disease (FAD). These mutations alter the processing of APP and lead to excess production and extra-cellular deposition of A-beta peptide (Abeta). We have examined the role of APP in a cell culture model of endothelial cell function. The endothelial cell line, Hep-1, was stably transfected with wild-type (wt) and FAD mutant forms of APP (mAPP). Secretion of sAPPalpha was reduced in cell lines over-expressing mAPP when these cells were grown on several different substrates. Levels of secreted Abeta were increased as measured by ELISA in the mutant cell lines. Cell adhesion to laminin-, fibronectin-, collagen I-, and collagen IV-coated culture flasks was reduced in all mAPP-expressing cell lines, while in lines over-expressing wt-APP, adhesiveness was slightly increased. Cell lines over-expressing mAPP differentiated more slowly into capillary network-like structures on Matrigel than those expressing wt-APP. No differences were detected among all cell lines in a migration/invasion assay. The results suggest that APP may have a role in cell adhesiveness and maturation of endothelial cells into capillary-like networks. The reduction in adhesion and differentiation in mutant cell lines may be due to reduced amounts of sAPPalpha released into the culture media or toxic effects of increased extracellular Abeta.

  2. Highly purified mussel adhesive protein to secure biosafety for in vivo applications

    PubMed Central

    2014-01-01

    Background Unique adhesive and biocompatibility properties of mussel adhesive proteins (MAPs) are known for their great potential in many tissue engineering and biomedical applications. Previously, it was successfully demonstrated that redesigned hybrid type MAP, fp-151, mass-produced in Gram-negative bacterium Escherichia coli, could be utilized as a promising adhesive biomaterial. However, purification of recombinant fp-151 has been unsatisfactory due to its adhesive nature and polarity which make separation of contaminants (especially, lipopolysaccharide, a toxic Gram-negative cell membrane component) very difficult. Results In the present work, we devised a high resolution purification approach to secure safety standards of recombinant fp-151 for the successful use in in vivo applications. Undesirable impurities were remarkably eliminated as going through sequential steps including treatment with multivalent ion and chelating agent for cell membrane washing, mechanical cell disruption, non-ionic surfactant treatment for isolated inclusion body washing, acid extraction of washed inclusion body, and ion exchange chromatography purification of acid extracted sample. Through various analyses, such as high performance liquid chromatographic purity assay, limulus amoebocyte lysate endotoxin assay, and in vitro mouse macrophage cell tests on inflammation, viability, cytotoxicity, and apoptosis, we confirmed the biological safety of bacterial-derived purified recombinant fp-151. Conclusions Through this purification design, recombinant fp-151 achieved 99.90% protein purity and 99.91% endotoxin reduction that nearly no inflammation response was observed in in vitro experiments. Thus, the highly purified recombinant MAP would be successfully used as a safety-secured in vivo bioadhesive for tissue engineering and biomedical applications. PMID:24725543

  3. Aire knockdown in medullary thymic epithelial cells affects Aire protein, deregulates cell adhesion genes and decreases thymocyte interaction.

    PubMed

    Pezzi, Nicole; Assis, Amanda Freire; Cotrim-Sousa, Larissa Cotrim; Lopes, Gabriel Sarti; Mosella, Maritza Salas; Lima, Djalma Sousa; Bombonato-Prado, Karina F; Passos, Geraldo Aleixo

    2016-09-01

    We demonstrate that even a partial reduction of Aire mRNA levels by siRNA-induced Aire knockdown (Aire KD) has important consequences to medullary thymic epithelial cells (mTECs). Aire knockdown is sufficient to reduce Aire protein levels, impair its nuclear location, and cause an imbalance in large-scale gene expression, including genes that encode cell adhesion molecules. These genes drew our attention because adhesion molecules are implicated in the process of mTEC-thymocyte adhesion, which is critical for T cell development and the establishment of central self-tolerance. Accordingly, we consider the following: 1) mTECs contribute to the elimination of self-reactive thymocytes through adhesion; 2) Adhesion molecules play a crucial role during physical contact between these cells; and 3) Aire is an important transcriptional regulator in mTECs. However, its role in controlling mTEC-thymocyte adhesion remains unclear. Because Aire controls adhesion molecule genes, we hypothesized that the disruption of its expression could influence mTEC-thymocyte interaction. To test this hypothesis, we used a murine Aire(+) mTEC cell line as a model system to reproduce mTEC-thymocyte adhesion in vitro. Transcriptome analysis of the mTEC cell line revealed that Aire KD led to the down-modulation of more than 800 genes, including those encoding for proteins involved in cell adhesion, i.e., the extracellular matrix constituent Lama1, the CAM family adhesion molecules Vcam1 and Icam4, and those that encode peripheral tissue antigens. Thymocytes co-cultured with Aire KD mTECs had a significantly reduced capacity to adhere to these cells. This finding is the first direct evidence that Aire also plays a role in controlling mTEC-thymocyte adhesion. PMID:27505711

  4. Aire knockdown in medullary thymic epithelial cells affects Aire protein, deregulates cell adhesion genes and decreases thymocyte interaction.

    PubMed

    Pezzi, Nicole; Assis, Amanda Freire; Cotrim-Sousa, Larissa Cotrim; Lopes, Gabriel Sarti; Mosella, Maritza Salas; Lima, Djalma Sousa; Bombonato-Prado, Karina F; Passos, Geraldo Aleixo

    2016-09-01

    We demonstrate that even a partial reduction of Aire mRNA levels by siRNA-induced Aire knockdown (Aire KD) has important consequences to medullary thymic epithelial cells (mTECs). Aire knockdown is sufficient to reduce Aire protein levels, impair its nuclear location, and cause an imbalance in large-scale gene expression, including genes that encode cell adhesion molecules. These genes drew our attention because adhesion molecules are implicated in the process of mTEC-thymocyte adhesion, which is critical for T cell development and the establishment of central self-tolerance. Accordingly, we consider the following: 1) mTECs contribute to the elimination of self-reactive thymocytes through adhesion; 2) Adhesion molecules play a crucial role during physical contact between these cells; and 3) Aire is an important transcriptional regulator in mTECs. However, its role in controlling mTEC-thymocyte adhesion remains unclear. Because Aire controls adhesion molecule genes, we hypothesized that the disruption of its expression could influence mTEC-thymocyte interaction. To test this hypothesis, we used a murine Aire(+) mTEC cell line as a model system to reproduce mTEC-thymocyte adhesion in vitro. Transcriptome analysis of the mTEC cell line revealed that Aire KD led to the down-modulation of more than 800 genes, including those encoding for proteins involved in cell adhesion, i.e., the extracellular matrix constituent Lama1, the CAM family adhesion molecules Vcam1 and Icam4, and those that encode peripheral tissue antigens. Thymocytes co-cultured with Aire KD mTECs had a significantly reduced capacity to adhere to these cells. This finding is the first direct evidence that Aire also plays a role in controlling mTEC-thymocyte adhesion.

  5. Redox Capacity of an Extracellular Matrix Protein Associated with Adhesion in Mytilus californianus.

    PubMed

    Nicklisch, Sascha C T; Spahn, Jamie E; Zhou, Hongjun; Gruian, Cristina M; Waite, J Herbert

    2016-04-01

    Adhesive mussel foot proteins (Mfps) rely in part on DOPA (3,4-dihydroxyphenyl-l-alanine) side chains to mediate attachment to mineral surfaces underwater. Oxidation of DOPA to Dopaquinone (Q) effectively abolishes the adsorption of Mfps to these surfaces. The thiol-rich mussel foot protein-6 (Mfp-6) rescues adhesion compromised by adventitious DOPA oxidation by reducing Q back to DOPA. The redox chemistry and kinetics of foot-extracted Mfp-6 were investigated by using a nonspecific chromogenic probe to equilibrate with the redox pool. Foot-extracted Mfp-6 has a reducing capacity of ~17 e(-) per protein; half of this comes from the cysteine residues, whereas the other half comes from other constituents, probably a cohort of four or five nonadhesive, redox-active DOPA residues in Mfp-6 with an anodic peak potential ~500 mV lower than that for oxidation of cysteine to cystine. At higher pH, DOPA redox reversibility is lost possibly due to Q scavenging by Cys thiolates. Analysis by one- and two-dimensional proton nuclear magnetic resonance identified a pronounced β-sheet structure with a hydrophobic core in foot-extracted Mfp-6 protein. The structure endows redox-active side chains in Mfp-6, i.e., cysteine and DOPA, with significant reducing power over a broad pH range, and this power is measurably diminished in recombinant Mfp-6. PMID:26998552

  6. Onion yellow phytoplasma P38 protein plays a role in adhesion to the hosts.

    PubMed

    Neriya, Yutaro; Maejima, Kensaku; Nijo, Takamichi; Tomomitsu, Tatsuya; Yusa, Akira; Himeno, Misako; Netsu, Osamu; Hamamoto, Hiroshi; Oshima, Kenro; Namba, Shigetou

    2014-12-01

    Adhesins are microbial surface proteins that mediate the adherence of microbial pathogens to host cell surfaces. In Mollicutes, several adhesins have been reported in mycoplasmas and spiroplasmas. Adhesins P40 of Mycoplasma agalactiae and P89 of Spiroplasma citri contain a conserved amino acid sequence known as the Mollicutes adhesin motif (MAM), whose function in the host cell adhesion remains unclear. Here, we show that phytoplasmas, which are plant-pathogenic mollicutes transmitted by insect vectors, possess an adhesion-containing MAM that was identified in a putative membrane protein, PAM289 (P38), of the 'Candidatus Phytoplasma asteris,' OY strain. P38 homologs and their MAMs were highly conserved in related phytoplasma strains. While P38 protein was expressed in OY-infected insect and plant hosts, binding assays showed that P38 interacts with insect extract, and weakly with plant extract. Interestingly, the interaction of P38 with the insect extract depended on MAM. These results suggest that P38 is a phytoplasma adhesin that interacts with the hosts. In addition, the MAM of adhesins is important for the interaction between P38 protein and hosts.

  7. Glutamate Receptor Interacting Protein 1 Mediates Platelet Adhesion and Thrombus Formation.

    PubMed

    Modjeski, Kristina L; Ture, Sara K; Field, David J; Cameron, Scott J; Morrell, Craig N

    2016-01-01

    Thrombosis-associated pathologies, such as myocardial infarction and stroke, are major causes of morbidity and mortality worldwide. Because platelets are necessary for hemostasis and thrombosis, platelet directed therapies must balance inhibiting platelet function with bleeding risk. Glutamate receptor interacting protein 1 (GRIP1) is a large scaffolding protein that localizes and organizes interacting proteins in other cells, such as neurons. We have investigated the role of GRIP1 in platelet function to determine its role as a molecular scaffold in thrombus formation. Platelet-specific GRIP1-/- mice were used to determine the role of GRIP1 in platelets. GRIP1-/- mice had normal platelet counts, but a prolonged bleeding time and delayed thrombus formation in a FeCl3-induced vessel injury model. In vitro stimulation of WT and GRIP1-/- platelets with multiple agonists showed no difference in platelet activation. However, in vivo platelet rolling velocity after endothelial stimulation was significantly greater in GRIP1-/- platelets compared to WT platelets, indicating a potential platelet adhesion defect. Mass spectrometry analysis of GRIP1 platelet immunoprecipitation revealed enrichment of GRIP1 binding to GPIb-IX complex proteins. Western blots confirmed the mass spectrometry findings that GRIP1 interacts with GPIbα, GPIbβ, and 14-3-3. Additionally, in resting GRIP1-/- platelets, GPIbα and 14-3-3 have increased interaction compared to WT platelets. GRIP1 interactions with the GPIb-IX binding complex are necessary for normal platelet adhesion to a stimulated endothelium. PMID:27631377

  8. Glutamate Receptor Interacting Protein 1 Mediates Platelet Adhesion and Thrombus Formation

    PubMed Central

    Modjeski, Kristina L.; Ture, Sara K.; Field, David J.; Cameron, Scott J.; Morrell, Craig N.

    2016-01-01

    Thrombosis-associated pathologies, such as myocardial infarction and stroke, are major causes of morbidity and mortality worldwide. Because platelets are necessary for hemostasis and thrombosis, platelet directed therapies must balance inhibiting platelet function with bleeding risk. Glutamate receptor interacting protein 1 (GRIP1) is a large scaffolding protein that localizes and organizes interacting proteins in other cells, such as neurons. We have investigated the role of GRIP1 in platelet function to determine its role as a molecular scaffold in thrombus formation. Platelet-specific GRIP1-/- mice were used to determine the role of GRIP1 in platelets. GRIP1-/- mice had normal platelet counts, but a prolonged bleeding time and delayed thrombus formation in a FeCl3-induced vessel injury model. In vitro stimulation of WT and GRIP1-/- platelets with multiple agonists showed no difference in platelet activation. However, in vivo platelet rolling velocity after endothelial stimulation was significantly greater in GRIP1-/- platelets compared to WT platelets, indicating a potential platelet adhesion defect. Mass spectrometry analysis of GRIP1 platelet immunoprecipitation revealed enrichment of GRIP1 binding to GPIb-IX complex proteins. Western blots confirmed the mass spectrometry findings that GRIP1 interacts with GPIbα, GPIbβ, and 14-3-3. Additionally, in resting GRIP1-/- platelets, GPIbα and 14-3-3 have increased interaction compared to WT platelets. GRIP1 interactions with the GPIb-IX binding complex are necessary for normal platelet adhesion to a stimulated endothelium. PMID:27631377

  9. Redox Capacity of an Extracellular Matrix Protein Associated with Adhesion in Mytilus californianus.

    PubMed

    Nicklisch, Sascha C T; Spahn, Jamie E; Zhou, Hongjun; Gruian, Cristina M; Waite, J Herbert

    2016-04-01

    Adhesive mussel foot proteins (Mfps) rely in part on DOPA (3,4-dihydroxyphenyl-l-alanine) side chains to mediate attachment to mineral surfaces underwater. Oxidation of DOPA to Dopaquinone (Q) effectively abolishes the adsorption of Mfps to these surfaces. The thiol-rich mussel foot protein-6 (Mfp-6) rescues adhesion compromised by adventitious DOPA oxidation by reducing Q back to DOPA. The redox chemistry and kinetics of foot-extracted Mfp-6 were investigated by using a nonspecific chromogenic probe to equilibrate with the redox pool. Foot-extracted Mfp-6 has a reducing capacity of ~17 e(-) per protein; half of this comes from the cysteine residues, whereas the other half comes from other constituents, probably a cohort of four or five nonadhesive, redox-active DOPA residues in Mfp-6 with an anodic peak potential ~500 mV lower than that for oxidation of cysteine to cystine. At higher pH, DOPA redox reversibility is lost possibly due to Q scavenging by Cys thiolates. Analysis by one- and two-dimensional proton nuclear magnetic resonance identified a pronounced β-sheet structure with a hydrophobic core in foot-extracted Mfp-6 protein. The structure endows redox-active side chains in Mfp-6, i.e., cysteine and DOPA, with significant reducing power over a broad pH range, and this power is measurably diminished in recombinant Mfp-6.

  10. Molecular mechanisms underlying the force-dependent regulation of actin-to-ECM linkage at the focal adhesions.

    PubMed

    Hirata, Hiroaki; Sokabe, Masahiro; Lim, Chwee Teck

    2014-01-01

    The linkage of the actin cytoskeleton to extracellular matrices (ECMs) at focal adhesions provides a physical path for cells to exert traction forces on substrates during cellular processes such as migration and morphogenesis. Mechanical strength of the actin-to-ECM linkage increases in response to forces loaded at this linkage. This is achieved by local accumulations of actin filaments, as well as linker proteins connecting actins to integrins, at force-bearing adhesion sites, which leads to an increase in the number of molecular bonds between the actin cytoskeleton- and ECM-bound integrins. Zyxin-dependent actin polymerization and filamin-mediated actin bundling are seemingly involved in the force-dependent actin accumulation. Each actin-integrin link is primarily mediated by the linker protein talin, which is strengthened by another linker protein vinculin connecting the actin filaments to talin in a force-dependent manner. This eliminates slippage between the actin cytoskeleton and talin (clutch mechanism), thus playing a crucial role in creating cell membrane protrusions mediated by actin polymerization. Finally, each integrin-ECM bond is also strengthened when a force is loaded on it, which ensures force transmission at focal adhesions, contributing to stable cell-substrate adhesion in cell migration. PMID:25081617

  11. Identification of two distinct functional domains on vinculin involved in its association with focal contacts

    PubMed Central

    1989-01-01

    We report here on the identification of two distinct functional domains on chicken vinculin molecule, which can, independently, mediate its interaction with focal contacts in living cells. These findings were obtained by immunofluorescent labeling of COS cells transfected with a series of chicken vinculin-specific cDNA constructs derived from clones cVin1 and cVin5 (Bendori, R., D. Salomon, and B. Geiger. 1987. EMBO [Eur. Mol. Biol. Organ.] J. 6:2897-2905). These included a chimeric construct consisting of 5' sequences of cVin1 attached to the complementary 3' region of cVin5, as well as several constructs of either cVin1 or cVin5 from which 3' or 5' sequences were deleted. We show here that the products of both cVin1 and cVin5, and of the cVin1/cVin5 chimera, readily associated with focal contacts in transfected COS cells. Furthermore, 78 and 45 kD NH2-terminal fragments encoded by a deleted cVin1 and the 78-kD COOH-terminal portion of vinculin encoded by cVin5 were capable of binding specifically to focal contact areas. In contrast 3'-deletion mutants prepared from clone cVin5 and a 5'-deletion mutant of cVin1, lacking both NH2- and COOH- terminal sequences, failed to associate with focal contacts in transfected cells. The loss of binding was accompanied by an overall disarray of the microfilament system. These results, together with previous in vitro binding studies, suggest that vinculin contains at least two independent sites for binding to focal contacts; the NH2- terminal domain may contain the talin binding site while the COOH- terminal domain may mediate vinculin-vinculin interaction. Moreover, the disruptive effect of the double-deleted molecule (lacking the two focal-contact binding sites) on the organization of actin suggests that a distinct region involved in the binding of vinculin to the microfilament system is present in the NH2-terminal 45-kD region of the molecule. PMID:2500446

  12. The UNC-112 Gene in Caenorhabditis elegansEncodes a Novel Component of Cell–Matrix Adhesion Structures Required for Integrin Localization in the Muscle Cell Membrane

    PubMed Central

    Rogalski, Teresa M.; Mullen, Gregory P.; Gilbert, Mary M.; Williams, Benjamin D.; Moerman, Donald G.

    2000-01-01

    Embryos homozygous for mutations in the unc-52, pat-2, pat-3, and unc-112 genes of C. elegans exhibit a similar Pat phenotype. Myosin and actin are not organized into sarcomeres in the body wall muscle cells of these mutants, and dense body and M-line components fail to assemble. The unc-52 (perlecan), pat-2 (α-integrin), and pat-3 (β-integrin) genes encode ECM or transmembrane proteins found at the cell–matrix adhesion sites of both dense bodies and M-lines. This study describes the identification of the unc-112 gene product, a novel, membrane-associated, intracellular protein that colocalizes with integrin at cell–matrix adhesion complexes. The 720–amino acid UNC-112 protein is homologous to Mig-2, a human protein of unknown function. These two proteins share a region of homology with talin and members of the FERM superfamily of proteins. We have determined that a functional UNC-112::GFP fusion protein colocalizes with PAT-3/β-integrin in both adult and embryonic body wall muscle. We also have determined that UNC-112 is required to organize PAT-3/β-integrin after it is integrated into the basal cell membrane, but is not required to organize UNC-52/perlecan in the basement membrane, nor for DEB-1/vinculin to localize with PAT-3/β-integrin. Furthermore, UNC-112 requires the presence of UNC-52/perlecan and PAT-3/β-integrin, but not DEB-1/vinculin to become localized to the muscle cell membrane. PMID:10893272

  13. Small heat shock proteins in cellular adhesion and migration: evidence from Plasmodium genetics.

    PubMed

    Montagna, Georgina N; Matuschewski, Kai; Buscaglia, Carlos A

    2012-01-01

    Cellular locomotion and adhesion critically depend on regulated turnover of filamentous actin. Biochemical data from diverse model systems support a role for the family of small heat shock proteins (HSPBs) in microfilament regulation. The small chaperones could either act directly, through competition with the motor myosin, or indirectly, through modulation of actin depolymerizing factor/cofilin activity. However, a direct link between HSPBs and actin-based cellular motility remained to be established. In a recent experimental genetics study, we provided evidence for regulation of Plasmodium motility by HSPB6/Hsp20. The infectious forms of malaria parasites, termed sporozoites, display fast and continuous substrate-dependent motility, which is largely driven by turnover of actin microfilaments. Sporozoite gliding locomotion is essential to avoid destruction by host defense mechanisms and to ultimately reach a hepatocyte, the target cell, where to transform and replicate. Genetic ablation of Plasmodium HSP20 dramatically changed sporozoite speed and substrate adhesion, resulting in impaired natural malaria transmission. In this article, we discuss the function of Hsp20 in this fast-moving unicellular protozoan and implications for the roles of HSPBs in adhesion and migration of eukaryotic cells.

  14. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    NASA Astrophysics Data System (ADS)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (<5 mm) synthetic vascular graft materials exhibit poor long-term patency due to thrombosis and intimal hyperplasia. Tissue engineered solutions have yielded functional vascular tissue, but some require an eight-week in vitro culture period prior to implantation—too long for immediate clinical bedside applications. Previous in vitro studies have shown that nanostructured poly(lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  15. Host and Tissue Specificity of Trichomonas vaginalis Is Not Mediated by Its Known Adhesion Proteins

    PubMed Central

    Addis, Maria Filippa; Rappelli, Paola; Fiori, Pier Luigi

    2000-01-01

    Adhesion of Trichomonas vaginalis is believed to be dependent on four adhesion proteins, which are thought to bind to vaginal epithelial cells in a specific manner with a ligand-receptor type of interaction. However, the specific receptors on the host cell have not yet been identified. In this work, the ability of the T. vaginalis adhesins to bind to cells of different histologic derivations and from different species has been studied. HeLa, CHO, and Vero cell lines; erythrocytes from different species; and a prokaryote without a cell wall, Mycoplasma hominis, were employed in order to investigate the cell specificity of the T. vaginalis adhesins. We observed that the T. vaginalis adhesins are able to bind to the different cell types to the same extent, suggesting that the host and tissue specificity of T. vaginalis adhesion should not be due to specificity of the parasite adhesins. Our results suggest that the data published to date on the subject are probably artifactual and that the experiments reported in the literature are not appropriate for identification of protozoan adhesins. PMID:10858260

  16. Micrometer scale spacings between fibronectin nanodots regulate cell morphology and focal adhesions

    NASA Astrophysics Data System (ADS)

    Horzum, Utku; Ozdil, Berrin; Pesen-Okvur, Devrim

    2014-04-01

    Cell adhesion to extracellular matrix is an important process for both health and disease states. Surface protein patterns that are topographically flat, and do not introduce other chemical, topographical or rigidity related functionality and, more importantly, that mimic the organization of the in vivo extracellular matrix are desired. Previous work showed that vinculin and cytoskeletal organization are modulated by size and shape of surface nanopatterns. However, quantitative analysis on cell morphology and focal adhesions as a function of micrometer scale spacings of FN nanopatterns was absent. Here, electron beam lithography was used to pattern fibronectin nanodots with micrometer scale spacings on a K-casein background on indium tin oxide coated glass which, unlike silicon, is transparent and thus suitable for many light microscopy techniques. Exposure times were significantly reduced using the line exposure mode with micrometer scale step sizes. Micrometer scale spacings of 2, 4 and 8 μm between fibronectin nanodots proved to modulate cell adhesion through modification of cell area, focal adhesion number, size and circularity. Overall, cell behavior was shown to shift at the apparent threshold of 4 μm spacing. The findings presented here offer exciting new opportunities for cell biology research.

  17. A Multidomain Adhesion Protein Family Expressed in Plasmodium falciparum Is Essential for Transmission to the Mosquito

    PubMed Central

    Pradel, Gabriele; Hayton, Karen; Aravind, L.; Iyer, Lakshminarayan M.; Abrahamsen, Mitchell S.; Bonawitz, Annemarie; Mejia, Cesar; Templeton, Thomas J.

    2004-01-01

    The recent sequencing of several apicomplexan genomes has provided the opportunity to characterize novel antigens essential for the parasite life cycle that might lead to the development of new diagnostic and therapeutic markers. Here we have screened the Plasmodium falciparum genome sequence for genes encoding extracellular multidomain putative adhesive proteins. Three of these identified genes, named PfCCp1, PfCCp2, and PfCCp3, have multiple adhesive modules including a common Limulus coagulation factor C domain also found in two additional Plasmodium genes. Orthologues were identified in the Cryptosporidium parvum genome sequence, indicating an evolutionary conserved function. Transcript and protein expression analysis shows sexual stage–specific expression of PfCCp1, PfCCp2, and PfCCp3, and cellular localization studies revealed plasma membrane–associated expression in mature gametocytes. During gametogenesis, PfCCps are released and localize surrounding complexes of newly emerged microgametes and macrogametes. PfCCp expression markedly decreased after formation of zygotes. To begin to address PfCCp function, the PfCCp2 and PfCCp3 gene loci were disrupted by homologous recombination, resulting in parasites capable of forming oocyst sporozoites but blocked in the salivary gland transition. Our results describe members of a conserved apicomplexan protein family expressed in sexual stage Plasmodium parasites that may represent candidates for subunits of a transmission-blocking vaccine. PMID:15184503

  18. Serine palmitoyltransferase subunit 1 is present in the endoplasmic reticulum, nucleus and focal adhesions, and functions in cell morphology.

    PubMed

    Wei, Jia; Yerokun, Tokunbo; Leipelt, Martina; Haynes, Chris A; Radhakrishna, Harish; Momin, Amin; Kelly, Samuel; Park, Hyejung; Wang, Elaine; Carton, Jill M; Uhlinger, David J; Merrill, Alfred H

    2009-08-01

    Serine palmitoyltransferase (SPT) has been localized to the endoplasmic reticulum (ER) by subcellular fractionation and enzymatic assays, and fluorescence microscopy of epitope-tagged SPT; however, our studies have suggested that SPT subunit 1 might be present also in focal adhesions and the nucleus. These additional locations have been confirmed by confocal microscopy using HEK293 and HeLa cells, and for focal adhesions by the demonstration that SPT1 co-immunoprecipitates with vinculin, a focal adhesion marker protein. The focal adhesion localization of SPT1 is associated with cell morphology, and possibly cell migration, because it is seen in most cells before they reach confluence but disappears when they become confluent, and is restored by a standard scratch-wound healing assay. Conversely, elimination of SPT1 using SPTLC1 siRNA causes cell rounding. Thus, in addition to its "traditional" localization in the ER for de novo sphingolipid biosynthesis, SPT1 is present in other cellular compartments, including focal adhesions where it is associated with cell morphology. PMID:19362163

  19. Amyloid precursor-like protein 1 (APLP1) exhibits stronger zinc-dependent neuronal adhesion than amyloid precursor protein and APLP2.

    PubMed

    Mayer, Magnus C; Schauenburg, Linda; Thompson-Steckel, Greta; Dunsing, Valentin; Kaden, Daniela; Voigt, Philipp; Schaefer, Michael; Chiantia, Salvatore; Kennedy, Timothy E; Multhaup, Gerhard

    2016-04-01

    The amyloid precursor protein (APP) and its paralogs, amyloid precursor-like protein 1 (APLP1) and APLP2, are metalloproteins with a putative role both in synaptogenesis and in maintaining synapse structure. Here, we studied the effect of zinc on membrane localization, adhesion, and secretase cleavage of APP, APLP1, and APLP2 in cell culture and rat neurons. For this, we employed live-cell microscopy techniques, a microcontact printing adhesion assay and ELISA for protein detection in cell culture supernatants. We report that zinc induces the multimerization of proteins of the amyloid precursor protein family and enriches them at cellular adhesion sites. Thus, zinc facilitates the formation of de novo APP and APLP1 containing adhesion complexes, whereas it does not have such influence on APLP2. Furthermore, zinc-binding prevented cleavage of APP and APLPs by extracellular secretases. In conclusion, the complexation of zinc modulates neuronal functions of APP and APLPs by (i) regulating formation of adhesion complexes, most prominently for APLP1, and (ii) by reducing the concentrations of neurotrophic soluble APP/APLP ectodomains. Earlier studies suggest a function of the amyloid precursor protein (APP) family proteins in neuronal adhesion. We report here that adhesive function of these proteins is tightly regulated by zinc, most prominently for amyloid precursor-like protein 1 (APLP1). Zinc-mediated APLP1 multimerization, which induced formation of new neuronal contacts and decreased APLP1 shedding. This suggests that APLP1 could function as a zinc receptor processing zinc signals to stabilized or new neuronal contacts.

  20. Amyloid precursor-like protein 1 (APLP1) exhibits stronger zinc-dependent neuronal adhesion than amyloid precursor protein and APLP2.

    PubMed

    Mayer, Magnus C; Schauenburg, Linda; Thompson-Steckel, Greta; Dunsing, Valentin; Kaden, Daniela; Voigt, Philipp; Schaefer, Michael; Chiantia, Salvatore; Kennedy, Timothy E; Multhaup, Gerhard

    2016-04-01

    The amyloid precursor protein (APP) and its paralogs, amyloid precursor-like protein 1 (APLP1) and APLP2, are metalloproteins with a putative role both in synaptogenesis and in maintaining synapse structure. Here, we studied the effect of zinc on membrane localization, adhesion, and secretase cleavage of APP, APLP1, and APLP2 in cell culture and rat neurons. For this, we employed live-cell microscopy techniques, a microcontact printing adhesion assay and ELISA for protein detection in cell culture supernatants. We report that zinc induces the multimerization of proteins of the amyloid precursor protein family and enriches them at cellular adhesion sites. Thus, zinc facilitates the formation of de novo APP and APLP1 containing adhesion complexes, whereas it does not have such influence on APLP2. Furthermore, zinc-binding prevented cleavage of APP and APLPs by extracellular secretases. In conclusion, the complexation of zinc modulates neuronal functions of APP and APLPs by (i) regulating formation of adhesion complexes, most prominently for APLP1, and (ii) by reducing the concentrations of neurotrophic soluble APP/APLP ectodomains. Earlier studies suggest a function of the amyloid precursor protein (APP) family proteins in neuronal adhesion. We report here that adhesive function of these proteins is tightly regulated by zinc, most prominently for amyloid precursor-like protein 1 (APLP1). Zinc-mediated APLP1 multimerization, which induced formation of new neuronal contacts and decreased APLP1 shedding. This suggests that APLP1 could function as a zinc receptor processing zinc signals to stabilized or new neuronal contacts. PMID:26801522

  1. Focal adhesion kinase regulates expression of thioredoxin-interacting protein (TXNIP) in cancer cells.

    PubMed

    Ho, Baotran; Huang, Grace; Golubovskaya, Vita M

    2014-01-01

    Focal Adhesion Kinase (FAK) plays an important role in cancer cell survival. Previous microarray gene profiling study detected inverse regulation between expression of thioredoxin-interacting protein (TXNIP) and FAK, where down-regulation of FAK by siRNA in MCF-7 cells caused up-regulation of TXNIP mRNA level, and in contrast up-regulation of doxycyclin- induced FAK caused repression of TXNIP. In the present report, we show that overexpression of FAK in MCF-7 cells repressed TXNIP promoter activity. Treatment of MCF-7 cells with 1alpha, 25-dihydroxyvitamin D3 (1,25D) down-regulated endogenous FAK and up-regulated TXNIP protein level, and treatment with 5-FU decreased FAK protein expression and up-regulated TXNIP protein expression in 293 cells. Moreover, silencing of FAK with siRNA increased TXNIP protein expression, while overexpression of FAK inhibited TXNIP protein expression in 293 cells. In addition, treatment of DBTRG glioblastoma cells with FAK inhibitor Y15 increased TXNIP mRNA, decreased cancer cell viability and increased apoptosis. These results for the first time demonstrate FAK-regulated TXNIP expression which is important for apoptotic, survival and oxidative stress signaling pathways in cancer cells. PMID:23387972

  2. Association of membrane/lipid rafts with the platelet cytoskeleton and the caveolin PY14: participation in the adhesion process.

    PubMed

    Cerecedo, Doris; Martínez-Vieyra, Ivette; Maldonado-García, Deneb; Hernández-González, Enrique; Winder, Steve J

    2015-11-01

    Platelets are the most prominent elements of blood tissue involved in hemostasis at sites of blood vessel injury. Platelet cytoskeleton is responsible for their shape modifications observed during activation and adhesion to the substratum; therefore the interactions between cytoskeleton and plasma membrane are critical to modulate blood platelet functions. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to membrane/lipid rafts (MLR) and regulate lateral diffusion of membrane proteins and lipids. Resting, thrombin-activated, and adherent human platelets were processed for biochemical studies including western-blot and immunprecipitation assays and confocal analysis were performed to characterize the interaction of MLR with the main cytoskeleton elements and β-dystroglycan as well as with the association of caveolin-1 PY14 with focal adhesion proteins. We transfected a megakaryoblast cell line (Meg-01) to deplete β-dystroglycan, subsequent to their differentiation to the platelet progenitors. Our data showed a direct interaction of the MLR with cytoskeleton to regulate platelet shape, while an association of caveolin-1 PY14 with vinculin is needed to establish focal adhesions, which are modulated for β-dystroglycan. In conclusion, caveolin-1 PY14 in association with platelet cytoskeleton participate in focal adhesions dynamics.

  3. Effect of interfacial serum proteins on melanoma cell adhesion to biodegradable poly(l-lactic acid) microspheres coated with hydroxyapatite.

    PubMed

    Shinto, Hiroyuki; Hirata, Takuya; Fukasawa, Tomonori; Fujii, Syuji; Maeda, Hayata; Okada, Masahiro; Nakamura, Yoshinobu; Furuzono, Tsutomu

    2013-08-01

    We have measured the interaction forces between a murine melanoma cell and a poly(l-lactic acid) (PLLA) microsphere coated with/without hydroxyapatite (HAp) nanoparticles (i.e., an HAp/PLLA or a bare PLLA microsphere) in a serum-free culture medium, using atomic force microscopy (AFM) with colloid probe technique, in order to investigate how the HAp-nanoparticle coating as well as interfacial serum proteins influence the cell-microsphere adhesion. The cell adhesion force of the HAp/PLLA microspheres was 1.4-fold stronger than that of the bare PLLA microspheres. When the microspheres were pretreated with a culture medium supplemented with 10% fetal bovine serum, the cell adhesion force of the HAp/PLLA microspheres was increased by a factor of 2.1; in contrast, no change was observed in the cell adhesion force of the bare PLLA microspheres before/after the pretreatment. Indeed, the cell adhesion force of the HAp/PLLA was 2.8-fold larger than that of the bare PLLA after the pretreatment. Additionally, we have investigated the effect of interfacial serum proteins on the zeta potentials of these microspheres. On the basis of the obtained results, possible mechanism of cell adhesion to the HAp/PLLA and bare PLLA microspheres in the presence/absence of the interfacial serum proteins is discussed.

  4. Effect of interfacial serum proteins on melanoma cell adhesion to biodegradable poly(l-lactic acid) microspheres coated with hydroxyapatite.

    PubMed

    Shinto, Hiroyuki; Hirata, Takuya; Fukasawa, Tomonori; Fujii, Syuji; Maeda, Hayata; Okada, Masahiro; Nakamura, Yoshinobu; Furuzono, Tsutomu

    2013-08-01

    We have measured the interaction forces between a murine melanoma cell and a poly(l-lactic acid) (PLLA) microsphere coated with/without hydroxyapatite (HAp) nanoparticles (i.e., an HAp/PLLA or a bare PLLA microsphere) in a serum-free culture medium, using atomic force microscopy (AFM) with colloid probe technique, in order to investigate how the HAp-nanoparticle coating as well as interfacial serum proteins influence the cell-microsphere adhesion. The cell adhesion force of the HAp/PLLA microspheres was 1.4-fold stronger than that of the bare PLLA microspheres. When the microspheres were pretreated with a culture medium supplemented with 10% fetal bovine serum, the cell adhesion force of the HAp/PLLA microspheres was increased by a factor of 2.1; in contrast, no change was observed in the cell adhesion force of the bare PLLA microspheres before/after the pretreatment. Indeed, the cell adhesion force of the HAp/PLLA was 2.8-fold larger than that of the bare PLLA after the pretreatment. Additionally, we have investigated the effect of interfacial serum proteins on the zeta potentials of these microspheres. On the basis of the obtained results, possible mechanism of cell adhesion to the HAp/PLLA and bare PLLA microspheres in the presence/absence of the interfacial serum proteins is discussed. PMID:23524077

  5. Spontaneous unraveling of hagfish slime thread skeins is mediated by a seawater-soluble protein adhesive.

    PubMed

    Bernards, Mark A; Oke, Isdin; Heyland, Andreas; Fudge, Douglas S

    2014-04-15

    Hagfishes are known for their ability to rapidly produce vast quantities of slime when provoked. The slime is formed via the interaction between seawater and two components released by the slime glands: mucin vesicles from gland mucous cells, which swell and rupture in seawater to form a network of mucus strands, and intermediate filament-rich threads, which are produced within gland thread cells as tightly coiled bundles called skeins. A previous study showed that the unraveling of skeins from Atlantic hagfish (Myxine glutinosa) requires both the presence of mucins and hydrodynamic mixing. In contrast, skeins from Pacific hagfish (Eptatretus stoutii) unravel in the absence of both mucins and mixing. We tested the hypothesis that spontaneous unraveling of E. stoutii skeins is triggered by the dissolution of a seawater-soluble protein adhesive and the release of stored strain energy within the coiled thread. Here we show that, as predicted by this hypothesis, unraveling can be initiated by a protease under conditions in which unraveling does not normally occur. We also demonstrate, using high resolution scanning electron microscopy, that the treatment of skeins with solutions that cause unraveling also leads to the disappearance of surface and inter-thread features that remain when skeins are washed with stabilizing solutions. Our study provides a mechanism for the deployment of thread skeins in Pacific hagfish slime, and raises the possibility of producing novel biomimetic protein adhesives that are salt, temperature and kosmotrope sensitive.

  6. Protein adsorption and cell adhesion on polyurethane/Pluronic surface with lotus leaf-like topography.

    PubMed

    Zheng, Jun; Song, Wei; Huang, He; Chen, Hong

    2010-06-01

    Lotus leaf-like polyurethane/Pluronic F-127 surface was fabricated via replica molding using a natural lotus leaf as the template. Water contact angle measurements showed that both the hydrophobicity of the unmodified polyurethane (PU) surface and the hydrophilicity of the PU/Pluronic surface were enhanced by the construction of lotus leaf-like topography. Protein adsorption on the PU/Pluronic surface without topographic modification was significantly lower than on the PU surface. Adsorption was further reduced when lotus leaf-like topography was constructed on the PU/Pluronic surface. Cell culture experiments with L929 cells showed that adhesion on the PU/Pluronic surface with lotus leaf-like topography was low and adherent cells were spherical and of low viability. The PU/Pluronic surface with lotus leaf-like topography thus appears to be resistant to nonspecific protein adsorption and to cell adhesion, and these effects derive from the both chemical composition and topography. The results suggest a new strategy based on surface topography for the design of antifouling materials.

  7. Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy.

    PubMed

    Huang, Yujian; Wang, Yongzhong; Tan, Li; Sun, Leming; Petrosino, Jennifer; Cui, Mei-Zhen; Hao, Feng; Zhang, Mingjun

    2016-06-01

    Over 130 y have passed since Charles Darwin first discovered that the adventitious roots of English ivy (Hedera helix) exude a yellowish mucilage that promotes the capacity of this plant to climb vertical surfaces. Unfortunately, little progress has been made in elucidating the adhesion mechanisms underlying this high-strength adhesive. In the previous studies, spherical nanoparticles were observed in the viscous exudate. Here we show that these nanoparticles are predominantly composed of arabinogalactan proteins (AGPs), a superfamily of hydroxyproline-rich glycoproteins present in the extracellular spaces of plant cells. The spheroidal shape of the AGP-rich ivy nanoparticles results in a low viscosity of the ivy adhesive, and thus a favorable wetting behavior on the surface of substrates. Meanwhile, calcium-driven electrostatic interactions among carboxyl groups of the AGPs and the pectic acids give rise to the cross-linking of the exuded adhesive substances, favor subsequent curing (hardening) via formation of an adhesive film, and eventually promote the generation of mechanical interlocking between the adventitious roots of English ivy and the surface of substrates. Inspired by these molecular events, a reconstructed ivy-mimetic adhesive composite was developed by integrating purified AGP-rich ivy nanoparticles with pectic polysaccharides and calcium ions. Information gained from the subsequent tensile tests, in turn, substantiated the proposed adhesion mechanisms underlying the ivy-derived adhesive. Given that AGPs and pectic polysaccharides are also observed in bioadhesives exuded by other climbing plants, the adhesion mechanisms revealed by English ivy may forward the progress toward understanding the general principles underlying diverse botanic adhesives. PMID:27217558

  8. Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy

    NASA Astrophysics Data System (ADS)

    Huang, Yujian; Wang, Yongzhong; Tan, Li; Sun, Leming; Petrosino, Jennifer; Cui, Mei-Zhen; Hao, Feng; Zhang, Mingjun

    2016-06-01

    Over 130 y have passed since Charles Darwin first discovered that the adventitious roots of English ivy (Hedera helix) exude a yellowish mucilage that promotes the capacity of this plant to climb vertical surfaces. Unfortunately, little progress has been made in elucidating the adhesion mechanisms underlying this high-strength adhesive. In the previous studies, spherical nanoparticles were observed in the viscous exudate. Here we show that these nanoparticles are predominantly composed of arabinogalactan proteins (AGPs), a superfamily of hydroxyproline-rich glycoproteins present in the extracellular spaces of plant cells. The spheroidal shape of the AGP-rich ivy nanoparticles results in a low viscosity of the ivy adhesive, and thus a favorable wetting behavior on the surface of substrates. Meanwhile, calcium-driven electrostatic interactions among carboxyl groups of the AGPs and the pectic acids give rise to the cross-linking of the exuded adhesive substances, favor subsequent curing (hardening) via formation of an adhesive film, and eventually promote the generation of mechanical interlocking between the adventitious roots of English ivy and the surface of substrates. Inspired by these molecular events, a reconstructed ivy-mimetic adhesive composite was developed by integrating purified AGP-rich ivy nanoparticles with pectic polysaccharides and calcium ions. Information gained from the subsequent tensile tests, in turn, substantiated the proposed adhesion mechanisms underlying the ivy-derived adhesive. Given that AGPs and pectic polysaccharides are also observed in bioadhesives exuded by other climbing plants, the adhesion mechanisms revealed by English ivy may forward the progress toward understanding the general principles underlying diverse botanic adhesives.

  9. Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy.

    PubMed

    Huang, Yujian; Wang, Yongzhong; Tan, Li; Sun, Leming; Petrosino, Jennifer; Cui, Mei-Zhen; Hao, Feng; Zhang, Mingjun

    2016-06-01

    Over 130 y have passed since Charles Darwin first discovered that the adventitious roots of English ivy (Hedera helix) exude a yellowish mucilage that promotes the capacity of this plant to climb vertical surfaces. Unfortunately, little progress has been made in elucidating the adhesion mechanisms underlying this high-strength adhesive. In the previous studies, spherical nanoparticles were observed in the viscous exudate. Here we show that these nanoparticles are predominantly composed of arabinogalactan proteins (AGPs), a superfamily of hydroxyproline-rich glycoproteins present in the extracellular spaces of plant cells. The spheroidal shape of the AGP-rich ivy nanoparticles results in a low viscosity of the ivy adhesive, and thus a favorable wetting behavior on the surface of substrates. Meanwhile, calcium-driven electrostatic interactions among carboxyl groups of the AGPs and the pectic acids give rise to the cross-linking of the exuded adhesive substances, favor subsequent curing (hardening) via formation of an adhesive film, and eventually promote the generation of mechanical interlocking between the adventitious roots of English ivy and the surface of substrates. Inspired by these molecular events, a reconstructed ivy-mimetic adhesive composite was developed by integrating purified AGP-rich ivy nanoparticles with pectic polysaccharides and calcium ions. Information gained from the subsequent tensile tests, in turn, substantiated the proposed adhesion mechanisms underlying the ivy-derived adhesive. Given that AGPs and pectic polysaccharides are also observed in bioadhesives exuded by other climbing plants, the adhesion mechanisms revealed by English ivy may forward the progress toward understanding the general principles underlying diverse botanic adhesives.

  10. Characterization and binding analysis of a microneme adhesive repeat domain-containing protein from Toxoplasma gondii.

    PubMed

    Gong, Haiyan; Kobayashi, Kyousuke; Sugi, Tatsuki; Takemae, Hitoshi; Ishiwa, Akiko; Recuenco, Frances C; Murakoshi, Fumi; Xuan, Xuenan; Horimoto, Taisuke; Akashi, Hiroomi; Kato, Kentaro

    2014-04-01

    The intracellular parasite Toxoplasma gondii invades almost all nucleated cells, and has infected approximately 34% of the world's population to date. In order to develop effective vaccines against T. gondii infection, understanding of the role of the molecules that are involved in the invasion process is important. For this purpose, we characterized T. gondii proteins that contain microneme adhesive repeats (MARs), which are common in moving junction proteins. T. gondii MAR domain-containing protein 4a (TgMCP4a), which contains repeats of 17-22 amino acid segments at the N-terminus and three putative MAR domains at the C-terminus, is localized near the rhoptry of extracellular parasites. Following infection, TgMCP4a was detected in the parasitophorous vacuole. The recombinant Fc-TgMCP4a N-terminus protein (rTgMCP4a-1/Fc) showed binding activity to the surface proteins of Vero, 293T, and CHO cells. The recombinant GST-TgMCP4a N-terminus protein (rTgMCP4a-1/GST), which exhibited binding activity, was used to pull down the interacting factors from 293T cell lysate, and subsequent mass spectrometry analysis revealed that three types of heat shock proteins (HSPs) interacted with TgMCP4a. Transfection of a FLAG fusion protein of TgMCP4a-1 (rTgMCP4a-1/FLAG) into 293T cell and the following immunoprecipitation with anti-FLAG antibody confirmed the interactions of HSC70 with TgMCP4a. The addition of rTgMCP4a-1/GST into the culture medium significantly affected the growth of the parasite. This study hints that T. gondii may employ HSP proteins of host cell to facilitate their growth.

  11. A standardized bamboo leaf extract inhibits monocyte adhesion to endothelial cells by modulating vascular cell adhesion protein-1

    PubMed Central

    Choi, Sunga; Park, Myoung Soo; Lee, Yu Ran; Lee, Young Chul; Kim, Tae Woo; Do, Seon-Gil; Kim, Dong Seon

    2013-01-01

    Bamboo leaves (Phyllostachys pubescens Mazel ex J. Houz (Poacea)) have a long history of food and medical applications in Asia, including Japan and Korea. They have been used as a traditional medicine for centuries. We investigated the mechanism of anti-inflammatory activity of a bamboo leaf extract (BLE) on tumor necrosis factor-alpha (TNF-α)-induced monocyte adhesion in human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to BLE did not inhibit cell viability or cause morphological changes at concentrations ranging from 1 µg/ml to 1 mg/ml. Treatment with 0.1 mg/ml BLE caused 63% inhibition of monocyte adhesion in TNF-α-activated HUVECs, which was associated with 38.4% suppression of vascular cell adhesion molecule-1 expression. Furthermore, TNF-α-induced reactive oxygen species generation was decreased to 47.9% in BLE treated TNF-α-activated HUVECs. BLE (0.05 mg/ml) also caused about 50% inhibition of interleukin-6 secretion from lipopolysaccharide-stimulated monocyte. The results indicate that BLE may be clinically useful as an anti-inflammatory or anti-oxidant for human cardiovascular disease including atherosclerosis. PMID:23422838

  12. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  13. Understanding Marine Mussel Adhesion

    SciTech Connect

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  14. High affinity neurexin binding to cell adhesion G-protein-coupled receptor CIRL1/latrophilin-1 produces an intercellular adhesion complex.

    PubMed

    Boucard, Antony A; Ko, Jaewon; Südhof, Thomas C

    2012-03-16

    The G-protein-coupled receptor CIRL1/latrophilin-1 (CL1) and the type-1 membrane proteins neurexins represent distinct neuronal cell adhesion molecules that exhibit no similarities except for one common function: both proteins are receptors for α-latrotoxin, a component of black widow spider venom that induces massive neurotransmitter release at synapses. Unexpectedly, we have now identified a direct binding interaction between the extracellular domains of CL1 and neurexins that is regulated by alternative splicing of neurexins at splice site 4 (SS4). Using saturation binding assays, we showed that neurexins lacking an insert at SS4 bind to CL1 with nanomolar affinity, whereas neurexins containing an insert at SS4 are unable to bind. CL1 competed for neurexin binding with neuroligin-1, a well characterized neurexin ligand. The extracellular sequences of CL1 contain five domains (lectin, olfactomedin-like, serine/threonine-rich, hormone-binding, and G-protein-coupled receptor autoproteolysis-inducing (GAIN) domains). Of these domains, the olfactomedin-like domain mediates neurexin binding as shown by deletion mapping. Cell adhesion assays using cells expressing neurexins and CL1 revealed that their interaction produces a stable intercellular adhesion complex, indicating that their interaction can be trans-cellular. Thus, our data suggest that CL1 constitutes a novel ligand for neurexins that may be localized postsynaptically based on its well characterized interaction with intracellular SH3 and multiple ankyrin repeats adaptor proteins (SHANK) and could form a trans-synaptic complex with presynaptic neurexins.

