Sample records for adhesion rate constant

  1. Reproducible Biofilm Cultivation of Chemostat-Grown Escherichia coli and Investigation of Bacterial Adhesion on Biomaterials Using a Non-Constant-Depth Film Fermenter

    PubMed Central

    Lüdecke, Claudia; Jandt, Klaus D.; Siegismund, Daniel; Kujau, Marian J.; Zang, Emerson; Rettenmayr, Markus; Bossert, Jörg; Roth, Martin

    2014-01-01

    Biomaterials-associated infections are primarily initiated by the adhesion of microorganisms on the biomaterial surfaces and subsequent biofilm formation. Understanding the fundamental microbial adhesion mechanisms and biofilm development is crucial for developing strategies to prevent such infections. Suitable in vitro systems for biofilm cultivation and bacterial adhesion at controllable, constant and reproducible conditions are indispensable. This study aimed (i) to modify the previously described constant-depth film fermenter for the reproducible cultivation of biofilms at non-depth-restricted, constant and low shear conditions and (ii) to use this system to elucidate bacterial adhesion kinetics on different biomaterials, focusing on biomaterials surface nanoroughness and hydrophobicity. Chemostat-grown Escherichia coli were used for biofilm cultivation on titanium oxide and investigating bacterial adhesion over time on titanium oxide, poly(styrene), poly(tetrafluoroethylene) and glass. Using chemostat-grown microbial cells (single-species continuous culture) minimized variations between the biofilms cultivated during different experimental runs. Bacterial adhesion on biomaterials comprised an initial lag-phase I followed by a fast adhesion phase II and a phase of saturation III. With increasing biomaterials surface nanoroughness and increasing hydrophobicity, adhesion rates increased during phases I and II. The influence of materials surface hydrophobicity seemed to exceed that of nanoroughness during the lag-phase I, whereas it was vice versa during adhesion phase II. This study introduces the non-constant-depth film fermenter in combination with a chemostat culture to allow for a controlled approach to reproducibly cultivate biofilms and to investigate bacterial adhesion kinetics at constant and low shear conditions. The findings will support developing and adequate testing of biomaterials surface modifications eventually preventing biomaterial

  2. Binding constant of cell adhesion receptors and substrate-immobilized ligands depends on the distribution of ligands

    NASA Astrophysics Data System (ADS)

    Li, Long; Hu, Jinglei; Xu, Guangkui; Song, Fan

    2018-01-01

    Cell-cell adhesion and the adhesion of cells to tissues and extracellular matrix, which are pivotal for immune response, tissue development, and cell locomotion, depend sensitively on the binding constant of receptor and ligand molecules anchored on the apposing surfaces. An important question remains of whether the immobilization of ligands affects the affinity of binding with cell adhesion receptors. We have investigated the adhesion of multicomponent membranes to a flat substrate coated with immobile ligands using Monte Carlo simulations of a statistical mesoscopic model with biologically relevant parameters. We find that the binding of the adhesion receptors to ligands immobilized on the substrate is strongly affected by the ligand distribution. In the case of ligand clusters, the receptor-ligand binding constant can be significantly enhanced due to the less translational entropy loss of lipid-raft domains in the model cell membranes upon the formation of additional complexes. For ligands randomly or uniformly immobilized on the substrate, the binding constant is rather decreased since the receptors localized in lipid-raft domains have to pay an energetic penalty in order to bind ligands. Our findings help to understand why cell-substrate adhesion experiments for measuring the impact of lipid rafts on the receptor-ligand interactions led to contradictory results.

  3. Determination of the attractive force, adhesive force, adhesion energy and Hamaker constant of soot particles generated from a premixed methane/oxygen flame by AFM

    NASA Astrophysics Data System (ADS)

    Liu, Ye; Song, Chonglin; Lv, Gang; Chen, Nan; Zhou, Hua; Jing, Xiaojun

    2018-03-01

    Atomic force microscopy (AFM) was used to characterize the attractive force, adhesive force and adhesion energy between an AFM probe tip and nanometric soot particle generated by a premixed methane/oxygen flame. Different attractive force distributions were found when increasing the height above burner (HAB), with forces ranging from 1.1-3.5 nN. As the HAB was increased, the average attractive force initially increased, briefly decreased, and then underwent a gradual increase, with a maximum of 2.54 nN observed at HAB = 25 mm. The mean adhesive force was 6.5-7.5 times greater than the mean attractive force at the same HAB, and values were in the range of 13.5-24.5 nN. The adhesion energy was in the range of 2.0-5.6 × 10-17 J. The variations observed in the average adhesion energy with increasing HAB were different from those of the average adhesion force, implying that the stretched length of soot particles is an important factor affecting the average adhesion energy. The Hamaker constants of the soot particles generated at different HABs were determined from AFM force-separation curves. The average Hamaker constant exhibited a clear correlation with the graphitization degree of soot particles as obtained from Raman spectroscopy.

  4. A test method for determining adhesion forces and Hamaker constants of cementitious materials using atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomboy, Gilson; Sundararajan, Sriram, E-mail: srirams@iastate.edu; Wang Kejin

    2011-11-15

    A method for determining Hamaker constant of cementitious materials is presented. The method involved sample preparation, measurement of adhesion force between the tested material and a silicon nitride probe using atomic force microscopy in dry air and in water, and calculating the Hamaker constant using appropriate contact mechanics models. The work of adhesion and Hamaker constant were computed from the pull-off forces using the Johnson-Kendall-Roberts and Derjagin-Muller-Toropov models. Reference materials with known Hamaker constants (mica, silica, calcite) and commercially available cementitious materials (Portland cement (PC), ground granulated blast furnace slag (GGBFS)) were studied. The Hamaker constants of the reference materialsmore » obtained are consistent with those published by previous researchers. The results indicate that PC has a higher Hamaker constant than GGBFS. The Hamaker constant of PC in water is close to the previously predicted value C{sub 3}S, which is attributed to short hydration time ({<=} 45 min) used in this study.« less

  5. Elongational flow of polymer melts at constant strain rate, constant stress and constant force

    NASA Astrophysics Data System (ADS)

    Wagner, Manfred H.; Rolón-Garrido, Víctor H.

    2013-04-01

    Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.

  6. Spatial variation in deposition rate coefficients of an adhesion-deficient bacterial strain in quartz sand.

    PubMed

    Tong, Meiping; Camesano, Terri A; Johnson, William P

    2005-05-15

    The transport of bacterial strain DA001 was examined in packed quartz sand under a variety of environmentally relevant ionic strength and flow conditions. Under all conditions, the retained bacterial concentrations decreased with distance from the column inlet at a rate that was faster than loglinear, indicating that the deposition rate coefficient decreased with increasing transport distance. The hyperexponential retained profile contrasted againstthe nonmonotonic retained profiles that had been previously observed for this same bacterial strain in glass bead porous media, demonstrating that the form of deviation from log-linear behavior is highly sensitive to system conditions. The deposition rate constants in quartz sand were orders of magnitude below those expected from filtration theory, even in the absence of electrostatic energy barriers. The degree of hyperexponential deviation of the retained profiles from loglinear behavior did not decrease with increasing ionic strength in quartz sand. These observations demonstrate thatthe observed low adhesion and deviation from log-linear behavior was not driven by electrostatic repulsion. Measurements of the interaction forces between DA001 cells and the silicon nitride tip of an atomic force microscope (AFM) showed that the bacterium possesses surface polymers with an average equilibrium length of 59.8 nm. AFM adhesion force measurements revealed low adhesion affinities between silicon nitride and DA001 polymers with approximately 95% of adhesion forces having magnitudes < 0.8 nN. Steric repulsion due to surface polymers was apparently responsible for the low adhesion to silicon nitride, indicating that steric interactions from extracellular polymers controlled DA001 adhesion deficiency and deviation from log-linear behavior on quartz sand.

  7. Calculation of kinetic rate constants from thermodynamic data

    NASA Technical Reports Server (NTRS)

    Marek, C. John

    1995-01-01

    A new scheme for relating the absolute value for the kinetic rate constant k to the thermodynamic constant Kp is developed for gases. In this report the forward and reverse rate constants are individually related to the thermodynamic data. The kinetic rate constants computed from thermodynamics compare well with the current kinetic rate constants. This method is self consistent and does not have extensive rules. It is first demonstrated and calibrated by computing the HBr reaction from H2 and Br2. This method then is used on other reactions.

  8. Inflation with a constant rate of roll

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by ̈phi/H dot phi remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.

  9. Inflation with a constant rate of roll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi, E-mail: motohashi@kicp.uchicago.edu, E-mail: alstar@landau.ac.ru, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp

    2015-09-01

    We consider an inflationary scenario where the rate of inflaton roll defined by {sup ··}φ/H φ-dot remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs formore » unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.« less

  10. Rate Constants and Mechanisms of Protein–Ligand Binding

    PubMed Central

    Pang, Xiaodong; Zhou, Huan-Xiang

    2017-01-01

    Whereas protein–ligand binding affinities have long-established prominence, binding rate constants and binding mechanisms have gained increasing attention in recent years. Both new computational methods and new experimental techniques have been developed to characterize the latter properties. It is now realized that binding mechanisms, like binding rate constants, can and should be quantitatively determined. In this review, we summarize studies and synthesize ideas on several topics in the hope of providing a coherent picture of and physical insight into binding kinetics. The topics include microscopic formulation of the kinetic problem and its reduction to simple rate equations; computation of binding rate constants; quantitative determination of binding mechanisms; and elucidation of physical factors that control binding rate constants and mechanisms. PMID:28375732

  11. On determining dose rate constants spectroscopically.

    PubMed

    Rodriguez, M; Rogers, D W O

    2013-01-01

    To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of (125)I and (103)Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089-6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated (125)I and (103)Pd sources. Spectra generated by 14 (125)I and 6 (103)Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 × 2.7 × 0.05 cm(3) voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the (125)I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for (103)Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were ≤0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. The ratio of the intensity of the 31 keV line relative to that of the main peak in (125)I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The (103)Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when calculated with the TG-43U1 rather than the NNDC(2000) initial spectrum. The measured values from three different investigations are

  12. Material characterization of structural adhesives in the lap shear mode

    NASA Technical Reports Server (NTRS)

    Sancaktar, E.; Schenck, S. C.

    1983-01-01

    A general method for characterizing structual adhesives in the bonded lap shear mode is proposed. Two approaches in the form of semiempirical and theoretical approaches are used. The semiempirical approach includes Ludwik's and Zhurkov's equations to describe respectively, the failure stresses in the constant strain rate and constant stress loading modes with the inclusion of the temperature effects. The theoretical approach is used to describe adhesive shear stress-strain behavior with the use of viscoelastic or nonlinear elastic constitutive equations. Two different model adhesives are used in the single lap shear mode with titanium adherends. These adhesives (one of which was developed at NASA Langley Research Center) are currently considered by NASA for possible aerospace applications. Use of different model adhesives helps in assessment of the generality of the method.

  13. Kinetics of Pseudomonas aeruginosa adhesion to 304 and 316-L stainless steel: role of cell surface hydrophobicity.

    PubMed Central

    Vanhaecke, E; Remon, J P; Moors, M; Raes, F; De Rudder, D; Van Peteghem, A

    1990-01-01

    Fifteen different isolates of Pseudomonas aeruginosa were used to study the kinetics of adhesion to 304 and 316-L stainless steel. Stainless steel plates were incubated with approximately 1.5 X 10(7) CFU/ml in 0.01 M phosphate-buffered saline (pH 7.4). After the plates were rinsed with the buffer, the number of adhering bacteria was determined by a bioluminescence assay. Measurable adhesion, even to the electropolished surfaces, occurred within 30 s. Bacterial cell surface hydrophobicity, as determined by the bacterial adherence to hydrocarbons test and the contact angle measurement test, was the major parameter influencing the adhesion rate constant for the first 30 min of adhesion. A parabolic relationship between the CAM values and the logarithm of the adhesion rate constants (In k) was established. No correlation between either the salt aggregation or the improved salt aggregation values and the bacterial adhesion rate constants could be found. Since there was no significant correlation between the bacterial electrophoretic mobilities and the In k values, the bacterial cell surface charge seemed of minor importance in the process of adhesion of P. aeruginosa to 304 and 316-L stainless steel. PMID:2107796

  14. Comparison of TID Effects in Space-Like Variable Dose Rates and Constant Dose Rates

    NASA Technical Reports Server (NTRS)

    Harris, Richard D.; McClure, Steven S.; Rax, Bernard G.; Evans, Robin W.; Jun, Insoo

    2008-01-01

    The degradation of the LM193 dual voltage comparator has been studied at different TID dose rate profiles, including several different constant dose rates and a variable dose rate that simulates the behavior of a solar flare. A comparison of results following constant dose rate vs. variable dose rates is made to explore how well the constant dose rates used for typical part testing predict the performance during a simulated space-like mission. Testing at a constant dose rate equal to the lowest dose rate seen during the simulated flare provides an extremely conservative estimate of the overall amount of degradation. A constant dose rate equal to the average dose rate is also more conservative than the variable rate. It appears that, for this part, weighting the dose rates by the amount of total dose received at each rate (rather than the amount of time at each dose rate) results in an average rate that produces an amount of degradation that is a reasonable approximation to that received by the variable rate.

  15. On determining dose rate constants spectroscopically

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, M.; Rogers, D. W. O.

    2013-01-15

    Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of {sup 125}I and {sup 103}Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089-6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated {sup 125}I and {sup 103}Pd sources. Methods: Spectra generated by 14 {sup 125}I and 6 {sup 103}Pd seedsmore » were calculated in vacuo at 10 cm from the source in a 2.7 Multiplication-Sign 2.7 Multiplication-Sign 0.05 cm{sup 3} voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the {sup 125}I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for {sup 103}Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were Less-Than-Or-Slanted-Equal-To 0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in {sup 125}I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The {sup 103}Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak

  16. Asymmetry-symmetry transition of double-sided adhesive tapes

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tetsuo; Muroo, Hiroyuki; Sumino, Yutaka; Doi, Masao

    2012-06-01

    We report on the debonding process of a double-sided adhesive tape sandwiched between two glass plates. When the glass plates are separated from each other at a constant rate, a highly asymmetric extension of top and bottom adhesive layers and bending of the inner film are observed first. As the separation proceeds, the elongation of both layers becomes symmetric, and the inner film becomes flat again. When this happens, there appears a local maximum in the force-displacement curve. We explain this asymmetry-symmetry transition and discuss the role of the bimodal force-displacement relation of each adhesive layer. We also discuss the effect of the inner film thickness and the separation rate on the debonding behavior, which causes undesirable early detachment of the double-sided adhesive tape in a certain condition.

  17. The adhesion force of Notch with Delta and the rate of Notch signaling.

    PubMed

    Ahimou, Francois; Mok, Lee-Peng; Bardot, Boris; Wesley, Cedric

    2004-12-20

    Notch signaling is repeatedly used during animal development to specify cell fates. Using atomic force microscopy on live cells, chemical inhibitors, and conventional analyses, we show that the rate of Notch signaling is linked to the adhesion force between cells expressing Notch receptors and Delta ligand. Both the Notch extracellular and intracellular domains are required for the high adhesion force with Delta. This high adhesion force is lost within minutes, primarily due to the action of Presenilin on Notch. Reduced turnover or Delta pulling accelerate this loss. These data suggest that strong adhesion between Notch and Delta might serve as a booster for initiating Notch signaling at a high rate.

  18. The Rate Constant for Fluorescence Quenching

    ERIC Educational Resources Information Center

    Legenza, Michael W.; Marzzacco, Charles J.

    1977-01-01

    Describes an experiment that utilizes fluorescence intensity measurements from a Spectronic 20 to determine the rate constant for the fluorescence quenching of various aromatic hydrocarbons by carbon tetrachloride in an ethanol solvent. (MLH)

  19. Energy dissipation in polymer-polymer adhesion contacts

    NASA Astrophysics Data System (ADS)

    Garif, Yev Skip

    This study focuses on self-adhesion in elastomers as a way of approaching a broader polymer adhesion problem. The model systems studied are cross-linked acrylic pressure-sensitive adhesives (PSA-LNs) synthesized to attain four surface types: neutral, acidic, basic, and polar. As the study progressed, it distinguished itself as the first of its kind to consistently report the effect of temperature on measurable intrinsic parameters of polymer adhesion. The main goal of the study was to understand why the magnitude of the practical adhesion energies of the four PSA-LN systems tested varies disproportionately greater than their respective surface energies. To achieve this goal, continuous sweeps of adhesion energy as a function of rate of interfacial separation were performed using three different adhesion-probing techniques--- peel, micro-scratch, and normal contact. The answer was found in the sub-micron-per-second limit of separation rates. In approaching this limit, the power law behavior of adhesion gradually transitioned into a linear region of markedly weaker sensitivity to rate. Referred to as the "intrinsic window", this linear region was characterized by three parameters: (1) the intrinsic adhesion energy at zero rate of separation; (2) the intrinsic rate sensitivity equal to the proportionality constant of the linear fit; and (3) the critical separation rate in the middle of the transition to the power law. All three were found to be thermally activated. Activation energies suggested that interfacial processes are attributed mainly to dispersive and electrostatic molecular interactions such as hydrogen bonding or van der Waals attraction. Comparative analysis of the intrinsic window of the four PSA-LNs tested showed that an increase in the intrinsic adhesion energy associated with higher surface energy is inherently coupled with an increase in the intrinsic rate sensitivity and reduction in the critical separation rate. When combined, the three parameters

  20. Estimation of hydrolysis rate constants for carbamates ...

    EPA Pesticide Factsheets

    Cheminformatics based tools, such as the Chemical Transformation Simulator under development in EPA’s Office of Research and Development, are being increasingly used to evaluate chemicals for their potential to degrade in the environment or be transformed through metabolism. Hydrolysis represents a major environmental degradation pathway; unfortunately, only a small fraction of hydrolysis rates for about 85,000 chemicals on the Toxic Substances Control Act (TSCA) inventory are in public domain, making it critical to develop in silico approaches to estimate hydrolysis rate constants. In this presentation, we compare three complementary approaches to estimate hydrolysis rates for carbamates, an important chemical class widely used in agriculture as pesticides, herbicides and fungicides. Fragment-based Quantitative Structure Activity Relationships (QSARs) using Hammett-Taft sigma constants are widely published and implemented for relatively simple functional groups such as carboxylic acid esters, phthalate esters, and organophosphate esters, and we extend these to carbamates. We also develop a pKa based model and a quantitative structure property relationship (QSPR) model, and evaluate them against measured rate constants using R square and root mean square (RMS) error. Our work shows that for our relatively small sample size of carbamates, a Hammett-Taft based fragment model performs best, followed by a pKa and a QSPR model. This presentation compares three comp

  1. Leukocyte adhesion: High-speed cells with ABS.

    PubMed

    van der Merwe, P A

    1999-06-03

    In order to decide where to exit blood vessels and enter tissues, leukocytes roll along endothelial surfaces. Recent studies suggest that an 'automatic braking system' (ABS), involving selectin cell-adhesion molecules, enables leukocytes to roll at a fairly constant velocity despite large variations in blood flow rate.

  2. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    NASA Astrophysics Data System (ADS)

    Díaz Téllez, J. P.; Harirchian-Saei, S.; Li, Y.; Menon, C.

    2013-10-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet-visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved.

  3. Instanton rate constant calculations close to and above the crossover temperature.

    PubMed

    McConnell, Sean; Kästner, Johannes

    2017-11-15

    Canonical instanton theory is known to overestimate the rate constant close to a system-dependent crossover temperature and is inapplicable above that temperature. We compare the accuracy of the reaction rate constants calculated using recent semi-classical rate expressions to those from canonical instanton theory. We show that rate constants calculated purely from solving the stability matrix for the action in degrees of freedom orthogonal to the instanton path is not applicable at arbitrarily low temperatures and use two methods to overcome this. Furthermore, as a by-product of the developed methods, we derive a simple correction to canonical instanton theory that can alleviate this known overestimation of rate constants close to the crossover temperature. The combined methods accurately reproduce the rate constants of the canonical theory along the whole temperature range without the spurious overestimation near the crossover temperature. We calculate and compare rate constants on three different reactions: H in the Müller-Brown potential, methylhydroxycarbene → acetaldehyde and H 2  + OH → H + H 2 O. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Effects of membrane deformability and bond formation/dissociation rates on adhesion dynamics of a spherical capsule in shear flow.

    PubMed

    Zhang, Ziying; Du, Jun; Wei, Zhengying; Wang, Zhen; Li, Minghui

    2018-02-01

    Cellular adhesion plays a critical role in biological systems and biomedical applications. Cell deformation and biophysical properties of adhesion molecules are of significance for the adhesion behavior. In the present work, dynamic adhesion of a deformable capsule to a planar substrate, in a linear shear flow, is numerically simulated to investigate the combined influence of membrane deformability (quantified by the capillary number) and bond formation/dissociation rates on the adhesion behavior. The computational model is based on the immersed boundary-lattice Boltzmann method for the capsule-fluid interaction and a probabilistic adhesion model for the capsule-substrate interaction. Three distinct adhesion states, detachment, rolling adhesion and firm adhesion, are identified and presented in a state diagram as a function of capillary number and bond dissociation rate. The impact of bond formation rate on the state diagram is further investigated. Results show that the critical bond dissociation rate for the transition of rolling or firm adhesion to detachment is strongly related to the capsule deformability. At the rolling-adhesion state, smaller off rates are needed for larger capillary number to increase the rolling velocity and detach the capsule. In contrast, the critical off rate for firm-to-detach transition slightly increases with the capillary number. With smaller on rate, the effect of capsule deformability on the critical off rates is more pronounced and capsules with moderate deformability are prone to detach by the shear flow. Further increasing of on rate leads to large expansion of both rolling-adhesion and firm-adhesion regions. Even capsules with relatively large deformability can maintain stable rolling adhesion at certain off rate.

  5. Rate constants measured for hydrated electron reactions with peptides and proteins

    NASA Technical Reports Server (NTRS)

    Braams, R.

    1968-01-01

    Effects of ionizing radiation on the amino acids of proteins and the reactivity of the protonated amino group depends upon the pK subscript a of the group. Estimates of the rate constants for reactions involving the amino acid side chains are presented. These rate constants gave an approximate rate constant for three different protein molecules.

  6. Rate constant for reaction of atomic hydrogen with germane

    NASA Technical Reports Server (NTRS)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1990-01-01

    Due to the interest in the chemistry of germane in the atmospheres of Jupiter and Saturn, and because previously reported kinetic reaction rate studies at 298 K gave results differing by a factor of 200, laboratory measurements were performed to determine the reaction rate constant for H + GeH4. Results of the study at 298 K, obtained via the direct technique of flash photolysis-resonance fluorescence, yield the reaction rate constant, k = (4.08 + or - 0.22) x 10(exp -12) cu cm/s.

  7. Biomechanics of ant adhesive pads: frictional forces are rate- and temperature-dependent.

    PubMed

    Federle, Walter; Baumgartner, Werner; Hölldobler, Bert

    2004-01-01

    Tarsal adhesive pads enable insects to hold on to smooth plant surfaces. Using a centrifuge technique, we tested whether a "wet adhesion" model of a thin film of liquid secreted between the pad and the surface can explain adhesive and frictional forces in Asian Weaver ants (Oecophylla smaragdina). When forces are acting parallel to the surface, pads in contact with the surface can slide smoothly. Force per unit pad contact area was strongly dependent on sliding velocity and temperature. Seemingly consistent with the effect of a thin liquid film in the contact zone, (1) frictional force linearly increased with sliding velocity, (2) the increment was greater at lower temperatures and (3) no temperature dependence was detected for low-rate perpendicular detachment forces. However, we observed a strong, temperature-independent static friction that was inconsistent with a fully lubricated contact. Static friction was too large to be explained by the contribution of other (sclerotized) body parts. Moreover, the rate-specific increase of shear stress strongly exceeded predictions derived from estimates of the adhesive liquid film's thickness and viscosity. Both lines of evidence indicate that the adhesive secretion alone is insufficient to explain the observed forces and that direct interaction of the soft pad cuticle with the surface ("rubber friction") is involved.

  8. The vibrational dependence of dissociative recombination: Rate constants for N{sub 2}{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guberman, Steven L., E-mail: slg@sci.org

    Dissociative recombination rate constants are reported with electron temperature dependent uncertainties for the lowest 5 vibrational levels of the N{sub 2}{sup +} ground state. The rate constants are determined from ab initio calculations of potential curves, electronic widths, quantum defects, and cross sections. At 100 K electron temperature, the rate constants overlap with the exception of the third vibrational level. At and above 300 K, the rate constants for excited vibrational levels are significantly smaller than that for the ground level. It is shown that any experimentally determined total rate constant at 300 K electron temperature that is smaller thanmore » 2.0 × 10{sup −7} cm{sup 3}/s is likely to be for ions that have a substantially excited vibrational population. Using the vibrational level specific rate constants, the total rate constant is in very good agreement with that for an excited vibrational distribution found in a storage ring experiment. It is also shown that a prior analysis of a laser induced fluorescence experiment is quantitatively flawed due to the need to account for reactions with unknown rate constants. Two prior calculations of the dissociative recombination rate constant are shown to be inconsistent with the cross sections upon which they are based. The rate constants calculated here contribute to the resolution of a 30 year old disagreement between modeled and observed N{sub 2}{sup +} ionospheric densities.« less

  9. Precisely and Accurately Inferring Single-Molecule Rate Constants

    PubMed Central

    Kinz-Thompson, Colin D.; Bailey, Nevette A.; Gonzalez, Ruben L.

    2017-01-01

    The kinetics of biomolecular systems can be quantified by calculating the stochastic rate constants that govern the biomolecular state versus time trajectories (i.e., state trajectories) of individual biomolecules. To do so, the experimental signal versus time trajectories (i.e., signal trajectories) obtained from observing individual biomolecules are often idealized to generate state trajectories by methods such as thresholding or hidden Markov modeling. Here, we discuss approaches for idealizing signal trajectories and calculating stochastic rate constants from the resulting state trajectories. Importantly, we provide an analysis of how the finite length of signal trajectories restrict the precision of these approaches, and demonstrate how Bayesian inference-based versions of these approaches allow rigorous determination of this precision. Similarly, we provide an analysis of how the finite lengths and limited time resolutions of signal trajectories restrict the accuracy of these approaches, and describe methods that, by accounting for the effects of the finite length and limited time resolution of signal trajectories, substantially improve this accuracy. Collectively, therefore, the methods we consider here enable a rigorous assessment of the precision, and a significant enhancement of the accuracy, with which stochastic rate constants can be calculated from single-molecule signal trajectories. PMID:27793280

  10. High-Temperature Slow Crack Growth of Silicon Carbide Determined by Constant-Stress-Rate and Constant-Stress Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung H.; Salem, J. A.; Nemeth, N. N.

    1998-01-01

    High-temperature slow-crack-growth behaviour of hot-pressed silicon carbide was determined using both constant-stress-rate ("dynamic fatigue") and constant-stress ("static fatigue") testing in flexure at 1300 C in air. Slow crack growth was found to be a governing mechanism associated with failure of the material. Four estimation methods such as the individual data, the Weibull median, the arithmetic mean and the median deviation methods were used to determine the slow crack growth parameters. The four estimation methods were in good agreement for the constant-stress-rate testing with a small variation in the slow-crack-growth parameter, n, ranging from 28 to 36. By contrast, the variation in n between the four estimation methods was significant in the constant-stress testing with a somewhat wide range of n= 16 to 32.

  11. Computer Calculation of First-Order Rate Constants

    ERIC Educational Resources Information Center

    Williams, Robert C.; Taylor, James W.

    1970-01-01

    Discusses the computer program used to calculate first-order rate constants. Discussion includes data preparation, weighting options, comparison techniques, infinity point adjustment, least-square fit, Guggenheim calculation, and printed outputs. Exemplifies the utility of the computer program by two experiments: (1) the thermal decomposition of…

  12. Time-temperature effect in adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    The viscoelastic analysis of an adhesively bonded lap joint was reconsidered. The adherends are approximated by essentially Reissner plates and the adhesive is linearly viscoelastic. The hereditary integrals are used to model the adhesive. A linear integral differential equations system for the shear and the tensile stress in the adhesive is applied. The equations have constant coefficients and are solved by using Laplace transforms. It is shown that if the temperature variation in time can be approximated by a piecewise constant function, then the method of Laplace transforms can be used to solve the problem. A numerical example is given for a single lap joint under various loading conditions.

  13. The rate constant of a quantum-diffusion-controlled bimolecular reaction

    NASA Astrophysics Data System (ADS)

    Bondarev, B. V.

    1986-04-01

    A quantum-mechanical equation is derived in the tight-bond approximation which describes the motion and chemical interaction of a pair of species A and B when their displacement in the matrix is caused by tunnelling. Within the framework of the discrete model of random walks, definitions are given of the probability and rate constant of a reaction A + B → P (products) proceeding in a condensed medium. A method is suggested for calculating the rate constant of a quantum-diffusion-controlled bimolecular reaction. By this method, an expression is obtained for the rate constant in the stationary spherically symmetrical case. An equation for the density matrix is also proposed which describes the motion and chemical interaction of a pair of species when the quantum and classical diffusion are competitive.

  14. Influences of brain tissue poroelastic constants on intracranial pressure (ICP) during constant-rate infusion.

    PubMed

    Li, Xiaogai; von Holst, Hans; Kleiven, Svein

    2013-01-01

    A 3D finite element (FE) model has been developed to study the mean intracranial pressure (ICP) response during constant-rate infusion using linear poroelasticity. Due to the uncertainties in the poroelastic constants for brain tissue, the influence of each of the main parameters on the transient ICP infusion curve was studied. As a prerequisite for transient analysis, steady-state simulations were performed first. The simulated steady-state pressure distribution in the brain tissue for a normal cerebrospinal fluid (CSF) circulation system showed good correlation with experiments from the literature. Furthermore, steady-state ICP closely followed the infusion experiments at different infusion rates. The verified steady-state models then served as a baseline for the subsequent transient models. For transient analysis, the simulated ICP shows a similar tendency to that found in the experiments, however, different values of the poroelastic constants have a significant effect on the infusion curve. The influence of the main poroelastic parameters including the Biot coefficient α, Skempton coefficient B, drained Young's modulus E, Poisson's ratio ν, permeability κ, CSF absorption conductance C(b) and external venous pressure p(b) was studied to investigate the influence on the pressure response. It was found that the value of the specific storage term S(ε) is the dominant factor that influences the infusion curve, and the drained Young's modulus E was identified as the dominant parameter second to S(ε). Based on the simulated infusion curves from the FE model, artificial neural network (ANN) was used to find an optimised parameter set that best fit the experimental curve. The infusion curves from both the FE simulation and using ANN confirmed the limitation of linear poroelasticity in modelling the transient constant-rate infusion.

  15. 18 CFR 806.12 - Constant-rate aquifer testing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year recurrence...

  16. 18 CFR 806.12 - Constant-rate aquifer testing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year recurrence...

  17. 18 CFR 806.12 - Constant-rate aquifer testing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year recurrence...

  18. 18 CFR 806.12 - Constant-rate aquifer testing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year recurrence...

  19. Rate constant for the reaction of atomic chlorine with methane

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Leu, M. T.; Demore, W. B.

    1978-01-01

    The rate constant and temperature dependence of the Cl + CH4 reaction have been investigated by the techniques of competitive chlorination of CH4/C2H6 mixtures and by discharge-flow/mass spectroscopy. The objectives were to determine an accurate value for the rate constant for use in stratospheric modeling, and to clarify discrepancies in results previously obtained by different techniques. The results deduced from the competitive chlorination study are in good agreement with the absolute values measured by the mass spectrometric method, and at temperatures above 300 K are in good agreement with measurements by other techniques based on resonance fluorescence detection of atomic chlorine. However, in the 220-300 K region, the competitive experiments indicate lower rate constants than those obtained by resonance fluorescence methods, and do not reproduce the curved Arrhenius plots seen in some of those studies.

  20. Biodegradation testing of chemicals with high Henry's constants - Separating mass and effective concentration reveals higher rate constants.

    PubMed

    Birch, Heidi; Andersen, Henrik R; Comber, Mike; Mayer, Philipp

    2017-05-01

    During simulation-type biodegradation tests, volatile chemicals will continuously partition between water phase and headspace. This study addressed how (1) this partitioning affects test results and (2) can be accounted for by combining equilibrium partition and dynamic biodegradation models. An aqueous mixture of 9 (semi)volatile chemicals was first generated using passive dosing and then diluted with environmental surface water producing concentrations in the ng/L to μg/L range. After incubation for 2 h to 4 weeks, automated Headspace Solid Phase Microextraction (HS-SPME) was applied directly on the test systems to measure substrate depletion by biodegradation relatively to abiotic controls. HS-SPME was also applied to determine air to water partitioning ratios. Biodegradation rate constants relating to the chemical in the water phase, k water , were generally a factor 1 to 11 times higher than biodegradation rate constants relating to the total mass of chemical in the test system, k system , with one exceptional factor of 72 times for a long chain alkane. True water phase degradation rate constants were found (i) more appropriate for risk assessment than test system rate constants, (ii) to facilitate extrapolation to other air-water systems and (iii) to be better defined input parameters for aquatic exposure and fate models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of contact time and force on monocyte adhesion to vascular endothelium.

    PubMed Central

    Rinker, K D; Prabhakar, V; Truskey, G A

    2001-01-01

    In this study we examined whether monocytic cell attachment to vascular endothelium was affected by elevating shear stress at a constant shear rate. Contact time, which is inversely related to the shear rate, was fixed and viscosity elevated with dextran to increase the shear stress (and hence the net force on the cell) independently of shear rate. At a fixed contact time, tethering frequencies increased, rolling velocities decreased, and median arrest durations increased with increasing shear stress. Rolling and short arrests (< 0.2 s) were well fit by a single exponential consistent with adhesion via the formation of a single additional bond. The cell dissociation constant, k(off), increased when the shear stress was elevated at constant shear rate. Firmly adherent cells arresting for at least 0.2 s were well fit by a stochastic model involving dissociation from multiple bonds. Therefore, at a fixed contact time and increasing shear stress, bonds formed more frequently for rolling cells resulting in more short arrests, and more bonds formed for firmly arresting cells resulting in longer arrest durations. Possible mechanisms for this increased adhesion include greater monocyte deformation and/or more frequent penetration of microvilli through steric and charge barriers. PMID:11259286

  2. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS - ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  3. Adhesive capsulitis of the shoulder: the rate of manipulation following distension arthrogram.

    PubMed

    Ibrahim, T; Rahbi, H; Beiri, A; Jeyapalan, K; Taylor, G J S

    2006-11-01

    To determine the rate of manipulation under anaesthesia (MUA) following distension arthrogram for adhesive capsulitis of the shoulder. Thirty-nine patients (42 shoulders) between 1998 and 2004 were treated with distension arthrogram for adhesive capsulitis diagnosed by the clinical picture of progressive pain and stiffness. Capsular disruption into the subscapular bursa was demonstrated in 40 of the 42 shoulders (95%). Thirty-seven of 42 (88%) shoulders were painfree following distension arthrogram. 15 of 42 (36%) shoulders underwent MUA following distension arthrogram for stiffness although 10 of these (67%) were painfree. Prior to distension arthrogram, the range of external rotation (ER) was no different between those that had MUA and those that did not (P = 0.36). The improvement in ER was 33% (P = 0.28) in those that had MUA and 50% (P = 0.001) in those that did not. The only complication was a vasovagal episode during the procedure. Distension arthrogram can be used as a therapeutic procedure for achieving symptomatic pain relief in the majority of adhesive capsulitis and decrease the rate of MUA of the shoulder.

  4. Estimating the spread rate of urea formaldehyde adhesive on birch (Betula pendula Roth) veneer using fluorescence

    Treesearch

    Toni Antikainen; Anti Rohumaa; Christopher G. Hunt; Mari Levirinne; Mark Hughes

    2015-01-01

    In plywood production, human operators find it difficult to precisely monitor the spread rate of adhesive in real-time. In this study, macroscopic fluorescence was used to estimate spread rate (SR) of urea formaldehyde adhesive on birch (Betula pendula Roth) veneer. This method could be an option when developing automated real-time SR measurement for...

  5. Cell adhesion during bullet motion in capillaries.

    PubMed

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji

    2016-08-01

    A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. Copyright © 2016 the American Physiological Society.

  6. Rate Constant and Temperature Dependence for the Reaction of Hydroxyl Radicals with 2-Flouropropane (FC-281ea) and Comparison with an Estimated Rate Constant

    NASA Technical Reports Server (NTRS)

    DeMore, W.; Wilson, E., Jr.

    1998-01-01

    Relative rate experiments were used to measure the rate constant and temperature dependence of the reaction of OH radicals with 2-fluoropropane (HFC-281ea), using ethane, propane, ethyl chloride as reference standards.

  7. Cyclic debonding of unidirectional composite bonded to aluminum sheet for constant-amplitude loading

    NASA Technical Reports Server (NTRS)

    Roderick, G. L.; Everett, R. A., Jr.; Crews, J. H., Jr.

    1976-01-01

    Cyclic debonding rates were measured during constant-amplitude loading of specimens made of graphite/epoxy bonded to aluminum and S-glass/epoxy bonded to aluminum. Both room-temperature and elevated-temperature curing adhesives were used. Debonding was monitored with a photoelastic coating technique. The debonding rates were compared with three expressions for strain-energy release rate calculated in terms of the maximum stress, stress range, or a combination of the two. The debonding rates were influenced by both adherent thickness and the cyclic stress ratio. For a given value of maximum stress, lower stress ratios and thicker specimens produced faster debonding. Microscopic examination of the debonded surfaces showed different failure mechanisms both for identical adherends bonded with different adhesive and, indeed, even for different adherends bonded with identical adhesives. The expressions for strain-energy release rate correlated the data for different specimen thicknesses and stress ratios quite well for each material system, but the form of the best correlating expression varied among material systems. Empirical correlating expressions applicable to one material system may not be appropriate for another system.

  8. Flame Chemiluminescence Rate Constants for Quantitative Microgravity Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Luque, Jorge; Smith, Gregory P.; Jeffries, Jay B.; Crosley, David R.; Weiland, Karen (Technical Monitor)

    2001-01-01

    Absolute excited state concentrations of OH(A), CH(A), and C2(d) were determined in three low pressure premixed methane-air flames. Two dimensional images of chemiluminescence from these states were recorded by a filtered CCD camera, processed by Abel inversion, and calibrated against Rayleigh scattering, Using a previously validated 1-D flame model with known chemistry and excited state quenching rate constants, rate constants are extracted for the reactions CH + O2 (goes to) OH(A) + CO and C2H + O (goes to) CH(A) + CO at flame temperatures. Variations of flame emission intensities with stoichiometry agree well with model predictions.

  9. ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS

    EPA Science Inventory

    SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...

  10. The effect of hydroxyapatite presence on the degree of conversion and polymerization rate in a model self-etching adhesive

    PubMed Central

    Zhang, Ying; Wang, Yong

    2011-01-01

    Objective The effect of hydroxyapatite (HAp) content on photopolymerization of a model self-etching adhesive was studied by using attenuated total reflectance Fourier transform infrared (ATR/FT-IR) spectroscopy. Materials and methods The model adhesive contained two monomers: bis[2-(methacryloyloxy)ethyl] phosphate (2MP) and 2-hydroxyethyl methacrylate (HEMA) using a 1:1 mass ratio, representing an acidic formulation. Camphorquinone and ethyl 4-dimethylaminobenzoate were added to enable visible light photopolymerization in a constant concentration of 0.022 mmol per gram monomer. HAp [Ca10(OH)2(PO4)6] powder were added to the test solutions to obtain mass fraction of 0, 1, 2, 3, 4 wt%. The degree of conversion (DC) and the polymerization rate (PR) with/without HAp were determined using ATR/FT-IR with a time-based spectrum analysis. Results Monomer DC and PR were significantly enhanced by addition of HAp. Incorporation of 4 wt% of HAp increased DC from 20.8 (±0.3) % to 93.4 (±1.1) %, and PR from 0.42 (±0.01) %/s to 3.21 (±0.07) %/s. The pH of adhesive solutions was measured and correlated with DC and PR. The pH of test solutions was also controlled using a base (sodium hydroxide, NaOH) to similar values as when using HAp. Results indicated that both the DC and PR increased with increasing pH, regardless of additive, confirming the role of pH on polymerization. From the IR spectral comparison, changes in molecular structures of the self-etching adhesive after the addition of HAp were observed, which were correlated with the specific interaction between 2MP and HAp. The effect of viscosity was also proposed to be another possible reason for the improved polymerization. Significance The photopolymerization of a self-etching adhesive was enhanced / accelerated in the presence of HAp. The results provide the critical information for understanding the interactions/bonding between self-etching adhesives and tooth substrates. PMID:22032933

  11. Rationalizing 5000-Fold Differences in Receptor-Binding Rate Constants of Four Cytokines

    PubMed Central

    Pang, Xiaodong; Qin, Sanbo; Zhou, Huan-Xiang

    2011-01-01

    The four cytokines erythropoietin (EPO), interleukin-4 (IL4), human growth hormone (hGH), and prolactin (PRL) all form four-helix bundles and bind to type I cytokine receptors. However, their receptor-binding rate constants span a 5000-fold range. Here, we quantitatively rationalize these vast differences in rate constants by our transient-complex theory for protein-protein association. In the transient complex, the two proteins have near-native separation and relative orientation, but have yet to form the short-range specific interactions of the native complex. The theory predicts the association rate constant as ka=ka0exp(−ΔGel∗/kBT) where ka0 is the basal rate constant for reaching the transient complex by random diffusion, and the Boltzmann factor captures the rate enhancement due to electrostatic attraction. We found that the vast differences in receptor-binding rate constants of the four cytokines arise mostly from the differences in charge complementarity among the four cytokine-receptor complexes. The basal rate constants (ka0) of EPO, IL4, hGH, and PRL were similar (5.2 × 105 M−1s−1, 2.4 × 105 M−1s−1, 1.7 × 105 M−1s−1, and 1.7 × 105 M−1s−1, respectively). However, the average electrostatic free energies (ΔGe1∗) were very different (−4.2 kcal/mol, −2.4 kcal/mol, −0.1 kcal/mol, and −0.5 kcal/mol, respectively, at ionic strength = 160 mM). The receptor-binding rate constants predicted without adjusting any parameters, 6.2 × 108 M−1s−1, 1.3 × 107 M−1s−1, 2.0 × 105 M−1s−1, and 7.6 × 104 M−1s−1, respectively, for EPO, IL4, hGH, and PRL agree well with experimental results. We uncover that these diverse rate constants are anticorrelated with the circulation concentrations of the cytokines, with the resulting cytokine-receptor binding rates very close to the limits set by the half-lives of the receptors, suggesting that these binding rates are functionally relevant and perhaps evolutionarily

  12. Theoretical Evaluation of the Transient Response of Constant Head and Constant Flow-Rate Permeability Tests

    USGS Publications Warehouse

    Zhang, M.; Takahashi, M.; Morin, R.H.; Esaki, T.

    1998-01-01

    A theoretical analysis is presented that compares the response characteristics of the constant head and the constant flowrate (flow pump) laboratory techniques for quantifying the hydraulic properties of geologic materials having permeabilities less than 10-10 m/s. Rigorous analytical solutions that describe the transient distributions of hydraulic gradient within a specimen are developed, and equations are derived for each method. Expressions simulating the inflow and outflow rates across the specimen boundaries during a constant-head permeability test are also presented. These solutions illustrate the advantages and disadvantages of each method, including insights into measurement accuracy and the validity of using Darcy's law under certain conditions. The resulting observations offer practical considerations in the selection of an appropriate laboratory test method for the reliable measurement of permeability in low-permeability geologic materials.

  13. Adhesion of Particulate Materials to Mesostructured Polypyrrole

    NASA Astrophysics Data System (ADS)

    Hoss, Darby; Knepper, Robert; Hotchkiss, Peter; Tappan, Alexander; Boudouris, Bryan; Beaudoin, Stephen

    Interactions based on van der Waals (vdW) forces will influence the performance and reliability of mesostructured polypyrrole swabs used for the collection and detection of trace particles. The vdW adhesion force between materials is described by the Hamaker constant, and these constants are measured via optical and dielectric properties (i.e., according to Lifshitz theory), inverse gas chromatography (IGC), and contact angle measurements. Here, contact angle measurements were performed on films of several common materials and used to estimate Hamaker constants. This, in turn, will allow for the tuning of the design properties associated with the polypyrrole swabs. A comparison of these results to Hamaker constants estimated using Lifshitz Theory and IGC reveals the fundamental behavior of the materials. The Hamaker constants were then used in a new computational vdW adhesion model. The idealized model describes particle adhesion to an array of mesostrucures. This model elucidates the importance of where the particle makes contact with the mesostructure and the independence of vdW forces generated by each mesostructure. These results will facilitate the rational design of polypyrrole swabs optimized for harvesting microscale particles of trace materials.

  14. The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion.

    PubMed

    Chang, K C; Tees, D F; Hammer, D A

    2000-10-10

    Leukocyte adhesion under flow in the microvasculature is mediated by binding between cell surface receptors and complementary ligands expressed on the surface of the endothelium. Leukocytes adhere to endothelium in a two-step mechanism: rolling (primarily mediated by selectins) followed by firm adhesion (primarily mediated by integrins). Using a computational method called "Adhesive Dynamics," we have simulated the adhesion of a cell to a surface in flow, and elucidated the relationship between receptor-ligand functional properties and the dynamics of adhesion. We express this relationship in a state diagram, a one-to-one map between the biophysical properties of adhesion molecules and various adhesive behaviors. Behaviors that are observed in simulations include firm adhesion, transient adhesion (rolling), and no adhesion. We varied the dissociative properties, association rate, bond elasticity, and shear rate and found that the unstressed dissociation rate, k(r)(o), and the bond interaction length, gamma, are the most important molecular properties controlling the dynamics of adhesion. Experimental k(r)(o) and gamma values from the literature for molecules that are known to mediate rolling adhesion fall within the rolling region of the state diagram. We explain why L-selectin-mediated rolling, which has faster k(r)(o) than other selectins, is accompanied by a smaller value for gamma. We also show how changes in association rate, shear rate, and bond elasticity alter the dynamics of adhesion. The state diagram (which must be mapped for each receptor-ligand system) presents a concise and comprehensive means of understanding the relationship between bond functional properties and the dynamics of adhesion mediated by receptor-ligand bonds.

  15. Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives.

    PubMed

    Villey, Richard; Creton, Costantino; Cortet, Pierre-Philippe; Dalbe, Marie-Julie; Jet, Thomas; Saintyves, Baudouin; Santucci, Stéphane; Vanel, Loïc; Yarusso, David J; Ciccotti, Matteo

    2015-05-07

    The modelling of the adherence energy during peeling of Pressure Sensitive Adhesives (PSA) has received much attention since the 1950's, uncovering several factors that aim at explaining their high adherence on most substrates, such as the softness and strong viscoelastic behaviour of the adhesive, the low thickness of the adhesive layer and its confinement by a rigid backing. The more recent investigation of adhesives by probe-tack methods also revealed the importance of cavitation and stringing mechanisms during debonding, underlining the influence of large deformations and of the related non-linear response of the material, which also intervenes during peeling. Although a global modelling of the complex coupling of all these ingredients remains a formidable issue, we report here some key experiments and modelling arguments that should constitute an important step forward. We first measure a non-trivial dependence of the adherence energy on the loading geometry, namely through the influence of the peeling angle, which is found to be separable from the peeling velocity dependence. This is the first time to our knowledge that such adherence energy dependence on the peeling angle is systematically investigated and unambiguously demonstrated. Secondly, we reveal an independent strong influence of the large strain rheology of the adhesives on the adherence energy. We complete both measurements with a microscopic investigation of the debonding region. We discuss existing modellings in light of these measurements and of recent soft material mechanics arguments, to show that the adherence energy during peeling of PSA should not be associated to the propagation of an interfacial stress singularity. The relevant deformation mechanisms are actually located over the whole adhesive thickness, and the adherence energy during peeling of PSA should rather be associated to the energy loss by viscous friction and by rate-dependent elastic hysteresis.

  16. 18 CFR 806.12 - Constant-rate aquifer testing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... groundwater availability analysis to determine the availability of water during a 1-in-10-year recurrence... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Constant-rate aquifer testing. 806.12 Section 806.12 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN...

  17. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. I. ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  18. MICROBIAL TRANSFORMATION RATE CONSTANTS OF STRUCTURALLY DIVERSE MAN-MADE CHEMICALS

    EPA Science Inventory

    To assist in estimating microbially mediated transformation rates of man-made chemicals from their chemical structures, all second order rate constants that have been measured under conditions that make the values comparable have been extracted from the literature and combined wi...

  19. Binding constants of membrane-anchored receptors and ligands depend strongly on the nanoscale roughness of membranes.

    PubMed

    Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R

    2013-09-17

    Cell adhesion and the adhesion of vesicles to the membranes of cells or organelles are pivotal for immune responses, tissue formation, and cell signaling. The adhesion processes depend sensitively on the binding constant of the membrane-anchored receptor and ligand proteins that mediate adhesion, but this constant is difficult to measure in experiments. We have investigated the binding of membrane-anchored receptor and ligand proteins with molecular dynamics simulations. We find that the binding constant of the anchored proteins strongly decreases with the membrane roughness caused by thermally excited membrane shape fluctuations on nanoscales. We present a theory that explains the roughness dependence of the binding constant for the anchored proteins from membrane confinement and that relates this constant to the binding constant of soluble proteins without membrane anchors. Because the binding constant of soluble proteins is readily accessible in experiments, our results provide a useful route to compute the binding constant of membrane-anchored receptor and ligand proteins.

  20. Experimental and Estimated Rate Constants for the Reactions of Hydroxyl Radicals with Several Halocarbons

    NASA Technical Reports Server (NTRS)

    DeMore, W.B.

    1996-01-01

    Relative rate experiments are used to measure rate constants and temperature dependencies of the reactions of OH with CH3F (41), CH2FCl (31), CH2BrCl (30B1), CH2Br2 (3OB2), CHBr3 (2OB3), CF2BrCHFCl (123aBl(alpha)), and CF2ClCHCl2 (122). Rate constants for additional compounds of these types are estimated using an empirical rate constant estimation method which is based on measured rate constants for a wide range of halocarbons. The experimental data are combined with the estimated and previously reported rate constants to illustrate the effects of F, Cl, and Br substitution on OH rate constants for a series of 19 halomethanes and 25 haloethanes. Application of the estimation technique is further illustrated for some higher hydrofluorocarbons (HFCs), including CHF2CF2CF2CF2H (338pcc), CF3CHFCHFCF2CF3 (43-10mee), CF3CH2CH2CF3 (356ffa), CF3CH2CF2CH2CF3 (458mfcf), CF3CH2CHF2 (245fa), and CF3CH2CF2CH3 (365mfc). The predictions are compared with literature data for these compounds.

  1. Higher success rate with transcranial electrical stimulation of motor-evoked potentials using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery.

    PubMed

    Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito

    2017-10-01

    During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017

  2. Steady-State Computation of Constant Rotational Rate Dynamic Stability Derivatives

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Green, Lawrence L.

    2000-01-01

    Dynamic stability derivatives are essential to predicting the open and closed loop performance, stability, and controllability of aircraft. Computational determination of constant-rate dynamic stability derivatives (derivatives of aircraft forces and moments with respect to constant rotational rates) is currently performed indirectly with finite differencing of multiple time-accurate computational fluid dynamics solutions. Typical time-accurate solutions require excessive amounts of computational time to complete. Formulating Navier-Stokes (N-S) equations in a rotating noninertial reference frame and applying an automatic differentiation tool to the modified code has the potential for directly computing these derivatives with a single, much faster steady-state calculation. The ability to rapidly determine static and dynamic stability derivatives by computational methods can benefit multidisciplinary design methodologies and reduce dependency on wind tunnel measurements. The CFL3D thin-layer N-S computational fluid dynamics code was modified for this study to allow calculations on complex three-dimensional configurations with constant rotation rate components in all three axes. These CFL3D modifications also have direct application to rotorcraft and turbomachinery analyses. The modified CFL3D steady-state calculation is a new capability that showed excellent agreement with results calculated by a similar formulation. The application of automatic differentiation to CFL3D allows the static stability and body-axis rate derivatives to be calculated quickly and exactly.

  3. A new approach using coagulation rate constant for evaluation of turbidity removal

    NASA Astrophysics Data System (ADS)

    Al-Sameraiy, Mukheled

    2017-06-01

    Coagulation-flocculation-sedimentation processes for treating three levels of bentonite synthetic turbid water using date seeds (DS) and alum (A) coagulants were investigated in the previous research work. In the current research, the same experimental results were used to adopt a new approach on a basis of using coagulation rate constant as an investigating parameter to identify optimum doses of these coagulants. Moreover, the performance of these coagulants to meet (WHO) turbidity standard was assessed by introducing a new evaluating criterion in terms of critical coagulation rate constant (kc). Coagulation rate constants (k2) were mathematically calculated in second order form of coagulation process for each coagulant. The maximum (k2) values corresponded to doses, which were obviously to be considered as optimum doses. The proposed criterion to assess the performance of coagulation process of these coagulants was based on the mathematical representation of (WHO) turbidity guidelines in second order form of coagulation process stated that (k2) for each coagulant should be ≥ (kc) for each level of synthetic turbid water. For all tested turbid water, DS coagulant could not satisfy it. While, A coagulant could satisfy it. The results obtained in the present research are exactly in agreement with the previous published results in terms of finding optimum doses for each coagulant and assessing their performances. On the whole, it is recommended considering coagulation rate constant to be a new approach as an indicator for investigating optimum doses and critical coagulation rate constant to be a new evaluating criterion to assess coagulants' performance.

  4. Numerical analysis of cell adhesion in capillary flow

    NASA Astrophysics Data System (ADS)

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger; Ishikawa, Takuji

    2016-11-01

    Numerical simulation of cell adhesion was performed for capillaries whose diameter is comparable to or smaller than that of the cell. Despite a lot of works about leukocyte and tumor cell rolling, cell motion in capillaries has remained unclear. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram is obtained for various values of capillary diameter and receptor density. According to our numerical results, bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between PSGL-1 and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. This research was supported by JSPS KAKENHI Grant Numbers 25000008, 26107703, 14J03967. We also acknowledge support from the Tohoku University Division for International Advanced Research and Education Organization.

  5. Encapsulation and backsheet adhesion metrology for photovoltaic modules

    DOE PAGES

    Tracy, Jared; Bosco, Nick; Novoa, Fernando; ...

    2016-09-26

    Photovoltaic modules are designed to operate for decades in terrestrial environments. However, mechanical stress, moisture, and ultraviolet radiation eventually degrade protective materials in modules, particularly their adhesion properties, eventually leading to reduced solar cell performance. Despite the significance of interfacial adhesion to module durability, currently there is no reliable technique for characterizing module adhesion properties. We present a simple and reproducible metrology for characterizing adhesion in photovoltaic modules that is grounded in fundamental concepts of beam and fracture mechanics. Using width-tapered cantilever beam fracture specimens, interfacial adhesion was evaluated on relevant interfaces of encapsulation and backsheet structures of new andmore » 27-year-old historic modules. The adhesion energy, Gc [J/m 2], was calculated from the critical value of the strain energy release rate, G, using G = βP2, where β (a mechanical and geometric parameter of the fracture specimen) and P (the experimentally measured critical load) are constants. Under some circumstances where testing may result in cracking of brittle layers in the test specimen, measurement of the delamination length in addition to the critical load was necessary to determine G. Relative to new module materials, backsheet adhesion was 95% and 98% lower for historic modules that were exposed (operated in the field) and unexposed (stored on-site, but out of direct sunlight), respectively. Encapsulation adhesion was 87-94% lower in the exposed modules and 31% lower in the unexposed module. As a result, the metrology presented here can be used to improve module materials and assess long-term reliability.« less

  6. Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    2002-01-01

    There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.

  7. Effective rate constants for nanostructured heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Hendy, Shaun; Gaston, Nicola; Zhang, Philip; Lund, Nat

    2012-02-01

    There is currently a high level of interest in the use of nanostructured materials for catalysis. For instance, gold, which is largely inert in the bulk, can exhibit strong catalytic activity when in nanoparticle form. With precious metal catalysts such as Pt and Pd in high demand, the use of these materials in nanoparticle form can also substantially reduce costs by exposure of more surface area for the same volume of material. When reactants are plentiful, the effective activity of a nanoparticulate catalyst will increase roughly with its surface area. However, under diffusion-limited conditions, the reactant must diffuse to active sites on the catalyst, so a high surface area and a high density of active sites may bring diminishing returns if reactant is consumed faster than it arrives. Here we apply a mathematical homogenisation approach to derive simple expressions for the effective reactivity of a nanostructured catalyst under diffusion limited conditions that relate the intrinsic rate constants of the surfaces presented by the catalyst to an effective rate constant. When highly active catalytic sites, such as step edges or other defects are present, we show that distinct limiting cases emerge depending on the degree of overlap of the reactant depletion zone about each site. In gases, the size of this depletion zone is approximately the mean free path, so the effective reactivity will depend on the structure of the catalyst on that scale. We discuss implications for the optimal design of nanoparticle catalysts.

  8. Kinetic rate constant prediction supports the conformational selection mechanism of protein binding.

    PubMed

    Moal, Iain H; Bates, Paul A

    2012-01-01

    The prediction of protein-protein kinetic rate constants provides a fundamental test of our understanding of molecular recognition, and will play an important role in the modeling of complex biological systems. In this paper, a feature selection and regression algorithm is applied to mine a large set of molecular descriptors and construct simple models for association and dissociation rate constants using empirical data. Using separate test data for validation, the predicted rate constants can be combined to calculate binding affinity with accuracy matching that of state of the art empirical free energy functions. The models show that the rate of association is linearly related to the proportion of unbound proteins in the bound conformational ensemble relative to the unbound conformational ensemble, indicating that the binding partners must adopt a geometry near to that of the bound prior to binding. Mirroring the conformational selection and population shift mechanism of protein binding, the models provide a strong separate line of evidence for the preponderance of this mechanism in protein-protein binding, complementing structural and theoretical studies.

  9. Rate and time dependent behavior of structural adhesives. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Renieri, M. P.; Herakovich, C. T.; Brinson, H. F.

    1976-01-01

    Studies on two adhesives (Metlbond 1113 and 1113-2) identified as having applications in the bonding of composite materials are presented. Constitutive equations capable of describing changes in material behavior with strain rate are derived from various theoretical approaches. It is shown that certain unique relationships exist between these approaches. It is also shown that the constitutive equation derived from mechanical models can be used for creep and relaxation loading. A creep to failure phenomenon is shown to exist and is correlated with a delayed yield equation proposed by Crochet. Loading-unloading results are presented and are shown to correlate well with the proposed form of the loading-unloading equations for the modified Bingham model. Experimental results obtained for relaxation tests above and below the glass transition temperature are presented. It is shown that the adhesives obey the time-temperature superposition principle.

  10. HO + CO reaction rates and H/D kinetic isotope effects: master equation models with ab initio SCTST rate constants.

    PubMed

    Weston, Ralph E; Nguyen, Thanh Lam; Stanton, John F; Barker, John R

    2013-02-07

    Ab initio microcanonical rate constants were computed using Semi-Classical Transition State Theory (SCTST) and used in two master equation formulations (1D, depending on active energy with centrifugal corrections, and 2D, depending on total energy and angular momentum) to compute temperature-dependent rate constants for the title reactions using a potential energy surface obtained by sophisticated ab initio calculations. The 2D master equation was used at the P = 0 and P = ∞ limits, while the 1D master equation with centrifugal corrections and an empirical energy transfer parameter could be used over the entire pressure range. Rate constants were computed for 75 K ≤ T ≤ 2500 K and 0 ≤ [He] ≤ 10(23) cm(-3). For all temperatures and pressures important for combustion and for the terrestrial atmosphere, the agreement with the experimental rate constants is very good, but at very high pressures and T ≤ 200 K, the theoretical rate constants are significantly smaller than the experimental values. This effect is possibly due to the presence in the experiments of dimers and prereactive complexes, which were not included in the model calculations. The computed H/D kinetic isotope effects are in acceptable agreement with experimental data, which show considerable scatter. Overall, the agreement between experimental and theoretical H/D kinetic isotope effects is much better than in previous work, and an assumption of non-RRKM behavior does not appear to be needed to reproduce experimental observations.

  11. Phototransformation rate constants of PAHs associated with soot particles.

    PubMed

    Kim, Daekyun; Young, Thomas M; Anastasio, Cort

    2013-01-15

    Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k(p)(0)), the effective diffusion coefficients (D(eff)), and the light penetration depths (z(0.5)) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2-3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z(0.5) is more sensitive to the soot layer thickness than the k(p)(0) value. As the thickness of the soot layer increases, the z(0.5) values increase, but the k(p)(0) values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k(p)(0) and z(0.5) in thinner layers, D(eff) should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Phototransformation Rate Constants of PAHs Associated with Soot Particles

    PubMed Central

    Kim, Daekyun; Young, Thomas M.; Anastasio, Cort

    2013-01-01

    Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k0p), the effective diffusion coefficients (Deff), and the light penetration depths (z0.5) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2-3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z0.5 is more sensitive to the soot layer thickness than the k0p value. As the thickness of the soot layer increases, the z0.5 values increase, but the k0p values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k0p and z0.5 in thinner layers, Deff should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. PMID:23247292

  13. Theoretical rate constants of super-exchange hole transfer and thermally induced hopping in DNA.

    PubMed

    Shimazaki, Tomomi; Asai, Yoshihiro; Yamashita, Koichi

    2005-01-27

    Recently, the electronic properties of DNA have been extensively studied, because its conductivity is important not only to the study of fundamental biological problems, but also in the development of molecular-sized electronics and biosensors. We have studied theoretically the reorganization energies, the activation energies, the electronic coupling matrix elements, and the rate constants of hole transfer in B-form double-helix DNA in water. To accommodate the effects of DNA nuclear motions, a subset of reaction coordinates for hole transfer was extracted from classical molecular dynamics (MD) trajectories of DNA in water and then used for ab initio quantum chemical calculations of electron coupling constants based on the generalized Mulliken-Hush model. A molecular mechanics (MM) method was used to determine the nuclear Franck-Condon factor. The rate constants for two types of mechanisms of hole transfer-the thermally induced hopping (TIH) and the super-exchange mechanisms-were determined based on Marcus theory. We found that the calculated matrix elements are strongly dependent on the conformations of the nucleobase pairs of hole-transferable DNA and extend over a wide range of values for the "rise" base-step parameter but cluster around a particular value for the "twist" parameter. The calculated activation energies are in good agreement with experimental results. Whereas the rate constant for the TIH mechanism is not dependent on the number of A-T nucleobase pairs that act as a bridge, the rate constant for the super-exchange process rapidly decreases when the length of the bridge increases. These characteristic trends in the calculated rate constants effectively reproduce those in the experimental data of Giese et al. [Nature 2001, 412, 318]. The calculated rate constants were also compared with the experimental results of Lewis et al. [Nature 2000, 406, 51].

  14. Impact of uncertainties in inorganic chemical rate constants on tropospheric composition and ozone radiative forcing

    NASA Astrophysics Data System (ADS)

    Newsome, Ben; Evans, Mat

    2017-12-01

    Chemical rate constants determine the composition of the atmosphere and how this composition has changed over time. They are central to our understanding of climate change and air quality degradation. Atmospheric chemistry models, whether online or offline, box, regional or global, use these rate constants. Expert panels evaluate laboratory measurements, making recommendations for the rate constants that should be used. This results in very similar or identical rate constants being used by all models. The inherent uncertainties in these recommendations are, in general, therefore ignored. We explore the impact of these uncertainties on the composition of the troposphere using the GEOS-Chem chemistry transport model. Based on the Jet Propulsion Laboratory (JPL) and International Union of Pure and Applied Chemistry (IUPAC) evaluations we assess the influence of 50 mainly inorganic rate constants and 10 photolysis rates on tropospheric composition through the use of the GEOS-Chem chemistry transport model. We assess the impact on four standard metrics: annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime. Uncertainty in the rate constants for NO2 + OH M HNO3 and O3 + NO → NO2 + O2 are the two largest sources of uncertainty in these metrics. The absolute magnitude of the change in the metrics is similar if rate constants are increased or decreased by their σ values. We investigate two methods of assessing these uncertainties, addition in quadrature and a Monte Carlo approach, and conclude they give similar outcomes. Combining the uncertainties across the 60 reactions gives overall uncertainties on the annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime of 10, 11, 16 and 16 %, respectively. These are larger than the spread between models

  15. Impact of transverse and longitudinal dispersion on first-order degradation rate constant estimation

    NASA Astrophysics Data System (ADS)

    Stenback, Greg A.; Ong, Say Kee; Rogers, Shane W.; Kjartanson, Bruce H.

    2004-09-01

    A two-dimensional analytical model is employed for estimating the first-order degradation rate constant of hydrophobic organic compounds (HOCs) in contaminated groundwater under steady-state conditions. The model may utilize all aqueous concentration data collected downgradient of a source area, but does not require that any data be collected along the plume centerline. Using a least squares fit of the model to aqueous concentrations measured in monitoring wells, degradation rate constants were estimated at a former manufactured gas plant (FMGP) site in the Midwest U.S. The estimated degradation rate constants are 0.0014, 0.0034, 0.0031, 0.0019, and 0.0053 day -1 for acenaphthene, naphthalene, benzene, ethylbenzene, and toluene, respectively. These estimated rate constants were as low as one-half those estimated with the one-dimensional (centerline) approach of Buscheck and Alcantar [Buscheck, T.E., Alcantar, C.M., 1995. Regression techniques and analytical solutions to demonstrate intrinsic bioremediation. In: Hinchee, R.E., Wilson, J.T., Downey, D.C. (Eds.), Intrinsic Bioremediation, Battelle Press, Columbus, OH, pp. 109-116] which does not account for transverse dispersivity. Varying the transverse and longitudinal dispersivity values over one order of magnitude for toluene data obtained from the FMGP site resulted in nearly a threefold variation in the estimated degradation rate constant—highlighting the importance of reliable estimates of the dispersion coefficients for obtaining reasonable estimates of the degradation rate constants. These results have significant implications for decision making and site management where overestimation of a degradation rate may result in remediation times and bioconversion factors that exceed expectations. For a complex source area or non-steady-state plume, a superposition of analytical models that incorporate longitudinal and transverse dispersion and time may be used at sites where the centerline method would not be

  16. Charring rate of wood exposed to a constant heat flux

    Treesearch

    R. H. White; H. C. Tran

    1996-01-01

    A critical factor in the fire endurance of a wood member is its rate of charring. Most available charring rate data have been obtained using the time-temperature curves of the standard fire resistance tests (ASTM E 119 and ISO 834) to define the fire exposure. The increased use of heat release calorimeters using exposures of constant heat flux levels has broadened the...

  17. Forced-rupture of cell-adhesion complexes reveals abrupt switch between two brittle states

    NASA Astrophysics Data System (ADS)

    Toan, Ngo Minh; Thirumalai, D.

    2018-03-01

    Cell adhesion complexes (CACs), which are activated by ligand binding, play key roles in many cellular functions ranging from cell cycle regulation to mediation of cell extracellular matrix adhesion. Inspired by single molecule pulling experiments using atomic force spectroscopy on leukocyte function-associated antigen-1 (LFA-1), expressed in T-cells, bound to intercellular adhesion molecules (ICAM), we performed constant loading rate (rf) and constant force (F) simulations using the self-organized polymer model to describe the mechanism of ligand rupture from CACs. The simulations reproduce the major experimental finding on the kinetics of the rupture process, namely, the dependence of the most probable rupture forces (f*s) on ln rf (rf is the loading rate) exhibits two distinct linear regimes. The first, at low rf, has a shallow slope, whereas the slope at high rf is much larger, especially for a LFA-1/ICAM-1 complex with the transition between the two occurring over a narrow rf range. Locations of the two transition states (TSs) extracted from the simulations show an abrupt change from a high value at low rf or constant force, F, to a low value at high rf or F. This unusual behavior in which the CACs switch from one brittle (TS position is a constant over a range of forces) state to another brittle state is not found in forced-rupture in other protein complexes. We explain this novel behavior by constructing the free energy profiles, F(Λ)s, as a function of a collective reaction coordinate (Λ), involving many key charged residues and a critical metal ion (Mg2+). The TS positions in F(Λ), which quantitatively agree with the parameters extracted using the Bell-Evans model, change abruptly at a critical force, demonstrating that it, rather than the molecular extension, is a good reaction coordinate. Our combined analyses using simulations performed in both the pulling modes (constant rf and F) reveal a new mechanism for the two loading regimes observed in the

  18. Study on improving the turbidity measurement of the absolute coagulation rate constant.

    PubMed

    Sun, Zhiwei; Liu, Jie; Xu, Shenghua

    2006-05-23

    The existing theories dealing with the evaluation of the absolute coagulation rate constant by turbidity measurement were experimentally tested for different particle-sized (radius = a) suspensions at incident wavelengths (lambda) ranging from near-infrared to ultraviolet light. When the size parameter alpha = 2pi a/lambda > 3, the rate constant data from previous theories for fixed-sized particles show significant inconsistencies at different light wavelengths. We attribute this problem to the imperfection of these theories in describing the light scattering from doublets through their evaluation of the extinction cross section. The evaluations of the rate constants by all previous theories become untenable as the size parameter increases and therefore hampers the applicable range of the turbidity measurement. By using the T-matrix method, we present a robust solution for evaluating the extinction cross section of doublets formed in the aggregation. Our experiments show that this new approach is effective in extending the applicability range of the turbidity methodology and increasing measurement accuracy.

  19. Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates

    DOE PAGES

    Song, Bo; Sanborn, Brett

    2018-05-07

    In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less

  20. Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Bo; Sanborn, Brett

    In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less

  1. Nonlinear flow affects hydrodynamic forces and neutrophil adhesion rates in cone-plate viscometers.

    PubMed Central

    Shankaran, H; Neelamegham, S

    2001-01-01

    We present a theoretical and experimental analysis of the effects of nonlinear flow in a cone-plate viscometer. The analysis predicts that flow in the viscometer is a function of two parameters, the Reynolds number and the cone angle. Nonlinear flow occurs at high shear rates and causes spatial variations in wall shear stress, collision frequency, interparticle forces and attachment times within the viscometer. We examined the effect of these features on cellular adhesion kinetics. Based on recent data (Taylor, A. D., S. Neelamegham, J. D. Hellums, et al. 1996. Biophys. J. 71:3488-3500), we modeled neutrophil homotypic aggregation as a process that is integrin-limited at low shear and selectin-limited at high shear. Our calculations suggest that selectin and integrin on-rates lie in the order of 10(-2)-10(-4)/s. They also indicate that secondary flow causes positional variations in adhesion efficiency in the viscometer, and that the overall efficiency is dependent not only on the shear rate, but also the sample volume and the cone angle. Experiments performed with isolated neutrophils confirmed these predictions. In these experiments, enhancing secondary flow by increasing the sample volume from 100 to 1000 microl at 1500/s for a 2 degrees cone caused up to an approximately 45% drop in adhesion efficiency. Our results suggest that secondary flow may significantly influence cellular aggregation, platelet activation, and endothelial cell mechanotransduction measurements made in the viscometer over the range of conditions applied in typical biological studies. PMID:11371440

  2. The temperature dependence of the rate constant for the reaction of hydroxyl radicals with nitric acid

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; Cornett, K. D.; Murphy, J. L.

    1982-01-01

    The rate constant for the reaction of hydroxyl radicals with nitric acid in the 225-443 K temperature range has been measured by means of the flash photolysis resonance fluorescence technique. Above 300 K, the rate constant levels off in a way that can only be explained by the occurrence of two reaction channels, of which one, operative at low temperatures, proceeds through the formation of an adduct intermediate. The implications of these rate constant values for stratospheric reaction constants is discussed.

  3. Arachnids Secrete a Fluid over Their Adhesive Pads

    PubMed Central

    Peattie, Anne M.; Dirks, Jan-Henning; Henriques, Sérgio; Federle, Walter

    2011-01-01

    Background Many arachnids possess adhesive pads on their feet that help them climb smooth surfaces and capture prey. Spider and gecko adhesives have converged on a branched, hairy structure, which theoretically allows them to adhere solely by dry (solid-solid) intermolecular interactions. Indeed, the consensus in the literature is that spiders and their smooth-padded relatives, the solifugids, adhere without the aid of a secretion. Methodology and Principal Findings We investigated the adhesive contact zone of living spiders, solifugids and mites using interference reflection microscopy, which allows the detection of thin liquid films. Like insects, all the arachnids we studied left behind hydrophobic fluid footprints on glass (mean refractive index: 1.48–1.50; contact angle: 3.7–11.2°). Fluid was not always secreted continuously, suggesting that pads can function in both wet and dry modes. We measured the attachment forces of single adhesive setae from tarantulas (Grammostola rosea) by attaching them to a bending beam with a known spring constant and filming the resulting deflection. Individual spider setae showed a lower static friction at rest (26%±2.8 SE of the peak friction) than single gecko setae (Thecadactylus rapicauda; 96%±1.7 SE). This may be explained by the fact that spider setae continued to release fluid after isolation from the animal, lubricating the contact zone. Significance This finding implies that tarsal secretions occur within all major groups of terrestrial arthropods with adhesive pads. The presence of liquid in an adhesive contact zone has important consequences for attachment performance, improving adhesion to rough surfaces and introducing rate-dependent effects. Our results leave geckos and anoles as the only known representatives of truly dry adhesive pads in nature. Engineers seeking biological inspiration for synthetic adhesives should consider whether model species with fluid secretions are appropriate to their design goals

  4. Quantitative Prediction of Rate Constants for Aqueous Racemization To Avoid Pointless Stereoselective Syntheses

    PubMed Central

    Ballard, Andrew; Ahmad, Hiwa O.; Narduolo, Stefania; Rosa, Lucy; Chand, Nikki; Cosgrove, David A.; Varkonyi, Peter; Asaad, Nabil; Tomasi, Simone

    2017-01-01

    Abstract Racemization has a large impact upon the biological properties of molecules but the chemical scope of compounds with known rate constants for racemization in aqueous conditions was hitherto limited. To address this remarkable blind spot, we have measured the kinetics for racemization of 28 compounds using circular dichroism and 1H NMR spectroscopy. We show that rate constants for racemization (measured by ourselves and others) correlate well with deprotonation energies from quantum mechanical (QM) and group contribution calculations. Such calculations thus provide predictions of the second‐order rate constants for general‐base‐catalyzed racemization that are usefully accurate. When applied to recent publications describing the stereoselective synthesis of compounds of purported biological value, the calculations reveal that racemization would be sufficiently fast to render these expensive syntheses pointless. PMID:29072355

  5. A first-passage scheme for determination of overall rate constants for non-diffusion-limited suspensions

    NASA Astrophysics Data System (ADS)

    Lu, Shih-Yuan; Yen, Yi-Ming

    2002-02-01

    A first-passage scheme is devised to determine the overall rate constant of suspensions under the non-diffusion-limited condition. The original first-passage scheme developed for diffusion-limited processes is modified to account for the finite incorporation rate at the inclusion surface by using a concept of the nonzero survival probability of the diffusing entity at entity-inclusion encounters. This nonzero survival probability is obtained from solving a relevant boundary value problem. The new first-passage scheme is validated by an excellent agreement between overall rate constant results from the present development and from an accurate boundary collocation calculation for the three common spherical arrays [J. Chem. Phys. 109, 4985 (1998)], namely simple cubic, body-centered cubic, and face-centered cubic arrays, for a wide range of P and f. Here, P is a dimensionless quantity characterizing the relative rate of diffusion versus surface incorporation, and f is the volume fraction of the inclusion. The scheme is further applied to random spherical suspensions and to investigate the effect of inclusion coagulation on overall rate constants. It is found that randomness in inclusion arrangement tends to lower the overall rate constant for f up to the near close-packing value of the regular arrays because of the inclusion screening effect. This screening effect turns stronger for regular arrays when f is near and above the close-packing value of the regular arrays, and consequently the overall rate constant of the random array exceeds that of the regular array. Inclusion coagulation too induces the inclusion screening effect, and leads to lower overall rate constants.

  6. Application of the compensated Arrhenius formalism to explain the dielectric constant dependence of rates for Menschutkin reactions.