  15. Protein Kinase D1 regulates focal adhesion dynamics and cell adhesion through Phosphatidylinositol-4-phosphate 5-kinase type-l γ

    PubMed Central

    Durand, Nisha; Bastea, Ligia I.; Long, Jason; Döppler, Heike; Ling, Kun; Storz, Peter

    2016-01-01

    Focal adhesions (FAs) are highly dynamic structures that are assembled and disassembled on a continuous basis. The balance between the two processes mediates various aspects of cell behavior, ranging from cell adhesion and spreading to directed cell migration. The turnover of FAs is regulated at multiple levels and involves a variety of signaling molecules and adaptor proteins. In the present study, we show that in response to integrin engagement, a subcellular pool of Protein Kinase D1 (PKD1) localizes to the FAs. PKD1 affects FAs by decreasing turnover and promoting maturation, resulting in enhanced cell adhesion. The effects of PKD1 are mediated through direct phosphorylation of FA-localized phosphatidylinositol-4-phosphate 5-kinase type-l γ (PIP5Klγ) at serine residue 448. This phosphorylation occurs in response to Fibronectin-RhoA signaling and leads to a decrease in PIP5Klγs’ lipid kinase activity and binding affinity for Talin. Our data reveal a novel function for PKD1 as a regulator of FA dynamics and by identifying PIP5Klγ as a novel PKD1 substrate provide mechanistic insight into this process. PMID:27775029

  16. Nanostructured Biointerfaces: Nanoarchitectonics of Thermoresponsive Polymer Brushes Impact Protein Adsorption and Cell Adhesion.

    PubMed

    Psarra, Evmorfia; König, Ulla; Ueda, Yuichiro; Bellmann, Cornelia; Janke, Andreas; Bittrich, Eva; Eichhorn, Klaus-J; Uhlmann, Petra

    2015-06-17

    Controlling the reversibility, quantity, and extent of biomolecule interaction at interfaces has a significant relevance for biomedical and biotechnological applications, because protein adsorption is always the first step when a solid surface gets in contact with a biological fluid. Polymer brushes, composed of end-tethered linear polymers with sufficient grafting density, are very promising to control and alter interactions with biological systems because of their unique structure and distinct collaborative response to environmental changes. We studied protein adsorption and cell adhesion at polymer brush substrates which consisted of poly(N-isopropylacrylamide) (PNIPAAm), having a lower critical solution temperature (LCST), to control bioadsorptive processes by changing the environmental temperature. Preparing the PNIPAAm brushes by the "grafting-to"-method two differently synthesized PNIPAAm polymers were used, at which one possessed an additional hydrophobic terminal headgroup. It is known that hydrophobic moieties can influence protein adsorption significantly. The films were comprehensively analyzed by in situ spectroscopic ellipsometry, contact angle measurements, streaming potential, and atomic force microscopy. Our study was mainly focused on the investigation of the fibrinogen (FGN) adsorption responsiveness both on homo polymer PNIPAAm brushes with and without the hydrophobic terminal functionalization, and further on binary brushes made of the polyelectrolyte poly(acrylic acid) (PAA) and one of the prior described two PNIPAAm species. The results show that the terminal hydrophobic modification of PNIPAAm has a considerable impact on wettability, LCST, and morphology of the homo and the binary brush systems, which consequently led to an alteration of FGN adsorption. By using binary PNIPAAm-PAA brushes with different composition it was possible to induce stimuli dependent FGN adsorption with a considerable amplified switching effect by introducing a

  17. Unraveling the Role of Surface Mucus-Binding Protein and Pili in Muco-Adhesion of Lactococcus lactis

    PubMed Central

    Duviau, Marie-Pierre; Meyrand, Mickael; Guérardel, Yann; Castelain, Mickaël; Loubière, Pascal; Chapot-Chartier, Marie-Pierre; Dague, Etienne; Mercier-Bonin, Muriel

    2013-01-01

    Adhesion of bacteria to mucus may favor their persistence within the gut and their beneficial effects to the host. Interactions between pig gastric mucin (PGM) and a natural isolate of Lactococcus lactis (TIL448) were measured at the single-cell scale and under static conditions, using atomic force microscopy (AFM). In parallel, these interactions were monitored at the bacterial population level and under shear flow. AFM experiments with a L. lactis cell-probe and a PGM-coated surface revealed a high proportion of specific adhesive events (60%) and a low level of non-adhesive ones (2%). The strain muco-adhesive properties were confirmed by the weak detachment of bacteria from the PGM-coated surface under shear flow. In AFM, rupture events were detected at short (100−200 nm) and long distances (up to 600−800 nm). AFM measurements on pili and mucus-binding protein defective mutants demonstrated the comparable role played by these two surface proteinaceous components in adhesion to PGM under static conditions. Under shear flow, a more important contribution of the mucus-binding protein than the pili one was observed. Both methods differ by the way of probing the adhesion force, i.e. negative force contact vs. sedimentation and normal-to-substratum retraction vs. tangential detachment conditions, using AFM and flow chamber, respectively. AFM blocking assays with free PGM or O-glycan fractions purified from PGM demonstrated that neutral oligosaccharides played a major role in adhesion of L. lactis TIL448 to PGM. This study dissects L. lactis muco-adhesive phenotype, in relation with the nature of the bacterial surface determinants. PMID:24260308

  18. Blockade of Vascular Adhesion Protein-1 Inhibits Lymphocyte Infiltration in Rat Liver Allograft Rejection

    PubMed Central

    Martelius, Timi; Salaspuro, Ville; Salmi, Marko; Krogerus, Leena; Höckerstedt, Krister; Jalkanen, Sirpa; Lautenschlager, Irmeli

    2004-01-01

    Vascular adhesion protein-1 (VAP-1) has been shown to mediate lymphocyte adhesion to endothelia at sites of inflammation, but its functional role in vivo has not been tested in any rodent model. Here we report the effects of VAP-1 blockade on rat liver allograft rejection. BN recipients of PVG liver allografts (known to develop acute rejection by day 7) were treated with 2 mg/kg anti-VAP-1 (a new anti-rat VAP-1 mAb 174–5) or isotype-matched irrelevant antibody (NS1) every other day (n = 6/group) and one group with anti-VAP-1 2 mg/kg daily (n = 7). On day 7, samples were collected for transplant aspiration cytology, histology, and immunohistochemistry. Lymphocyte infiltration to the graft was clearly affected by VAP-blockade. The total inflammation, mainly the number of active lymphoid cells, in transplant aspiration cytology was significantly decreased in animals treated with anti-VAP-1 (4.7 ± 1.0 and 2.4 ± 1.0 corrected increment units, respectively) compared to control (6.6 ± 1.0) (P < 0.05). In histology, the intensity of portal inflammation was significantly decreased (P < 0.05). The amount of T cells expressing activation markers diminished. This is the first demonstration in any prolonged in vivo model that VAP-1 plays an important role in lymphocyte infiltration to sites of inflammation, and, in particular, liver allograft rejection. PMID:15579442

  19. Leukocyte trafficking-associated vascular adhesion protein 1 is expressed and functionally active in atherosclerotic plaques

    PubMed Central

    Silvola, Johanna M. U.; Virtanen, Helena; Siitonen, Riikka; Hellberg, Sanna; Liljenbäck, Heidi; Metsälä, Olli; Ståhle, Mia; Saanijoki, Tiina; Käkelä, Meeri; Hakovirta, Harri; Ylä-Herttuala, Seppo; Saukko, Pekka; Jauhiainen, Matti; Veres, Tibor Z.; Jalkanen, Sirpa; Knuuti, Juhani; Saraste, Antti; Roivainen, Anne

    2016-01-01

    Given the important role of inflammation and the potential association of the leukocyte trafficking-associated adhesion molecule vascular adhesion protein 1 (VAP-1) with atherosclerosis, this study examined whether functional VAP-1 is expressed in atherosclerotic lesions and, if so, whether it could be targeted by positron emission tomography (PET). First, immunohistochemistry revealed that VAP-1 localized to endothelial cells of intra-plaque neovessels in human carotid endarterectomy samples from patients with recent ischemic symptoms. In low-density lipoprotein receptor-deficient mice expressing only apolipoprotein B100 (LDLR−/−ApoB100/100), VAP-1 was expressed on endothelial cells lining inflamed atherosclerotic lesions; normal vessel walls in aortas of C57BL/6N control mice were VAP-1-negative. Second, we discovered that the focal uptake of VAP-1 targeting sialic acid-binding immunoglobulin-like lectin 9 based PET tracer [68Ga]DOTA-Siglec-9 in atherosclerotic plaques was associated with the density of activated macrophages (r = 0.58, P = 0.022). As a final point, we found that the inhibition of VAP-1 activity with small molecule LJP1586 decreased the density of macrophages in inflamed atherosclerotic plaques in mice. Our results suggest for the first time VAP-1 as a potential imaging target for inflamed atherosclerotic plaques, and corroborate VAP-1 inhibition as a therapeutic approach in the treatment of atherosclerosis. PMID:27731409

  20. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis

    PubMed Central

    Weston, Chris J.; Shepherd, Emma L.; Claridge, Lee C.; Rantakari, Pia; Curbishley, Stuart M.; Tomlinson, Jeremy W.; Hubscher, Stefan G.; Reynolds, Gary M.; Aalto, Kristiina; Anstee, Quentin M.; Jalkanen, Sirpa; Salmi, Marko; Smith, David J.; Day, Christopher P.; Adams, David H.

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) encompasses a range of manifestations, including steatosis and cirrhosis. Progressive disease is characterized by hepatic leukocyte accumulation in the form of steatohepatitis. The adhesion molecule vascular adhesion protein-1 (VAP-1) is a membrane-bound amine oxidase that promotes leukocyte recruitment to the liver, and the soluble form (sVAP-1) accounts for most circulating monoamine oxidase activity, has insulin-like effects, and can initiate oxidative stress. Here, we determined that hepatic VAP-1 expression is increased in patients with chronic liver disease and that serum sVAP-1 levels are elevated in patients with NAFLD compared with those in control individuals. In 4 murine hepatic injury models, an absence or blockade of functional VAP-1 reduced inflammatory cell recruitment to the liver and attenuated fibrosis. Moreover, disease was reduced in animals expressing a catalytically inactive form of VAP-1, implicating enzyme activity in the disease pathogenesis. Within the liver, hepatic stromal cells expressed functional VAP-1, and evaluation of cultured cells revealed that sVAP-1 promotes leukocyte migration through catalytic generation of ROS, which depended on VAP-1 enzyme activity. VAP-1 enhanced stromal cell spreading and wound closure and modulated expression of profibrotic genes. Together, these results link the amine oxidase activity of VAP-1 with hepatic inflammation and fibrosis and suggest that targeting VAP-1 has therapeutic potential for NAFLD and other chronic fibrotic liver diseases. PMID:25562318

  1. Anterior Gradient Protein-2 Is a Regulator of Cellular Adhesion in Prostate Cancer

    PubMed Central

    Chanda, Diptiman; Lee, Joo Hyoung; Sawant, Anandi; Hensel, Jonathan A.; Isayeva, Tatyana; Reilly, Stephanie D.; Siegal, Gene P.; Smith, Claire; Grizzle, William; Singh, Raj; Ponnazhagan, Selvarangan

    2014-01-01

    Anterior Gradient Protein (AGR-2) is reported to be over-expressed in many epithelial cancers and promotes metastasis. A clear-cut mechanism for its observed function(s) has not been previously identified. We found significant upregulation of AGR-2 expression in a bone metastatic prostate cancer cell line, PC3, following culturing in bone marrow-conditioned medium. Substantial AGR-2 expression was also confirmed in prostate cancer tissue specimens in patients with bone lesions. By developing stable clones of PC3 cells with varying levels of AGR-2 expression, we identified that abrogation of AGR-2 significantly reduced cellular attachment to fibronectin, collagen I, collagen IV, laminin I and fibrinogen. Loss of cellular adhesion was associated with sharp decrease in the expression of α4, α5, αV, β3 and β4 integrins. Failure to undergo apoptosis following detachment is a hallmark of epithelial cancer metastasis. The AGR-2-silenced PC3 cells showed higher resistance to Tumor necrosis factor-related apoptosis- inducing ligand (TRAIL) induced apoptosis in vitro. This observation was also supported by significantly reduced Caspase-3 expression in AGR-2-silenced PC3 cells, which is a key effector of both extrinsic and intrinsic death signaling pathways. These data suggest that AGR-2 influence prostate cancer metastasis by regulation of cellular adhesion and apoptosis. PMID:24587138

  2. Calcium- and integrin-binding protein 1 regulates megakaryocyte ploidy, adhesion, and migration

    PubMed Central

    Kostyak, John C.; Naik, Meghna U.

    2012-01-01

    Megakaryocytes are large, polyploid cells that produce platelets. We have previously reported that calcium- and integrin-binding protein 1 (CIB1) regulates endomitosis in Dami cells. To further characterize the role of CIB1 in megakaryopoiesis, we used a Cib1−/− mouse model. Cib1−/− mice have more platelets and BM megakaryocytes than wild-type (WT) controls (P < .05). Furthermore, subsequent analysis of megakaryocyte-CFU production revealed an increase with Cib1 deletion compared with WT (P < .05). In addition, BM from Cib1−/− mice, cultured with thrombopoietin (TPO) for 24 hours, produced more highly polyploid megakaryocytes than WT BM (P < .05). Subsequent analysis of TPO signaling revealed enhanced Akt and ERK1/2 phosphorylation, whereas FAKY925 phosphorylation was reduced in Cib1−/− megakaryocytes treated with TPO. Conversely, platelet recovery in Cib1−/− mice after platelet depletion was attenuated compared with WT (P < .05). This could be the result of impaired adhesion and migration, as adhesion to fibrinogen and fibronectin and migration toward an SDF-1α gradient were reduced in Cib1−/− megakaryocytes compared with WT (P < .05). In addition, Cib1−/− megakaryocytes formed fewer proplatelets compared with WT (P < .05), when plated on fibrinogen. These data suggest that CIB1 plays a dual role in megakaryopoiesis, initially by negatively regulating TPO signaling and later by augmenting proplatelet production. PMID:22128142

  3. Evaluation of Serum Vascular Adhesion Protein-1 as a Potential Biomarker in Thyroid Cancer

    PubMed Central

    Zhao, Pengxin; Zhang, Kaili

    2016-01-01

    Vascular adhesion protein-1 (VAP-1) is a glycoprotein that mediates tissue-selective lymphocyte adhesion. The prognostic value of VAP-1 has been determined in gastric cancer. The aim of this study was to evaluate the changes and the predictive value of serum VAP-1 in patients with thyroid cancer. A total of 126 patients with thyroid nodules and 53 healthy controls participated in this study. The patients were further divided into subgroup 1 (69 cases with benign thyroid nodules) and subgroup 2 (57 cases with thyroid cancer). Serum VAP-1 was measured by time-resolved immunofluorometric assay. Diagnostic value of presurgical VAP-1 for thyroid cancer was conducted by receiver operating characteristic (ROC) curves. Serum levels of VAP-1 were significantly lower in thyroid cancer group than in healthy control and benign thyroid nodule groups. VAP-1 concentrations negatively correlated with serum thyroglobulin (Tg) levels in thyroid cancer patients (r = −0.81; p < 0.001). The optimum cut-off value of VAP-1 was 456.6 ng/mL with a 77.4% specificity and 66.7% sensitivity for thyroid cancer diagnosis. Serum VAP-1 decreased in thyroid cancer patients and VAP-1 could be a potential useful adjunct biomarker in the diagnosis of thyroid cancer. PMID:27446209

  4. Fabrication of three-dimensional multi-protein microstructures for cell migration and adhesion enhancement

    PubMed Central

    Da Sie, Yong; Li, Yi-Cheng; Chang, Nan-Shan; Campagnola, Paul J.; Chen, Shean-Jen

    2015-01-01

    In this study, three-dimensional (3D) multi-component microstructures were precisely fabricated via multiphoton excited photochemistry using a femtosecond laser direct-writing system with proposed repetition positioning and vector scanning techniques. Extracellular matrix (ECM) proteins, such as fibronectin (FN), are difficult to stack and form 3D structures larger than several-hundred microns in height due to the nature of their protein structure. Herein, to fabricate complex 3D microstructures with FN, a 3D scaffold was designed and formed from bovine serum albumin (BSA), after which human FN was inserted at specific locations on the BSA scaffold; in this manner, the fabricated ECM microstructure can guide cells in a 3D environment. A human breast cancer cell line, MDA-MB-231, was used to investigate the behavior of cell migration and adhesion on the fabricated human FN and BSA protein structures. Experimental results indicate that many cells are not able to attach or climb on a 3D structure’s inclined plane without FN support; hence, the influence of cell growth in a 3D context with FN should being taken into consideration. This 3D multi-protein fabrication technique holds potential for cell studies in designed complex 3D ECM scaffolds. PMID:25780738

  5. Adhesion and fusion efficiencies of human immunodeficiency virus type 1 (HIV-1) surface proteins

    NASA Astrophysics Data System (ADS)

    Dobrowsky, Terrence M.; Rabi, S. Alireza; Nedellec, Rebecca; Daniels, Brian R.; Mullins, James I.; Mosier, Donald E.; Siliciano, Robert F.; Wirtz, Denis

    2013-10-01

    In about half of patients infected with HIV-1 subtype B, viral populations shift from utilizing the transmembrane protein CCR5 to CXCR4, as well as or instead of CCR5, during late stage progression of the disease. How the relative adhesion efficiency and fusion competency of the viral Env proteins relate to infection during this transition is not well understood. Using a virus-cell fusion assay and live-cell single-molecule force spectroscopy, we compare the entry competency of viral clones to tensile strengths of the individual Env-receptor bonds of Env proteins obtained from a HIV-1 infected patient prior to and during coreceptor switching. The results suggest that the genetic determinants of viral entry were predominantly enriched in the C3, HR1 and CD regions rather than V3. Env proteins can better mediate entry into cells after coreceptor switch; this effective entry capacity does not correlate with the bond strengths between viral Env and cellular receptors.

  6. Characterization of the protein fraction of the temporary adhesive secreted by the tube feet of the sea star Asterias rubens.

    PubMed

    Hennebert, Elise; Wattiez, Ruddy; Waite, J Herbert; Flammang, Patrick

    2012-01-01

    Sea stars are able to make firm but temporary attachments to various substrata by secretions released by their tube feet. After tube foot detachment, the adhesive secretions remain on the substratum as a footprint. Proteins presumably play a key role in sea star adhesion, as evidenced by the removal of footprints from surfaces after a treatment with trypsin. However, until now, characterisation was hampered by their high insolubility. In this study, a non-hydrolytic method was used to render most of the proteins constituting the adhesive footprints soluble. After analysis by SDS-PAGE, the proteins separated into about 25 bands, which ranged from 25 to 450 kDa in apparent molecular weight. Using mass spectrometry and a homology-database search, it was shown that several of the proteins are known intracellular proteins, presumably resulting from contamination of footprint material with tube foot epidermal cells. However, 11 protein bands, comprising the most abundant proteins, were not identified and might correspond to novel adhesive proteins. They were named 'Sea star footprint proteins' (Sfps). Tandem mass spectrometry analysis of the protein bands yielded 43 de novo-generated peptide sequences. Most of them were shared by several, if not all, Sfps. Polyclonal antibodies were raised against one of the peptides (HEASGEYYR from Sfp-115) and were used in immunoblotting. They specifically labelled Sfp-115 and other bands with lower apparent molecular weights. The different results suggest that all Sfps might belong to a single family of related proteins sharing similar motifs or, alternatively, they are the products of polymerization and/or degradation processes.

  7. The adhesion of mussel foot protein-3 to TiO2 surfaces: the effect of pH

    PubMed Central

    Yu, Jing; Wei, Wei; Menyo, Matthew S.; Masic, Admir; Waite, J. Herbert; Israelachvili, Jacob N.

    2013-01-01

    The underwater adhesion of marine mussels relies on mussel foot proteins (mfps) rich in the catecholic amino acid 3, 4-dihydroxyphenylalanine (Dopa). As a side-chain, Dopa is capable of strong bidentate interactions with a variety of surfaces, including many minerals and metal oxides. Titanium is among the most widely used medical implant material and quickly forms a TiO2 passivation layer under physiological conditions. Understanding the binding mechanism of Dopa to TiO2 surfaces is therefore of considerable theoretical and practical interest. Using a surface forces apparatus, we explored the force-distance profiles and adhesion energies of mussel foot protein 3 (mfp-3) to TiO2 surfaces at three different pHs (pH3, 5.5 and 7.5). At pH3, mfp-3 showed the strongest adhesion force on TiO2, with an adhesion energy of ~ −7.0 mJ/m2. Increasing the pH gives rise to two opposing effects: (1) increased oxidation of Dopa, thus decreasing availability for the Dopa-mediated adhesion, and (2) increased bidentate Dopa-Ti coordination, leading to the further stabilization of the Dopa group and thus an increasing of adhesion force. Both effects were reflected in the resonance-enhanced Raman spectra obtained at the three deposition pHs. The two competing effects give rise to a higher adhesion force of mfp-3 on TiO2 surface at pH 7.5 than at pH 5.5. Our results suggest that Dopa-containing proteins and synthetic polymers have great potential as coating materials for medical implant materials, particularly if redox activity can be controlled. PMID:23452271

  8. Novel pyridazinone inhibitors for vascular adhesion protein-1 (VAP-1): old target-new inhibition mode.

    PubMed

    Bligt-Lindén, Eva; Pihlavisto, Marjo; Szatmári, István; Otwinowski, Zbyszek; Smith, David J; Lázár, László; Fülöp, Ferenc; Salminen, Tiina A

    2013-12-27

    Vascular adhesion protein-1 (VAP-1) is a primary amine oxidase and a drug target for inflammatory and vascular diseases. Despite extensive attempts to develop potent, specific, and reversible inhibitors of its enzyme activity, the task has proven challenging. Here we report the synthesis, inhibitory activity, and molecular binding mode of novel pyridazinone inhibitors, which show specificity for VAP-1 over monoamine and diamine oxidases. The crystal structures of three inhibitor-VAP-1 complexes show that these compounds bind reversibly into a unique binding site in the active site channel. Although they are good inhibitors of human VAP-1, they do not inhibit rodent VAP-1 well. To investigate this further, we used homology modeling and structural comparison to identify amino acid differences, which explain the species-specific binding properties. Our results prove the potency and specificity of these new inhibitors, and the detailed characterization of their binding mode is of importance for further development of VAP-1 inhibitors.

  9. Adhesive Properties of YapV and Paralogous Autotransporter Proteins of Yersinia pestis

    PubMed Central

    Nair, Manoj K. M.; De Masi, Leon; Yue, Min; Galván, Estela M.; Chen, Huaiqing; Wang, Fang

    2015-01-01

    Yersinia pestis is the causative agent of plague. This bacterium evolved from an ancestral enteroinvasive Yersinia pseudotuberculosis strain by gene loss and acquisition of new genes, allowing it to use fleas as transmission vectors. Infection frequently leads to a rapidly lethal outcome in humans, a variety of rodents, and cats. This study focuses on the Y. pestis KIM yapV gene and its product, recognized as an autotransporter protein by its typical sequence, outer membrane localization, and amino-terminal surface exposure. Comparison of Yersinia genomes revealed that DNA encoding YapV or each of three individual paralogous proteins (YapK, YapJ, and YapX) was present as a gene or pseudogene in a strain-specific manner and only in Y. pestis and Y. pseudotuberculosis. YapV acted as an adhesin for alveolar epithelial cells and specific extracellular matrix (ECM) proteins, as shown with recombinant Escherichia coli, Y. pestis, or purified passenger domains. Like YapV, YapK and YapJ demonstrated adhesive properties, suggesting that their previously related in vivo activity is due to their capacity to modulate binding properties of Y. pestis in its hosts, in conjunction with other adhesins. A differential host-specific type of binding to ECM proteins by YapV, YapK, and YapJ suggested that these proteins participate in broadening the host range of Y. pestis. A phylogenic tree including 36 Y. pestis strains highlighted an association between the gene profile for the four paralogous proteins and the geographic location of the corresponding isolated strains, suggesting an evolutionary adaption of Y. pestis to specific local animal hosts or reservoirs. PMID:25690102

  10. Effect of dispersion method and CNT loading on the quality and performance of nanocomposite soy protein/CNTs adhesive for wood application

    NASA Astrophysics Data System (ADS)

    Afolabi, Ayo Samuel; Oluwafolakemi Sadare, Olawumi; Olawale Daramola, Michael

    2016-09-01

    In this article the effect of dispersion method and carbon nanotubes (CNTs) loading on the quality and performance of a nanocomposite adhesive is reported. The nanocomposite soy protein isolate adhesive was successfully developed by incorporating CNTs into the soy protein isolate (SPI) for enhanced bond strength and water resistance. Dispersion methods, namely mechanical (shear) mixing and mechanical/sonication were employed to aid good dispersion and interfacial interaction between soy protein matrix and the carbon nanofillers during the preparation of the adhesive. The concentration of the CNT was varied from 0.1–0.7 wt% in the nanocomposite adhesive. The morphology and the surface chemistry of the adhesives were checked with SEM and FTIR, respectively. The shear strength of the developed adhesives was investigated according to European standard (EN-204) for interior wood application on a tensile testing machine. The morphological structure of the nanocomposite adhesive obtained from SEM images showed homogeneous dispersion of CNTs in SPI using the two dispersion methods; shear mixing and sonication/shear mixing. Fourier transform infrared spectra showed chemical functionalities and successful interaction between CNTs and SPI adhesive. Thermogravimetric profile of the adhesive samples showed that the newly developed nanocomposite adhesive was thermally stable at a temperature up to about 600 °C at a higher percentage loading of 0.5 wt% CNTs. The result showed that sonication method of dispersion of CNTs into the SPI adhesive had a higher shear strength compared to the mechanical method of dispersion both at dry and wet state.

  11. Effect of dispersion method and CNT loading on the quality and performance of nanocomposite soy protein/CNTs adhesive for wood application

    NASA Astrophysics Data System (ADS)

    Afolabi, Ayo Samuel; Oluwafolakemi Sadare, Olawumi; Olawale Daramola, Michael

    2016-09-01

    In this article the effect of dispersion method and carbon nanotubes (CNTs) loading on the quality and performance of a nanocomposite adhesive is reported. The nanocomposite soy protein isolate adhesive was successfully developed by incorporating CNTs into the soy protein isolate (SPI) for enhanced bond strength and water resistance. Dispersion methods, namely mechanical (shear) mixing and mechanical/sonication were employed to aid good dispersion and interfacial interaction between soy protein matrix and the carbon nanofillers during the preparation of the adhesive. The concentration of the CNT was varied from 0.1-0.7 wt% in the nanocomposite adhesive. The morphology and the surface chemistry of the adhesives were checked with SEM and FTIR, respectively. The shear strength of the developed adhesives was investigated according to European standard (EN-204) for interior wood application on a tensile testing machine. The morphological structure of the nanocomposite adhesive obtained from SEM images showed homogeneous dispersion of CNTs in SPI using the two dispersion methods; shear mixing and sonication/shear mixing. Fourier transform infrared spectra showed chemical functionalities and successful interaction between CNTs and SPI adhesive. Thermogravimetric profile of the adhesive samples showed that the newly developed nanocomposite adhesive was thermally stable at a temperature up to about 600 °C at a higher percentage loading of 0.5 wt% CNTs. The result showed that sonication method of dispersion of CNTs into the SPI adhesive had a higher shear strength compared to the mechanical method of dispersion both at dry and wet state.

  12. Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist

    PubMed Central

    Stoveken, Hannah M.; Hajduczok, Alexander G.; Xu, Lei; Tall, Gregory G.

    2015-01-01

    The large class of adhesion G protein-coupled receptors (aGPCRs) bind extracellular matrix or neighboring cell-surface ligands to regulate organ and tissue development through an unknown activation mechanism. We examined aGPCR activation using two prototypical aGPCRs, GPR56 and GPR110. Active dissociation of the noncovalently bound GPR56 or GPR110 extracellular domains (ECDs) from the respective seven-transmembrane (7TM) domains relieved an inhibitory influence and permitted both receptors to activate defined G protein subtypes. After ECD displacement, the newly revealed short N-terminal stalk regions of the 7TM domains were found to be essential for G protein activation. Synthetic peptides comprising these stalks potently activated GPR56 or GPR110 in vitro or in cells, demonstrating that the stalks comprise a tethered agonist that was encrypted within the ECD. Establishment of an aGPCR activation mechanism provides a rational platform for the development of aGPCR synthetic modulators that could find clinical utility toward aGPCR-directed disease. PMID:25918380

  13. The Terminal A Domain of the Fibrillar Accumulation-Associated Protein (Aap) of Staphylococcus epidermidis Mediates Adhesion to Human Corneocytes▿

    PubMed Central

    Macintosh, Robin L.; Brittan, Jane L.; Bhattacharya, Ritwika; Jenkinson, Howard F.; Derrick, Jeremy; Upton, Mathew; Handley, Pauline S.

    2009-01-01

    The opportunistic pathogen Staphylococcus epidermidis colonizes indwelling medical devices by biofilm formation but is primarily a skin resident. In many S. epidermidis strains biofilm formation is mediated by a cell wall-anchored protein, the accumulation-associated protein (Aap). Here, we investigate the role of Aap in skin adhesion. Aap is an LPXTG protein with a domain architecture including a terminal A domain and a B-repeat region. S. epidermidis NCTC 11047 expresses Aap as localized, lateral tufts of fibrils on one subpopulation of cells (Fib+), whereas a second subpopulation does not express these fibrils of Aap (Fib−). Flow cytometry showed that 72% of NCTC 11047 cells expressed Aap and that 28% of cells did not. Aap is involved in the adhesion of Fib+ cells to squamous epithelial cells from the hand (corneocytes), as the recombinant A-domain protein partially blocked binding to corneocytes. To confirm the role of the Aap A domain in corneocyte attachment, Aap was expressed on the surface of Lactococcus lactis MG1363 as sparsely distributed, peritrichous fibrils. The expression of Aap increased corneocyte adhesion 20-fold compared to L. lactis carrying Aap without an A domain. S. epidermidis isolates from catheters, artificial joints, skin, and the nose also used the A domain of Aap to adhere to corneocytes, emphasizing the role of Aap in skin adhesion. In addition, L. lactis expressing Aap with different numbers of B repeats revealed a positive correlation between the number of B repeats and adhesion to corneocytes, suggesting an additional function for the B region in enhancing A-domain-dependent attachment to skin. Therefore, in addition to its established role in biofilm formation, Aap can also promote adhesion to corneocytes and is likely to be an important adhesin in S. epidermidis skin colonization. PMID:19749046

  14. A protein interaction map for cell-cell adhesion regulators identifies DUSP23 as a novel phosphatase for β-catenin

    PubMed Central

    Gallegos, Lisa Leon; Ng, Mei Rosa; Sowa, Mathew E.; Selfors, Laura M.; White, Anne; Zervantonakis, Ioannis K.; Singh, Pragya; Dhakal, Sabin; Harper, J. Wade; Brugge, Joan S.

    2016-01-01

    Cell-cell adhesion is central to morphogenesis and maintenance of epithelial cell state. We previously identified 27 candidate cell-cell adhesion regulatory proteins (CCARPs) whose down-regulation disrupts epithelial cell-cell adhesion during collective migration. Using a protein interaction mapping strategy, we found that 18 CCARPs link to core components of adherens junctions or desmosomes. We further mapped linkages between the CCARPs and other known cell-cell adhesion proteins, including hits from recent screens uncovering novel components of E-cadherin adhesions. Mechanistic studies of one novel CCARP which links to multiple cell-cell adhesion proteins, the phosphatase DUSP23, revealed that it promotes dephosphorylation of β-catenin at Tyr 142 and enhances the interaction between α- and β-catenin. DUSP23 knockdown specifically diminished adhesion to E-cadherin without altering adhesion to fibronectin matrix proteins. Furthermore, DUSP23 knockdown produced “zipper-like” cell-cell adhesions, caused defects in transmission of polarization cues, and reduced coordination during collective migration. Thus, this study identifies multiple novel connections between proteins that regulate cell-cell interactions and provides evidence for a previously unrecognized role for DUSP23 in regulating E-cadherin adherens junctions through promoting the dephosphorylation of β-catenin. PMID:27255161

  15. Enhanced cell adhesion on bioinert ceramics mediated by the osteogenic cell membrane enzyme alkaline phosphatase.

    PubMed

    Aminian, Alieh; Shirzadi, Bahareh; Azizi, Zahra; Maedler, Kathrin; Volkmann, Eike; Hildebrand, Nils; Maas, Michael; Treccani, Laura; Rezwan, Kurosch

    2016-12-01

    Functional bone and dental implant materials are required to guide cell response, offering cues that provide specific instructions to cells at the implant/tissue interface while maintaining full biocompatibility as well as the desired structural requirements and functions. In this work we investigate the influence of covalently immobilized alkaline phosphatase (ALP), an enzyme involved in bone mineralization, on the first contact and initial cell adhesion. To this end, ALP is covalently immobilized by carbodiimide-mediated chemoligation on two highly bioinert ceramics, alpha-alumina (Al2O3) and yttria-stabilized zirconia (Y-TZP) that are well-established for load-bearing applications. The physicochemical surface properties are evaluated by profilometry, zeta potential and water contact angle measurements. The initial cell adhesion of human osteoblasts (HOBs), human osteoblast-like cells (MG-63) and mesenchymal stromal cells (hMSCs) was investigated. Cell adhesion was assessed at serum free condition via quantification of percentage of adherent cells, adhesion area and staining of the focal adhesion protein vinculin. Our findings show that after ALP immobilization, the Al2O3 and Y-TZP surfaces gained a negative charge and their hydrophilicity was increased. In the presence of surface-immobilized ALP, a higher cell adhesion, more pronounced cell spreading and a higher number of focal contact points were found. Thereby, this work gives evidence that surface functionalization with ALP can be utilized to modify inert materials for biological conversion and faster bone regeneration on inert and potentially load-bearing implant materials. PMID:27612703

  16. Dihydromunduletone Is a Small-Molecule Selective Adhesion G Protein-Coupled Receptor Antagonist.

    PubMed

    Stoveken, Hannah M; Bahr, Laura L; Anders, M W; Wojtovich, Andrew P; Smrcka, Alan V; Tall, Gregory G

    2016-09-01

    Adhesion G protein-coupled receptors (aGPCRs) have emerging roles in development and tissue maintenance and is the most prevalent GPCR subclass mutated in human cancers, but to date, no drugs have been developed to target them in any disease. aGPCR extracellular domains contain a conserved subdomain that mediates self-cleavage proximal to the start of the 7-transmembrane domain (7TM). The two receptor protomers, extracellular domain and amino terminal fragment (NTF), and the 7TM or C-terminal fragment remain noncovalently bound at the plasma membrane in a low-activity state. We recently demonstrated that NTF dissociation liberates the 7TM N-terminal stalk, which acts as a tethered-peptide agonist permitting receptor-dependent heterotrimeric G protein activation. In many cases, natural aGPCR ligands are extracellular matrix proteins that dissociate the NTF to reveal the tethered agonist. Given the perceived difficulty in modifying extracellular matrix proteins to create aGPCR probes, we developed a serum response element (SRE)-luciferase-based screening approach to identify GPR56/ADGRG1 small-molecule inhibitors. A 2000-compound library comprising known drugs and natural products was screened for GPR56-dependent SRE activation inhibitors that did not inhibit constitutively active Gα13-dependent SRE activation. Dihydromunduletone (DHM), a rotenoid derivative, was validated using cell-free aGPCR/heterotrimeric G protein guanosine 5'-3-O-(thio)triphosphate binding reconstitution assays. DHM inhibited GPR56 and GPR114/ADGRG5, which have similar tethered agonists, but not the aGPCR GPR110/ADGRF1, M3 muscarinic acetylcholine, or β2 adrenergic GPCRs. DHM inhibited tethered peptide agonist-stimulated and synthetic peptide agonist-stimulated GPR56 but did not inhibit basal activity, demonstrating that it antagonizes the peptide agonist. DHM is a novel aGPCR antagonist and potentially useful chemical probe that may be developed as a future aGPCR therapeutic. PMID:27338081

  17. Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I.

    PubMed Central

    Takeshita, S; Kikuno, R; Tezuka, K; Amann, E

    1993-01-01

    A cDNA library prepared from the mouse osteoblastic cell line MC3T3-E1 was screened for the presence of specifically expressed genes by employing a combined subtraction hybridization/differential screening approach. A cDNA was identified and sequenced which encodes a protein designated osteoblast-specific factor 2 (OSF-2) comprising 811 amino acids. OSF-2 has a typical signal sequence, followed by a cysteine-rich domain, a fourfold repeated domain and a C-terminal domain. The protein lacks a typical transmembrane region. The fourfold repeated domain of OSF-2 shows homology with the insect protein fasciclin I. RNA analyses revealed that OSF-2 is expressed in bone and to a lesser extent in lung, but not in other tissues. Mouse OSF-2 cDNA was subsequently used as a probe to clone the human counterpart. Mouse and human OSF-2 show a high amino acid sequence conservation except for the signal sequence and two regions in the C-terminal domain in which 'in-frame' insertions or deletions are observed, implying alternative splicing events. On the basis of the amino acid sequence homology with fasciclin I, we suggest that OSF-2 functions as a homophilic adhesion molecule in bone formation. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8363580

  18. In vitro adhesion and invasion inhibition of Shigella dysenteriae, Shigella flexneri and Shigella sonnei clinical strains by human milk proteins

    PubMed Central

    Willer, Emerson da Motta; Lima, Renato de Lourenço; Giugliano, Loreny Gimenes

    2004-01-01

    Background Shigella is the etiological agent of shigellosis, a disease responsible for more than 500,000 deaths of children per year, in developing countries. These pathogens colonize the intestinal colon, invade, spreading to the other enterocytes. Breastfeeding plays a very important role in protecting infants from intestinal infections. Amongst milk compounds, glycosylated proteins prevent the adhesion of many enteropathogens in vitro. The aim of this work was to determine the effect of human milk proteins on the colonization potential of Shigella dysenteriae, S. flexneri and S. sonnei. To fulfill this purpose, pooled milk samples from five donors, were fractionated by gel filtration and affinity chromatography. Using tissue culture, the milk fractions obtained were tested in Shigella adhesion and invasion assays. Results Our revealed showed that both adhesion and invasion of Shigella species were inhibited by low concentration of secretory immunoglobulin A, lactoferrin and free secretory component. This work also showed that, these proteins bind to superficial and whole-cell Shigella proteins. Conclusions Our findings suggest that human milk may act inhibiting adhesion and, consequently, invasion of Shigella, thereafter preventing shigellosis in infants. PMID:15115555

  19. Adsorption and adhesion of common serum proteins to nanotextured gallium nitride

    NASA Astrophysics Data System (ADS)

    Bain, Lauren E.; Hoffmann, Marc P.; Bryan, Isaac; Collazo, Ramón; Ivanisevic, Albena

    2015-01-01

    , particularly when considering biological systems. It is well known that thin films and nanostructures feature different optical, electrical, and mechanical properties from their bulk composites; however, interactions taking place at the interface between nanomaterials and their surroundings are less understood. Here, we explore interactions between common serum proteins - serum albumin, fibrinogen, and immunoglobulin G - and a nanotextured gallium nitride surface. Atomic force microscopy with a carboxyl-terminated colloid tip is used to probe the `activity' of proteins adsorbed onto the surface, including both the accessibility of the terminal amine to the tip as well as the potential for protein extension. By evaluating the frequency of tip-protein interactions, we can establish differences in protein behaviour on the basis of both the surface roughness as well as morphology, providing an assessment of the role of surface texture in dictating protein-surface interactions. Unidirectional surface features - either the half-unit cell steppes of as-grown GaN or those produced by mechanical polishing - appear to promote protein accessibility, with a higher frequency of protein extension events taking place on these surfaces when compared with less ordered surface features. Development of a full understanding of the factors influencing surface-biomolecule interactions can pave the way for specific surface modification to tailor the bio-material interface, offering a new path for device optimization. Electronic supplementary information (ESI) available: Additional figures demonstrating the adhesion force magnitude (Fig. S1) and lateral steppe surface topography (Fig. S2). See DOI: 10.1039/c4nr06353h

  20. Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins.

    PubMed

    Jamerson, Melissa; da Rocha-Azevedo, Bruno; Cabral, Guy A; Marciano-Cabral, Francine

    2012-03-01

    Naegleria fowleri and Naegleria lovaniensis are closely related free-living amoebae found in the environment. N. fowleri causes primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system, while N. lovaniensis is non-pathogenic. N. fowleri infection occurs when the amoebae access the nasal passages, attach to the nasal mucosa and its epithelial lining, and migrate to the brain. This process involves interaction with components of the host extracellular matrix (ECM). Since the ability to invade tissues can be a characteristic that distinguishes pathogenic from non-pathogenic amoebae, the objective of this study was to assess adhesion to, and invasion of, the ECM by these two related but distinct Naegleria species. N. fowleri exhibited a higher level of adhesion to the ECM components laminin-1, fibronectin and collagen I. Scanning electron microscopy revealed that N. fowleri attached on ECM substrata exhibited a spread-out appearance that included the presence of focal adhesion-like structures. Western immunoblotting revealed two integrin-like proteins for both species, but one of these, with a molecular mass of approximately 70 kDa, was detected at a higher level in N. fowleri. Confocal microscopy indicated that the integrin-like proteins co-localized to the focal adhesion-like structures. Furthermore, anti-integrin antibody decreased adhesion of N. fowleri to ECM components. Finally, N. fowleri disrupted 3D ECM scaffolds, while N. lovaniensis had a minimal effect. Collectively, these results indicate a distinction in adhesion to, and invasion of, ECM proteins between N. fowleri and N. lovaniensis.

  1. Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins

    PubMed Central

    Jamerson, Melissa; da Rocha-Azevedo, Bruno; Cabral, Guy A.

    2012-01-01

    Naegleria fowleri and Naegleria lovaniensis are closely related free-living amoebae found in the environment. N. fowleri causes primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system, while N. lovaniensis is non-pathogenic. N. fowleri infection occurs when the amoebae access the nasal passages, attach to the nasal mucosa and its epithelial lining, and migrate to the brain. This process involves interaction with components of the host extracellular matrix (ECM). Since the ability to invade tissues can be a characteristic that distinguishes pathogenic from non-pathogenic amoebae, the objective of this study was to assess adhesion to, and invasion of, the ECM by these two related but distinct Naegleria species. N. fowleri exhibited a higher level of adhesion to the ECM components laminin-1, fibronectin and collagen I. Scanning electron microscopy revealed that N. fowleri attached on ECM substrata exhibited a spread-out appearance that included the presence of focal adhesion-like structures. Western immunoblotting revealed two integrin-like proteins for both species, but one of these, with a molecular mass of approximately 70 kDa, was detected at a higher level in N. fowleri. Confocal microscopy indicated that the integrin-like proteins co-localized to the focal adhesion-like structures. Furthermore, anti-integrin antibody decreased adhesion of N. fowleri to ECM components. Finally, N. fowleri disrupted 3D ECM scaffolds, while N. lovaniensis had a minimal effect. Collectively, these results indicate a distinction in adhesion to, and invasion of, ECM proteins between N. fowleri and N. lovaniensis. PMID:22222499

  2. Multifunctional and Redundant Roles of Borrelia burgdorferi Outer Surface Proteins in Tissue Adhesion, Colonization, and Complement Evasion

    PubMed Central

    Caine, Jennifer A.; Coburn, Jenifer

    2016-01-01

    Borrelia burgdorferi is the causative agent of Lyme disease in the U.S., with at least 25,000 cases reported to the CDC each year. B. burgdorferi is thought to enter and exit the bloodstream to achieve rapid dissemination to distal tissue sites during infection. Travel through the bloodstream requires evasion of immune surveillance and pathogen clearance in the host, a process at which B. burgdorferi is adept. B. burgdorferi encodes greater than 19 adhesive outer surface proteins many of which have been found to bind to host cells or components of the extracellular matrix. Several others bind to host complement regulatory factors, in vitro. Production of many of these adhesive proteins is tightly regulated by environmental cues, and some have been shown to aid in vascular interactions and tissue colonization, as well as survival in the blood, in vivo. Recent work has described multifaceted and redundant roles of B. burgdorferi outer surface proteins in complement component interactions and tissue targeted adhesion and colonization, distinct from their previously identified in vitro binding capabilities. Recent insights into the multifunctional roles of previously well-characterized outer surface proteins such as BBK32, DbpA, CspA, and OspC have changed the way we think about the surface proteome of these organisms during the tick–mammal life cycle. With the combination of new and old in vivo models and in vitro techniques, the field has identified distinct ligand binding domains on BBK32 and DbpA that afford tissue colonization or blood survival to B. burgdorferi. In this review, we describe the multifunctional and redundant roles of many adhesive outer surface proteins of B. burgdorferi in tissue adhesion, colonization, and bloodstream survival that, together, promote the survival of Borrelia spp. throughout maintenance in their multi-host lifestyle.

  3. Induction of the neural cell adhesion molecule and neuronal aggregation by osteogenic protein 1.

    PubMed Central

    Perides, G; Safran, R M; Rueger, D C; Charness, M E

    1992-01-01

    The neural cell adhesion molecule (N-CAM) plays a fundamental role in nervous system development and regeneration, yet the regulation of the expression of N-CAM in different brain regions has remained poorly understood. Osteogenic protein 1 (OP-1) is a member of the transforming growth factor beta superfamily that is expressed in the nervous system. Treatment of the neuroblastoma-glioma hybrid cell line NG108-15 for 1-4 days with recombinant human OP-1 (hOP-1) induced alterations in cell shape, formation of epithelioid sheets, and aggregation of cells into multilayered clusters. Immunofluorescence studies and Western blots demonstrated a striking differential induction of the three N-CAM isoforms in hOP-1-treated cells. hOP-1 caused a 6-fold up-regulation of the 140-kDa N-CAM, the isoform showing the highest constitutive expression, and a 29-fold up-regulation of the 180-kDa isoform. The 120-kDa isoform was not detected in control NG108-15 cells but was readily identified in hOP-1-treated cells. Incubation of NG108-15 cells with an antisense N-CAM oligonucleotide reduced the induction of N-CAM by hOP-1 and decreased the formation of multilayered cell aggregates. Anti-N-CAM monoclonal antibodies also diminished the formation of multilayered cell aggregates by hOP-1 and decreased cell-cell adhesion when hOP-1-treated NG108-15 cells were dispersed and replated. Thus, hOP-1 produces morphologic changes in NG108-15 cells, at least in part, by inducing N-CAM. These observations suggest that OP-1 or a homologue may participate in the regulation of N-CAM during nervous system development and regeneration. Images PMID:1438217

  4. Overexpression of vascular adhesion protein-1 is associated with poor prognosis of astrocytomas.

    PubMed

    Kostoro, Joanna; Chang, Shu-Jyuan; Clark Lai, Yen-Chang; Wu, Chun-Chieh; Chai, Chee-Yin; Kwan, Aij-Lie

    2016-06-01

    Vascular adhesion protein-1 (VAP-1) is one of the endothelial adhesion molecules that is believed to play a role in tumor progression and metastasis, supporting cancer cell extravasation. Very few studies have been performed on analyzing the contribution of VAP-1 in brain tumor. Astrocytomas are the most common type of brain tumors, which are classified by World Health Organization (WHO) into four grades according to the degree of malignancy. This study was designed to investigate VAP-1 expression level in different astrocytoma grades and its correlation with clinicopathological features as well as prognosis of astrocytoma patients. Eighty-seven patients with different grades of astrocytoma (WHO Grade I-Grade IV) were enrolled in this study. The expression of VAP-1 was assayed by immunohistochemistry. The correlation between VAP-1 expression and clinicopathological features was evaluated by Chi-square test, and overall survival was analyzed by Kaplan-Meier method. Cox regression analysis was applied to analyze the independent influence of each parameter on overall survival. The expression level of VAP-1 was significantly higher in diffuse astrocytoma than those of pilocytic astrocytoma (p < 0.0001). In the subgroup analysis, upregulated VAP-1 expression was frequently found in older age patients (≥50 years). The VAP-1 expression was found to be significantly correlated with the overall survival (p = 0.0002). There was a statistical correlation between VAP-1(high) tumors in diffuse astrocytoma and VAP-1(low) tumors in pilocytic astrocytoma (p < 0.0001). Multivariate Cox analysis indicated VAP-1 was an independent predictive marker for poorer prognosis (p = 0.0036). Therefore, VAP-1 could be a promising prognostic biomarker in astrocytoma.