    PubMed

    Petrowsky, Matt; Glatzhofer, Daniel T; Frech, Roger

    2013-11-21

    The dependence of the reaction rate on solvent dielectric constant is examined for the reaction of trihexylamine with 1-bromohexane in a series of 2-ketones over the temperature range 25-80 °C. The rate constant data are analyzed using the compensated Arrhenius formalism (CAF), where the rate constant assumes an Arrhenius-like equation that also contains a dielectric constant dependence in the exponential prefactor. The CAF activation energies are substantially higher than those obtained using the simple Arrhenius equation. A master curve of the data is observed by plotting the prefactors against the solvent dielectric constant. The master curve shows that the reaction rate has a weak dependence on dielectric constant for values approximately less than 10 and increases more rapidly for dielectric constant values greater than 10.

  7. Electron-ion dissociative recombination rate constants relevant to the Titan atmosphere and the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Osborne, David; Lawson, Patrick; Adams, Nigel

    2014-01-01

    Following the arrival of Cassini at Titan in 2004, the Titan atmosphere has been shown to contain large complex polycyclic-aromatic hydrocarbons. Since Cassini has provided a great deal of data, there exists a need for kinetic rate data to help with modeling this atmosphere. One type of kinetic data needed is electron-ion dissociative recombination (e-IDR) rate constants. These data are not readily available for larger compounds, such as naphthalene, or oxygen containing compounds, such as 1,4 dioxane or furan. Here, the rate constants for naphthalene, 1,4 dioxane, and furan have been measured and their temperature dependencies are determined when possible, using the University of Georgia's Variable Temperature Flowing Afterglow. The rate constants are compared with those previously published for other compounds; these show trends which illustrate the effects which multi-rings and oxygen heteroatoms substitutions have upon e-IDR rate constants.

  8. Rate constant for the reaction SO + BrO yields SO2 + Br

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L.

    1986-01-01

    The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.

  9. QSPR prediction of the hydroxyl radical rate constant of water contaminants.

    PubMed

    Borhani, Tohid Nejad Ghaffar; Saniedanesh, Mohammadhossein; Bagheri, Mehdi; Lim, Jeng Shiun

    2016-07-01

    In advanced oxidation processes (AOPs), the aqueous hydroxyl radical (HO) acts as a strong oxidant to react with organic contaminants. The hydroxyl radical rate constant (kHO) is important for evaluating and modelling of the AOPs. In this study, quantitative structure-property relationship (QSPR) method is applied to model the hydroxyl radical rate constant for a diverse dataset of 457 water contaminants from 27 various chemical classes. The constricted binary particle swarm optimization and multiple-linear regression (BPSO-MLR) are used to obtain the best model with eight theoretical descriptors. An optimized feed forward neural network (FFNN) is developed to investigate the complex performance of the selected molecular parameters with kHO. Although the FFNN prediction results are more accurate than those obtained using BPSO-MLR, the application of the latter is much more convenient. Various internal and external validation techniques indicate that the obtained models could predict the logarithmic hydroxyl radical rate constants of a large number of water contaminants with less than 4% absolute relative error. Finally, the above-mentioned proposed models are compared to those reported earlier and the structural factors contributing to the AOP degradation efficiency are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Electron-ion dissociative recombination rate constants relevant to the Titan atmosphere and the Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborne, David; Lawson, Patrick; Adams, Nigel, E-mail: ngadams@uga.edu

    Following the arrival of Cassini at Titan in 2004, the Titan atmosphere has been shown to contain large complex polycyclic-aromatic hydrocarbons. Since Cassini has provided a great deal of data, there exists a need for kinetic rate data to help with modeling this atmosphere. One type of kinetic data needed is electron-ion dissociative recombination (e-IDR) rate constants. These data are not readily available for larger compounds, such as naphthalene, or oxygen containing compounds, such as 1,4 dioxane or furan. Here, the rate constants for naphthalene, 1,4 dioxane, and furan have been measured and their temperature dependencies are determined when possible,more » using the University of Georgia's Variable Temperature Flowing Afterglow. The rate constants are compared with those previously published for other compounds; these show trends which illustrate the effects which multi-rings and oxygen heteroatoms substitutions have upon e-IDR rate constants.« less

  11. Rate constant for the fraction of atomic chlorine with formaldehyde from 200 to 500K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Payne, W. A.; Stief, L. J.

    1978-01-01

    A flash photolysis - resonance fluorescence technique was used to measure rate constant. The results were independent of substantial variations in H2CO, total pressure (Ar), and flash intensity (i.e., initial Cl). The rate constant was shown to be invariant with temperature, the best representation for this temperature range being K = (7.48 + or - 0.50) x 10 to the minus 11 power cu cm molecule-1 s-1 where the error is one standard deviation. The rate constant is theoretically discussed and the potential importance of the reaction in stratospheric chemistry is considered.

  12. Experimental Studies of Adhesion of a Highly Swollen Gel

    NASA Astrophysics Data System (ADS)

    Cole, Phillip; Emerson, John

    2003-03-01

    A fracture mechanics methodology based on the Johnson-Kendall-Roberts (JKR) theory is used to quantify the self-adhesion of a highly swollen gel. The solid phase of the gel is a cross-linked polybutadiene and the liquid phase is dibutylphthlate (maximum 60% by weight). In these experiments two nearly identical gel lenses are brought into contact. Bonding and separation of contact is analyzed in terms of the modified JKR theory of Shull [1]. Simultaneous measurements of the applied load, the load point displacement and the contact radius between the lenses allow us to determine the elastic modulus of the gel and the energy release rate. It also allows us to determine whether the observed hysteresis is primarily due to surface dissipation or due to bulk viscoelasticity. The energy release rate is found to be approximately constant during the bonding phase of the experiment. During the debonding phase, the energy release rate increases with the crack velocity or the receding rate of contact radius. Self-adhesion is quantified in the debonding phase through the relationship between the energy release rate and the crack growth rate. The energy release rate during the bonding phase is compared to the surface tension of the liquid and the solid. We also study the effect of liquid phase on the self-adhesion by varying the amount of liquid from zero percent to the maximum of sixty percent. [1] Shull, K. R. Materials Science and Engineering R-Reports, 36 (2002) 1-45. This work was performed at Sandia National Laboratories, supported by the United States Department of Energy under contract number DE-AC04-94AL85000.

  13. Rate constants for proteins binding to substrates with multiple binding sites using a generalized forward flux sampling expression

    NASA Astrophysics Data System (ADS)

    Vijaykumar, Adithya; ten Wolde, Pieter Rein; Bolhuis, Peter G.

    2018-03-01

    To predict the response of a biochemical system, knowledge of the intrinsic and effective rate constants of proteins is crucial. The experimentally accessible effective rate constant for association can be decomposed in a diffusion-limited rate at which proteins come into contact and an intrinsic association rate at which the proteins in contact truly bind. Reversely, when dissociating, bound proteins first separate into a contact pair with an intrinsic dissociation rate, before moving away by diffusion. While microscopic expressions exist that enable the calculation of the intrinsic and effective rate constants by conducting a single rare event simulation of the protein dissociation reaction, these expressions are only valid when the substrate has just one binding site. If the substrate has multiple binding sites, a bound enzyme can, besides dissociating into the bulk, also hop to another binding site. Calculating transition rate constants between multiple states with forward flux sampling requires a generalized rate expression. We present this expression here and use it to derive explicit expressions for all intrinsic and effective rate constants involving binding to multiple states, including rebinding. We illustrate our approach by computing the intrinsic and effective association, dissociation, and hopping rate constants for a system in which a patchy particle model enzyme binds to a substrate with two binding sites. We find that these rate constants increase as a function of the rotational diffusion constant of the particles. The hopping rate constant decreases as a function of the distance between the binding sites. Finally, we find that blocking one of the binding sites enhances both association and dissociation rate constants. Our approach and results are important for understanding and modeling association reactions in enzyme-substrate systems and other patchy particle systems and open the way for large multiscale simulations of such systems.

  14. Prediction of Chain Propagation Rate Constants of Polymerization Reactions in Aqueous NIPAM/BIS and VCL/BIS Systems.

    PubMed

    Kröger, Leif C; Kopp, Wassja A; Leonhard, Kai

    2017-04-06

    Microgels have a wide range of possible applications and are therefore studied with increasing interest. Nonetheless, the microgel synthesis process and some of the resulting properties of the microgels, such as the cross-linker distribution within the microgels, are not yet fully understood. An in-depth understanding of the synthesis process is crucial for designing tailored microgels with desired properties. In this work, rate constants and reaction enthalpies of chain propagation reactions in aqueous N-isopropylacrylamide/N,N'-methylenebisacrylamide and aqueous N-vinylcaprolactam/N,N'-methylenebisacrylamide systems are calculated to identify the possible sources of an inhomogeneous cross-linker distribution in the resulting microgels. Gas-phase reaction rate constants are calculated from B2PLYPD3/aug-cc-pVTZ energies and B3LYPD3/tzvp geometries and frequencies. Then, solvation effects based on COSMO-RS are incorporated into the rate constants to obtain the desired liquid-phase reaction rate constants. The rate constants agree with experiments within a factor of 2-10, and the reaction enthalpies deviate less than 5 kJ/mol. Further, the effect of rate constants on the microgel growth process is analyzed, and it is shown that differences in the magnitude of the reaction rate constants are a source of an inhomogeneous cross-linker distribution within the resulting microgel.

  15. Catechol-Cation Synergy in Wet Adhesive Materials

    NASA Astrophysics Data System (ADS)

    Maier, Gregory Peter

    In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is impaired by high salt, pH, and hydration. However, mussels have evolved effective strategies for wet adhesion despite these impediments. Inspection of mussel foot proteins (Mfps) provides insights into adhesive adaptations. Catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues are present in high mole percent in the interfacial Mfps. The siderophore cyclic trichrysobactin also contains high mole percent of catechol and lysine and serves as a simplified mimic of Mfps. This work is focused on use of Mfp-mimetic siderophores and synthetic siderophore analogs as model systems for dissecting the chemical and physical interactions that enable wet adhesion. Variation in number and identity of functional groups appended to the synthetic siderophore analogs allows identification of the specific contributions of those functional groups to wet adhesion. Both catechol and amine functional groups are critical to strong wet adhesion. The primary amine of lysine and catechol cooperatively displace interfacial hydration and bind to the underlying substrate. Variation in the amine identity as well as the amine to catechol ratio within siderophore analogs also has a significant impact on wet adhesive performance. Catechol undergoes a pH-dependent autoxidation in which higher pH leads to faster oxidation by dioxygen. This oxidation abolishes all adhesion of Mfps to mica by pH 7.5, yet many applications of synthetic wet adhesives require adhesion at physiological or oceanic pH. A better understanding of catechol redox chemistry is critical to the design of wet adhesives. To this end, the pH-dependent autoxidation of catechol and substituted catechols was investigated and results are consistent with a mechanism in which O2 oxidizes both the mono-deprotonated and di-deprotonated catechol. A linear Hammett correlation for the pH-independent second order rate constants for catechol

  16. A simple method relating specific rate constants k(E,J) and Thermally averaged rate constants k(infinity)(T) of unimolecular bond fission and the reverse barrierless association reactions.

    PubMed

    Troe, J; Ushakov, V G

    2006-06-01

    This work describes a simple method linking specific rate constants k(E,J) of bond fission reactions AB --> A + B with thermally averaged capture rate constants k(cap)(T) of the reverse barrierless combination reactions A + B --> AB (or the corresponding high-pressure dissociation or recombination rate constants k(infinity)(T)). Practical applications are given for ionic and neutral reaction systems. The method, in the first stage, requires a phase-space theoretical treatment with the most realistic minimum energy path potential available, either from reduced dimensionality ab initio or from model calculations of the potential, providing the centrifugal barriers E(0)(J). The effects of the anisotropy of the potential afterward are expressed in terms of specific and thermal rigidity factors f(rigid)(E,J) and f(rigid)(T), respectively. Simple relationships provide a link between f(rigid)(E,J) and f(rigid)(T) where J is an average value of J related to J(max)(E), i.e., the maximum J value compatible with E > or = E0(J), and f(rigid)(E,J) applies to the transitional modes. Methods for constructing f(rigid)(E,J) from f(rigid)(E,J) are also described. The derived relationships are adaptable and can be used on that level of information which is available either from more detailed theoretical calculations or from limited experimental information on specific or thermally averaged rate constants. The examples used for illustration are the systems C6H6+ <==> C6H5+ + H, C8H10+ --> C7H7+ + CH3, n-C9H12+ <==> C7H7+ + C2H5, n-C10H14+ <==> C7H7+ + C3H7, HO2 <==> H + O2, HO2 <==> HO + O, and H2O2 <==> 2HO.

  17. Evaluating the bakeout effectiveness of RTV-S691 silicone adhesive by measuring outgassing rate

    NASA Astrophysics Data System (ADS)

    Miyazaki, Eiji; Miura, Yuka; Numata, Osamu; Yamanaka, Riyo; Baba, Susumu; Ishizawa, Junichiro; Kimoto, Yugo; Tamura, Takashi

    2014-09-01

    Outgassing rate measurements are basically performed for fresh materials, e.g. just cured adhesives, paints, etc. and reveal a lot about how the material can behave as a contamination source. It is also important to determine the bakeout process sufficiently. In the present study, a typical silicone adhesive for use in space, RTV S-691, Wacker Chemie, was selected for the measurement. Two cured specimens, 40 × 40 mm in size, were applied for several isothermal tests under identical conditions: a specimen at 125 degrees C for 144 hours with CQCM at -193 degrees C to measure TML. Consequently, it was determined that the TML and TML rate could be reduced by bakeout as expected. It also emerged that a longer bakeout, i.e. a longer cumulative bakeout time, for the material would reduce the TML and TML rate more effectively. The results suggest that bakeout mainly affects the behavior in the "low-rate" phase, whereby the TML rate curve can be divided into two phases. The elapsed time for a specimen can also be considered the cumulative test time. Based on the cumulative elapsed time, the TML rate curve is replotted and a correlation emerges between the cumulative bakeout time and TML rate. The first measurement data of TML and the TML rate could be affected by the stored time from cure, which might result from the change in unreacted substances declining as the stored time elapsed.

  18. Arrhenius Rate: constant volume burn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    A constant volume burn occurs for an idealized initial state in which a large volume of reactants at rest is suddenly raised to a high temperature and begins to burn. Due to the uniform spatial state, there is no fluid motion and no heat conduction. This reduces the time evolu tion to an ODE for the reaction progress variable. With an Arrhenius reaction rate, two characteristics of thermal ignition are illustrated: induction time and thermal runaway. The Frank-Kamenetskii approximation then leads to a simple expression for the adiabatic induction time. For a first order reaction, the analytic solution is derivedmore » and used to illustrate the effect of varying the activation temperature; in particular, on the induction time. In general, the ODE can be solved numerically. This is used to illustrate the effect of varying the reaction order. We note that for a first order reaction, the time evolution of the reaction progress variable has an exponential tail. In contrast, for a reaction order less than one, the reaction completes in a nite time. The reaction order also affects the induction time.« less

  19. Propagation rate constants for the peroxidation of sterols on the biosynthetic pathway to cholesterol.

    PubMed

    Lamberson, Connor R; Muchalski, Hubert; McDuffee, Kari B; Tallman, Keri A; Xu, Libin; Porter, Ned A

    2017-10-01

    The free radical chain autoxidation of cholesterol and the oxidation products formed, i.e. oxysterols, have been the focus of intensive study for decades. The peroxidation of sterol precursors to cholesterol such as 7-dehydrocholesterol (7-DHC) and desmosterol as well as their oxysterols has received less attention. The peroxidation of these sterol precursors can become important under circumstances in which genetic conditions or exposures to small molecules leads to an increase of these biosynthetic intermediates in tissues and fluids. 7-DHC, for example, has a propagation rate constant for peroxidation some 200 times that of cholesterol and this sterol is found at elevated levels in a devastating human genetic condition, Smith-Lemli-Opitz syndrome (SLOS). The propagation rate constants for peroxidation of sterol intermediates on the biosynthetic pathway to cholesterol were determined by a competition kinetic method, i.e. a peroxyl radical clock. In this work, propagation rate constants for lathosterol, zymostenol, desmosterol, 7-dehydrodesmosterol and other sterols in the Bloch and Kandutsch-Russell pathways are assigned and these rate constants are related to sterol structural features. Furthermore, potential oxysterols products are proposed for sterols whose oxysterol products have not been determined. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. GROUND WATER ISSUE - CALCULATION AND USE OF FIRST-ORDER RATE CONSTANTS FOR MONITORED NATURAL ATTENUATION STUDIES

    EPA Science Inventory

    This issue paper explains when and how to apply first-order attenuation rate constant calculations in monitored natural attenuation (MNA) studies. First-order attenuation rate constant calculations can be an important tool for evaluating natural attenuation processes at ground-wa...

  1. Thermal Characterization of Adhesive

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.

    1999-01-01

    The current Space Shuttle Reusable Solid Rocket Motor (RSRM) nozzle adhesive bond system is being replaced due to obsolescence. Down-selection and performance testing of the structural adhesives resulted in the selection of two candidate replacement adhesives, Resin Technology Group's Tiga 321 and 3M's EC2615XLW. This paper describes rocket motor testing of these two adhesives. Four forty-pound charge motors were fabricated in configurations that would allow side by side comparison testing of the candidate replacement adhesives and the current RSRM adhesives. The motors provided an environment where the thermal performance of adhesives in flame surface bondlines was compared. Results of the FPC testing show that: 1) The phenolic char depths on radial bond lines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used; 2) The adhesive char depth of the candidate replacement adhesives is less than the char depth of the current adhesives; 3) The heat-affected depth of the candidate replacement adhesives is less than the heat-affected depth of the current adhesives; and 4) The ablation rates for both replacement adhesives are slower than that of the current adhesives.

  2. Effect of pressure sensitive adhesive and vehicles on permeation of terbinafine across porcine hoof membrane.

    PubMed

    Ahn, Tai Sang; Lee, Jung-Phil; Kim, Juhyun; Oh, Seaung Youl; Chun, Myung-Kwan; Choi, Hoo-Kyun

    2013-11-01

    The purpose of this study was to investigate characteristics of transungual drug delivery and the feasibility of developing a drug-in-adhesive formulation of terbinafine. The permeation of terbinafine from a PSA matrix across porcine hoof membrane was determined using a plate containing poloxamer gel. The permeation rate of terbinafine across hairless mouse skin was evaluated using a flow-through diffusion cell system. The permeation of terbinafine across the hoof membranes was the highest from the silicone adhesive matrix, followed by PIB, and most of the acrylic adhesives, SIS, and SBS. The rank order of permeation rate across mice skin was different from the rank order across porcine hooves. The amount of terbinafine permeated across the porcine hoof membranes poorly correlated with the amount of terbinafine remaining inside the hooves after 20 days, however, the ratio between rate of terbinafine partitioning into the hoof membrane and its rate of diffusion across the membrane was relatively constant within the same type of PSA. For influence of various vehicles in enhancing permeation of terbinafine across the hoof membrane, all vehicles except Labrasol(®) showed tendency to improve permeation rate. However, the enhancement ratio of a given vehicle differed from one adhesive to another with a moderate correlation between them. The infrared spectrum of the hoof treated with NMP, PPG 400 or PEG 200 indicated that the conformation of keratin changed from a non-helical to a helical structure.

  3. Binding Rate Constants Reveal Distinct Features of Disordered Protein Domains.

    PubMed

    Dogan, Jakob; Jonasson, Josefin; Andersson, Eva; Jemth, Per

    2015-08-04

    Intrinsically disordered proteins (IDPs) are abundant in the proteome and involved in key cellular functions. However, experimental data about the binding kinetics of IDPs as a function of different environmental conditions are scarce. We have performed an extensive characterization of the ionic strength dependence of the interaction between the molten globular nuclear co-activator binding domain (NCBD) of CREB binding protein and five different protein ligands, including the intrinsically disordered activation domain of p160 transcriptional co-activators (SRC1, TIF2, ACTR), the p53 transactivation domain, and the folded pointed domain (PNT) of transcription factor ETS-2. Direct comparisons of the binding rate constants under identical conditions show that the association rate constant, kon, for interactions between NCBD and disordered protein domains is high at low salt concentrations (90-350 × 10(6) M(-1) s(-1) at 4 °C) but is reduced significantly (10-30-fold) with an increasing ionic strength and reaches a plateau around physiological ionic strength. In contrast, the kon for the interaction between NCBD and the folded PNT domain is only 7 × 10(6) M(-1) s(-1) (4 °C and low salt) and displays weak ionic strength dependence, which could reflect a distinctly different association that relies less on electrostatic interactions. Furthermore, the basal rate constant (in the absence of electrostatic interactions) is high for the NCBD interactions, exceeding those typically observed for folded proteins. One likely interpretation is that disordered proteins have a large number of possible collisions leading to a productive on-pathway encounter complex, while folded proteins are more restricted in terms of orientation. Our results highlight the importance of electrostatic interactions in binding involving IDPs and emphasize the significance of including ionic strength as a factor in studies that compare the binding properties of IDPs to those of ordered proteins.

  4. The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness

    PubMed Central

    Gandyra, Daniel; Gorb, Stanislav; Barthlott, Wilhelm

    2015-01-01

    Summary We report a novel, practical technique for the concerted, simultaneous determination of both the adhesion force of a small structure or structural unit (e.g., an individual filament, hair, micromechanical component or microsensor) to a liquid and its elastic properties. The method involves the creation and development of a liquid meniscus upon touching a liquid surface with the structure, and the subsequent disruption of this liquid meniscus upon removal. The evaluation of the meniscus shape immediately before snap-off of the meniscus allows the quantitative determination of the liquid adhesion force. Concurrently, by measuring and evaluating the deformation of the structure under investigation, its elastic properties can be determined. The sensitivity of the method is remarkably high, practically limited by the resolution of the camera capturing the process. Adhesion forces down to 10 µN and spring constants up to 2 N/m were measured. Three exemplary applications of this method are demonstrated: (1) determination of the water adhesion force and the elasticity of individual hairs (trichomes) of the floating fern Salvinia molesta. (2) The investigation of human head hairs both with and without functional surface coatings (a topic of high relevance in the field of hair cosmetics) was performed. The method also resulted in the measurement of an elastic modulus (Young’s modulus) for individual hairs of 3.0 × 105 N/cm2, which is within the typical range known for human hair. (3) Finally, the accuracy and validity of the capillary adhesion technique was proven by examining calibrated atomic force microscopy cantilevers, reproducing the spring constants calibrated using other methods. PMID:25671147

  5. Using engineered single-chain antibodies to correlate molecular binding properties and nanoparticle adhesion dynamics.

    PubMed

    Haun, Jered B; Pepper, Lauren R; Boder, Eric T; Hammer, Daniel A

    2011-11-15

    Elucidation of the relationship between targeting molecule binding properties and the adhesive behavior of therapeutic or diagnostic nanocarriers would aid in the design of optimized vectors and lead to improved efficacy. We measured the adhesion of 200-nm-diameter particles under fluid flow that was mediated by a diverse array of molecular interactions, including recombinant single-chain antibodies (scFvs), full antibodies, and the avidin/biotin interaction. Within the panel of scFvs, we used a family of mutants that display a spectrum of binding kinetics, allowing us to compare nanoparticle adhesion to bond chemistry. In addition, we explored the effect of molecular size by inserting a protein linker into the scFv fusion construct and by employing scFvs that are specific for targets with vastly different sizes. Using computational models, we extracted multivalent kinetic rate constants for particle attachment and detachment from the adhesion data and correlated the results to molecular binding properties. Our results indicate that the factors that increase encounter probability, such as adhesion molecule valency and size, directly enhance the rate of nanoparticle attachment. Bond kinetics had no influence on scFv-mediated nanoparticle attachment within the kinetic range tested, however, but did appear to affect antibody/antigen and avidin/biotin mediated adhesion. We attribute this finding to a combination of multivalent binding and differences in bond mechanical strength between recombinant scFvs and the other adhesion molecules. Nanoparticle detachment probability correlated directly with adhesion molecule valency and size, as well as the logarithm of the affinity for all molecules tested. On the basis of this work, scFvs can serve as viable targeting receptors for nanoparticles, but improvements to their bond mechanical strength would likely be required to fully exploit their tunable kinetic properties and maximize the adhesion efficiency of nanoparticles that

  6. Likelihood inference of non-constant diversification rates with incomplete taxon sampling.

    PubMed

    Höhna, Sebastian

    2014-01-01

    Large-scale phylogenies provide a valuable source to study background diversification rates and investigate if the rates have changed over time. Unfortunately most large-scale, dated phylogenies are sparsely sampled (fewer than 5% of the described species) and taxon sampling is not uniform. Instead, taxa are frequently sampled to obtain at least one representative per subgroup (e.g. family) and thus to maximize diversity (diversified sampling). So far, such complications have been ignored, potentially biasing the conclusions that have been reached. In this study I derive the likelihood of a birth-death process with non-constant (time-dependent) diversification rates and diversified taxon sampling. Using simulations I test if the true parameters and the sampling method can be recovered when the trees are small or medium sized (fewer than 200 taxa). The results show that the diversification rates can be inferred and the estimates are unbiased for large trees but are biased for small trees (fewer than 50 taxa). Furthermore, model selection by means of Akaike's Information Criterion favors the true model if the true rates differ sufficiently from alternative models (e.g. the birth-death model is recovered if the extinction rate is large and compared to a pure-birth model). Finally, I applied six different diversification rate models--ranging from a constant-rate pure birth process to a decreasing speciation rate birth-death process but excluding any rate shift models--on three large-scale empirical phylogenies (ants, mammals and snakes with respectively 149, 164 and 41 sampled species). All three phylogenies were constructed by diversified taxon sampling, as stated by the authors. However only the snake phylogeny supported diversified taxon sampling. Moreover, a parametric bootstrap test revealed that none of the tested models provided a good fit to the observed data. The model assumptions, such as homogeneous rates across species or no rate shifts, appear to be

  7. Adhesives: Test Method, Group Assignment, and Categorization Guide for High-Loading Rate Applications - History and Rationale

    DTIC Science & Technology

    2017-04-20

    Categorization Guide for High -Loading- Rate Applications – History and Rationale by Robert Jensen, David Flanagan, Daniel DeSchepper, and Charles...Adhesives: Test Method, Group Assignment, and Categorization Guide for High -Loading- Rate Applications – History and Rationale by Robert Jensen...Categorization Guide for High - Loading-Rate Applications – History and Rationale 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  8. Frost heave susceptibility of saturated soil under constant rate of freezing

    NASA Astrophysics Data System (ADS)

    Ryokai, K.; Iguro, M.; Yoneyama, K.

    Introduced are the results of experiments carried out to quantitatively obtain the frost heave pressure and displacement of soil subjected to artificial freezing or freezing around in-ground liquefied natural gas storage tanks. This experiment is conducted to evaluate the frost heave susceptibility of saturated soil under overconsolidation. In other words, this experiment was carried out to obtain the relation of the over-burden pressure and freezing rate to the frost heave ratio by observing the frost heave displacement and freezing time of specimens by freezing the specimens at a constant freezing rate under a constant overburden pressure, while letting water freely flow in and out of the system. Introduced are the procedures for frost heave test required to quantitatively obtain the frost heave displacement and pressure of soil. Furthermore, the relation between the frost heave susceptibility and physical properties of soil obtained by this test is reported.

  9. Constant-load versus heart rate-targeted exercise - Responses of systolic intervals

    NASA Technical Reports Server (NTRS)

    Lance, V. Q.; Spodick, D. H.

    1975-01-01

    Various systolic intervals were measured prior to and during heart rate-targeted bicycle ergometer exercise. There were striking similarities within each matched exercise set for Q-Im, isovolumetric contraction time, preejection period (PEP), and PEP/left ventricular ejection time (LVET). LVET was significantly shorter for rate-targeted exercise. It is concluded that either constant-load or rate-targeted bicycle ergometry may be used with the choice of method determined by the purpose of the protocol, and that systolic intervals (except LVET) should not be much altered owing to the method chosen.

  10. Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; Demore, W. B.

    1994-01-01

    Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2) and (for CH2Cl2) HFC-161 (CH3CH2F). Using absolute rate constants for HFC-152a and HFC-161, which we have determined relative to those for CH4, CH3CCl3, and C2H6, temperature dependent rate constants of both compounds were derived. The derived rate constant for CH3Br is in good agreement with recent absolute measurements. However, for the chloromethanes all the rate constants are lower at atmospheric temperatures than previously reported, especially for CH2Cl2 where the present rate constant is about a factor of 1.6 below the JPL 92-20 value. The new rate constant appears to resolve a discrepancy between the observed atmospheric concentrations and those calculated from the previous rate constant and estimated release rates.

  11. RELATIVE RATE CONSTANTS OF CONTAMINANT CANDIDATE LIST PESTICIDES WITH HYDROXYL RADICALS

    EPA Science Inventory

    The objective of this study was to establish the rate constants for the reactions of selected pesticides listed on the US EPA Contaminant Candidate List, with UV and hydroxyl radicals (·OH). Batch experiments were conducted in phosphate buffered solution at pH 7. All pestici...

  12. Multi-target QSPR modeling for simultaneous prediction of multiple gas-phase kinetic rate constants of diverse chemicals

    NASA Astrophysics Data System (ADS)

    Basant, Nikita; Gupta, Shikha

    2018-03-01

    The reactions of molecular ozone (O3), hydroxyl (•OH) and nitrate (NO3) radicals are among the major pathways of removal of volatile organic compounds (VOCs) in the atmospheric environment. The gas-phase kinetic rate constants (kO3, kOH, kNO3) are thus, important in assessing the ultimate fate and exposure risk of atmospheric VOCs. Experimental data for rate constants are not available for many emerging VOCs and the computational methods reported so far address a single target modeling only. In this study, we have developed a multi-target (mt) QSPR model for simultaneous prediction of multiple kinetic rate constants (kO3, kOH, kNO3) of diverse organic chemicals considering an experimental data set of VOCs for which values of all the three rate constants are available. The mt-QSPR model identified and used five descriptors related to the molecular size, degree of saturation and electron density in a molecule, which were mechanistically interpretable. These descriptors successfully predicted three rate constants simultaneously. The model yielded high correlations (R2 = 0.874-0.924) between the experimental and simultaneously predicted endpoint rate constant (kO3, kOH, kNO3) values in test arrays for all the three systems. The model also passed all the stringent statistical validation tests for external predictivity. The proposed multi-target QSPR model can be successfully used for predicting reactivity of new VOCs simultaneously for their exposure risk assessment.

  13. Real-time association rate constant measurement using combination tapered fiber-optic biosensor (CTFOB) dip-probes

    NASA Astrophysics Data System (ADS)

    Simmonds, Boris; Wang, Chun-Wei; Kapoor, Rakesh

    2010-02-01

    This document reports a novel method of measuring association rate constant (ka) for antibody-antigen interaction using evanescent wave-based combination tapered fiber-optic biosensor (CTFOB) dip-probes. The method was demonstrated by measuring association rate constant for bovine serum albumin (BSA) and anti-BSA antibody interaction. "Direct method" was used for detection; goat anti-BSA "capture" antibodies were immobilized on the probe surfaces while the antigen (BSA) was directly labeled with Alexa 488 dye. The probes were subsequently submerged in 3nM Labeled BSA in egg albumin (1 mg/ml). The fluorescence signal recorded was proportional to BSA anti-BSA conjugates and continuous signal was acquired suing a fiber optic spectrometer (Ocean Optics, Inc.). A 476 nm diode laser was use as an excitation source. Association constant was estimated from a plot of signal as a function of time. Measured association rate constant ka for the binding of BSA with anti-BSA at room temperature is (8.33 +/- 0.01) x 104 M-1s-1.

  14. A new analytical method for estimating lumped parameter constants of linear viscoelastic models from strain rate tests

    NASA Astrophysics Data System (ADS)

    Mattei, G.; Ahluwalia, A.

    2018-04-01

    We introduce a new function, the apparent elastic modulus strain-rate spectrum, E_{app} ( \\dot{ɛ} ), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ( \\dot{ɛ}). The E_{app} ( \\dot{ɛ} ) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant \\dot{ɛ} input. Material viscoelastic parameters can be rapidly derived by fitting experimental E_{app} data obtained at different strain rates to the E_{app} ( \\dot{ɛ} ) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials.

  15. Rate-dependent frictional adhesion in natural and synthetic gecko setae

    PubMed Central

    Gravish, Nick; Wilkinson, Matt; Sponberg, Simon; Parness, Aaron; Esparza, Noe; Soto, Daniel; Yamaguchi, Tetsuo; Broide, Michael; Cutkosky, Mark; Creton, Costantino; Autumn, Kellar

    2010-01-01

    Geckos owe their remarkable stickiness to millions of dry, hard setae on their toes. In this study, we discovered that gecko setae stick more strongly the faster they slide, and do not wear out after 30 000 cycles. This is surprising because friction between dry, hard, macroscopic materials typically decreases at the onset of sliding, and as velocity increases, friction continues to decrease because of a reduction in the number of interfacial contacts, due in part to wear. Gecko setae did not exhibit the decrease in adhesion or friction characteristic of a transition from static to kinetic contact mechanics. Instead, friction and adhesion forces increased at the onset of sliding and continued to increase with shear speed from 500 nm s−1 to 158 mm s−1. To explain how apparently fluid-like, wear-free dynamic friction and adhesion occur macroscopically in a dry, hard solid, we proposed a model based on a population of nanoscopic stick–slip events. In the model, contact elements are either in static contact or in the process of slipping to a new static contact. If stick–slip events are uncorrelated, the model further predicted that contact forces should increase to a critical velocity (V*) and then decrease at velocities greater than V*. We hypothesized that, like natural gecko setae, but unlike any conventional adhesive, gecko-like synthetic adhesives (GSAs) could adhere while sliding. To test the generality of our results and the validity of our model, we fabricated a GSA using a hard silicone polymer. While sliding, the GSA exhibited steady-state adhesion and velocity dependence similar to that of gecko setae. Observations at the interface indicated that macroscopically smooth sliding of the GSA emerged from randomly occurring stick–slip events in the population of flexible fibrils, confirming our model predictions. PMID:19493896

  16. Adhesive-Bonded Composite Joint Analysis with Delaminated Surface Ply Using Strain-Energy Release Rate

    NASA Technical Reports Server (NTRS)

    Chadegani, Alireza; Yang, Chihdar; Smeltzer, Stanley S. III

    2012-01-01

    This paper presents an analytical model to determine the strain energy release rate due to an interlaminar crack of the surface ply in adhesively bonded composite joints subjected to axial tension. Single-lap shear-joint standard test specimen geometry with thick bondline is followed for model development. The field equations are formulated by using the first-order shear-deformation theory in laminated plates together with kinematics relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. The system of second-order differential equations is solved to using the symbolic computation tool Maple 9.52 to provide displacements fields. The equivalent forces at the tip of the prescribed interlaminar crack are obtained based on interlaminar stress distributions. The strain energy release rate of the crack is then determined by using the crack closure method. Finite element analyses using the J integral as well as the crack closure method are performed to verify the developed analytical model. It has been shown that the results using the analytical method correlate well with the results from the finite element analyses. An attempt is made to predict the failure loads of the joints based on limited test data from the literature. The effectiveness of the inclusion of bondline thickness is justified when compared with the results obtained from the previous model in which a thin bondline and uniform adhesive stresses through the bondline thickness are assumed.

  17. Annealed importance sampling with constant cooling rate

    NASA Astrophysics Data System (ADS)

    Giovannelli, Edoardo; Cardini, Gianni; Gellini, Cristina; Pietraperzia, Giangaetano; Chelli, Riccardo

    2015-02-01

    Annealed importance sampling is a simulation method devised by Neal [Stat. Comput. 11, 125 (2001)] to assign weights to configurations generated by simulated annealing trajectories. In particular, the equilibrium average of a generic physical quantity can be computed by a weighted average exploiting weights and estimates of this quantity associated to the final configurations of the annealed trajectories. Here, we review annealed importance sampling from the perspective of nonequilibrium path-ensemble averages [G. E. Crooks, Phys. Rev. E 61, 2361 (2000)]. The equivalence of Neal's and Crooks' treatments highlights the generality of the method, which goes beyond the mere thermal-based protocols. Furthermore, we show that a temperature schedule based on a constant cooling rate outperforms stepwise cooling schedules and that, for a given elapsed computer time, performances of annealed importance sampling are, in general, improved by increasing the number of intermediate temperatures.

  18. Investigation of chitosan-phenolics systems as wood adhesives.

    PubMed

    Peshkova, Svetlana; Li, Kaichang

    2003-04-24

    Chitosan-phenolics systems were investigated as wood adhesives. Adhesion between two pieces of wood veneer developed only when all three components-chitosan, a phenolic compound, and laccase-were present. For the adhesive systems containing a phenolic compound with only one phenolic hydroxyl group, adhesive strengths were highly dependent upon the chemical structures of phenolic compounds used in the system and the relative oxidation rates of the phenolic compounds by laccase. The adhesive strengths were also directly related to the viscosity of the adhesive systems. However, for the adhesive systems containing a phenolic compound with two or three phenolic hydroxyl groups adjacent to each other, no correlations among adhesive strengths, relative oxidation rates of the phenolic compounds by laccase, and viscosities were observed. The adhesion mechanisms of these chitosan-phenolics systems were proposed to be similar to those of mussel adhesive proteins.

  19. On the ambiguity of the reaction rate constants in multivariate curve resolution for reversible first-order reaction systems.

    PubMed

    Schröder, Henning; Sawall, Mathias; Kubis, Christoph; Selent, Detlef; Hess, Dieter; Franke, Robert; Börner, Armin; Neymeyr, Klaus

    2016-07-13

    If for a chemical reaction with a known reaction mechanism the concentration profiles are accessible only for certain species, e.g. only for the main product, then often the reaction rate constants cannot uniquely be determined from the concentration data. This is a well-known fact which includes the so-called slow-fast ambiguity. This work combines the question of unique or non-unique reaction rate constants with factor analytic methods of chemometrics. The idea is to reduce the rotational ambiguity of pure component factorizations by considering only those concentration factors which are possible solutions of the kinetic equations for a properly adapted set of reaction rate constants. The resulting set of reaction rate constants corresponds to those solutions of the rate equations which appear as feasible factors in a pure component factorization. The new analysis of the ambiguity of reaction rate constants extends recent research activities on the Area of Feasible Solutions (AFS). The consistency with a given chemical reaction scheme is shown to be a valuable tool in order to reduce the AFS. The new methods are applied to model and experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Temperature-Dependent Rate Constants and Substituent Effects for the Reactions of Hydroxyl Radicals With Three Partially Fluorinated Ethers

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; DeMore, W. B.

    1995-01-01

    Rate constants and temperature dependencies for the reactions of OH with CF3OCH3 (HFOC-143a), CF2HOCF2H (HFOC-134), and CF3OCF2H (HFOC-125) were studied using a relative rate technique in the temperature range 298-393 K. The following absolute rate constants were derived: HFOC-143a, 1.9E-12 exp(-1555/T); HFOC-134, 1.9E-12 exp(-2006/T); HFOC-125, 4.7E-13 exp(-2095/T). Units are cm(exp 3)molecule(exp -1) s(exp -1). Substituent effects on OH abstraction rate constants are discussed, and it is shown that the CF3O group has an effect on the OH rate constants similar to that of a fluorine atom. The effects are related to changes in the C-H bond energies of the reactants (and thereby the activation energies) rather than changes in the preexponential factors. On the basis of a correlation of rate constants with bond energies, the respective D(C-H) bond strengths in the three ethers are found to be 102, 104, and 106 kcal/mol, with an uncertainty of about 1 kcal/mol.

  1. Influence of adhesive rough surface contact on microswitches

    NASA Astrophysics Data System (ADS)

    Wu, Ling; Rochus, V.; Noels, L.; Golinval, J. C.

    2009-12-01

    Stiction is a major failure mode in microelectromechanical systems (MEMS). Undesirable stiction, which results from contact between surfaces, threatens the reliability of MEMS severely as it breaks the actuation function of MEMS switches, for example. Although it may be possible to avoid stiction by increasing restoring forces using high spring constants, it follows that the actuation voltage has also to be increased significantly, which reduces the efficiency. In our research, an electrostatic-structural analysis is performed to estimate the proper design range of the equivalent spring constant, which is the main factor of restoring force in MEMS switches. The upper limit of equivalent spring constant is evaluated based on the initial gap width, the dielectric thickness, and the expected actuation voltage. The lower limit is assessed on the value of adhesive forces between the two contacting rough surfaces. The MEMS devices studied here are assumed to work in a dry environment. In these operating conditions only the van der Waals forces have to be considered for adhesion. A statistical model is used to simulate the rough surface, and the Maugis's model is combined with Kim's expansion to calculate adhesive forces. In the resulting model, the critical value of the spring stiffness depends on the material and surface properties, such as the elastic modulus, surface energy, and surface roughness. The aim of this research is to propose simple rules for design purposes.

  2. Modeling crystal growth from solution with molecular dynamics simulations: approaches to transition rate constants.

    PubMed

    Reilly, Anthony M; Briesen, Heiko

    2012-01-21

    The feasibility of using the molecular dynamics (MD) simulation technique to study crystal growth from solution quantitatively, as well as to obtain transition rate constants, has been studied. The dynamics of an interface between a solution of Lennard-Jones particles and the (100) face of an fcc lattice comprised of solute particles have been studied using MD simulations, showing that MD is, in principle, capable of following growth behavior over large supersaturation and temperature ranges. Using transition state theory, and a nearest-neighbor approximation growth and dissolution rate constants have been extracted from equilibrium MD simulations at a variety of temperatures. The temperature dependence of the rates agrees well with the expected transition state theory behavior. © 2012 American Institute of Physics

  3. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. II. ACID AND GENERAL BASE CATALYZED HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...

  4. Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.

    2015-12-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.

  5. Free Radical Chemistry of Disinfection Byproducts 2: Rate Constants and Degradation Mechanism of Trichloronitromethane (Chloropicrin)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. J. Mincher; S. K. Cole; W. J. Cooper

    2007-02-01

    Absolute rate constants for the free-radical-induced degradation of trichloronitromethane (TCNM, chloropicrin) were determined using electron pulse radiolysis and transient absorption spectroscopy. Rate constants for hydroxyl radical, OH, and hydrated electron, eaq-, reactions were (4.97 ± 0.28) × 107 M-1 s-1 and (2.13 ± 0.03) × 1010 M-1 s-1, respectively. It appears that the OH adds to the nitro-group, while the eaq- reacts via dissociative electron attachment to give two carbon centered radicals. The mechanisms of these free radical reactions with TCNM were investigated, using 60Co gamma irradiation at various absorbed doses, measuring the disappearance of TCNM and the appearance ofmore » the product nitrate and chloride ions. The rate constants and mechanistic data were combined in a kinetic computer model that was used to describe the major free radical pathways for the destruction of TCNM in solution. These data are applicable to other advanced oxidation/reduction processes.« less

  6. Unsteady flow past an airfoil pitched at constant rate

    NASA Technical Reports Server (NTRS)

    Lourenco, L.; Vandommelen, L.; Shib, C.; Krothapalli, A.

    1992-01-01

    The unsteady flow past a NACA 0012 airfoil that is undertaking a constant-rate pitching up motion is investigated experimentally by the PIDV technique in a water towing tank. The Reynolds number is 5000, based upon the airfoil's chord and the free-stream velocity. The airfoil is pitching impulsively from 0 to 30 deg. with a dimensionless pitch rate alpha of 0.131. Instantaneous velocity and associated vorticity data have been acquired over the entire flow field. The primary vortex dominates the flow behavior after it separates from the leading edge of the airfoil. Complete stall emerges after this vortex detaches from the airfoil and triggers the shedding of a counter-rotating vortex near the trailing edge. A parallel computational study using the discrete vortex, random walk approximation has also been conducted. In general, the computational results agree very well with the experiment.

  7. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    PubMed

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.

  8. Effects of hierarchical structures and insulating liquid media on adhesion

    NASA Astrophysics Data System (ADS)

    Yang, Weixu; Wang, Xiaoli; Li, Hanqing; Song, Xintao

    2017-11-01

    Effects of hierarchical structures and insulating liquid media on adhesion are investigated through a numerical adhesive contact model established in this paper, in which hierarchical structures are considered by introducing the height distribution into the surface gap equation, and media are taken into account through the Hamaker constant in Lifshitz-Hamaker approach. Computational methods such as inexact Newton method, bi-conjugate stabilized (Bi-CGSTAB) method and fast Fourier transform (FFT) technique are employed to obtain the adhesive force. It is shown that hierarchical structured surface exhibits excellent anti-adhesive properties compared with flat, micro or nano structured surfaces. Adhesion force is more dependent on the sizes of nanostructures than those of microstructures, and the optimal ranges of nanostructure pitch and maximum height for small adhesion force are presented. Insulating liquid media effectively decrease the adhesive interaction and 1-bromonaphthalene exhibits the smallest adhesion force among the five selected media. In addition, effects of hierarchical structures with optimal sizes on reducing adhesion are more obvious than those of the selected insulating liquid media.

  9. Characterization of Adhesives for Attaching Reusable Surface Insulation on Space Shuttle Vehicles

    NASA Technical Reports Server (NTRS)

    Owen, H. P.; Carroll, M. T.

    1973-01-01

    An extensive development and testing program on adhesive systems shows that: (1) A closed cell silicone rubber sponge bonded to substrates with thin bond lines of glass filled adhesive exhibits density and modulus values approximately one third that of solid silicone adhesives; (2) utilization of glass or phenolic microballoons as fillers in silicone adhesives reduces density but increases moduli of the vulcanized materials; (3) the silicone elastomer based adhesives appear to be complex systems rather than homogeneous, isotropic materials. Tensile, shear, and compression properties plotted versus temperature verify this conjecture; and (4) constant strain-stress relaxation tests on glass-filled adhesive show that stress relaxation is most pronounced near the glass transition temperature.

  10. Single-cell force spectroscopy of pili-mediated adhesion

    NASA Astrophysics Data System (ADS)

    Sullan, Ruby May A.; Beaussart, Audrey; Tripathi, Prachi; Derclaye, Sylvie; El-Kirat-Chatel, Sofiane; Li, James K.; Schneider, Yves-Jacques; Vanderleyden, Jos; Lebeer, Sarah; Dufrêne, Yves F.

    2013-12-01

    Although bacterial pili are known to mediate cell adhesion to a variety of substrates, the molecular interactions behind this process are poorly understood. We report the direct measurement of the forces guiding pili-mediated adhesion, focusing on the medically important probiotic bacterium Lactobacillus rhamnosus GG (LGG). Using non-invasive single-cell force spectroscopy (SCFS), we quantify the adhesion forces between individual bacteria and biotic (mucin, intestinal cells) or abiotic (hydrophobic monolayers) surfaces. On hydrophobic surfaces, bacterial pili strengthen adhesion through remarkable nanospring properties, which - presumably - enable the bacteria to resist high shear forces under physiological conditions. On mucin, nanosprings are more frequent and adhesion forces larger, reflecting the influence of specific pili-mucin bonds. Interestingly, these mechanical responses are no longer observed on human intestinal Caco-2 cells. Rather, force curves exhibit constant force plateaus with extended ruptures reflecting the extraction of membrane nanotethers. These single-cell analyses provide novel insights into the molecular mechanisms by which piliated bacteria colonize surfaces (nanosprings, nanotethers), and offer exciting avenues in nanomedicine for understanding and controlling the adhesion of microbial cells (probiotics, pathogens).

  11. Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis.

    PubMed

    Slavov, Nikolai; Budnik, Bogdan A; Schwab, David; Airoldi, Edoardo M; van Oudenaarden, Alexander

    2014-05-08

    Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting additional physiological roles for aerobic glycolysis. We investigated such roles in yeast batch cultures by quantifying O2 consumption, CO2 production, amino acids, mRNAs, proteins, posttranslational modifications, and stress sensitivity in the course of nine doublings at constant rate. During this course, the cells support a constant biomass-production rate with decreasing rates of respiration and ATP production but also decrease their stress resistance. As the respiration rate decreases, so do the levels of enzymes catalyzing rate-determining reactions of the tricarboxylic-acid cycle (providing NADH for respiration) and of mitochondrial folate-mediated NADPH production (required for oxidative defense). The findings demonstrate that exponential growth can represent not a single metabolic/physiological state but a continuum of changing states and that aerobic glycolysis can reduce the energy demands associated with respiratory metabolism and stress survival. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Microfabricated microengine with constant rotation rate

    DOEpatents

    Romero, Louis A.; Dickey, Fred M.

    1999-01-01

    A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into constant rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque at a constant rotation to a micromechanism. The output gear can have gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication.

  13. Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes, Cycloalkanes, and Dimethyl Ether

    NASA Technical Reports Server (NTRS)

    DeMore, W.; Bayes, K.

    1998-01-01

    Relative rate experiements were used to measure rate constants and temperature denpendencies of the reactions of OH with propane, n-butane, n-pentane, n-hexane, cyclopropane, cyclobutane, cyclopentane, and dimethyl ether.

  14. Rapid estimation of glucosinolate thermal degradation rate constants in leaves of Chinese kale and broccoli (Brassica oleracea) in two seasons.

    PubMed

    Hennig, Kristin; Verkerk, Ruud; Bonnema, Guusje; Dekker, Matthijs

    2012-08-15

    Kinetic modeling was used as a tool to quantitatively estimate glucosinolate thermal degradation rate constants. Literature shows that thermal degradation rates differ in different vegetables. Well-characterized plant material, leaves of broccoli and Chinese kale plants grown in two seasons, was used in the study. It was shown that a first-order reaction is appropriate to model glucosinolate degradation independent from the season. No difference in degradation rate constants of structurally identical glucosinolates was found between broccoli and Chinese kale leaves when grown in the same season. However, glucosinolate degradation rate constants were highly affected by the season (20-80% increase in spring compared to autumn). These results suggest that differences in glucosinolate degradation rate constants can be due to variation in environmental as well as genetic factors. Furthermore, a methodology to estimate rate constants rapidly is provided to enable the analysis of high sample numbers for future studies.

  15. Stresses in adhesively bonded joints - A closed-form solution

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1981-01-01

    The general plane strain problem of adhesively bonded structures consisting of two different, orthotropic adherends is considered, under the assumption that adherend thicknesses are constant and small in relation to the lateral dimensions of the bonded region, so that they may be treated as plates. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form, with a single lap joint and a stiffened plate under various loading conditions being considered as examples. It is found that the plate theory used in the analysis not only predicts the correct trend for adhesive stresses but gives surprisingly accurate results, the solution being obtained by assuming linear stress-strain relations for the adhesive.

  16. Absolute rate constant for the O plus NO chemiluminescence in the near infrared

    NASA Technical Reports Server (NTRS)

    Golde, M. F.; Roche, A. E.; Kaufman, F.

    1973-01-01

    Infrared chemiluminescence from the process O + NO (+M) NO2 + hv (+M) has been studied between 1.3 and 4.1 micrometer. The wavelength dependence of the continuum between 1.3 and 3.3 micrometer is in fair agreement with previous studies and the measured radiative rate constant at 1.51 micrometer establishes the NO-O glow in this spectral range as a secondary emission standard. Comparison with previous studies of the visible region of the glow implies that the overall radiative rate constant lies in the range (9.4 to 11.2) x 10 to the minus 17 power cu cm sec/1. In the region 3.3 to 4.1 micrometer, the previously observed broad band, peaking at 3.7 micrometer, shows a complex kinetic dependence on O and M.

  17. Determination of acidity constants of curcumin in aqueous solution and apparent rate constant of its decomposition

    NASA Astrophysics Data System (ADS)

    Bernabé-Pineda, Margarita; Ramírez-Silva, María. Teresa; Romero-Romo, Mario; González-Vergara, Enrique; Rojas-Hernández, Alberto

    2004-04-01

    The stability of curcumin (H 3Cur) in aqueous media is improved when the systems in which it is present are at high pH values (higher than 11.7), fitting a model describable by a pseudo-zero order with a rate constant k' for the disappearance of the Cur 3- species of 1.39 (10 -9) M min -1. There were three acidity constants measured for the curcumin as follows: p KA3=10.51±0.01 corresponding to the equilibrium HCur 2-=Cur 3-+H +, a p KA2=9.88±0.02 corresponding to the equilibrium H 2Cur -=HCur -2+H +. These p KA values were attributed to the hydrogen of the phenol part of the curcumin, while the p KA1=8.38±0.04 corresponds to the equilibrium H 3Cur=H 2Cur -+H + and is attributed the acetylacetone type group. Formation of quinoid structures play an important role in the tautomeric forms of the curcumin in aqueous media, which makes the experimental values differ from the theoretically calculated ones, depending on the conditions adopted in the study.

  18. Toward an understanding of the turbidity measurement of heterocoagulation rate constants of dispersions containing particles of different sizes.

    PubMed

    Liu, Jie; Xu, Shenghua; Sun, Zhiwei

    2007-11-06

    Our previous studies have shown that the determination of coagulation rate constants by turbidity measurement becomes impossible for a certain operating wavelength (that is, its blind point) because at this wavelength the change in the turbidity of a dispersion completely loses its response to the coagulation process. Therefore, performing the turbidity measurement in the wavelength range near the blind point should be avoided. In this article, we demonstrate that the turbidity measurement of the rate constant for coagulation of a binary dispersion containing particles of two different sizes (heterocoagulation) presents special difficulties because the blind point shifts with not only particle size but also with the component fraction. Some important aspects of the turbidity measurement for the heterocoagulation rate constant are discussed and experimentally tested. It is emphasized that the T-matrix method can be used to correctly evaluate extinction cross sections of doublets formed during the heterocoagulation process, which is the key data determining the rate constant from the turbidity measurement, and choosing the appropriate operating wavelength and component fraction are important to achieving a more accurate rate constant. Finally, a simple scheme in experimentally determining the sensitivity of the turbidity changes with coagulation over a wavelength range is proposed.

  19. A Semi-Analytical Method for Determining the Energy Release Rate of Cracks in Adhesively-Bonded Single-Lap Composite Joints

    NASA Technical Reports Server (NTRS)

    Yang, Charles; Sun, Wenjun; Tomblin, John S.; Smeltzer, Stanley S., III

    2007-01-01

    A semi-analytical method for determining the strain energy release rate due to a prescribed interface crack in an adhesively-bonded, single-lap composite joint subjected to axial tension is presented. The field equations in terms of displacements within the joint are formulated by using first-order shear deformable, laminated plate theory together with kinematic relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. Based on the adhesive stress distributions, the forces at the crack tip are obtained and the strain energy release rate of the crack is determined by using the virtual crack closure technique (VCCT). Additionally, the test specimen geometry from both the ASTM D3165 and D1002 test standards are utilized during the derivation of the field equations in order to correlate analytical models with future test results. The system of second-order differential field equations is solved to provide the adherend and adhesive stress response using the symbolic computation tool, Maple 9. Finite element analyses using J-integral as well as VCCT were performed to verify the developed analytical model. The finite element analyses were conducted using the commercial finite element analysis software ABAQUS. The results determined using the analytical method correlated well with the results from the finite element analyses.

  20. Adhesion of normal erythrocytes at depressed venous shear rates to activated neutrophils, activated platelets, and fibrin polymerized from plasma.

    PubMed

    Goel, Mukul S; Diamond, Scott L

    2002-11-15

    Deep vein thrombosis (DVT) is a low flow pathology often prevented by vascular compression to increase blood movement. We report new heterotypic adhesive interactions of normal erythrocytes operative at low wall shear rates (gamma(w)) below 100 s(-1). Adhesion at gamma(w) = 50 s(-1) of washed red blood cells (RBCs) to fibrinogen-adherent platelets was 4-fold less (P <.005) than to collagen-adherent platelets (279 +/- 105 RBC/mm(2)). This glycoprotein VI (GPVI)-triggered adhesion was antagonized (> 80% reduction) by soluble fibrinogen (3 mg/mL) and ethylenediaminetetraacetic acid (EDTA). RBC-platelet adhesion was reduced in half by antibodies against CD36 or GPIb, but not by antibodies against GPIIb/IIIa, von Willebrand factor (VWF), thrombospondin (TSP), P-selectin, beta(1), alpha(v), or CD47. Adhesion of washed RBCs to fibrinogen-adherent neutrophils was increased 6-fold in the presence of 20 microM N-formyl-Met-Leu-Phe to a level of 67 RBCs per 100 neutrophils after 5 minutes at 50 s(-1). RBC-neutrophil adhesion was diminished by anti-CD11b (76%), anti-RBC Landsteiner-Wiener (LW) (ICAM4; 40%), or by EDTA (> 80%), but not by soluble fibrinogen or antibodies against CD11a, CD11c, CD36, TSP, beta(1), alpha(v), or CD47. RBC adhesion to activated platelets and activated neutrophils was prevented by wall shear stress above 1 dyne/cm(2) (at 100 s(-1)). Whereas washed RBCs did not adhere to fibrin formed from purified fibrinogen, adhesion was marked when pure fibrin was precoated with TSP or when RBCs were perfused over fibrin formed from recalcified plasma. Endothelial activation and unusually low flow may be a setting prone to receptor-mediated RBC adhesion to adherent neutrophils (or platelets/fibrin), all of which may contribute to DVT.

  1. On the role of adhesion in single-file dynamics

    NASA Astrophysics Data System (ADS)

    Fouad, Ahmed M.; Noel, John A.

    2017-08-01

    For a one-dimensional interacting system of Brownian particles with hard-core interactions (a single-file model), we study the effect of adhesion on both the collective diffusion (diffusion of the entire system with respect to its center of mass) and the tracer diffusion (diffusion of the individual tagged particles). For the case with no adhesion, all properties of these particle systems that are independent of particle labeling (symmetric in all particle coordinates and velocities) are identical to those of non-interacting particles (Lebowitz and Percus, 1967). We clarify this last fact twice. First, we derive our analytical predictions that show that the probability-density functions of single-file (ρsf) and ordinary (ρord) diffusion are identical, ρsf =ρord, predicting a nonanomalous (ordinary) behavior for the collective single-file diffusion, where the average second moment with respect to the center of mass, < x(t) 2 > , is calculated from ρ for both diffusion processes. Second, for single-file diffusion, we show, both analytically and through large-scale simulations, that < x(t) 2 > grows linearly with time, confirming the nonanomalous behavior. This nonanomalous collective behavior comes in contrast to the well-known anomalous sub-diffusion behavior of the individual tagged particles (Harris, 1965). We introduce adhesion to single-file dynamics as a second inter-particle interaction rule and, interestingly, we show that adding adhesion does reduce the magnitudes of both < x(t) 2 > and the mean square displacement per particle Δx2; but the diffusion behavior remains intact independent of adhesion in both cases. Moreover, we study the dependence of both the collective diffusion constant D and the tracer diffusion constant DT on the adhesion coefficient α.

  2. The Rate Constant for the Reaction H + C2H5 at T = 295 - 150K

    NASA Technical Reports Server (NTRS)

    Pimentel, Andre S.; Payne, Walter A.; Nesbitt, Fred L.; Cody, Regina J.; Stief, Louis J.

    2004-01-01

    The reaction between the hydrogen atom and the ethyl (C2H3) radical is predicted by photochemical modeling to be the most important loss process for C2H5 radicals in the atmospheres of Jupiter and Saturn. This reaction is also one of the major sources for the methyl radicals in these atmospheres. These two simplest hydrocarbon radicals are the initial species for the synthesis of larger hydrocarbons. Previous measurements of the rate constant for the H + C2H5 reaction varied by a factor of five at room temperature, and some studies showed a dependence upon temperature while others showed no such dependence. In addition, the previous studies were at higher temperatures and generally higher pressures than that needed for use in planetary atmospheric models. The rate constant for the reaction H + C2H5 has been measured directly at T = 150, 202 and 295 K and at P = 1.0 Torr He for all temperatures and additionally at P = 0.5 and 2.0 Torr He at T = 202 K. The measurements were performed in a discharge - fast flow system. The decay of the C2H5 radical in the presence of excess hydrogen was monitored by low-energy electron impact mass spectrometry under pseudo-first order conditions. H atoms and C2H5 radicals were generated rapidly and simultaneously by the reaction of fluorine atoms with H2 and C2H6, respectively. The total rate constant was found to be temperature and pressure independent. The measured total rate constant at each temperature are: k(sub 1)(295K) = (1.02+/-0.24)x10(exp -10), k(sub 1)(202K) = (1.02+/-0.22)x10(exp -10) and k(sub 1)(150K) = (0.93+/-0.21)x10(exp -10), all in units of cu cm/molecule/s. The total rate constant derived from all the combined measurements is k(sub 1) = (l.03+/-0.17)x10(exp -10) cu cm/molecule/s. At room temperature our results are about a factor of two higher than the recommended rate constant and a factor of three lower than the most recently published study.

  3. Prediction of Rate Constant for Supramolecular Systems with Multiconfigurations.

    PubMed

    Guo, Tao; Li, Haiyan; Wu, Li; Guo, Zhen; Yin, Xianzhen; Wang, Caifen; Sun, Lixin; Shao, Qun; Gu, Jingkai; York, Peter; Zhang, Jiwen

    2016-02-25

    The control of supramolecular systems requires a thorough understanding of their dynamics, especially on a molecular level. It is extremely difficult to determine the thermokinetic parameters of supramolecular systems, such as drug-cyclodextrin complexes with fast association/dissociation processes by experimental techniques. In this paper, molecular modeling combined with novel mathematical relationships integrating the thermodynamic/thermokinetic parameters of a series of isomeric multiconfigurations to predict the overall parameters in a range of pH values have been employed to study supramolecular dynamics at the molecular level. A suitable form of Eyring's equation was derived and a two-stage model was introduced. The new approach enabled accurate prediction of the apparent dissociation/association (k(off)/k(on)) and unbinding/binding (k-r/kr) rate constants of the ubiquitous multiconfiguration complexes of the supramolecular system. The pyronine Y (PY) was used as a model system for the validation of the presented method. Interestingly, the predicted k(off) value ((40 ± 1) × 10(5) s(-1), 298 K) of PY is largely in agreement with that previously determined by fluorescence correlation spectroscopy ((5 ± 3) × 10(5) s(-1), 298 K). Moreover, the k(off)/k(on) and k-r/kr for flurbiprofen-β-cylcodextrin and ibuprofen-β-cyclodextrin systems were also predicted and suggested that the association processes are diffusion-controlled. The methodology is considered to be especially useful in the design and selection of excipients for a supramolecular system with preferred association and dissociation rate constants and understanding their mechanisms. It is believed that this new approach could be applicable to a wide range of ligand-receptor supramolecular systems and will surely help in understanding their complex mechanism.

  4. The viscoelastic evaluation of transdermal adhesive systems and the influence of excipients

    NASA Astrophysics Data System (ADS)

    Wick, Steven Marshall

    1998-12-01

    The transdermal dosage form requires simultaneous consideration of both drug delivery and adhesion to skin in order to achieve the desired therapeutic effect. A transdermal system with inadequate adhesion performance will produce a variable and unpredictable systemic blood level profile. It is therefore of paramount importance that the adhesive performance be fully contemplated within the development of a total transdermal system. An experimental strategy was developed within this thesis which utilizes a sequential combination of a dynamic stress followed by a static shear stress evaluation Within the dynamic stress evaluation, a sinusoidal stress of constant frequency, over a frequency of 0.065 to 64 Hz was applied normal to the surface of an adhesive system. The static shear stress apparatus (CIRUSS) applies a constant shear stress for a defined time interval (three minutes) followed by an instantaneous removal of the applied shear stress. The mechanical behavior of two distinct adhesive polymers (silicone and acrylate) was modeled as a one-dimensional four-parameter solid and five-parameter solid respectively for the two adhesive systems. The effects of several additives were examined including ethyl oleate, glyceryl monolaurate, an amine oxide, Teflon and a macromer. In addition, the effect of branching and cross-linking was examined using the acrylate adhesive system. A physical interpretation of the mechanical behavior was proposed associating the deformation within an adhesive system with the disruption of the hydrogen bonding network as well as the covalent bonds within the polymer backbone. The collected data was consistent with the author's postulate. The presented results verify the utility of the aforementioned sequential evaluation strategy in characterizing adhesive viscoelastic performance.

  5. Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; DeMore, W. B.

    1995-01-01

    Rate constants of 15 OH reactions with halogen-substituted alkanes, C1 to C3, were studied using a relative rate technique in the temperature range 283-403 K. Compounds studied were CHF2Cl (22), CHF2Br (22B), CH3F (41), CH2F2 (32), CHF3 (23), CHClFCCl2F (122a), CHCl2CF3 (123), CHClFCF3 (124), CH3CF3 (143a), CH3CH2F (161), CF3CHFCF3 (227ea), CF3CH2CF3 (236fa), CF3CHFCHF2 (236ea), and CHF2CF2CH2F (245ca). Using CH4, CH3CCl3, CF3CF2H, and C2H6 as primary reference standards (JPL 92-20 rate constants), absolute rate constants are derived. Results are in good agreement with previous experimental results for six of the compounds studied, including CHF2Cl, CHF2Br, CH2F2, CH3CF3, CHFClCFCl2, and CF3CHFCF3. For the remainder the relative rate constants are lower than those derived from experiments in which OH loss was used to measure the reaction rate. Comparisons of the derived Arrhenius A factors with previous literature transition-state calculations show order of magnitude agreement in most cases. However, the experimental A factors show a much closer proportionality to the number of H atoms in the molecule than is evident from the transition state calculations. For most of the compounds studied, an A factor of (8 +/- 3)E-13 cm(exp 3)/(molecule s) per C-H bond is observed. A new measurement of the ratio k(CH3CCl3)/k(CH4) is reported that is in good agreement with previous data.

  6. Biotransformation of trace organic chemicals during groundwater recharge: How useful are first-order rate constants?

    PubMed

    Regnery, J; Wing, A D; Alidina, M; Drewes, J E

    2015-08-01

    This study developed relationships between the attenuation of emerging trace organic chemicals (TOrC) during managed aquifer recharge (MAR) as a function of retention time, system characteristics, and operating conditions using controlled laboratory-scale soil column experiments simulating MAR. The results revealed that MAR performance in terms of TOrC attenuation is primarily determined by key environmental parameters (i.e., redox, primary substrate). Soil columns with suboxic and anoxic conditions performed poorly (i.e., less than 30% attenuation of moderately degradable TOrC) in comparison to oxic conditions (on average between 70-100% attenuation for the same compounds) within a residence time of three days. Given this dependency on redox conditions, it was investigated if key parameter-dependent rate constants are more suitable for contaminant transport modeling to properly capture the dynamic TOrC attenuation under field-scale conditions. Laboratory-derived first-order removal kinetics were determined for 19 TOrC under three different redox conditions and rate constants were applied to MAR field data. Our findings suggest that simplified first-order rate constants will most likely not provide any meaningful results if the target compounds exhibit redox dependent biotransformation behavior or if the intention is to exactly capture the decline in concentration over time and distance at field-scale MAR. However, if the intention is to calculate the percent removal after an extended time period and subsurface travel distance, simplified first-order rate constants seem to be sufficient to provide a first estimate on TOrC attenuation during MAR. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Thermal Characterization of Epoxy Adhesive by Hotfire Testing

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.; Haddock, M. Reed; McCool, Alex (Technical Monitor)

    2001-01-01

    This paper describes subscale solid-rocket motor hot-fire testing of epoxy adhesives in flame surface bondlines to evaluate heat-affected depth, char depth and ablation rate. Hot-fire testing is part of an adhesive down-selection program on the Space Shuttle Solid Rocket Motor Nozzle to provide additional confidence in the down-selected adhesives. The current nozzle structural adhesive bond system is being replaced due to obsolescence. Prior to hot-fire testing, adhesives were tested for chemical, physical and mechanical properties, which resulted in the selection of two potential replacement adhesives, Resin Technology Group's TIGA 321 and 3M's EC2615XLW. Hot-fire testing consisted of four forty-pound charge (FPC) motors fabricated in configurations that would allow side-by-side comparison testing of the candidate replacement adhesives with the current RSRM adhesives. Results of the FPC motor testing show that: 1) the phenolic char depths on radial bondlines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used, 2) the replacement candidate adhesive char depths are equivalent to the char depths of the current adhesives, 3) the heat-affected depths of the candidate and current adhesives are equivalent, and 4) the ablation rates for both replacement adhesives were equivalent to the current adhesives.

  8. Accurate acceleration of kinetic Monte Carlo simulations through the modification of rate constants.

    PubMed

    Chatterjee, Abhijit; Voter, Arthur F

    2010-05-21

    We present a novel computational algorithm called the accelerated superbasin kinetic Monte Carlo (AS-KMC) method that enables a more efficient study of rare-event dynamics than the standard KMC method while maintaining control over the error. In AS-KMC, the rate constants for processes that are observed many times are lowered during the course of a simulation. As a result, rare processes are observed more frequently than in KMC and the time progresses faster. We first derive error estimates for AS-KMC when the rate constants are modified. These error estimates are next employed to develop a procedure for lowering process rates with control over the maximum error. Finally, numerical calculations are performed to demonstrate that the AS-KMC method captures the correct dynamics, while providing significant CPU savings over KMC in most cases. We show that the AS-KMC method can be employed with any KMC model, even when no time scale separation is present (although in such cases no computational speed-up is observed), without requiring the knowledge of various time scales present in the system.

  9. Adhesive interaction of elastically deformable spherical particles

    NASA Astrophysics Data System (ADS)

    D'yachenko, E. N.; Dueck, J. G.

    2012-01-01

    Two spherical particles that attract each other by van der Waals volume forces and can undergo deformation as a result of the attraction are considered. Small deformations of such particles can be described by the solution of the Hertz problem. The deformation of particles, in turn, alters the force of attraction between them. It has been established that the relationship between the adhesion and elasticity of the indicated particles is determined by the degree to which these particles deform and that the adhesion force acting between the particles depends on their elasticity, size, and the Hamaker constants.

  10. Acoustic emission of rock mass under the constant-rate fluid injection

    NASA Astrophysics Data System (ADS)

    Shadrin Klishin, AV, VI

    2018-03-01

    The authors study acoustic emission in coal bed and difficult-to-cave roof under injection of fluid by pumps at a constant rate. The functional connection between the roof hydrofracture length and the total number of AE pulses is validated, it is also found that the coal bed hydroloosening time, injection rate and time behavior of acoustic emission activity depend on the fluid injection volume required until the fluid breakout in a roadway through growing fractures. In the formulas offered for the practical application, integral parameters that characterize permeability and porosity of rock mass and process parameters of the technology are found during test injection.

  11. Exploring the Limits of Cell Adhesion under Shear Stress within Physiological Conditions and beyond on a Chip.

    PubMed

    Stamp, Melanie E M; Jötten, Anna M; Kudella, Patrick W; Breyer, Dominik; Strobl, Florian G; Geislinger, Thomas M; Wixforth, Achim; Westerhausen, Christoph

    2016-10-21

    Cell adhesion processes are of ubiquitous importance for biomedical applications such as optimization of implant materials. Here, not only physiological conditions such as temperature or pH, but also topographical structures play crucial roles, as inflammatory reactions after surgery can diminish osseointegration. In this study, we systematically investigate cell adhesion under static, dynamic and physiologically relevant conditions employing a lab-on-a-chip system. We screen adhesion of the bone osteosarcoma cell line SaOs-2 on a titanium implant material for pH and temperature values in the physiological range and beyond, to explore the limits of cell adhesion, e.g., for feverish and acidic conditions. A detailed study of different surface roughness R q gives insight into the correlation between the cells' abilities to adhere and withstand shear flow and the topography of the substrates, finding a local optimum at R q = 22 nm. We use shear stress induced by acoustic streaming to determine a measure for the ability of cell adhesion under an external force for various conditions. We find an optimum of cell adhesion for T = 37 °C and pH = 7.4 with decreasing cell adhesion outside the physiological range, especially for high T and low pH. We find constant detachment rates in the physiological regime, but this behavior tends to collapse at the limits of 41 °C and pH 4.

  12. Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential.

    PubMed

    Allison, Thomas C

    2016-03-03

    Rate constants for reactions of chemical compounds with hydroxyl radical are a key quantity used in evaluating the global warming potential of a substance. Experimental determination of these rate constants is essential, but it can also be difficult and time-consuming to produce. High-level quantum chemistry predictions of the rate constant can suffer from the same issues. Therefore, it is valuable to devise estimation schemes that can give reasonable results on a variety of chemical compounds. In this article, the construction and training of an artificial neural network (ANN) for the prediction of rate constants at 298 K for reactions of hydroxyl radical with a diverse set of molecules is described. Input to the ANN consists of counts of the chemical bonds and bends present in the target molecule. The ANN is trained using 792 (•)OH reaction rate constants taken from the NIST Chemical Kinetics Database. The mean unsigned percent error (MUPE) for the training set is 12%, and the MUPE of the testing set is 51%. It is shown that the present methodology yields rate constants of reasonable accuracy for a diverse set of inputs. The results are compared to high-quality literature values and to another estimation scheme. This ANN methodology is expected to be of use in a wide range of applications for which (•)OH reaction rate constants are required. The model uses only information that can be gathered from a 2D representation of the molecule, making the present approach particularly appealing, especially for screening applications.

  13. Nonparametric change point estimation for survival distributions with a partially constant hazard rate.

    PubMed

    Brazzale, Alessandra R; Küchenhoff, Helmut; Krügel, Stefanie; Schiergens, Tobias S; Trentzsch, Heiko; Hartl, Wolfgang

    2018-04-05

    We present a new method for estimating a change point in the hazard function of a survival distribution assuming a constant hazard rate after the change point and a decreasing hazard rate before the change point. Our method is based on fitting a stump regression to p values for testing hazard rates in small time intervals. We present three real data examples describing survival patterns of severely ill patients, whose excess mortality rates are known to persist far beyond hospital discharge. For designing survival studies in these patients and for the definition of hospital performance metrics (e.g. mortality), it is essential to define adequate and objective end points. The reliable estimation of a change point will help researchers to identify such end points. By precisely knowing this change point, clinicians can distinguish between the acute phase with high hazard (time elapsed after admission and before the change point was reached), and the chronic phase (time elapsed after the change point) in which hazard is fairly constant. We show in an extensive simulation study that maximum likelihood estimation is not robust in this setting, and we evaluate our new estimation strategy including bootstrap confidence intervals and finite sample bias correction.

  14. Rate constants for reactions of ClO/x/ of atmospheric interest

    NASA Technical Reports Server (NTRS)

    Watson, R. T.

    1977-01-01

    Chemical kinetics measurements on 82 gas phase reactions of chlorine containing species are reviewed. Recommended rate constants are given. The principal species of interest are Cl, Cl2, ClO, Cl2O, ClOO, OClO, CINO, HCl and halo derivatives of methane and ethane. Absorption spectra are given for 21 species. In addition the chemical kinetics methods used to obtain these data are discussed with regard to their applicability and reliability.

  15. Release of chemical permeation enhancers from drug-in-adhesive transdermal patches.

    PubMed

    Qvist, Michael H; Hoeck, Ulla; Kreilgaard, Bo; Madsen, Flemming; Frokjaer, Sven

    2002-01-14

    There is only limited knowledge of how chemical permeation enhancers release from transdermal drug delivery systems of the drug-in-adhesive type. In this study, the release of eight commonly known enhancers from eight types of polymer adhesives was evaluated using Franz diffusion cells. It was shown that all the enhancers released completely from the adhesives and followed a square root of time kinetic (Higuchi law). Using a statistical analysis it was shown that the release rate was more dependent on the type of enhancer than on the type of polymers. The mean release rates were in the range from 2.2 to 11.1%/ radical t for the slowest and fastest releasing enhancers, which correspond to a 50% release within 500 and 20 min, respectively. Furthermore, the release rates were inversely proportional to the cube root of the molal volumes of the enhancers and to their logarithmic partition coefficients between the polymer adhesive and the receptor fluid. It was found that the observed release rates were probably due to a high diffusion coefficient of the enhancers rather than due to an inhomogeneous embedment of the enhancers in the adhesives. The type of adhesive showed minor influence on the release rate, especially among the acrylic polymers no difference was seen. However, compared to the acrylic adhesives, the polyisobutylene adhesive showed slower release rates, while the silicone adhesive showed slightly faster release rates.

  16. Temperature and pressure dependence of the absolute rate constant for the reactions of NH2 radicals with acetylene and ethylene

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Nava, D. F.; Brobst, W. D.; Stief, L. J.

    1984-01-01

    The absolute rate constants for the reaction between the NH2 free radical and acetylene and ethylene is measured experimentally using a flash photolysis technique. The constant is considered to be a function of temperature and pressure. At each temperature level of the experiment, the observed pseudo-first-order rate constants were assumed to be independent of flash intensity. The results of the experiment indicate that the bimolecular rate constant for the NH2 + C2H2 reaction increases with pressure at 373 K and 459 K but not at lower temperatures. Results near the pressure limit conform to an Arrhenius expression of 1.11 (+ or -) 0.36 x 10 to the -13th over the temperature range from 241 to 459 K. For the reaction NH2 + C2H4, a smaller rate of increase in the bimolecular rate constant was observed over the temperature range 250-465 K. The implications of these results for current theoretical models of NH2 + C2H2 (or H4) reactions in the atmospheres of Jupiter and Saturn are discussed.