  5. Scanning-force techniques to monitor time-dependent changes in topography and adhesion force of proteins on surfaces.

    PubMed

    Mondon, M; Berger, S; Ziegler, C

    2003-04-01

    Scanning-force microscopy (SFM) investigations were conducted to probe the influences of the interactions of proteins with surfaces relevant in medicine. These interactions are an important feature in the area of biofilm formation. The adsorption of proteins leads to changes in topography, which was monitored for the build up of protein layers of hen egg-white lysozyme and bovine serum albumin (BSA) on mica in real time in phosphate-buffered aqueous solution over a time period of 10 min. Phase imaging was additionally applied to compare material contrasts and to evaluate this method for further application in this field. The adhesion forces that develop on a time scale below 20 s between a protein-modified SFM tip and titanium surfaces (TiO(2), TiAl6V4 and TiAl6Nb7) were investigated. The influences of the parameters loading force and interaction time between the protein and the surface were monitored as well as the influence of protein structure. The interaction time dependency of the adhesion force could be described with a kinetic model of two consecutive first-order reactions. For the maximal adhesion force a correlation to the ratio of the amino acids cysteine, proline and glycine has been proposed.

  6. Surface conjugation of zwitterionic polymers to inhibit cell adhesion and protein adsorption.

    PubMed

    Chien, Hsiu-Wen; Tsai, Chih-Chi; Tsai, Wei-Bor; Wang, Meng-Jiy; Kuo, Wei-Hsuan; Wei, Ta-Chin; Huang, Sheng-Tung

    2013-07-01

    Non-fouling surfaces that resist non-specific protein adsorption and cell adhesion are desired for many biomedical applications such as blood-contact devices and biosensors. Therefore, surface conjugation of anti-fouling molecules has been the focus of many studies. In this study, layer-by-layer polyelectrolyte deposition was applied to create an amine-rich platform for conjugation of zwitterionic polymers. A tri-layer polyelectrolyte (TLP) coating representing poly(ethylene imine) (PEI), poly(acrylic acid)-g-azide and PEI was deposited on various polymeric substrates via layer-by-layer deposition and then crosslinked via UV irradiation. Carboxyl-terminated poly(sulfobetaine methacrylate) p(SBMA) or poly(carboxybetaine methacrylate) p(CBMA) was then conjugated onto TLP coated substrates via a carbodiimide reaction. Our results demonstrate that the zwitterionic polymers could be easily conjugated over a wide pH range except under alkaline conditions, and almost completely block protein adsorption and the attachment of L929 cells and platelets. Therefore, this method has outstanding potential in biomedical applications that require low-fouling surfaces. PMID:23500725

  7. Interfacial tension of complex coacervated mussel adhesive protein according to the Hofmeister series.

    PubMed

    Lim, Seonghye; Moon, Dustin; Kim, Hyo Jeong; Seo, Jeong Hyun; Kang, In Seok; Cha, Hyung Joon

    2014-02-01

    Complex coacervation is a liquid-liquid phase separation in a colloidal system of two oppositely charged polyelectrolytes or colloids. The interfacial tension of the coacervate phase is the key parameter for micelle formation and interactions with the encapsulating material. However, the relationship between interfacial tensions and various salt solutions is poorly understood in complex coacervation. In the present work, the complex coacervate dynamics of recombinant mussel adhesive protein (MAP) with hyaluronic acid (HA) were determined in the presence of Hofmeister series salt ions. Using measurements of absorbance, hydrodynamic diameter, capillary force, and receding contact angle in the bulk phase, the interfacial tensions of complex coacervated MAP/HA were determined to be 0.236, 0.256, and 0.287 mN/m in 250 mM NaHCOO, NaCl, and NaNO3 solutions, respectively. The sequences of interfacial tensions and contact angles of the complex coacervates in the presence of three sodium salts with different anions were found to follow the Hofmeister ordering. The tendency of interfacial tension between the coacervate and dilute phases in the presence of different types of Hofmeister salt ions could provide a better understanding of Hofmeister effects on complex coacervated materials based on the protein-polysaccharide system. This information can also be utilized for microencapsulation and adsorption by controlling intramolecular interactions. In addition, the injection molding dynamics of mussel byssus formation was potentially explained based on the measured interfacial tension of coacervated MAP. PMID:24490867

  8. Neural Cell Adhesion Protein CNTN1 Promotes the Metastatic Progression of Prostate Cancer.

    PubMed

    Yan, Judy; Ojo, Diane; Kapoor, Anil; Lin, Xiaozeng; Pinthus, Jehonathan H; Aziz, Tariq; Bismar, Tarek A; Wei, Fengxiang; Wong, Nicholas; De Melo, Jason; Cutz, Jean-Claude; Major, Pierre; Wood, Geoffrey; Peng, Hao; Tang, Damu

    2016-03-15

    Prostate cancer metastasis is the main cause of disease-related mortality. Elucidating the mechanisms underlying prostate cancer metastasis is critical for effective therapeutic intervention. In this study, we performed gene-expression profiling of prostate cancer stem-like cells (PCSC) derived from DU145 human prostate cancer cells to identify factors involved in metastatic progression. Our studies revealed contactin 1 (CNTN1), a neural cell adhesion protein, to be a prostate cancer-promoting factor. CNTN1 knockdown reduced PCSC-mediated tumor initiation, whereas CNTN1 overexpression enhanced prostate cancer cell invasion in vitro and promoted xenograft tumor formation and lung metastasis in vivo. In addition, CNTN1 overexpression in DU145 cells and corresponding xenograft tumors resulted in elevated AKT activation and reduced E-cadherin (CDH1) expression. CNTN1 expression was not readily detected in normal prostate glands, but was clearly evident on prostate cancer cells in primary tumors and lymph node and bone metastases. Tumors from 637 patients expressing CNTN1 were associated with prostate cancer progression and worse biochemical recurrence-free survival following radical prostatectomy (P < 0.05). Collectively, our findings demonstrate that CNTN1 promotes prostate cancer progression and metastasis, prompting further investigation into the mechanisms that enable neural proteins to become aberrantly expressed in non-neural malignancies.

  9. Myelin basic protein cleaves cell adhesion molecule L1 and promotes neuritogenesis and cell survival.

    PubMed

    Lutz, David; Loers, Gabriele; Kleene, Ralf; Oezen, Iris; Kataria, Hardeep; Katagihallimath, Nainesh; Braren, Ingke; Harauz, George; Schachner, Melitta

    2014-05-01

    The cell adhesion molecule L1 is a Lewis(x)-carrying glycoprotein that plays important roles in the developing and adult nervous system. Here we show that myelin basic protein (MBP) binds to L1 in a Lewis(x)-dependent manner. Furthermore, we demonstrate that MBP is released by murine cerebellar neurons as a sumoylated dynamin-containing protein upon L1 stimulation and that this MBP cleaves L1 as a serine protease in the L1 extracellular domain at Arg(687) yielding a transmembrane fragment that promotes neurite outgrowth and neuronal survival in cell culture. L1-induced neurite outgrowth and neuronal survival are reduced in MBP-deficient cerebellar neurons and in wild-type cerebellar neurons in the presence of an MBP antibody or L1 peptide containing the MBP cleavage site. Genetic ablation of MBP in shiverer mice and mutagenesis of the proteolytically active site in MBP or of the MBP cleavage site within L1 as well as serine protease inhibitors and an L1 peptide containing the MBP cleavage site abolish generation of the L1 fragment. Our findings provide evidence for novel functions of MBP in the nervous system. PMID:24671420

  10. Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective

    PubMed Central

    Chagnot, Caroline; Zorgani, Mohamed A.; Astruc, Thierry; Desvaux, Mickaël

    2013-01-01

    Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates) is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative), monoderm (archetypal Gram-positive) and diderm-mycolate (archetypal acid-fast) bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors) involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field. PMID:24133488

  11. Human heat shock protein (Hsp) 90 interferes with Neisseria meningitidis adhesin A (NadA)-mediated adhesion and invasion.

    PubMed

    Montanari, Paolo; Bozza, Giuseppe; Capecchi, Barbara; Caproni, Elena; Barrile, Riccardo; Norais, Nathalie; Capitani, Mirco; Sallese, Michele; Cecchini, Paola; Ciucchi, Laura; Gao, Zhenai; Rappuoli, Rino; Pizza, Mariagrazia; Aricò, Beatrice; Merola, Marcello

    2012-03-01

    NadA (N eisseria meningitidisadhesin A), a meningococcal surface protein, mediates adhesion to and invasion of human cells, an activity in which host membrane proteins have been implicated. While investigating these host factors in human epithelial cells by affinity chromatography, we discovered an unanticipated interaction of NadA with heat shock protein (Hsp) 90, a molecular chaperone. The specific in vitro interaction of recombinant soluble NadA and Hsp90 was confirmed by co-immunoprecipitations, dot and far-Western blot. Intriguingly, ADP, but not ATP, was required for this association, and the Hsp90 inhibitor 17-AAG promoted complex formation. Hsp90 binding to an Escherichia coli strain used as carrier to express surface exposed NadA confirmed these results in live bacteria. We also examined RNA interference, plasmid-driven overexpression, addition of exogenous rHsp90 and 17-AAG inhibition in human epithelial cells to further elucidate the involvement of Hsp90 in NadA-mediated adhesion and invasion. Together, these data suggest an inverse correlation between the amount of host Hsp90 and the NadA adhesive/invasive phenotype. Confocal microscopy also demonstrated that meningococci interact with cellular Hsp90, a completely novel finding. Altogether our results show that variation of host Hsp90 expression or activity interferes with adhesive and invasive events driven by NadA.

  12. Composites containing albumin protein or cyanoacrylate adhesives and biodegradable scaffolds: II. In vivo wound closure study in a rat model

    NASA Astrophysics Data System (ADS)

    McNally-Heintzelman, Karen M.; Heintzelman, Douglas L.; Duffy, Mark T.; Bloom, Jeffrey N.; Soller, Eric C.; Gilmour, Travis M.; Hoffman, Grant T.; Edward, Deepak

    2004-07-01

    Our Scaffold-Enhanced Biological Adhesive (SEBA) system was investigated as an alternative to sutures or adhesives alone for repair of wounds. Two scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biologic material, small intestinal submucosa, manufactured by Cook BioTech. Two adhesive materials were also investigated: (i) a biologic adhesive composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser; and (ii) Ethicon"s Dermabond, a 2-octyl-cyanoacrylate. The tensile strength and time-to-failure of skin incisions repaired in vivo in a rat model were measured at seven days postoperative. Incisions closed by protein solder alone, by Dermabond alone, or by suture, were also tested for comparison. The tensile strength of repairs formed using the SEBA system were 50% to 65% stronger than repairs formed by suture or either adhesive alone, with significantly less variations within each experimental group (average standard deviations of 15% for SEBA versus 38% for suture and 28% for adhesive alone). In addition, the time-to-failure curves showed a longevity not previously seen with the suture or adhesive alone techniques. The SEBA system acts to keep the dermis in tight apposition during the critical early phase of wound healing when tissue gaps are bridged by scar and granulation tissue. It has the property of being more flexible than either of the adhesives alone and may allow the apposed edges to move in conjunction with each other as a unit for a longer period of time and over a greater range of stresses than adhesives alone. This permits more rapid healing and establishment of integrity since the microgaps between the dermis edges are significantly reduced. By the time the scaffolds are sloughed from the wound site, there is greater strength and healing than that produced by adhesive alone or

  13. Facilitation of cell adhesion by immobilized dengue viral nonstructural protein 1 (NS1): arginine-glycine-aspartic acid structural mimicry within the dengue viral NS1 antigen.

    PubMed

    Chang, Hsin-Hou; Shyu, Huey-Fen; Wang, Yo-Ming; Sun, Der-Shan; Shyu, Rong-Hwa; Tang, Shiao-Shek; Huang, Yao-Shine

    2002-09-15

    Dengue virus infection causes life-threatening hemorrhagic fever. Increasing evidence implies that dengue viral nonstructural protein 1 (NS1) exhibits a tendency to elicit potentially hazardous autoantibodies, which show a wide spectrum of specificity against extracellular matrix and platelet antigens. How NS1 elicits autoantibodies remains unclear. To address the hypothesis that NS1 and matrix proteins may have structural and functional similarity, cell-matrix and cell-NS1 interactions were evaluated using a cell-adhesion assay. The present study showed that dengue NS1 immobilized on coverslips resulted in more cell adhesion than did the control proteins. This cell adhesion was inhibited by peptides containing arginine-glycine-aspartic acid (RGD), a motif important for integrin-mediated cell adhesion. In addition, anti-NS1 antibodies blocked RGD-mediated cell adhesion. Although there is no RGD motif in the NS1 protein sequence, these data indicate that RGD structural mimicry exists within the NS1 antigen.

  14. Interleukin-1 receptor accessory protein organizes neuronal synaptogenesis as a cell adhesion molecule.

    PubMed

    Yoshida, Tomoyuki; Shiroshima, Tomoko; Lee, Sung-Jin; Yasumura, Misato; Uemura, Takeshi; Chen, Xigui; Iwakura, Yoichiro; Mishina, Masayoshi

    2012-02-22

    Interleukin-1 receptor accessory protein (IL-1RAcP) is the essential component of receptor complexes mediating immune responses to interleukin-1 family cytokines. IL-1RAcP in the brain exists in two isoforms, IL-1RAcP and IL-1RAcPb, differing only in the C-terminal region. Here, we found robust synaptogenic activities of IL-1RAcP in cultured cortical neurons. Knockdown of IL-1RAcP isoforms in cultured cortical neurons suppressed synapse formation as indicated by decreases of active zone protein Bassoon puncta and dendritic protrusions. IL-1RAcP recovered the accumulation of presynaptic Bassoon puncta, while IL-1RAcPb rescued both Bassoon puncta and dendritic protrusions. Consistently, the expression of IL-1RAcP in cortical neurons enhances the accumulation of Bassoon puncta and that of IL-1RAcPb stimulated both Bassoon puncta accumulation and spinogenesis. IL-1RAcP interacted with protein tyrosine phosphatase (PTP) δ through the extracellular domain. Mini-exon peptides in the Ig-like domains of PTPδ splice variants were critical for their efficient binding to IL-1RAcP. The synaptogenic activities of IL-1RAcP isoforms were diminished in cortical neurons from PTPδ knock-out mice. Correspondingly, PTPδ required IL-1RAcPb to induce postsynaptic differentiation. Thus, IL-1RAcPb bidirectionally regulated synapse formation of cortical neurons. Furthermore, the spine densities of cortical and hippocampal pyramidal neurons were reduced in IL-1RAcP knock-out mice lacking both isoforms. These results suggest that IL-1RAcP isoforms function as trans-synaptic cell adhesion molecules in the brain and organize synapse formation. Thus, IL-1RAcP represents an interesting molecular link between immune systems and synapse formation in the brain.

  15. Lymphocyte binding to vascular endothelium in inflamed skin revisited: a central role for vascular adhesion protein-1 (VAP-1).

    PubMed

    Arvilommi, A M; Salmi, M; Kalimo, K; Jalkanen, S

    1996-04-01

    The binding of leukocytes to vascular endothelium and their migration into tissues is mediated by adhesion molecules on the endothelial cells and leukocytes. Vascular adhesion protein-1 (VAP-1) is a 170-180/90-kDa endothelial molecule expressed most prominently in high endothelial venules in peripheral lymph node (PLN) type lymphatic tissues. VAP-1 mediates lymphocyte binding to PLN, tonsil and synovium. The expression of VAP-1 is induced in inflammatory diseases such as arthritis and gut inflammation. We examined the expression, structure and function of VAP-1 in normal and inflamed skin and compared it to those of other adhesion molecules implicated in skin homing. In psoriasis lichen ruber planus, pemphigoid and allergic lesions, VAP-1 was markedly upregulated. The expression of VAP-1 was also increased in biopsies of healthy skin of the patients. The VAP-1 molecule induced in skin is decorated with abundant sialic acids. VAP-1 inflamed skin is functional, since inhibition with anti-VAP-1 monoclonal antibodies caused a 60% reduction in lymphocytes adhesion to vascular endothelium. Antibodies against E-selectin, which has been regarded as the major vascular addressin directing cutaneous lymphocyte traffic, and, surprisingly, against peripheral lymph node addressin (PNAd), caused inhibitions of 30% and 60%, respectively, in the frozen section adhesion assay. These findings suggest important roles also for VAP-1 and PNAd in lymphocyte homing into inflamed skin. PMID:8625974

  16. Low density lipoprotein receptor-related protein 1 mediated endocytosis of β1-integrin influences cell adhesion and cell migration.

    PubMed

    Rabiej, Verena K; Pflanzner, Thorsten; Wagner, Timo; Goetze, Kristina; Storck, Steffen E; Eble, Johannes A; Weggen, Sascha; Mueller-Klieser, Wolfgang; Pietrzik, Claus U

    2016-01-01

    The low density lipoprotein receptor-related protein 1 (LRP1) has been shown to interact with β1-integrin and regulate its surface expression. LRP1 knock-out cells exhibit altered cytoskeleton organization and decreased cell migration. Here we demonstrate coupled endocytosis of LRP1 and β1-integrin and the involvement of the intracellular NPxY2 motif of LRP1 in this process. Mouse embryonic fibroblasts harboring a knock in replacement of the NPxY2 motif of LRP1 by a multiple alanine cassette (AAxA) showed elevated surface expression of β1-integrin and decreased β1-integrin internalization rates. As a consequence, cell spreading was altered and adhesion rates were increased in our cell model. Cells formed more focal adhesion complexes, whereby in vitro cell migration rates were decreased. Similar results could be observed in a corresponding mouse model, the C57Bl6 LRP1 NPxYxxL knock in mice, therefore, the biochemistry of cellular adhesion was altered in primary cortical neurons. In vivo cell migration experiments demonstrated a disturbance of neuroblast cell migration along the rostral migratory stream. In summary, our results indicate that LRP1 interacts with β1-integrin mediating integrin internalization and thus correlates with downstream signaling of β1-integrin such as focal adhesion dynamics. Consequently, the disturbance of this interaction resulted in a dysfunction in in vivo and in vitro cell adhesion and cell migration.

  17. Exchange of adsorbed serum proteins during adhesion of Staphylococcus aureus to an abiotic surface and Candida albicans hyphae--an AFM study.

    PubMed

    Ovchinnikova, Ekaterina S; van der Mei, Henny C; Krom, Bastiaan P; Busscher, Henk J

    2013-10-01

    Staphylococcus aureus and Candida albicans are the second and third most commonly isolated microorganisms in hospital-related-infections, that are often multi-species in nature causing high morbidity and mortality. Here, adhesion forces between a S. aureus strain and abiotic (tissue-culture-polystyrene, TCPS) or partly biotic (TCPS with adhering hyphae of C. albicans) surfaces were investigated in presence of fetal-bovine-serum or individual serum proteins and related with staphylococcal adhesion. Atomic-force-microscopy was used to measure adhesion forces between S. aureus and the abiotic and biotic surfaces. Adsorption of individual serum proteins like albumin and apo-transferrin to abiotic TCPS surfaces during 60min, impeded development of strong adhesion forces as compared to fibronectin, while 60min adsorption of proteins from fetal-bovine-serum yielded a decrease in adhesion force from -5.7nN in phosphate-buffered-saline to -0.6nN. Adsorption of albumin and apo-transferrin also decreased staphylococcal adhesion forces to hyphae as compared with fibronectin. During 60min exposure to fetal-bovine-serum however, initial (5min protein adsorption) staphylococcal adhesion forces were low (-1.6nN), but strong adhesion forces of around -5.5nN were restored within 60min. This suggests for the first time that in whole fetal-bovine-serum exchange of non-adhesive proteins by fibronectin occurs on biotic C. albicans hyphal surfaces. No evidence was found for such protein exchange on abiotic TCPS surfaces. Staphylococcal adhesion of abiotic and biotic surfaces varied in line with the adhesion forces and was low on TCPS in presence of fetal-bovine-serum. On partly biotic TCPS, staphylococci aggregated in presence of fetal-bovine-serum around adhering C. albicans hyphae.

  18. Focal adhesions are foci for tyrosine-based signal transduction via GIV/Girdin and G proteins

    PubMed Central

    Lopez-Sanchez, Inmaculada; Kalogriopoulos, Nicholas; Lo, I-Chung; Kabir, Firooz; Midde, Krishna K.; Wang, Honghui; Ghosh, Pradipta

    2015-01-01

    GIV/Girdin is a multimodular signal transducer and a bona fide metastasis-related protein. As a guanidine exchange factor (GEF), GIV modulates signals initiated by growth factors (chemical signals) by activating the G protein Gαi. Here we report that mechanical signals triggered by the extracellular matrix (ECM) also converge on GIV-GEF via β1 integrins and that focal adhesions (FAs) serve as the major hubs for mechanochemical signaling via GIV. GIV interacts with focal adhesion kinase (FAK) and ligand-activated β1 integrins. Phosphorylation of GIV by FAK enhances PI3K-Akt signaling, the integrity of FAs, increases cell–ECM adhesion, and triggers ECM-induced cell motility. Activation of Gαi by GIV-GEF further potentiates FAK-GIV-PI3K-Akt signaling at the FAs. Spatially restricted signaling via tyrosine phosphorylated GIV at the FAs is enhanced during cancer metastasis. Thus GIV-GEF serves as a unifying platform for integration and amplification of adhesion (mechanical) and growth factor (chemical) signals during cancer progression. PMID:26446841

  19. Focal adhesions are foci for tyrosine-based signal transduction via GIV/Girdin and G proteins.

    PubMed

    Lopez-Sanchez, Inmaculada; Kalogriopoulos, Nicholas; Lo, I-Chung; Kabir, Firooz; Midde, Krishna K; Wang, Honghui; Ghosh, Pradipta

    2015-12-01

    GIV/Girdin is a multimodular signal transducer and a bona fide metastasis-related protein. As a guanidine exchange factor (GEF), GIV modulates signals initiated by growth factors (chemical signals) by activating the G protein Gαi. Here we report that mechanical signals triggered by the extracellular matrix (ECM) also converge on GIV-GEF via β1 integrins and that focal adhesions (FAs) serve as the major hubs for mechanochemical signaling via GIV. GIV interacts with focal adhesion kinase (FAK) and ligand-activated β1 integrins. Phosphorylation of GIV by FAK enhances PI3K-Akt signaling, the integrity of FAs, increases cell-ECM adhesion, and triggers ECM-induced cell motility. Activation of Gαi by GIV-GEF further potentiates FAK-GIV-PI3K-Akt signaling at the FAs. Spatially restricted signaling via tyrosine phosphorylated GIV at the FAs is enhanced during cancer metastasis. Thus GIV-GEF serves as a unifying platform for integration and amplification of adhesion (mechanical) and growth factor (chemical) signals during cancer progression.

  20. Modulation of endogenous Cysteine Protease Inhibitor (ICP) 1 expression in Entamoeba histolytica affects amoebic adhesion to Extracellular Matrix proteins.

    PubMed

    Lee, Young Ah; Saito-Nakano, Yumiko; Kim, Kyeong Ah; Min, Arim; Nozaki, Tomoyoshi; Shin, Myeong Heon

    2015-02-01

    Entamoeba histolytica is an enteric tissue-invading protozoan parasite that causes amoebic colitis and occasionally liver abscess in humans. During tissue invasion, amoebic adhesion to host components is an important event for host cell death leading to successful invasion and infection. Among amoebic virulence factors, Gal/GalNAc lectin is known to be major adhesion factor to host cells. In this study, we investigated the role of amoebic secreted CP (Cysteine Proteases) in amoebic adhesion to extracellular matrix (ECM) protein using CP inhibitor and E. histolytica strains in which the endogenous inhibitor of cysteine protease (ICP) 1 gene was overexpressed (ICP1(+)) or repressed by antisense small RNA-mediated gene silencing (ICP1(-)). We found that pretreatment of wild-type amoebae with CP inhibitor E64, or thiol-group modifiers such as diamide and N-Ethylmaleimide resulted in a significant decrease in adhesion to laminin and collagen ECM proteins. Furthermore, ICP1(+) strain, with a reduction of secreted CP activity, exhibited reduced ability by 40% to adhere to laminin. In contrast, ICP1(-) strain, with a 1.9-fold increase of secreted CP activity, showed a two-fold increase in amoebic adherence to laminin compared to the control strain. In addition, total amount of secreted CP5 was decreased in ICP1(+) amoeba. Conversely, total amount of secreted CP1 and mature-form CP5 were increased in ICP1(-) amoeba. We also found that ICP1 was secreted into extracellular milieu. These results suggest that secreted CP activity by E. histolytica may be an important factor affecting adhesion to host proteins, and regulation of CP secretion by ICP plays a major role in pathogenesis. This study provides insight into the CP-mediated tissue pathogenesis in amoeba-invaded lesions during human amoebiasis.

  1. Modulation of endogenous Cysteine Protease Inhibitor (ICP) 1 expression in Entamoeba histolytica affects amoebic adhesion to Extracellular Matrix proteins.

    PubMed

    Lee, Young Ah; Saito-Nakano, Yumiko; Kim, Kyeong Ah; Min, Arim; Nozaki, Tomoyoshi; Shin, Myeong Heon

    2015-02-01

    Entamoeba histolytica is an enteric tissue-invading protozoan parasite that causes amoebic colitis and occasionally liver abscess in humans. During tissue invasion, amoebic adhesion to host components is an important event for host cell death leading to successful invasion and infection. Among amoebic virulence factors, Gal/GalNAc lectin is known to be major adhesion factor to host cells. In this study, we investigated the role of amoebic secreted CP (Cysteine Proteases) in amoebic adhesion to extracellular matrix (ECM) protein using CP inhibitor and E. histolytica strains in which the endogenous inhibitor of cysteine protease (ICP) 1 gene was overexpressed (ICP1(+)) or repressed by antisense small RNA-mediated gene silencing (ICP1(-)). We found that pretreatment of wild-type amoebae with CP inhibitor E64, or thiol-group modifiers such as diamide and N-Ethylmaleimide resulted in a significant decrease in adhesion to laminin and collagen ECM proteins. Furthermore, ICP1(+) strain, with a reduction of secreted CP activity, exhibited reduced ability by 40% to adhere to laminin. In contrast, ICP1(-) strain, with a 1.9-fold increase of secreted CP activity, showed a two-fold increase in amoebic adherence to laminin compared to the control strain. In addition, total amount of secreted CP5 was decreased in ICP1(+) amoeba. Conversely, total amount of secreted CP1 and mature-form CP5 were increased in ICP1(-) amoeba. We also found that ICP1 was secreted into extracellular milieu. These results suggest that secreted CP activity by E. histolytica may be an important factor affecting adhesion to host proteins, and regulation of CP secretion by ICP plays a major role in pathogenesis. This study provides insight into the CP-mediated tissue pathogenesis in amoeba-invaded lesions during human amoebiasis. PMID:25500214

  2. Interspecific variations in adhesive protein sequences of Mytilus edulis, M. galloprovincialis, and M. trossulus.

    PubMed

    Inoue, K; Waite, J H; Matsuoka, M; Odo, S; Harayama, S

    1995-12-01

    Variation in the adhesive protein gene sequences of Mytilus edulis, M. galloprovincialis, and M. trossulus collected in Delaware, Kamaishi (Japan), and Alaska, respectively, was analyzed by the polymerase chain reaction (PCR) using two sets of oligonucleotide primers. The first set, Me 13 and Me 14, was designed to amplify the repetitive region. The length of the amplified fragments was highly variable, even among samples of the same species. Another set, Me 15 and Me 16, was designed to amplify a part of the nonrepetitive region. The length of the amplified fragments was uniform in each species and differed interspecifically; 180, 168, and 126 bp for M. edulis, M. trossulus, and M. galloprovincialis, respectively. The amplified sequence of M. trossulus resembled that of M. edulis. Mussels from other sites were also examined by PCR using Me 15 and Me 16. Wild mussels from Tromsö (Norway) and cultured mussels from Brittany (France) were identified as M. edulis. Cultured mussels from the Mediterranean coast of France and wild mussels from Shimizu (Japan) were identified as M. galloprovincialis. Some wild mussels from Hiura (Japan) were identified as a hybrid between M. galloprovincialis and M. trossulus. Thus, the length of this part (variable region) of the sequence is proposed as a diagnostic marker for these three morphologically similar species and their hybrids.

  3. Myelin Basic Protein Cleaves Cell Adhesion Molecule L1 and Improves Regeneration After Injury.

    PubMed

    Lutz, David; Kataria, Hardeep; Kleene, Ralf; Loers, Gabriele; Chaudhary, Harshita; Guseva, Daria; Wu, Bin; Jakovcevski, Igor; Schachner, Melitta

    2016-07-01

    Myelin basic protein (MBP) is a serine protease that cleaves neural cell adhesion molecule L1 and generates a transmembrane L1 fragment which facilitates L1-dependent functions in vitro, such as neurite outgrowth, neuronal cell migration and survival, myelination by Schwann cells as well as Schwann cell proliferation, migration, and process formation. Ablation and blocking of MBP or disruption of its proteolytic activity by mutation of a proteolytically active serine residue abolish L1-dependent cellular responses. In utero injection of adeno-associated virus encoding proteolytically active MBP into MBP-deficient shiverer mice normalizes differentiation, myelination, and synaptogenesis in the developing postnatal spinal cord, in contrast to proteolytically inactive MBP. Application of active MBP to the injured wild-type spinal cord and femoral nerve augments levels of a transmembrane L1 fragment, promotes remyelination, and improves functional recovery after injury. Application of MBP antibody impairs recovery. Virus-mediated expression of active MBP in the lesion site after spinal cord injury results in improved functional recovery, whereas injection of virus encoding proteolytically inactive MBP fails to do so. The present study provides evidence for a novel L1-mediated function of MBP in the developing spinal cord and in the injured adult mammalian nervous system that leads to enhanced recovery after acute trauma.

  4. Adhesive properties of Clostridium perfringens to extracellular matrix proteins collagens and fibronectin.

    PubMed

    Hitsumoto, Yasuo; Morita, Naomi; Yamazoe, Ryosuke; Tagomori, Mika; Yamasaki, Tsutomu; Katayama, Seiichi

    2014-02-01

    The adhesive properties of Clostridium perfringens to collagens, gelatin, fibronectin (Fn), Fn-prebound collagens, and Fn-prebound gelatin were investigated. C. perfringens could bind to Fn-prebound collagen type II, type III, and gelatin, but not to gelatin or collagens except for collagen type I directly. Recombinant Fn-binding proteins of C. perfringens, rFbpA and rFbpB, were used to examine Fn-mediated bacterial adherence to collagen type I. In the presence of rFbps, C. perfringens adherence to Fn-prebound collagen type I was inhibited in a dose-dependent manner. Fn was not released from the coated collagen type I by the presence of rFbps, and rFbps did not bind to collagen type I. Thus, the inhibition of C. perfringens binding to Fn-prebound collagen type I by rFbps could not be explained by the removal of Fn from collagen or by the competitive binding of rFbps to collagen. Instead, both rFbps were found to bind to C. perfringens. These results suggest the possibility that rFbps may bind to the putative Fn receptor expressed on C. perfringens and competitively inhibit Fn binding to C. perfringens.

  5. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis

    PubMed Central

    Mehrabian, Mohadeseh; Brethour, Dylan; Wang, Hansen; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold

    2015-01-01

    Despite its multi-faceted role in neurodegenerative diseases, the physiological function of the prion protein (PrP) has remained elusive. On the basis of its evolutionary relationship to ZIP metal ion transporters, we considered that PrP may contribute to the morphogenetic reprogramming of cells underlying epithelial-to-mesenchymal transitions (EMT). Consistent with this hypothesis, PrP transcription increased more than tenfold during EMT, and stable PrP-deficient cells failed to complete EMT in a mammalian cell model. A global comparative proteomics analysis identified the neural cell adhesion molecule 1 (NCAM1) as a candidate mediator of this impairment, which led to the observation that PrP-deficient cells fail to undergo NCAM1 polysialylation during EMT. Surprisingly, this defect was caused by a perturbed transcription of the polysialyltransferase ST8SIA2 gene. Proteomics data pointed toward β-catenin as a transcriptional regulator affected in PrP-deficient cells. Indeed, pharmacological blockade or siRNA-based knockdown of β-catenin mimicked PrP-deficiency in regards to NCAM1 polysialylation. Our data established the existence of a PrP-ST8SIA2-NCAM signaling loop, merged two mature fields of investigation and offer a simple model for explaining phenotypes linked to PrP. PMID:26288071

  6. Myelin Basic Protein Cleaves Cell Adhesion Molecule L1 and Improves Regeneration After Injury.

    PubMed

    Lutz, David; Kataria, Hardeep; Kleene, Ralf; Loers, Gabriele; Chaudhary, Harshita; Guseva, Daria; Wu, Bin; Jakovcevski, Igor; Schachner, Melitta

    2016-07-01

    Myelin basic protein (MBP) is a serine protease that cleaves neural cell adhesion molecule L1 and generates a transmembrane L1 fragment which facilitates L1-dependent functions in vitro, such as neurite outgrowth, neuronal cell migration and survival, myelination by Schwann cells as well as Schwann cell proliferation, migration, and process formation. Ablation and blocking of MBP or disruption of its proteolytic activity by mutation of a proteolytically active serine residue abolish L1-dependent cellular responses. In utero injection of adeno-associated virus encoding proteolytically active MBP into MBP-deficient shiverer mice normalizes differentiation, myelination, and synaptogenesis in the developing postnatal spinal cord, in contrast to proteolytically inactive MBP. Application of active MBP to the injured wild-type spinal cord and femoral nerve augments levels of a transmembrane L1 fragment, promotes remyelination, and improves functional recovery after injury. Application of MBP antibody impairs recovery. Virus-mediated expression of active MBP in the lesion site after spinal cord injury results in improved functional recovery, whereas injection of virus encoding proteolytically inactive MBP fails to do so. The present study provides evidence for a novel L1-mediated function of MBP in the developing spinal cord and in the injured adult mammalian nervous system that leads to enhanced recovery after acute trauma. PMID:26081148

  7. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis.

    PubMed

    Mehrabian, Mohadeseh; Brethour, Dylan; Wang, Hansen; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold

    2015-01-01

    Despite its multi-faceted role in neurodegenerative diseases, the physiological function of the prion protein (PrP) has remained elusive. On the basis of its evolutionary relationship to ZIP metal ion transporters, we considered that PrP may contribute to the morphogenetic reprogramming of cells underlying epithelial-to-mesenchymal transitions (EMT). Consistent with this hypothesis, PrP transcription increased more than tenfold during EMT, and stable PrP-deficient cells failed to complete EMT in a mammalian cell model. A global comparative proteomics analysis identified the neural cell adhesion molecule 1 (NCAM1) as a candidate mediator of this impairment, which led to the observation that PrP-deficient cells fail to undergo NCAM1 polysialylation during EMT. Surprisingly, this defect was caused by a perturbed transcription of the polysialyltransferase ST8SIA2 gene. Proteomics data pointed toward β-catenin as a transcriptional regulator affected in PrP-deficient cells. Indeed, pharmacological blockade or siRNA-based knockdown of β-catenin mimicked PrP-deficiency in regards to NCAM1 polysialylation. Our data established the existence of a PrP-ST8SIA2-NCAM signaling loop, merged two mature fields of investigation and offer a simple model for explaining phenotypes linked to PrP. PMID:26288071

  8. Maximizing Fibroblast Adhesion on Protein-Coated Surfaces Using Microfluidic Cell Printing

    PubMed Central

    Davidoff, S.N.; Au, D.; Gale, B.K.; Brooks, B.D.; Brooks, A.E.

    2015-01-01

    translation of in vitro cell based assays to in vivo cellular response is imprecise at best. The advent of three-dimensional cell cultures in addition to bioreactor type microfluidics has improved the situation. However, these technical advances cannot be easily combined due to practical limitations. Development of a vertical microfluidic cell printer overcomes this obstacle, providing the ability to more closely recapitulate complex cellular environments and responses. As a proof of concept, we investigated the adhesion of fibroblasts under flow on protein-coated surfaces using a novel vertical microfluidic print head to isolate and manipulate both mechanical and biological factors as a model of fibroblast behavior during the foreign body response following implant insertion. A low flow rate with larger microfluidic channels onto a serum-coated surface has been determined to allow the highest density of viable fibroblasts to attach to the surface. While these insights into fibroblast surface attachment may lead to better material designs, the methods developed herein will certainly be useful as a biomaterials testing platform. PMID:26989480

  9. Inhibition of protein adsorption and cell adhesion on PNIPAAm-grafted polyurethane surface: effect of graft molecular weight.

    PubMed

    Zhao, Tieliang; Chen, Hong; Zheng, Jun; Yu, Qian; Wu, Zhaoqiang; Yuan, Lin

    2011-06-15

    In this work, the effect of molecular weight (MW) of surface grafted poly(N-isopropylacrylamide) (PNIPAAm) on protein adsorption and cell adhesion was investigated systematically. PNIPAAm-grafted polyurethane (PU) surfaces of varying graft MW were prepared via conventional radical polymerization. The MW was controlled by adjusting the monomer concentration. Fibrinogen (Fg) and human serum albumin (HSA) were selected as model proteins and their adsorption from phosphate-buffered saline (PBS, pH 7.4) and blood plasma at 37°C was measured using a radiolabeling method and immunoblot analysis respectively. It was found that in both media, as the MW increased, the adsorption of these two proteins decreased gradually reaching a plateau value at MW above 7.9×10(4). Compared to the unmodified PU, the surface grafted with PNIPAAm of MW 14.6×10(4) reduced the adsorption of Fg and HSA in PBS by 91% and 86%, respectively. Moreover, the surfaces with higher MW PNIPAAm showed minimal adhesion of L929 cells presumably due to the absence of cell-adhesive proteins on the surfaces. PMID:21093225

  10. Staphylococcus aureus Fibronectin-Binding Protein A Mediates Cell-Cell Adhesion through Low-Affinity Homophilic Bonds

    PubMed Central

    Herman-Bausier, Philippe; El-Kirat-Chatel, Sofiane; Foster, Timothy J.

    2015-01-01

    ABSTRACT Staphylococcus aureus is an important opportunistic pathogen which is a leading cause of biofilm-associated infections on indwelling medical devices. The cell surface-located fibronectin-binding protein A (FnBPA) plays an important role in the accumulation phase of biofilm formation by methicillin-resistant S. aureus (MRSA), but the underlying molecular interactions are not yet established. Here, we use single-cell and single-molecule atomic force microscopy to unravel the mechanism by which FnBPA mediates intercellular adhesion. We show that FnBPA is responsible for specific cell-cell interactions that involve the FnBPA A domain and cause microscale cell aggregation. We demonstrate that the strength of FnBPA-mediated adhesion originates from multiple low-affinity homophilic interactions between FnBPA A domains on neighboring cells. Low-affinity binding by means of FnBPA may be important for biofilm dynamics. These results provide a molecular basis for the ability of FnBPA to promote cell accumulation during S. aureus biofilm formation. We speculate that homophilic interactions may represent a generic strategy among staphylococcal cell surface proteins for guiding intercellular adhesion. As biofilm formation by MRSA strains depends on proteins rather than polysaccharides, our approach offers exciting prospects for the design of drugs or vaccines to inhibit protein-dependent intercellular interactions in MRSA biofilms. PMID:26015495

  11. Organ-selective regulation of vascular adhesion protein-1 expression in man.

    PubMed

    Arvilommi, A M; Salmi, M; Jalkanen, S

    1997-07-01

    Vascular adhesion protein-1 (VAP-1) is an endothelial molecule which mediates lymphocyte binding to endothelium in peripheral lymph nodes and at certain sites of inflammation. The expression of VAP-1 in vivo is strongly up-regulated in inflamed tissues, such as gut and skin. The purpose of this work was to examine the factors responsible for this induction of VAP-1. Since the expression of VAP-1 could not be induced in cultured endothelial cells with a large panel of mediators, we used an organ culture technique for the investigation of the regulation of VAP-1 expression in a more physiological micromilieu. Indeed, we found that the expression of endothelial VAP-1 could be up-regulated in human tonsillar tissue with interleukin (IL)-1, IL-4, tumor necrosis factor (TNF-alpha), interferon (IFN)-gamma and lipopolysaccharide, whereas histamine, thrombin, dibutyryl cAMP, N-formyl-Met-Leu-Phe (fMLP) and phorbol 12-myristate 13-acetate (PMA) had no effect. The induced VAP-1 protein was similar in molecular weight to the non-induced VAP-1, suggesting that VAP-1 synthesized de novo carries appropriate carbohydrate moieties. In contrast to tonsil organ culture, similar inductions performed with human appendix showed no up-regulation of VAP-1 expression, indicating that the regulation of VAP-1 expression exhibits organ-selective characteristics. Furthermore, in these tissues the smooth muscle cells, which constitutively express VAP-1, could not be stimulated to alter their level of expression of this molecule. In conclusion, the expression of VAP-1 can be markedly up-regulated with several mediators in tonsil but not in appendix organ culture, whereas cultured endothelial cells cannot be induced to express VAP-1. These results indicate that the expression of VAP-1 is regulated in a tissue- and cell type-selective manner, and a correct micromilieu is required for the up-regulation to occur. PMID:9247594

  12. Anti-neutrophil cytoplasmic antibody-enriched IgG induces adhesion of human T lymphocytes to extracellular matrix proteins.

    PubMed

    Tomer, Y; Lider, O; Gilburd, B; Hershkoviz, R; Meroni, P L; Wiik, A; Shoenfeld, Y

    1997-06-01

    Recent studies have shown that anti-neutrophil cytoplasmic antibodies (ANCA) can activate neutrophils to adhere to endothelium, degranulate, and cause endothelial cell injury. These data have lead to the hypothesis that the T cell inflammatory response causing the vasculitis in Wegener's granulomatosis (WG) is secondary to stimulation of neutrophils by ANCA. So far there is no evidence for a direct effect of ANCA on lymphocytes. The present study was designed to examine whether lymphocytes can be directly stimulated by ANCA to adhere to endothelial extracellular matrix (ECM) proteins. Human and mouse ANCA-enriched IgG were tested for their ability to increase adhesion of human T lymphocytes to fibronectin, laminin, and intact ECM. Incubation of human T lymphocytes with human ANCA-enriched IgG increased adhesion of the lymphocytes in a dose-dependent manner to fibronectin, laminin, and intact ECM (the percentage adhesion to intact ECM was 55.7 +/- 3.1 and 45.0 +/- 1.0% for lymphocytes incubated with human IgG containing ANCA or control human IgG, respectively; P = 0.0045). The same induction of adhesion to fibronectin, laminin, and intact ECM was observed when the cells were incubated with the F(ab)2 fragment of ANCA-enriched IgG. Similarly, ANCA-enriched IgG produced in mice increased the adhesion of lymphocytes to fibronectin (the percentage adhesion to fibronectin was 29.7 +/- 4.3 and 16.6 +/- 1.9% for lymphocytes incubated with mouse IgG-ANCA or control mouse IgG, respectively; P = 0.0008). These results may suggest that ANCA can directly stimulate lymphocytes to adhere to endothelial ECM and to induce the vasculitic lesions of WG. It remains to be shown by which mechanisms ANCA stimulate lymphocytes to adhere to ECM. PMID:9175913

  13. Metastasis-promoting anterior gradient 2 protein has a dimeric thioredoxin fold structure and a role in cell adhesion.

    PubMed

    Patel, Pryank; Clarke, Christopher; Barraclough, Dong Liu; Jowitt, Thomas Adam; Rudland, Philip Spencer; Barraclough, Roger; Lian, Lu-Yun

    2013-03-11

    Anterior gradient 2 (AGR2) is a normal endoplasmic reticulum protein that has two important abnormal functions, amphibian limb regeneration and human cancer metastasis promotion. These normal intracellular and abnormal extracellular roles can be attributed to the multidomain structure of AGR2. The NMR structure shows that AGR2 consists of an unstructured N-terminal region followed by a thioredoxin fold. The protein exists in monomer-dimer equilibrium with a K(d) of 8.83μM, and intermolecular salt bridges involving E60 and K64 within the folded domain serve to stabilize the dimer. The unstructured region is primarily responsible for the ability of AGR2 to promote cell adhesion, while dimerization is less important for this activity. The structural data of AGR2 show a separation between potential catalytic redox activity and adhesion function within the context of metastasis and development. PMID:23274113

  14. Focal adhesion kinase protein regulates Wnt3a gene expression to control cell fate specification in the developing neural plate

    PubMed Central

    Fonar, Yuri; Gutkovich, Yoni E.; Root, Heather; Malyarova, Anastasia; Aamar, Emil; Golubovskaya, Vita M.; Elias, Sarah; Elkouby, Yaniv M.; Frank, Dale

    2011-01-01

    Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase protein localized to regions called focal adhesions, which are contact points between cells and the extracellular matrix. FAK protein acts as a scaffold to transfer adhesion-dependent and growth factor signals into the cell. Increased FAK expression is linked to aggressive metastatic and invasive tumors. However, little is known about its normal embryonic function. FAK protein knockdown during early Xenopus laevis development anteriorizes the embryo. Morphant embryos express increased levels of anterior neural markers, with reciprocally reduced posterior neural marker expression. Posterior neural plate folding and convergence-extension is also inhibited. This anteriorized phenotype resembles that of embryos knocked down zygotically for canonical Wnt signaling. FAK and Wnt3a genes are both expressed in the neural plate, and Wnt3a expression is FAK dependent. Ectopic Wnt expression rescues this FAK morphant anteriorized phenotype. Wnt3a thus acts downstream of FAK to balance anterior–posterior cell fate specification in the developing neural plate. Wnt3a gene expression is also FAK dependent in human breast cancer cells, suggesting that this FAK–Wnt linkage is highly conserved. This unique observation connects the FAK- and Wnt-signaling pathways, both of which act to promote cancer when aberrantly activated in mammalian cells. PMID:21551070

  15. Negative staining and immunoelectron microscopy of adhesion-deficient mutants of Streptococcus salivarius reveal that the adhesive protein antigens are separate classes of cell surface fibril.

    PubMed Central

    Weerkamp, A H; Handley, P S; Baars, A; Slot, J W

    1986-01-01

    The subcellular distribution of the cell wall-associated protein antigens of Streptococcus salivarius HB, which are involved in specific adhesive properties of the cells, was studied. Mutants which had lost the adhesive properties and lacked the antigens at the cell surface were compared with the parent strain. Immunoelectron microscopy of cryosections of cells labeled with affinity-purified, specific antisera and colloidal gold-protein A complexes was used to locate the antigens. Antigen C (AgC), a glycoprotein involved in attachment to host surfaces, was mainly located in the fibrillar layer outside the cell wall. A smaller amount of label was also found throughout the cytoplasmic area in the form of small clusters of gold particles, which suggests a macromolecular association. Mutant HB-7, which lacks the wall-associated AgC, accumulated AgC reactivity intracellularly. Intracellular AgC was often found associated with isolated areas of increased electron density, but sometimes seemed to fill the entire interior of the cell. Antigen B (AgB), a protein responsible for interbacterial coaggregation, was also located in the fibrillar layer, although its distribution differed from that of the wall-associated AgC since AgB was found predominantly in the peripheral areas. A very small amount of label was also found in the cytoplasmic area as discrete gold particles. Mutant HB-V5, which lacks wall-associated AgB, was not labeled in the fibrillar coat, but showed the same weak intracellular label as the parent strain. Immunolabeling with serum against AgD, another wall-associated protein but of unknown function, demonstrated its presence in the fibrillar layer of strain HB. Negatively stained preparations of whole cells of wild-type S. salivarius and mutants that had lost wall-associated AgB or AgC revealed that two classes of short fibrils are carried on the cell surface at the same time. AgB and AgC are probably located on separate classes of short, protease

  16. Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer

    NASA Technical Reports Server (NTRS)

    Alenghat, F. J.; Fabry, B.; Tsai, K. Y.; Goldmann, W. H.; Ingber, D. E.

    2000-01-01

    A magnetic tweezer was constructed to apply controlled tensional forces (10 pN to greater than 1 nN) to transmembrane receptors via bound ligand-coated microbeadswhile optically measuring lateral bead displacements within individual cells. Use of this system with wild-type F9 embryonic carcinoma cells and cells from a vinculin knockout mouse F9 Vin (-/-) revealed much larger differences in the stiffness of the transmembrane integrin linkages to the cytoskeleton than previously reported using related techniques that measured average mechanical properties of large cell populations. The mechanical properties measured varied widely among cells, exhibiting an approximately log-normal distribution. The median lateral bead displacement was 2-fold larger in F9 Vin (-/-) cells compared to wild-type cells whereas the arithmetic mean displacement only increased by 37%. We conclude that vinculin serves a greater mechanical role in cells than previously reported and that this magnetic tweezer device may be useful for probing the molecular basis of cell mechanics within single cells. Copyright 2000 Academic Press.

  17. Members of the Pmp protein family of Chlamydia pneumoniae mediate adhesion to human cells via short repetitive peptide motifs.