  17. Cyclic debonding of adhesively bonded composites

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.; Everett, R. A., Jr.

    1982-01-01

    The fatigue behavior of a simple composite to composite bonded joint was analyzed. The cracked lap shear specimen subjected to constant amplitude cyclic loading was studied. Two specimen geometries were tested for each bonded system: (1) a strap adherend of 16 plies bonded to a lap adherend of 8 plies; and (2) a strap adherend of 8 plies bonded to a lap adherend of 16 plies. In all specimens the fatigue failure was in the form of cyclic debonding with some 0 deg fiber pull off from the strap adherend. The debond always grew in the region of adhesive that had the highest mode (peel) loading and that region was close to the adhesive strap interface.

  18. Rapamycin and a hyaluronic acid-carboxymethylcellulose membrane did not lead to reduced adhesion formations in a rat abdominal adhesion model.

    PubMed

    Dietrich, Arne; Bouzidi, Maria; Hartwig, Thomas; Schütz, Alexander; Jonas, Sven

    2012-06-01

    Rapamycin, an immunosuppressive in transplant surgery, has an additional antiproliferative effect. The aim of this study was to investigate the potential protective effects of rapamycin on postoperative adhesion development. Ten rats per group underwent midline incision laparotomy and adhesion induction including bowel sutures. Therapy groups received daily intraperitoneal rapamycin injections (1.5 mg/kg body weight) for 3 weeks postoperatively. Controls were rats without any postoperative treatment, rats receiving the rapamycin solvent or a hyaluronic acid-carboxymethylcellulose membrane (Seprafilm(™)). Postoperative rapamycin application led to enhanced adhesion development and there was a higher rate of wound infections. In addition, Seprafilm(™) did not reduce adhesions, in subgroups there were even more. Rapamycin is not recommendable for perioperative immunosuppression, it enhances adhesion development and leads to a higher rate of wound infections. Surprisingly, the established Seprafilm(™) membrane led to more adhesions in our experimental setting.

  19. Pseudo-extravasation rate constant of dynamic susceptibility contrast-MRI determined from pharmacokinetic first principles.

    PubMed

    Li, Xin; Varallyay, Csanad G; Gahramanov, Seymur; Fu, Rongwei; Rooney, William D; Neuwelt, Edward A

    2017-11-01

    Dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) is widely used to obtain informative perfusion imaging biomarkers, such as the relative cerebral blood volume (rCBV). The related post-processing software packages for DSC-MRI are available from major MRI instrument manufacturers and third-party vendors. One unique aspect of DSC-MRI with low-molecular-weight gadolinium (Gd)-based contrast reagent (CR) is that CR molecules leak into the interstitium space and therefore confound the DSC signal detected. Several approaches to correct this leakage effect have been proposed throughout the years. Amongst the most popular is the Boxerman-Schmainda-Weisskoff (BSW) K 2 leakage correction approach, in which the K 2 pseudo-first-order rate constant quantifies the leakage. In this work, we propose a new method for the BSW leakage correction approach. Based on the pharmacokinetic interpretation of the data, the commonly adopted R 2 * expression accounting for contributions from both intravascular and extravasating CR components is transformed using a method mathematically similar to Gjedde-Patlak linearization. Then, the leakage rate constant (K L ) can be determined as the slope of the linear portion of a plot of the transformed data. Using the DSC data of high-molecular-weight (~750 kDa), iron-based, intravascular Ferumoxytol (FeO), the pharmacokinetic interpretation of the new paradigm is empirically validated. The primary objective of this work is to empirically demonstrate that a linear portion often exists in the graph of the transformed data. This linear portion provides a clear definition of the Gd CR pseudo-leakage rate constant, which equals the slope derived from the linear segment. A secondary objective is to demonstrate that transformed points from the initial transient period during the CR wash-in often deviate from the linear trend of the linearized graph. The inclusion of these points will have a negative impact on the accuracy of the leakage

  20. Efficient quantum-classical method for computing thermal rate constant of recombination: application to ozone formation.

    PubMed

    Ivanov, Mikhail V; Babikov, Dmitri

    2012-05-14

    Efficient method is proposed for computing thermal rate constant of recombination reaction that proceeds according to the energy transfer mechanism, when an energized molecule is formed from reactants first, and is stabilized later by collision with quencher. The mixed quantum-classical theory for the collisional energy transfer and the ro-vibrational energy flow [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)] is employed to treat the dynamics of molecule + quencher collision. Efficiency is achieved by sampling simultaneously (i) the thermal collision energy, (ii) the impact parameter, and (iii) the incident direction of quencher, as well as (iv) the rotational state of energized molecule. This approach is applied to calculate third-order rate constant of the recombination reaction that forms the (16)O(18)O(16)O isotopomer of ozone. Comparison of the predicted rate vs. experimental result is presented.

  1. Rate constant for OH with selected large alkanes : shock-tube measurements and an improved group scheme.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

    High-temperature rate constant experiments on OH with the five large (C{sub 5}-C{sub 8}) saturated hydrocarbons n-heptane, 2,2,3,3-tetramethylbutane (2,2,3,3-TMB), n-pentane, n-hexane, and 2,3-dimethylbutane (2,3-DMB) were performed with the reflected-shock-tube technique using multipass absorption spectrometric detection of OH radicals at 308 nm. Single-point determinations at {approx}1200 K on n-heptane, 2,2,3,3-TMB, n-hexane, and 2,3-DMB were previously reported by Cohen and co-workers; however, the present work substantially extends the database to both lower and higher temperature. The present experiments span a wide temperature range, 789-1308 K, and represent the first direct measurements of rate constants at T > 800 K for n-pentane. The presentmore » work utilized 48 optical passes corresponding to a total path length of {approx}4.2 m. As a result of this increased path length, the high OH concentration detection sensitivity permitted pseudo-first-order analyses for unambiguously measuring rate constants.« less

  2. Determining the folding and unfolding rate constants of nucleic acids by biosensor. Application to telomere G-quadruplex.

    PubMed

    Zhao, Yong; Kan, Zhong-yuan; Zeng, Zhi-xiong; Hao, Yu-hua; Chen, Hua; Tan, Zheng

    2004-10-20

    Nucleic acid molecules may fold into secondary structures, and the formation of such structures is involved in many biological processes and technical applications. The folding and unfolding rate constants define the kinetics of conformation interconversion and the stability of these structures and is important in realizing their functions. We developed a method to determine these kinetic parameters using an optical biosensor based on surface plasmon resonance. The folding and unfolding of a nucleic acid is coupled with a hybridization reaction by immobilization of the target nucleic acid on a sensor chip surface and injection of a complementary probe nucleic acid over the sensor chip surface. By monitoring the time course of duplex formation, both the folding and unfolding rate constants for the target nucleic acid and the association and dissociation rate constants for the target-probe duplex can all be derived from the same measurement. We applied this method to determine the folding and unfolding rate constants of the G-quadruplex of human telomere sequence (TTAGGG)(4) and its association and dissociation rate constants with the complementary strand (CCCTAA)(4). The results show that both the folding and unfolding occur on the time scale of minutes at physiological concentration of K(+). We speculate that this property might be important for telomere elongation. A complete set of the kinetic parameters for both of the structures allows us to study the competition between the formation of the quadruplex and the duplex. Calculations indicate that the formation of both the quadruplex and the duplex is strand concentration-dependent, and the quadruplex can be efficiently formed at low strand concentration. This property may provide the basis for the formation of the quadruplex in vivo in the presence of a complementary strand.

  3. Estimate Of The Decay Rate Constant of Hydrogen Sulfide Generation From Landfilled Drywall

    EPA Science Inventory

    Research was conducted to investigate the impact of particle size on H2S gas emissions and estimate a decay rate constant for H2S gas generation from the anaerobic decomposition of drywall. Three different particle sizes of regular drywall and one particle size of paperless drywa...

  4. Nondestructive Evaluation of Adhesive Bonds via Ultrasonic Phase Measurements

    NASA Technical Reports Server (NTRS)

    Haldren, Harold A.; Perey, Daniel F.; Yost, William T.; Cramer, K. Elliott; Gupta, Mool C.

    2016-01-01

    The use of advanced composites utilizing adhesively bonded structures offers advantages in weight and cost for both the aerospace and automotive industries. Conventional nondestructive evaluation (NDE) has proved unable to reliably detect weak bonds or bond deterioration during service life conditions. A new nondestructive technique for quantitatively measuring adhesive bond strength is demonstrated. In this paper, an ultrasonic technique employing constant frequency pulsed phased-locked loop (CFPPLL) circuitry to monitor the phase response of a bonded structure from change in thermal stress is discussed. Theoretical research suggests that the thermal response of a bonded interface relates well with the quality of the adhesive bond. In particular, the effective stiffness of the adhesive-adherent interface may be extracted from the thermal phase response of the structure. The sensitivity of the CFPPLL instrument allows detection of bond pathologies that have been previously difficult-to-detect. Theoretical results with this ultrasonic technique on single epoxy lap joint (SLJ) specimens are presented and discussed. This technique has the potential to advance the use of adhesive bonds - and by association, advanced composite structures - by providing a reliable method to measure adhesive bond strength, thus permitting more complex, lightweight, and safe designs.

  5. Theory and simulations of adhesion receptor dimerization on membrane surfaces.

    PubMed

    Wu, Yinghao; Honig, Barry; Ben-Shaul, Avinoam

    2013-03-19

    The equilibrium constants of trans and cis dimerization of membrane bound (2D) and freely moving (3D) adhesion receptors are expressed and compared using elementary statistical-thermodynamics. Both processes are mediated by the binding of extracellular subdomains whose range of motion in the 2D environment is reduced upon dimerization, defining a thin reaction shell where dimer formation and dissociation take place. We show that the ratio between the 2D and 3D equilibrium constants can be expressed as a product of individual factors describing, respectively, the spatial ranges of motions of the adhesive domains, and their rotational freedom within the reaction shell. The results predicted by the theory are compared to those obtained from a novel, to our knowledge, dynamical simulations methodology, whereby pairs of receptors perform realistic translational, internal, and rotational motions in 2D and 3D. We use cadherins as our model system. The theory and simulations explain how the strength of cis and trans interactions of adhesive receptors are affected both by their presence in the constrained intermembrane space and by the 2D environment of membrane surfaces. Our work provides fundamental insights as to the mechanism of lateral clustering of adhesion receptors after cell-cell contact and, more generally, to the formation of lateral microclusters of proteins on cell surfaces. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Atmospheric fate of a series of carbonyl nitrates: photolysis frequencies and OH-oxidation rate constants.

    PubMed

    Suarez-Bertoa, R; Picquet-Varrault, B; Tamas, W; Pangui, E; Doussin, J-F

    2012-11-20

    Multifunctional organic nitrates are potential NO(x) reservoirs whose atmospheric chemistry is somewhat little known. They could play an important role in the spatial distribution of reactive nitrogen species and consequently in ozone formation and distribution in remote areas. In this work, the rate constants for the reaction with OH radical and the photolysis frequencies of α-nitrooxyacetone, 3-nitrooxy-2-butanone, and 3-methyl-3-nitrooxy-2-butanone have been determined at room temperature at 1000 mbar total pressure of synthetic air. The rate constants for the OH oxidation were measured using the relative rate technique, with methanol as reference compound. The following rate constants were obtained for the reaction with OH: k(OH) = (6.7 ± 2.5) × 10(-13) cm(3) molecule(-1) s(-1) for α-nitrooxyacetone, (10.6 ± 4.1) × 10(-13) cm(3) molecule(-1) s(-1) for 3-nitrooxy-2-butanone, and (2.6 ± 0.9) × 10(-13) cm(3) molecule(-1) s(-1) for 3-methyl-3-nitrooxy-2-butanone. The corresponding photolysis frequencies extrapolated to typical atmospheric conditions for July first at noon at 40° latitude North were (4.8 ± 0.3) × 10(-5) s(-1), (5.7 ± 0.3) × 10(-5) s(-1), and (7.4 ± 0.2) × 10(-5) s(-1), respectively. The data show that photolysis is a major atmospheric sink for these organic nitrates.

  7. Flow-induced adhesion of shear-activated polymers to a substrate

    NASA Astrophysics Data System (ADS)

    Hoore, Masoud; Rack, Kathrin; Fedosov, Dmitry A.; Gompper, Gerhard

    2018-02-01

    Adhesion of polymers and proteins to substrates plays a crucial role in many technological applications and biological processes. A prominent example is the von Willebrand factor (VWF) protein, which is essential in blood clotting as it mediates adhesion of blood platelets to the site of injury at high shear rates. VWF is activated by flow and is able to bind efficiently to damaged vessel walls even under extreme flow-stress conditions; however, its adhesion is reversible when the flow strength is significantly reduced or the flow is ceased. Motivated by the properties and behavior of VWF in flow, we investigate adhesion of shear-activated polymers to a planar wall in flow and whether the adhesion is reversible under flow stasis. The main ingredients of the polymer model are cohesive inter-monomer interactions, a catch bond with the adhesive surface, and the shear activation/deactivation of polymer adhesion correlated with its stretching in flow. The cohesive interactions within the polymer maintain a globular conformation under low shear stresses and allow polymer stretching if a critical shear rate is exceeded, which is directly associated with its activation for adhesion. Our results show that polymer adhesion at high shear rates is significantly stabilized by catch bonds, while at the same time they also permit polymer dissociation from a surface at low or no flow stresses. In addition, the activation/deactivation mechanism for adhesion plays a crucial role in the reversibility of its adhesion. These observations help us better understand the adhesive behavior of VWF in flow and interpret its adhesion malfunctioning in VWF-related diseases.

  8. Extension of the master sintering curve for constant heating rate modeling

    NASA Astrophysics Data System (ADS)

    McCoy, Tammy Michelle

    The purpose of this work is to extend the functionality of the Master Sintering Curve (MSC) such that it can be used as a practical tool for predicting sintering schemes that combine both a constant heating rate and an isothermal hold. Rather than just being able to predict a final density for the object of interest, the extension to the MSC will actually be able to model a sintering run from start to finish. Because the Johnson model does not incorporate this capability, the work presented is an extension of what has already been shown in literature to be a valuable resource in many sintering situations. A predicted sintering curve that incorporates a combination of constant heating rate and an isothermal hold is more indicative of what is found in real-life sintering operations. This research offers the possibility of predicting the sintering schedule for a material, thereby having advanced information about the extent of sintering, the time schedule for sintering, and the sintering temperature with a high degree of accuracy and repeatability. The research conducted in this thesis focuses on the development of a working model for predicting the sintering schedules of several stabilized zirconia powders having the compositions YSZ (HSY8), 10Sc1CeSZ, 10Sc1YSZ, and 11ScSZ1A. The compositions of the four powders are first verified using x-ray diffraction (XRD) and the particle size and surface area are verified using a particle size analyzer and BET analysis, respectively. The sintering studies were conducted on powder compacts using a double pushrod dilatometer. Density measurements are obtained both geometrically and using the Archimedes method. Each of the four powders is pressed into ¼" diameter pellets using a manual press with no additives, such as a binder or lubricant. Using a double push-rod dilatometer, shrinkage data for the pellets is obtained over several different heating rates. The shrinkage data is then converted to reflect the change in relative

  9. Nonadiabatic effects on the charge transfer rate constant: A numerical study of a simple model system

    NASA Astrophysics Data System (ADS)

    Shin, Seokmin; Metiu, Horia

    1995-06-01

    We use a minimal model to study the effects of the upper electronic states on the rate of a charge transfer reaction. The model consists of three ions and an electron, all strung on a line. The two ions at the ends of the structure are held fixed, but the middle ion and the electron are allowed to move in one dimension, along the line joining them. The system has two bound states, one in which the electron ties the movable ion to the fixed ion at the left, and the other in which the binding takes place to the fixed ion at the right. The transition between these bound states is a charge transfer reaction. We use the flux-flux correlation function theory to perform two calculations of the rate constant for this reaction. In one we obtain numerically the exact rate constant. In the other we calculate the exact rate constant for the case when the reaction proceeds exclusively on the ground adiabatic state. The difference between these calculations gives the magnitude of the nonadiabatic effects. We find that the nonadiabatic effects are fairly large even when the gap between the ground and the excited adiabatic state substantially exceeds the thermal energy. The rate in the nonadiabatic theory is always smaller than that of the adiabatic one. Both rate constants satisfy the Arrhenius formula. Their activation energies are very close but the nonadiabatic one is always higher. The nonadiabatic preexponential is smaller, due to the fact that the upper electronic state causes an early recrossing of the reactive flux. The description of this reaction in terms of two diabatic states, one for reactants and one for products, is not always adequate. In the limit when nonadiabaticity is small, we need to use a third diabatic state, in which the electron binds to the moving ion as the latter passes through the transition state; this is an atom transfer process. The reaction changes from an atom transfer to an electron transfer, as nonadiabaticity is increased.

  10. Rate constants for chemical reactions in high-temperature nonequilibrium air

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  11. Effects of scaffold surface morphology on cell adhesion and survival rate in vitreous cryopreservation of tenocyte-scaffold constructs

    NASA Astrophysics Data System (ADS)

    Wang, Zhi; Qing, Quan; Chen, Xi; Liu, Cheng-Jun; Luo, Jing-Cong; Hu, Jin-Lian; Qin, Ting-Wu

    2016-12-01

    The purpose of this study was to investigate the effects of scaffold surface morphology on cell adhesion and survival rate in vitreous cryopreservation of tenocyte-scaffold constructs. Tenocytes were obtained from tail tendons of rats. Polydimethylsiloxane (PDMS) was used to fabricate three types of scaffolds with varying surface morphological characteristics, i.e., smooth, micro-grooved, and porous surfaces, respectively. The tenocytes were seeded on the surfaces of the scaffolds to form tenocyte-scaffold constructs. The constructs were cryopreserved in a vitreous cryoprotectant (CPA) with a multi-step protocol. The cell adhesion to scaffolds was observed with electronic scanning microscopy (SEM). The elongation index of the living tenocytes and ratio of live/dead cell number were examined based on a live/dead dual fluorescent staining technique, and the survival rate of tenocytes was studied with flow cytometry (FC). The results showed the shapes of tenocytes varied between the different groups: flat or polygonal (on smooth surface), spindle (on micro-grooved surface), and spindle or ellipse (on porous surface). After thawing, the porous surface got the most living tenocytes and a higher survival rate, suggesting its potential application for vitreous cryopreservation of engineered tendon constructs.

  12. DISSOCIATION OF ARSENITE-PEPTIDE COMPLEXES: TRIPHASIC NATURE, RATE CONSTANTS, HALF LIVES AND BIOLOGICAL IMPORTANCE

    EPA Science Inventory

    We determined the number and the dissociation rate constants of different complexes formed from arsenite and two peptides containing either one (RV AVGNDYASGYHYGV for peptide 20) or three cysteines (LE AWQGK VEGTEHLYSMK K for peptide 10) via radioactive 73As labeled arsenite and ...

  13. Applying constraints on model-based methods: Estimation of rate constants in a second order consecutive reaction

    NASA Astrophysics Data System (ADS)

    Kompany-Zareh, Mohsen; Khoshkam, Maryam

    2013-02-01

    This paper describes estimation of reaction rate constants and pure ultraviolet/visible (UV-vis) spectra of the component involved in a second order consecutive reaction between Ortho-Amino benzoeic acid (o-ABA) and Diazoniom ions (DIAZO), with one intermediate. In the described system, o-ABA was not absorbing in the visible region of interest and thus, closure rank deficiency problem did not exist. Concentration profiles were determined by solving differential equations of the corresponding kinetic model. In that sense, three types of model-based procedures were applied to estimate the rate constants of the kinetic system, according to Levenberg/Marquardt (NGL/M) algorithm. Original data-based, Score-based and concentration-based objective functions were included in these nonlinear fitting procedures. Results showed that when there is error in initial concentrations, accuracy of estimated rate constants strongly depends on the type of applied objective function in fitting procedure. Moreover, flexibility in application of different constraints and optimization of the initial concentrations estimation during the fitting procedure were investigated. Results showed a considerable decrease in ambiguity of obtained parameters by applying appropriate constraints and adjustable initial concentrations of reagents.

  14. Absolute rate constants of alkoxyl radical reactions in aqueous solution. [Tert-butyl hydroperoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erben-Russ, M.; Michel, C.; Bors, W.

    1987-04-23

    The pulse radiolysis technique was used to generate the alkoxyl radical derived from tert-butyl hydroperoxide (/sup t/BuOOH) in aqueous solution. The reactions of this radical with 2,2'-azinobis(3-ethyl-6-benzothiazolinesulfonate) (ABTS) and promethazine were monitored by kinetic spectroscopy. The unimolecular decay rate constant of the tert-butoxyl radical (/sup t/BuO) was determined to be 1.4 x 10/sup 6/ s/sup -1/. On the basis of this value, the rate constants for /sup t/BuO attack on quercetin, crocin, crocetin, ascorbate, isoascorbate, trolox c, glutathione, thymidine, adenosine, guanosine, and unsaturated fatty acids were determined. In addition, the reaction of /sup t/BuO with the polyunsaturated fatty acids (PUFA)more » was observed by directly monitoring the formation of the fatty acid pentadienyl radicals. Interestingly, the attack of /sup t/BuO on PUFA was found to be faster by about one order of magnitude as compared to the same reaction in a nonpolar solvent.« less

  15. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  16. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  17. Dose equivalent rate constants and barrier transmission data for nuclear medicine facility dose calculations and shielding design.

    PubMed

    Kusano, Maggie; Caldwell, Curtis B

    2014-07-01

    A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist

  18. Growth rate and trapping efficacy of nematode-trapping fungi under constant and fluctuating temperatures.

    PubMed

    Fernández, A S; Larsen, M; Wolstrup, J; Grønvold, J; Nansen, P; Bjørn, H

    1999-08-01

    The effect of temperature on radial growth and predatory activity of different isolates of nematode-trapping fungi was assessed. Four isolates of Duddingtonia flagrans and one isolate of Arthrobotrys oligospora were inoculated on petri dishes containing either cornmeal agar (CMA) or faecal agar and then incubated for 14 days under three different constant and fluctuating temperature regimes. The radial growth was similar on the two substrates at each temperature regime. All fungal isolates showed a higher growth rate at a constant 20 degrees C. At 10 degrees and 15 degrees C, all D. flagrans isolates showed very similar patterns of radial growth at both constant and fluctuating temperatures. At 20 degrees C, they grew significantly faster at constant than at fluctuating temperatures. A. oligospora grew significantly faster than all D. flagrans isolates except when incubated at a fluctuating 20 degrees C. Spores of each fungal isolate were added to faecal cultures containing eggs of Cooperia oncophora at a concentration of 6250 spores/g faeces. The cultures were incubated for 14 days at the same temperature regimes described above. Control faeces (without fungal material) were also cultured. More larvae were recovered from the fungus-treated cultures incubated at a constant 10 degrees or 15 degrees C than from those incubated at the respective fluctuating temperatures, except for one D. flagrans isolate. Incubation at 20 degrees C showed the opposite effect. The general reduction observed in the number of nematode larvae due to fungal trapping was 18-25% and 48-80% for a constant and fluctuating 10 degrees C, 70-96% and 93-95% for a constant and fluctuating 15 degrees C, and 63-98% and 0-25% for a constant and fluctuating 20 degrees C, respectively.

  19. Quantitative comparison of cancer and normal cell adhesion using organosilane monolayer templates: an experimental study on the anti-adhesion effect of green-tea catechins.

    PubMed

    Sakamoto, Rumi; Kakinuma, Eisuke; Masuda, Kentaro; Takeuchi, Yuko; Ito, Kosaku; Iketaki, Kentaro; Matsuzaki, Takahisa; Nakabayashi, Seiichiro; Yoshikawa, Hiroshi Y; Yamamoto, Hideaki; Sato, Yuko; Tanii, Takashi

    2016-09-01

    The main constituent of green tea, (-)-Epigallocatechin-3-O-gallate (EGCG), is known to have cancer-specific chemopreventive effects. In the present work, we investigated how EGCG suppresses cell adhesion by comparing the adhesion of human pancreatic cancer cells (AsPC-1 and BxPC-3) and their counterpart, normal human embryonic pancreas-derived cells (1C3D3), in catechin-containing media using organosilane monolayer templates (OMTs). The purpose of this work is (1) to evaluate the quantitativeness in the measurement of cell adhesion with the OMT and (2) to show how green-tea catechins suppress cell adhesion in a cancer-specific manner. For the first purpose, the adhesion of cancer and normal cells was compared using the OMT. The cell adhesion in different type of catechins such as EGCG, (-)-Epicatechin-3-O-gallate (ECG) and (-)-Epicatechin (EC) was also evaluated. The measurements revealed that the anti-adhesion effect of green-tea catechins is cancer-specific, and the order is EGCG≫ECG>EC. The results agree well with the data reported to date, showing the quantitativeness of the new method. For the second purpose, the contact area of cells on the OMT was measured by reflection interference contrast microscopy. The cell-OMT contact area of cancer cells decreases with increasing EGCG concentration, whereas that of normal cells remains constant. The results reveal a twofold action of EGCG on cancer cell adhesion-suppressing cell attachment to a candidate adhesion site and decreasing the contact area of the cells-and validates the use of OMT as a tool for screening cancer cell adhesion.

  20. The adhesive strength and initial viscosity of denture adhesives.

    PubMed

    Han, Jian-Min; Hong, Guang; Dilinuer, Maimaitishawuti; Lin, Hong; Zheng, Gang; Wang, Xin-Zhi; Sasaki, Keiichi

    2014-11-01

    To examine the initial viscosity and adhesive strength of modern denture adhesives in vitro. Three cream-type denture adhesives (Poligrip S, Corect Cream, Liodent Cream; PGS, CRC, LDC) and three powder-type denture adhesives (Poligrip Powder, New Faston, Zanfton; PGP, FSN, ZFN) were used in this study. The initial viscosity was measured using a controlled-stress rheometer. The adhesive strength was measured according to ISO-10873 recommended procedures. All data were analyzed independently by one-way analysis of variance combined with a Student-Newman-Keuls multiple comparison test at a 5% level of significance. The initial viscosity of all the cream-type denture adhesives was lower than the powder-type adhesives. Before immersion in water, all the powder-type adhesives exhibited higher adhesive strength than the cream-type adhesives. However, the adhesive strength of cream-type denture adhesives increased significantly and exceeded the powder-type denture adhesives after immersion in water. For powder-type adhesives, the adhesive strength significantly decreased after immersion in water for 60 min, while the adhesive strength of the cream-type adhesives significantly decreased after immersion in water for 180 min. Cream-type denture adhesives have lower initial viscosity and higher adhesive strength than powder type adhesives, which may offer better manipulation properties and greater efficacy during application.

  1. [Pathogenesis of adhesions formation after intraabdominal operations].

    PubMed

    Voskanian, S É; Kyzlasov, P S

    2011-01-01

    The article describes the pathogenesis of adhesions formation after intraabdominal operations. Described predisposing factors leading of which is mechanical trauma, resulting from the use of surgical instruments, rough manipulations during surgery, damage to the mesothelium by dry gauze etc, which cause the adhesions. The pathogenesis of adhesions formation after intraabdominal surgery is presented in outline form, which described the changes occurring in the body starting with combination of predisposing factors and ending with the development of adhesions with blood vessels by 7-12 days after surgery. At the genetic level predisposition to adhesions formation and development of adhesive disease is treated as a manifestation of rapid acetylation phenotype, in which the intensity of fibrin formation exceeds normal rate of its catabolism. Thus, according to modem concepts, adhesive disease is a separate nosologic unit that dictates the necessity of its detailed study, development and introduction new universal methods of preventing the adhesions formation after intraabdominal operations.

  2. Stresses in adhesively bonded joints: A closed form solution. [plate theory

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1980-01-01

    The plane strain of adhesively bonded structures which consist of two different orthotropic adherents is considered. Assuming that the thicknesses of the adherends are constant and are small in relation to the lateral dimensions of the bonded region, the adherends are treated as plates. The transverse shear effects in the adherends and the in-plane normal strain in the adhesive are taken into account. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form. A single lap joint and a stiffened plate under various loading conditions are considered as examples. To verify the basic trend of the solutions obtained from the plate theory a sample problem is solved by using the finite element method and by treating the adherends and the adhesive as elastic continua. The plate theory not only predicts the correct trend for the adhesive stresses but also gives rather surprisingly accurate results.

  3. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2015-11-21

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at highmore » temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to

  4. An evaluation of fibrin tissue adhesive concentration and application thickness on skin graft survival.

    PubMed

    O'Grady, K M; Agrawal, A; Bhattacharyya, T K; Shah, A; Toriumi, D M

    2000-11-01

    To examine the effects of fibrinogen concentration and application thickness of fibrin tissue adhesive on skin graft survival. Prospective controlled study. Ten domestic pigs were included in the study. A 20 x 5-cm area of skin was harvested bilaterally along the flanks of the animals using a Padgett dermatome. The harvested grafts were trimmed into four 4 x 4-cm squares. Donor sites were treated according to group assignment and the non-meshed grafts were placed on the side opposite their initial orientation and secured with staples. Both single- and multiple-donor human fibrin tissue adhesive preparations, with low and high average fibrinogen concentrations of 30 mg/mL and 60 mg/ mL, were used. Adhesive preparations were applied in either a thin layer (0.015 mL/cm2) or a thick layer (0.06 mL/cm2) using a spray applicator. A constant thrombin concentration of 10 U/mL was used in the study. No adhesive was used in the control group and grafts were stabilized with staples. No topical dressings were applied to any of the treatment sites. Animals were sacrificed 4 weeks after graft application. Based on statistical analysis, thickness of adhesive application had a significant effect on skin graft survival. Percent mean graft survival in the control and thin application groups was found to be 92% and 97.8% respectively; the mean survival rate in the thick application group was 63.1%. Fibrinogen concentration, when evaluated independently within the thin and thick application groups, was found to have no significant effect on graft survival. Independent of fibrinogen concentration, a thin layer of fibrin tissue adhesive, when applied between two opposing surfaces, does not interfere with and may support the healing process, whereas a thick layer of adhesive inhibits skin graft healing.

  5. PLATELET ADHESION TO POLYURETHANE UREA UNDER PULSATILE FLOW CONDITIONS

    PubMed Central

    Navitsky, Michael A.; Taylor, Joshua O.; Smith, Alexander B.; Slattery, Margaret J.; Deutsch, Steven; Siedlecki, Christopher A.; Manning, Keefe B.

    2014-01-01

    Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s−1. The aim of the current work is to determine platelet adhesion properties to the polyurethane urea surface as a function of time varying shear exposure. A rotating disk system is used to study the influence of steady and pulsatile flow conditions (e.g. cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments retain the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk is rotated in platelet rich bovine plasma for two hours with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow is found to exponentially decay with increasing shear rate. Adhesion levels are found to depend upon peak platelet flux and shear rate regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices. PMID:24721222

  6. Estimation of Anaerobic Debromination Rate Constants of PBDE Pathways Using an Anaerobic Dehalogenation Model.

    PubMed

    Karakas, Filiz; Imamoglu, Ipek

    2017-04-01

    This study aims to estimate anaerobic debromination rate constants (k m ) of PBDE pathways using previously reported laboratory soil data. k m values of pathways are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model. Debromination activities published in the literature in terms of bromine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The range of estimated k m values is between 0.0003 and 0.0241 d -1 . The median and maximum of k m values are found to be comparable to the few available biologically confirmed rate constants published in the literature. The estimated k m values can be used as input to numerical fate and transport models for a better and more detailed investigation of the fate of individual PBDEs in contaminated sediments. Various remediation scenarios such as monitored natural attenuation or bioremediation with bioaugmentation can be handled in a more quantitative manner with the help of k m estimated in this study.

  7. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  8. Recycle polymer characterization and adhesion modeling

    NASA Astrophysics Data System (ADS)

    Holbery, James David

    Contaminants from paper product producers that adversely affect fiber yield have been collected from mills located in three North American geographic regions. Samples have been fractionated using a modified solvent extraction process and subsequently quantitatively characterized and it was found that agglomerates were comprised of the following: approximately 30% extractable polymeric material, 25--35% fiber, 12--15% inorganic material, 15% non-extractable high molecular-weight polyethylene or cross-linked polymers, and 2--4% starch residue. Three representative polymers, paraffin, low-molecular weight polyethylene, and a commercial hot-melt adhesive were selected for further analysis to model the attractive and repulsive behavior using Scanning Probe Microscopy in an aqueous cell. Scanning force probes were characterized using an original technique utilizing a nano-indentation apparatus that is non-destructive and is accurate to within 10% for probes with force constants as low as 1 N/m. Surface force measurements were performed between a Poly (Styrene/30% Butyl Methacrylate) sphere and substrates produced from paraffin, polyethylene, and a commercial hot-melt adhesive in solutions ranging in NaF ionic concentrations from 0.001M to 1M. Reasonable theoretical agreement with experimental data has been shown between a combined model applying van der Waals force contributions using the Derjaguin approximation and electrostatic contributions as predicted by a Debye-Huckel linearization of the Poisson-Boltzmann equation utilizing Hamaker constants derived from critical surface energies determined from Zisman and Lifshitz-van der Waals energy approaches. This model has been applied to measured data and indicates the strength of adhesion for the hot-melt to be 0.14 nN while that of paraffin is 1.9 nN and polyethylene 2.8 nN. Paraffin and polyethylene are 13.5 and 20 times greater in attraction than the hot-melt adhesive. Hot-melt adhesive repulsion is predicted to be 220

  9. Kinetic Analysis for the Multistep Profiles of Organic Reactions: Significance of the Conformational Entropy on the Rate Constants of the Claisen Rearrangement.

    PubMed

    Sumiya, Yosuke; Nagahata, Yutaka; Komatsuzaki, Tamiki; Taketsugu, Tetsuya; Maeda, Satoshi

    2015-12-03

    The significance of kinetic analysis as a tool for understanding the reactivity and selectivity of organic reactions has recently been recognized. However, conventional simulation approaches that solve rate equations numerically are not amenable to multistep reaction profiles consisting of fast and slow elementary steps. Herein, we present an efficient and robust approach for evaluating the overall rate constants of multistep reactions via the recursive contraction of the rate equations to give the overall rate constants for the products and byproducts. This new method was applied to the Claisen rearrangement of allyl vinyl ether, as well as a substituted allyl vinyl ether. Notably, the profiles of these reactions contained 23 and 84 local minima, and 66 and 278 transition states, respectively. The overall rate constant for the Claisen rearrangement of allyl vinyl ether was consistent with the experimental value. The selectivity of the Claisen rearrangement reaction has also been assessed using a substituted allyl vinyl ether. The results of this study showed that the conformational entropy in these flexible chain molecules had a substantial impact on the overall rate constants. This new method could therefore be used to estimate the overall rate constants of various other organic reactions involving flexible molecules.

  10. [Adhesion prevention after Cesarean section by short-term biological barrier of modified chitosan].

    PubMed

    Shen, Wei; Shen, Guofang; Li, Lüwei

    2014-02-25

    To evaluate the efficacies of modified chitosan, an adhesive prevention substance, as a biological barrier for preventing adhesion after Cesarean section. A total of 250 cases undergoing primary Cesarean section from January 2011 to June 2012 at our hospital were recruited. They were randomly divided into experiment (n = 130) and control (n = 120) groups. The experiment group received modified chitosan during Cesarean section while no adhesive prevention substance was offered for the control group. Postoperative flatus time, postoperative infection and pelvic adhesion were used to evaluate the clinical efficacies. For the experiment group, the average postoperative flatus time was (25 ± 7) hours. Three cases had postoperative infections with a postoperative infection rate of 2.3%. There were 2 cases of pelvic adhesion (pelvic adhesion rate: 1.5%) during the postoperative follow-up period. For the control group, the average postoperative flatus time was (34 ± 11) hours. Five cases had postoperative infections with a postoperative infection rate of 4.2%. There were 5 cases of pelvic adhesion (pelvic adhesion rate: 4.2%) during the postoperative follow-up period. There were significant inter-group differences in postoperative flatus time, postoperative infection and pelvic adhesion (P < 0.05). Modified chitosan can prevent pelvic adhesion after Cesarean section.

  11. Filopodial adhesion does not predict growth cone steering events in vivo.

    PubMed

    Isbister, C M; O'Connor, T P

    1999-04-01

    Migration of growth cones is in part mediated by adhesive interactions between filopodia and the extracellular environment, transmitting forces and signals necessary for pathfinding. To elucidate the role of substrate adhesivity in growth cone pathfinding, we developed an in vivo assay for measuring filopodial-substrate adhesivity using the well-characterized Ti pioneer neuron pathway of the embryonic grasshopper limb. Using time-lapse imaging and a combination of rhodamine-phalloidin injections and DiI labeling, we demonstrate that the filopodial retraction rate after treatment with cytochalasin D or elastase reflects the degree of filopodial-substrate adhesivity. Measurements of filopodial retraction rates along regions of known differing substrate adhesivities confirmed the use of this assay to examine filopodial-substrate adhesion during in vivo pathfinding events. We analyzed 359 filopodia from 22 Ti growth cones and found that there is no difference between the retraction rates of filopodia extending toward the correct target (on-axis) and filopodia extending away from the correct target (off-axis). These results indicate on-axis and off-axis filopodia have similar substrate adherence. Interestingly, we observed a 300% increase in the extension rates of on-axis filopodia during Ti growth cone turning events. Therefore, in addition to providing filopodia with important guidance information, regional cues are capable of modulating the filopodial extension rate. The homogeneity in filopodial retraction rates, even among these turning growth cones in which differential adhesivity might be expected to be greatest, strongly establishes that differential adhesion does not govern Ti pioneer neuron migration rate or pathfinding. We propose that the presence of local differences in receptor-mediated second messenger cascades and the resulting assembly of force-generating machinery may underlie the ability of filopodial contacts to regulate growth cone steering in vivo.

  12. Theoretical Discussion of Electron Transport Rate Constant at TCNQ / Ge and TiO2 System

    NASA Astrophysics Data System (ADS)

    Al-agealy, Hadi J. M.; Alshafaay, B.; Hassooni, Mohsin A.; Ashwiekh, Ahmed M.; Sadoon, Abbas K.; Majeed, Raad H.; Ghadhban, Rawnaq Q.; Mahdi, Shatha H.