    PubMed

    Mölleken, Katja; Schmidt, Eleni; Hegemann, Johannes H

    2010-11-01

    Chlamydiae sp. are obligate intracellular pathogens that cause a variety of diseases in humans. Adhesion of the infectious elementary body to the eukaryotic host cell is a pivotal step in chlamydial pathogenesis. Here we describe the characterization of members of the polymorphic membrane protein family (Pmp), the largest protein family (with up to 21 members) unique to Chlamydiaceae. We show that yeast cells displaying Pmp6, Pmp20 or Pmp21 on their surfaces, or beads coated with the recombinant proteins, adhere to human epithelial cells. A hallmark of the Pmp protein family is the presence of multiple repeats of the tetrapeptide motifs FxxN and GGA(I, L, V) and deletion analysis shows that at least two copies of these motifs are needed for adhesion. Importantly, pre-treatment of human cells with recombinant Pmp6, Pmp20 or Pmp21 protein reduces infectivity upon subsequent challenge with Chlamydia pneumoniae and correlates with diminished attachment of Chlamydiae to target cells. Antibodies specific for Pmp21 can neutralize infection in vitro. Finally, a combination of two different Pmp proteins in infection blockage experiments shows additive effects, possibly suggesting similar functions. Our findings imply that Pmp6, Pmp20 and Pmp21 act as adhesins, are vital during infection and thus represent promising vaccine candidates.

  18. Elevated protein tyrosine phosphatase activity provokes Eph/ephrin-facilitated adhesion of pre-B leukemia cells.

    PubMed

    Wimmer-Kleikamp, Sabine H; Nievergall, Eva; Gegenbauer, Kristina; Adikari, Samantha; Mansour, Mariam; Yeadon, Trina; Boyd, Andrew W; Patani, Neill R; Lackmann, Martin

    2008-08-01

    Signaling by Eph receptors and cell-surface ephrin ligands modulates adhesive cell properties and thereby coordinates cell movement and positioning in normal and oncogenic development. While cell contact-dependent Eph activation frequently leads to cell-cell repulsion, also the diametrically opposite response, cell-cell adhesion, is a probable outcome. However, the molecular principles regulating such disparate functions have remained controversial. We have examined cell-biologic mechanisms underlying this switch by analyzing ephrin-A5-induced cell-morphologic changes of EphA3-positive LK63 pre-B acute lymphoblastic leukemia cells. Their exposure to ephrin-A5 surfaces leads to a rapid conversion from a suspended/nonpolarized to an adherent/polarized cell type, a transition that relies on EphA3 functions operating in the absence of Eph-kinase signaling. Cell morphology change and adhesion of LK63 cells are effectively attenuated by endogenous protein tyrosine phosphatase (PTP) activity, whereby PTP inhibition and productive EphA3-phosphotyrosine signaling reverse the phenotype to nonadherent cells with a condensed cytoskeleton. Our findings suggest that Eph-associated PTP activities not only control receptor phosphorylation levels, but as a result switch the response to ephrin contact from repulsion to adhesion, which may play a role in the pathology of hematopoietic tumors. PMID:18385452

  19. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    SciTech Connect

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu . E-mail: dxliu001@yahoo.com

    2007-07-13

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.

  20. Pregnancy-associated plasma protein A up-regulated by progesterone promotes adhesion and proliferation of trophoblastic cells.

    PubMed

    Wang, Jiao; Liu, Shuai; Qin, Hua-Min; Zhao, Yue; Wang, Xiao-Qi; Yan, Qiu

    2014-01-01

    Embryo implantation and development is a complex biological process for the establishment of the successful pregnancy. Progesterone is a critical factor in the regulation of embryo adhesion to uterine endometrium and proliferation. Although it has been reported that pregnancy-associated plasma protein A (PAPPA) is increased in pregnant women, the relationship between progesterone and PAPPA, and the effects of PAPPA on embryo adhesion and proliferation are still not clear. The present results showed that the serum level of progesterone and PAPPA was closely correlated by ELISA assay (p<0.01). PAPPA was detected in the villi of early embryo by RT-PCR, Western blot, immunohistochemistry and immunofluorescent staining. Moreover, PAPPA was significantly up-regulated by progesterone in trophoblastic (JAR) cells by Real-time PCR and ELISA assay (p<0.01); while the expression was decreased by the progesterone receptor inhibitor RU486. The down-regulation of PAPPA by siRNA transfection or up-regulation of PAPPA by progesterone treatment significantly decreased or increased the adhesion rate of trophoblastic cells to human uterine epithelial cell lines (RL95-2 and HEC-1A), respectively (p<0.01), as well as the proliferation of trophoblastic cells. In conclusion, PAPPA is up-regulated by progesterone, which promotes the adhesion and proliferation potential of trophoblastic cells. PMID:24817938

  1. Localization of Vascular Adhesion Protein-1 (VAP-1) in the Human Eye

    PubMed Central

    Almulki, Lama; Noda, Kousuke; Nakao, Shintaro; Hisatomi, Toshio; Thomas, Kennard L.; Hafezi-Moghadam, Ali

    2009-01-01

    Recently we showed a critical role for Vascular Adhesion Protein-1 (VAP-1) in rodents during acute ocular inflammation, angiogenesis, and diabetic retinal leukostasis. However, the expression of VAP-1 in the human eye is unknown. VAP-1 localization was investigated by immunohistochemistry. Five μm thick sections were generated from human ocular tissues embedded in paraffin. Sections were incubated overnight with primary mAbs against VAP-1 (5μg/ml), smooth muscle actin (1μg/ml), CD31 or isotype-matched IgG at 4°C. Subsequently, a secondary mAb was used for 30min at room temperature, followed by Dako Envision + HRP (AEC) System for signal detection. The stained sections were examined using light microscopy and the signal intensity was quantified by two masked evaluators and graded into 4 discrete categories. In all examined ocular tissues, VAP-1 staining was confined to the vasculature. VAP-1 labeling showed the highest intensity in both arteries and veins of neuronal tissues; retina, and optic nerve, and the lowest intensity in the iris vasculature (p<0.05). Scleral and choroidal vessels showed moderate staining for VAP-1. VAP-1 intensity was significantly higher in the arteries compared to veins (p<0.05). Furthermore, VAP-1 staining in arteries co-localized with both CD31 and smooth muscle actin (sm-actin) staining, suggesting expression of VAP-1 in endothelial cells, smooth muscle cells or potentially pericytes. In conclusion, Immunohistochemistry reveals constitutive expression of VAP-1 in human ocular tissues. VAP-1 expression is exclusive to the vasculature with arteries showing significantly higher expression than veins. Furthermore, VAP-1 expression in the ocular vasculature is heterogeneous, with the vessels of the optic nerve and the retina showing highest expressions. These results characterize VAP-1 expression in human ocular tissues. PMID:19761765

  2. Amalgam, an axon guidance Drosophila adhesion protein belonging to the immunoglobulin superfamily: over-expression, purification and biophysical characterization.

    PubMed

    Zeev-Ben-Mordehai, Tzviya; Paz, Aviv; Peleg, Yoav; Toker, Lilly; Wolf, Sharon G; Rydberg, Edwin H; Sussman, Joel L; Silman, Israel

    2009-02-01

    Amalgam, a multi-domain member of the immunoglobulin superfamily, possesses homophilic and heterophilic cell adhesion properties. It is required for axon guidance during Drosophila development in which it interacts with the extracellular domain of the transmembrane protein, neurotactin, to promote adhesion. Amalgam was heterologously expressed in Pichia pastoris, and the secreted protein product, bearing an NH(2)-terminal His(6)Tag, was purified from the growth medium by metal affinity chromatography. Size exclusion chromatography separated the purified protein into two fractions: a major, multimeric fraction and a minor, dimeric one. Two protocols to reduce the percentage of multimers were tested. In one, protein induction was performed in the presence of the zwitterionic detergent CHAPS, yielding primarily the dimeric form of amalgam. In a second protocol, agitation was gradually reduced during the course of the induction and antifoam was added daily to reduce the air/liquid interfacial foam area. This latter protocol lowered the percentage of multimer 2-fold, compared to constant agitation. Circular dichroism measurements showed that the dimeric fraction had a high beta-sheet content, as expected for a protein with an immunoglobulin fold. Dynamic light scattering and sedimentation velocity measurements showed that the multimeric fraction displays a monodisperse distribution, with R(H)=16 nm. When co-expressed together with amalgam the ectodomain of neurotactin copurified with it. Furthermore, both purified fractions of amalgam were shown to interact with Torpedo californica acetylcholinesterase, a structural homolog of neurotactin.

  3. Dualistic nature of adhesive protein function: fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function

    PubMed Central

    1984-01-01

    Fibronectin and certain polypeptide regions of this adhesive glycoprotein mediate cell attachment and spreading on various substrates. We explored the theoretical prediction that this adhesive protein could become a competitive inhibitor of fibronectin-mediated processes if present in solution at appropriately high concentrations. Fibronectin function was inhibited by purified plasma fibronectin at 5- 10 mg/ml, by a 75,000-dalton cell-interaction fragment of the protein at 0.5-1 mg/ml, and even by two synthetic peptides containing a conserved, hydrophilic amino acid sequence at 0.1-0.5 mg/ml. Inhibition of fibronectin-dependent cell spreading was dose dependent, noncytotoxic, and reversible. It was competitive in nature, since increased quantities of substrate-adsorbed fibronectin or longer incubation periods decreased the inhibition. A peptide inhibitory for fibronectin-mediated cell spreading also inhibited fibronectin-mediated attachment of cells to type I collagen, but it did not affect concanavalin A-mediated spreading. These results demonstrate the potential of a cell adhesion molecule and its biologically active peptide fragments to act as competitive inhibitors, and they suggest that fibronectin may act by binding to a saturable cell surface receptor. PMID:6736130

  4. Regulation of phosphorylation level and distribution of PTP36, a putative protein tyrosine phosphatase, by cell-substrate adhesion.

    PubMed

    Ogata, M; Takada, T; Mori, Y; Uchida, Y; Miki, T; Okuyama, A; Kosugi, A; Sawada, M; Oh-hora, M; Hamaoka, T

    1999-07-16

    Recently we have cloned a putative protein tyrosine phosphatase, PTP36/PTPD2/pez, which possesses a domain homologous to the N-terminal half of band 4.1 protein. In mouse fibroblasts adhered to substrates, PTP36 was phosphorylated on serine residues. PTP36 was found to make complexes with serine/threonine kinase(s), which phosphorylated PTP36 in vitro. PTP36 was dephosphorylated rapidly when the cell-substrate adhesion was disrupted and it was phosphorylated again along with the reattachment of the cells to fibronectin. Rephosphorylation of PTP36 seemed to depend on actin polymerization since it was inhibited by cytochalasin D. The cell detachment also induced the translocation of PTP36 into the membrane-associated cytoskeletal fraction. Staurosporine and ML-9, which inhibited the phosphorylation of PTP36 in vivo, induced the translocation of PTP36 too. On the contrary, when the dephosphorylation of PTP36 was inhibited by okadaic acid, no translocation of PTP36 was induced by the cell detachment. These results demonstrate that the cell-substrate adhesion and cell spreading regulates the intracellular localization of PTP36 most likely through its phosphorylation and therefore, PTP36 may play important roles in the signal transduction pathway of cell-adhesion. PMID:10400706

  5. Poly(ethylene glycol) grafting to poly(ether imide) membranes: influence on protein adsorption and thrombocyte adhesion.

    PubMed

    Neffe, Axel T; von Ruesten-Lange, Maik; Braune, Steffen; Luetzow, Karola; Roch, Toralf; Richau, Klaus; Jung, Friedrich; Lendlein, Andreas

    2013-12-01

    The chain length and end groups of linear PEG grafted on smooth surfaces is known to influence protein adsorption and thrombocyte adhesion. Here, it is explored whether established structure function relationships can be transferred to application relevant, rough surfaces. Functionalization of poly(ether imide) (PEI) membranes by grafting with monoamino PEG of different chain lengths (Mn  =1 kDa or 10 kDa) and end groups (methoxy or hydroxyl) is proven by spectroscopy, changes of surface hydrophilicity, and surface shielding effects. The surface functionalization does lead to reduction of adsorption of BSA, but not of fibrinogen. The thrombocyte adhesion is increased compared to untreated PEI surfaces. Conclusively, rough instead of smooth polymer or gold surfaces should be investigated as relevant models. PMID:24167100

  6. Mechanism of adhesion between protein-based hydrogels and plasma treated polypropylene backing

    NASA Astrophysics Data System (ADS)

    Snyders, Rony; Zabeida, Oleg; Roberges, Christophe; Shingel, Kirill I.; Faure, Marie-Pierre; Martinu, Ludvik; Klemberg-Sapieha, Jolanta E.

    2007-01-01

    We studied the mechanism of adhesion between N 2 plasma treated polypropylene (PP/N 2) backing and a hybrid hydrogel (HG) produced by chemical crosslinking between poly(ethylene glycol) and soy albumin. The work of adhesion, measured by peel testing, was found to be 25 times higher for PP/N 2 compared to untreated PP (≈5.0 J/m 2 versus ≈0.2 J/m 2). In order to understand the adhesion mechanism, we performed a detailed analysis of the surface chemical composition of PP and PP/N 2 using X-ray photoelectron spectroscopy (XPS), chemical derivatization and attenuated total reflectance infra-red (ATR-IR) measurements. The results confirm incorporation of different nitrogen- (amine, amide,…) and oxygen- (hydroxyl, carboxyl,…) containing chemical groups on the PP/N 2 surface. The derivatized functions were primary amine, hydroxyl, carboxyl and carbonyl groups. Chemical derivatization reactions validated the XPS results (except for carbonyl groups), and they clearly underlined the essential role of primary amine groups in the adhesion process. In fact, after derivatization of the amine functions, the work of adhesion was found to be 0.41 ± 0.12 J/m 2. Participation of amine groups in the formation of covalent bonds at the interface between PP/N 2 and HG was directly confirmed by ATR-IR measurements.

  7. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli

    PubMed Central

    2012-01-01

    Background In nature, mussel adhesive proteins (MAPs) show remarkable adhesive properties, biocompatibility, and biodegradability. Thus, they have been considered promising adhesive biomaterials for various biomedical and industrial applications. However, limited production of natural MAPs has hampered their practical applications. Recombinant production in bacterial cells could be one alternative to obtain useable amounts of MAPs, although additional post-translational modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (Dopa) and Dopaquinone is required. The superior properties of MAPs are mainly attributed to the introduction of quinone-derived intermolecular cross-links. To solve this problem, we utilized a co-expression strategy of recombinant MAP and tyrosinase in Escherichia coli to successfully modify tyrosine residues in vivo. Results A recombinant hybrid MAP, fp-151, was used as a target for in vivo modification, and a dual vector system of pET and pACYC-Duet provided co-expression of fp-151 and tyrosinase. As a result, fp-151 was over-expressed and mainly obtained from the soluble fraction in the co-expression system. Without tyrosinase co-expression, fp-151 was over-expressed in an insoluble form in inclusion bodies. The modification of tyrosine residues in the soluble-expressed fp-151 was clearly observed from nitroblue tetrazolium staining and liquid-chromatography-mass/mass spectrometry analyses. The purified, in vivo modified, fp-151 from the co-expression system showed approximately 4-fold higher bulk-scale adhesive strength compared to in vitro tyrosinase-treated fp-151. Conclusion Here, we reported a co-expression system to obtain in vivo modified MAP; additional in vitro tyrosinase modification was not needed to obtain adhesive properties and the in vivo modified MAP showed superior adhesive strength compared to in vitro modified protein. It is expected that this co-expression strategy will accelerate the use of functional MAPs in

  8. N-Ethylmaleimide-sensitive Factor Attachment Protein α (αSNAP) Regulates Matrix Adhesion and Integrin Processing in Human Epithelial Cells*

    PubMed Central

    Naydenov, Nayden G.; Feygin, Alex; Wang, Lifu; Ivanov, Andrei I.

    2014-01-01

    Integrin-based adhesion to the extracellular matrix (ECM) plays critical roles in controlling differentiation, survival, and motility of epithelial cells. Cells attach to the ECM via dynamic structures called focal adhesions (FA). FA undergo constant remodeling mediated by vesicle trafficking and fusion. A soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein α (αSNAP) is an essential mediator of membrane fusion; however, its roles in regulating ECM adhesion and cell motility remain unexplored. In this study, we found that siRNA-mediated knockdown of αSNAP induced detachment of intestinal epithelial cells, whereas overexpression of αSNAP increased ECM adhesion and inhibited cell invasion. Loss of αSNAP impaired Golgi-dependent glycosylation and trafficking of β1 integrin and decreased phosphorylation of focal adhesion kinase (FAK) and paxillin resulting in FA disassembly. These effects of αSNAP depletion on ECM adhesion were independent of apoptosis and NSF. In agreement with our previous reports that Golgi fragmentation mediates cellular effects of αSNAP knockdown, we found that either pharmacologic or genetic disruption of the Golgi recapitulated all the effects of αSNAP depletion on ECM adhesion. Furthermore, our data implicates β1 integrin, FAK, and paxillin in mediating the observed pro-adhesive effects of αSNAP. These results reveal novel roles for αSNAP in regulating ECM adhesion and motility of epithelial cells. PMID:24311785

  9. Adhesions of extracellular surface-layer associated proteins in Lactobacillus M5-L and Q8-L.

    PubMed

    Zhang, Yingchun; Xiang, Xinling; Lu, Qianhui; Zhang, Lanwei; Ma, Fang; Wang, Linlin

    2016-02-01

    Surface-layer associated proteins (SLAP) that envelop Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L cell surfaces are involved in the adherence of these strain to the human intestinal cell line HT-29. To further elucidate some of the properties of these proteins, we assessed the yields and expressions of SLAP under different incubation conditions. An efficient and selective extraction of SLAP was obtained when cells of Lactobacillus were treated with 5 M LiCl at 37°C in aerobic conditions. The SLAP of Lactobacillus M5-L and Q8-L in cell extracts were visualized by SDS-PAGE and identified by Western blotting with sulfo-N-hydroxysuccinimide-biotin-labeled HT-29 cells as adhesion proteins. Atomic force microscopy contact imaging revealed that Lactobacillus strains M5-L and Q8-L normally display a smooth, homogeneous surface, whereas the surfaces of M5-L and Q8-L treated with 5 M LiCl were rough and more heterogeneous. Analysis of adhesion forces revealed that the initial adhesion forces of 1.41 and 1.28 nN obtained for normal Lactobacillus M5-L and Q8-L strains, respectively, decreased to 0.70 and 0.48 nN, respectively, following 5 M LiCl treatment. Finally, the dominant 45-kDa protein bands of Lactobacillus Q8-L and Lactobacillus M5-L were identified as elongation factor Tu and surface antigen, respectively, by liquid chromatography-tandem mass spectrometry.

  10. Adhesions of extracellular surface-layer associated proteins in Lactobacillus M5-L and Q8-L.

    PubMed

    Zhang, Yingchun; Xiang, Xinling; Lu, Qianhui; Zhang, Lanwei; Ma, Fang; Wang, Linlin

    2016-02-01

    Surface-layer associated proteins (SLAP) that envelop Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L cell surfaces are involved in the adherence of these strain to the human intestinal cell line HT-29. To further elucidate some of the properties of these proteins, we assessed the yields and expressions of SLAP under different incubation conditions. An efficient and selective extraction of SLAP was obtained when cells of Lactobacillus were treated with 5 M LiCl at 37°C in aerobic conditions. The SLAP of Lactobacillus M5-L and Q8-L in cell extracts were visualized by SDS-PAGE and identified by Western blotting with sulfo-N-hydroxysuccinimide-biotin-labeled HT-29 cells as adhesion proteins. Atomic force microscopy contact imaging revealed that Lactobacillus strains M5-L and Q8-L normally display a smooth, homogeneous surface, whereas the surfaces of M5-L and Q8-L treated with 5 M LiCl were rough and more heterogeneous. Analysis of adhesion forces revealed that the initial adhesion forces of 1.41 and 1.28 nN obtained for normal Lactobacillus M5-L and Q8-L strains, respectively, decreased to 0.70 and 0.48 nN, respectively, following 5 M LiCl treatment. Finally, the dominant 45-kDa protein bands of Lactobacillus Q8-L and Lactobacillus M5-L were identified as elongation factor Tu and surface antigen, respectively, by liquid chromatography-tandem mass spectrometry. PMID:26709174

  11. Rsu1 contributes to regulation of cell adhesion and spreading by PINCH1-dependent and - independent mechanisms.

    PubMed

    Gonzalez-Nieves, Reyda; Desantis, Akiko Iwahari; Cutler, Mary L

    2013-12-01

    Cell adhesion and migration are complex processes that require integrin activation, the formation and dissolution of focal adhesion (FAs), and linkage of actin cytoskeleton to the FAs. The IPP (ILK, PINCH, Parvin) complex regulates FA formation via binding of the adaptor protein ILK to β1 integrin, PINCH and parvin. The signaling protein Rsu1 is linked to the complex via binding PINCH1. The role of Rsu1 and PINCH1 in adhesion and migration was examined in non-transformed mammary epithelial cells. Confocal microscopy revealed that the depletion of either Rsu1 or PINCH1 by siRNA in MCF10A cells decreased the number of focal adhesions and altered the distribution and localization of β1 integrin, vinculin, talin and paxillin without affecting the levels of FA protein expression. This correlated with reduced adhesion, failure to spread or migrate in response to EGF and a loss of actin stress fibers and caveolae. In addition, constitutive phosphorylation of actin regulatory proteins occurred in the absence of PINCH1. The depletion of Rsu1 caused significant reduction in PINCH1 implying that Rsu1 may function by regulating levels of PINCH1. However, while both Rsu1- or PINCH1-depleted cells retained the ability to activate adhesion signaling in response to EGF stimulation, only Rsu1 was required for EGF-induced p38 Map Kinase phosphorylation and ATF2 activation, suggesting an Rsu1 function independent from the IPP complex. Reconstitution of Rsu1-depleted cells with an Rsu1 mutant that does not bind to PINCH1 failed to restore FAs or migration but did promote spreading and constitutive p38 activation. These data show that Rsu1-PINCH1 association with ILK and the IPP complex is required for regulation of adhesion and migration but that Rsu1 has a critical role in linking integrin-induced adhesion to activation of p38 Map kinase signaling and cell spreading. Moreover, it suggests that Rsu1 may regulate p38 signaling from the IPP complex affecting other functions including

  12. Circulating renalase, catecholamines, and vascular adhesion protein 1 in hypertensive patients.

    PubMed

    Maciorkowska, Dominika; Zbroch, Edyta; Malyszko, Jolanta

    2015-11-01

    The aim of the study was to estimate and correlate circulating levels of renalase, vascular adhesion protein-1 (VAP-1), catecholamines in patients with primary hypertension. The renalase, VAP-1, and catecholamines concentration was estimated in 121 hypertensive patients. The correlation between renalase, VAP-1 levels and catecholamine concentration in blood, blood pressure control, pharmacological therapy, and medical history were taken in to consideration. The median office blood pressure was 145.5/86 mm Hg and was significantly higher than the median home blood pressure measurement value, which was 135/80 mm Hg, P < .05. Circulating renalase and VAP-1 (Me 9.57 μg/mL and Me = 326.7 ng/mL) levels were significantly higher in patients with hypertension comparing to healthy individuals (3.83 μg/mL and 248.37 ng/mL, P < .05). The correlation between renalase and noradrenalin concentration in blood was observed (r = 0.549; P < .05), also the correlation between VAP-1 and noradrenaline was noticed (r = 0.21, P = .029). Renalase level was higher in patients with coronary artery disease and correlated with decreased ejection fraction. VAP-1 concentration correlated also with left ventricular ejection fraction (r = -0.23, P = .013). Hypertensive patients with diabetes mellitus had almost statistically significant higher VAP-1 concentration compared with hypertensive patients without diabetes mellitus (Me = 403.22 ng/mL vs. Me = 326,68 ng/mL, P = .064). In multiple regression analysis, renalase was predicted by plasma dopamine and norepinephrine as also diastolic office blood pressure and left ventricle ejection fraction. Circulating renalase and VAP-1 levels are elevated in patients with poor blood pressure control. Its correlation with noradrenalin concentration need further studies to find out the role of renalase as also VAP-1 in pathogenesis and treatment of hypertension.

  13. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells

    PubMed Central

    Zhang, Bo; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2015-01-01

    Adhesion to host cells is considered important for Lactobacillus plantarum as well as other lactic acid bacteria (LAB) to persist in human gut and thus exert probiotic effects. Here, we sequenced the genome of Lt. plantarum strain NL42 originating from a traditional Chinese dairy product, performed comparative genomic analysis and characterized a novel adhesion factor. The genome of NL42 was highly divergent from its closest neighbors, especially in six large genomic regions. NL42 harbors a total of 42 genes encoding adhesion-associated proteins; among them, cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif. Expression of cwaA in Lactococcus lactis significantly increased its autoaggregation and hydrophobicity, and conferred the new ability to adhere to human colonic epithelial HT-29 cells by targeting cellular surface proteins, and not carbohydrate moieties, for CwaA adhesion. In addition, the recombinant Lc. lactis inhibited adhesion of Staphylococcus aureus and Escherichia coli to HT-29 cells, mainly by exclusion. We conclude that CwaA is a novel adhesion factor in Lt. plantarum and a potential candidate for improving the adhesion ability of probiotics or other bacteria of interest. PMID:26370773

  14. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells.

    PubMed

    Zhang, Bo; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2015-01-01

    Adhesion to host cells is considered important for Lactobacillus plantarum as well as other lactic acid bacteria (LAB) to persist in human gut and thus exert probiotic effects. Here, we sequenced the genome of Lt. plantarum strain NL42 originating from a traditional Chinese dairy product, performed comparative genomic analysis and characterized a novel adhesion factor. The genome of NL42 was highly divergent from its closest neighbors, especially in six large genomic regions. NL42 harbors a total of 42 genes encoding adhesion-associated proteins; among them, cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif. Expression of cwaA in Lactococcus lactis significantly increased its autoaggregation and hydrophobicity, and conferred the new ability to adhere to human colonic epithelial HT-29 cells by targeting cellular surface proteins, and not carbohydrate moieties, for CwaA adhesion. In addition, the recombinant Lc. lactis inhibited adhesion of Staphylococcus aureus and Escherichia coli to HT-29 cells, mainly by exclusion. We conclude that CwaA is a novel adhesion factor in Lt. plantarum and a potential candidate for improving the adhesion ability of probiotics or other bacteria of interest.

  15. In-situ coupling between kinase activities and protein dynamics within single focal adhesions

    PubMed Central

    Wu, Yiqian; Zhang, Kaiwen; Seong, Jihye; Fan, Jason; Chien, Shu; Wang, Yingxiao; Lu, Shaoying

    2016-01-01

    The dynamic activation of oncogenic kinases and regulation of focal adhesions (FAs) are crucial molecular events modulating cell adhesion in cancer metastasis. However, it remains unclear how these events are temporally coordinated at single FA sites. Therefore, we targeted fluorescence resonance energy transfer (FRET)-based biosensors toward subcellular FAs to report local molecular events during cancer cell adhesion. Employing single FA tracking and cross-correlation analysis, we quantified the dynamic coupling characteristics between biochemical kinase activities and structural FA within single FAs. We show that kinase activations and FA assembly are strongly and sequentially correlated, with the concurrent FA assembly and Src activation leading focal adhesion kinase (FAK) activation by 42.6 ± 12.6 sec. Strikingly, the temporal coupling between kinase activation and individual FA assembly reflects the fate of FAs at later stages. The FAs with a tight coupling tend to grow and mature, while the less coupled FAs likely disassemble. During FA disassembly, however, kinase activations lead the disassembly, with FAK being activated earlier than Src. Therefore, by integrating subcellularly targeted FRET biosensors and computational analysis, our study reveals intricate interplays between Src and FAK in regulating the dynamic life of single FAs in cancer cells. PMID:27383747

  16. In-situ coupling between kinase activities and protein dynamics within single focal adhesions.

    PubMed

    Wu, Yiqian; Zhang, Kaiwen; Seong, Jihye; Fan, Jason; Chien, Shu; Wang, Yingxiao; Lu, Shaoying

    2016-01-01

    The dynamic activation of oncogenic kinases and regulation of focal adhesions (FAs) are crucial molecular events modulating cell adhesion in cancer metastasis. However, it remains unclear how these events are temporally coordinated at single FA sites. Therefore, we targeted fluorescence resonance energy transfer (FRET)-based biosensors toward subcellular FAs to report local molecular events during cancer cell adhesion. Employing single FA tracking and cross-correlation analysis, we quantified the dynamic coupling characteristics between biochemical kinase activities and structural FA within single FAs. We show that kinase activations and FA assembly are strongly and sequentially correlated, with the concurrent FA assembly and Src activation leading focal adhesion kinase (FAK) activation by 42.6 ± 12.6 sec. Strikingly, the temporal coupling between kinase activation and individual FA assembly reflects the fate of FAs at later stages. The FAs with a tight coupling tend to grow and mature, while the less coupled FAs likely disassemble. During FA disassembly, however, kinase activations lead the disassembly, with FAK being activated earlier than Src. Therefore, by integrating subcellularly targeted FRET biosensors and computational analysis, our study reveals intricate interplays between Src and FAK in regulating the dynamic life of single FAs in cancer cells. PMID:27383747

  17. Mechanism for Adhesion G Protein-Coupled Receptor GPR56-Mediated RhoA Activation Induced By Collagen III Stimulation

    PubMed Central

    Luo, Rong; Jeong, Sung-Jin; Yang, Annie; Wen, Miaoyun; Saslowsky, David E.; Lencer, Wayne I.; Araç, Demet; Piao, Xianhua

    2014-01-01

    GPR56 is a member of the adhesion G protein-coupled receptor (GPCR) family. Despite the importance of GPR56 in brain development, where mutations cause a devastating human brain malformation called bilateral frontoparietal polymicrogyria (BFPP), the signaling mechanism(s) remain largely unknown. Like many other adhesion GPCRs, GPR56 is cleaved via a GPCR autoproteolysis-inducing (GAIN) domain into N- and C-terminal fragments (GPR56N and GPR56C); however, the biological significance of this cleavage is elusive. Taking advantage of the recent identification of a GPR56 ligand and the presence of BFPP-associated mutations, we investigated the molecular mechanism of GPR56 signaling. We demonstrate that ligand binding releases GPR56N from the membrane-bound GPR56C and triggers the association of GPR56C with lipid rafts and RhoA activation. Furthermore, one of the BFPP-associated mutations, L640R, does not affect collagen III-induced lipid raft association of GPR56. Instead, it specifically abolishes collagen III-mediated RhoA activation. Together, these findings reveal a novel signaling mechanism that may apply to other members of the adhesion GPCR family. PMID:24949629

  18. Influence of blood proteins in the in vitro adhesion of Staphylococcus epidermidis to teflon, polycarbonate, polyethylene and bovine pericardium.

    PubMed

    Carballo, J; Ferreirós, C M; Criado, M T

    1991-12-01

    The influence of human plasma proteins (fibrinogen, albumin and fibronectin) on the adherence of Staphylococcus epidermis to teflon, polyethylene, polycarbonate and bovine pericardium was studied in an in vitro quantitative assay by scintillation counting. Bacterial adhesion was generally reduced by the presence of protein during the adherence assay except in the case of bovine pericardium, in which adherence remained almost unaffected. The effect of these plasma proteins on bacterial surface properties resulted in strong increases of surface charge as measured by ion-exchange chromatography and with no effect on hydrophobicity, estimated as contact angles. Adherence was not found to be correlated with these two properties, suggesting that bacteria-surface interactions must not be simplified to the influence of interfacial forces. PMID:1812542

  19. Identification, purification, and characterization of a zyxin-related protein that binds the focal adhesion and microfilament protein VASP (vasodilator-stimulated phosphoprotein).

    PubMed

    Reinhard, M; Jouvenal, K; Tripier, D; Walter, U

    1995-08-15

    VASP (vasodilator-stimulated phosphoprotein), an established substrate of cAMP- and cGMP-dependent protein kinases in vitro and in living cells, is associated with focal adhesions, microfilaments, and membrane regions of high dynamic activity. Here, the identification of an 83-kDa protein (p83) that specifically binds VASP in blot overlays of different cell homogenates is reported. With VASP overlays as a detection tool, p83 was purified from porcine platelets and used to generate monospecific polyclonal antibodies. VASP binding to purified p83 in solid-phase binding assays and the closely matching subcellular localization in double-label immunofluorescence analyses demonstrated that both proteins also directly interact as native proteins in vitro and possibly in living cells. The subcellular distribution, the biochemical properties, as well as microsequencing data revealed that porcine platelet p83 is related to chicken gizzard zyxin and most likely represents the mammalian equivalent of the chicken protein. The VASP-p83 interaction may contribute to the targeting of VASP to focal adhesions, microfilaments, and dynamic membrane regions. Together with our recent identification of VASP as a natural ligand of the profilin poly-(L-proline) binding site, our present results suggest that, by linking profilin to zyxin/p83, VASP may participate in spatially confined profilin-regulated F-actin formation.

  20. Identification, purification, and characterization of a zyxin-related protein that binds the focal adhesion and microfilament protein VASP (vasodilator-stimulated phosphoprotein).

    PubMed Central

    Reinhard, M; Jouvenal, K; Tripier, D; Walter, U

    1995-01-01

    VASP (vasodilator-stimulated phosphoprotein), an established substrate of cAMP- and cGMP-dependent protein kinases in vitro and in living cells, is associated with focal adhesions, microfilaments, and membrane regions of high dynamic activity. Here, the identification of an 83-kDa protein (p83) that specifically binds VASP in blot overlays of different cell homogenates is reported. With VASP overlays as a detection tool, p83 was purified from porcine platelets and used to generate monospecific polyclonal antibodies. VASP binding to purified p83 in solid-phase binding assays and the closely matching subcellular localization in double-label immunofluorescence analyses demonstrated that both proteins also directly interact as native proteins in vitro and possibly in living cells. The subcellular distribution, the biochemical properties, as well as microsequencing data revealed that porcine platelet p83 is related to chicken gizzard zyxin and most likely represents the mammalian equivalent of the chicken protein. The VASP-p83 interaction may contribute to the targeting of VASP to focal adhesions, microfilaments, and dynamic membrane regions. Together with our recent identification of VASP as a natural ligand of the profilin poly-(L-proline) binding site, our present results suggest that, by linking profilin to zyxin/p83, VASP may participate in spatially confined profilin-regulated F-actin formation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 6 PMID:7644520

  1. Gene expression of four adhesive proteins in the early healing of bone defect and bone-implant interface.

    PubMed

    Zhang, Ting; Xia, Haibin; Wang, Yining; Peng, Cong; Li, Yuhong; Pan, Xinhua

    2006-01-01

    The objective of this study was to evaluate the gene expression of four bone-related adhesive proteins during the early healing of bone defect and bone-implant interface in animal experiments. T-shaped hollow pure titanium implants with dual acid-etched surfaces were placed into femurs of 17 Sprague-Dawley rats, and bone defects with the same size were made in the same site in 15 rats. Newly formed bone was harvested at 5 days, 8 days and 16 days respectively. The gene expression of fibronectin (FN), collagen I (COL I), bone sialoprotein II (BSP II) and osteopontin (OPN) in non-implant and bone-implant defects were examined using semi-quantity reverse transcription-polymerase chain reaction. The gene expression of OPN in the non-implant defect was slightly higher than that in the bone-implant interface. At 8 days postoperation, FN, COL I and BSP II expression were significantly up-regulated in the bone-implant group. All four proteins peaked at 8 days. The results indicate that the gene expression of the four adhesive proteins is different between bone defect and bone-implant interface. Intracellular synthesis of FN, COL I and BSP II was accelerated in the early healing stages of the bone-implant interface. PMID:17946089

  2. Inhibition of S-fimbria-mediated adhesion to human ileostomy glycoproteins by a protein isolated from bovine colostrum.

    PubMed Central

    Ouwehand, A C; Conway, P L; Salminen, S J

    1995-01-01

    The aim of this study was to isolate and purify the component in bovine colostrum which is responsible for the inhibition of S-fimbria-mediated adhesion of Escherichia coli. Whey from defatted colostrum was fractionated by ultrafiltration, and the < 100K, < 30K, and < 10K fractions and the colostral whey were tested for inhibition of in vitro adhesion of radiolabelled S-fimbria-bearing E. coli to human ileostomy glycoproteins, which provide a model for human intestinal mucus. The inhibiting compound was purified from a dialyzed < 30K fraction with an anion exchange column which was eluted with a NaCl gradient (0 to 1.0 M). The compound was found to be a heat-resistant but pepsin-sensitive protein with an Mr of approximately 18,000 and an isoelectric point of approximately 5.75. The protein appears to block receptor sites for S-fimbriae on ileostomy glycoproteins, with steric hindrance being the most likely mechanism. Analysis of the amino acid sequence of the amino terminus of the 18K protein showed similarity with the sequence of beta-lactoglobulin. PMID:7591156

  3. Resistance to protein adsorption and adhesion of fibroblasts on nanocrystalline diamond films: the role of topography and boron doping.

    PubMed

    Alcaide, María; Papaioannou, Stavros; Taylor, Andrew; Fekete, Ladislav; Gurevich, Leonid; Zachar, Vladimir; Pennisi, Cristian Pablo

    2016-05-01

    Boron-doped nanocrystalline diamond (BNCD) films exhibit outstanding electrochemical properties that make them very attractive for the fabrication of electrodes for novel neural interfaces and prosthetics. In these devices, the physicochemical properties of the electrode materials are critical to ensure an efficient long-term performance. The aim of this study was to investigate the relative contribution of topography and doping to the biological performance of BNCD films. For this purpose, undoped and boron-doped NCD films were deposited on low roughness (LR) and high roughness (HR) substrates, which were studied in vitro by means of protein adsorption and fibroblast growth assays. Our results show that BNCD films significantly reduce the adsorption of serum proteins, mostly on the LR substrates. As compared to fibroblasts cultured on LR BNCD films, cells grown on the HR BNCD films showed significantly reduced adhesion and lower growth rates. The mean length of fibronectin fibrils deposited by the cells was significantly increased in the BNCD coated substrates, mainly in the LR surfaces. Overall, the largest influence on protein adsorption, cell adhesion, proliferation, and fibronectin deposition was due to the underlying sub-micron topography, with little or no influence of boron doping. In perspective, BNCD films displaying surface roughness in the submicron range may be used as a strategy to reduce the fibroblast growth on the surface of neural electrodes. PMID:26975747

  4. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species.

    PubMed Central

    Ozawa, M; Baribault, H; Kemler, R

    1989-01-01

    Uvomorulin belongs to the group of Ca2+-dependent cell adhesion molecules, which are integral membrane proteins with several structural features in common. In particular, the cytoplasmic part of these proteins is highly conserved in different species, suggesting a common biological function. To test this assumption we transfected a uvomorulin full-length cDNA into uvomorulin-negative mouse NIH 3T3 and L cells. Immunoprecipitations with anti-uvomorulin antibodies detected, in addition to uvomorulin, three independent proteins of 102, 88 and 80 kd which are of host origin and which form complexes with uvomorulin. Using cDNA constructs coding for uvomorulin with cytoplasmic or extracellular deletions it is shown that the 102, 88 and 80 kd proteins complex with the cytoplasmic domain of uvomorulin. Peptide pattern analysis revealed that these three proteins are identical in different mouse cells. When uvomorulin cDNA was introduced into cell lines from other species, such as human HeLa and avian fibroblasts, the expressed uvomorulin was also associated with endogenous 102, 88 and 80 kd proteins and, moreover, each of these proteins showed structural similarities to the respective mouse molecule. A panel of antibodies specific for known cytoplasmic proteins of mol. wts similar to those of the three proteins did not react with any of the described components. This suggests that the 102, 88 and 80 kd proteins constitute a new group of proteins for which we propose the nomenclature of catenin alpha, beta and gamma respectively. The characterization of these proteins provides a first molecular basis for a possible cytoplasmic anchorage of uvomorulin to the cytoskeleton. Images PMID:2788574

  5. SpyAD, a Moonlighting Protein of Group A Streptococcus Contributing to Bacterial Division and Host Cell Adhesion

    PubMed Central

    Gallotta, Marilena; Gancitano, Giovanni; Pietrocola, Giampiero; Mora, Marirosa; Pezzicoli, Alfredo; Tuscano, Giovanna; Chiarot, Emiliano; Nardi-Dei, Vincenzo; Taddei, Anna Rita; Rindi, Simonetta; Speziale, Pietro; Soriani, Marco; Bensi, Giuliano

    2014-01-01

    Group A streptococcus (GAS) is a human pathogen causing a wide repertoire of mild and severe diseases for which no vaccine is yet available. We recently reported the identification of three protein antigens that in combination conferred wide protection against GAS infection in mice. Here we focused our attention on the characterization of one of these three antigens, Spy0269, a highly conserved, surface-exposed, and immunogenic protein of unknown function. Deletion of the spy0269 gene in a GAS M1 isolate resulted in very long bacterial chains, which is indicative of an impaired capacity of the knockout mutant to properly divide. Confocal microscopy and immunoprecipitation experiments demonstrated that the protein was mainly localized at the cell septum and could interact in vitro with the cell division protein FtsZ, leading us to hypothesize that Spy0269 is a member of the GAS divisome machinery. Predicted structural domains and sequence homologies with known streptococcal adhesins suggested that this antigen could also play a role in mediating GAS interaction with host cells. This hypothesis was confirmed by showing that recombinant Spy0269 could bind to mammalian epithelial cells in vitro and that Lactococcus lactis expressing Spy0269 on its cell surface could adhere to mammalian cells in vitro and to mice nasal mucosa in vivo. On the basis of these data, we believe that Spy0269 is involved both in bacterial cell division and in adhesion to host cells and we propose to rename this multifunctional moonlighting protein as SpyAD (Streptococcus pyogenes Adhesion and Division protein). PMID:24778116

  6. Analysis of Phosphorylation-dependent Protein Interactions of Adhesion and Degranulation Promoting Adaptor Protein (ADAP) Reveals Novel Interaction Partners Required for Chemokine-directed T cell Migration.

    PubMed

    Kuropka, Benno; Witte, Amelie; Sticht, Jana; Waldt, Natalie; Majkut, Paul; Hackenberger, Christian P R; Schraven, Burkhart; Krause, Eberhard; Kliche, Stefanie; Freund, Christian

    2015-11-01

    Stimulation of T cells leads to distinct changes of their adhesive and migratory properties. Signal propagation from activated receptors to integrins depends on scaffolding proteins such as the adhesion and degranulation promoting adaptor protein (ADAP)(1). Here we have comprehensively investigated the phosphotyrosine interactome of ADAP in T cells and define known and novel interaction partners of functional relevance. While most phosphosites reside in unstructured regions of the protein, thereby defining classical SH2 domain interaction sites for master regulators of T cell signaling such as SLP76, Fyn-kinase, and NCK, other binding events depend on structural context. Interaction proteomics using different ADAP constructs comprising most of the known phosphotyrosine motifs as well as the structured domains confirm that a distinct set of proteins is attracted by pY571 of ADAP, including the ζ-chain-associated protein kinase of 70 kDa (ZAP70). The interaction of ADAP and ZAP70 is inducible upon stimulation either of the T cell receptor (TCR) or by chemokine. NMR spectroscopy reveals that the N-terminal SH2 domains within a ZAP70-tandem-SH2 construct is the major site of interaction with phosphorylated ADAP-hSH3(N) and microscale thermophoresis (MST) indicates an intermediate binding affinity (Kd = 2.3 μm). Interestingly, although T cell receptor dependent events such as T cell/antigen presenting cell (APC) conjugate formation and adhesion are not affected by mutation of Y571, migration of T cells along a chemokine gradient is compromised. Thus, although most phospho-sites in ADAP are linked to T cell receptor related functions we have identified a unique phosphotyrosine that is solely required for chemokine induced T cell behavior.

  7. Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells.

    PubMed

    Persson, Maria; Lorite, Gabriela S; Kokkonen, Hanna E; Cho, Sung-Woo; Lehenkari, Petri P; Skrifvars, Mikael; Tuukkanen, Juha

    2014-09-01

    The quality of the initial cell attachment to a biomaterial will influence any further cell function, including spreading, proliferation, differentiation and viability. Cell attachment is influenced by the material's ability to adsorb proteins, which is related to the surface chemistry and topography of the material. In this study, we incorporated hydroxyapatite (HA) particles into a poly(lactic acid) (PLA) composite and evaluated the surface structure and the effects of HA density on the initial cell attachment in vitro of murine calvarial preosteoblasts (MC3T3-EI). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and infrared spectroscopy (FTIR) showed that the HA particles were successfully incorporated into the PLA matrix and located at the surface which is of importance in order to maintain the bioactive effect of the HA particles. SEM and AFM investigation revealed that the HA density (particles/area) as well as surface roughness increased with HA loading concentration (i.e. 5, 10, 15 and 20wt%), which promoted protein adsorption. Furthermore, the presence of HA on the surface enhanced cell spreading, increased the formation of actin stress fibers and significantly improved the expression of vinculin in MC3T3-E1 cells which is a key player in the regulation of cell adhesion. These results suggest the potential utility of PLA/HA composites as biomaterials for use as a bone substitute material and in tissue engineering applications. PMID:24986753

  8. Assignment of disulfide bonds in gp64, a putative cell-cell adhesion protein of Polysphondylium pallidum. Presence of Sushi domains in the cellular slime mold protein.

    PubMed

    Saito, T; Kumazaki, T; Ochiai, H

    1994-11-18

    The 64-kDa membrane-bound glycoprotein of the cellular slime mold Polysphondylium pallidum (referred to as gp64), seems to be implicated in cell-cell adhesion. Previously we have isolated a full-length gp64 cDNA, determined its nucleotide sequence, and found that all cysteine residues in the protein are involved in the formation of disulfide bonds. The disulfide arrangement of the 36 cysteines in gp64 was established by analysis of proteolytically cleaved protein and sequence analysis of cystine-containing fragments. Since gp64 has 36 Cys residues, 18 disulfide bonds must exist and the positions of 15 of them were determined. The 15 disulfide bonds in gp64 constitute five characteristic, so-called Sushi domains. In a Sushi domain, the first Cys in a sequence is connected to the third one and the second Cys to the fourth one. This is the first report describing the presence of Sushi domains in a cellular slime mold protein. From these data, gp64 appears to be distinct from all other previously described cell-adhesion proteins.

  9. PYK2 is an adhesion kinase in macrophages, localized in podosomes and activated by beta(2)-integrin ligation.

    PubMed

    Duong, L T; Rodan, G A

    2000-11-01

    Pyk2 is a member of the focal adhesion kinase (FAK) family, highly expressed in the central nervous system and haemopoietic cells. Although Pyk2 is homologous to FAK, its role in signaling pathways was shown to be distinct from that of FAK. We show here that Pyk2 is highly expressed in peritoneal IC-21 macrophage and is tyrosine phosphorylated in response to cell attachment to fibronectin and fibrinogen. Upon IC-21 cell adhesion, Pyk2 tyrosine phosphorylation is inhibited by blocking antibodies to the integrin subunits alpha(M) and beta(2). Furthermore, Pyk2 is rapidly tyrosine phosphorylated in response to ligation of beta(2) integrins by antibodies. In migrating macrophages, Pyk2 localizes to perinuclear regions and to podosomes, where it is clustered with tyrosine phosphorylated proteins. Furthermore, in the podosomal ring structure, which surrounds the central actin core, Pyk2 co-localizes with vinculin, talin, and paxillin. In the podosomes, Pyk2 also co-localizes with the integrin alpha(M)beta(2). Lastly, reduction of Pyk2 expression in macrophages leads to inhibition of cell migration. We propose that Pyk2 is functionally linked to the formation of podosomes where it mediates the integrin-cytoskeleton interface and regulates cell spreading and migration. PMID:11056520

  10. Human epididymis protein 4 (HE4) plays a key role in ovarian cancer cell adhesion and motility

    SciTech Connect

    Lu, Renquan; Sun, Xinghui; Xiao, Ran; Zhou, Lei; Gao, Xiang; Guo, Lin

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer We generated stable transduced HE4 overexpression and knockdown cells. Black-Right-Pointing-Pointer HE4 was associated with EOC cell adhesion and motility. Black-Right-Pointing-Pointer HE4 might have some effects on activation of EGFR-MAPK signaling pathway. Black-Right-Pointing-Pointer HE4 play an important role in EOC tumorigenicity. -- Abstract: Human epididymis protein 4 (HE4) is a novel and specific biomarker for epithelial ovarian cancer (EOC). We previously demonstrated that serum HE4 levels were significantly elevated in the majority of EOC patients but not in subjects with benign disease or healthy controls. However, the precise mechanism of HE4 protein function is unknown. In this study, we generated HE4-overexpressing SKOV3 cells and found that stably transduced cells promoted cell adhesion and migration. Knockdown of HE4 expression was achieved by stable transfection of SKOV3 cells with a construct encoding a short hairpin DNA directed against the HE4 gene. Correspondingly, the proliferation and spreading ability of HE4-expressed cells were inhibited by HE4 suppression. Mechanistically, impaired EGFR and Erk1/2 phosphorylation were observed in cells with HE4 knockdown. The phosphorylation was restored when the knockdown cells were cultured in conditioned medium containing HE4. Moreover, in vivo tumorigenicity showed that HE4 suppression markedly inhibited the growth of tumors. This suggests that expression of HE4 is associated with cancer cell adhesion, migration and tumor growth, which can be related to its effects on the EGFR-MAPK signaling pathway. Our results provide evidence of the cellular and molecular mechanisms that may underlie the motility-promoting role of HE4 in EOC progression. The role of HE4 as a target for gene-based therapy might be considered in future studies.

  11. Restoring E-cadherin-mediated cell-cell adhesion increases PTEN protein level and stability in human breast carcinoma cells

    SciTech Connect

    Li Zengxia; Wang Liying; Zhang Wen; Fu Yi; Zhao Hongbo; Hu Yali; Prins, Bram Peter; Zha Xiliang

    2007-11-09

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a well-characterized tumor suppressor that negatively regulates cell growth and survival. Despite the critical role of PTEN in cell signaling, the mechanisms of its regulation are still under investigation. We reported here that PTEN expression could be controlled by overexpression or knock-down of E-cadherin in several mammary carcinoma cell lines. Furthermore, we showed that the accumulation of PTEN protein in E-cadherin overexpressing cells was due to increased PTEN protein stability rather than the regulation of its transcription. The proteasome-dependent PTEN degradation pathway was impaired after restoring E-cadherin expression. Moreover, maintenance of E-cadherin mediated cell-cell adhesion was necessary for its regulating PTEN. Altogether, our results suggested that E-cadherin mediated cell-cell adhesion was essential for preventing the proteasome degradation of PTEN, which might explain how breast carcinoma cells which lost cell-cell contact proliferate rapidly and are prone to metastasis.

  12. Adsorption of Proteins to Thin-Films of PDMS and Its Effect on the Adhesion of Human Endothelial Cells

    PubMed Central

    Chumbimuni-Torres, Karin Y.; Coronado, Ramon E.; Mfuh, Adelphe M.; Castro-Guerrero, Carlos; Silva, Maria Fernanda; Negrete, George R.; Bizios, Rena; Garcia, Carlos D.

    2014-01-01

    This paper describes a simple and inexpensive procedure to produce thin-films of poly(dimethylsiloxane). Such films were characterized by a variety of techniques (ellipsometry, nuclear magnetic resonance, atomic force microscopy, and goniometry) and used to investigate the adsorption kinetics of three model proteins (fibrinogen, collagen type-I, and bovine serum albumin) under different conditions. The information collected from the protein adsorption studies was then used to investigate the adhesion of human dermal microvascular endothelial cells. The results of these studies suggest that these films can be used to model the surface properties of microdevices fabricated with commercial PDMS. Moreover, the paper provides guidelines to efficiently attach cells in BioMEMS devices. PMID:25068038

  13. The Adhesion G Protein-Coupled Receptor GPR56/ADGRG1 Is an Inhibitory Receptor on Human NK Cells.

    PubMed

    Chang, Gin-Wen; Hsiao, Cheng-Chih; Peng, Yen-Ming; Vieira Braga, Felipe A; Kragten, Natasja A M; Remmerswaal, Ester B M; van de Garde, Martijn D B; Straussberg, Rachel; König, Gabriele M; Kostenis, Evi; Knäuper, Vera; Meyaard, Linde; van Lier, René A W; van Gisbergen, Klaas P J M; Lin, Hsi-Hsien; Hamann, Jörg

    2016-05-24

    Natural killer (NK) cells possess potent cytotoxic mechanisms that need to be tightly controlled. Here, we explored the regulation and function of GPR56/ADGRG1, an adhesion G protein-coupled receptor implicated in developmental processes and expressed distinctively in mature NK cells. Expression of GPR56 was triggered by Hobit (a homolog of Blimp-1 in T cells) and declined upon cell activation. Through studying NK cells from polymicrogyria patients with disease-causing mutations in ADGRG1, encoding GPR56, and NK-92 cells ectopically expressing the receptor, we found that GPR56 negatively regulates immediate effector functions, including production of inflammatory cytokines and cytolytic proteins, degranulation, and target cell killing. GPR56 pursues this activity by associating with the tetraspanin CD81. We conclude that GPR56 inhibits natural cytotoxicity of human NK cells. PMID:27184850

  14. Surface modification of polydimethylsiloxane with photo-grafted poly(ethylene glycol) for micropatterned protein adsorption and cell adhesion.

    PubMed

    Sugiura, Shinji; Edahiro, Jun-ichi; Sumaru, Kimio; Kanamori, Toshiyuki

    2008-06-01

    In this study, we applied photo-induced graft polymerization to micropatterned surface modification of polydimethylsiloxane (PDMS) with poly(ethylene glycol). Two types of monomers, polyethylene glycol monoacrylate (PEGMA) and polyethylene glycol diacrylate (PEGDA), were tested for surface modification of PDMS. Changes in the surface hydrophilicity and surface element composition were characterized by contact angle measurement and electron spectroscopy for chemical analysis. The PEGMA-grafted PDMS surfaces gradually lost their hydrophilicity within two weeks. In contrast, the PEGDA-grafted PDMS surface maintained stable hydrophilic characteristics for more than two months. Micropatterned protein adsorption and micropatterned cell adhesion were successfully demonstrated using PEGDA-micropatterned PDMS surfaces, which were prepared by photo-induced graft polymerization using photomasks. The PEGDA-grafted PDMS exhibited useful characteristics for microfluidic devices (e.g. hydrophilicity, low protein adsorption, and low cell attachment). The technique presented in this study will be useful for surface modification of various research tools and devices. PMID:18242961

  15. Differential Expression of Adhesion-Related Proteins and MAPK Pathways Lead to Suitable Osteoblast Differentiation of Human Mesenchymal Stem Cells Subpopulations.

    PubMed

    Leyva-Leyva, Margarita; López-Díaz, Annia; Barrera, Lourdes; Camacho-Morales, Alberto; Hernandez-Aguilar, Felipe; Carrillo-Casas, Erika M; Arriaga-Pizano, Lourdes; Calderón-Pérez, Jaime; García-Álvarez, Jorge; Orozco-Hoyuela, Gabriel; Piña-Barba, Cristina; Rojas-Martínez, Augusto; Romero-Díaz, Víktor; Lara-Arias, Jorge; Rivera-Bolaños, Nancy; López-Camarillo, César; Moncada-Saucedo, Nidia; Galván-De los Santos, Alejandra; Meza-Urzúa, Fátima; Villarreal-Gómez, Luis; Fuentes-Mera, Lizeth

    2015-11-01

    Cellular adhesion enables communication between cells and their environment. Adhesion can be achieved throughout focal adhesions and its components influence osteoblast differentiation of human mesenchymal stem cells (hMSCs). Because cell adhesion and osteoblast differentiation are closely related, this article aimed to analyze the expression profiles of adhesion-related proteins during osteoblastic differentiation of two hMSCs subpopulations (CD105(+) and CD105(-)) and propose a strategy for assembling bone grafts based on its adhesion ability. In vitro experiments of osteogenic differentiation in CD105(-) cells showed superior adhesion efficiency and 2-fold increase of α-actinin expression compared with CD105(+) cells at the maturation stage. Interestingly, levels of activated β1-integrin increased in CD105(-) cells during the process. Additionally, the CD105(-) subpopulation showed 3-fold increase of phosphorylated FAK(Y397) compared to CD105(+) cells. Results also indicate that ERK1/2 was activated during CD105(-) bone differentiation and participation of mitogen-activated protein kinase (MAPK)-p38 in CD105(+) differentiation through a focal adhesion kinase (FAK)-independent pathway. In vivo trial demonstrated that grafts containing CD105(-) showed osteocytes embedded in a mineralized matrix, promoted adequate graft integration, increased host vascular infiltration, and efficient intramembranous repairing. In contrast, grafts containing CD105(+) showed deficient endochondral ossification and fibrocartilaginous tissue. Based on the expression of α-actinin, FAKy,(397) and ERK1/2 activation, we define maturation stage as critical for bone graft assembling. By in vitro assays, CD105(-) subpopulation showed superior adhesion efficiency compared to CD105(+) cells. Considering in vitro and in vivo assays, this study suggests that integration of a scaffold with CD105(-) subpopulation at the maturation stage represents an attractive strategy for clinical use in

  16. Differential Expression of Adhesion-Related Proteins and MAPK Pathways Lead to Suitable Osteoblast Differentiation of Human Mesenchymal Stem Cells Subpopulations.

    PubMed

    Leyva-Leyva, Margarita; López-Díaz, Annia; Barrera, Lourdes; Camacho-Morales, Alberto; Hernandez-Aguilar, Felipe; Carrillo-Casas, Erika M; Arriaga-Pizano, Lourdes; Calderón-Pérez, Jaime; García-Álvarez, Jorge; Orozco-Hoyuela, Gabriel; Piña-Barba, Cristina; Rojas-Martínez, Augusto; Romero-Díaz, Víktor; Lara-Arias, Jorge; Rivera-Bolaños, Nancy; López-Camarillo, César; Moncada-Saucedo, Nidia; Galván-De los Santos, Alejandra; Meza-Urzúa, Fátima; Villarreal-Gómez, Luis; Fuentes-Mera, Lizeth

    2015-11-01

    Cellular adhesion enables communication between cells and their environment. Adhesion can be achieved throughout focal adhesions and its components influence osteoblast differentiation of human mesenchymal stem cells (hMSCs). Because cell adhesion and osteoblast differentiation are closely related, this article aimed to analyze the expression profiles of adhesion-related proteins during osteoblastic differentiation of two hMSCs subpopulations (CD105(+) and CD105(-)) and propose a strategy for assembling bone grafts based on its adhesion ability. In vitro experiments of osteogenic differentiation in CD105(-) cells showed superior adhesion efficiency and 2-fold increase of α-actinin expression compared with CD105(+) cells at the maturation stage. Interestingly, levels of activated β1-integrin increased in CD105(-) cells during the process. Additionally, the CD105(-) subpopulation showed 3-fold increase of phosphorylated FAK(Y397) compared to CD105(+) cells. Results also indicate that ERK1/2 was activated during CD105(-) bone differentiation and participation of mitogen-activated protein kinase (MAPK)-p38 in CD105(+) differentiation through a focal adhesion kinase (FAK)-independent pathway. In vivo trial demonstrated that grafts containing CD105(-) showed osteocytes embedded in a mineralized matrix, promoted adequate graft integration, increased host vascular infiltration, and efficient intramembranous repairing. In contrast, grafts containing CD105(+) showed deficient endochondral ossification and fibrocartilaginous tissue. Based on the expression of α-actinin, FAKy,(397) and ERK1/2 activation, we define maturation stage as critical for bone graft assembling. By in vitro assays, CD105(-) subpopulation showed superior adhesion efficiency compared to CD105(+) cells. Considering in vitro and in vivo assays, this study suggests that integration of a scaffold with CD105(-) subpopulation at the maturation stage represents an attractive strategy for clinical use in

  17. Barnacle settlement and the adhesion of protein and diatom microfouling to xerogel films with varying surface energy and water wettability.

    PubMed

    Finlay, John A; Bennett, Stephanie M; Brewer, Lenora H; Sokolova, Anastasiya; Clay, Gemma; Gunari, Nikhil; Meyer, Anne E; Walker, Gilbert C; Wendt, Dean E; Callow, Maureen E; Callow, James A; Detty, Michael R

    2010-08-01

    Previous work has shown that organosilica-based xerogels have the potential to control biofouling. In this study, modifications of chemistry were investigated with respect to their resistance to marine slimes and to settlement of barnacle cyprids. Adhesion force measurements of bovine serum albumin (BSA)-coated atomic force microscopy (AFM) tips to xerogel surfaces prepared from aminopropylsilyl-, fluorocarbonsilyl-, and hydrocarbonsilyl-containing precursors, indicated that adhesion was significantly less on the xerogel surfaces in comparison to a poly(dimethylsiloxane) elastomer (PDMSE) standard. The strength of adhesion of BSA on the xerogels was highest on surfaces with the highest and the lowest critical surface tensions, gamma(C) and surface energies, gamma(S), and duplicated the 'Baier curve'. The attachment to and removal of cells of the diatom Navicula perminuta from a similar series of xerogel surfaces were examined. Initial attachment of cells was comparable on all of the xerogel surfaces, but the percentage removal of attached cells by hydrodynamic shear stress increased with gamma(C) and increased wettability as measured by the static water contact angle, theta(Ws), of the xerogel surfaces. The percentage removal of cells of Navicula was linearly correlated with both properties (R(2) = 0.74 for percentage removal as a function of theta(Ws) and R(2) = 0.69 for percentage removal as a function of gamma(C)). Several of the aminopropylsilyl-containing xerogels showed significantly greater removal of Navicula compared to a PDMSE standard. Cypris larvae of the barnacle B. amphitrite showed preferred settlement on hydrophilic/higher energy surfaces. Settlement was linearly correlated with theta(Ws) (R(2) = 0.84) and gamma(C) (R(2) = 0.84). Hydrophilic xerogels should prove useful as coatings for boats in regions where fouling is dominated by microfouling (protein and diatom slimes). PMID:20645195

  18. Characterization of Palladin, a Novel Protein Localized to Stress Fibers and Cell Adhesions

    PubMed Central

    Parast, Mana M.; Otey, Carol A.

    2000-01-01

    Here, we describe the identification of a novel phosphoprotein named palladin, which colocalizes with α-actinin in the stress fibers, focal adhesions, cell–cell junctions, and embryonic Z-lines. Palladin is expressed as a 90–92-kD doublet in fibroblasts and coimmunoprecipitates in a complex with α-actinin in fibroblast lysates. A cDNA encoding palladin was isolated by screening a mouse embryo library with mAbs. Palladin has a proline-rich region in the NH2-terminal half of the molecule and three tandem Ig C2 domains in the COOH-terminal half. In Northern and Western blots of chick and mouse tissues, multiple isoforms of palladin were detected. Palladin expression is ubiquitous in embryonic tissues, and is downregulated in certain adult tissues in the mouse. To probe the function of palladin in cultured cells, the Rcho-1 trophoblast model was used. Palladin expression was observed to increase in Rcho-1 cells when they began to assemble stress fibers. Antisense constructs were used to attenuate expression of palladin in Rcho-1 cells and fibroblasts, and disruption of the cytoskeleton was observed in both cell types. At longer times after antisense treatment, fibroblasts became fully rounded. These results suggest that palladin is required for the normal organization of the actin cytoskeleton and focal adhesions. PMID:10931874

  19. Platelet endothelial cell adhesion molecule-1 modulates endothelial cell motility through the small G-protein Rho.

    PubMed

    Gratzinger, Dita; Canosa, Sandra; Engelhardt, Britta; Madri, Joseph A

    2003-08-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1), an immunoglobulin family vascular adhesion molecule, is involved in endothelial cell migration and angiogenesis (1, 2). We found that endothelial cells lacking PECAM-1 exhibit increased single cell motility and extension formation but poor wound healing migration, reminiscent of cells in which Rho activity has been suppressed by overexpressing a GTPase-activating protein (3). The ability of PECAM-1 to restore wound healing migration to PECAM-1-deficient cells was independent of its extracellular domain or signaling via its immunoreceptor tyrosine-based inhibitory motif. PECAM-1-deficient endothelial cells had a selective defect in RhoGTP loading, and inhibition of Rho activity mimicked the PECAM-1-deficient phenotype of increased chemokinetic single cell motility at the expense of coordinated wound healing migration. The wound healing advantage of PECAM-1-positive endothelial cells was not only Rho mediated but pertussis toxin inhibitable, characteristic of migration mediated by heterotrimeric G-protein-linked seven-transmembrane receptor signaling such as signaling in response to the serum sphingolipid sphingosine-1-phosphate (S1P) (4, 5). Indeed, we found that the wound healing defect of PECAM-1 null endothelial cells is minimized in sphingolipid-depleted media; moreover, PECAM-1 null endothelial cells fail to increase their migration in response to S1P. We have also found that PECAM-1 localizes to rafts and that in its absence heterotrimeric G-protein components are differentially recruited to rafts, providing a potential mechanism for PECAM-1-mediated coordination of S1P signaling. PECAM-1 may thus support the effective S1P/RhoGTP signaling required for wound healing endothelial migration by allowing for the spatially directed, coordinated activation of Galpha signaling pathways. PMID:12890700

  20. Interleukin-18 binding protein reduces b16 melanoma hepatic metastasis by neutralizing adhesiveness and growth factors of sinusoidal endothelium.

    PubMed

    Carrascal, Maria Teresa; Mendoza, Lorea; Valcárcel, Maria; Salado, Clarisa; Egilegor, Eider; Tellería, Naiara; Vidal-Vanaclocha, Fernando; Dinarello, Charles A

    2003-01-15

    We studied the role of endogenous interleukin (IL)-18 in hepatic metastasis by blocking this cytokine using the naturally occurring IL-18 binding protein (IL-18BP). A single i.p. dose of IL-18BP given 30 min before intrasplenic injection of murine B16 melanoma (B16M) cells reduced the number of hepatic metastatic foci by 75% and metastatic volume by 80%. Same treatment reduced the intrahepatic retention of luciferase-transfected B16M by 50% and abolished VCAM-1 up-regulation in the hepatic microvasculature, as assessed by reverse transcription-PCR, Western blot, and immunohistochemistry. Twelve hours after IL-18BP, hepatic sinusoidal endothelium (HSE) cells were isolated, and adhesion of B16M cells to these cultured HSE cells was reduced to the level of vehicle-treated mice. IL-18BP treatment of mice with established micrometastases resulted in a 25% decrease in metastasis number and 40% decrease in metastasis volume, suggesting inhibition of endogenous growth factors. Indeed, the addition of IL-18BP to normal HSE abolished the release of melanoma cell growth factor(s) induced by B16M. IL-18 promoted the in vitro growth of B16M and human melanoma cells, which was IL-1 dependent. These data demonstrate a significant role of endogenous IL-18 on hepatic metastasis by up-regulating melanoma cell adhesion to HSE cells and tumor growth, implicating a possible antimetastatic benefit of neutralizing IL-18. PMID:12543807

  1. Structural analysis of the synaptic protein neuroligin and its beta-neurexin complex: determinants for folding and cell adhesion.

    PubMed

    Fabrichny, Igor P; Leone, Philippe; Sulzenbacher, Gerlind; Comoletti, Davide; Miller, Meghan T; Taylor, Palmer; Bourne, Yves; Marchot, Pascale

    2007-12-20

    The neuroligins are postsynaptic cell adhesion proteins whose associations with presynaptic neurexins participate in synaptogenesis. Mutations in the neuroligin and neurexin genes appear to be associated with autism and mental retardation. The crystal structure of a neuroligin reveals features not found in its catalytically active relatives, such as the fully hydrophobic interface forming the functional neuroligin dimer; the conformations of surface loops surrounding the vestigial active center; the location of determinants that are critical for folding and processing; and the absence of a macromolecular dipole and presence of an electronegative, hydrophilic surface for neurexin binding. The structure of a beta-neurexin-neuroligin complex reveals the precise orientation of the bound neurexin and, despite a limited resolution, provides substantial information on the Ca2+-dependent interactions network involved in trans-synaptic neurexin-neuroligin association. These structures exemplify how an alpha/beta-hydrolase fold varies in surface topography to confer adhesion properties and provide templates for analyzing abnormal processing or recognition events associated with autism.

  2. Structural Analysis of the Synaptic Protein Neuroligin and Its β-Neurexin Complex: Determinants for Folding and Cell Adhesion

    PubMed Central

    Fabrichny, Igor P.; Leone, Philippe; Sulzenbacher, Gerlind; Comoletti, Davide; Miller, Meghan T.; Taylor, Palmer; Bourne, Yves; Marchot, Pascale

    2009-01-01

    SUMMARY The neuroligins are postsynaptic cell adhesion proteins whose associations with presynaptic neurexins participate in synaptogenesis. Mutations in the neuroligin and neurexin genes appear to be associated with autism and mental retardation. The crystal structure of a neuroligin reveals features not found in its catalytically active relatives, such as the fully hydrophobic interface forming the functional neuroligin dimer; the conformations of surface loops surrounding the vestigial active center; the location of determinants that are critical for folding and processing; and the absence of a macromolecular dipole and presence of an electronegative, hydrophilic surface for neurexin binding. The structure of a β-neurexin-neuroligin complex reveals the precise orientation of the bound neurexin and, despite a limited resolution, provides substantial information on the Ca2+-dependent interactions network involved in trans-synaptic neurexin-neuroligin association. These structures exemplify how an α/β-hydrolase fold varies in surface topography to confer adhesion properties and provide templates for analyzing abnormal processing or recognition events associated with autism. PMID:18093521

  3. The GPS Motif Is a Molecular Switch for Bimodal Activities of Adhesion Class G Protein-Coupled Receptors

    PubMed Central

    Prömel, Simone; Frickenhaus, Marie; Hughes, Samantha; Mestek, Lamia; Staunton, David; Woollard, Alison; Vakonakis, Ioannis; Schöneberg, Torsten; Schnabel, Ralf; Russ, Andreas P.; Langenhan, Tobias

    2012-01-01

    Summary Adhesion class G protein-coupled receptors (aGPCR) form the second largest group of seven-transmembrane-spanning (7TM) receptors whose molecular layout and function differ from canonical 7TM receptors. Despite their essential roles in immunity, tumorigenesis, and development, the mechanisms of aGPCR activation and signal transduction have remained obscure to date. Here, we use a transgenic assay to define the protein domains required in vivo for the activity of the prototypical aGPCR LAT-1/Latrophilin in Caenorhabditis elegans. We show that the GPCR proteolytic site (GPS) motif, the molecular hallmark feature of the entire aGPCR class, is essential for LAT-1 signaling serving in two different activity modes of the receptor. Surprisingly, neither mode requires cleavage but presence of the GPS, which relays interactions with at least two different partners. Our work thus uncovers the versatile nature of aGPCR activity in molecular detail and places the GPS motif in a central position for diverse protein-protein interactions. PMID:22938866

  4. Adhesion molecule expression in Graves' thyroid glands; potential relevance of granule membrane protein (GMP-140) and intercellular adhesion molecule-1 (ICAM-1) in the homing and antigen presentation processes.

    PubMed Central

    Miyazaki, A; Mirakian, R; Bottazzo, G F

    1992-01-01

    To assess the potential role of adhesion molecules in the pathogenesis of Graves' disease, we examined the expression of several of these adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule (VCAM-1) and granule membrane protein-140 (GMP-140), in sections of Graves' thyroid glands and control thyroids, using immunohistochemical techniques. Up-regulated expression of GMP-140 was frequently observed on endothelial cells (EC) of post-capilliary venules in all Graves' thyroids examined, compared with an occasional weak staining on EC control glands. Some capillary EC around thyroid follicles (perifollicular EC) were strongly positive for GMP-140 in the Graves' thyroids in contrast to a negative staining on the same structures in the control glands. In addition, there was a correlation between the reactivity and frequency of GMP-140 expression on EC and the severity of mononuclear cell (MNC) infiltration in the Graves' thyroids. The expression of ICAM-1 was up-regulated on perifollicular EC and EC of small venules in some thyroids of both Graves' and control groups. Conversely, no significant expression was observed on any type of EC for both endothelial-leucocyte adhesion molecule-1 (ELAM-1) and VCAM-1. However, dendritic-like cells, present within lymphocytic infiltrates, were positive for VCAM-1 in most of the Graves' thyroids examined, especially in those with a severe lymphocytic infiltration. Thyrocytes were constantly negative for the expression of all four adhesion molecules investigated. These data suggest that GMP-140, as well as ICAM-1, could play an important role in the initiation of MNC infiltration in Graves' disease. ELAM-1 and VCAM-1 appear not to be relevant for the migration of MNC from the blood vessels into the target gland, although VCAM-1 expression on dendritic-like cells might play an additively tissue-selective role in autoantigen presentation and subsequent elicitation of autoimmune

  5. Environmental toxicants perturb human Sertoli cell adhesive function via changes in F-actin organization mediated by actin regulatory proteins

    PubMed Central

    Xiao, Xiang; Mruk, Dolores D.; Tang, Elizabeth I.; Wong, Chris K.C.; Lee, Will M.; John, Constance M.; Turek, Paul J.; Silvestrini, Bruno; Cheng, C. Yan

    2014-01-01

    STUDY QUESTION Can human Sertoli cells cultured in vitro and that have formed an epithelium be used as a model to monitor toxicant-induced junction disruption and to better understand the mechanism(s) by which toxicants disrupt cell adhesion at the Sertoli cell blood–testis barrier (BTB)? SUMMARY ANSWER Our findings illustrate that human Sertoli cells cultured in vitro serve as a reliable system to monitor the impact of environmental toxicants on the BTB function. WHAT IS KNOWN ALREADY Suspicions of a declining trend in semen quality and a concomitant increase in exposures to environmental toxicants over the past decades reveal the need of an in vitro system that efficiently and reliably monitors the impact of toxicants on male reproductive function. Furthermore, studies in rodents have confirmed that environmental toxicants impede Sertoli cell BTB function in vitro and in vivo. STUDY DESIGN, SIZE AND DURATION We examined the effects of two environmental toxicants: cadmium chloride (0.5–20 µM) and bisphenol A (0.4–200 µM) on human Sertoli cell function. Cultured Sertoli cells from three men were used in this study, which spanned an 18-month period. PARTICIPANTS/MATERIALS, SETTING, METHODS Human Sertoli cells from three subjects were cultured in F12/DMEM containing 5% fetal bovine serum. Changes in protein expression were monitored by immunoblotting using specific antibodies. Immunofluorescence analyses were used to assess changes in the distribution of adhesion proteins, F-actin and actin regulatory proteins following exposure to two toxicants: cadmium chloride and bisphenol A (BPA). MAIN RESULTS AND THE ROLE OF CHANCE Human Sertoli cells were sensitive to cadmium and BPA toxicity. Changes in the localization of cell adhesion proteins were mediated by an alteration of the actin-based cytoskeleton. This alteration of F-actin network in Sertoli cells as manifested by truncation and depolymerization of actin microfilaments at the Sertoli cell BTB was caused by

  6. The tight-adhesion proteins TadGEF of Bradyrhizobium diazoefficiens USDA 110 are involved in cell adhesion and infectivity on soybean roots.

    PubMed

    Mongiardini, Elías J; Parisi, Gustavo D; Quelas, Juan I; Lodeiro, Aníbal R

    2016-01-01

    Adhesion of symbiotic bacteria to host plants is an essential early step of the infection process that leads to the beneficial interaction. In the Bradyrhizobium diazoefficiens-soybean symbiosis few molecular determinants of adhesion are known. Here we identified the tight-adhesion gene products TadGEF in the open-reading frames blr3941-blr3943 of the B. diazoefficiens USDA 110 complete genomic sequence. Predicted structure of TadG indicates a transmembrane domain and two extracytosolic domains, from which the C-terminal has an integrin fold. TadE and TadF are also predicted as bearing transmembrane segments. Mutants in tadG or the small cluster tadGEF were impaired in adhesion to soybean roots, and the root infection was delayed. However, nodule histology was not compromised by the mutations, indicating that these effects were restricted to the earliest contact of the B. diazoefficiens and root surfaces. Knowledge of preinfection determinants is important for development of inoculants that are applied to soybean crops worldwide.

  7. Design, structure and biological activity of beta-turn peptides of CD2 protein for inhibition of T-cell adhesion.

    PubMed

    Jining, Liu; Makagiansar, Irwan; Yusuf-Makagiansar, Helena; Chow, Vincent T K; Siahaan, Teruna J; Jois, Seetharama D S

    2004-07-01

    The interaction between cell-adhesion molecules CD2 and CD58 is critical for an immune response. Modulation or inhibition of these interactions has been shown to be therapeutically useful. Synthetic 12-mer linear and cyclic peptides, and cyclic hexapeptides based on rat CD2 protein, were designed to modulate CD2-CD58 interaction. The synthetic peptides effectively blocked the interaction between CD2-CD58 proteins as demonstrated by antibody binding, E-rosetting and heterotypic adhesion assays. NMR and molecular modeling studies indicated that the synthetic cyclic peptides exhibit beta-turn structure in solution and closely mimic the beta-turn structure of the surface epitopes of the CD2 protein. Docking studies of CD2 peptides and CD58 protein revealed the possible binding sites of the cyclic peptides on CD58 protein. The designed cyclic peptides with beta-turn structure have the ability to modulate the CD2-CD58 interaction.

  8. Protein adsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethylene glycol) and albumin microgels

    PubMed Central

    Scott, Evan A.; Nichols, Michael D.; Cordova, Lee H.; George, Brandon J.; Jun, Young-Shin; Elbert, Donald L.

    2008-01-01

    Late-term thrombosis on drug-eluting stents is an emerging problem that might be addressed using extremely thin, biologically-active hydrogel coatings. We report a dip-coating strategy to covalently link poly(ethylene glycol) (PEG) to substrates, producing coatings with <≈100 nm thickness. Gelation of PEG-octavinylsulfone with amines in either bovine serum albumin (BSA) or PEG-octaamine was monitored by dynamic light scattering (DLS), revealing the presence of microgels before macrogelation. NMR also revealed extremely high end group conversions prior to macrogelation, consistent with the formation of highly crosslinked microgels and deviation from Flory-Stockmayer theory. Before macrogelation, the reacting solutions were diluted and incubated with nucleophile-functionalized surfaces. Using optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation (QCM-D), we identified a highly hydrated, protein-resistant layer with a thickness of approximately 75 nm. Atomic force microscopy in buffered water revealed the presence of coalesced spheres of various sizes but with diameters less than about 100 nm. Microgel-coated glass or poly(ethylene terephthalate) exhibited reduced protein adsorption and cell adhesion. Cellular interactions with the surface could be controlled by using different proteins to cap unreacted vinylsulfone groups within the coating. PMID:18771802

  9. Molecular cloning and characterization of a surface-localized adhesion protein in Mycoplasma bovis Hubei-1 strain.

    PubMed

    Zou, Xiaohui; Li, Yuan; Wang, Yang; Zhou, Yumei; Liu, Yang; Xin, Jiuqing

    2013-01-01

    Mycoplasma bovis (M. bovis) is an important pathogen that causes various bovine diseases, such as mastitis in cows and pneumonia in calves. The surface proteins are generally thought to play a central role in the pathogenesis of this organism. We screened the entire genome of M. bovis Hubei-1 and discovered a gene named vpmaX that encodes the 25 kDa variable surface lipoprotein A (VpmaX). Sequence analysis revealed that VpmaX contains several repetitive units and a typical bacterial lipoprotein signal sequence. The vpmaX gene was cloned and expressed in E. coli to obtain recombinant VpmaX (rVpmaX). Western blot analysis using a rabbit antibody against rVpmaX demonstrated that VpmaX is a membrane protein. Immunostaining visualized via confocal laser scanning microscopy showed that rVpmaX was able to adhere to embryonic bovine lung cells (EBL), and this was also confirmed by a sandwich ELISA. In summary, a surface-localized adhesion protein was identified in M. bovis Hubei-1.

  10. Non-channel mechanosensors working at focal adhesion-stress fiber complex.

    PubMed

    Hirata, Hiroaki; Tatsumi, Hitoshi; Hayakawa, Kimihide; Sokabe, Masahiro

    2015-01-01

    Mechanosensitive ion channels (MSCs) have long been the only established molecular class of cell mechanosensors; however, in the last decade, a variety of non-channel type mechanosensor molecules have been identified. Many of them are focal adhesion-associated proteins that include integrin, talin, and actin. Mechanosensors must be non-soluble molecules firmly interacting with relatively rigid cellular structures such as membranes (in terms of lateral stiffness), cytoskeletons, and adhesion structures. The partner of MSCs is the membrane in which MSC proteins efficiently transduce changes in the membrane tension into conformational changes that lead to channel opening. By contrast, the integrin, talin, and actin filament form a linear complex of which both ends are typically anchored to the extracellular matrices via integrins. Upon cell deformation by forces, this structure turns out to be a portion that efficiently transduces the generated stress into conformational changes of composite molecules, leading to the activation of integrin (catch bond with extracellular matrices) and talin (unfolding to induce vinculin bindings). Importantly, this structure also serves as an "active" mechanosensor to detect substrate rigidity by pulling the substrate with contraction of actin stress fibers (SFs), which may induce talin unfolding and an activation of MSCs in the vicinity of integrins. A recent study demonstrates that the actin filament acts as a mechanosensor with unique characteristics; the filament behaves as a negative tension sensor in which increased torsional fluctuations by tension decrease accelerate ADF/cofilin binding, leading to filament disruption. Here, we review the latest progress in the study of those non-channel mechanosensors and discuss their activation mechanisms and physiological roles. PMID:24965068

  11. A contactin-receptor-like protein tyrosine phosphatase beta complex mediates adhesive communication between astroglial cells and gonadotrophin-releasing hormone neurones.

    PubMed

    Parent, A-S; Mungenast, A E; Lomniczi, A; Sandau, U S; Peles, E; Bosch, M A; Rønnekleiv, O K; Ojeda, S R

    2007-11-01

    Although it is well established that gonadotrophin-releasing hormone (GnRH) neurones and astrocytes maintain an intimate contact throughout development and adult life, the cell-surface molecules that may contribute to this adhesiveness remain largely unknown. In the peripheral nervous system, the glycosylphosphatidyl inositol (GPI)-anchored protein contactin is a cell-surface neuronal protein required for axonal-glial adhesiveness. A glial transmembrane protein recognised by neuronal contactin is receptor-like protein tyrosine phosphatase beta (RPTP beta), a phosphatase with structural similarities to cell adhesion molecules. In the present study, we show that contactin, and its preferred in cis partner Caspr1, are expressed in GnRH neurones. We also show that the RPTP beta mRNA predominantly expressed in hypothalamic astrocytes encodes an RPTP beta isoform (short RPTP beta) that uses its carbonic anhydrase (CAH) extracellular subdomain to interact with neuronal contactin. Immunoreactive contactin is most abundant in GnRH nerve terminals projecting to both the organum vasculosum of the lamina terminalis and median eminence, implying GnRH axons as an important site of contactin-dependent cell adhesiveness. GT1-7 immortalised GnRH neurones adhere to the CAH domain of RPTPbeta, and this adhesiveness is blocked when contactin GPI anchoring is disrupted or contactin binding capacity is immunoneutralised, suggesting that astrocytic RPTP beta interacts with neuronal contactin to mediate glial-GnRH neurone adhesiveness. Because the abundance of short RPTP beta mRNA increases in the female mouse hypothalamus (but not in the cerebral cortex) before puberty, it appears that an increased interaction between GnRH axons and astrocytes mediated by RPTP beta-contactin is a dynamic mechanism of neurone-glia communication during female sexual development. PMID:17927663

  12. The adhesion protein IgSF9b is coupled to neuroligin 2 via S-SCAM to promote inhibitory synapse development.

    PubMed

    Woo, Jooyeon; Kwon, Seok-Kyu; Nam, Jungyong; Choi, Seungwon; Takahashi, Hideto; Krueger, Dilja; Park, Joohyun; Lee, Yeunkum; Bae, Jin Young; Lee, Dongmin; Ko, Jaewon; Kim, Hyun; Kim, Myoung-Hwan; Bae, Yong Chul; Chang, Sunghoe; Craig, Ann Marie; Kim, Eunjoon

    2013-06-10

    Synaptic adhesion molecules regulate diverse aspects of synapse formation and maintenance. Many known synaptic adhesion molecules localize at excitatory synapses, whereas relatively little is known about inhibitory synaptic adhesion molecules. Here we report that IgSF9b is a novel, brain-specific, homophilic adhesion molecule that is strongly expressed in GABAergic interneurons. IgSF9b was preferentially localized at inhibitory synapses in cultured rat hippocampal and cortical interneurons and was required for the development of inhibitory synapses onto interneurons. IgSF9b formed a subsynaptic domain distinct from the GABAA receptor- and gephyrin-containing domain, as indicated by super-resolution imaging. IgSF9b was linked to neuroligin 2, an inhibitory synaptic adhesion molecule coupled to gephyrin, via the multi-PDZ protein S-SCAM. IgSF9b and neuroligin 2 could reciprocally cluster each other. These results suggest a novel mode of inhibitory synaptic organization in which two subsynaptic domains, one containing IgSF9b for synaptic adhesion and the other containing gephyrin and GABAA receptors for synaptic transmission, are interconnected through S-SCAM and neuroligin 2.

  13. Localization of high-molecular-weight adhesion proteins of nontypeable Haemophilus influenzae by immunoelectron microscopy.

    PubMed Central

    Bakaletz, L O; Barenkamp, S J

    1994-01-01

    A family of high-molecular-weight (HMW) surface-exposed proteins important in the attachment of nontypeable Haemophilus influenzae (NTHi) to human epithelial cells was previously identified (J. W. St. Geme III, S. Falkow, and S. J. Barenkamp, Proc. Natl. Acad. Sci. USA 90:2875-2879, 1993). In the present investigation, indirect immunogold labeling and electron microscopy were used to localize these proteins on three clinical isolates of NTHi, mutants deficient in expression of one or both HMW proteins, and embedded sections of human oropharyngeal cells after incubation with NTHi strain 12. The filamentous material comprising the proteins was labeled with monoclonal antibodies directed against two prototype HMW proteins (HMW1 and HMW2) of prototype NTHi strain 12. Gold labeling was observed as a cap or discrete aggregate off one pole or centrally along one long axis of the bacterial cell. Heavily labeled, non-bacterial-cell-associated, disk-like aggregates of the HMW proteins were frequently noted in both bacterial preparations as well as in association with the oropharyngeal cell surface and intracellularly. Mutants demonstrated diminished labeling or an absence thereof, respectively, which correlated well with their previously demonstrated reduced ability or inability to adhere to Chang conjunctival epithelial cells in vitro. The Haemophilus HMW proteins share antigenic determinants with and demonstrate amino acid sequence similarity to the filamentous hemagglutinin protein of Bordetella pertussis, a critical adhesin of that organism. The studies presented here demonstrate that the Haemophilus proteins and B. pertussis filamentous hemagglutinin show impressive morphologic and perhaps additional functional similarity. Images PMID:7927710

  14. Comparison of adhesive properties of water- and phosphate-buffer-washed cottonseed meals with cottonseed protein isolate on bonding maple and poplar veneers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water- and phosphate buffer (35 mM Na2HPO4/NaH2PO4, pH 7.5)-washed cottonseed meals (abbreviated as WCM and BCM, respectively) could be low-cost and environmentally friendly protein-based adhesives as their preparation does not involve corrosive alkali and acid solutions that are needed for cottonse...

  15. Adsorption and adhesion of common serum proteins to nanotextured gallium nitride.

    PubMed

    Bain, Lauren E; Hoffmann, Marc P; Bryan, Isaac; Collazo, Ramón; Ivanisevic, Albena

    2015-02-14

    As the broader effort towards device and material miniaturization progresses in all fields, it becomes increasingly important to understand the implications of working with functional structures that approach the size scale of molecules, particularly when considering biological systems. It is well known that thin films and nanostructures feature different optical, electrical, and mechanical properties from their bulk composites; however, interactions taking place at the interface between nanomaterials and their surroundings are less understood. Here, we explore interactions between common serum proteins - serum albumin, fibrinogen, and immunoglobulin G - and a nanotextured gallium nitride surface. Atomic force microscopy with a carboxyl-terminated colloid tip is used to probe the 'activity' of proteins adsorbed onto the surface, including both the accessibility of the terminal amine to the tip as well as the potential for protein extension. By evaluating the frequency of tip-protein interactions, we can establish differences in protein behaviour on the basis of both the surface roughness as well as morphology, providing an assessment of the role of surface texture in dictating protein-surface interactions. Unidirectional surface features - either the half-unit cell steppes of as-grown GaN or those produced by mechanical polishing - appear to promote protein accessibility, with a higher frequency of protein extension events taking place on these surfaces when compared with less ordered surface features. Development of a full understanding of the factors influencing surface-biomolecule interactions can pave the way for specific surface modification to tailor the bio-material interface, offering a new path for device optimization.

  16. Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances

    PubMed Central

    Parizek, Martin; Slepickova Kasalkova, Nikola; Bacakova, Lucie; Bacakova, Marketa; Lisa, Vera; Svorcik, Vaclav

    2013-01-01

    The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE) was treated by an Ar+ plasma discharge and then grafted with biologically active substances, namely, glycine (Gly), polyethylene glycol (PEG), bovine serum albumin (BSA), colloidal carbon particles (C), or BSA+C. All modifications increased the oxygen content, the wettability, and the surface free energy of the materials compared to the pristine LDPE, but these changes were most pronounced in LDPE with Gly or PEG, where all the three values were higher than in the only plasma-treated samples. When seeded with vascular smooth muscle cells (VSMCs), the Gly- or PEG-grafted samples increased mainly the spreading and concentration of focal adhesion proteins talin and vinculin in these cells. LDPE grafted with BSA or BSA+C showed a similar oxygen content and similar wettability, as the samples only treated with plasma, but the nano- and submicron-scale irregularities on their surface were more pronounced and of a different shape. These samples promoted predominantly the growth, the formation of a confluent layer, and phenotypic maturation of VSMC, demonstrated by higher concentrations of contractile proteins alpha-actin and SM1 and SM2 myosins. Thus, the behavior of VSMC on LDPE can be regulated by the type of bioactive substances that are grafted. PMID:23586032

  17. Hydrogen-Rich Medium Attenuated Lipopolysaccharide-Induced Monocyte-Endothelial Cell Adhesion and Vascular Endothelial Permeability via Rho-Associated Coiled-Coil Protein Kinase.

    PubMed

    Xie, Keliang; Wang, Weina; Chen, Hongguang; Han, Huanzhi; Liu, Daquan; Wang, Guolin; Yu, Yonghao

    2015-07-01

    Sepsis is the leading cause of death in critically ill patients. In recent years, molecular hydrogen, as an effective free radical scavenger, has been shown a selective antioxidant and anti-inflammatory effect, and it is beneficial in the treatment of sepsis. Rho-associated coiled-coil protein kinase (ROCK) participates in junction between normal cells, and regulates vascular endothelial permeability. In this study, we used lipopolysaccharide to stimulate vascular endothelial cells and explored the effects of hydrogen-rich medium on the regulation of adhesion of monocytes to endothelial cells and vascular endothelial permeability. We found that hydrogen-rich medium could inhibit adhesion of monocytes to endothelial cells and decrease levels of adhesion molecules, whereas the levels of transepithelial/endothelial electrical resistance values and the expression of vascular endothelial cadherin were increased after hydrogen-rich medium treatment. Moreover, hydrogen-rich medium could lessen the expression of ROCK, as a similar effect of its inhibitor Y-27632. In addition, hydrogen-rich medium could also inhibit adhesion of polymorphonuclear neutrophils to endothelial cells. In conclusion, hydrogen-rich medium could regulate adhesion of monocytes/polymorphonuclear neutrophils to endothelial cells and vascular endothelial permeability, and this effect might be related to the decreased expression of ROCK protein.

  18. Adhesive protein-free synthetic hydrogels for retinal pigment epithelium cell culture with low ROS level.

    PubMed

    Chen, Yong Mei; Liu, Zhen Qi; Feng, Zhi Hui; Xu, Feng; Liu, Jian Kang

    2014-07-01

    Engineering of human retinal pigment epithelium (RPE) cell monolayer with low level of reactive oxygen species (ROS) is important for regenerative RPE-based therapies. However, it is still challenging to culture RPE monolayer with low ROS level on soft substrates in vitro. To address this, we developed cytocompatible hydrogels to culture human RPE cell monolayer for future use in regenerative RPE-based therapies. The cell adhesion, proliferation, monolayer formation, morphology, survival, and ROS level of human ARPE-19 cells cultured on the surfaces of negatively charged poly (2-acrylamido-2-methyl propane sulfonic sodium) (PNaAMPS) and neutral poly(N,N-dimethylacrylamide) (PDMAAm) hydrogels with different stiffness were investigated. The importance of hydrogel stiffness on the cell function was firstly highlighted on the base of determined optimal Young's modulus for cultivation of RPE cell monolayer with relatively low ROS level. The construction of RPE cell monolayer with low ROS level on the PNaAMPS hydrogel may hold great potential as promising candidates for transplantation of RPE cell monolayer-hydrogel construct into the subretinal space to repair retinal functions.

  19. An adhesive bone marrow scaffold and bone morphogenetic-2 protein carrier for cartilage tissue engineering.

    PubMed

    Simson, Jacob A; Strehin, Iossif A; Lu, Qiaozhi; Uy, Manuel O; Elisseeff, Jennifer H

    2013-03-11

    A chondroitin sulfate-bone marrow (CS-BM) adhesive hydrogel was used to localize rhBMP-2 to enhance articular cartilage tissue formation. Chondrocyte pellet culture revealed that 0.1 and 1 μg/mL of rhBMP-2 enhanced sulfated-GAG content. rhBMP-2 localization within the hydrogels was investigated, and it was found that BM, CS-NHS, and rhBMP-2 levels and time affected rhBMP-2 retention. Retention was modulated from 82 to 99% over a 3-week period for the material formulations investigated. To evaluate carrier efficacy, rhBMP-2 and bovine articular chondrocytes were encapsulated within CS-BM, and biochemical evaluation revealed significant increases in total collagen production with rhBMP-2. Histological analysis revealed more robust tissue formation and greater type-II collagen production with encapsulated rhBMP-2. Subsequently, a subcutaneous culture of hydrogels revealed increased total collagen, type-II to type-I collagen ratio, and sulfated GAG in samples carrying rhBMP-2. These findings indicate the development of a multifunctional system capable of localizing rhBMP-2 to enhance repair tissue quality. PMID:23320412

  20. Expression, purification, crystallization and preliminary X-ray analysis of the olfactomedin domain from the sea urchin cell-adhesion protein amassin

    SciTech Connect

    Hillier, Brian J.; Sundaresan, Vidyasankar; Stout, C. David; Vacquier, Victor D.

    2006-01-01

    The olfactomedin (OLF) domain from the sea urchin cell-adhesion protein amassin has been crystallized. A native data set extending to 2.7 Å has been collected using an in-house X-ray source. A family of animal proteins is emerging which contain a conserved protein motif known as an olfactomedin (OLF) domain. Novel extracellular protein–protein interactions occur through this domain. The OLF-family member amassin, from the sea urchin Strongylocentrotus purpuratus, has previously been identified to mediate a rapid cell-adhesion event resulting in a large aggregation of coelomocytes, the circulating immune cells. In this work, heterologous expression and purification of the OLF domain from amassin was carried out and initial crystallization trials were performed. A native data set has been collected, extending to 2.7 Å under preliminary cryoconditions, using an in-house generator. This work leads the way to the determination of the first structure of an OLF domain.

  1. Atmospheric pressure plasma polymers for tuned QCM detection of protein adhesion.

    PubMed

    Rusu, G B; Asandulesa, M; Topala, I; Pohoata, V; Dumitrascu, N; Barboiu, M

    2014-03-15

    Our efforts have been concentrated in preparing plasma polymeric thin layers at atmospheric pressure grown on Quartz Crystal Microbalance-QCM electrodes for which the non-specific absorption of proteins can be efficiently modulated, tuned and used for QCM biosensing and quantification. Plasma polymerization reaction at atmospheric pressure has been used as a simple and viable method for the preparation of QCM bioactive surfaces, featuring variable protein binding properties. Polyethyleneglycol (ppEG), polystyrene (ppST) and poly(ethyleneglycol-styrene) (ppST-EG) thin-layers have been grown on QCM electrodes. These layers were characterized by Atomic Force Microscopy (AFM), Contact angle measurements, Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The plasma ppST QCM electrodes present a higher adsorption of Concanavalin A (ConA) and Bovine Serum Albumin (BSA) proteins when compared with the commercial coated polystyrene (ppST) ones. The minimum adsorption was found for ppEG, surface, known by their protein anti-fouling properties. The amount of adsorbed proteins can be tuned by the introduction of PEG precursors in the plasma discharge during the preparation of ppST polymers.