    2018-05-01

    We have been studying and estimation the electronic transport constant at TCNQ / Ge and Tio2 interface by means of tunneling potential (TP), transport energy reorientation (TER), driving transition energy DTE and coupling coefficient constant. A simple quantum model for the transition processes was adapted to estimation and analysis depending on the quantum state for donor state |α D > and acceptor stated |α A > and assuming continuum levels of the system. Evaluation results were performed for the surfaces of Ge and Tio2 as best as for multilayer TCNQ. The results show an electronic transfer feature for electronic TCNQ density of states and a semiconductor behavior. The electronic rate constant result for both systems shows a good tool to election system in applied devices. All these results indicate the

  13. Universal binding energy relations in metallic adhesion

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1981-01-01

    Scaling relations which map metallic adhesive binding energy onto a single universal binding energy curve are discussed in relation to adhesion, friction, and wear in metals. The scaling involved normalizing the energy to the maximum binding energy and normalizing distances by a suitable combination of Thomas-Fermi screening lengths. The universal curve was found to be accurately represented by E*(A*)= -(1+beta A) exp (-Beta A*) where E* is the normalized binding energy, A* is the normalized separation, and beta is the normalized decay constant. The calculated cohesive energies of potassium, barium, copper, molybdenum, and samarium were also found to scale by similar relations, suggesting that the universal relation may be more general than for the simple free electron metals.

  14. Polyurethane adhesive with improved high temperature properties

    NASA Technical Reports Server (NTRS)

    Stuckey, J. M.

    1977-01-01

    A polyurethane resin with paste activator, capable of providing useful bond strengths over the temperature range of -184 C to 149 C, is described. The adhesive system has a pot life of over one hour. Tensile shear strength ratings are given for various adhesive formulations.

  15. Adhesion barriers at cesarean delivery: advertising compared with the evidence.

    PubMed

    Albright, Catherine M; Rouse, Dwight J

    2011-07-01

    Cesarean delivery, the most common surgery performed in the United States, is complicated by adhesion formation in 24-73% of cases. Because adhesions have potential sequelae, different synthetic adhesion barriers are currently heavily marketed as a means of reducing adhesion formation resultant from cesarean delivery. However, their use for this purpose has been studied in only two small, nonblinded and nonrandomized trials, both of which were underpowered and subject to bias. Neither demonstrated improvement in meaningful clinical outcomes. In the only cost-effectiveness analysis of adhesion barriers to date, the use of synthetic adhesion barriers was cost-effective only when the subsequent rate of small bowel obstruction was at least 2.4%, a rate far higher than that associated with cesarean delivery. In fact, intra-abdominal adhesions from prior cesarean delivery rarely cause maternal harm and have not been demonstrated to adversely affect perinatal outcome. Based on our review of the available literature, we think the use of adhesion barriers at the time of cesarean delivery would be ill-advised at the present time.

  16. Intermittent stick-slip dynamics during the peeling of an adhesive tape from a roller.

    PubMed

    Cortet, Pierre-Philippe; Dalbe, Marie-Julie; Guerra, Claudia; Cohen, Caroline; Ciccotti, Matteo; Santucci, Stéphane; Vanel, Loïc

    2013-02-01

    We study experimentally the fracture dynamics during the peeling at a constant velocity of a roller adhesive tape mounted on a freely rotating pulley. Thanks to a high speed camera, we measure, in an intermediate range of peeling velocities, high frequency oscillations between phases of slow and rapid propagation of the peeling fracture. This so-called stick-slip regime is well known as the consequence of a decreasing fracture energy of the adhesive in a certain range of peeling velocity coupled to the elasticity of the peeled tape. Simultaneously with stick slip, we observe low frequency oscillations of the adhesive roller angular velocity which are the consequence of a pendular instability of the roller submitted to the peeling force. The stick-slip dynamics is shown to become intermittent due to these slow pendular oscillations which produce a quasistatic oscillation of the peeling angle while keeping constant the peeling fracture velocity (averaged over each stick-slip cycle). The observed correlation between the mean peeling angle and the stick-slip amplitude questions the validity of the usually admitted independence with the peeling angle of the fracture energy of adhesives.

  17. Reaction rate constants and mean population percentage for nitrifiers in an alternating oxidation ditch system.

    PubMed

    Mantziaras, I D; Katsiri, A

    2011-01-01

    This paper presents a methodology for the determination of reaction rate constants for nitrifying bacteria and their mean population percentage in biomass in an alternating oxidation ditch system. The method used is based on the growth rate equations of the ASM1 model (IWA) (Henze et al. in Activated sludge models ASM1, ASM2, ASM2d, and ASM3. IWA Scientific and Technical Report no. 9, IWA Publishing, London, UK, 2000) and the application of mass balance equations for nitrifiers and ammonium nitrogen in an operational cycle of the ditch system. The system consists of two ditches operating in four phases. Data from a large-scale oxidation ditch pilot plant with a total volume of 120 m(3) within an experimental period of 8 months was used. Maximum specific growth rate for autotrophs (μ(A)) and the half-saturation constant for ammonium nitrogen (K(NH)) were found to be 0.36 day(-1) and 0.65 mgNH(4)-N/l, respectively. Additionally, the average population percentage of the nitrifiers in the biomass was estimated to be around 3%.

  18. Theory for rates, equilibrium constants, and Brønsted slopes in F1-ATPase single molecule imaging experiments

    PubMed Central

    Volkán-Kacsó, Sándor; Marcus, Rudolph A.

    2015-01-01

    A theoretical model of elastically coupled reactions is proposed for single molecule imaging and rotor manipulation experiments on F1-ATPase. Stalling experiments are considered in which rates of individual ligand binding, ligand release, and chemical reaction steps have an exponential dependence on rotor angle. These data are treated in terms of the effect of thermodynamic driving forces on reaction rates, and lead to equations relating rate constants and free energies to the stalling angle. These relations, in turn, are modeled using a formalism originally developed to treat electron and other transfer reactions. During stalling the free energy profile of the enzymatic steps is altered by a work term due to elastic structural twisting. Using biochemical and single molecule data, the dependence of the rate constant and equilibrium constant on the stall angle, as well as the Børnsted slope are predicted and compared with experiment. Reasonable agreement is found with stalling experiments for ATP and GTP binding. The model can be applied to other torque-generating steps of reversible ligand binding, such as ADP and Pi release, when sufficient data become available. PMID:26483483

  19. Wood : adhesives

    Treesearch

    A.H. Conner

    2001-01-01

    This chapter on wood adhesives includes: 1) Classification of wood adhesives 2) Thermosetting wood adhesives 3) Thermoplastic adhesives, 4) Wood adhesives based on natural sources 5) Nonconventional bonding of wood 6) Wood bonding.

  20. The uncertainty of biodegradation rate constants of emerging organic compounds in soil and groundwater - A compilation of literature values for 82 substances.

    PubMed

    Greskowiak, Janek; Hamann, Enrico; Burke, Victoria; Massmann, Gudrun

    2017-12-01

    The present study reports on biodegradation rate constants of emerging organic compounds (EOCs) in soil and groundwater available in the literature. The major aim of this compilation was to provide an assessment of the uncertainty of hydrological models with respect to the fate of EOCs. The literature search identified a total number of 82 EOCs for which 1st-order rate constants could be derived. It was found that for the majority of compounds degradation rate constants vary over more than three orders of magnitude. Correlation to factors that are well known to affect the degradation rate, such as temperature or redox condition was weak. No correlation at all was found with results from available quantitative structure-activity relationship models. This suggests that many unknown site specific or experimentally specific factors influence the degradation behavior of EOCs in the environment. Thus, local and catchment scale predictive models to estimate EOC concentration at receptors, e.g., receiving waters or drinking water wells, need to consider the large uncertainty in 1st-order rate constants. As a consequence, applying rate constants that were derived from one experiment or field site investigation to other experiments or field sites should be done with extreme caution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Tunneling Rate Constants for H2CO+H on Amorphous Solid Water Surfaces

    NASA Astrophysics Data System (ADS)

    Song, Lei; Kästner, Johannes

    2017-12-01

    Formaldehyde (H2CO) is one of the most abundant molecules observed in the icy mantle covering interstellar grains. Studying its evolution can contribute to our understanding of the formation of complex organic molecules in various interstellar environments. In this work, we investigated the hydrogenation reactions of H2CO yielding CH3O, CH2OH, and the hydrogen abstraction resulting in H2+HCO on an amorphous solid water (ASW) surface using a quantum mechanics/molecular mechanics (QM/MM) model. The binding energies of H2CO on the ASW surface vary broadly, from 1000 to 9370 K. No correlation was found between binding energies and activation energies of hydrogenation reactions. Combining instanton theory with QM/MM modeling, we calculated rate constants for the Langmuir-Hinshelwood and the Eley-Rideal mechanisms for the three product channels of H+H2CO surface reactions down to 59 K. We found that the channel producing CH2OH can be ignored, owing to its high activation barrier leading to significantly lower rates than the other two channels. The ASW surface influences the reactivity in favor of formation of CH3O (branching ratio ˜80%) and hinders the H2CO dissociation into H2+HCO. In addition, kinetic isotope effects are strong in all reaction channels and vary strongly between the channels. Finally, we provide fits of the rate constants to be used in astrochemical models.

  2. Optimization of Adhesive Pastes for Dental Caries Prevention.

    PubMed

    Sodata, Patteera; Juntavee, Apa; Juntavee, Niwut; Peerapattana, Jomjai

    2017-11-01

    Dental caries prevention products available on the market contain only remineralizing agents or antibacterial agents. This study aimed to develop adhesive pastes containing calcium phosphate and α-mangostin for dental caries prevention using the optimization technique. Calcium phosphate was used as a remineralizing agent, and extracted α-mangostin was used as an antibacterial agent. The effect of the independent variables, which were fumed silica, Eudragit ® EPO, polyethylene glycol, and ethyl alcohol, on the responses was investigated. The drying time, erosion rate, calcium release rate, and α-mangostin release rate were established as the measured responses. An equation and a model of the relationship were constructed. An optimal formulation was obtained, and its effect on dental caries prevention was investigated using the pH-cycling model. The quadratic equation revealed that the drying time, calcium release rate, and α-mangostin release rate tended to decrease when increasing the fumed silica and decreasing other factors. The erosion rate tended to increase when decreasing Eudragit ® EPO and increasing other factors. The observed responses of the optimal adhesive pastes were not significantly different from the predicted responses. This result demonstrated that optimization is an efficient technique in the formulation development of the adhesive pastes. In addition, the optimal adhesive pastes could enhance acid resistance activity to the tooth enamel.

  3. Development of a fast curing tissue adhesive for meniscus tear repair.

    PubMed

    Bochyńska, Agnieszka Izabela; Hannink, Gerjon; Janssen, Dennis; Buma, Pieter; Grijpma, Dirk W

    2017-01-01

    Isocyanate-terminated adhesive amphiphilic block copolymers are attractive materials to treat meniscus tears due to their tuneable mechanical properties and good adhesive characteristics. However, a drawback of this class of materials is their relatively long curing time. In this study, we evaluate the use of an amine cross-linker and addition of catalysts as two strategies to accelerate the curing rates of a recently developed biodegradable reactive isocyanate-terminated hyper-branched adhesive block copolymer prepared from polyethylene glycol (PEG), trimethylene carbonate, citric acid and hexamethylene diisocyanate. The curing kinetics of the hyper-branched adhesive alone and in combination with different concentrations of spermidine solutions, and after addition of 2,2-dimorpholinodiethylether (DMDEE) or 1,4-diazabicyclo [2.2.2] octane (DABCO) were determined using FTIR. Additionally, lap-shear adhesion tests using all compositions at various time points were performed. The two most promising compositions of the fast curing adhesives were evaluated in a meniscus bucket handle lesion model and their performance was compared with that of fibrin glue. The results showed that addition of both spermidine and catalysts to the adhesive copolymer can accelerate the curing rate and that firm adhesion can already be achieved after 2 h. The adhesive strength to meniscus tissue of 3.2-3.7 N was considerably higher for the newly developed compositions than for fibrin glue (0.3 N). The proposed combination of an adhesive component and a cross-linking component or catalyst is a promising way to accelerate curing rates of isocyanate-terminated tissue adhesives.

  4. A Unified Kinetics and Equilibrium Experiment: Rate Law, Activation Energy, and Equilibrium Constant for the Dissociation of Ferroin

    ERIC Educational Resources Information Center

    Sattar, Simeen

    2011-01-01

    Tris(1,10-phenanthroline)iron(II) is the basis of a suite of four experiments spanning 5 weeks. Students determine the rate law, activation energy, and equilibrium constant for the dissociation of the complex ion in acid solution and base dissociation constant for phenanthroline. The focus on one chemical system simplifies a daunting set of…

  5. Rate constant for reaction of vitamin C with protein radicals in γ-irradiated aqueous albumin solution at 295 K

    NASA Astrophysics Data System (ADS)

    Miyazaki, Tetsuo; Yoshimura, Toru; Mita, Kazuya; Suzuki, Keiji; Watanabe, Masami

    1995-02-01

    When an aqueous solution of albumin (0.1 kg dm -3) is irradiated by γ-rays at 295 K, albumin radicals with a long lifetime are observed by ESR. The reaction of vitamin C with the albumin radicals has been studied at 295 K in the albumin solution, which is considered as a model of cells. The rate constant for the reaction of vitamin C with the albumin radicals was measured as 0.014 dm 3 mol -1 s -1, which is much smaller than the reported rate constants (10 6-10 10 dm 3 mol -1 s -1) for the reaction of vitamin C with radicals in a dilute aqueous solution. The small rate constant for the reaction of vitamin C is ascribed to the reaction in polymer coils in the albumin solution, since vitamin C and albumin radicals diffuse very slowly in the coils.

  6. Determination of equilibrium and rate constants for complex formation by fluorescence correlation spectroscopy supplemented by dynamic light scattering and Taylor dispersion analysis.

    PubMed

    Zhang, Xuzhu; Poniewierski, Andrzej; Jelińska, Aldona; Zagożdżon, Anna; Wisniewska, Agnieszka; Hou, Sen; Hołyst, Robert

    2016-10-04

    The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C 12 E 8 (neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data.

  7. Rate Constant and Reaction Coordinate of Trp-Cage Folding in Explicit Water

    PubMed Central

    Juraszek, Jarek; Bolhuis, Peter G.

    2008-01-01

    We report rate constant calculations and a reaction coordinate analysis of the rate-limiting folding and unfolding process of the Trp-cage mini-protein in explicit solvent using transition interface sampling. Previous transition path sampling simulations revealed that in this (un)folding process the protein maintains its compact configuration, while a (de)increase of secondary structure is observed. The calculated folding rate agrees reasonably with experiment, while the unfolding rate is 10 times higher. We discuss possible origins for this mismatch. We recomputed the rates with the forward flux sampling method, and found a discrepancy of four orders of magnitude, probably caused by the method's higher sensitivity to the choice of order parameter with respect to transition interface sampling. Finally, we used the previously computed transition path-sampling ensemble to screen combinations of many order parameters for the best model of the reaction coordinate by employing likelihood maximization. We found that a combination of the root mean-square deviation of the helix and of the entire protein was, of the set of tried order parameters, the one that best describes the reaction coordination. PMID:18676648

  8. Develop, demonstrate, and verify large area composite structural bonding with polyimide adhesives. [adhesively bonding graphite-polyimide structures

    NASA Technical Reports Server (NTRS)

    Bhombal, B. D.; Wykes, D. H.; Hong, K. C.; Stenersen, A. A.

    1982-01-01

    The technology required to produce graphite-polyimide structural components with operational capability at 598 K (600 F) is considered. A series of polyimide adhesives was screened for mechanical and physical properties and processibility in fabricating large midplane bonded panels and honeycomb sandwich panels in an effort to fabricate a structural test component of the space shuttle aft body flap. From 41 formulations, LaRC-13, FM34B-18, and a modified LaRC-13 adhesive were selected for further evaluation. The LaRC-13 adhesive was rated as the best of the three adhesives in terms of availability, cost, processibility, properties, and ability to produce void fee large area (12" x 12") midplane bonds. Surface treatments and primers for the adhesives were evaluated and processes were developed for the fabrication of honeycomb sandwich panels of very good quality which was evidenced by rupture in the honeycomb core rather than in the facesheet bands on flatwise tensile strength testing. The fabrication of the adhesively bonded honeycomb sandwich cover panels, ribs, and leading edge covers of Celion graphite/LARC-160 polyimide laminates is described.

  9. Estimation of rate constants of PCB dechlorination reactions using an anaerobic dehalogenation model.

    PubMed

    Karakas, Filiz; Imamoglu, Ipek

    2017-02-15

    This study aims to estimate anaerobic dechlorination rate constants (k m ) of reactions of individual PCB congeners using data from four laboratory microcosms set up using sediment from Baltimore Harbor. Pathway k m values are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model (ADM) which can be applied to any halogenated hydrophobic organic (HOC). Improvements such as handling multiple dechlorination activities (DAs) and co-elution of congeners, incorporating constraints, using new goodness of fit evaluation led to an increase in accuracy, speed and flexibility of ADM. DAs published in the literature in terms of chlorine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The best fit explaining the congener pattern changes was found for pathways of Phylotype DEH10, which has the ability to remove doubly flanked chlorines in meta and para positions, para flanked chlorines in meta position. The range of estimated k m values is between 0.0001-0.133d -1 , the median of which is found to be comparable to the few available published biologically confirmed rate constants. Compound specific modelling studies such as that performed by ADM can enable monitoring and prediction of concentration changes as well as toxicity during bioremediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. An optimal policy for deteriorating items with time-proportional deterioration rate and constant and time-dependent linear demand rate

    NASA Astrophysics Data System (ADS)

    Singh, Trailokyanath; Mishra, Pandit Jagatananda; Pattanayak, Hadibandhu

    2017-12-01

    In this paper, an economic order quantity (EOQ) inventory model for a deteriorating item is developed with the following characteristics: (i) The demand rate is deterministic and two-staged, i.e., it is constant in first part of the cycle and linear function of time in the second part. (ii) Deterioration rate is time-proportional. (iii) Shortages are not allowed to occur. The optimal cycle time and the optimal order quantity have been derived by minimizing the total average cost. A simple solution procedure is provided to illustrate the proposed model. The article concludes with a numerical example and sensitivity analysis of various parameters as illustrations of the theoretical results.

  11. (In)validity of the constant field and constant currents assumptions in theories of ion transport.

    PubMed Central

    Syganow, A; von Kitzing, E

    1999-01-01

    Constant electric fields and constant ion currents are often considered in theories of ion transport. Therefore, it is important to understand the validity of these helpful concepts. The constant field assumption requires that the charge density of permeant ions and flexible polar groups is virtually voltage independent. We present analytic relations that indicate the conditions under which the constant field approximation applies. Barrier models are frequently fitted to experimental current-voltage curves to describe ion transport. These models are based on three fundamental characteristics: a constant electric field, negligible concerted motions of ions inside the channel (an ion can enter only an empty site), and concentration-independent energy profiles. An analysis of those fundamental assumptions of barrier models shows that those approximations require large barriers because the electrostatic interaction is strong and has a long range. In the constant currents assumption, the current of each permeating ion species is considered to be constant throughout the channel; thus ion pairing is explicitly ignored. In inhomogeneous steady-state systems, the association rate constant determines the strength of ion pairing. Among permeable ions, however, the ion association rate constants are not small, according to modern diffusion-limited reaction rate theories. A mathematical formulation of a constant currents condition indicates that ion pairing very likely has an effect but does not dominate ion transport. PMID:9929480

  12. Quantum calculations of the rate constant for the O(3P)+HCl reaction on new ab initio 3A″ and 3A' surfaces

    NASA Astrophysics Data System (ADS)

    Xie, Tiao; Bowman, Joel M.; Peterson, K. A.; Ramachandran, B.

    2003-11-01

    We report the thermal rate constant of the O(3P)+HCl→OH+Cl reaction calculated from 200 to 3200 K, using new fits to extensive ab initio calculations [B. Ramachandran and K. A. Peterson, J. Chem. Phys. 119, 9590 (2003), preceding paper]. The rate constants are obtained for both the 3A″ and 3A' surfaces using exact quantum reactive scattering calculations for selected values of the total angular momentum and the J-shifting approximation for both the 3A″ and 3A' surfaces. The results are compared with the ICVT/μOMT rate constants calculated by the POLYRATE program and all available experimental data. Other related high-energy reaction channels are also studied qualitatively for their contribution to the total thermal rate constant at high temperature.

  13. Robust adhesive precision bonding in automated assembly cells

    NASA Astrophysics Data System (ADS)

    Müller, Tobias; Haag, Sebastian; Bastuck, Thomas; Gisler, Thomas; Moser, Hansruedi; Uusimaa, Petteri; Axt, Christoph; Brecher, Christian

    2014-03-01

    Diode lasers are gaining importance, making their way to higher output powers along with improved BPP. The assembly of micro-optics for diode laser systems goes along with the highest requirements regarding assembly precision. Assembly costs for micro-optics are driven by the requirements regarding alignment in a submicron and the corresponding challenges induced by adhesive bonding. For micro-optic assembly tasks a major challenge in adhesive bonding at highest precision level is the fact, that the bonding process is irreversible. Accordingly, the first bonding attempt needs to be successful. Today's UV-curing adhesives inherit shrinkage effects crucial for submicron tolerances of e.g. FACs. The impact of the shrinkage effects can be tackled by a suitable bonding area design, such as minimal adhesive gaps and an adapted shrinkage offset value for the specific assembly parameters. Compensating shrinkage effects is difficult, as the shrinkage of UV-curing adhesives is not constant between two different lots and varies even over the storage period even under ideal circumstances as first test results indicate. An up-to-date characterization of the adhesive appears necessary for maximum precision in optics assembly to reach highest output yields, minimal tolerances and ideal beamshaping results. Therefore, a measurement setup to precisely determine the up-to-date level of shrinkage has been setup. The goal is to provide necessary information on current shrinkage to the operator or assembly cell to adjust the compensation offset on a daily basis. Impacts of this information are expected to be an improved beam shaping result and a first-time-right production.

  14. Solvent composition of one-step self-etch adhesives and dentine wettability.

    PubMed

    Grégoire, Geneviève; Dabsie, Firas; Dieng-Sarr, Farimata; Akon, Bernadette; Sharrock, Patrick

    2011-01-01

    Our aim was to determine the wettability of dentine by four commercial self-etch adhesives and evaluate their spreading rate on the dentine surface. Any correlation with chemical composition was sought, particularly with the amount of solvent or HEMA present in the adhesive. The adhesives used were AdheSE One, Optibond All.In.One, Adper Easy Bond and XenoV. Chemical compositions were determined by proton nuclear magnetic resonance (NMR) spectroscopy of the adhesives dissolved in dimethylsulfoxide. Apparent contact angles for sessile drops of adhesives were measured on dentine slices as a function of time for up to 180s. The water contact angles were determined for fully polymerised adhesives. All adhesives were water-based with total solvent contents ranging from 27% to 73% for HEMA-free adhesives, and averaging 45% for HEMA containing adhesives. The contents in hydrophobic groups decreased as water contents increased. No differences were found in the adhesive contact angles after 180s even though the spreading rates were different for the products tested. Water contact angles differed significantly but were not correlated with HEMA or solvent presence. Manufacturers use different approaches to stabilise acid co-monomer ingredients in self-etch adhesives. Co-solvents, HEMA, or acrylamides without co-solvents are used to simultaneously etch and infiltrate dentine. A large proportion of water is necessary for decalcification action. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Comparative study of enamel adhesion between RelyX™ Unicem® (3M), a self-adhesive bonding agent, and the combination of MIP® (3M), a hydrophilic adhesive, and Transbond Supreme Low Viscosity® (3M), a traditional hydrophobic adhesive.

    PubMed

    Dubernard, Charles; Raynal, Perrine; Tramini, Paul

    2013-09-01

    Although the bond strength of self-adhesive bonding agents is inferior to that of other families of adhesives, it is still adequate for orthodontic purposes provided prior enamel etching is performed. To determine the efficacy of RelyX™ Unicem(®) (3M) self-adhesive cement both in vitro and in vivo and to compare it with the combination of MIP(®) (3M), a moisture-insensitive primer, with a traditional hydrophobic adhesive, Transbond Supreme Low Viscosity(®) (3M). Comparison of bonding results on 23 trial dentures using RelyX™ Unicem(®) (3M) with bonding results on 29 trial dentures using a combination of MIP(®) and Transbond Supreme Low Viscosity(®) (3M), by means of a multipurpose Instron(®) 4444 testing machine. the breaking force of MIP(®)/Transbond Supreme Low Viscosity(®) (3M) (mean: 144±37.5 Newtons) was significantly higher than that of RelyX™ Unicem(®) (3M) (mean=110±26 Newtons) (P=0.001). A 12-month prospective, randomized, monocentric, single-blind clinical study in order to investigate the failure rate of orthodontic attachments according to the type of adhesive used, and the precise site of the debonding. Bracket bonding was performed on 16 patients with randomized allocation of the two adhesives to each of the semi-arches. The failure rates were: 15.3% for the MIP(®)/Transbond Supreme Low Viscosity(®) (3M) combination and 8.2% for the RelyX™ Unicem(®) (3M), with a significant difference (P=0.039). The more posterior the bonded teeth, the greater the superiority of RelyX™ Unicem(®) (3M). The in vivo results did not concord with those obtained in vitro. RelyX™ Unicem(®) (3M) exhibited lower adhesion values in vitro and yet it presented a debonding rate almost half that of the MIP(®)/Transbond Supreme Low Viscosity(®) (3M). The viscosity of RelyX™ Unicem(®) (3M) and its moisture tolerance would appear to account for these results. With prior etching, RelyX™ Unicem(®) (3M), a self-adhesive, self-etching bonding

  16. Ligand-induced adhesion to activated endothelium and to vascular cell adhesion molecule-1 in lymphocytes transfected with the N-formyl peptide receptor.

    PubMed

    Honda, S; Campbell, J J; Andrew, D P; Engelhardt, B; Butcher, B A; Warnock, R A; Ye, R D; Butcher, E C

    1994-04-15

    Binding of FMLP to the neutrophil N-formyl peptide receptor (FPR) transmits signals through pertussis toxin-sensitive G proteins triggering Ca2+ flux, superoxide production, granule exocytosis, and neutrophil aggregation and adhesion involving the beta 2 (CD18) integrins. Expression of the FPR in mouse fibroblasts or human kidney cells has been shown to confer an N-formyl peptide-inducible Ca2+ flux in transfectants. Here we demonstrate that the transfected receptor can also support ligand-induced alterations in cellular adhesion. We established stable transfectants of mouse L1-2 pre-B cells with cDNA for human FPR (L1-2 FPR cells). The transfectants bind N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys-fluorescein with 1.4 x 10(5) sites per cell and a dissociation constant of 3.3 nM. Stimulation with FMLP induces a transient Ca2+ flux. FMLP also triggers adhesion of L1-2 FPR cells to TNF-alpha- or LPS-activated bEnd3 cells (mouse brain-derived endothelial cells) and to purified mouse VCAM-1. Binding is inhibited by Abs to VCAM-1 and to the alpha-chain of its lymphocyte receptor (the alpha 4 beta 1 integrin, VLA-4). Stimulation with FMLP does not induce a change in cell surface expression of alpha 4. Induced adhesion to VCAM-1 is rapid, detectable at the earliest times measurable (30 to 60 s after FMLP addition), and is inhibited by pertussis toxin. We conclude that FPR can mediate integrin activation not only in neutrophils but also in lymphocytes, and can trigger rapid adhesion via lymphocyte alpha 4 beta 1. The adhesion of lymphocytes is critical to their migration and targeting; our results suggest the possibility of manipulating adhesive responses through expression of chemoattractant receptors in lymphoid cells engineered for cellular therapy, allowing targeted adhesion and potentially migration in response to locally administered ligands.

  17. USE OF ROUGH SETS AND SPECTRAL DATA FOR BUILDING PREDICTIVE MODELS OF REACTION RATE CONSTANTS

    EPA Science Inventory

    A model for predicting the log of the rate constants for alkaline hydrolysis of organic esters has been developed with the use of gas-phase min-infrared library spectra and a rule-building software system based on the mathematical theory of rough sets. A diverse set of 41 esters ...

  18. Umbilical hernia: Influence of adhesive strapping on outcome.

    PubMed

    Hayashida, Makoto; Shimozono, Takashi; Meiri, Satoru; Kurogi, Jun; Yamashita, Naoto; Ifuku, Toshinobu; Yamamura, Yoshiko; Tanaka, Etsuko; Ishii, Shigeki; Shimonodan, Hidemi; Mihara, Yuka; Kono, Keiichiro; Nakatani, Keigo; Nishiguchi, Toshihiro

    2017-12-01

    Adhesive strapping for umbilical hernia has been re-evaluated as a promising treatment. We evaluated the influence of adhesive strapping on the outcome of umbilical hernia. We retrospectively evaluated patients with umbilical hernia referred to the present institution from April 2011 to December 2015. Patients who were treated with adhesive strapping were compared with an observation alone group. The adhesive strapping group was also subdivided into two groups: the cure group and the treatment failure group. A total of 212 patients with umbilical hernia were referred to the present institution. Eighty-nine patients were treated with adhesive strapping, while 27 had observation only. The cure rate in the adhesive strapping group was significantly higher than that in the observation group. The duration of treatment of the adhesive strapping group was significantly shorter than that of the observation group. In the adhesive strapping group, the patients in the cure group were treated significantly earlier than those in the treatment failure group (P < 0.001). Furthermore, even in cases of umbilical hernia non-closure, surgical repair was easier after adhesive strapping. Adhesive strapping represents a promising treatment for umbilical hernia. To achieve the best results, adhesive strapping should be initiated as early as possible. © 2017 Japan Pediatric Society.

  19. Evaluation and comparison of diffusion MR methods for measuring apparent transcytolemmal water exchange rate constant

    NASA Astrophysics Data System (ADS)

    Tian, Xin; Li, Hua; Jiang, Xiaoyu; Xie, Jingping; Gore, John C.; Xu, Junzhong

    2017-02-01

    Two diffusion-based approaches, CG (constant gradient) and FEXI (filtered exchange imaging) methods, have been previously proposed for measuring transcytolemmal water exchange rate constant kin, but their accuracy and feasibility have not been comprehensively evaluated and compared. In this work, both computer simulations and cell experiments in vitro were performed to evaluate these two methods. Simulations were done with different cell diameters (5, 10, 20 μm), a broad range of kin values (0.02-30 s-1) and different SNR's, and simulated kin's were directly compared with the ground truth values. Human leukemia K562 cells were cultured and treated with saponin to selectively change cell transmembrane permeability. The agreement between measured kin's of both methods was also evaluated. The results suggest that, without noise, the CG method provides reasonably accurate estimation of kin especially when it is smaller than 10 s-1, which is in the typical physiological range of many biological tissues. However, although the FEXI method overestimates kin even with corrections for the effects of extracellular water fraction, it provides reasonable estimates with practical SNR's and more importantly, the fitted apparent exchange rate AXR showed approximately linear dependence on the ground truth kin. In conclusion, either CG or FEXI method provides a sensitive means to characterize the variations in transcytolemmal water exchange rate constant kin, although the accuracy and specificity is usually compromised. The non-imaging CG method provides more accurate estimation of kin, but limited to large volume-of-interest. Although the accuracy of FEXI is compromised with extracellular volume fraction, it is capable of spatially mapping kin in practice.

  20. Abdominal Adhesions

    MedlinePlus

    ... Clearinghouse What are abdominal adhesions? Abdominal adhesions are bands of fibrous tissue that can form between abdominal ... Esophagus Stomach Large intestine Adhesion Abdominal adhesions are bands of fibrous tissue that can form between abdominal ...

  1. Determination of Bimolecular Rate Constants for Reactions of Hydroxyl Radical with Pharmaceutical and Cosmetics Chemicals - Implications to the Fate in the Aquatic Environment

    NASA Astrophysics Data System (ADS)

    Nakajima, H.; Arakaki, T.; Anastasio, C.

    2008-12-01

    Large organic compounds such as hyaluronic acid and chondroitin sulfate are often used in pharmaceutical and cosmetics products, but their chemical degradation pathways are not well understood. To better elucidate their fate in the aquatic environment, we initiated a study to determine bimolecular rate constants between these organic compounds and hydroxyl radical (OH), which is a potent oxidant in the environment. The lifetimes of many organic compounds are determined by reactions with OH radicals, and the lifetime of OH is often controlled by reactions with organic compounds. To determine these bimolecular rate constants we used a competition kinetics technique with either hydrogen peroxide or nitrate as a source of OH and benzoate as the competing sink. Since the molecular weights of some of the large organic compounds we studied were not known, we used dissolved organic carbon (DOC) concentrations to determine mole-carbon based bimolecular rate constants, instead of the commonly used molar-based bimolecular rate constants. We will report the mole-carbon based bimolecular rate constants of OH, determined at room temperature, with hyaluronic acid, chondroitin sulfate and some other large organic compounds.

  2. Slow Crack Growth Analysis of Brittle Materials with Finite Thickness Subjected to Constant Stress-Rate Flexural Loading

    NASA Technical Reports Server (NTRS)

    Chio, S. R.; Gyekenyesi, J. P.

    1999-01-01

    A two-dimensional, numerical analysis of slow crack growth (SCG) was performed for brittle materials with finite thickness subjected to constant stress-rate ("dynamic fatigue") loading in flexure. The numerical solution showed that the conventional, simple, one-dimensional analytical solution can be used with a maximum error of about 5% in determining the SCG parameters of a brittle material with the conditions of a normalized thickness (a ratio of specimen thickness to initial crack size) T > 3.3 and of a SCG parameter n > 10. The change in crack shape from semicircular to elliptical configurations was significant particularly at both low stress rate and low T, attributed to predominant difference in stress intensity factor along the crack front. The numerical solution of SCG parameters was supported within the experimental range by the data obtained from constant stress-rate flexural testing for soda-lime glass microslides at ambient temperature.

  3. Constant Flux Proxies and Pleistocene Sediment Accumulation Rates on the Juan de Fuca Ridge in the Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Middleton, J. L.; Mukhopadhyay, S.; Langmuir, C. H.; Costa, K.; McManus, J. F.; d'Almeida, M.; Huybers, P. J.; Winckler, G.

    2016-12-01

    Mass accumulation rates of marine sediments are often employed to constrain deposition rates of important proxies such as terrigenous dust, carbonate, and biogenic opal to quantitatively examine variations in continental aridity, atmospheric transport, and biologic productivity across changing climatic conditions. However, deposition rates that are estimated using traditional mass accumulation rates calculated from sediment core age models can be subject to bias from lateral sediment transport and limited age model resolution. Constant flux proxies, such as extraterrestrial helium-3 (3HeET) and excess thorium-230 (230ThXS), can be used to calculate vertical sediment accumulation rates that are independent of age model uncertainties and the effects of lateral sediment transport. While a short half-life limits analyses of 230ThXS to the past 500 ka, 3HeET is stable and could be used to constrain sedimentary fluxes during much of the Cenozoic. Despite the vast paleoceanographic potential of constant flux proxies, few studies have directly compared the behavior of 230ThXS and 3HeET using measurements from the same samples. Sediment grain size fractionation and local scavenging effects may differentially bias one or both proxy systems and complicate the interpretation of 230ThXS or 3HeET data. We will present a new record of vertical sediment accumulation rates spanning the past 600 ka in the Northeast Pacific constrained using analyses of both 3HeET and 230ThXS in two sediment cores from cruise AT26-19 on the Juan de Fuca Ridge. Such a record allows for intercomparison of both constant flux proxies in the mid-ocean ridge environment and examination of sedimentary behavior across multiple glacial cycles. The 230ThXS-derived accumulation rates typically range from 0.5 to 2 g cm-2 ka-1 over the past 450 ka, with periods of maximum deposition coinciding with glacial maxima. Preliminary results of samples analyzed with both 3HeET and 230ThXS indicate relative consistency

  4. Rate constants for OH with selected large alkanes : shock-tube measurements and an improved group scheme.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

    High-temperature rate constant experiments on OH with the five large (C{sub 5}-C{sub 8}) saturated hydrocarbons n-heptane, 2,2,3,3-tetramethylbutane (2,2,3,3-TMB), n-pentane, n-hexane, and 2,3-dimethylbutane (2,3-DMB) were performed with the reflected-shock-tube technique using multipass absorption spectrometric detection of OH radicals at 308 nm. Single-point determinations at {approx}1200 K on n-heptane, 2,2,3,3-TMB, n-hexane, and 2,3-DMB were previously reported by Cohen and co-workers; however, the present work substantially extends the database to both lower and higher temperature. The present experiments span a wide temperature range, 789-1308 K, and represent the first direct measurements of rate constants at T > 800 K for n-pentane. The presentmore » work utilized 48 optical passes corresponding to a total path length of {approx}4.2 m. As a result of this increased path length, the high OH concentration detection sensitivity permitted pseudo-first-order analyses for unambiguously measuring rate constants. The experimental results can be expressed in Arrhenius form in units of cm{sup 3} molecule{sup -1} s{sup -1} as follows: K{sub OH+n-heptane} = (2.48 {+-} 0.17) x 10{sup -10} exp[(-1927 {+-} 69 K)/T] (838-1287 K); k{sub OH+2,2,3,3-TMB} = (8.26 {+-} 0.89) x 10{sup -11} exp[(-1337 {+-} 94 K)/T] (789-1061 K); K{sub OH+n-pentane} = (1.60 {+-} 0.25) x 10{sup -10} exp[(-1903 {+-} 146 K)/T] (823-1308 K); K{sub OH+n-hexane} = (2.79 {+-} 0.39) x 10{sup -10} exp[(-2301 {+-} 134 K)/T] (798-1299 K); and k{sub OH+2,3-DMB} = (1.27 {+-} 0.16) x 10{sup -10} exp[(-1617 {+-} 118 K)/T] (843-1292 K). The available experimental data, along with lower-T determinations, were used to obtain evaluations of the experimental rate constants over the temperature range from {approx}230 to 1300 K for most of the title reactions. These extended-temperature-range evaluations, given as three-parameter fits, are as follows: k{sub OH+n-heptane} = 2.059 x 10{sup -5}T{sup 1.401} exp(33 K

  5. Non-steady state mass action dynamics without rate constants: dynamics of coupled reactions using chemical potentials

    NASA Astrophysics Data System (ADS)

    Cannon, William R.; Baker, Scott E.

    2017-10-01

    Comprehensive and predictive simulation of coupled reaction networks has long been a goal of biology and other fields. Currently, metabolic network models that utilize enzyme mass action kinetics have predictive power but are limited in scope and application by the fact that the determination of enzyme rate constants is laborious and low throughput. We present a statistical thermodynamic formulation of the law of mass action for coupled reactions at both steady states and non-stationary states. The formulation uses chemical potentials instead of rate constants. When used to model deterministic systems, the method corresponds to a rescaling of the time dependent reactions in such a way that steady states can be reached on the same time scale but with significantly fewer computational steps. The relationships between reaction affinities, free energy changes and generalized detailed balance are central to the discussion. The significance for applications in systems biology are discussed as is the concept and assumption of maximum entropy production rate as a biological principle that links thermodynamics to natural selection.

  6. A clinical study to evaluate denture adhesive use in well-fitting dentures.

    PubMed

    Munoz, Carlos A; Gendreau, Linda; Shanga, Gilbert; Magnuszewski, Tabetha; Fernandez, Patricia; Durocher, John

    2012-02-01

    The objective of this study was the assessment of retention and stability and functional benefits of denture adhesive applied to well-fitting and well-made dentures. This was a randomized, crossover study to compare two marketed denture adhesives (test cream, Super Poligrip® Free, and test strip, Super Poligrip® Comfort Seal Strips) and an unmarketed cream adhesive (GlaxoSmith Kline Consumer Healthcare) with no adhesive as the negative control. Thirty-six subjects completed the study. One hour after the application of denture adhesive, retention and stability were measured using the Kapur Index and maxillary incisal bite force. Two hours after application, functional tests were used to assess denture movement and peanut particle migration under the denture. Subjects also rated confidence, comfort, satisfaction with dentures, and denture wobble in conjunction with the functional tests. Denture adhesives significantly (p < 0.05) improved retention and stability of well-fitting dentures. Subjects experienced significantly (p < 0.05) fewer dislodgements while eating an apple after adhesive was applied to dentures. Significant (p < 0.05) increases in subjective ratings of confidence and comfort as well as decreases in denture wobble were associated with the use of adhesive. There was significant (p < 0.05) improvement in satisfaction ratings for cream adhesives. A single application of each denture adhesive was well tolerated. The results of this study provide evidence that use of Super Poligrip® denture adhesives can enhance aspects of performance of complete well-fitting dentures as well as provide increased comfort, confidence, and satisfaction with dentures. © 2011 by the American College of Prosthodontists.

  7. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that consists...

  8. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that consists...

  9. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that consists...

  10. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that consists...

  11. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that consists...

  12. High-level theoretical study of the reaction between hydroxyl and ammonia: Accurate rate constants from 200 to 2500 K

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh Lam; Stanton, John F.

    2017-10-01

    Hydrogen abstraction from NH3 by OH to produce H2O and NH2—an important reaction in combustion of NH3 fuel—was studied with a theoretical approach that combines high level quantum chemistry and advanced chemical kinetics methods. Thermal rate constants calculated from first principles agree well (within 5%-20%) with available experimental data over a temperature range that extends from 200 to 2500 K. Quantum mechanical tunneling effects were found to be important; they lead to a decided curvature and non-Arrhenius behavior for the rate constant.

  13. High-level theoretical study of the reaction between hydroxyl and ammonia: Accurate rate constants from 200 to 2500 K.

    PubMed

    Nguyen, Thanh Lam; Stanton, John F

    2017-10-21

    Hydrogen abstraction from NH 3 by OH to produce H 2 O and NH 2 -an important reaction in combustion of NH 3 fuel-was studied with a theoretical approach that combines high level quantum chemistry and advanced chemical kinetics methods. Thermal rate constants calculated from first principles agree well (within 5%-20%) with available experimental data over a temperature range that extends from 200 to 2500 K. Quantum mechanical tunneling effects were found to be important; they lead to a decided curvature and non-Arrhenius behavior for the rate constant.

  14. High-level theoretical study of the reaction between hydroxyl and ammonia: Accurate rate constants from 200 to 2500 K

    DOE PAGES

    Nguyen, Thanh Lam; Stanton, John F.

    2017-06-02

    Hydrogen abstraction from NH 3 by OH to produce H 2O and NH 2 — an important reaction in combustion of NH 3 fuel — was studied with a theoretical approach that combines high level quantum chemistry and advanced chemical kinetics methods. Thermal rate constants calculated from first principles agree well (within 5 to 20%) with available experimental data over a temperature range that extends from 200 to 2500 K. Here, quantum mechanical tunneling effects were found to be important; they lead to a decided curvature and non-Arrhenius behavior for the rate constant.

  15. Adhesion

    MedlinePlus

    ... Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Adhesion URL of this page: //medlineplus.gov/ency/article/001493.htm Adhesion To use the sharing features on this page, please enable JavaScript. Adhesions are bands of scar-like tissue that form between two ...

  16. Rubber contact mechanics: adhesion, friction and leakage of seals.

    PubMed

    Tiwari, A; Dorogin, L; Tahir, M; Stöckelhuber, K W; Heinrich, G; Espallargas, N; Persson, B N J

    2017-12-13

    We study the adhesion, friction and leak rate of seals for four different elastomers: Acrylonitrile Butadiene Rubber (NBR), Ethylene Propylene Diene (EPDM), Polyepichlorohydrin (GECO) and Polydimethylsiloxane (PDMS). Adhesion between smooth clean glass balls and all the elastomers is studied both in the dry state and in water. In water, adhesion is observed for the NBR and PDMS elastomers, but not for the EPDM and GECO elastomers, which we attribute to the differences in surface energy and dewetting. The leakage of water is studied with rubber square-ring seals squeezed against sandblasted glass surfaces. Here we observe a strongly non-linear dependence of the leak rate on the water pressure ΔP for the elastomers exhibiting adhesion in water, while the leak rate depends nearly linearly on ΔP for the other elastomers. We attribute the non-linearity to some adhesion-related phenomena, such as dewetting or the (time-dependent) formation of gas bubbles, which blocks fluid flow channels. Finally, rubber friction is studied at low sliding speeds using smooth glass and sandblasted glass as substrates, both in the dry state and in water. The measured friction coefficients are compared to theory, and the origin of the frictional shear stress acting in the area of real contact is discussed. The NBR rubber, which exhibits the strongest adhesion both in the dry state and in water, also shows the highest friction both in the dry state and in water.

  17. Regulation of T-lymphocyte motility, adhesion and de-adhesion by a cell surface mechanism directed by low density lipoprotein receptor-related protein 1 and endogenous thrombospondin-1.

    PubMed

    Talme, Toomas; Bergdahl, Eva; Sundqvist, Karl-Gösta

    2014-06-01

    T lymphocytes are highly motile and constantly reposition themselves between a free-floating vascular state, transient adhesion and migration in tissues. The regulation behind this unique dynamic behaviour remains unclear. Here we show that T cells have a cell surface mechanism for integrated regulation of motility and adhesion and that integrin ligands and CXCL12/SDF-1 influence motility and adhesion through this mechanism. Targeting cell surface-expressed low-density lipoprotein receptor-related protein 1 (LRP1) with an antibody, or blocking transport of LRP1 to the cell surface, perturbed the cell surface distribution of endogenous thrombospondin-1 (TSP-1) while inhibiting motility and potentiating cytoplasmic spreading on intercellular adhesion molecule 1 (ICAM-1) and fibronectin. Integrin ligands and CXCL12 stimulated motility and enhanced cell surface expression of LRP1, intact TSP-1 and a 130,000 MW TSP-1 fragment while preventing formation of a de-adhesion-coupled 110 000 MW TSP-1 fragment. The appearance of the 130 000 MW TSP-1 fragment was inhibited by the antibody that targeted LRP1 expression, inhibited motility and enhanced spreading. The TSP-1 binding site in the LRP1-associated protein, calreticulin, stimulated adhesion to ICAM-1 through intact TSP-1 and CD47. Shear flow enhanced cell surface expression of intact TSP-1. Hence, chemokines and integrin ligands up-regulate a dominant motogenic pathway through LRP1 and TSP-1 cleavage and activate an associated adhesion pathway through the LRP1-calreticulin complex, intact TSP-1 and CD47. This regulation of T-cell motility and adhesion makes pro-adhesive stimuli favour motile responses, which may explain why T cells prioritize movement before permanent adhesion.

  18. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  19. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    PubMed Central

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  20. Catch bonds govern adhesion through L-selectin at threshold shear.

    PubMed

    Yago, Tadayuki; Wu, Jianhua; Wey, C Diana; Klopocki, Arkadiusz G; Zhu, Cheng; McEver, Rodger P

    2004-09-13

    Flow-enhanced cell adhesion is an unexplained phenomenon that might result from a transport-dependent increase in on-rates or a force-dependent decrease in off-rates of adhesive bonds. L-selectin requires a threshold shear to support leukocyte rolling on P-selectin glycoprotein ligand-1 (PSGL-1) and other vascular ligands. Low forces decrease L-selectin-PSGL-1 off-rates (catch bonds), whereas higher forces increase off-rates (slip bonds). We determined that a force-dependent decrease in off-rates dictated flow-enhanced rolling of L-selectin-bearing microspheres or neutrophils on PSGL-1. Catch bonds enabled increasing force to convert short-lived tethers into longer-lived tethers, which decreased rolling velocities and increased the regularity of rolling steps as shear rose from the threshold to an optimal value. As shear increased above the optimum, transitions to slip bonds shortened tether lifetimes, which increased rolling velocities and decreased rolling regularity. Thus, force-dependent alterations of bond lifetimes govern L-selectin-dependent cell adhesion below and above the shear optimum. These findings establish the first biological function for catch bonds as a mechanism for flow-enhanced cell adhesion.

  1. Photochemical parameters of atmospheric source gases: accurate determination of OH reaction rate constants over atmospheric temperatures, UV and IR absorption spectra

    NASA Astrophysics Data System (ADS)

    Orkin, V. L.; Khamaganov, V. G.; Martynova, L. E.; Kurylo, M. J.

    2012-12-01

    The emissions of halogenated (Cl, Br containing) organics of both natural and anthropogenic origin contribute to the balance of and changes in the stratospheric ozone concentration. The associated chemical cycles are initiated by the photochemical decomposition of the portion of source gases that reaches the stratosphere. Reactions with hydroxyl radicals and photolysis are the main processes dictating the compound lifetime in the troposphere and release of active halogen in the stratosphere for a majority of halogen source gases. Therefore, the accuracy of photochemical data is of primary importance for the purpose of comprehensive atmospheric modeling and for simplified kinetic estimations of global impacts on the atmosphere, such as in ozone depletion (i.e., the Ozone Depletion Potential, ODP) and climate change (i.e., the Global Warming Potential, GWP). The sources of critically evaluated photochemical data for atmospheric modeling, NASA/JPL Publications and IUPAC Publications, recommend uncertainties within 10%-60% for the majority of OH reaction rate constants with only a few cases where uncertainties lie at the low end of this range. These uncertainties can be somewhat conservative because evaluations are based on the data from various laboratories obtained during the last few decades. Nevertheless, even the authors of the original experimental works rarely estimate the total combined uncertainties of the published OH reaction rate constants to be less than ca. 10%. Thus, uncertainties in the photochemical properties of potential and current atmospheric trace gases obtained under controlled laboratory conditions still may constitute a major source of uncertainty in estimating the compound's environmental impact. One of the purposes of the presentation is to illustrate the potential for obtaining accurate laboratory measurements of the OH reaction rate constant over the temperature range of atmospheric interest. A detailed inventory of accountable sources of

  2. Mapping cell surface adhesion by rotation tracking and adhesion footprinting

    NASA Astrophysics Data System (ADS)

    Li, Isaac T. S.; Ha, Taekjip; Chemla, Yann R.

    2017-03-01

    Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.

  3. Absolute rate constants for the reaction of OH with cyclopentane and cycloheptane from 233 to 351 K.

    PubMed

    Gennaco, Michael A; Huang, Yi-wen; Hannun, Reem A; Dransfield, Timothy J

    2012-12-27

    Absolute rate constant measurements for the reactions of OH with cyclopentane and cycloheptane in the gas phase in 6-8 Torr of nitrogen from 233 to 351 K in the Harvard University High-Pressure Flow System (HPFS) are reported. Hydroxyl concentrations were measured using laser-induced fluorescence, and alkane concentrations were measured using Fourier transform infrared spectroscopy. Results were fit to a modified Arrhenius equation based on transition state theory (ignoring tunneling): k(T) = B e(-E(a)/T)/T(1 - e(-1.44ν(1)/T))(2)(1 - e(-1.44ν(2)/T)), with ν(1) and ν(2) bending frequencies set to 280 and 500 cm(-1) . Results were as follows for E(a) (K) and k (298) (10(-12) cm(3) s(-1)): cyclopentane, 460 ± 32, 4.85; cycloheptane, 319 ± 36, 9.84. This work represents the second absolute temperature-dependent rate constant measurement reported for cycloheptane, and the third absolute temperature-dependent rate constant measurement reported near room temperature for the reaction of OH and cyclopentane. For the title reactions, the reaction barriers reported here are in agreement with the reaction barrier previously reported for cyclohexane and considerably higher than the barrier previously reported for cyclo-octane, a result that is not predicted by our current understanding of hydrocarbon reactivity.

  4. First-principles calculation of photo-induced electron transfer rate constants in phthalocyanine-C60 organic photovoltaic materials: Beyond Marcus theory

    NASA Astrophysics Data System (ADS)

    Lee, Myeong H.; Dunietz, Barry D.; Geva, Eitan

    2014-03-01

    Classical Marcus theory is commonly adopted in solvent-mediated charge transfer (CT) process to obtain the CT rate constant, but it can become questionable when the intramolecular vibrational modes dominate the CT process as in OPV devices because Marcus theory treats these modes classically and therefore nuclear tunneling is not accounted for. We present a computational scheme to obtain the electron transfer rate constant beyond classical Marcus theory. Within this approach, the nuclear vibrational modes are treated quantum-mechanically and a short-time approximation is avoided. Ab initio calculations are used to obtain the basic parameters needed for calculating the electron transfer rate constant. We apply our methodology to phthalocyanine(H2PC)-C60 organic photovoltaic system where one C60 acceptor and one or two H2PC donors are included to model the donor-acceptor interface configuration. We obtain the electron transfer and recombination rate constants for all accessible charge transfer (CT) states, from which the CT exciton dynamics is determined by employing a master equation. The role of higher lying excited states in CT exciton dynamics is discussed. This work is pursued as part of the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy Office of Science, Office of Basic Energy Sciences under 390 Award No. DE-SC0000957.

  5. Wood adhesion and adhesives

    Treesearch

    Charles R. Frihart

    2005-01-01

    An appreciation of rheology, material science, organic chemistry, polymer science, and mechanics leads to better understanding of the factors controlling the performance of the bonded assemblies. Given the complexity of wood as a substrate, it is hard to understand why some wood adhesives work better than other wood adhesives, especially when under the more severe...

  6. KABAM Version 1.0 User's Guide and Technical Documentation - Appendix H - Methods for Estimating Metabolism Rate Constant

    EPA Pesticide Factsheets

    Appendix H of KABAM Version 1.0 documentation related to estimating the metabolism rate constant. KABAM is a simulation model used to predict pesticide concentrations in aquatic regions for use in exposure assessments.

  7. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear

  8. A three-year clinical evaluation of two-bottle versus one-bottle dentin adhesives.

    PubMed

    Aw, Tar C; Lepe, Xavier; Johnson, Glen H; Mancl, Lloyd A

    2005-03-01

    The authors conducted an in vivo investigation to compare the clinical performance of two commercial one-bottle adhesives and a two-bottle adhesive for restoration of noncarious cervical lesions (NCCLs). The patient pool consisted of 57 patients and 171 teeth (three teeth per patient), with one NCCL per tooth. Each patient received three resin-based composite restorations, each with a different adhesive: one tooth with a two-bottle, water-based adhesive as the control; another tooth with a one-bottle, ethanol-based adhesive; and a third tooth with a one-bottle, solvent-free adhesive. The authors assessed restorations in terms of retention, marginal integrity, margin discoloration and air sensitivity at baseline, six months, one year, two years and three years after initial placement. The retention rates at 36 months were 88 percent for the first adhesive, 81 percent for the second adhesive and 90 percent for the third adhesive. No statistically significant differences in retention rates could be shown, with 86 percent of restorations retained overall. Measures of marginal integrity, marginal discoloration and sensitivity also had no statistically significant differences between the three adhesives (P > .05). All three adhesives performed with acceptable outcomes after a 36-month period, with small differences between the one- and two-bottle systems and between the various solvents. Retention rate was moderately high and air sensitivity was markedly reduced; however, superficial marginal discoloration and marginal degradation was notable. Certain lesion, tooth and patient characteristics may predispose restorations to retention failure. The type of solvent may not be a major factor in retention of Class V restorations in NCCLs. Both single-bottle adhesives and conventional two-bottle adhesives performed acceptably.

  9. Comparison of rate constants for (PO3-) transfer by the Mg(II), Cd(II), and Li(I) forms of phosphoglucomutase.

    PubMed

    Ray, W J; Post, C B; Puvathingal, J M

    1989-01-24

    Net rate constants that define the steady-state rate through a sequence of steps and the corresponding effective energy barriers for two (PO3-)-transfer steps in the phosphoglucomutase reaction were compared as a function of metal ion, M, where M = Mg2+ and Cd2+. These steps involve the reaction of either the 1-phosphate or the 6-phosphate of glucose 1,6-bisphosphate (Glc-P2) bound to the dephosphoenzyme (ED) to produce the phosphoenzyme (EP) and the free monophosphates, glucose 1-phosphate (Glc-1-P) or glucose 6-phosphate (Glc-6-P): EP.M + Glc-1-P----ED.M.Glc-P2----EP.M.Glc-6-P6. Before this comparison was made, net rate constants for the Cd2+ enzyme, obtained at high enzyme concentration via 31P NMR saturation-transfer studies [Post, C. B., Ray, W. J., Jr., & Gorenstein, D. G. (1989) Biochemistry (preceding paper in this issue)], were appropriately scaled by using the observed constants to calculate both the expected isotope-transfer rate at equilibrium and the steady-state rate under initial velocity conditions and comparing the calculated values with those measured in dilute solution. For the Mg2+ enzyme, narrow limits on possible values of the corresponding net rate constants were imposed on the basis of initial velocity rate constants for the forward and reverse directions plus values for the equilibrium distribution of central complexes, since direct measurement is not feasible. The effective energy barriers for both the Mg2+ and Cd2+ enzymes, calculated from the respective net rate constants, together with previously values for the equilibrium distribution of complexes in both enzymic systems [Ray, W. J., Jr., & Long, J. W. (1976) Biochemistry 15, 4018-4025], show that the 100-fold decrease in the kappa cat for the Cd2+ relative to the Mg2+ enzyme is caused by two factors: the increased stability of the intermediate bisphosphate complex and the decreased ability to cope with the phosphate ester involving the 1-hydroxyl group of the glucose ring. In fact, it

  10. Viscoelastic Properties of Collagen-Adhesive Composites under Water Saturated and Dry Conditions

    PubMed Central

    Singh, Viraj; Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Spencer, Paulette

    2014-01-01

    To investigate the time and rate dependent mechanical properties of collagen-adhesive composites, creep and monotonic experiments are performed under dry and wet conditions. The composites are prepared by infiltration of dentin adhesive into a demineralized bovine dentin. Experimental results show that for small stress level under dry conditions, both the composite and neat adhesive have similar behavior. On the other hand, in wet conditions, the composites are significantly soft and weak compared to the neat adhesives. The behavior in the wet condition is found to be affected by the hydrophilicity of both the adhesive and collagen. Since the adhesive-collagen composites area part of the complex construct that forms the adhesive-dentin interface, their presence will affect the overall performance of the restoration. We find that Kelvin-Voigt model with at least 4-elements is required to fit the creep compliance data, indicating that the adhesive-collagen composites are complex polymers with several characteristics time-scales whose mechanical behavior will be significantly affected by loading rates and frequencies. Such mechanical properties have not been investigated widely for these types of materials. The derived model provides an additional advantage that it can be exploited to extract other viscoelastic properties which are, generally, time consuming to obtain experimentally. The calibrated model is utilized to obtain stress relaxation function, frequency-dependent storage and loss modulus, and rate dependent elastic modulus. PMID:24753362

  11. High performance UV and thermal cure hybrid epoxy adhesive

    NASA Astrophysics Data System (ADS)

    Chen, C. F.; Iwasaki, S.; Kanari, M.; Li, B.; Wang, C.; Lu, D. Q.

    2017-06-01

    New type one component UV and thermal curable hybrid epoxy adhesive was successfully developed. The hybrid epoxy adhesive is complete initiator free composition. Neither photo-initiator nor thermal initiator is contained. The hybrid adhesive is mainly composed of special designed liquid bismaleimide, partially acrylated epoxy resin, acrylic monomer, epoxy resin and latent curing agent. Its UV light and thermal cure behavior was studied by FT-IR spectroscopy and FT-Raman spectroscopy. Adhesive samples cured at UV only, thermal only and UV + thermal cure conditions were investigated. By calculated conversion rate of double bond in both acrylic component and maleimide compound, satisfactory light curability of the hybrid epoxy adhesive was confirmed quantitatively. The investigation results also showed that its UV cure components, acrylic and bismalimide, possess good thermal curability too. The initiator free hybrid epoxy adhesive showed satisfactory UV curability, good thermal curability and high adhesion performance.

  12. Effect of Phenol Molecular Structure on Bacterial Transformation Rate Constants in Pond and River Samples

    PubMed Central

    Paris, Doris F.; Wolfe, N. Lee; Steen, William C.; Baughman, George L.

    1983-01-01

    Microbial transformation rate constants for a series of phenols were correlated with a property of the substituents, van der Waal's radius. Transformation products were the corresponding catechols, with the exception of p-hydroxybenzoic acid, the product of p-acetylphenol. A different product suggested a different pathway; p-acetylphenol, therefore, was deleted from the data base. PMID:16346236

  13. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory.

    PubMed

    Weikl, Thomas R; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard

    2016-09-02

    The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant [Formula: see text] and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between [Formula: see text] and the binding constant [Formula: see text] of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D).

  14. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory

    PubMed Central

    Weikl, Thomas R.; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard

    2016-01-01

    ABSTRACT The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant K2D and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between K2D and the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D). PMID:27294442

  15. Optimization of High-Throughput Sequencing Kinetics for determining enzymatic rate constants of thousands of RNA substrates

    PubMed Central

    Niland, Courtney N.; Jankowsky, Eckhard; Harris, Michael E.

    2016-01-01

    Quantification of the specificity of RNA binding proteins and RNA processing enzymes is essential to understanding their fundamental roles in biological processes. High Throughput Sequencing Kinetics (HTS-Kin) uses high throughput sequencing and internal competition kinetics to simultaneously monitor the processing rate constants of thousands of substrates by RNA processing enzymes. This technique has provided unprecedented insight into the substrate specificity of the tRNA processing endonuclease ribonuclease P. Here, we investigate the accuracy and robustness of measurements associated with each step of the HTS-Kin procedure. We examine the effect of substrate concentration on the observed rate constant, determine the optimal kinetic parameters, and provide guidelines for reducing error in amplification of the substrate population. Importantly, we find that high-throughput sequencing, and experimental reproducibility contribute their own sources of error, and these are the main sources of imprecision in the quantified results when otherwise optimized guidelines are followed. PMID:27296633

  16. Rate constants of agonist binding to muscarinic receptors in rat brain medulla. Evaluation by competition kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiber, G.; Henis, Y.I.; Sokolovsky, M.

    The method of competition kinetics, which measures the binding kinetics of an unlabeled ligand through its effect on the binding kinetics of a labeled ligand, was employed to investigate the kinetics of muscarinic agonist binding to rat brain medulla pons homogenates. The agonists studied were acetylcholine, carbamylcholine, and oxotremorine, with N-methyl-4-(TH)piperidyl benzilate employed as the radiolabeled ligand. Our results suggested that the binding of muscarinic agonists to the high affinity sites is characterized by dissociation rate constants higher by 2 orders of magnitude than those of antagonists, with rather similar association rate constants. Our findings also suggest that isomerization ofmore » the muscarinic receptors following ligand binding is significant in the case of antagonists, but not of agonists. Moreover, it is demonstrated that in the medulla pons preparation, agonist-induced interconversion between high and low affinity bindings sites does not occur to an appreciable extent.« less

  17. Evaluation of a metering, mixing, and dispensing system for mixing polysulfide adhesive

    NASA Technical Reports Server (NTRS)

    Evans, Kurt B.

    1989-01-01

    Tests were performed to evaluate whether a metered mixing system can mix PR-1221 polysulfide adhesive as well as or better than batch-mixed adhesive; also, to evaluate the quality of meter-mixed PR-1860 and PS-875 polysulfide adhesives. These adhesives are candidate replacements for PR-1221 which will not be manufactured in the future. The following material properties were evaluated: peel strength, specific gravity and adhesive components of mixed adhesives, Shore A hardness, tensile adhesion strength, and flow rate. Finally, a visual test called the butterfly test was performed to observe for bubbles and unmixed adhesive. The results of these tests are reported and discussed.

  18. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model.

    PubMed

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A; Illman, Walter A

    2015-01-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Evaluation of a Linear Cumulative Damage Failure Model for Epoxy Adhesive

    NASA Technical Reports Server (NTRS)

    Richardson, David E.; Batista-Rodriquez, Alicia; Macon, David; Totman, Peter; McCool, Alex (Technical Monitor)

    2001-01-01

    Recently a significant amount of work has been conducted to provide more complex and accurate material models for use in the evaluation of adhesive bondlines. Some of this has been prompted by recent studies into the effects of residual stresses on the integrity of bondlines. Several techniques have been developed for the analysis of bondline residual stresses. Key to these analyses is the criterion that is used for predicting failure. Residual stress loading of an adhesive bondline can occur over the life of the component. For many bonded systems, this can be several years. It is impractical to directly characterize failure of adhesive bondlines under a constant load for several years. Therefore, alternative approaches for predictions of bondline failures are required. In the past, cumulative damage failure models have been developed. These models have ranged from very simple to very complex. This paper documents the generation and evaluation of some of the most simple linear damage accumulation tensile failure models for an epoxy adhesive. This paper shows how several variations on the failure model were generated and presents an evaluation of the accuracy of these failure models in predicting creep failure of the adhesive. The paper shows that a simple failure model can be generated from short-term failure data for accurate predictions of long-term adhesive performance.

  20. Absolute protein-protein association rate constants from flexible, coarse-grained Brownian dynamics simulations: the role of intermolecular hydrodynamic interactions in barnase-barstar association.

    PubMed

    Frembgen-Kesner, Tamara; Elcock, Adrian H

    2010-11-03

    Theory and computation have long been used to rationalize the experimental association rate constants of protein-protein complexes, and Brownian dynamics (BD) simulations, in particular, have been successful in reproducing the relative rate constants of wild-type and mutant protein pairs. Missing from previous BD studies of association kinetics, however, has been the description of hydrodynamic interactions (HIs) between, and within, the diffusing proteins. Here we address this issue by rigorously including HIs in BD simulations of the barnase-barstar association reaction. We first show that even very simplified representations of the proteins--involving approximately one pseudoatom for every three residues in the protein--can provide excellent reproduction of the absolute association rate constants of wild-type and mutant protein pairs. We then show that simulations that include intermolecular HIs also produce excellent estimates of association rate constants, but, for a given reaction criterion, yield values that are decreased by ∼35-80% relative to those obtained in the absence of intermolecular HIs. The neglect of intermolecular HIs in previous BD simulation studies, therefore, is likely to have contributed to the somewhat overestimated absolute rate constants previously obtained. Consequently, intermolecular HIs could be an important component to include in accurate modeling of the kinetics of macromolecular association events. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Constant strain accumulation rate between major earthquakes on the North Anatolian Fault.

    PubMed

    Hussain, Ekbal; Wright, Tim J; Walters, Richard J; Bekaert, David P S; Lloyd, Ryan; Hooper, Andrew

    2018-04-11

    Earthquakes are caused by the release of tectonic strain accumulated between events. Recent advances in satellite geodesy mean we can now measure this interseismic strain accumulation with a high degree of accuracy. But it remains unclear how to interpret short-term geodetic observations, measured over decades, when estimating the seismic hazard of faults accumulating strain over centuries. Here, we show that strain accumulation rates calculated from geodetic measurements around a major transform fault are constant for its entire 250-year interseismic period, except in the ~10 years following an earthquake. The shear strain rate history requires a weak fault zone embedded within a strong lower crust with viscosity greater than ~10 20  Pa s. The results support the notion that short-term geodetic observations can directly contribute to long-term seismic hazard assessment and suggest that lower-crustal viscosities derived from postseismic studies are not representative of the lower crust at all spatial and temporal scales.

  2. Enhanced tendon-to-bone repair through adhesive films.

    PubMed

    Linderman, Stephen W; Golman, Mikhail; Gardner, Thomas R; Birman, Victor; Levine, William N; Genin, Guy M; Thomopoulos, Stavros

    2018-04-01

    Tendon-to-bone surgical repairs have unacceptably high failure rates, possibly due to their inability to recreate the load transfer mechanisms of the native enthesis. Instead of distributing load across a wide attachment footprint area, surgical repairs concentrate shear stress on a small number of suture anchor points. This motivates development of technologies that distribute shear stresses away from suture anchors and across the enthesis footprint. Here, we present predictions and proof-of-concept experiments showing that mechanically-optimized adhesive films can mimic the natural load transfer mechanisms of the healthy attachment and increase the load tolerance of a repair. Mechanical optimization, based upon a shear lag model corroborated by a finite element analysis, revealed that adhesives with relatively high strength and low stiffness can, theoretically, strengthen tendon-to-bone repairs by over 10-fold. Lap shear testing using tendon and bone planks validated the mechanical models for a range of adhesive stiffnesses and strengths. Ex vivo human supraspinatus repairs of cadaveric tissues using multipartite adhesives showed substantial increase in strength. Results suggest that adhesive-enhanced repair can improve repair strength, and motivate a search for optimal adhesives. Current surgical techniques for tendon-to-bone repair have unacceptably high failure rates, indicating that the initial repair strength is insufficient to prevent gapping or rupture. In the rotator cuff, repair techniques apply compression over the repair interface to achieve contact healing between tendon and bone, but transfer almost all force in shear across only a few points where sutures puncture the tendon. Therefore, we evaluated the ability of an adhesive film, implanted between tendon and bone, to enhance repair strength and minimize the likelihood of rupture. Mechanical models demonstrated that optimally designed adhesives would improve repair strength by over 10-fold

  3. Rate Constants and Activation Energies for Gas-Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical.

    PubMed

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie; Macleod, Matthew

    2015-07-01

    Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second-order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D 4 ), decamethylcyclopentasiloxane (D 5 ), and dodecamethylcyclohexasiloxane (D 6 ) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140-mL gas-phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D 4 and D 5 with the OH radical are 1.9 × 10 -12 (95% confidence interval (CI): (1.7-2.2) × 10 -12 ) and 2.6 × 10 -12 (CI: (2.3-2.9) × 10 -12 ) cm 3 molecule -1 s -1 , respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D 6 is 2.8 × 10 -12 (CI: (2.5-3.2) × 10 -12 ) cm 3 molecule -1 s -1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D 5 were 33% higher than for D 4 (CI: 30-37%), whereas the rates for D 6 were only 8% higher than for D 5 (CI: 5-10%). The activation energies of the reactions of D 4 , D 5 , and D 6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol.

  4. Atypical transitions in material response during constant strain rate, hot deformation of austenitic steel

    NASA Astrophysics Data System (ADS)

    Borah, Utpal; Aashranth, B.; Samantaray, Dipti; Kumar, Santosh; Davinci, M. Arvinth; Albert, Shaju K.; Bhaduri, A. K.

    2017-10-01

    Work hardening, dynamic recovery and dynamic recrystallization (DRX) occurring during hot working of austenitic steel have been extensively studied. Various empirical models describe the nature and effects of these phenomena in a typical framework. However, the typical model is sometimes violated following atypical transitions in deformation mechanisms of the material. To ascertain the nature of these atypical transitions, researchers have intentionally introduced discontinuities in the deformation process, such as interrupting the deformation as in multi-step rolling and abruptly changing the rate of deformation. In this work, we demonstrate that atypical transitions are possible even in conventional single-step, constant strain rate deformation of austenitic steel. Towards this aim, isothermal, constant true strain rate deformation of austenitic steel has been carried out in a temperature range of 1173-1473 K and strain rate range of 0.01-100 s-1. The microstructural response corresponding to each deformation condition is thoroughly investigated. The conventional power-law variation of deformation grain size (D) with peak stress (σp) during DRX is taken as a typical model and experimental data is tested against it. It is shown that σp-D relations exhibit an atypical two-slope linear behaviour rather than a continuous power law relation. Similarly, the reduction in σp with temperature (T) is found to consist of two discrete linear segments. In practical terms, the two linear segments denote two distinct microstructural responses to deformation. As a consequence of this distinction, the typical model breaks down and is unable to completely relate microstructural evolution to flow behaviour. The present work highlights the microstructural mechanisms responsible for this atypical behavior and suggests strategies to incorporate the two-slope behaviour in the DRX model.

  5. Adhesion strength of sputtered TiAlN-coated WC insert tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budi, Esmar; Razali, M. Mohd.; Nizam, A. R. Md.

    2013-09-09

    The adhesion strength of TiAlN coating that deposited by using DC magnetron sputtering on WC insert tool are studied. TiAlN coating are deposited on Tungsten Carbide (WC) insert tool by varying negatively substrate bias from 79 to 221 volt and nitrogen flow rate from 30 to 72 sccm. The adhesion strength are obtained by using Rockwell indentation test method with a Brale diamond at applied load of 60,100 and 150 kgf. The lateral diameter of indentation is plotted on three different applied loads and the adhesion strength of TiAlN coating was obtained from the curved slopes at 100 and 150more » kgf. The lower curve slop indicated better adhesion strength. The results shows that the adhesion strength of sputterred TiAlN coating tend to increase as the negatively substrate bias and nitrogen flow rate are increased.« less

  6. SU-G-201-06: Directional Low-Dose Rate Brachytherapy: Determination of the TG-43 Dose-Rate Constant Analog for a New Pd-103 Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aima, M; Culberson, W; Hammer, C

    Purpose: The aim of this work is to determine the TG-43 dose-rate constant analog for a new directional low-dose rate brachytherapy source based on experimental methods and comparison to Monte Carlo simulations. The CivaSheet™ is a new commercially available planar source array comprised of a variable number of discrete directional source elements called “CivaDots”. Given the directional nature and non-conventional design of the source, modifications to the AAPM TG-43 protocol for dosimetry are required. As a result, various parameters of the TG-43 dosimetric formalism have to be adapted to accommodate this source. This work focuses on the dose-rate constant analogmore » determination for a CivaDot. Methods: Dose to water measurements of the CivaDot were performed in a polymethyl methacrylate phantom (20×20×12 cm{sup 3}) using thermoluminescent dosimeters (TLDs) and Gafchromic EBT3 film. The source was placed in the center of the phantom, and nine TLD micro-cubes were irradiated along its central axis at a distance of 1 cm. For the film measurements, the TLDs were substituted by a (3×3) cm{sup 2} EBT3 film. Primary air-kerma strength measurements of the source were performed using a variable-aperture free-air chamber. Finally, the source was modeled using the Monte Carlo N-Particle Transport Code 6. Results: Dose-rate constant analog observed for a total of eight CivaDots using TLDs and five CivaDots using EBT3 film was within ±7.0% and ±2.9% of the Monte Carlo predicted value respectively. The average difference observed was −4.8% and −0.1% with a standard deviation of 1.7% and 2.1% for the TLD and the film measurements respectively, which are both within the comparison uncertainty. Conclusion: A preliminary investigation to determine the doserate constant analog for a CivaDot was conducted successfully with good agreement between experimental and Monte Carlo based methods. This work will aid in the eventual realization of a clinically

  7. Adhesion analysis for chromium nitride thin films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Rusu, F. M.; Merie, V. V.; Pintea, I. M.; Molea, A.

    2016-08-01

    The thin film industry is continuously growing due to the wide range of applications that require the fabrication of advanced components such as sensors, biological implants, micro-electromechanical devices, optical coatings and so on. The selection regarding the deposition materials, as well as the deposition technology influences the properties of the material and determines the suitability of devices for certain real-world applications. This paper is focused on the adhesion force for several chromium nitride thin films obtained by reactive magnetron sputtering. All chromium nitride thin films were deposited on a silicon substrate, the discharge current and the argon flow being kept constant. The main purpose of the paper is to determine the influence of deposition parameters on the adhesion force. Therefore some of the deposition parameters were varied in order to study their effect on the adhesion force. Experimentally, the values of the adhesion force were determined in multiple points for each sample using the spectroscopy in point mode of the atomic force microscope. The obtained values were used to estimate the surface energy of the CrN thin films based on two existing mathematical models for the adhesion force when considering the contact between two bodies.

  8. Nonadiabatic rate constants for proton transfer and proton-coupled electron transfer reactions in solution: Effects of quadratic term in the vibronic coupling expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soudackov, Alexander; Hammes-Schiffer, Sharon

    2015-11-17

    Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency regimes for the proton donor-acceptor vibrational mode. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term does not significantly impact the rate constants derived using the cumulant expansion approachmore » in any of the regimes studied. The effects of the quadratic term may become significant when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant, however, particularly at high temperatures and for proton transfer interfaces with extremely soft proton donor-acceptor modes that are associated with extraordinarily weak hydrogen bonds. Even with the thermal averaging procedure, the effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances, and the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes. We are grateful for support from National Institutes of Health Grant GM056207 (applications to enzymes) and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of

  9. Reversible adhesion switching of porous fibrillar adhesive pads by humidity.

    PubMed

    Xue, Longjian; Kovalev, Alexander; Dening, Kirstin; Eichler-Volf, Anna; Eickmeier, Henning; Haase, Markus; Enke, Dirk; Steinhart, Martin; Gorb, Stanislav N

    2013-01-01

    We report reversible adhesion switching on porous fibrillar polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) adhesive pads by humidity changes. Adhesion at a relative humidity of 90% was more than nine times higher than at a relative humidity of 2%. On nonporous fibrillar adhesive pads of the same material, adhesion increased only by a factor of ~3.3. The switching performance remained unchanged in at least 10 successive high/low humidity cycles. Main origin of enhanced adhesion at high humidity is the humidity-induced decrease in the elastic modulus of the polar component P2VP rather than capillary force. The presence of spongelike continuous internal pore systems with walls consisting of P2VP significantly leveraged this effect. Fibrillar adhesive pads on which adhesion is switchable by humidity changes may be used for preconcentration of airborne particulates, pollutants, and germs combined with triggered surface cleaning.