  2. Modulation of endothelial cell adhesion to synthetic vascular grafts using biotinylated fibronectin in a dual ligand protein system

    NASA Astrophysics Data System (ADS)

    Anamelechi, Charles Chibuzor

    Over half a million coronary artery bypass operations are performed annually in the US yielding an annual health care cost of over 16 billion dollars. Only five percent of bypasses are repeat operations in spite of the procedures prevalence. Patients facing repeat coronary artery bypass operations often lack transplantable autologous arteries or veins, necessitating the use of substitutes. Unfortunately, synthetic small diameter vascular grafts have unacceptable patency rates, primarily due to lumenal thrombus formation and intimal thickening. Endothelial cells (EC) mediate the anti-thrombotic activity in healthy blood vessels, and due to the scarcity of suitable autologous vascular replacement, EC-seeded small diameter synthetic vascular grafts represent a clear, immediate, and practical solution. The fundamental goal of this project was to optimize the dual ligand (DL) system on synthetic vascular graft (SVG) surrogates to show enhanced cell adhesion, retention, and native functionality compared to fibronectin alone. Initially, two SVG surrogates were identified through characterization by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and 125I radiolabeling. The first modification to the DL system involved direct biotinylation of fibronectin (bFN) as a replacement for co-adsorption of FN with biotinylated bovine serum albumin (bBSA). This was analyzed with a Langmuir model using surface plasmon resonance (SPR) spectroscopy to verify the binding affinity of bFN and ELISA to detect the availability of the RGD binding motif post biotinylation. The second major change in this project examined cell binding and formation of focal adhesion after shifting from direct incubation of HUVECs with RGD-SA to sequentially adsorbing bFN(9) and RGD-SA prior to introducing unmodified HUVECs. These experiments were conducted under static seeding conditions. Next, dynamic cell seeding onto the sequentially adsorbed protein surface was examined as a function

  3. Cyclic di-GMP contributes to adaption and virulence of Bacillus thuringiensis through a riboswitch-regulated collagen adhesion protein.

    PubMed

    Tang, Qing; Yin, Kang; Qian, Hongliang; Zhao, Youwen; Wang, Wen; Chou, Shan-Ho; Fu, Yang; He, Jin

    2016-01-01

    Cyclic di-GMP is a ubiquitous second messenger that regulates diverse cellular processes in bacteria by binding to various protein or riboswitch effectors. In Bacillus thuringiensis BMB171, a c-di-GMP riboswitch termed Bc2 RNA resides in the 5'-untranslated region (5'-UTR) of an mRNA that encodes a collagen adhesion protein (Cap). The expression of cap was strongly repressed in parent strain BMB171 because of the presence of Bc2 RNA but was significantly promoted in the Bc2 RNA markerless deletion mutant. Bc2 RNA acts as a genetic "on" switch, which forms an anti-terminator structure to promote cap read-through transcription upon c-di-GMP binding. As a result, cap transcription was de-repressed under high c-di-GMP levels. Therefore, Bc2 RNA regulates cap expression using a repression/de-repression model. Bc2 RNA-regulated Cap was also found to be tightly associated with motility, aggregation, exopolysaccharide secretion, biofilm formation, and virulence of B. thuringiensis BMB171 against its host insect Helicoverpa armigera. PMID:27381437

  4. Cyclic di-GMP contributes to adaption and virulence of Bacillus thuringiensis through a riboswitch-regulated collagen adhesion protein.

    PubMed

    Tang, Qing; Yin, Kang; Qian, Hongliang; Zhao, Youwen; Wang, Wen; Chou, Shan-Ho; Fu, Yang; He, Jin

    2016-01-01

    Cyclic di-GMP is a ubiquitous second messenger that regulates diverse cellular processes in bacteria by binding to various protein or riboswitch effectors. In Bacillus thuringiensis BMB171, a c-di-GMP riboswitch termed Bc2 RNA resides in the 5'-untranslated region (5'-UTR) of an mRNA that encodes a collagen adhesion protein (Cap). The expression of cap was strongly repressed in parent strain BMB171 because of the presence of Bc2 RNA but was significantly promoted in the Bc2 RNA markerless deletion mutant. Bc2 RNA acts as a genetic "on" switch, which forms an anti-terminator structure to promote cap read-through transcription upon c-di-GMP binding. As a result, cap transcription was de-repressed under high c-di-GMP levels. Therefore, Bc2 RNA regulates cap expression using a repression/de-repression model. Bc2 RNA-regulated Cap was also found to be tightly associated with motility, aggregation, exopolysaccharide secretion, biofilm formation, and virulence of B. thuringiensis BMB171 against its host insect Helicoverpa armigera.

  5. Cyclic di-GMP contributes to adaption and virulence of Bacillus thuringiensis through a riboswitch-regulated collagen adhesion protein

    PubMed Central

    Tang, Qing; Yin, Kang; Qian, Hongliang; Zhao, Youwen; Wang, Wen; Chou, Shan-Ho; Fu, Yang; He, Jin

    2016-01-01

    Cyclic di-GMP is a ubiquitous second messenger that regulates diverse cellular processes in bacteria by binding to various protein or riboswitch effectors. In Bacillus thuringiensis BMB171, a c-di-GMP riboswitch termed Bc2 RNA resides in the 5′-untranslated region (5′-UTR) of an mRNA that encodes a collagen adhesion protein (Cap). The expression of cap was strongly repressed in parent strain BMB171 because of the presence of Bc2 RNA but was significantly promoted in the Bc2 RNA markerless deletion mutant. Bc2 RNA acts as a genetic “on” switch, which forms an anti-terminator structure to promote cap read-through transcription upon c-di-GMP binding. As a result, cap transcription was de-repressed under high c-di-GMP levels. Therefore, Bc2 RNA regulates cap expression using a repression/de-repression model. Bc2 RNA-regulated Cap was also found to be tightly associated with motility, aggregation, exopolysaccharide secretion, biofilm formation, and virulence of B. thuringiensis BMB171 against its host insect Helicoverpa armigera. PMID:27381437

  6. Complementary DNA sequence and chromosomal mapping of human proteoglycan-binding cell-adhesion protein (dermatopontin)

    SciTech Connect

    Superti-Furga, A.; Gitzelmann, R.; Schaefer, B.W. ); Rocchi, M. )

    1993-08-01

    The authors have noticed the presence of a protein with a M[sub r] of approx 22 kDa in proteoglycan preparations from human fibroblast cultures and speculated that it might be related to a 22-kDa protein from bovine skin (22K) with proteoglycan- and cell-binding properties. Using degenerated oligomers designed from the amino acid sequence of the bovine protein, they amplified and subcloned sequences from human fibroblast and fibrosarcoma cDNA. The three clones that were characterized contain an open reading frame (603 bp) coding for 201 amino acids comprising a secretory leader peptide of 18 amino acids and a secreted part of 183 amino acids with 96% identity to the bovine sequence, indicating that they code for the human homologue ([open quotes]dermatopontin[close quotes]) of the bovine 22K protein. Expression of dermatopontin is not limited to connective tissue, as northern blots show specific mRNAs in cultured fibroblasts, muscle, heart, pancreas, and lung. Two species of mRNA (1.0 and 2.2 kb) are present, indicating alternative polyadenylation or alternative splicing. The cDNA clones map to 1q12-q23 in a cell hybrid panel containing specific chromosomal deletions. 24 refs., 3 figs.

  7. Endothelial cell adhesion and growth within a bioassay chamber using microstamped ECM proteins

    NASA Astrophysics Data System (ADS)

    Rubenstein, David A.; Frame, Mary D.

    2011-06-01

    Our goal was to evaluate microvascular endothelial cell growth on microstamped patterns of extracellular matrix proteins (ECM). A combination of photo- and soft-lithography was used to make features ˜100 μm deep and 150μm wide. Polydimethylsiloxane imprints of features produced positive molds used to stamp collagen I, IV, laminin and fibronectin onto cleaned hydrophilic or hydrophobic glass coverslips. Human dermal microvascular endothelial cells were seeded at an initial density of 800 cells cm-2, and cultured for three days. Explanted murine aortas, serving as an initial source for autologous endothelial cells, were perfused at 240 μL min-1 for 1 day. Cell morphology was also quantified on both the non-patterned glass and within the microstamped patterns. Viability was high (>90%) on all microstamped proteins, regardless of glass hydrophobicity. Viability was reduced on bare hydrophobic glass. Cell density was 4 or 8 fold higher on microstamped ECM proteins compared with hydrophilic or hydrophobic glass, respectively. Confluence was approached more rapidly on microstamped proteins. Thus, rapid concentrated growth of endothelial cells was markedly enhanced within microstamped ECM patterns on hydrophilic and hydrophobic glass.

  8. Adhesion of adipose-derived mesenchymal stem cells to glycosaminoglycan surfaces with different protein patterns.

    PubMed

    Soares da Costa, Diana; Márquez-Posadas, Maria del Carmen; Araujo, Ana R; Yang, Yuan; Merino, Santos; Groth, Thomas; Reis, Rui L; Pashkuleva, Iva

    2015-05-13

    Proteins and glycosaminoglycans (GAGs) are the main constituents of the extracellular matrix (ECM). They act in synergism and are equally critical for the development, growth, function, or survival of an organism. In this work, we developed surfaces that display these two classes of biomacromolecules, namely, GAGs and proteins, in a spatially controlled fashion. The generated surfaces can be used as a minimalistic but straightforward model aiding the elucidation of cell-ECM interactions. GAGs (hyaluronic acid and heparin) were covalently bound to amino functionalized surfaces, and albumin or fibronectin was patterned by microcontact printing on top of them. We demonstrate that adipose-derived stem cells (ASCs) can adhere either on the protein or on the GAG pattern as a function of the patterned molecules. ASCs found on the GAG pattern had different morphology and expressed different surface markers than the cells adhered on the protein pattern. ASCs morphology and spreading were also dependent on the size of the pattern. These results show that the developed supports can also be used for ASCs differentiation into different lineages.

  9. Nanoscale dynamics and protein adhesivity of alkylamine self-assembled monolayers on graphene.

    PubMed

    O'Mahony, S; O'Dwyer, C; Nijhuis, C A; Greer, J C; Quinn, A J; Thompson, D

    2013-06-18

    Atomic-scale molecular dynamics computer simulations are used to probe the structure, dynamics, and energetics of alkylamine self-assembled monolayer (SAM) films on graphene and to model the formation of molecular bilayers and protein complexes on the films. Routes toward the development and exploitation of functionalized graphene structures are detailed here, and we show that the SAM architecture can be tailored for use in emerging applications (e.g., electrically stimulated nerve fiber growth via the targeted binding of specific cell surface peptide sequences on the functionalized graphene scaffold). The simulations quantify the changes in film physisorption on graphene and the alkyl chain packing efficiency as the film surface is made more polar by changing the terminal groups from methyl (-CH3) to amine (-NH2) to hydroxyl (-OH). The mode of molecule packing dictates the orientation and spacing between terminal groups on the surface of the SAM, which determines the way in which successive layers build up on the surface, whether via the formation of bilayers of the molecule or the immobilization of other (macro)molecules (e.g., proteins) on the SAM. The simulations show the formation of ordered, stable assemblies of monolayers and bilayers of decylamine-based molecules on graphene. These films can serve as protein adsorption platforms, with a hydrophobin protein showing strong and selective adsorption by binding via its hydrophobic patch to methyl-terminated films and binding to amine-terminated films using its more hydrophilic surface regions. Design rules obtained from modeling the atomic-scale structure of the films and interfaces may provide input into experiments for the rational design of assemblies in which the electronic, physicochemical, and mechanical properties of the substrate, film, and protein layer can be tuned to provide the desired functionality.

  10. Protein-tyrosine phosphatase-alpha and Src functionally link focal adhesions to the endoplasmic reticulum to mediate interleukin-1-induced Ca2+ signaling.

    PubMed

    Wang, Qin; Rajshankar, Dhaarmini; Branch, Donald R; Siminovitch, Katherine A; Herrera Abreu, Maria Teresa; Downey, Gregory P; McCulloch, Christopher A

    2009-07-31

    Calcium (Ca2+) signaling by the pro-inflammatory cytokine interleukin-1 (IL-1) is dependent on focal adhesions, which contain diverse structural and signaling proteins including protein phosphatases. We examined here the role of protein-tyrosine phosphatase (PTP) alpha in regulating IL-1-induced Ca2+ signaling in fibroblasts. IL-1 promoted recruitment of PTPalpha to focal adhesions and endoplasmic reticulum (ER) fractions, as well as tyrosine phosphorylation of the ER Ca2+ release channel IP3R. In response to IL-1, catalytically active PTPalpha was required for Ca2+ release from the ER, Src-dependent phosphorylation of IP3R1 and accumulation of IP3R1 in focal adhesions. In pulldown assays and immunoprecipitations PTPalpha was required for the association of PTPalpha with IP3R1 and c-Src, and this association was increased by IL-1. Collectively, these data indicate that PTPalpha acts as an adaptor to mediate functional links between focal adhesions and the ER that enable IL-1-induced Ca2+ signaling.

  11. Protein-tyrosine Phosphatase-α and Src Functionally Link Focal Adhesions to the Endoplasmic Reticulum to Mediate Interleukin-1-induced Ca2+ Signaling*

    PubMed Central

    Wang, Qin; Rajshankar, Dhaarmini; Branch, Donald R.; Siminovitch, Katherine A.; Abreu, Maria Teresa Herrera; Downey, Gregory P.; McCulloch, Christopher A.

    2009-01-01

    Calcium (Ca2+) signaling by the pro-inflammatory cytokine interleukin-1 (IL-1) is dependent on focal adhesions, which contain diverse structural and signaling proteins including protein phosphatases. We examined here the role of protein-tyrosine phosphatase (PTP) α in regulating IL-1-induced Ca2+ signaling in fibroblasts. IL-1 promoted recruitment of PTPα to focal adhesions and endoplasmic reticulum (ER) fractions, as well as tyrosine phosphorylation of the ER Ca2+ release channel IP3R. In response to IL-1, catalytically active PTPα was required for Ca2+ release from the ER, Src-dependent phosphorylation of IP3R1 and accumulation of IP3R1 in focal adhesions. In pulldown assays and immunoprecipitations PTPα was required for the association of PTPα with IP3R1 and c-Src, and this association was increased by IL-1. Collectively, these data indicate that PTPα acts as an adaptor to mediate functional links between focal adhesions and the ER that enable IL-1-induced Ca2+ signaling. PMID:19497848

  12. Cell adhesion force microscopy

    PubMed Central

    Sagvolden, G.; Giaever, I.; Pettersen, E. O.; Feder, J.

    1999-01-01

    The adhesion forces of cervical carcinoma cells in tissue culture were measured by using the manipulation force microscope, a novel atomic force microscope. The forces were studied as a function of time and temperature for cells cultured on hydrophilic and hydrophobic polystyrene substrates with preadsorbed proteins. The cells attached faster and stronger at 37°C than at 23°C and better on hydrophilic than on hydrophobic substrates, even though proteins adsorb much better to the hydrophobic substrates. Because cell adhesion serves to control several stages in the cell cycle, we anticipate that the manipulation force microscope can help clarify some cell-adhesion related issues. PMID:9892657

  13. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell-adhesive and plasmin-degradable biosynthetic material for tissue repair

    NASA Astrophysics Data System (ADS)

    Halstenberg, Sven

    2002-01-01

    The goal of the research presented in this dissertation was to create a biomimetic artificial material that exhibits functions of extracellular matrix relevant for improved nerve regeneration. Neural adhesion peptides were photoimmobilized on highly crosslinked poly(ethylene glycol)-based substrates that were otherwise non-adhesive. Neurons adhered in two-dimensional patterns for eleven hours, but no neurites extended. To enable neurite extension and nerve regeneration in three dimensions, and to address the need for specifically cell adhesive and cell degradable materials for clinical applications in tissue repair in general, an artificial protein was recombinantly expressed and purified that consisted of a repeating amino acid sequence based on fibrinogen and anti-thrombin III. The recombinant protein contained integrin-binding RGD sites, plasmin degradation sites, heparin binding sites, and six thiol-containing cysteine residues as grafting sites for poly(ethylene glycol) diacrylate via Michael-type conjugate addition. The resulting protein-graft-poly(ethylene glycol)acrylates were crosslinked by photopolymerization to form hydrogels. Although three-dimensional, RGD mediated and serine protease-dependent ingrowth of human fibroblasts into protein-graft-poly(ethylene glycol) hydrogels occurred, only surface neurite outgrowth was observed from chick dorsal root ganglia. Axonal outgrowth depended on the concentration of matrix-bound heparin, suggesting that improved mechanical strength of the hydrogels and possible immobilization of neuroactive factors due to the presence of heparin promoted neurite outgrowth. Together, the above results show that specific biological functions can be harnessed by protein-graft-poly(ethylene glycol) hydrogels to serve as matrices for tissue repair and regeneration. In particular, the two design objectives, specific cell adhesion and degradability by cell-associated proteases, were fulfilled by the material. In the future, this and

  14. Cilostazol prevents remnant lipoprotein particle-induced monocyte adhesion to endothelial cells by suppression of adhesion molecules and monocyte chemoattractant protein-1 expression via lectin-like receptor for oxidized low-density lipoprotein receptor activation.

    PubMed

    Park, So Youn; Lee, Jeong Hyun; Kim, Yong Ki; Kim, Chi Dae; Rhim, Byung Yong; Lee, Won Suk; Hong, Ki Whan

    2005-03-01

    This study shows cilostazol effect to prevent remnant lipoprotein particle (RLP)-induced monocyte adhesion to human umbilical vein endothelial cells (HUVECs). Upon incubation of HUVECs with RLP (50 microg/ml), adherent monocytes significantly increased by 3.3-fold with increased cell surface expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1, E-selectin, and monocyte chemoattractant protein-1 (MCP-1). Cilostazol ( approximately 1-100 microM) concentration dependently repressed these variables as did (E)3-[(4-t-butylphenyl)sulfonyl]-2-propenenitrile (BAY 11-7085) (10 microM), a specific nuclear factor-kappaB (NF-kappaB) inhibitor. Cilostazol effects were significantly antagonized by iberiotoxin (1 microM), a maxi-K channel blocker. RLP significantly increased expression of lectin-like receptor for oxidized low-density lipoprotein (LDL) (LOX-1) receptor protein. Upon transfection with antisense LOX-1 oligodeoxynucleotide (As-LOX-1), LOX-1 receptor expression was reduced, whereas HUVECs with sense LOX-1 oligodeoxynucleotide did express high LOX-1 receptor. RLP-stimulated superoxide and tumor necrosis factor-alpha levels were significantly lowered with decreased expression of VCAM-1 and MCP-1 by transfection with As-LOX-1 as did polyinosinic acid (10 microg/ml, a LOX-1 receptor inhibitor). RLP significantly degraded inhibitory kappaBalpha in the cytoplasm and activated nuclear factor-kappaB (NF-kappaB) p65 in the nucleus of HUVECs with increased luciferase activity of NF-kappaB, all of which were reversed by cilostazol (10 microM), BAY 11-7085, and polyinosinic acid. Together, cilostazol suppresses RLP-stimulated increased monocyte adhesion to HUVECs by suppression of LOX-1 receptor-coupled NF-kappaB-dependent nuclear transcription via mediation of the maxi-K channel opening.

  15. Dynamics of presynaptic protein recruitment induced by local presentation of artificial adhesive contacts

    PubMed Central

    Suarez, Fernando; Thostrup, Peter; Colman, David; Grutter, Peter

    2012-01-01

    Here we introduce a novel approach to induce and observe the formation of presynaptic compartments in axons through a combination of Atomic Force Microscopy (AFM) and fluorescence microscopy. First, we use a poly-D-lysine coated bead attached to an AFM tip to induce the recruitment of two synaptic proteins, bassoon and synaptophysin, and measure their absolute arrival times to the presynaptic department. We find that bassoon arrives before synaptophysin. Second, we observed the formation of very long (several 10s of µm), structured, protein-containing membranous strings as the AFM tip was withdrawn from the axon. It is conceivable that these strings might be a novel mechanism by which new neurites or branch points along existing neurites may be generated in situ. PMID:22648784

  16. Dynamics of presynaptic protein recruitment induced by local presentation of artificial adhesive contacts.

    PubMed

    Suarez, Fernando; Thostrup, Peter; Colman, David; Grutter, Peter

    2013-01-01

    In this study, we introduce a novel approach to induce and observe the formation of presynaptic compartments in axons through a combination of atomic force microscopy (AFM) and fluorescence microscopy. First, we use a poly-D-lysine-coated bead attached to an AFM tip to induce the recruitment of two synaptic proteins, bassoon and synaptophysin, and measure their absolute arrival times to the presynaptic department. We find that bassoon arrives before synaptophysin. Second, we observe the formation of very long (several 10s of μm), structured, protein-containing membranous strings as the AFM tip was withdrawn from the axon. It is conceivable that these strings might be a novel mechanism by which new neurites or branch points along existing neurites may be generated in situ.

  17. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase.

    PubMed

    Sorescu, George P; Song, Hannah; Tressel, Sarah L; Hwang, Jinah; Dikalov, Sergey; Smith, Debra A; Boyd, Nolan L; Platt, Manu O; Lassègue, Bernard; Griendling, Kathy K; Jo, Hanjoong

    2004-10-15

    Atherosclerosis is an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions including oscillatory shear stress (OS). OS exposure induces endothelial expression of bone morphogenic protein 4 (BMP4), which in turn may activate intercellular adhesion molecule-1 (ICAM-1) expression and monocyte adhesion. OS is also known to induce monocyte adhesion by producing reactive oxygen species (ROS) from reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, raising the possibility that BMP4 may stimulate the inflammatory response by ROS-dependent mechanisms. Here we show that ROS scavengers blocked ICAM-1 expression and monocyte adhesion induced by BMP4 or OS in endothelial cells (ECs). Similar to OS, BMP4 stimulated H2O2 and O2- production in ECs. Next, we used ECs obtained from p47phox-/- mice (MAE-p47-/-), which do not produce ROS in response to OS, to determine the role of NADPH oxidases. Similar to OS, BMP4 failed to induce monocyte adhesion in MAE-p47-/-, but it was restored when the cells were transfected with p47phox plasmid. Moreover, OS-induced O2- production was blocked by noggin (a BMP antagonist), suggesting a role for BMP. Furthermore, OS increased gp91phox (nox2) and nox1 mRNA levels while decreasing nox4. In contrast, BMP4 induced nox1 mRNA expression, whereas nox2 and nox4 were decreased or not affected, respectively. Also, OS-induced monocyte adhesion was blocked by knocking down nox1 with the small interfering RNA (siRNA). Finally, BMP4 siRNA inhibited OS-induced ROS production and monocyte adhesion. Together, these results suggest that BMP4 produced in ECs by OS stimulates ROS release from the nox1-dependent NADPH oxidase leading to inflammation, a critical early atherogenic step. PMID:15388638

  18. Characterization of a Cell Surface Protein of Clostridium difficile with Adhesive Properties

    PubMed Central

    Waligora, Anne-Judith; Hennequin, Claire; Mullany, Peter; Bourlioux, Pierre; Collignon, Anne; Karjalainen, Tuomo

    2001-01-01

    Our laboratory has previously shown that Clostridium difficile adherence to cultured cells is enhanced after heat shock at 60°C and that it is mediated by a proteinaceous surface component. The present study was undertaken to identify the surface molecules of this bacterium that could play a role in its adherence to the intestine. The cwp66 gene, encoding a cell surface-associated protein of C. difficile 79-685, was isolated by immunoscreening of a C. difficile gene library with polyclonal antibodies against C. difficile heated at 60°C. The Cwp66 protein (66 kDa) contains two domains, each carrying three imperfect repeats and one presenting homologies to the autolysin CwlB of Bacillus subtilis. A survey of 36 strains of C. difficile representing 11 serogroups showed that the 3′ portion of the cwp66 gene is variable; this was confirmed by sequencing of cwp66 from another strain, C-253. Two recombinant protein fragments corresponding to the two domains of Cwp66 were expressed in fusion with glutathione S-transferase in Escherichia coli and purified by affinity chromatography using gluthatione-Sepharose 4B. Antibodies raised against the two domains recognized Cwp66 in bacterial surface extracts. By immunoelectron microscopy, the C-terminal domain was found to be cell surface exposed. When used as inhibitors in cell binding studies, the antibodies and protein fragments partially inhibited adherence of C. difficile to cultured cells, confirming that Cwp66 is an adhesin, the first to be identified in clostridia. PMID:11254569

  19. Integrin β4 and vinculin contained in exosomes are potential markers for progression of prostate cancer associated with taxane-resistance.

    PubMed

    Kawakami, Kyojiro; Fujita, Yasunori; Kato, Taku; Mizutani, Kosuke; Kameyama, Koji; Tsumoto, Hiroki; Miura, Yuri; Deguchi, Takashi; Ito, Masafumi

    2015-07-01

    Treatment with taxanes for castration-resistant prostate cancer often leads to the development of resistance. It has been recently demonstrated that exosomes present in the body fluids contain proteins and RNAs in the cells from which they are derived and could serve as a diagnostic marker for various diseases. In the present study, we aimed to identify proteins contained in exosomes that could be markers for progression and taxane-resistance of prostate cancer. Exosomes were isolated by differential centrifugation from the culture medium of taxane-resistant human prostate cancer PC-3 cells (PC-3R) and their parental PC-3 cells. Isolated exosomes were subjected to iTRAQ-based quantitative proteomic analysis. Exosomes were also isolated from the culture medium by using anti-CD9 antibody-conjugated magnetic beads. Protein expression was knocked down by siRNA transfection followed by analysis of the silencing effects. Proteomic analysis showed that integrin β4 (ITGB4) and vinculin (VCL) were upregulated in exosomes derived from PC-3R cells compared to PC-3 cells. The elevation of ITGB4 and VCL was confirmed in exosomes captured by anti-CD9 antibody from the culture medium of PC-3R cells. Silencing of ITGB4 and VCL expression did not affect proliferation and taxane-resistance of PC-3R cells, but ITGB4 knockdown attenuated both cell migration and invasion and VCL knockdown reduced invasion. Our results suggest that ITGB4 and VCL in exosomes could be useful markers for progression of prostate cancer associated with taxane-resistance, providing the basis for development of an exosome-based diagnostic system.

  20. Analysis of human tear fluid components, inhibiting protein adhesion to plastic surfaces.

    PubMed

    Kuizenga, A; van Haeringen, N J; Meijer, F; Kijlstra, A

    1996-09-01

    In a previous paper we reported the presence of components in human tear fluid that block the interaction of proteins with plastic surfaces, interfering with tear protein ELISA and proposed the term coating inhibiting activity. The purpose of the study presented here was to further analyse these components. Coating inhibitory activity in human reflex tears was analysed by lectin affinity chromatography, using the agarose bound lectin Artocarpus integrifolia agglutinin (Jacalin), gel filtration, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), blotting and Jacalin staining. For coating inhibitory activity assay in experimental tear samples, the binding of the protein Avidin-conjugated horseradish peroxidase to the polystyrene surface of ELISA micro-titer plate wells, preincubated with the experimental tear samples was measured. In addition, tears were incubated with scrapings of the ELISA plates used in the assay and with six different types of contact lenses (two rigid gas permeable and four hydrogel soft contact lenses) for analysis of adsorbed components. Lectin affinity chromatography of tears yielded a Jacalin-binding and a non-Jacalin-binding preparation, both exhibiting coating inhibitory activity but representing chemically different preparations as observed by SDS-PAGE. After performing gel filtration, coating inhibitory activity eluted with similar retention in both preparations. In fractions exhibiting activity, tear proteins of low molecular weight (< 40 kDa) were detected. Among these, two Jacalin-binding glycoproteins were detected; a major component of approximately 28 kDa and a somewhat smaller minor component. All low molecular weight components were also detected on the scrapings, incubated with tears. The possibility that coating inhibitory activity in tears might reside in a component of larger molecular size can however not be excluded. The human tear proteins secretory Immunoglobulin A, lactoferrin and lysozyme are not

  1. In-depth Characterization of the Secretome of Colorectal Cancer Metastatic Cells Identifies Key Proteins in Cell Adhesion, Migration, and Invasion*

    PubMed Central

    Barderas, Rodrigo; Mendes, Marta; Torres, Sofia; Bartolomé, Rubén A.; López-Lucendo, María; Villar-Vázquez, Roi; Peláez-García, Alberto; Fuente, Eduardo; Bonilla, Félix; Casal, J. Ignacio

    2013-01-01

    Liver metastasis in colorectal cancer is the major cause of cancer-related deaths. To identify and characterize proteins associated with colon cancer metastasis, we have compared the conditioned serum-free medium of highly metastatic KM12SM colorectal cancer cells with the parental, poorly metastatic KM12C cells using quantitative stable isotope labeling by amino acids in cell culture (SILAC) analyses on a linear ion trap-Orbitrap Velos mass spectrometer. In total, 1337 proteins were simultaneously identified in SILAC forward and reverse experiments. For quantification, 1098 proteins were selected in both experiments, with 155 proteins showing >1.5-fold change. About 52% of these proteins were secreted directly or using alternative secretion pathways. GDF15, S100A8/A9, and SERPINI1 showed capacity to discriminate cancer serum samples from healthy controls using ELISAs. In silico analyses of deregulated proteins in the secretome of metastatic cells showed a major abundance of proteins involved in cell adhesion, migration, and invasion. To characterize the tumorigenic and metastatic properties of some top up- and down-regulated proteins, we used siRNA silencing and antibody blocking. Knockdown expression of NEO1, SERPINI1, and PODXL showed a significant effect on cellular adhesion. Silencing or blocking experiments with SOSTDC1, CTSS, EFNA3, CD137L/TNFSF9, ZG16B, and Midkine caused a significant decrease in migration and invasion of highly metastatic cells. In addition, silencing of SOSTDC1, EFNA3, and CD137L/TNFSF9 reduced liver colonization capacity of KM12SM cells. Finally, the panel of six proteins involved in invasion showed association with poor prognosis and overall survival after dataset analysis of gene alterations. In summary, we have defined a collection of proteins that are relevant for understanding the mechanisms underlying adhesion, migration, invasion, and metastasis in colorectal cancer. PMID:23443137

  2. MPP2 is a postsynaptic MAGUK scaffold protein that links SynCAM1 cell adhesion molecules to core components of the postsynaptic density

    PubMed Central

    Rademacher, Nils; Schmerl, Bettina; Lardong, Jennifer A.; Wahl, Markus C.; Shoichet, Sarah A.

    2016-01-01

    At neuronal synapses, multiprotein complexes of trans-synaptic adhesion molecules, scaffold proteins and neurotransmitter receptors assemble to essential building blocks required for synapse formation and maintenance. Here we describe a novel role for the membrane-associated guanylate kinase (MAGUK) protein MPP2 (MAGUK p55 subfamily member 2) at synapses of rat central neurons. Through interactions mediated by its C-terminal SH3-GK domain module, MPP2 binds to the abundant postsynaptic scaffold proteins PSD-95 and GKAP and localises to postsynaptic sites in hippocampal neurons. MPP2 also colocalises with the synaptic adhesion molecule SynCAM1. We demonstrate that the SynCAM1 C-terminus interacts directly with the MPP2 PDZ domain and that MPP2 does not interact in this manner with other highly abundant postsynaptic transmembrane proteins. Our results highlight a previously unexplored role for MPP2 at postsynaptic sites as a scaffold that links SynCAM1 cell adhesion molecules to core proteins of the postsynaptic density. PMID:27756895

  3. Interaction of Ubinuclein-1, a nuclear and adhesion junction protein, with the 14-3-3 epsilon protein in epithelial cells: implication of the PKA pathway.

    PubMed

    Conti, Audrey; Sueur, Charlotte; Lupo, Julien; Brazzolotto, Xavier; Burmeister, Wim P; Manet, Evelyne; Gruffat, Henri; Morand, Patrice; Boyer, Véronique

    2013-03-01

    Ubinuclein-1 is a NACos (Nuclear and Adhesion junction Complex components) protein which shuttles between the nucleus and tight junctions, but its function in the latter is not understood. Here, by co-immunoprecipitation and confocal analysis, we show that Ubinuclein-1 interacts with the 14-3-3ɛ protein both in HT29 colon cells, and AGS gastric cells. This interaction is mediated by an Ubinuclein-1 phosphoserine motif. We show that the arginine residues (R56, R60 and R132) which form the 14-3-3ɛ ligand binding site are responsible for the binding of 14-3-3ɛ to phosphorylated Ubinuclein-1. Furthermore, we demonstrate that in vitro Ubinuclein-1 can be directly phosphorylated by cAMP-dependent protein kinase A. This in vitro phosphorylation allows binding of wildtype 14-3-3ɛ. Moreover, treatment of the cells with inhibitors of the cAMP-dependent protein kinase, KT5720 or H89, modifies the subcellular localization of Ubinuclein-1. Indeed, KT5720 and H89 greatly increase the staining of Ubinuclein-1 at the tight junctions in AGS gastric cells. In the presence of the kinase inhibitor KT5720, the amount of Ubinuclein-1 in the NP40 insoluble fraction is increased, together with actin. Moreover, treatment of the cells with KT5720 or H89 induces the concentration of Ubinuclein-1 at tricellular intersections of MDCK cells. Taken together, our findings demonstrate novel cell signaling trafficking by Ubinuclein-1 via association with 14-3-3ɛ following Ubinuclein-1 phosphorylation by the cAMP-dependent protein kinase-A.

  4. Specific recognition of sulfate esters by bindin, a sperm adhesion protein from sea urchins.

    PubMed

    DeAngelis, P L; Glabe, C G

    1990-01-19

    Bindin specifically binds to egg surface sulfated fucan polysaccharides and mediates the attachment of sperm to the egg during fertilization. Sulfate esters are critical for this interaction. We have examined the effect of different anionic groups on the relative binding affinities of a series of homologous anionic polymers for bindin to determine the extent to which other charged moieties can substitute for sulfate. We found that bindin displays a remarkable specificity for sulfate- or sulfonic acid-containing polymers. The relative affinities of poly(vinyl sulfate) and poly(styrenesulfonic acid) are four orders of magnitude higher than polymers containing phosphate esters or carboxyl groups. The bindin-mediated aggregation of sea urchin eggs was inhibited by the sulfated polymers but not the other anionic polymers. This high degree of selectivity for sulfated polymers is not observed for the binding of the polyanions to most other proteins and basic polypeptides. These results suggest that the binding is not due to the formation of simple salt bridges, and that all three non-ester oxygen atoms of the sulfate groups are involved in multiple bonding interactions with a complementary 'docking site' on the bindin polypeptide. The orientation of the polysaccharide sulfate oxygen atoms relative to the protein binding site may be an important determinant of the specificity of polysaccharide binding.

  5. A protein homologous to the Torpedo postsynaptic 58K protein is present at the myotendinous junction

    PubMed Central

    1990-01-01

    The 58K protein is a peripheral membrane protein enriched in the acetylcholine receptor (AChR)-rich postsynaptic membrane of Torpedo electric organ. Because of its coexistence with AChRs in the postsynaptic membrane in both electrocytes and skeletal muscle, it is thought to be involved in the formation and maintenance of AChR clusters. Using an mAb against the 58K protein of Torpedo electric organ, we have identified a single protein band in SDS-PAGE analysis of Xenopus myotomal muscle with an apparent molecular mass of 48 kD. With this antibody, the distribution of this protein was examined in the myotomal muscle fibers with immunofluorescence techniques. We found that the 48K protein is concentrated at the myotendinous junctions (MTJs) of these muscle fibers. The MTJ is also enriched in talin and vinculin. By double labeling muscle fibers with antibodies against talin and the 48K protein, these two proteins were found to colocalize at the membrane invaginations of the MTJ. In cultured myotomal muscle cells, the 48K protein and talin are also colocalized at sites of membrane-myofibril interaction. The 48K protein is, however, not found at focal adhesion sites in nonmuscle cells, which are enriched in talin. These data suggest that the 48K protein is specifically involved in the interaction of myofibrillar actin filaments with the plasma membrane at the MTJ. In addition to the MTJ localization, 48K protein is also present at AChR clusters both in vivo and in vitro. Thus, this protein is shared by both the MTJ and the neuromuscular junction. PMID:2112550

  6. Influence of poly(ethylene oxide)-based copolymer on protein adsorption and bacterial adhesion on stainless steel: modulation by surface hydrophobicity.

    PubMed

    Yang, Yi; Rouxhet, Paul G; Chudziak, Dorota; Telegdi, Judit; Dupont-Gillain, Christine C

    2014-06-01

    The aim of the present work is to study the adhesion of Pseudomonas NCIMB 2021, a typical aerobic marine microorganism, on stainless steel (SS) substrate. More particularly, the potential effect on adhesion of adsorbed poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer is investigated. Bacterial attachment experiments were carried out using a modified parallel plate flow chamber, allowing different surface treatments to be compared in a single experiment. The amount of adhering bacteria was determined via DAPI staining and fluorescence microscopy. X-ray photoelectron spectroscopy (XPS) was used to characterize the surface chemical composition of SS and hydrophobized SS before and after PEO-PPO-PEO adsorption. The adsorption of bovine serum albumin (BSA), a model protein, was investigated to test the resistance of PEO-PPO-PEO layers to protein adsorption. The results show that BSA adsorption and Pseudomonas 2021 adhesion are significantly reduced on hydrophobized SS conditioned with PEO-PPO-PEO. Although PEO-PPO-PEO is also found to adsorb on SS, it does not prevent BSA adsorption nor bacterial adhesion, which is attributed to different PEO-PPO-PEO adlayer structures on hydrophobic and hydrophilic surfaces. The obtained results open the way to a new strategy to reduce biofouling on metal oxide surfaces using PEO-PPO-PEO triblock copolymer.

  7. Implication of sortase-dependent proteins of Streptococcus thermophilus in adhesion to human intestinal epithelial cell lines and bile salt tolerance.

    PubMed

    Kebouchi, Mounira; Galia, Wessam; Genay, Magali; Soligot, Claire; Lecomte, Xavier; Awussi, Ahoefa Ablavi; Perrin, Clarisse; Roux, Emeline; Dary-Mourot, Annie; Le Roux, Yves

    2016-04-01

    Streptococcus thermophilus (ST) is a lactic acid bacterium widely used in dairy industry and displays several properties which could be beneficial for host. The objective of this study was to investigate, in vitro, the implication of sortase A (SrtA) and sortase-dependent proteins (SDPs) in the adhesion of ST LMD-9 strain to intestinal epithelial cells (IECs) and resistance to bile salt mixture (BSM; taurocholoate, deoxycholate, and cholate). The effect of mutations in prtS (protease), mucBP (MUCin-Binding Protein), and srtA genes in ST LMD-9 in these mechanisms were examined. The HT29-MTX, HT29-CL.16E, and Caco-2 TC7 cell lines were used. HT29-MTX and HT29-CL.16E cells express different mucins found in the gastro intestinal tract; whereas, Caco-2 TC7 express cell surface proteins found in the small intestine. All mutants showed different adhesion profiles depending on cell lines. The mutation in genes srtA and mucBP leads to a significant decrease in LMD-9 adhesion capacity to Caco-2 TC7 cells. A mutation in mucBP gene has also shown a significant decrease in LMD-9 adhesion capacity to HT29-CL.16E cells. However, no difference was observed using HT29-MTX cells. Furthermore, ST LMD-9 and srtA mutant were resistant to BSM up to 3 mM. Contrariwise, no viable bacteria were detected for prtS and mucBP mutants at this concentration. Two conclusions could be drawn. First, SDPs could be involved in the LMD-9 adhesion depending on the cell lines indicating the importance of eukaryotic-cell surface components in adherence. Second, SDPs could contribute to resistance to bile salts probably by maintaining the cell membrane integrity. PMID:26820650

  8. Folliculin, the product of the Birt-Hogg-Dube tumor suppressor gene, interacts with the adherens junction protein p0071 to regulate cell-cell adhesion.

    PubMed

    Medvetz, Doug A; Khabibullin, Damir; Hariharan, Venkatesh; Ongusaha, Pat P; Goncharova, Elena A; Schlechter, Tanja; Darling, Thomas N; Hofmann, Ilse; Krymskaya, Vera P; Liao, James K; Huang, Hayden; Henske, Elizabeth P

    2012-01-01

    Birt-Hogg-Dube (BHD) is a tumor suppressor gene syndrome associated with fibrofolliculomas, cystic lung disease, and chromophobe renal cell carcinoma. In seeking to elucidate the pathogenesis of BHD, we discovered a physical interaction between folliculin (FLCN), the protein product of the BHD gene, and p0071, an armadillo repeat containing protein that localizes to the cytoplasm and to adherens junctions. Adherens junctions are one of the three cell-cell junctions that are essential to the establishment and maintenance of the cellular architecture of all epithelial tissues. Surprisingly, we found that downregulation of FLCN leads to increased cell-cell adhesion in functional cell-based assays and disruption of cell polarity in a three-dimensional lumen-forming assay, both of which are phenocopied by downregulation of p0071. These data indicate that the FLCN-p0071 protein complex is a negative regulator of cell-cell adhesion. We also found that FLCN positively regulates RhoA activity and Rho-associated kinase activity, consistent with the only known function of p0071. Finally, to examine the role of Flcn loss on cell-cell adhesion in vivo, we utilized keratin-14 cre-recombinase (K14-cre) to inactivate Flcn in the mouse epidermis. The K14-Cre-Bhd(flox/flox) mice have striking delays in eyelid opening, wavy fur, hair loss, and epidermal hyperplasia with increased levels of mammalian target of rapamycin complex 1 (mTORC1) activity. These data support a model in which dysregulation of the FLCN-p0071 interaction leads to alterations in cell adhesion, cell polarity, and RhoA signaling, with broad implications for the role of cell-cell adhesion molecules in the pathogenesis of human disease, including emphysema and renal cell carcinoma. PMID:23139756

  9. Controllable degradation of medical magnesium by electrodeposited composite films of mussel adhesive protein (Mefp-1) and chitosan.

    PubMed

    Jiang, Ping-Li; Hou, Rui-Qing; Chen, Cheng-Dong; Sun, Lan; Dong, Shi-Gang; Pan, Jin-Shan; Lin, Chang-Jian

    2016-09-15

    To control the degradation rate of medical magnesium in body fluid environment, biocompatible films composed of Mussel Adhesive Protein (Mefp-1) and chitosan were electrodeposited on magnesium surface in cathodic constant current mode. The compositions and structures of the films were characterized by atomic force microscope (AFM), scanning electron microscope (SEM) and infrared reflection absorption spectroscopy (IRAS). And the corrosion protection performance was investigated using electrochemical measurements and immersion tests in simulated body fluid (Hanks' solution). The results revealed that Mefp-1 and chitosan successfully adhered on the magnesium surface and formed a protective film. Compared with either single Mefp-1 or single chitosan film, the composite film of chitosan/Mefp-1/chitosan (CPC (chitosan/Mefp-1/chitosan)) exhibited lower corrosion current density, higher polarization resistance and more homogenous corrosion morphology and thus was able to effectively control the degradation rate of magnesium in simulated body environment. In addition, the active attachment and spreading of MC3T3-E1 cells on the CPC film coated magnesium indicated that the CPC film was significantly able to improve the biocompatibility of the medical magnesium. PMID:27309944

  10. Heat shock protein 90β stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells

    SciTech Connect

    Xiong, Xiangyang; Wang, Yao; Liu, Chengmei; Lu, Quqin; Liu, Tao; Chen, Guoan; Rao, Hai; Luo, Shiwen

    2014-08-01

    Focal adhesion kinase (FAK) acts as a regulator of cellular signaling and may promote cell spreading, motility, invasion and survival in malignancy. Elevated expression and activity of FAK frequently correlate with tumor cell metastasis and poor prognosis in breast cancer. However, the mechanisms by which the turnover of FAK is regulated remain elusive. Here we report that heat shock protein 90β (HSP90β) interacts with FAK and the middle domain (amino acids 233–620) of HSP90β is mainly responsible for this interaction. Furthermore, we found that HSP90β regulates FAK stability since HSP90β inhibitor 17-AAG triggers FAK ubiquitylation and subsequent proteasome-dependent degradation. Moreover, disrupted FAK-HSP90β interaction induced by 17-AAG contributes to attenuation of tumor cell growth, migration, and invasion. Together, our results reveal how HSP90β regulates FAK stability and identifies a potential therapeutic strategy to breast cancer. - Highlights: • HSP90β protects FAK from degradation by the ubiquitin-proteasome pathway. • Inhibition of HSP90β or FAK attenuates tumorigenesis of breast cancer cells. • Genetic repression of HSP90β or FAK inhibits tumor cell migration and proliferation. • Inhibition of HSP90β or FAK interferes cell invasion and cytoskeleton.

  11. Hybrid chitosan/β-1,3-glucan matrix of bone scaffold enhances osteoblast adhesion, spreading and proliferation via promotion of serum protein adsorption.

    PubMed

    Przekora, Agata; Benko, Aleksandra; Blazewicz, Marta; Ginalska, Grazyna

    2016-01-01

    Initial protein adsorption to the material surface is crucial for osteoblast adhesion, survival, and rapid proliferation resulting in intensive new bone formation. The aim of this study was to demonstrate that modification of a chitosan matrix of chitosan/hydroxyapatite (chit/HA) biomaterial for bone tissue engineering applications with linear β-1,3-glucan (curdlan) leads to promotion of serum protein adsorption to the resultant scaffold (chit/glu/HA) and thus in enhancement of osteoblast adhesion, spreading and proliferation. Fabricated biomaterials were pre-adsorbed with different protein solutions and then protein adsorption and osteoblast behavior on the scaffolds were compared. Moreover, surface chemical composition, wettability and surface energy of biomaterials were compared. Modification of the chitosan matrix with β-1,3-glucan introduces a greater polarpart in the resultant chitosan/β-1,3-glucan matrix presumably resulting from more OH groups within the curdlan structure. Moreover, FTIR-ATR results suggest that there might be some sort of chemical interaction between the NH group of chitosan and the OH group of β-1,3-glucan. As a consequence, the chit/glu/HA scaffold adsorbs significantly more adhesion proteins that are crucial for osteoblasts compared to the chit/HA material, providing a higher density culture of well-spread osteoblasts on its surface. Obtained results revealed that not only is chit/glu/HA biomaterial a promising scaffold for bone tissue engineering applications, but the specific polysaccharide chit/glu matrix itself is promising for use in the biomedical material field to modify various biomaterials in order to enhance osteoblast adhesion and proliferation on their surfaces. PMID:27388048

  12. Tumor suppressor Smad4 mediates downregulation of the anti-adhesive invasion-promoting matricellular protein SPARC: Landscaping activity of Smad4 as revealed by a "secretome" analysis.

    PubMed

    Volmer, Martin W; Radacz, Yvonne; Hahn, Stephan A; Klein-Scory, Susanne; Stühler, Kai; Zapatka, Marc; Schmiegel, Wolff; Meyer, Helmut E; Schwarte-Waldhoff, Irmgard

    2004-05-01

    We have demonstrated previously that restoration of Smad4 expression in Smad4-deficient SW480 human colon carcinoma cells was adequate to suppress tumorigenicity and invasive potential, whereas cell growth in vitro was not affected. Here we show that Smad4-positive and Smad4-negative SW480 cells deposit extracellular matrices in tissue culture which are functionally different with respect to their adhesiveness. We present a "differential secretomics analysis" as the most direct approach to identify the underlying alterations. The protein composition of conditioned media produced by Smad4-positive and Smad4-negative SW480 cells was compared by two-dimensional (2-D) gel electrophoresis. A major group of protein spots was detected in media derived from Smad4-negative cells, only, which were identified as "secreted protein, acidic and rich in cysteins" (SPARC) by mass spectrometry. SPARC expression in SW480 cells was suppressed by Smad4 at the level of transcription. SPARC is a glycoprotein of the extracellular matrix, characterized as an anti-adhesive and invasion-promoting protein. Differential secretomics appeared as a powerful method to identify a novel Smad4 target gene, which may be one of the players involved in reduced adhesiveness of extracellular matrices and thus consistent with Smad4's emerging role as an invasion suppressor.

  13. T cells respond to heat shock protein 60 via TLR2: activation of adhesion and inhibition of chemokine receptors.

    PubMed

    Zanin-Zhorov, Alexandra; Nussbaum, Gabriel; Franitza, Susanne; Cohen, Irun R; Lider, Ofer

    2003-08-01

    Soluble 60 kDa heat shock protein (HSP60) activates macrophages via TLR4. We now report that soluble HSP60 activates T cells via the innate receptor TLR2. HSP60 activated T cell adhesion to fibronectin to a degree similar to other activators: IL-2, SDF-1alpha, and RANTES. T cell type and state of activation was important; nonactivated CD45RA+ and IL-2-activated CD45RO+ T cells responded optimally (1 h) at low concentrations (0.1-1 ng/ml), but nonactivated CD45RO+ T cells required higher concentrations (approximately 1 microg/ml) of HSP60. T cell HSP60 signaling was inhibited specifically by monoclonal antibodies (mAb) to TLR2 but not by a mAb to TLR4. Indeed, T cells from mice with mutated TLR4 could still respond to HSP60, whereas Chinese hamster T cells with mutated TLR2 did not respond. The human T cell response to soluble HSP60 depended on phosphatidylinositol 3-kinase and protein kinase C signaling and involved the phosphorylation of Pyk-2. Soluble HSP60 also inhibited actin polymerization and T cell chemotaxis through extracellular matrix-like gels toward the chemokines SDF-1alpha (CXCL12) or ELC (CCL19). Exposure to HSP60 for longer times (18 h) down-regulated chemokine receptor expression: CXCR4 and CCR7. These results suggest that soluble HSP60, through TLR2-dependent interactions, can regulate T cell behavior in inflammation. PMID:12824285

  14. Composites containing albumin protein or cyanoacrylate adhesives and biodegradable scaffolds: I. Acute wound closure study in a rat model

    NASA Astrophysics Data System (ADS)

    Hoffman, Grant T.; Soller, Eric C.; Heintzelman, Douglas L.; Duffy, Mark T.; Bloom, Jeffrey N.; Gilmour, Travis M.; Gonnerman, Krista N.; McNally-Heintzelman, Karen M.

    2004-07-01

    Composite adhesives composed of biodegradable scaffolds impregnated with a biological or synthetic adhesive were investigated for use in wound closure as an alternative to using either one of the adhesives alone. Two different scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biological material, small intestinal sub mucosa, manufactured by Cook BioTech. The biological adhesive was composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser. The synthetic adhesive was Ethicon's Dermabond, a 2-octyl-cyanoacrylate. The tensile strength of skin incisions repaired ex vivo in a rat model, by adhesive alone or in combination with a scaffold, as well as the time-to-failure, were measured and compared. The tensile strength of repairs formed using the scaffold-enhanced biological adhesives were on average, 80% stronger than their non-enhanced counterparts, with an accompanying increase in the time-to-failure of the repairs. These results support the theory that a scaffold material with an irregular surface that bridges the wound provides a stronger, more durable and consistent adhesion, due to the distribution of the tensile stress forces over the many micro-adhesions provided by the irregular surface, rather than the one large continuous adhesive contact. This theory is also supported by several previous ex vivo experiments demonstrating enhanced tensile strength of irregular versus smooth scaffold surfaces in identical tissue repairs performed on bovine thoracic aorta, liver, spleen, small intestine and lung tissue.

  15. Library Screen Identifies Enterococcus faecalis CcpA, the Catabolite Control Protein A, as an Effector of Ace, a Collagen Adhesion Protein Linked to Virulence

    PubMed Central

    Gao, Peng; Pinkston, Kenneth L.; Bourgogne, Agathe; Cruz, Melissa R.; Garsin, Danielle A.; Murray, Barbara E.

    2013-01-01

    The Enterococcus faecalis cell wall-anchored protein Ace is an important virulence factor involved in cell adhesion and infection. Expression of Ace on the cell surface is affected by many factors, including stage of growth, culture temperature, and environmental components, such as serum, urine, and collagen. However, the mechanisms that regulate or modulate Ace display are not well understood. With interest in identifying genes associated with Ace expression, we utilized a whole-cell enzyme-linked immunosorbent assay (ELISA)-based screening method to identify mutants from a transposon insertion mutant library which exhibited distinct Ace surface expression profiles. We identified a ccpA insertion mutant which showed significantly decreased levels of Ace surface expression at early growth phase versus those of wild-type OG1RF. Confirmation of the observation was achieved through flow cytometry and complementation analysis. Compared to the wild type, the E. faecalis ccpA mutant had an impaired ability to adhere to collagen when grown to early exponential phase, consistent with the lack of Ace expression in the early growth phase. As a key component of carbon catabolite regulation, CcpA has been previously reported to play a critical role in regulating expression of proteins involved in E. faecalis carbohydrate uptake and utilization. Our discovery is the first to associate CcpA with the production of a major E. faecalis virulence factor, providing new insights into the regulation of E. faecalis pathogenesis. PMID:23974022

  16. Library screen identifies Enterococcus faecalis CcpA, the catabolite control protein A, as an effector of Ace, a collagen adhesion protein linked to virulence.

    PubMed

    Gao, Peng; Pinkston, Kenneth L; Bourgogne, Agathe; Cruz, Melissa R; Garsin, Danielle A; Murray, Barbara E; Harvey, Barrett R

    2013-10-01

    The Enterococcus faecalis cell wall-anchored protein Ace is an important virulence factor involved in cell adhesion and infection. Expression of Ace on the cell surface is affected by many factors, including stage of growth, culture temperature, and environmental components, such as serum, urine, and collagen. However, the mechanisms that regulate or modulate Ace display are not well understood. With interest in identifying genes associated with Ace expression, we utilized a whole-cell enzyme-linked immunosorbent assay (ELISA)-based screening method to identify mutants from a transposon insertion mutant library which exhibited distinct Ace surface expression profiles. We identified a ccpA insertion mutant which showed significantly decreased levels of Ace surface expression at early growth phase versus those of wild-type OG1RF. Confirmation of the observation was achieved through flow cytometry and complementation analysis. Compared to the wild type, the E. faecalis ccpA mutant had an impaired ability to adhere to collagen when grown to early exponential phase, consistent with the lack of Ace expression in the early growth phase. As a key component of carbon catabolite regulation, CcpA has been previously reported to play a critical role in regulating expression of proteins involved in E. faecalis carbohydrate uptake and utilization. Our discovery is the first to associate CcpA with the production of a major E. faecalis virulence factor, providing new insights into the regulation of E. faecalis pathogenesis.

  17. Mechanism of a cytosolic O-glycosyltransferase essential for the synthesis of a bacterial adhesion protein

    PubMed Central

    Chen, Yu; Seepersaud, Ravin; Bensing, Barbara A.; Sullam, Paul M.; Rapoport, Tom A.

    2016-01-01

    O-glycosylation of Ser and Thr residues is an important process in all organisms, which is only poorly understood. Such modification is required for the export and function of adhesin proteins that mediate the attachment of pathogenic Gram-positive bacteria to host cells. Here, we have analyzed the mechanism by which the cytosolic O-glycosyltransferase GtfA/B of Streptococcus gordonii modifies the Ser/Thr-rich repeats of adhesin. The enzyme is a tetramer containing two molecules each of GtfA and GtfB. The two subunits have the same fold, but only GtfA contains an active site, whereas GtfB provides the primary binding site for adhesin. During a first phase of glycosylation, the conformation of GtfB is restrained by GtfA to bind substrate with unmodified Ser/Thr residues. In a slow second phase, GtfB recognizes residues that are already modified with N-acetylglucosamine, likely by converting into a relaxed conformation in which one interface with GtfA is broken. These results explain how the glycosyltransferase modifies a progressively changing substrate molecule. PMID:26884191

  18. Haemophilus influenzae P4 Interacts With Extracellular Matrix Proteins Promoting Adhesion and Serum Resistance.

    PubMed

    Su, Yu-Ching; Mukherjee, Oindrilla; Singh, Birendra; Hallgren, Oskar; Westergren-Thorsson, Gunilla; Hood, Derek; Riesbeck, Kristian

    2016-01-15

    Interaction with the extracellular matrix (ECM) is one of the successful colonization strategies employed by nontypeable Haemophilus influenzae (NTHi). Here we identified Haemophilus lipoprotein e (P4) as a receptor for ECM proteins. Purified recombinant P4 displayed a high binding affinity for laminin (Kd = 9.26 nM) and fibronectin (Kd = 10.19 nM), but slightly less to vitronectin (Kd = 16.51 nM). A P4-deficient NTHi mutant showed a significantly decreased binding to these ECM components. Vitronectin acquisition conferred serum resistance to both P4-expressing NTHi and Escherichia coli transformants. P4-mediated bacterial adherence to pharynx, type II alveolar, and bronchial epithelial cells was mainly attributed to fibronectin. Importantly, a significantly reduced bacterial infection was observed in the middle ear of the Junbo mouse model when NTHi was devoid of P4. In conclusion, our data provide new insight into the role of P4 as an important factor for Haemophilus colonization and subsequent respiratory tract infection.

  19. Self-assembling peptide inspired by a barnacle underwater adhesive protein.

    PubMed

    Nakano, Masahiro; Shen, Jian-Ren; Kamino, Kei

    2007-06-01

    An underwater bioadhesive generally comprises a multiprotein complex that provides a molecular basis for self-assembly. We report here a new class of self-assembling peptide inspired by a 20 kDa barnacle cement protein. Studies on the chemically synthesized 24-residue peptide have revealed that (1) it underwent irreversible self-assembly upon the addition of salt, (2) the self-assembly was started at a salt concentration close to that of seawater with noncovalent intermolecular interactions, (3) the self-assembled material resembled a macroscopic membrane of interwoven nanofilaments, (4) incubation in an alkaline pH range formed the intramolecular disulfide bond of a peptide molecule, thus triggering a conformation change of the molecule, and (5) conformational change of the building block promoted the formation of a nanofiber, resulting in the display of a three-dimensional meshlike mesoscopic structure with defined pores having a diameter of approximately 200 nm. The peptide is likely to provide a suitable basis for further development of peptide-based materials.

  20. Reversible Conformational Change in the Plasmodium falciparum Circumsporozoite Protein Masks Its Adhesion Domains

    PubMed Central

    Herrera, Raul; Anderson, Charles; Kumar, Krishan; Molina-Cruz, Alvaro; Nguyen, Vu; Burkhardt, Martin; Reiter, Karine; Shimp, Richard; Howard, Randall F.; Srinivasan, Prakash; Nold, Michael J.; Ragheb, Daniel; Shi, Lirong; DeCotiis, Mark; Aebig, Joan; Lambert, Lynn; Rausch, Kelly M.; Muratova, Olga; Jin, Albert; Reed, Steven G.; Sinnis, Photini; Barillas-Mury, Carolina; Duffy, Patrick E.; MacDonald, Nicholas J.

    2015-01-01

    The extended rod-like Plasmodium falciparum circumsporozoite protein (CSP) is comprised of three primary domains: a charged N terminus that binds heparan sulfate proteoglycans, a central NANP repeat domain, and a C terminus containing a thrombospondin-like type I repeat (TSR) domain. Only the last two domains are incorporated in RTS,S, the leading malaria vaccine in phase 3 trials that, to date, protects about 50% of vaccinated children against clinical disease. A seroepidemiological study indicated that the N-terminal domain might improve the efficacy of a new CSP vaccine. Using a panel of CSP-specific monoclonal antibodies, well-characterized recombinant CSPs, label-free quantitative proteomics, and in vitro inhibition of sporozoite invasion, we show that native CSP is N-terminally processed in the mosquito host and undergoes a reversible conformational change to mask some epitopes in the N- and C-terminal domains until the sporozoite interacts with the liver hepatocyte. Our findings show the importance of understanding processing and the biophysical change in conformation, possibly due to a mechanical or molecular signal, and may aid in the development of a new CSP vaccine. PMID:26169272

  1. A role for adhesion and degranulation-promoting adapter protein in collagen-induced platelet activation mediated via integrin α2β1

    PubMed Central

    JARVIS, G. E.; BIHAN, D.; HAMAIA, S.; PUGH, N.; GHEVAERT, C. J. G.; PEARCE, A. C.; HUGHES, C. E.; WATSON, S. P.; WARE, J.; RUDD, C. E.; FARNDALE, R. W.

    2013-01-01

    Summary Background Collagen-induced platelet activation is a key step in the development of arterial thrombosis via its interaction with the receptors glycoprotein (GP)VI and integrin α2β1. Adhesion and degranulation-promoting adapter protein (ADAP) regulates αIIbβ3 in platelets and αLβ2 in T cells, and is phosphorylated in GPVI-deficient platelets activated by collagen. Objectives To determine whether ADAP plays a role in collagen-induced platelet activation and in the regulation and function of α2β1. Methods Using ADAP−/− mice and synthetic collagen peptides, we investigated the role of ADAP in platelet aggregation, adhesion, spreading, thromboxane synthesis, and tyrosine phosphorylation. Results and Conclusions Platelet aggregation and phosphorylation of phospholipase Cγ2 induced by collagen were attenuated in ADAP−/− platelets. However, aggregation and signaling induced by collagen-related peptide (CRP), a GPVI-selective agonist, were largely unaffected. Platelet adhesion to CRP was also unaffected by ADAP deficiency. Adhesion to the α2β1-selective ligand GFOGER and to a peptide (III-04), which supports adhesion that is dependent on both GPVI and α2β1, was reduced in ADAP−/− platelets. An impedance-based label-free detection technique, which measures adhesion and spreading of platelets, indicated that, in the absence of ADAP, spreading on GFOGER was also reduced. This was confirmed with non-fluorescent differential-interference contrast microscopy, which revealed reduced filpodia formation in ADAP−/− platelets adherent to GFOGER. This indicates that ADAP plays a role in mediating platelet activation via the collagen-binding integrin α2β1. In addition, we found that ADAP−/− mice, which are mildly thrombocytopenic, have enlarged spleens as compared with wild-type animals. This may reflect increased removal of platelets from the circulation. PMID:22103309

  2. Identification of inhibitors of α2β1 integrin, members of C-lectin type proteins, in Echis sochureki venom

    SciTech Connect

    Jakubowski, Piotr; Calvete, Juan J.; Eble, Johannes A.; Lazarovici, Philip; Marcinkiewicz, Cezary

    2013-05-15

    Snake venom antagonists of α2β1 integrin have been identified as members of a C-lectin type family of proteins (CLP). In the present study, we characterized three new CLPs isolated from Echis sochureki venom, which interact with this integrin. These proteins were purified using a combination of gel filtration, ion exchange chromatography and reverse phase HPLC. Sochicetin-A and sochicetin-B potently inhibited adhesion of cells expressing α2β1 integrin and binding of isolated α2β1 ectodomain to collagen I, as well as bound to recombinant GST-α2A domain in ELISA, whereas activity of sochicetin-C in these assays was approximately two orders of magnitude lower. Structurally, sochicetin-B and sochicetin-C are typical heterodimeric αβ CLPs, whereas sochicetin-A exhibits a trimer of its subunits (αβ){sub 3} in the quaternary structure. Immobilized sochicetins supported adhesion of glioma cell lines, LN18 and LBC3, whereas in a soluble form they partially inhibited adhesion of these cells to collagen I. Glioma cells spread very poorly on sochicetin-A, showing no cytoskeleton rearrangement typical for adhesion to collagen I or fibronectin. Adhesion on CLP does not involve focal adhesion elements, such as vinculin. Sochicetin-A also inhibited collagen-induced platelet aggregation, similar to other CLPs' action on the blood coagulation system. - Highlights: • Isolation of three novel snake venom CLPs inhibiting α2β1 integrin • Reporting hexameric CLP, sochicetin-A with anti-collagen receptor activity • CLPs antagonize the interaction of glioma cells with collagen matrix. • Sochicetin-A does not support glioma cell spreading.

  3. First study on gene expression of cement proteins and potential adhesion-related genes of a membranous-based barnacle as revealed from Next-Generation Sequencing technology.

    PubMed

    Lin, Hsiu-Chin; Wong, Yue Him; Tsang, Ling Ming; Chu, Ka Hou; Qian, Pei-Yuan; Chan, Benny K K

    2014-02-01

    This is the first study applying Next-Generation Sequencing (NGS) technology to survey the kinds, expression location, and pattern of adhesion-related genes in a membranous-based barnacle. A total of 77,528,326 and 59,244,468 raw sequence reads of total RNA were generated from the prosoma and the basis of Tetraclita japonica formosana, respectively. In addition, 55,441 and 67,774 genes were further assembled and analyzed. The combined sequence data from both body parts generates a total of 79,833 genes of which 47.7% were shared. Homologues of barnacle cement proteins - CP-19K, -52K, and -100K - were found and all were dominantly expressed at the basis where the cement gland complex is located. This is the main area where transcripts of cement proteins and other potential adhesion-related genes were detected. The absence of another common barnacle cement protein, CP-20K, in the adult transcriptome suggested a possible life-stage restricted gene function and/or a different mechanism in adhesion between membranous-based and calcareous-based barnacles.

  4. Effects of overexpression of PTP36, a putative protein tyrosine phosphatase, on cell adhesion, cell growth, and cytoskeletons in HeLa cells.

    PubMed

    Ogata, M; Takada, T; Mori, Y; Oh-hora, M; Uchida, Y; Kosugi, A; Miyake, K; Hamaoka, T

    1999-04-30

    Non-receptor-type putative protein tyrosine phosphatase-36 (PTP36), also known as PTPD2/Pez, possesses a domain homologous to the N-terminal half of band 4.1 protein. To gain insight into the biological function of PTP36, we established a HeLa cell line, HtTA/P36-9, in which the overexpression of PTP36 was inducible. PTP36 expressed in HeLa cells was enriched in the cytoskeleton near the plasma membrane. There was little endogenous PTP36 detectable in uninduced HtTA/P36-9 cells or in the parental HeLa cells. Upon induction of PTP36 overexpression, HtTA/P36-9 cells spread less well, grew more slowly, and adhered to the extracellular matrix proteins less well than uninduced cells. Moreover, decreases in the actin stress fibers and the number of focal adhesions were observed. The tyrosine phosphorylation of the focal adhesion kinase induced by lysophosphatidic acid was suppressed in the HtTA/P36-9 cells overexpressing PTP36. These results indicate that PTP36 affects cytoskeletons, cell adhesion, and cell growth, thus suggesting that PTP36 is involved in their regulatory processes. PMID:10212280

  5. Antisense RNA inactivation of gene expression of a cell-cell adhesion protein (gp64) in the cellular slime mold Polysphondylium pallidum.

    PubMed

    Funamoto, S; Ochiai, H

    1996-05-01

    The gp64 protein of Polysphondylium pallidum has been shown to mediate EDTA-stable cell-cell adhesion. To explore the functional role of gp64, we made an antisense RNA expression construct designed to prevent the gene expression of gp64; the construct was introduced into P. pallidum cells and the transformants were characterised. The antisense RNA-expressing clone L3mc2 which had just been harvested at the growth phase tended to re-form in aggregates smaller in size than did the parental cells in either the presence or absence of 10 mM EDTA. In contrast, 6.5-hour starved L3mc2 cells remained considerably dissociated from each other after 5 minutes gyrating, although aggregation gradually increased by 50% during a further 55 minutes gyrating in the presence of 10 mM EDTA. Correspondingly, L3mc2 lacked specifically the cell-cell adhesion protein, gp64. We therefore conclude that the gp64 protein is involved in forming the EDTA-resistant cell-cell contact. In spite of the absence of gp64, L3mc2 exhibited normal developmental processes, a fact which demonstrates that another cell-cell adhesion system exists in the development of Polysphondylium. This is the first report in which an antisense RNA technique was successfully applied to Polysphondylium. PMID:8743948

  6. Seafood delicacy makes great adhesive

    ScienceCinema

    Idaho National Laboratory - Frank Roberto, Heather Silverman

    2016-07-12

    Technology from Mother Nature is often hard to beat, so Idaho National Laboratory scientistsgenetically analyzed the adhesive proteins produced by blue mussels, a seafood delicacy. Afterobtaining full-length DNA sequences encoding these proteins, reprod

  7. Seafood delicacy makes great adhesive

    SciTech Connect

    Idaho National Laboratory - Frank Roberto, Heather Silverman

    2008-03-26

    Technology from Mother Nature is often hard to beat, so Idaho National Laboratory scientistsgenetically analyzed the adhesive proteins produced by blue mussels, a seafood delicacy. Afterobtaining full-length DNA sequences encoding these proteins, reprod

  8. Biophysically inspired model for functionalized nanocarrier adhesion to cell surface: roles of protein expression and mechanical factors

    PubMed Central

    Ramakrishnan, N.; Tourdot, Richard W.; Eckmann, David M.; Ayyaswamy, Portonovo S.; Muzykantov, Vladimir R.; Radhakrishnan, Ravi

    2016-01-01

    In order to achieve selective targeting of affinity–ligand coated nanoparticles to the target tissue, it is essential to understand the key mechanisms that govern their capture by the target cell. Next-generation pharmacokinetic (PK) models that systematically account for proteomic and mechanical factors can accelerate the design, validation and translation of targeted nanocarriers (NCs) in the clinic. Towards this objective, we have developed a computational model to delineate the roles played by target protein expression and mechanical factors of the target cell membrane in determining the avidity of functionalized NCs to live cells. Model results show quantitative agreement with in vivo experiments when specific and non-specific contributions to NC binding are taken into account. The specific contributions are accounted for through extensive simulations of multivalent receptor–ligand interactions, membrane mechanics and entropic factors such as membrane undulations and receptor translation. The computed NC avidity is strongly dependent on ligand density, receptor expression, bending mechanics of the target cell membrane, as well as entropic factors associated with the membrane and the receptor motion. Our computational model can predict the in vivo targeting levels of the intracellular adhesion molecule-1 (ICAM1)-coated NCs targeted to the lung, heart, kidney, liver and spleen of mouse, when the contributions due to endothelial capture are accounted for. The effect of other cells (such as monocytes, etc.) do not improve the model predictions at steady state. We demonstrate the predictive utility of our model by predicting partitioning coefficients of functionalized NCs in mice and human tissues and report the statistical accuracy of our model predictions under different scenarios. PMID:27429783

  9. Biophysically inspired model for functionalized nanocarrier adhesion to cell surface: roles of protein expression and mechanical factors

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, N.; Tourdot, Richard W.; Eckmann, David M.; Ayyaswamy, Portonovo S.; Muzykantov, Vladimir R.; Radhakrishnan, Ravi

    2016-06-01

    In order to achieve selective targeting of affinity-ligand coated nanoparticles to the target tissue, it is essential to understand the key mechanisms that govern their capture by the target cell. Next-generation pharmacokinetic (PK) models that systematically account for proteomic and mechanical factors can accelerate the design, validation and translation of targeted nanocarriers (NCs) in the clinic. Towards this objective, we have developed a computational model to delineate the roles played by target protein expression and mechanical factors of the target cell membrane in determining the avidity of functionalized NCs to live cells. Model results show quantitative agreement with in vivo experiments when specific and non-specific contributions to NC binding are taken into account. The specific contributions are accounted for through extensive simulations of multivalent receptor-ligand interactions, membrane mechanics and entropic factors such as membrane undulations and receptor translation. The computed NC avidity is strongly dependent on ligand density, receptor expression, bending mechanics of the target cell membrane, as well as entropic factors associated with the membrane and the receptor motion. Our computational model can predict the in vivo targeting levels of the intracellular adhesion molecule-1 (ICAM1)-coated NCs targeted to the lung, heart, kidney, liver and spleen of mouse, when the contributions due to endothelial capture are accounted for. The effect of other cells (such as monocytes, etc.) do not improve the model predictions at steady state. We demonstrate the predictive utility of our model by predicting partitioning coefficients of functionalized NCs in mice and human tissues and report the statistical accuracy of our model predictions under different scenarios.

  10. L1 cell adhesion molecule induces melanoma cell motility by activation of mitogen-activated protein kinase pathways.

    PubMed

    Yi, Young-Su; Baek, Kwang-Soo; Cho, Jae Youl

    2014-06-01

    L1 cell adhesion molecule (L1CAM) is highly expressed in various types of cancer cells and has been implicated in the control of cell proliferation and motility. Recently, L1CAM was reported to induce the motility of melanoma cells, but the mechanism of this induction remains poorly understood. In this study, we investigated the molecular mechanisms by which L1CAM induces the motility of melanoma cells. Unlike other types of cancer cells, B16F10 melanoma cells highly expressed L1CAM at both the RNA and protein levels, and the expression of L1CAM induced AP-1 activity. In accordance to AP-1 activation, MAPK signaling pathways were activated by L1CAM. Inhibition of L1CAM expression by L1CAM-specific siRNA suppressed the activation of MAPKs such as ERK and p38. However, no significant change was observed in JNK activation. As expected, upstream MAP2K, MKK3/6, MAP3K, and TAK1 were also deactivated by the inhibition of L1CAM expression. L1CAM induced the motility of B16F10 cells. Inhibition of L1CAM expression suppressed migration and invasion of B16F10 cells, but no suppressive effect was observed on their proliferation and anti-apoptotic resistance. Treatment of B16F10 cells with U0126, an ERK inhibitor, or SB203580, a p38 inhibitor, suppressed the migration and invasion abilities of B16F10 cells. Taken together, our results suggest that L1CAM induces the motility of B16F10 melanoma cells via the activation of MAPK pathways. This finding provides a more detailed molecular mechanism of L1CAM-mediated induction of melanoma cell motility. PMID:24974583

  11. Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces.

    PubMed

    Felgueiras, Helena P; Aissa, Ines Ben; Evans, Margaret D M; Migonney, Véronique

    2015-11-01

    The research developed on functionalized model or prosthetic surfaces with bioactive polymers has raised the possibility to modulate and/or control the biological in vitro and in vivo responses to synthetic biomaterials. The mechanisms underlying the bioactivity exhibited by sulfonated groups on surfaces involves both selective adsorption and conformational changes of adsorbed proteins. Indeed, surfaces functionalized by grafting poly(sodium styrene sulfonate) [poly(NaSS)] modulate the cellular and bacterial response by inducing specific interactions with fibronectin (Fn). Once implanted, a biomaterial surface is exposed to a milieu of many proteins that compete for the surface which dictates the subsequent biological response. Once understood, this can be controlled by dictating exposure of active binding sites. In this in vitro study, we report the influence of binary mixtures of proteins [albumin (BSA), Fn and collagen type I (Col I)] adsorbed on poly(NaSS) grafted Ti6Al4V on the adhesion and differentiation of MC3T3-E1 osteoblast-like cells and the adhesion and proliferation of Staphylococcus aureus (S. aureus). Outcomes showed that poly(NaSS) stimulated cell spreading, attachment strength, differentiation and mineralization, whatever the nature of protein provided at the interface compared with ungrafted Ti6Al4V (control). While in competition, Fn and Col I were capable of prevailing over BSA. Fn played an important role in the early interactions of the cells with the surface, while Col I was responsible for increased alkaline phosphatase, calcium and phosphate productions associated with differentiation. Poly(NaSS) grafted surfaces decreased the adhesion of S. aureus and the presence of Fn on these chemically altered surfaces increased bacterial resistance ≈70% compared to the ungrafted Ti6Al4V. Overall, our study showed that poly(NaSS) grafted Ti6Al4V selectively adsorbed proteins (particularly Fn) promoting the adhesion and differentiation of osteoblast

  12. Targeting, Capture, and Stabilization of Microtubules at Early Focal Adhesions

    PubMed Central

    Kaverina, Irina; Rottner, Klemens; Small, J. Victor

    1998-01-01

    By co-injecting fluorescent tubulin and vinculin into fish fibroblasts we have revealed a “cross talk” between microtubules and early sites of substrate contact. This mutuality was first indicated by the targeting of vinculin-rich foci by microtubules during their growth towards the cell periphery. In addition to passing directly over contact sites, the ends of single microtubules could be observed to target several contacts in succession or the same contact repetitively, with intermittent withdrawals. Targeting sometimes involved side-stepping, or the major re-routing of a microtubule, indicative of a guided, rather than a random process. The paths that microtubules followed into contacts were unrelated to the orientation of stress fiber assemblies and targeting occurred also in mouse fibroblasts that lacked a system of intermediate filaments. Further experiments with microtubule inhibitors showed that adhesion foci can: (a) capture microtubules and stabilize them against disassembly by nocodazole; and (b), act as preferred sites of microtubule polymerization, during either early recovery from nocodazole, or brief treatment with taxol. From these and other findings we speculate that microtubules are guided into substrate contact sites and through the motor-dependent delivery of signaling molecules serve to modulate their development. It is further proposed this modulation provides the route whereby microtubules exert their influence on cell shape and polarity. PMID:9660872

  13. Rbt1 protein domains analysis in Candida albicans brings insights into hyphal surface modifications and Rbt1 potential role during adhesion and biofilm formation.

    PubMed

    Monniot, Céline; Boisramé, Anita; Da Costa, Grégory; Chauvel, Muriel; Sautour, Marc; Bougnoux, Marie-Elisabeth; Bellon-Fontaine, Marie-Noëlle; Dalle, Frédéric; d'Enfert, Christophe; Richard, Mathias L

    2013-01-01

    Cell wall proteins are central to the virulence of Candida albicans. Hwp1, Hwp2 and Rbt1 form a family of hypha-associated cell surface proteins. Hwp1 and Hwp2 have been involved in adhesion and other virulence traits but Rbt1 is still poorly characterized. To assess the role of Rbt1 in the interaction of C. albicans with biotic and abiotic surfaces independently of its morphological state, heterologous expression and promoter swap strategies were applied. The N-terminal domain with features typical of the Flo11 superfamily was found to be essential for adhesiveness to polystyrene through an increase in cell surface hydrophobicity. A 42 amino acid-long domain localized in the central part of the protein was shown to enhance the aggregation function. We demonstrated that a VTTGVVVVT motif within the 42 amino acid domain displayed a high β-aggregation potential and was responsible for cell-to-cell interactions by promoting the aggregation of hyphae. Finally, we showed through constitutive expression that while Rbt1 was directly accessible to antibodies in hyphae, it was not so in yeast. Similar results were obtained for another cell wall protein, namely Iff8, and suggested that modification of the cell wall structure between yeast and hyphae can regulate the extracellular accessibility of cell wall proteins independently of gene regulation.

  14. DDB2 (damaged-DNA binding 2) protein: a new modulator of nanomechanical properties and cell adhesion of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Barbieux, Claire; Bacharouche, Jalal; Soussen, Charles; Hupont, Sébastien; Razafitianamaharavo, Angélina; Klotz, Rémi; Pannequin, Rémi; Brie, David; Bécuwe, Philippe; Francius, Grégory; Grandemange, Stéphanie

    2016-02-01

    DDB2, known for its role in DNA repair, was recently shown to reduce mammary tumor invasiveness by inducing the transcription of IκBα, an inhibitor of NF-κB activity. Since cellular adhesion is a key event during the epithelial to mesenchymal transition (EMT) leading to the invasive capacities of breast tumor cells, the aim of this study was to investigate the role of DDB2 in this process. Thus, using low and high DDB2-expressing MDA-MB231 and MCF7 cells, respectively, in which DDB2 expression was modulated experimentally, we showed that DDB2 overexpression was associated with a decrease of adhesion abilities on glass and plastic areas of breast cancer cells. Then, we investigated cell nanomechanical properties by atomic force microscopy (AFM). Our results revealed significant changes in the Young's Modulus value and the adhesion force in MDA-MB231 and MCF7 cells, whether DDB2 was expressed or not. The cell stiffness decrease observed in MDA-MB231 and MCF7 expressing DDB2 was correlated with a loss of the cortical actin-cytoskeleton staining. To understand how DDB2 regulates these processes, an adhesion-related gene PCR-Array was performed. Several adhesion-related genes were differentially expressed according to DDB2 expression, indicating that important changes are occurring at the molecular level. Thus, this work demonstrates that AFM technology is an important tool to follow cellular changes during tumorigenesis. Moreover, our data revealed that DDB2 is involved in early events occurring during metastatic progression of breast cancer cells and will contribute to define this protein as a new marker of metastatic progression in this type of cancer.

  15. Upregulation of adhesion complex proteins and fibronectin by human keratinocytes treated with an aqueous extract from the leaves of Chromolaena odorata (Eupolin).

    PubMed

    Phan, T T; Allen, J; Hughes, M A; Cherry, G; Wojnarowska, F

    2000-01-01

    The fresh leaves and extract of the plant Chromolaena odorata are a traditional herbal treatment in developing countries for burns, soft tissue wounds and skin infections. We have previously shown that the extract had an effect on the growth and proliferation of keratinocytes and fibroblasts in culture. This study has demonstrated that Eupolin extract increased expression of several components of the adhesion complex and fibronectin by human keratinocytes. Using indirect immunofluorescence we found increased expression (dose-dependent) of laminin 5, laminin 1, collagen IV, and fibronectin. The expression of the b1 and b4 integrins was upregulated by the extract at low concentrations (0.1 and 1 microg/ml), but the expression was decreased at higher doses of Eupolin (10 microg-150 microg/ml). A number of clinical studies carried out by Vietnamese and international medical investigators have demonstrated the efficacy of this extract on the wound healing process. In this study we have shown that Eupolin stimulated the expression of many proteins of the adhesion complex and fibronectin by human keratinocytes. The adhesion complex proteins are essential to stabilise epithelium and this effect could contribute to the clinical efficacy of Eupolin in healing.

  16. Simvastatin disrupts cytoskeleton and decreases cardiac fibroblast adhesion, migration and viability.

    PubMed

    Copaja, Miguel; Venegas, Daniel; Aranguiz, Pablo; Canales, Jimena; Vivar, Raul; Avalos, Yennifer; Garcia, Lorena; Chiong, Mario; Olmedo, Ivonne; Catalán, Mabel; Leyton, Lisette; Lavandero, Sergio; Díaz-Araya, Guillermo

    2012-03-29

    Statins reduce the isoprenoids farnesyl and geranylgeranyl pyrophosphate, essential intermediates, which control a diversity of cellular events such as cytoskeleton integrity, adhesion, migration and viability. Cardiac fibroblasts are the major non-myocyte cell constituent in the normal heart, and play a key role in the maintenance of extracellular matrix. The effects of simvastatin on cardiac fibroblast processes previously mentioned remain unknown. Our aims were to investigate the effects of simvastatin on cytoskeleton structure and focal adhesion complex assembly and their relationships with cell adhesion, migration and viability in cultured cardiac fibroblasts. To this end, cells were treated with simvastatin for 24 h and changes in actin cytoskeleton, levels of vimentin and paxillin as well as their subcellular localization were analyzed by Western blot and immunocytochemistry, respectively. Cell adhesion to plastic or collagen coated dishes, migration in Transwell chambers, and cell viability were analyzed after simvastatin treatment. Our results show that simvastatin disrupts actin cytoskeleton and focal adhesion complex evaluated by phalloidin stain and immunocytochemistry for paxillin and vinculin. All these effects occurred by a cholesterol synthesis-independent mechanism. Simvastatin decreased cell adhesion, migration and viability in a concentration-dependent manner. Finally, simvastatin decreased angiotensin II-induced phospho-paxillin levels and cell adhesion. We concluded that simvastatin disrupts cytoskeleton integrity and focal adhesion complex assembly in cultured cardiac fibroblasts by a cholesterol-independent mechanism and consequently decreases cell migration, adhesion and viability. PMID:22306966

  17. The Src homology 2 protein Shb promotes cell cycle progression in murine hematopoietic stem cells by regulation of focal adhesion kinase activity

    SciTech Connect

    Gustafsson, Karin; Heffner, Garrett; Wenzel, Pamela L.; Curran, Matthew; Grawé, Jan; McKinney-Freeman, Shannon L.; Daley, George Q.; Welsh, Michael

    2013-07-15

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despite this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via increased

  18. Investigating the BSA protein adsorption and bacterial adhesion of Al-alloy surfaces after creating a hierarchical (micro/nano) superhydrophobic structure.

    PubMed

    Moazzam, Parisa; Razmjou, Amir; Golabi, Mohsen; Shokri, Dariush; Landarani-Isfahani, Amir

    2016-09-01

    Bacterial adhesion and subsequent biofilm formation on metals such as aluminum (Al) alloys lead to serious issues in biomedical and industrial fields from both an economical and health perspective. Here, we showed that a careful manipulation of Al surface characteristics via a facile two-steps superhydrophobic modification can provide not only biocompatibility and an ability to control protein adsorption and bacterial adhesion, but also address the issue of apparent long-term toxicity of Al-alloys. To find out the roles of surface characteristics, surface modification and protein adsorption on microbial adhesion and biofilm formation, the surfaces were systematically characterized by SEM, EDX, XPS, AFM, FTIR, water contact angle (WCA) goniometry, surface free energy (SFE) measurement, MTT, Bradford, Lowry and microtiter plate assays and also flow-cytometry and potentiostat analyses. Results showed that WCA and SFE changed from 70° to 163° and 36.3 to 0.13 mN m(-1) , respectively. The stable and durable modification led to a substantial reduction in static/dynamic BSA adsorption. The effect of such a treatment on the biofilm formation was analyzed by using three different bacteria of Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus. The microtiter plate assay and flow cytometry analysis showed that the modification not only could substantially reduce the bacterial adhesion but this biofouling resistance is independent of bacterium type. An excellent cell viability after exposure of HeLa cells to waters incubated with the modified samples was observed. Finally, the corrosion rate reduced sharply from 856.6 to 0.119 MPY after superhydrophobic modifications, which is an excellent stable corrosion inhibition property. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2220-2233, 2016. PMID:27104583

  19. Investigating the BSA protein adsorption and bacterial adhesion of Al-alloy surfaces after creating a hierarchical (micro/nano) superhydrophobic structure.

    PubMed

    Moazzam, Parisa; Razmjou, Amir; Golabi, Mohsen; Shokri, Dariush; Landarani-Isfahani, Amir

    2016-09-01

    Bacterial adhesion and subsequent biofilm formation on metals such as aluminum (Al) alloys lead to serious issues in biomedical and industrial fields from both an economical and health perspective. Here, we showed that a careful manipulation of Al surface characteristics via a facile two-steps superhydrophobic modification can provide not only biocompatibility and an ability to control protein adsorption and bacterial adhesion, but also address the issue of apparent long-term toxicity of Al-alloys. To find out the roles of surface characteristics, surface modification and protein adsorption on microbial adhesion and biofilm formation, the surfaces were systematically characterized by SEM, EDX, XPS, AFM, FTIR, water contact angle (WCA) goniometry, surface free energy (SFE) measurement, MTT, Bradford, Lowry and microtiter plate assays and also flow-cytometry and potentiostat analyses. Results showed that WCA and SFE changed from 70° to 163° and 36.3 to 0.13 mN m(-1) , respectively. The stable and durable modification led to a substantial reduction in static/dynamic BSA adsorption. The effect of such a treatment on the biofilm formation was analyzed by using three different bacteria of Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus. The microtiter plate assay and flow cytometry analysis showed that the modification not only could substantially reduce the bacterial adhesion but this biofouling resistance is independent of bacterium type. An excellent cell viability after exposure of HeLa cells to waters incubated with the modified samples was observed. Finally, the corrosion rate reduced sharply from 856.6 to 0.119 MPY after superhydrophobic modifications, which is an excellent stable corrosion inhibition property. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2220-2233, 2016.

  20. Copper modulates zinc metalloproteinase-dependent ectodomain shedding of key signaling and adhesion proteins and promotes the invasion of prostate cancer epithelial cells.

    PubMed

    Parr-Sturgess, Catherine A; Tinker, Claire L; Hart, Claire A; Brown, Michael D; Clarke, Noel W; Parkin, Edward T

    2012-10-01

    A disintegrin and metalloproteinases (ADAMs) and matrix metalloproteinases (MMPs) are zinc metalloproteinases (ZMPs) that catalyze the "ectodomain shedding" of a range of cell surface proteins including signaling and adhesion molecules. These "sheddases" are associated with the invasion and metastasis of a range of cancers. Increased serum and tumor tissue levels of copper are also observed in several cancers, although little is known about how the metal might promote disease progression at the molecular level. In the current study, we investigated whether copper might regulate the ectodomain shedding of two key cell surface proteins implicated in the invasion and metastasis of prostate cancer, the Notch ligand Jagged1 and the adhesion molecule E-cadherin, and whether the metal was able to influence the invasion of the prostate cancer epithelial cell line PC3. Physiological copper concentrations stimulated the ZMP-mediated proteolysis of Jagged1 and E-cadherin in cell culture models, whereas other divalent metals had no effect. Copper-mediated Jagged1 proteolysis was also observed following the pretreatment of cells with cycloheximide and in a cell-free membrane system, indicating a posttranslational mechanism of sheddase activation. Finally, the concentrations of copper that stimulated ZMP-mediated protein shedding also enhanced PC3 invasion; an effect that could be negated using a sheddase inhibitor or copper chelators. Collectively, these data implicate copper as an important factor in promoting prostate cancer cell invasion and indicate that the selective posttranslational activation of ZMP-mediated protein shedding might play a role in this process.

  1. Platelet adhesion: structural and functional diversity of short dystrophin and utrophins in the formation of dystrophin-associated-protein complexes related to actin dynamics

    PubMed Central

    Cerecedo, Doris; Martínez-Rojas, Dalila; Chávez, Oscar; Martínez-Pérez, Francisco; García-Sierra, Francisco; Rendon, Alvaro; Mornet, Dominique; Mondragón, Ricardo

    2005-01-01

    Summary Platelets are dynamic cell fragments that modify their shape during activation. Utrophin and dystrophins are minor actin-binding proteins present in muscle and non-muscle cytoskeleton. In the present study, we characterised the pattern of Dp71 isoforms and utrophin gene products by immunoblot in human platelets. Two new dystrophin isoforms were found, Dp71f and Dp71d, as well as the Up71 isoform and the dystrophin-associated proteins, α and β-dystrobrevins. Distribution of Dp71d/Dp71Δ110m, Up400/Up71 and dystrophin-associated proteins in relation to the actin cytoskeleton was evaluated by confocal microscopy in both resting and platelets adhered on glass. Formation of two dystrophin-associated protein complexes (Dp71d/Dp71Δ110m~DAPC and Up400/Up71~DAPC) was demonstrated by co-immunoprecipitation and their distribution in relation to the actin cytoskeleton was characterised during platelet adhesion. The Dp71d/Dp71Δ110m~DAPC is maintained mainly at the granulomere and is associated with dynamic structures during activation by adhesion to thrombin-coated surfaces. Participation of both Dp71d/Dp71Δ110m~DAPC and Up400/Up71~DAPC in the biological roles of the platelets is discussed. PMID:16411395

  2. Platelet adhesion: structural and functional diversity of short dystrophin and utrophins in the formation of dystrophin-associated-protein complexes related to actin dynamics.

    PubMed

    Cerecedo, Doris; Martínez-Rojas, Dalila; Chávez, Oscar; Martínez-Pérez, Francisco; García-Sierra, Francisco; Rendon, Alvaro; Mornet, Dominique; Mondragón, Ricardo

    2005-12-01

    Platelets are dynamic cell fragments that modify their shape during activation. Utrophin and dystrophins are minor actin-binding proteins present in muscle and non-muscle cytoskeleton. In the present study, we characterised the pattern of Dp71 isoforms and utrophin gene products by immunoblot in human platelets. Two new dystrophin isoforms were found, Dp71f and Dp71 d, as well as the Up71 isoform and the dystrophin-associated proteins, alpha and beta -dystrobrevins. Distribution of Dp71d/Dp71delta110m, Up400/Up71 and dystrophin-associated proteins in relation to the actin cytoskeleton was evaluated by confocal microscopy in both resting and platelets adhered on glass. Formation of two dystrophin-associated protein complexes (Dp71d/Dp71delta110m approximately DAPC and Up400/Up71 approximately DAPC) was demonstrated by co-immunoprecipitation and their distribution in relation to the actin cytoskeleton was characterised during platelet adhesion. The Dp71d/Dp71delta100m approximately DAPC is maintained mainly at the granulomere and is associated with dynamic structures during activation by adhesion to thrombin-coated surfaces. Participation of both Dp71d/Dp71delta110m approximately DAPC and Up400/Up71 approximately DAPC in the biological roles of the platelets is discussed.

  3. Silencing the Nucleocytoplasmic O-GlcNAc Transferase Reduces Proliferation, Adhesion, and Migration of Cancer and Fetal Human Colon Cell Lines.

    PubMed

    Steenackers, Agata; Olivier-Van Stichelen, Stéphanie; Baldini, Steffi F; Dehennaut, Vanessa; Toillon, Robert-Alain; Le Bourhis, Xuefen; El Yazidi-Belkoura, Ikram; Lefebvre, Tony

    2016-01-01

    The post-translational modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) is regulated by a unique couple of enzymes. O-GlcNAc transferase (OGT) transfers the GlcNAc residue from UDP-GlcNAc, the final product of the hexosamine biosynthetic pathway (HBP), whereas O-GlcNAcase (OGA) removes it. This study and others show that OGT and O-GlcNAcylation levels are increased in cancer cell lines. In that context, we studied the effect of OGT silencing in the colon cancer cell lines HT29 and HCT116 and the primary colon cell line CCD841CoN. Herein, we report that OGT silencing diminished proliferation, in vitro cell survival and adhesion of primary and cancer cell lines. SiOGT dramatically decreased HT29 and CCD841CoN migration, CCD841CoN harboring high capabilities of migration in Boyden chamber system when compared to HT29 and HCT116. The expression levels of actin and tubulin were unaffected by OGT knockdown but siOGT seemed to disorganize microfilament, microtubule, and vinculin networks in CCD841CoN. While cancer cell lines harbor higher levels of OGT and O-GlcNAcylation to fulfill their proliferative and migratory properties, in agreement with their higher consumption of HBP main substrates glucose and glutamine, our data demonstrate that OGT expression is not only necessary for the biological properties of cancer cell lines but also for normal cells.

  4. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    PubMed

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  5. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    PubMed

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives. PMID:27182547

  6. Bridging Adhesion of a Protein onto an Inorganic Surface Using Self-Assembled Dual-Functionalized Spheres.

    PubMed

    Sato, Sota; Ikemi, Masatoshi; Kikuchi, Takashi; Matsumura, Sachiko; Shiba, Kiyotaka; Fujita, Makoto

    2015-10-14

    For the bridging adhesion of different classes of materials in their intact functional states, the adhesion of biomolecules onto inorganic surfaces is a necessity. A new molecular design strategy for bridging adhesion was demonstrated by the introduction of two independent recognition groups on the periphery of spherical complexes self-assembled from metal ions (M) and bidentate ligands (L). These dual-functionalized M12L24 spheres were quantitatively synthesized in one step from two ligands, bearing either a biotin for streptavidin recognition or a titania-binding aptamer, and Pd(II) ions. The selective recognition of titania surfaces was achieved by ligands with hexapeptide aptamers (Arg-Lys-Leu-Pro-Asp-Ala: minTBP-1), whose fixation ability was enhanced by the accumulation effect on the surface of the M12L24 spheres. These well-defined spherical structures can be specifically tailored to promote interactions with both titania and streptavidin simultaneously without detrimentally affecting either recognition motif. The irreversible immobilization of the spheres onto titania was revealed quantitatively by quartz crystal microbalance measurements, and the adhesion of streptavidin to the titania surface mediated by the biotin surrounding the spheres was visually demonstrated by lithographic patterning experiments.

  7. Tissue factor pathway inhibitor (TFPI) interferes with endothelial cell migration by inhibition of both the Erk pathway and focal adhesion proteins.

    PubMed

    Provençal, Mathieu; Michaud, Marisol; Beaulieu, Edith; Ratel, David; Rivard, Georges-Etienne; Gingras, Denis; Béliveau, Richard

    2008-03-01

    Tissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor that is mainly known for its inhibition of tissue factor-mediated coagulation. In addition to its anticoagulant properties, emerging data show that TFPI may also regulate endothelial cell functions via a non-haemostatic pathway. In this work we demonstrate that at concentrations within the physiological range, TFPI inhibits both endothelial cell migration and their differentiation into capillary-like structures in vitro. These effects were specific to endothelial cells since no inhibitory effect was observed on the migration of tumor (glioblastoma) cells. Inhibition of endothelial cell migration was correlated with a concomitant loss in cell adhesion, suggesting an alteration of focal adhesion complex integrity. Accordingly, we observed that TFPI inhibited the phosphorylation of focal adhesion kinase and paxillin, two key proteins involved in the scaffolding of these complexes, and that this effect was specific to endothelial cells. These results suggest that TFPI influences the angiogenic process via a non-haemostatic pathway, by downregulating the migratory mechanisms of endothelial cells. PMID:18327407

  8. The effect of stromelysin-1 (MMP-3) on non-collagenous extracellular matrix proteins of demineralized dentin and the adhesive properties of restorative resins.

    PubMed

    Boukpessi, T; Menashi, S; Camoin, L; Tencate, J M; Goldberg, M; Chaussain-Miller, C

    2008-11-01

    Dentin non-collagenous matrix components (NCPs) are structural proteins involved in the formation, the architecture and the mineralization of the extracellular matrix (ECM). We investigated here how recombinant metalloproteinase stromelysin-1, also termed MMP-3, initiates the release of ECM molecules from artificially demineralized human dentin. Analysis of the supernatants by Western blotting reveals that MMP-3 extracts PGs (decorin, biglycan), and also a series of phosphorylated proteins: dentin sialoprotein (DSP), osteopontin (OPN), bone sialoprotein (BSP) and MEPE, but neither dentin matrix protein-1 (DMP1), another member of the SIBLING family, nor osteocalcin (OC), a non-phosphorylated matrix molecule. After treatment of dentin surfaces by MMP-3, scanning electron microscope (SEM) examination of resin replica shows an increased penetration of the resin into the dentin tubules when compared to surfaces only treated by demineralizing solutions. This preclinical investigation suggests that MMP-3 may be used to improve the adhesive properties of restorative materials.

  9. Streptococcus suis type 2 SSU0587 protein is a beta-galactosidase that contributes to bacterial adhesion but not to virulence in mice.

    PubMed

    Tang, Yulong; Zhang, Xiaoyan; Yin, Yulong; Hardwidge, Philip R; Fang, Weihuan

    2014-07-01

    Bacterial surface proteins play key roles in virulence and often contribute to bacterial adhesion and invasion. We discovered that the Streptococcus suis type 2 (SS2) gene SSU0587 encodes a protein of 1,491 amino acids that possesses β-galactosidase activity. The surface association of the protein was dependent upon sortase activity. Deleting SSU0587 from clinical SS2 isolate JX081101 caused a loss of both β-galactosidase activity and adherence to microvascular endothelial cells. Deleting SSU0587 had no measurable impact on either invasion of microvascular endothelial cells or on virulence in a murine infection model, although the concentration of JX081101ΔSSU0587 was reduced in the brains of infected mice, as compared with the pathogen loads of the wild-type strain.

  10. Self-assembly of DNA and cell-adhesive proteins onto pH-sensitive inorganic crystals for precise and efficient transgene delivery.

    PubMed

    Chowdhury, E H

    2008-01-01

    Intracellular delivery of a functional gene or a gene-silencing DNA or RNA sequence is expected to be a powerful tool for treating critical human diseases very precisely and effectively. One of the major hurdles to the successful delivery of a nucleic acid with nanoparticles is the transport across the plasma membrane. The existence of various and numerous cell surface receptors with potential capability of being internalized by cells upon ligand binding unveils the ways of overcoming the barrier by targeting the nanoparticles to specific receptor. This review will reveal the current progress on utilizing the cell adhesion molecules as targeting receptors for transgene delivery, with a special focus on the design of bio-functionalized inorganic nanocrystals using both naturally occurring and genetically engineered cell adhesive proteins for high efficiency transfection of embryonic stem cells. Self-assembly of both DNA and cell-adhesive proteins, such as fibronectin and E-cadherin-Fc into the growing nanocrystals of carbonate apatite leads to their high affinity interactions with fibronectin-specific integrins and E-cadherin in embryonic stem cell surface and accelerates transgene delivery for subsequent expression. While only apatite nano-particles were very inefficient in transfecting embryonic stem cells, fibronectin-anchored particles and to a more significant extent, fibronectin and E-cadherin-Fc-associated particles dramatically enhanced transgene delivery with a value notably higher than that of commercially available lipofection system. Activation of protein kinase C (PKC) dramatically enhances transgene expression probably by up-regulating both integrin and E-cadherin. Thus, the new establishment of a bio-functional hybrid gene-carrier would promote and facilitate development of stem cell-based therapy in regenerative medicine.

  11. c-Yes regulates cell adhesion at the apical ectoplasmic specialization-blood-testis barrier axis via its effects on protein recruitment and distribution

    PubMed Central

    Xiao, Xiang; Mruk, Dolores D.

    2013-01-01

    During spermatogenesis, extensive restructuring takes place at the cell-cell interface since developing germ cells migrate progressively from the basal to the adluminal compartment of the seminiferous epithelium. Since germ cells per se are not motile cells, their movement relies almost exclusively on the Sertoli cell. Nonetheless, extensive exchanges in signaling take place between these cells in the seminiferous epithelium. c-Yes, a nonreceptor protein tyrosine kinase belonging to the Src family kinases (SFKs) and a crucial signaling protein, was recently shown to be upregulated at the Sertoli cell-cell interface at the blood-testis barrier (BTB) at stages VIII–IX of the seminiferous epithelial cycle of spermatogenesis. It was also highly expressed at the Sertoli cell-spermatid interface known as apical ectoplasmic specialization (apical ES) at stage V to early stage VIII of the epithelial cycle during spermiogenesis. Herein, it was shown that the knockdown of c-Yes by RNAi in vitro and in vivo affected both Sertoli cell adhesion at the BTB and spermatid adhesion at the apical ES, causing a disruption of the Sertoli cell tight junction-permeability barrier function, germ cell loss from the seminiferous epithelium, and also a loss of spermatid polarity. These effects were shown to be mediated by changes in distribution and/or localization of adhesion proteins at the BTB (e.g., occludin, N-cadherin) and at the apical ES (e.g., nectin-3) and possibly the result of changes in the underlying actin filaments at the BTB and the apical ES. These findings implicate that c-Yes is a likely target of male contraceptive research. PMID:23169788

  12. c-Yes regulates cell adhesion at the apical ectoplasmic specialization-blood-testis barrier axis via its effects on protein recruitment and distribution.

    PubMed

    Xiao, Xiang; Mruk, Dolores D; Cheng, C Yan

    2013-01-15

    During spermatogenesis, extensive restructuring takes place at the cell-cell interface since developing germ cells migrate progressively from the basal to the adluminal compartment of the seminiferous epithelium. Since germ cells per se are not motile cells, their movement relies almost exclusively on the Sertoli cell. Nonetheless, extensive exchanges in signaling take place between these cells in the seminiferous epithelium. c-Yes, a nonreceptor protein tyrosine kinase belonging to the Src family kinases (SFKs) and a crucial signaling protein, was recently shown to be upregulated at the Sertoli cell-cell interface at the blood-testis barrier (BTB) at stages VIII-IX of the seminiferous epithelial cycle of spermatogenesis. It was also highly expressed at the Sertoli cell-spermatid interface known as apical ectoplasmic specialization (apical ES) at stage V to early stage VIII of the epithelial cycle during spermiogenesis. Herein, it was shown that the knockdown of c-Yes by RNAi in vitro and in vivo affected both Sertoli cell adhesion at the BTB and spermatid adhesion at the apical ES, causing a disruption of the Sertoli cell tight junction-permeability barrier function, germ cell loss from the seminiferous epithelium, and also a loss of spermatid polarity. These effects were shown to be mediated by changes in distribution and/or localization of adhesion proteins at the BTB (e.g., occludin, N-cadherin) and at the apical ES (e.g., nectin-3) and possibly the result of changes in the underlying actin filaments at the BTB and the apical ES. These findings implicate that c-Yes is a likely target of male contraceptive research.

  13. Synergistic and hierarchical adhesive and topographic guidance of BHK cells.

    PubMed

    Britland, S; Morgan, H; Wojiak-Stodart, B; Riehle, M; Curtis, A; Wilkinson, C

    1996-11-01

    Guided cell movement is a fundamental process in development and regeneration. We have used microengineered culture substrates to study the interaction between model topographic and adhesive guidance cues in steering BHK cell orientation. Grooves 0.1, 0.5, 1.0, 3.0, and 6.0 microm deep together with pitch-matched aminosilane tracks 5, 12, 25, 50, and 100 microm wide were fabricated on fused silica substrates using photolithographic and dry-etching techniques. The cues were presented to the cells individually, simultaneously in parallel and orthogonally opposed. Cells aligned most strongly to 25-microm-wide adhesive tracks and to 5-microm-wide, 6-microm-deep grooves. Stress fibers and vinculin were found to align with the adhesive tracks and to the grooves and ridges. Cell alignment was profoundly enhanced on all surfaces that presented both cues in parallel. Cells were able to switch alignment from ridges to grooves, and vice versa, depending on the location of superimposed adhesive tracks. Cells aligned preferentially to adhesive tracks superimposed orthogonally over grooves of matched pitch, traversing numerous grooves and ridges. The strength of the cues was more closely matched on narrower 3- and 6-microm-deep gratings with cells showing evidence of alignment to both cues. Confocal fluorescence microscopy revealed two groups of mutually opposed f-actin stress fibers within the same cell, one oriented with the topographic cues and the other with the adhesive cues. However, the adhesive response was consistently dominant. We conclude that cells are able to detect and respond to multiple guidance cues simultaneously. The adhesive and topographic guidance cues modeled here were capable of interacting both synergistically and hierarchically to guide cell orientation. PMID:8912725

  14. UV-induced graft copolymerization of monoacrylate-poly(ethylene glycol) onto poly(3-hydroxyoctanoate) to reduce protein adsorption and platelet adhesion.

    PubMed

    Kim, Hyung Woo; Chung, Chung Wook; Rhee, Young Ha

    2005-03-01

    Homogeneous solutions of poly(3-hydroxyoctanoate) (PHO) and the monoacrylate-poly(ethylene glycol) (PEGMA) monomer in chloroform were irradiated with UV light to obtain PEGMA-grafted PHO (PEGMA-g-PHO) copolymers. Variables affecting the degree of grafting (DG), such as the time of UV irradiation and the concentrations of the PEGMA monomer and initiator, were investigated. The PEGMA-g-PHO copolymers were characterized by measuring the water contact angle, molecular weight, thermal transition temperatures and mechanical properties, as well as by nuclear magnetic resonance spectroscopy. The results from all of these measurements indicate that PEGMA groups were present on the PHO polymer. The protein adsorption and platelet adhesion on the PEGMA-g-PHO surfaces were examined using poly(L-lactide) (PLLA) surfaces as the control. The proteins and platelets had a significantly lower tendency to adhere to the PEGMA-g-PHO copolymers than to PLLA. The graft copolymer with a high DG of PEGMA was very effective in reducing the protein adsorption and platelet adhesion and did not activate the platelets. The results obtained in this study suggest that PEGMA-g-PHO copolymers have the potential to be used as blood-contacting devices in a broad range of biomedical applications. PMID:15769515

  15. Investigation of In Vitro Bone Cell Adhesion and Proliferation on Ti Using Direct Current Stimulation

    PubMed Central

    Bodhak, Subhadip; Bose, Susmita; Kinsel, William C.; Bandyopadhyay, Amit

    2012-01-01

    Our objective was to establish an in vitro cell culture protocol to improve bone cell attachment and proliferation on Ti substrate using direct current stimulation. For this purpose, a custom made electrical stimulator was developed and a varying range of direct currents, from 5 to 25 µA, were used to study the current stimulation effect on bone cells cultured on conducting Ti samples in vitro. Cell–materials interaction was studied for a maximum of 5 days by culturing with human fetal osteoblast cells (hFOB). The direct current was applied in every 8 h time interval and the duration of electrical stimulation was kept constant at 15 min for all cases. In vitro results showed that direct current stimulation significantly favored bone cell attachment and proliferation in comparison to nonstimulated Ti surface. Immunochemistry and confocal microscopy results confirmed that the cell adhesion was most pronounced on 25 µA direct current stimulated Ti surfaces as hFOB cells expressed higher vinculin protein with increasing amount of direct current. Furthermore, MTT assay results established that cells grew 30% higher in number under 25 µA electrical stimulation as compared to nonstimulated Ti surface after 5 days of culture period. In this work we have successfully established a simple and cost effective in vitro protocol offering easy and rapid analysis of bone cell-materials interaction which can be used in promotion of bone cell attachment and growth on Ti substrate using direct current electrical stimulation in an in vitro model. PMID:23144532

  16. UV-O3-treated and protein-coated polymer surfaces facilitate endothelial cell adhesion and proliferation mediated by the PKCalpha/ERK/cPLA2 pathway.

    PubMed

    Formosa, Fabio; Anfuso, Carmelina D; Satriano, Cristina; Lupo, Gabriella; Giurdanella, Giovanni; Ragusa, Nicola; Marletta, Giovanni; Alberghina, Mario

    2008-04-01

    We examined the adhesion and proliferation of immortalized endothelial cells GP8.39 (ECs) onto polyethyleneterephtalate (PET) and polyhydroxymethylsiloxane (PHMS) thin films, functionalized by UV-O(3) treatment and/or protein immobilization. The modified surface topography showed partial oxidation for both polymers, a slight increase in wettability and monopolar basic character for PET, and a hydrophilic bipolar acid-base behaviour for PHMS. UV-O(3) treatment did not induce significant roughness changes (under 1 nm) as shown by atomic force spectroscopy measurements (AFM). The EC adhesion and spreading onto untreated and modified surfaces were investigated both before and after immobilization of collagen (CA) and fibronectin (FN) adlayers. AFM analyses showed an open-weave protein layer on both untreated polymers which became a tight-woven net after UV-O(3) irradiation of underlying films. On day 5 after seeding, cell count analyses on irradiated PET surfaces, CA/FN-coated or not, showed EC adhesion and proliferation significantly greater than those on untreated polymers, indicating that UV-O(3) irradiation promoted fast endothelialization. A less pronounced EC spreading behaviour on treated PHMS was observed. In ECs grown on irradiated and CA- or FN-coated PET, the levels of phospho-protein kinase Calpha (p-PKCalpha, phospho-ERK1/2, and phospho-cytosolic phospholipase A(2) (p-cPLA(2)), all enzymes taken as signaling markers of cell adhesion and proliferation, decreased in comparison to those in CA- or FN-coated untreated PET. In contrast, in ECs grown on UV-O(3)-treated PHMS, Western blot analyses showed increased levels of p-PKCalpha, p-ERK1/2 and p-cPLA(2) in comparison with cells grown onto untreated polymer. The growth response of ECs to the substrates was related to the changes of polarity properties of UV-O(3)-treated polymer films, from hydrophobic/neutral towards hydrophilic/charged layers, and the signaling pathway remodelling to the cell proliferation

  17. α2-Macroglobulin Can Crosslink Multiple Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) Molecules and May Facilitate Adhesion of Parasitized Erythrocytes.

    PubMed

    Stevenson, Liz; Laursen, Erik; Cowan, Graeme J; Bandoh, Betty; Barfod, Lea; Cavanagh, David R; Andersen, Gregers R; Hviid, Lars

    2015-07-01

    Rosetting, the adhesion of Plasmodium falciparum-infected erythrocytes to uninfected erythrocytes, involves clonal variants of the parasite protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) and soluble serum factors. While rosetting is a well-known phenotypic marker of parasites associated with severe malaria, the reason for this association remains unclear, as do the molecular details of the interaction between the infected erythrocyte (IE) and the adhering erythrocytes. Here, we identify for the first time a single serum factor, the abundant serum protease inhibitor α2-macroglobulin (α2M), which is both required and sufficient for rosetting mediated by the PfEMP1 protein HB3VAR06 and some other rosette-mediating PfEMP1 proteins. We map the α2M binding site to the C terminal end of HB3VAR06, and demonstrate that α2M can bind at least four HB3VAR06 proteins, plausibly augmenting their combined avidity for host receptors. IgM has previously been identified as a rosette-facilitating soluble factor that acts in a similar way, but it cannot induce rosetting on its own. This is in contrast to α2M and probably due to the more limited cross-linking potential of IgM. Nevertheless, we show that IgM works synergistically with α2M and markedly lowers the concentration of α2M required for rosetting. Finally, HB3VAR06+ IEs share the capacity to bind α2M with subsets of genotypically distinct P. falciparum isolates forming rosettes in vitro and of patient parasite isolates ex vivo. Together, our results are evidence that P. falciparum parasites exploit α2M (and IgM) to expand the repertoire of host receptors available for PfEMP1-mediated IE adhesion, such as the erythrocyte carbohydrate moieties that lead to formation of rosettes. It is likely that this mechanism also affects IE adhesion to receptors on vascular endothelium. The study opens opportunities for broad-ranging immunological interventions targeting the α2M--(and IgM-) binding domains of PfEMP1

  18. Ag-ELISA and PCR for monitoring the vaccination of cattle against Taenia saginata cysticercosis using an oncospheral adhesion protein (HP6) with surface and secreted localization.

    PubMed

    Harrison, L J S; Garate, T; Bryce, D M; Gonzalez, L M; Foster-Cuevas, M; Wamae, L W; Onyango-Abuje, J A; Parkhouse, R M E

    2005-02-01

    A Taenia saginata oncosphere-derived adhesion protein (HP6) with surface and secreted localization was used to successfully vaccinate calves against oral challenge with T. saginata eggs. In contrast, vaccination using a combination of T. saginata oncosphere-derived peptides, selected on the basis of their antigenic index, and including three derived from the HP6 molecule (HP6-1, HP6-2 and HP6-3), was unsuccessful. This either indicated that the wrong peptides were selected or, in the case of the HP6 protein, that the protective epitope is conformational in nature. The protection experiments were monitored using a parasite antigen detection ELISA (HP10 Ag-ELISA), which allowed the early determination of the success of the vaccination protocol, subsequently confirmed at autopsy. PCR assays were used for the first time to confirm the presence of T. saginata DNA in lesions recovered at autopsy and thus verify the parasite origin of the lesions.

  19. The ancillary protein 1 of Streptococcus pyogenes FCT-1 pili mediates cell adhesion and biofilm formation through heterophilic as well as homophilic interactions

    PubMed Central

    Becherelli, Marco; Manetti, Andrea G O; Buccato, Scilla; Viciani, Elisa; Ciucchi, Laura; Mollica, Giulia; Grandi, Guido; Margarit, Imma

    2012-01-01

    Summary Gram-positive pili are known to play a role in bacterial adhesion to epithelial cells and in the formation of biofilm microbial communities. In the present study we undertook the functional characterization of the pilus ancillary protein 1 (AP1_M6) from Streptococcus pyogenes isolates expressing the FCT-1 pilus variant, known to be strong biofilm formers. Cell binding and biofilm formation assays using S. pyogenes in-frame deletion mutants, Lactococcus expressing heterologous FCT-1 pili and purified recombinant AP1_M6, indicated that this pilin is a strong cell adhesin that is also involved in bacterial biofilm formation. Moreover, we show that AP1_M6 establishes homophilic interactions that mediate inter-bacterial contact, possibly promoting bacterial colonization of target epithelial cells in the form of three-dimensional microcolonies. Finally, AP1_M6 knockout mutants were less virulent in mice, indicating that this protein is also implicated in GAS systemic infection. PMID:22320452

  20. Cell adhesion as a novel approach to determining the cellular binding motif on the severe acute respiratory syndrome coronavirus spike protein.

    PubMed

    Chang, Hsin-Hou; Chen, Po-Kong; Lin, Guan-Ling; Wang, Chun-Jen; Liao, Chih-Hsien; Hsiao, Yu-Cheng; Dong, Jing-Hua; Sun, Der-Shan

    2014-06-01

    Emerging life threatening pathogens such as severe acute aspiratory syndrome-coronavirus (SARS-CoV), avian-origin influenzas H7N9, and the Middle East respiratory syndrome coronavirus (MERS-CoV) have caused a high case-fatality rate and psychological effects on society and the economy. Therefore, a simple, rapid, and safe method to investigate a therapeutic approach against these pathogens is required. In this study, a simple, quick, and safe cell adhesion inhibition assay was developed to determine the potential cellular binding site on the SARS-CoV spike protein. Various synthetic peptides covering the potential binding site helped to minimize further the binding motif to 10-25 residues. Following analyses, 2 peptides spanning the 436-445 and 437-461 amino acids of the spike protein were identified as peptide inhibitor or peptide vaccine candidates against SARS-CoV.

  1. SH2-Containing Inositol 5′-Phosphatase SHIP2 Associates with the p130Cas Adapter Protein and Regulates Cellular Adhesion and Spreading

    PubMed Central

    Prasad, Nagendra; Topping, Robert S.; Decker, Stuart J.

    2001-01-01

    In a previous study, we found that the SHIP2 protein became tyrosine phosphorylated and associated with the Shc adapter protein in response to the treatment of cells with growth factors and insulin (T. Habib, J. A. Hejna, R. E. Moses, and S. J. Decker, J. Biol. Chem. 273:18605–18609, 1998). We describe here a novel interaction between SHIP2 and the p130Cas adapter protein, a mediator of actin cytoskeleton organization. SHIP2 and p130Cas association was detected in anti-SHIP2 immunoprecipitates from several cell types. Reattachment of trypsinized cells stimulated tyrosine phosphorylation of SHIP2 and increased the formation of a complex containing SHIP2 and a faster-migrating tyrosine-phosphorylated form of p130Cas. The faster-migrating form of p130Cas was no longer recognized by antibodies to the amino terminus of p130Cas and appeared to be generated through proteolysis. Interaction of the SHIP2 protein with the various forms of p130Cas was mediated primarily through the SH2 domain of SHIP2. Immunofluorescence studies indicated that SHIP2 localized to focal contacts and to lamellipodia. Increased adhesion was observed in HeLa cells transiently expressing exogenous WT-SHIP2. These effects were not seen with SHIP2 possessing a mutation in the SH2 domain (R47G). Transfection of a catalytic domain deletion mutant of SHIP2 (ΔRV) inhibited cell spreading. Taken together, our studies suggest an important role for SHIP2 in adhesion and spreading. PMID:11158326

  2. Molecular modelling and experimental studies of mutation and cell-adhesion sites in the fibronectin type III and whey acidic protein domains of human anosmin-1.

    PubMed Central

    Robertson, A; MacColl, G S; Nash, J A; Boehm, M K; Perkins, S J; Bouloux, P M

    2001-01-01

    Anosmin-1, the gene product of the KAL gene, is implicated in the pathogenesis of X-linked Kallmann's syndrome. Anosmin-1 protein expression is restricted to the basement membrane and interstitial matrix of tissues affected in this syndrome during development. The anosmin-1 sequence indicates an N-terminal cysteine-rich domain, a whey acidic protein (WAP) domain, four fibronectin type III (FnIII) domains and a C-terminal histidine-rich region, and shows similarity with cell-adhesion molecules, such as neural cell-adhesion molecule, TAG-1 and L1. We investigated the structural and functional significance of three loss-of-function missense mutations of anosmin-1 using comparative modelling of the four FnIII and the WAP domains based on known NMR and crystal structures. Three missense mutation-encoded amino acid substitutions, N267K, E514K and F517L, were mapped to structurally defined positions on the GFCC' beta-sheet face of the first and third FnIII domains. Electrostatic maps demonstrated large basic surfaces containing clusters of conserved predicted heparan sulphate-binding residues adjacent to these mutation sites. To examine these modelling results anosmin-1 was expressed in insect cells. The incorporation of the three mutations into recombinant anosmin-1 had no effect on its secretion. The removal of two dibasic motifs that may constitute potential physiological cleavage sites for anosmin-1 had no effect on cleavage. Peptides based on the anosmin-1 sequences R254--K285 and P504--K527 were then synthesized in order to assess the effect of the three mutations on cellular adhesion, using cell lines that represented potential functional targets of anosmin-1. Peptides (10 microg/ml) incorporating the N267K and E514K substitutions promoted enhanced adhesion to 13.S.1.24 rat olfactory epithelial cells and canine MDCK1 kidney epithelial cells (P<0.01) compared with the wild-type peptides. This result was attributed to the introduction of a lysine residue adjacent to

  3. CPNA-1, a copine domain protein, is located at integrin adhesion sites and is required for myofilament stability in Caenorhabditis elegans.

    PubMed

    Warner, Adam; Xiong, Ge; Qadota, Hiroshi; Rogalski, Teresa; Vogl, A Wayne; Moerman, Donald G; Benian, Guy M

    2013-03-01

    We identify cpna-1 (F31D5.3) as a novel essential muscle gene in the nematode Caenorhabditis elegans. Antibodies specific to copine domain protein atypical-1 (CPNA-1), as well as a yellow fluorescent protein translational fusion, are localized to integrin attachment sites (M-lines and dense bodies) in the body-wall muscle of C. elegans. CPNA-1 contains an N-terminal predicted transmembrane domain and a C-terminal copine domain and binds to the M-line/dense body protein PAT-6 (actopaxin) and the M-line proteins UNC-89 (obscurin), LIM-9 (FHL), SCPL-1 (SCP), and UNC-96. Proper CPNA-1 localization is dependent upon PAT-6 in embryonic and adult muscle. Nematodes lacking cpna-1 arrest elongation at the twofold stage of embryogenesis and display disruption of the myofilament lattice. The thick-filament component myosin heavy chain MYO-3 and the M-line component UNC-89 are initially localized properly in cpna-1-null embryos. However, in these embryos, when contraction begins, MYO-3 and UNC-89 become mislocalized into large foci and animals die. We propose that CPNA-1 acts as a linker between an integrin-associated protein, PAT-6, and membrane-distal components of integrin adhesion complexes in the muscle of C. elegans. PMID:23283987

  4. Celecoxib exhibits an anti-gastric cancer effect by targeting focal adhesion and leukocyte transendothelial migration-associated genes

    PubMed Central

    Jin, Guo-Hua; Xu, Wei; Shi, Yang; Wang, Li-Bo

    2016-01-01

    Gastric cancer (GC) is a prevalent cancer, which remains incurable, and therefore requires an alternative treatment method. Celecoxib is a nonsteroidal anti-inflammatory drug that targets cyclooxygenase-2, and exhibits anticancer effects. The present study aimed to investigate the anti-GC mechanism of celecoxib using bioinformatics methods. Gene expression datasets GSE56807 (GC tissues and normal gastric tissues) and GSE54657 (celecoxib-treated and non-treated human GC epithelial AGS cells) were downloaded from the Gene Expression Omnibus database. Two groups of differentially expressed genes (DEGs) were identified using limma package in R language. The criterion for GSE56807 was a false discovery rate of <0.05, while that for GSE54657 was P<0.01. Overlapping DEGs from the two datasets were screened out. Subsequently, pathway enrichment analysis was performed using Database for Annotation, Visualization and Integrated Discovery software (P<0.1; gene count ≥2). In addition, the protein-protein interactions (PPIs) among the overlapped DEGs were obtained based on IntAct, Database of Interacting Proteins, Biomolecular Interaction Network Database and Human Protein Reference Database. Finally, a PPI network was visualized using Cytoscape software. A total of 137 overlapped DEGs were obtained, and DEGs with opposite regulation directions in the two datasets were significantly enriched in focal adhesion and leukocyte transendothelial migration. Subsequently, a PPI network of overlapped DEGs was constructed. Comprehensively, a total of 8 key DEGs [cysteine and glycine rich protein 1 (CSRP1), thrombospondin 1 (THBS1), myosin light chain 9 (MYL9), filamin A (FLNA), actinin alpha 1 (ACTN1), vinculin (VCL), laminin subunit gamma 2 (LAMC2) and claudin 1 (CLDN1)] were upregulated in GC tissues and downregulated in celecoxib-treated cells. In conclusion, celecoxib may exhibit anti-GC effects by suppressing the expression of CSRP1, THBS1, MYL9, FLNA, ACTN1, VCL, LAMC2 and CLDN1

  5. Celecoxib exhibits an anti-gastric cancer effect by targeting focal adhesion and leukocyte transendothelial migration-associated genes

    PubMed Central

    Jin, Guo-Hua; Xu, Wei; Shi, Yang; Wang, Li-Bo

    2016-01-01

    Gastric cancer (GC) is a prevalent cancer, which remains incurable, and therefore requires an alternative treatment method. Celecoxib is a nonsteroidal anti-inflammatory drug that targets cyclooxygenase-2, and exhibits anticancer effects. The present study aimed to investigate the anti-GC mechanism of celecoxib using bioinformatics methods. Gene expression datasets GSE56807 (GC tissues and normal gastric tissues) and GSE54657 (celecoxib-treated and non-treated human GC epithelial AGS cells) were downloaded from the Gene Expression Omnibus database. Two groups of differentially expressed genes (DEGs) were identified using limma package in R language. The criterion for GSE56807 was a false discovery rate of <0.05, while that for GSE54657 was P<0.01. Overlapping DEGs from the two datasets were screened out. Subsequently, pathway enrichment analysis was performed using Database for Annotation, Visualization and Integrated Discovery software (P<0.1; gene count ≥2). In addition, the protein-protein interactions (PPIs) among the overlapped DEGs were obtained based on IntAct, Database of Interacting Proteins, Biomolecular Interaction Network Database and Human Protein Reference Database. Finally, a PPI network was visualized using Cytoscape software. A total of 137 overlapped DEGs were obtained, and DEGs with opposite regulation directions in the two datasets were significantly enriched in focal adhesion and leukocyte transendothelial migration. Subsequently, a PPI network of overlapped DEGs was constructed. Comprehensively, a total of 8 key DEGs [cysteine and glycine rich protein 1 (CSRP1), thrombospondin 1 (THBS1), myosin light chain 9 (MYL9), filamin A (FLNA), actinin alpha 1 (ACTN1), vinculin (VCL), laminin subunit gamma 2 (LAMC2) and claudin 1 (CLDN1)] were upregulated in GC tissues and downregulated in celecoxib-treated cells. In conclusion, celecoxib may exhibit anti-GC effects by suppressing the expression of CSRP1, THBS1, MYL9, FLNA, ACTN1, VCL, LAMC2 and CLDN1

  6. Accumulation of talin in nodes at the edge of the lamellipodium and separate incorporation into adhesion plaques at focal contacts in fibroblasts

    PubMed Central

    1991-01-01

    The focal contact forms beneath F-actin-rich ribs, or cytoplasmic precursors, present in the lamellipodia of fibroblasts. The basal part of the precursor is retained at the contact as the initial adhesion plaque. We have examined the distribution of talin in the lamellipodia and adhesion plaques of chicken embryo fibroblasts relative to the process of focal contact formation. Motility of single cells was recorded with differential interference contrast or interference reflection microscopy before fixation and fluorescent staining for talin, F-actin, and vinculin. Talin is present along the extreme edge of the lamellipodium, where it is further concentrated into a series of nodes. The nodes of talin are present at the tips of both larger and finer F-actin-rich ribs and at small structural nodes at the edge of the lamellipodium. We suggest that the talin in the nodes functions, via a cross-linking activity, in the convergence of actin filaments at the membrane during development of the ribs. Talin accumulates de novo in the adhesion plaque, independent of that at the tip of the precursor, in response to contact with the substrate. This second accumulation of talin at the focal contact starts before vinculin, consistent with a sequential binding of talin at the membrane and of vinculin to talin. The results imply that talin functions independently at two steps during formation of the focal contact: the development of the F-actin-rich precursor of the contact; and development of the contact-associated adhesion plaque, both involving organization of F- actin at the membrane. PMID:1904445

  7. Ankyrin-binding proteins related to nervous system cell adhesion molecules: candidates to provide transmembrane and intercellular connections in adult brain.

    PubMed

    Davis, J Q; McLaughlin, T; Bennett, V

    1993-04-01

    A major class of ankyrin-binding glycoproteins have been identified in adult rat brain of 186, 155, and 140 kD that are alternatively spliced products of the same pre-mRNA. Characterization of cDNAs demonstrated that ankyrin-binding glycoproteins (ABGPs) share 72% amino acid sequence identity with chicken neurofascin, a membrane-spanning neural cell adhesion molecule in the Ig super-family expressed in embryonic brain. ABGP polypeptides have the following features consistent with a role as ankyrin-binding proteins in vitro and in vivo: (a) ABGPs and ankyrin associate as pure proteins in a 1:1 molar stoichiometry; (b) the ankyrin-binding site is located in the COOH-terminal 21 kD of ABGP186 which contains the predicted cytoplasmic domain; (c) ABGP186 is expressed at approximately the same levels as ankyrin (15 pmoles/milligram of membrane protein); and (d) ABGP polypeptides are co-expressed with the adult form of ankyrinB late in postnatal development and are colocalized with ankyrinB by immunofluorescence. Similarity in amino acid sequence and conservation of sites of alternative splicing indicate that genes encoding ABGPs and neurofascin share a common ancestor. However, the major differences in developmental expression reported for neurofascin in embryos versus the late postnatal expression of ABGPs suggest that ABGPs and neurofascin represent products of gene duplication events that have subsequently evolved in parallel with distinct roles. The predicted cytoplasmic domains of rat ABGPs and chicken neurofascin are nearly identical to each other and closely related to a group of nervous system cell adhesion molecules with variable extracellular domains, which includes L1, Nr-CAM, and Ng-CAM of vertebrates, and neuroglian of Drosophila. The ankyrin-binding site of rat ABGPs is localized to the C-terminal 200 residues which encompass the cytoplasmic domain, suggesting the hypothesis that ability to associate with ankyrin may be a shared feature of neurofascin and

  8. Estrogen and pure antiestrogen fulvestrant (ICI 182 780) augment cell–matrigel adhesion of MCF-7 breast cancer cells through a novel G protein coupled estrogen receptor (GPR30)-to-calpain signaling axis

    SciTech Connect

    Chen, Yan; Li, Zheng; He, Yan; Shang, Dandan; Pan, Jigang; Wang, Hongmei; Chen, Huamei; Zhu, Zhuxia; Wang, Xudong

    2014-03-01

    Fulvestrant (ICI 182 780, ICI) has been used in treating patients with hormone-sensitive breast cancer, yet initial or acquired resistance to endocrine therapies frequently arises and, in particular, cancer recurs as metastasis. We demonstrate here that both 17-beta-estradiol (E2) and ICI enhance cell adhesion to matrigel in MCF-7 breast cancer cells, with increased autolysis of calpain 1 (large subunit) and proteolysis of focal adhesion kinase (FAK), indicating calpain activation. Additionally, either E2 or ICI induced down-regulation of estrogen receptor α without affecting G protein coupled estrogen receptor 30 (GPR30) expression. Interestingly, GPR30 agonist G1 triggered calpain 1 autolysis but not calpain 2, whereas ER agonist diethylstilbestrol caused no apparent calpain autolysis. Furthermore, the actions of E2 and ICI on calpain and cell adhesion were tremendously suppressed by G15, or knockdown of GPR30. E2 and ICI also induced phosphorylation of extracellular regulated protein kinases 1 and 2 (ERK1/2), and suppression of ERK1/2 phosphorylation by U0126 profoundly impeded calpain activation triggered by estrogenic and antiestrogenic stimulations indicating implication of ERK1/2 in the GPR30-mediated action. Lastly, the E2- or ICI-induced cell adhesion was dramatically impaired by calpain-specific inhibitors, ALLN or calpeptin, suggesting requirement of calpain in the GPR30-associated action. These data show that enhanced cell adhesion by E2 and ICI occurs via a novel GPR30-ERK1/2-calpain pathway. Our results indicate that targeting the GPR30 signaling may be a potential strategy to reduce metastasis and improve the efficacy of antiestrogens in treatment of advanced breast cancer. - Highlights: • Estrogen and ICI augment adhesion to matrigel with calpain activation in MCF-7 cells. • GPR30 mediates cell–matrigel adhesion and calpain activation via ERK1/2. • Calpain is required in the cell–matrigel adhesion induced by E2 and ICI.

  9. The adaptor protein SAP directly associates with PECAM-1 and regulates PECAM-1-mediated-cell adhesion in T-like cell lines.

    PubMed

    Proust, Richard; Crouin, Catherine; Gandji, Leslie Yewakon; Bertoglio, Jacques; Gesbert, Franck

    2014-04-01

    SAP is a small cytosolic adaptor protein expressed in hematopoietic lineages whose main function is to regulate intracellular signaling pathways induced by the triggering of members of the SLAM receptor family. In this paper, we have identified the adhesion molecule PECAM-1 as a new partner for SAP in a conditional yeast two-hybrid screen. PECAM-1 is an immunoglobulin-like molecule expressed by endothelial cells and leukocytes, which possesses both pro- and anti-inflammatory properties. However, little is known about PECAM-1 functions in T cells. We show that SAP directly and specifically interacts with the cytosolic tyrosine 686 of PECAM-1. We generated different T-like cell lines in which SAP or PECAM-1 are expressed or down modulated and we demonstrate that a diminished SAP expression correlates with a diminished PECAM-1-mediated adhesion. Although SAP has mainly been shown to associate with SLAM receptors, we evidence here that SAP is a new actor downstream of PECAM-1.

  10. Modulation of tight junction barrier function by outer membrane proteins of enteropathogenic Escherichia coli: role of F-actin and junctional adhesion molecule-1.

    PubMed

    Puthenedam, Manjula; Williams, Peter H; Lakshmi, B S; Balakrishnan, Arun

    2007-08-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhea. In this work we investigated the effect of outer membrane proteins (OMP) of EPEC on barrier integrity and the role of actin, junctional adhesion molecule (JAM) and signaling pathways contributing to these changes. Barrier function was assessed by transepithelial electrical resistance (TER). OMP of wild type EPEC, eaeA and maltoporin mutants decreased TER levels of Caco-2 cells. The OMP of espB mutant was deficient in decreasing TER of Caco-2 cells. The proteinase K-digested wild type OMP and EAF mutant OMP did not cause any change in barrier function. Our previous studies have demonstrated that EPEC OMP induced changes in cadherin junctions of Caco-2 cells. Immunofluorescence revealed disruption in actin cytoskeleton by EPEC OMP. However, no change in expression of junctional adhesion molecule-1 was observed. NF-kappaB inhibitor slightly blocked the decrease in TER and protected against actin disruption while ERK1/2 inhibitor had no effect in blocking these changes. In conclusion, our data suggest that the OMP of EPEC alter intestinal barrier function by disrupting actin cytoskeleton and signaling pathways like NF-kappaB may have a role in regulating barrier changes.

  11. Poly(ether imide) membranes: studies on the effect of surface modification and protein pre-adsorption on endothelial cell adhesion, growth and function.

    PubMed

    Tzoneva, R; Seifert, B; Albrecht, W; Richau, K; Lendlein, A; Groth, T

    2008-01-01

    Poly(ether imide) (PEI) membranes of which the surface was modified with carboxylic groups were tested in comparison to pure PEI and poly(ethylene terephtalate) (PET) for their ability to support attachment, growth and function of human umbilical vein endothelial cells (HUVEC) with respect to endothelization of the above materials. Flat sheet PEI membranes were modified by covalent binding of iminodiacetic acid (IDA) for different periods of time (1 to 30 min) to obtain surfaces with various content of carboxylic groups. In addition, fibronectin (FN) and fibrinogen (FNG) pre-adsorption on the various membranes were studied for their effect on HUVEC behaviour. The results show a decreased protein adsorption and HUVEC adhesion, growth and function in terms of prostacyclin production with an increase in carboxylic groups. Pre-adsorption of the membranes with FN or FNG promoted activity of HUVEC, which became superior to cells on PET. FN-coated membranes were found to be a better substrate for HUVEC adhesion and prostacyclin production, while on FNG-coated membranes cells grew better. Overall it can be concluded that PEI is a promising materials for endothelial cells immobilization as it is needed for improving the haemocompatibility of cardiovascular devices. PMID:18544233

  12. The adaptor protein SAP directly associates with PECAM-1 and regulates PECAM-1-mediated-cell adhesion in T-like cell lines.

    PubMed

    Proust, Richard; Crouin, Catherine; Gandji, Leslie Yewakon; Bertoglio, Jacques; Gesbert, Franck

    2014-04-01

    SAP is a small cytosolic adaptor protein expressed in hematopoietic lineages whose main function is to regulate intracellular signaling pathways induced by the triggering of members of the SLAM receptor family. In this paper, we have identified the adhesion molecule PECAM-1 as a new partner for SAP in a conditional yeast two-hybrid screen. PECAM-1 is an immunoglobulin-like molecule expressed by endothelial cells and leukocytes, which possesses both pro- and anti-inflammatory properties. However, little is known about PECAM-1 functions in T cells. We show that SAP directly and specifically interacts with the cytosolic tyrosine 686 of PECAM-1. We generated different T-like cell lines in which SAP or PECAM-1 are expressed or down modulated and we demonstrate that a diminished SAP expression correlates with a diminished PECAM-1-mediated adhesion. Although SAP has mainly been shown to associate with SLAM receptors, we evidence here that SAP is a new actor downstream of PECAM-1. PMID:24388971

  13. The Orphan Adhesion G Protein-coupled Receptor GPR97 Regulates Migration of Lymphatic Endothelial Cells via the Small GTPases RhoA and Cdc42*

    PubMed Central

    Valtcheva, Nadejda; Primorac, Adriana; Jurisic, Giorgia; Hollmén, Maija; Detmar, Michael

    2013-01-01

    The important role of the lymphatic vascular system in pathological conditions such as inflammation and cancer has been increasingly recognized, but its potential as a pharmacological target is poorly exploited. Our study aimed at the identification and molecular characterization of lymphatic-specific G protein-coupled receptors (GPCRs) to assess new targets for pharmacological manipulation of the lymphatic vascular system. We used a TaqMan quantitative RT-PCR-based low density array to determine the GPCR expression profiles of ex vivo isolated intestinal mouse lymphatic (LECs) and blood vascular endothelial cells (BECs). GPR97, an orphan adhesion GPCR of unknown function, was the most highly and specifically expressed GPCR in mouse lymphatic endothelium. Using siRNA silencing, we found that GPR97-deficient primary human LECs displayed increased adhesion and collective cell migration, whereas single cell migration was decreased as compared with nontargeting siRNA-transfected control LECs. Loss of GPR97 shifted the ratio of active Cdc42 and RhoA and initiated cytoskeletal rearrangements, including F-actin redistribution, paxillin and PAK4 phosphorylation, and β1-integrin activation. Our data suggest a possible role of GPR97 in lymphatic remodeling and furthermore provide the first insights into the biological functions of GPR97. PMID:24178298

  14. Salt- and pH-induced desorption: Comparison between non-aggregated and aggregated mussel adhesive protein, Mefp-1, and a synthetic cationic polyelectrolyte.

    PubMed

    Krivosheeva, Olga; Dedinaite, Andra; Claesson, Per M

    2013-10-15

    Mussel adhesive proteins are of great interest in many applications due to their ability to bind strongly to many types of surfaces under water. Effective use such proteins, for instance the Mytilus edulis foot protein - Mefp-1, for surface modification requires achievement of a large adsorbed amount and formation of a layer that is resistant towards desorption under changing conditions. In this work we compare the adsorbed amount and layer properties obtained by using a sample containing small Mefp-1 aggregates with that obtained by using a non-aggregated sample. We find that the use of the sample containing small aggregates leads to higher adsorbed amount, larger layer thickness and similar water content compared to what can be achieved with a non-aggregated sample. The layer formed by the aggregated Mefp-1 was, after removal of the protein from bulk solution, exposed to aqueous solutions with high ionic strength (up to 1M NaCl) and to solutions with low pH in order to reduce the electrostatic surface affinity. It was found that the preadsorbed Mefp-1 layer under all conditions explored was significantly more resistant towards desorption than a layer built by a synthetic cationic polyelectrolyte with similar charge density. These results suggest that the non-electrostatic surface affinity for Mefp-1 is larger than for the cationic polyelectrolyte.

  15. Haloarchaeal myovirus φCh1 harbours a phase variation system for the production of protein variants with distinct cell surface adhesion specificities.

    PubMed

    Klein, R; Rössler, N; Iro, M; Scholz, H; Witte, A

    2012-01-01

    The φCh1 myovirus, which infects the haloalkaliphilic archaeon Natrialba magadii, contains an invertible region that comprises the convergent open reading frames (ORFs) 34 and 36, which code for the putative tail fibre proteins gp34 and gp36 respectively. The inversion leads to an exchange of the C-termini of these proteins, thereby creating different types of tail fibres. Gene expression experiments revealed that only ORF34 is transcribed, indicating that φCh1 produces tail fibre proteins exclusively from this particular ORF. Only one of the two types of tail fibres encoded by ORF34 is able to bind to Nab. magadii in vitro. This is reflected by the observation that during the early phases of the infection cycle, the lysogenic strain L11 carries its invertible region exclusively in the orientation that produces that specific type of tail fibre. Obviously, Nab. magadii can only be infected by viruses carrying this particular type of tail fibre. By mutational analysis, the binding domain of gp34 was localized to the C-terminal part of the protein, particularly to a galactose-binding domain. The involvement of galactose residues in cell adhesion was supported by the observation that the addition of α-D-galactose to purified gp34 or whole virions prevented their attachment to Nab. magadii. PMID:22111759

  16. MUC16/CA125 in the Context of Modular Proteins with an Annotated Role in Adhesion-Related Processes: In Silico Analysis

    PubMed Central

    Jankovic, Miroslava; Mitic, Ninoslav

    2012-01-01

    Mucin 16 (MUC16) is a type I transmembrane protein, the extracellular portion of which is shed after proteolytic degradation and is denoted as CA125 antigen, a well known tumor marker for ovarian cancer. Regarding its polypeptide and glycan structures, as yet there is no detailed insight into their heterogeneity and ligand properties, which may greatly influence its function and biomarker potential. This study was aimed at obtaining further insight into the biological capacity of MUC16/CA125, using in silico analysis of corresponding mucin sequences, including similarity searches as well as GO (gene ontology)-based function prediction. The results obtained pointed to the similarities within extracellular serine/threonine rich regions of MUC16 to sequences of proteins expressed in evolutionary distant taxa, all having in common an annotated role in adhesion-related processes. Specifically, a homology to conserved domains from the family of herpesvirus major outer envelope protein (BLLF1) was found. In addition, the possible involvement of MUC16/CA125 in carbohydrate-binding interactions or cellular transport of protein/ion was suggested. PMID:22949868

  17. The Pmt2p-Mediated Protein O-Mannosylation Is Required for Morphogenesis, Adhesive Properties, Cell Wall Integrity and Full Virulence of Magnaporthe oryzae

    PubMed Central

    Guo, Min; Tan, Leyong; Nie, Xiang; Zhu, Xiaolei; Pan, Yuemin; Gao, Zhimou

    2016-01-01

    Protein O-mannosylation is a type of O-glycosylation that is characterized by the addition of mannose residues to target proteins, and is initially catalyzed by evolutionarily conserved protein O-mannosyltransferases (PMTs). In this study, three members of PMT were identified in Magnaporthe oryzae, and the pathogenic roles of MoPmt2, a member of PMT2 subfamily, were analyzed. We found that MoPmt2 is a homolog of Saccharomyces cerevisiae Pmt2 and could complement yeast Pmt2 function in resistance to CFW. Quantitative RT–PCR revealed that MoPmt2 is highly expressed during conidiation, and targeted disruption of MoPmt2 resulted in defects in conidiation and conidia morphology. The MoPmt2 mutants also showed a distinct reduction in fungal growth, which was associated with severe alterations in hyphal polarity. In addition, we found that the MoPmt2 mutants severely reduced virulence on both rice plants and barley leaves. The subsequent examination revealed that the fungal adhesion, conidial germination, CWI and invasive hyphae growth in host cells are responsible for defects on appressorium mediated penetration, and thus attenuated the pathogenicity of MoPmt2 mutants. Taken together, our results suggest that protein O-mannosyltransferase MoPmt2 plays essential roles in fungal growth and development, and is required for the full pathogenicity of M. oryzae. PMID:27199956

  18. Mutations in contactin-1, a neural adhesion and neuromuscular junction protein, cause a familial form of lethal congenital myopathy.

    PubMed

    Compton, Alison G; Albrecht, Douglas E; Seto, Jane T; Cooper, Sandra T; Ilkovski, Biljana; Jones, Kristi J; Challis, Daniel; Mowat, David; Ranscht, Barbara; Bahlo, Melanie; Froehner, Stanley C; North, Kathryn N

    2008-12-01

    We have previously reported a group of patients with congenital onset weakness associated with a deficiency of members of the syntrophin-alpha-dystrobrevin subcomplex and have demonstrated that loss of syntrophin and dystrobrevin from the sarcolemma of skeletal muscle can also be associated with denervation. Here, we have further studied four individuals from a consanguineous Egyptian family with a lethal congenital myopathy inherited in an autosomal-recessive fashion and characterized by a secondary loss of beta2-syntrophin and alpha-dystrobrevin from the muscle sarcolemma, central nervous system involvement, and fetal akinesia. We performed homozygosity mapping and candidate gene analysis and identified a mutation that segregates with disease within CNTN1, the gene encoding for the neural immunoglobulin family adhesion molecule, contactin-1. Contactin-1 transcripts were markedly decreased on gene-expression arrays of muscle from affected family members compared to controls. We demonstrate that contactin-1 is expressed at the neuromuscular junction (NMJ) in mice and man in addition to the previously documented expression in the central and peripheral nervous system. In patients with secondary dystroglycanopathies, we show that contactin-1 is abnormally localized to the sarcolemma instead of exclusively at the NMJ. The cntn1 null mouse presents with ataxia, progressive muscle weakness, and postnatal lethality, similar to the affected members in this family. We propose that loss of contactin-1 from the NMJ impairs communication or adhesion between nerve and muscle resulting in the severe myopathic phenotype. This disorder is part of the continuum in the clinical spectrum of congenital myopathies and congenital myasthenic syndromes.

  19. Novel 1H-imidazol-2-amine derivatives as potent and orally active vascular adhesion protein-1 (VAP-1) inhibitors for diabetic macular edema treatment.

    PubMed

    Inoue, Takayuki; Morita, Masataka; Tojo, Takashi; Nagashima, Akira; Moritomo, Ayako; Miyake, Hiroshi

    2013-07-01

    Novel thiazole derivatives were synthesized and evaluated as vascular adhesion protein-1 (VAP-1) inhibitors. Although we previously identified a compound (2) with potent VAP-1 inhibitory activity in rats, the human activity was relatively weak. Here, to improve the human VAP-1 inhibitory activity of compound 2, we first evaluated the structure-activity relationships of guanidine bioisosteres as simple small molecules and identified a 1H-benzimidazol-2-amine (5) with potent activity compared to phenylguanidine (1). Based on the structure of compound 5, we synthesized a highly potent VAP-1 inhibitor (37b; human IC50=0.019 μM, rat IC50=0.0051 μM). Orally administered compound 37b also markedly inhibited ocular permeability in streptozotocin-induced diabetic rats after oral administration, suggesting it is a promising compound for the treatment of diabetic macular edema.

  20. Synthesis and SAR study of new thiazole derivatives as vascular adhesion protein-1 (VAP-1) inhibitors for the treatment of diabetic macular edema: part 2.

    PubMed

    Inoue, Takayuki; Morita, Masataka; Tojo, Takashi; Nagashima, Akira; Moritomo, Ayako; Imai, Keisuke; Miyake, Hiroshi

    2013-05-01

    Novel thiazole derivatives were synthesized and evaluated as vascular adhesion protein-1 (VAP-1) inhibitors. Although our previous compound 1 showed potent VAP-1 inhibitory activity, the activity differed between humans and rats. This issue was overcome by a hybrid design using human VAP-1 specific inhibitor 2, which was found by high-throughput screening (HTS), a docking study of a human VAP-1 homology model, and an analysis of sequence information for humans and rats. As a result, we identified compound 35c, which showed strong VAP-1 inhibitory activity (human IC(50) of 20 nM; rat IC(50) of 72 nM) and significant inhibitory effects in the ex vivo test.<