  10. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    PubMed

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-05

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate.

  11. Hydrodynamic shear shows distinct roles for LFA-1 and Mac-1 in neutrophil adhesion to intercellular adhesion molecule-1.

    PubMed

    Neelamegham, S; Taylor, A D; Burns, A R; Smith, C W; Simon, S I

    1998-09-01

    The binding of neutrophil beta2 integrin to intercellular adhesion molecule-1 (ICAM-1) expressed on the inflamed endothelium is critical for neutrophil arrest at sites of tissue inflammation. To quantify the strength and kinetics of this interaction, we measured the adhesion between chemotactically stimulated neutrophils and ICAM-1-transfected mouse cells (E3-ICAM) in suspension in a cone-plate viscometer at shear rates typical of venular blood flow (100 s-1 to 500 s-1). The kinetics of aggregation were fit with a mathematical model based on two-body collision theory. This enabled estimation of adhesion efficiency, defined as the probability with which collisions between cells resulted in firm adhesion. The efficiency of beta2-integrin-dependent adhesion was highest ( approximately 0.2) at 100 s-1 and it decreased to approximately zero at 400 s-1. Both LFA-1 and Mac-1 contributed equally to adhesion efficiency over the initial 30 seconds of stimulation, but adhesion was entirely Mac-1-dependent by 120 seconds. Two hydrodynamic parameters were observed to influence integrin-dependent adhesion efficiency: the level of shear stress and the intercellular contact duration. Below a critical shear stress (<2 dyn/cm2), contact duration predominantly limited adhesion efficiency. The estimated minimum contact duration for beta2-integrin binding was approximately 6.5 ms. Above the critical shear stress (>2 dyn/cm2), the efficiency of neutrophil adhesion to E3-ICAM was limited by both the contact duration and the tensile stress. We conclude that at low shear, neutrophil adhesion is modulated independently through either LFA-1 or Mac-1, which initially contribute with equal efficiency, but differ over the duration of chemotactic stimulation. Copyright 1998 by The American Society of Hematology.

  12. Fibrin adhesive is better than sutures in pterygium surgery.

    PubMed

    Ratnalingam, Vanitha; Eu, Andrew Lim Keat; Ng, Gim Leong; Taharin, Rohana; John, Elizabeth

    2010-05-01

    To evaluate the recurrence rate, surgical time, and postoperative pain between conjunctival autografting with sutures and with fibrin adhesive in pterygium surgery. A prospective, randomized, double-blind, clinical trial on the benefits of using fibrin adhesive in place of sutures in pterygium surgery. One hundred seventy-five eyes with primary pterygium were randomized to undergo pterygium surgery with conjunctival autograft transplantation using either fibrin adhesive or sutures. One hundred thirty-seven eyes of 113 patients that were operated on by a single surgeon (V.R.) completed the 1-year follow-up. Sixty-eight eyes were operated with fibrin adhesive and 69 eyes with sutures. Patients were followed up at 1 day, 1 week, 1 month, 6 months, and 1 year after surgery. Pterygium recurrence and postoperative pain was graded by an independent observer (A.L.) masked to the method of treatment. Surgical time was measured with a stopwatch. All patients were followed up for 1 year. There were 3 recurrences (4.41%) in the fibrin adhesive group and 11 recurrences (15.9%) in the suture group. The mean duration required to complete surgery in the fibrin adhesive group was 16.93 +/- 2.85 minutes, whereas that of the suture group was 29.84 +/- 5.65 minutes, which was statistically significant (P < 0.001). The immediate postoperative pain score and week 1 postoperative pain score were significantly lower in the fibrin adhesive group (P < 0.05). No major complications were observed in either group. The use of fibrin adhesive in primary pterygium surgery with conjunctival autografts reduces the recurrence rate, surgical time, and postoperative pain when compared with sutures.

  13. Adhesion of leukocytes under oscillating stagnation point conditions: a numerical study.

    PubMed

    Walker, P G; Alshorman, A A; Westwood, S; David, T

    2002-01-01

    Leukocyte recruitment from blood to the endothelium plays an important role in atherosclerotic plaque formation. Cells show a primary and secondary adhesive process with primary bonds responsible for capture and rolling and secondary bonds for arrest. Our objective was to investigate the role played by this process on the adhesion of leukocytes in complex flow. Cells were modelled as rigid spheres with spring like adhesion molecules which formed bonds with endothelial receptors. Models of bond kinetics and Newton's laws of motion were solved numerically to determine cell motion. Fluid force was obtained from the local shear rate obtained from a CFD simulation of the flow over a backward facing step.In stagnation point flow the shear rate near the stagnation point has a large gradient such that adherent cells in this region roll to a high shear region preventing permanent adhesion. This is enhanced if a small time dependent perturbation is imposed upon the stagnation point. For lower shear rates the cell rolling velocity may be such that secondary bonds have time to form. These bonds resist the lower fluid forces and consequently there is a relatively large permanent adhesion region.

  14. Use of VUV Radiation to Control Elastomer Seal Adhesion

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.

    2013-01-01

    Due to their wide operating temperatures and low leakage rates, silicone elastomers are the only class of flight qualified elastomer materials that currently meet NASA's needs for various seal applications, which include docking and hatch seals for future space exploration vehicles. However, silicone elastomers are naturally sticky and exhibit sizeable adhesion when mated against metals and other silicone surfaces. This undesirable adhesion can make undocking spacecraft or opening a hatch problematic. Two approaches that can be used to reduce seal adhesion include use of grease or, application of low doses of atomic oxygen (AO). This paper investigates a third approach: the application of light doses of vacuum ultraviolet (VUV) radiation. Presented are the adhesion and leakage characteristics of S0383-70 silicone elastomer exposed to various VUV doses in the 115 to 200 nm wavelength range. The data indicate that adhesion is expected to be less than the target threshold maximum of 2 lb/in(exp2) after about 1 J/cm(exp2) of VUV exposure for seal-to-metal configurations and after 2 J/cm(exp2) for seal-to-seal configurations with no significant damage, or increase in seal leakage. This paper shows that VUV, without AO or grease, can be an effective means to reduce adhesion to the desired levels necessary for space seals with minimal change in seal leak rates.

  15. Resin-dentin interface of Scotchbond Multi-Purpose dentin adhesive.

    PubMed

    Griffiths, B M; Watson, T F

    1995-08-01

    To evaluate the interface between dentin, Scotchbond Multi-Purpose (SMP), and resin composite (Z100) using confocal fluorescence microscopy. Novel techniques were employed to view and record at video rate the application of the SMP primer and adhesive onto the dentin surface. The subsurface morphology of the dentin/restorative interface was also studied. To facilitate this study, the components of the adhesive system were labeled with fluorescent dyes. In an ideal situation, the primer and adhesive penetrated the dentin tubules, a distinct hybrid zone was formed and a thin layer of adhesive was observed at the interfacial region. However, the primed dentin surface was sensitive to disruption by the adhesive application brush during its placement, so that parts of the primer layer could be incorporated into the adhesive. This disruption could only be seen using confocal microscopy and a fluorescence labeling technique. Delamination of the primer layer was not observed when the adhesive film was thinned by air blowing. The application of an air stream to the cavity surface increased the penetration of the primer and adhesive along the dentin tubules, but also increased the thickness of the adhesive within irregularities on the cavity surface and at the cavity line angle. The cause of the problems in the handling properties of SMP may be the difference in viscosity between the two components (primer and adhesive) at the adhesive interface.

  16. Rate constants and mechanisms for the crystallization of Al nano-goethite under environmentally relevant conditions

    NASA Astrophysics Data System (ADS)

    Bazilevskaya, Ekaterina; Archibald, Douglas D.; Martínez, Carmen Enid

    2012-07-01

    Mobile inorganic and organic nanocolloidal particles originate-from and interact-with bulk solid phases in soil and sediment environments, and as such, they contribute to the dynamic properties of environmental systems. In particular, ferrihydrite and (nano)goethite are the most abundant of nanocolloidal Fe oxy(hydr)oxides in these environments. We therefore investigated the ferrihydrite to goethite phase transformation using experimental reaction conditions that mimicked environmental conditions where the formation of nanocolloidal Fe oxy(hydr)oxides may occur: slow titration of dilute solutions to pH 5 at 25 °C with and without 2 mol% Al. Subsequently, the rate constants from 54-d nano-goethite aging/crystallization experiments at 50 °C were determined using aliquots pulled for vibrational spectroscopy (including multivariate curve resolution, MCR, analyses of infrared spectra) and synchrotron-based X-ray diffraction (XRD). We also present a mechanistic model that accounts for the nano-goethite crystallization observed by the aforementioned techniques, and particle structural characteristics observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In contrast to the common assumption that metastable ferrihydrite precipitates first, before it transforms to goethite, the presence of characteristic infrared bands in freshly synthesized nanoparticle suspensions indicate goethite can precipitate directly from solution under environmentally relevant conditions: low Fe concentration, ambient temperature, and pH maintained at 5. However, the presence of 2 mol% Al prevented direct goethite precipitation. Rate constants obtained by fitting the contributions from the MCR-derived goethite-like component to the OH-stretching region were (7.4 ± 1.1) × 10-7 s-1 for 0% Al and (4.2 ± 0.4) × 10-7 s-1 for 2 mol% Al suspensions. Rate constants derived from intensities of OH-bending infrared vibrations (795 and 895 cm-1) showed similar values

  17. Preparation and evaluation of polysaccharide sulfates for inhibiting Helicobacter pylori adhesion.

    PubMed

    Song, Weijuan; Wang, Yalong; Zhang, Liyan; Fu, Shengnan; Zeng, Ying; Hu, Haiyan

    2014-03-15

    In treatments of Helicobacter pylori infections, recrudescences were common because of an unfavorable bacterial eradication rate due to the ever increasing resistance to antibiotics. In this study, we chose pectin, guar gum and chitosan to synthesize their sulfates to inhibit adhesions of H. pylori and thus enhance the eradication rate. The introduction of sulfates was characterized using FT-IR and elemental analysis. Data from zeta-potential, hydrodynamic diameter, hydrolysis and rheological property demonstrated the sulfates were physicochemically stable. Inhibition assay of hemagglutination and adhesion indicated sulfates prevented H. pylori from adhering to erythrocytes and AGS cells. In binding assay, affinities of sulfates to H. pylori suggested sulfates could compete with target cells for bacteria and moderated the bacterial adhesion to hosts. A higher content of galactoses and 2,3-O-linked sulfates benefited this action. Thus polysaccharide sulfates can serve as potential adjuvants to raise the bacterial eradication rate by inhibiting adhesions of H. pylori. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Estimation of uptake rate constants for PCB congeners accumulated by semipermeable membrane devices and brown treat (Salmo trutta)

    USGS Publications Warehouse

    Meadows, J.C.; Echols, K.R.; Huckins, J.N.; Borsuk, F.A.; Carline, R.F.; Tillitt, D.E.

    1998-01-01

    The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMD to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB- contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and dissolved concentrations averaged 4.9 and 3.7 ??g/L, respectively, during the exposure. Total concentrations of PCBs in fish rose from 0.06 to 118.3 ??g/g during the 28-day exposure, while concentrations in the SPMD rose from 0.03 to 203.4 ??g/ g. Uptake rate constants (k1) estimated for SPMDs and brown trout were very similar, with k1 values for SPMDs ranging from one to two times those of the fish. The pattern of congener uptake by the fish and SPMDs was also similar. The rates of uptake generally increased or decreased with increasing K(ow), depending on the assumption of presence or absence of TOC.The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMB to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB-contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and

  19. Rate constants for the quenching of metastable O2 (1Sigma g +) molecules

    NASA Technical Reports Server (NTRS)

    Kwang, Y. C.; Leu, M.-T.

    1985-01-01

    The O2 (1Sigma g +) rates for CO2, H2, N2, Cl2, CO, O3, and 2,3 DMB-2 are determined by monitoring the 762-nm emission in a fast-flow-discharge chemiluminescence detection system (Leu, 1984; Leu and Smith, 1981). The results are presented in tables and graphs and briefly characterized. The rate constants (in cu cm/s x 10 to the -16th) are 4600 + or - 500 for CO2, 7000 + or - 300 for H2, 17 + or - 1 for N2, 4.5 + or - 0.8 for Cl2, 45 + or - 5 for CO, 220,000 + or - 30,000 for O3, and 6000 + or - 100 for 2,3 DMB-2. The temperature dependence of the CO2 and O3 quenching reactions at 245-362 K is found to be negligible.

  20. Sedative and cardiorespiratory effects of detomidine constant rate infusion in sheep.

    PubMed

    de Moura, Rauane Sousa; Bittar, Isabela Plazza; da Silva, Luiz Henrique; Villela, Ana Carolina Vasquez; Dos Santos Júnior, Marcelo Borges; Borges, Naida Cristina; Franco, Leandro Guimarães

    2018-02-01

    The use of sheep in experiments is widespread and is increasing worldwide, and so is the need to develop species-specific anaesthetic techniques to ensure animal safety. Previous studies have mentioned several protocols involving the administration of alpha-2 adrenergic agonists in sheep; however, assessment of the efficacy and safety of these infusion techniques is still relatively new. Thus, the aim of the present study is to assess the effectiveness of detomidine constant rate infusion (CRI) in sheep by measuring the cardiovascular and respiratory parameters, blood gas variables and sedation scores. Eight adult female Santa Inês sheep received 20 µg/kg of detomidine hydrochloride intravenously as a bolus loading dose, followed by an infusion rate of 60 µg/kg/h. The heart rates and respiratory rates changed continuously during the CRI period. No arrhythmias were observed. The reduction in arterial partial pressure of oxygen (PaO 2 ) was not significant, but one animal showed signs of hypoxaemia (minimum PaO 2 of 66.9 mmHg). The arterial partial pressure of carbon dioxide (PaCO 2 ) increased, but the animals did not become hypercapnic. The bicarbonate (HCO 3- ), pH and base excess (BE) tended towards metabolic alkalosis. The cardiac output (CO), stroke volume (SV), cardiac index (CI) and ejection fraction (EF%) showed no significant changes. The fractional shortening (FS%) decreased slightly, starting at T 45min . Sedation scores varied between 3 (0/10) after sedation and during recovery and 7 (0/10) during CRI. We concluded that administering detomidine at an infusion rate of 60 µg/kg/h in Santa Inês sheep is a simple technique that produces satisfactory sedation for minimally invasive procedures.

  1. The Influence of Uncompensated Solution Resistance on the Determination and Standard Electrochemical Rate Constants Using Cyclic Voltammetry, and Some Comparisons with AC Voltammetry.

    DTIC Science & Technology

    1987-09-25

    rate constants, k2r using cyclic voltametry . The res tss are expressed in terms of systematic deviations oP sapparent measured" rate constants, k~b(app...concentration was taken to be lum unless otherwise noted. The voltammetric sweep rate was set at 20 V sŕ unless specified otherwise. The general procedure...peaks for the negative- and positive-going potential sweeps have opposite signs, the measured cathodic-anodic peak separation, AEp, will clearly be

  2. The effect of denture adhesives on Candida albicans growth in vitro.

    PubMed

    Sampaio-Maia, Benedita; Figueiral, Maria Helena; Sousa-Rodrigues, Patricia; Fernandes, Maria Helena; Scully, Crispian

    2012-06-01

    Denture-wearing favours the growth of Candida. In view of the fact that many denture wearers regularly use adhesives to enhance denture retention, stability and function, the aim of this work was to study the effect of denture adhesives on Candida albicans growth in vitro. The denture adhesives tested were Corega(®) cream, Kukident(®) cream, Novafix(®) cream, Polident(®) cream, Protefix(®) cream, Steradent(®) cream, Aderyn(®) powder, Corega(®) ultra powder, Protefix(®) powder and Corega(®) strip. C. albicans growth curves were obtained in the presence or absence of a 1% solution of the denture adhesive diluted in Sabouraud broth. Macro- and microscopic morphological changes in C. albicans were analysed, as was microbial contamination of the denture adhesive. Most of the denture adhesives studied induced morphological changes in C. albicans cells and colonies, but only two had any significant inhibitory effect on yeast growth. Kukident(®) cream markedly inhibited C. albicans growth in a concentration-dependent way, reducing the growth rate by 95%, whereas Corega(®) cream also inhibited C. albicans growth but in a non-concentration-dependent way, reducing the growth rate by 37%. In addition, denture adhesives available as powders had detectable microbial contamination. Some commercially available denture adhesives showed microbial contamination and some had significant inhibitory effect on C. albicans growth. © 2011 The Gerodontology Society and John Wiley & Sons A/S.

  3. Reduction of Iron-Oxide-Carbon Composites: Part I. Estimation of the Rate Constants

    NASA Astrophysics Data System (ADS)

    Halder, S.; Fruehan, R. J.

    2008-12-01

    A new ironmaking concept using iron-oxide-carbon composite pellets has been proposed, which involves the combination of a rotary hearth furnace (RHF) and an iron bath smelter. This part of the research focuses on studying the two primary chemical kinetic steps. Efforts have been made to experimentally measure the kinetics of the carbon gasification by CO2 and wüstite reduction by CO by isolating them from the influence of heat- and mass-transport steps. A combined reaction model was used to interpret the experimental data and determine the rate constants. Results showed that the reduction is likely to be influenced by the chemical kinetics of both carbon oxidation and wüstite reduction at the temperatures of interest. Devolatilized wood-charcoal was observed to be a far more reactive form of carbon in comparison to coal-char. Sintering of the iron-oxide at the high temperatures of interest was found to exert a considerable influence on the reactivity of wüstite by virtue of altering the internal pore surface area available for the reaction. Sintering was found to be predominant for highly porous oxides and less of an influence on the denser ores. It was found using an indirect measurement technique that the rate constants for wüstite reduction were higher for the porous iron-oxide than dense hematite ore at higher temperatures (>1423 K). Such an indirect mode of measurement was used to minimize the influence of sintering of the porous oxide at these temperatures.

  4. Determination of Chemical Kinetic Rate Constants of a Model for Carbothermal Processing of Lunar Regolith Simulant Using Methane

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R; Gokoglu, S.; Hegde, U.

    2009-01-01

    We have previously developed a chemical conversion model of the carbothermal processing of lunar regolith using methane to predict the rate of production of carbon monoxide. In this carbothermal process, gaseous methane is pyrolyzed as it flows over the hot surface of a molten zone of lunar regolith and is converted to carbon and hydrogen. Hydrogen is carried away by the exiting stream of gases and carbon is deposited on the melt surface. The deposited carbon mixes with the melt and reacts with the metal oxides in it to produce carbon monoxide that bubbles out of the melt. In our model, we assume that the flux of carbon deposited is equal to the product of the surface reaction rate constant gamma and the concentration of methane adjacent to the melt surface. Similarly, the rate of consumption of carbon per unit volume in the melt is equal to the product of the melt reaction rate constant k and the concentrations of carbon and metal oxide in the melt. In this paper, we describe our effort to determine gamma and k by comparison of the predictions from our model with test data obtained by ORBITEC (Orbital Technologies Corporation). The concentration of methane adjacent to the melt surface is a necessary input to the model. It is inferred from the test data by a mass balance of methane, adopting the usual assumptions of the continuously-stirred-tank-reactor model, whereby the average concentration of a given gaseous species equals its exit concentration. The reaction rates gamma and k have been determined by a non-linear least-squares fit to the test data for the production of carbon monoxide and the fraction of the incoming methane that is converted. The comparison of test data with our model predictions using the determined chemical kinetic rate constants provides a consistent interpretation of the process over the full range of temperatures, pressures, and methane flow rates used in the tests, thereby increasing our confidence to use the model for scale-up purposes.

  5. Creatine kinase rate constant in the human heart measured with 3D‐localization at 7 tesla

    PubMed Central

    Robson, Matthew D.; Neubauer, Stefan; Rodgers, Christopher T.

    2016-01-01

    Purpose We present a new Bloch‐Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first‐order effective rate constant kf in human myocardium at 7 tesla (T). BOAST combines a variant of the four‐angle saturation transfer (FAST) method using amplitude‐modulated radiofrequency pulses, phosphorus Bloch‐Siegert B1+‐mapping to determine the per‐voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Methods Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1H localization). Results BOAST kfCK values were 0.281 ± 0.002 s−1 in the calf and 0.35 ± 0.05 s−1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg−1 s−1. The sensitive volume for BOAST depends on the B1 inhomogeneity of the transmit coil. Conclusion BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10‐cm loop coil. Magn Reson Med 78:20–32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27579566

  6. Rate Constants and Activation Energies for Gas‐Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical

    PubMed Central

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie

    2015-01-01

    ABSTRACT Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second‐order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140‐mL gas‐phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D4 and D5 with the OH radical are 1.9 × 10−12 (95% confidence interval (CI): (1.7–2.2) × 10−12) and 2.6 × 10−12 (CI: (2.3–2.9) × 10−12) cm3 molecule−1 s−1, respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D6 is 2.8 × 10−12 (CI: (2.5–3.2) × 10−12) cm3 molecule−1 s−1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D5 were 33% higher than for D4 (CI: 30–37%), whereas the rates for D6 were only 8% higher than for D5 (CI: 5–10%). The activation energies of the reactions of D4, D5, and D6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol. PMID:27708500

  7. Rate constant for the reaction of OH with CH3CCl2F (HCFC-141b) determined by relative rate measurements with CH4 and CH3CCl3

    NASA Technical Reports Server (NTRS)

    Huder, Karin; Demore, William B.

    1993-01-01

    Determination of accurate rate constants for OH abstraction is of great importance for the calculation of lifetimes for HCFCs and their impact on the atmosphere. For HCFC-141b there has been some disagreement in the literature for absolute measurements of this rate constant. In the present work rate constant ratios for HCFC-141b were measured at atmospheric pressure in the temperature range of 298-358 K, with CH4 and CH3CCl3 as reference gases. Ozone was photolyzed at 254 nm in the presence of water vapor to produce OH radicals. Relative depletions of 141b and the reference gases were measured by FTIR. Arrhenius expressions for 141b were derived from each reference gas and found to be in good agreement with each other. The combined expression for HCFC-141b which we recommend is 1.4 x 10 exp -12 exp(-1630/T) with k at 298 K being 5.9 x 10 exp -15 cu cm/molec-s. This value is in excellent agreement with the JPL 92-20 recommendation.

  8. Determination of the strong coupling constant from jet rates in deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dau, W. D.; Daum, K.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hill, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Huet, Ph.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuler, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; List, B.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Seehausen, U.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Soloviev, Y.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1995-02-01

    Jet rates in deep inelastic electron proton scattering are studied with the H1 detector at HERA for momentum transfers squared between 10 and 4000 GeV 2. It is shown that they can be quantitatively described by perturbative QCD in next to leading order making use of the parton densities of the proton and with the strong coupling constant αs as a free parameter. The measured value, αs( MZ2) = 0.123 ± 0.018, is in agreement both with determinations from e+e- annihilation at LEP using the same observable and with the world average.

  9. Rate constant for the reaction NH2 + NO from 216 to 480 K

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Brobst, W. D.; Nava, D. F.; Borkowski, R. P.; Michael, J. V.

    1982-01-01

    The absolute rate constant was measured by the technique of flash photolysis-laser induced fluorescence (FP-LIF). NH2 radicals were produced by the flash photolysis of ammonia and the fluorescent NH2 photons were measured by multiscaling techniques. At each temperature, the results were independent of variations in total pressure, and flash intensity. The results are compared with previous determinations using the techniques of mass spectrometry, absorption spectroscopy, laser absorption spectroscopy, and laser induced fluorescence. The implications of the results are discussed with regard to combustion, post combustion, and atmospheric chemistry. The results are also discussed theoretically.

  10. Adhesion mechanisms of bituminous crack sealant to aggregate and laboratory test development

    NASA Astrophysics Data System (ADS)

    Hajialiakbari Fini, Elham

    Crack sealing is a common pavement maintenance treatment because it extends pavement service life. However, crack sealant often fails prematurely due to a loss of adhesion. Since current test methods are mostly empirical and only provide a qualitative measure of bond strength, they cannot predict sealant adhesive failure accurately. Hence, there is an urgent need for test methods based on bituminous sealant rheology that can better predict sealant field performance. This study introduces three laboratory tests aimed to assess the bond property of hot-poured crack sealant to pavement crack walls. The three tests are designed to serve the respective needs of producers, engineers, and researchers. The first test implements the principle of surface energy to measure the thermodynamic work of adhesion, which is the energy spent in separating the two materials at the interface. The work of adhesion is reported as a measure of material compatibility at an interface. The second test is a direct adhesion test, a mechanical test which is designed to closely resemble both the installation process and the crack expansion due to thermal loading. This test uses the Direct Tension Test (DTT) device. The principle of the test is to apply a tensile force to detach the sealant from its aggregate counterpart. The maximum load, Pmax, and the energy to separation, E, are calculated and reported to indicate interface bonding. The third test implements the principles of fracture mechanics in a pressurized circular blister test. The apparatus is specifically designed to conduct the test for bituminous crack sealant, asphalt binder, or other bitumen-based materials. In this test, a fluid is injected at a constant rate at the interface between the substrate (aggregate or a standard material) and the adhesive (crack sealant) to create a blister. The fluid pressure and blister height are measured as functions of time; the data is used to calculate Interfacial Fracture Energy (IFE), which is a

  11. Mechanisms of fluid production in smooth adhesive pads of insects

    PubMed Central

    Dirks, Jan-Henning; Federle, Walter

    2011-01-01

    Insect adhesion is mediated by thin fluid films secreted into the contact zone. As the amount of fluid affects adhesive forces, a control of secretion appears probable. Here, we quantify for the first time the rate of fluid secretion in adhesive pads of cockroaches and stick insects. The volume of footprints deposited during consecutive press-downs decreased exponentially and approached a non-zero steady state, demonstrating the presence of a storage volume. We estimated its size and the influx rate into it from a simple compartmental model. Influx was independent of step frequency. Fluid-depleted pads recovered maximal footprint volumes within 15 min. Pads in stationary contact accumulated fluid along the perimeter of the contact zone. The initial fluid build-up slowed down, suggesting that flow is driven by negative Laplace pressure. Freely climbing stick insects left hardly any traceable footprints, suggesting that they save secretion by minimizing contact area or by recovering fluid during detachment. However, even the highest fluid production rates observed incur only small biosynthesis costs, representing less than 1 per cent of the resting metabolic rate. Our results show that fluid secretion in insect wet adhesive systems relies on simple physical principles, allowing for passive control of fluid volume within the contact zone. PMID:21208970

  12. New method to study bacterial adhesion to meat.

    PubMed Central

    Piette, J P; Idziak, E S

    1989-01-01

    A new method was developed for the study of bacterial adhesion to meat surfaces. Thin slices of meat (40 microns thick) were inserted into a specially designed observation chamber. The meat slices were then exposed to a bacterial suspension (ca. 10(6) CFU.ml-1) to initiate adhesion (20 min of contact time) and subsequently rinsed to eliminate nonadherent bacteria. Because of the special chamber design, the disruptive force exerted on the bacteria during rinsing (shear stress) was uniform over the whole surface of the meat slices, was constant, and could be varied from 0 to 0.08 N.m-2. After being rinsed, the meat slices were stained with basic fuschin and observed under light microscopy to determine the number and distribution of adherent bacteria. This new method was used to study the adhesion of Acinetobacter strain LD2, a Lactobacillus sp., and Pseudomonas fluorescens to slices of beef fat and tendon. At 25 degrees C, most (greater than or equal to 99.9%) of the cells of the Lactobacillus sp. deposited on the meat were washed off the surface during rinsing (0.05 N.m-2), whereas a large number (ca. 10(5) CFU.cm-2) of Acinetobacter strain LD2 and P. fluorescens cells remained adherent. The extent of adhesion was similar on fat and tendon, and adherent bacteria were distributed evenly over the whole surface of the slices. This preliminary study indicates that the combined use of thin slices of meat and of the observation chamber provides us with the means to more accurately study bacterial adhesion to meat surfaces. Images PMID:2764565

  13. Universal adhesives: the next evolution in adhesive dentistry?

    PubMed

    Alex, Gary

    2015-01-01

    Every so often a new material, technique, or technological breakthrough spurs a paradigm shift in the way dentistry is practiced. The development and evolution of reliable enamel and dentin bonding agents is one such example. Indeed, the so-called "cosmetic revolution" in dentistry blossomed in large part due to dramatic advances in adhesive technology. It is the ability to bond various materials in a reasonably predictable fashion to both enamel and dentin substrates that enables dentists to routinely place porcelain veneers, direct and indirect composites, and a plethora of other restorative and esthetic materials. In fact, the longevity and predictability of many (if not most) current restorative procedures is wholly predicated on the dentist's ability to bond various materials to tooth tissues. Adhesive systems have progressed from the largely ineffective systems of the 1970s and early 1980s to the relatively successful total- and self-etching systems of today. The latest players in the adhesive marketplace are the so-called "universal adhesives." In theory, these systems have the potential to significantly simplify and expedite adhesive protocols and may indeed represent the next evolution in adhesive dentistry. But what defines a universal system, and are all these new systems truly "universal" and everything they are claimed to be? This article will examine the origin, chemistry, strengths, weaknesses, and clinical relevance of this new genre of dental adhesives.

  14. Inflation with a smooth constant-roll to constant-roll era transition

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-07-01

    In this paper, we study canonical scalar field models, with a varying second slow-roll parameter, that allow transitions between constant-roll eras. In the models with two constant-roll eras, it is possible to avoid fine-tunings in the initial conditions of the scalar field. We mainly focus on the stability of the resulting solutions, and we also investigate if these solutions are attractors of the cosmological system. We shall calculate the resulting scalar potential and, by using a numerical approach, we examine the stability and attractor properties of the solutions. As we show, the first constant-roll era is dynamically unstable towards linear perturbations, and the cosmological system is driven by the attractor solution to the final constant-roll era. As we demonstrate, it is possible to have a nearly scale-invariant power spectrum of primordial curvature perturbations in some cases; however, this is strongly model dependent and depends on the rate of the final constant-roll era. Finally, we present, in brief, the essential features of a model that allows oscillations between constant-roll eras.

  15. Using Maximum Likelihood Statistical Methods and Pigment Flux Data to Constrain Particle Exchange and Organic Matter Remineralization Rate Constants in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Wang, W.; Lee, C.; Cochran, K. K.; Armstrong, R. A.

    2016-02-01

    Sinking particles play a pivotal role transferring material from the surface to the deeper ocean via the "biological pump". To quantify the extent to which these particles aggregate and disaggregate, and thus affect particle settling velocity, we constructed a box model to describe organic matter cycling. The box model was fit to chloropigment data sampled in the 2005 MedFlux project using Indented Rotating Sphere sediment traps operating in Settling Velocity (SV) mode. Because of the very different pigment compositions of phytoplankton and fecal pellets, chloropigments are useful as proxies to record particle exchange. The maximum likelihood statistical method was used to estimate particle aggregation, disaggregation, and organic matter remineralization rate constants. Eleven settling velocity categories collected by SV sediment traps were grouped into two sinking velocity classes (fast- and slow-sinking) to decrease the number of parameters that needed to be estimated. Organic matter degradation rate constants were estimated to be 1.2, 1.6, and 1.1 y^-1, which are equivalent to degradation half-lives of 0.60, 0.45, and 0.62 y^-1, at 313, 524, and 1918 m, respectively. Rate constants of chlorophyll a degradation to pheopigments (pheophorbide, pheophytin, and pyropheophorbide) were estimated to be 0.88, 0.93, and 1.2 y^-1, at 313, 524, and 1918 m, respectively. Aggregation rate constants varied little with depth, with the highest value being 0.07 y^-1 at 524 m. Disaggregation rate constants were highest at 524 m (14 y^-1) and lowest at 1918 m (9.6 y^-1)

  16. Estimation of absorption rate constant (ka) following oral administration by Wagner-Nelson, Loo-Riegelman, and statistical moments in the presence of a secondary peak.

    PubMed

    Mahmood, Iftekhar

    2004-01-01

    The objective of this study was to evaluate the performance of Wagner-Nelson, Loo-Reigelman, and statistical moments methods in determining the absorption rate constant(s) in the presence of a secondary peak. These methods were also evaluated when there were two absorption rates without a secondary peak. Different sets of plasma concentration versus time data for a hypothetical drug following one or two compartment models were generated by simulation. The true ka was compared with the ka estimated by Wagner-Nelson, Loo-Riegelman and statistical moments methods. The results of this study indicate that Wagner-Nelson, Loo-Riegelman and statistical moments methods may not be used for the estimation of absorption rate constants in the presence of a secondary peak or when absorption takes place with two absorption rates.

  17. Biomechanics of P-selectin PSGL-1 bonds: Shear threshold and integrin-independent cell adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Zhihua; Goldsmith, Harry L.; MacIntosh, Fiona A.

    2006-03-01

    Platelet-leukocyte adhesion may contribute to thrombosis and inflammation. We examined the heterotypic interaction between unactivated neutrophils and either thrombin receptor activating peptide (TRAP) stimulated platelets or P-selectin bearing beads (Ps-beads) in suspension. Cone-plate viscometers were used to apply controlled shear rates from 14-3000/s. Platelet-neutrophil and bead-neutrophil adhesion analysis was performed using both flow cytometry and high-speed videomicroscopy. We observed that while blocking antibodies against either P-selectin or P-selectin glycoprotein ligand-1 (PSGL-1) alone inhibited platelet-neutrophil adhesion by ~60% at 140/s, these reagents completely blocked adhesion at 3000/s. Anti-Mac-1 alone did not alter platelet-neutrophil adhesion rates at any shear rate, though inmore » synergy with selectin antagonists it abrogated cell binding. Unstimulated neutrophils avidly bound Ps-beads and activated platelets in an integrin-independent manner, suggesting that purely selectin-dependent cell adhesion is possible. In support of this, antagonists against P-selectin or PSGL-1 dissociated previously formed platelet-neutrophil and Ps-bead neutrophil aggregates under shear in a variety of experimental systems, including in assays performed with whole blood. In studies where medium viscosity and shear rate were varied, a subtle shear threshold for P-selectin PSGL-1 binding was also noted at shear rates<100/s and at force loading rates of ~300pN/sec. Results are discussed in light of biophysical computations that characterize the collision between unequal size particles in linear shear flow. Overall, our studies reveal an integrin-independent regime for cell adhesion that may be physiologically relevant.« less

  18. SU-F-T-344: Commissioning Constant Dose Rate VMAT in the Raystation Treatment Planning System for a Varian Clinac IX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pursley, J; Gueorguiev, G; Prichard, H

    Purpose: To demonstrate the commissioning of constant dose rate volumetric modulated arc therapy (VMAT) in the Raystation treatment planning system for a Varian Clinac iX with Exact couch. Methods: Constant dose rate (CDR) VMAT is an option in the Raystation treatment planning system, enabling VMAT delivery on Varian linacs without a RapidArc upgrade. Raystation 4.7 was used to commission CDR-VMAT for a Varian Clinac iX. Raystation arc model parameters were selected to match machine deliverability characteristics. A Varian Exact couch model was added to Raystation 4.7 and commissioned for use in VMAT optimization. CDR-VMAT commissioning checks were performed on themore » linac, including patient-specific QA measurements for 10 test patients using both the ArcCHECK from Sun Nuclear Corporation and COMPASS from IBA Dosimetry. Multi-criteria optimization (MCO) in Raystation was used for CDR-VMAT planning. Results: Raystation 4.7 generated clinically acceptable and deliverable CDR-VMAT plans for the Varian Clinac. VMAT plans were optimized including a model of the Exact couch with both rails in the out positions. CDR-VMAT plans generated with MCO in Raystation were dosimetrically comparable to Raystation MCO-generated IMRT plans. Patient-specific QA measurements with the ArcCHECK on the couch showed good agreement with the treatment planning system prediction. Patient-specific, structure-specific, multi-statistical parameter 3D QA measurements with gantry-mounted COMPASS also showed good agreement. Conclusion: Constant dose rate VMAT was successfully modeled in Raystation 4.7 for a Varian Clinac iX, and Raystation’s multicriteria optimization generated constant dose rate VMAT plans which were deliverable and dosimetrically comparable to IMRT plans.« less

  19. Effect of reactive and un-reactive substrates on photopolymerization of self-etching adhesives with different aggressiveness

    PubMed Central

    ZHANG, Ying; WANG, Yong

    2014-01-01

    The study investigated the influence of reactive (enamel) and un-reactive (glass) substrates on photo-polymerization of self-etching adhesives. Two commercial adhesives Adper Prompt L-Pop (APLP, pH~0.8) and Adper Easy Bond (AEB, pH~2.5) were applied onto prepared enamel and glass substrates using the same protocol. Micro-Raman spectroscopy was employed to determine the degree of conversion (DC) and the involved mechanism. DC of APLP was dramatically enhanced from ~9.4% to ~82.0% as when changing from glass to enamel, while DC of AEB on both substrates showed no difference. The DC distributions along the adhesive layers of the APLP and AEB on enamel showed descending and constant trends, respectively. Spectral analysis disclosed that the difference in chemical reaction of the two adhesives with enamel might be associated with the results. The chemical reaction of the adhesives with enamel significantly improved the DC of the strong APLP, but not that of the mild AEB. PMID:23719012

  20. Effect of reactive and un-reactive substrates on photopolymerization of self-etching adhesives with different aggressiveness.

    PubMed

    Zhang, Ying; Wang, Yong

    2013-01-01

    The study investigated the influence of reactive (enamel) and un-reactive (glass) substrates on photo-polymerization of self-etching adhesives. Two commercial adhesives Adper Prompt L-Pop (APLP, pH~0.8) and Adper Easy Bond (AEB, pH~2.5) were applied onto prepared enamel and glass substrates using the same protocol. Micro-Raman spectroscopy was employed to determine the degree of conversion (DC) and the involved mechanism. DC of APLP was dramatically enhanced from ~9.4% to ~82.0% as when changing from glass to enamel, while DC of AEB on both substrates showed no difference. The DC distributions along the adhesive layers of the APLP and AEB on enamel showed descending and constant trends, respectively. Spectral analysis disclosed that the difference in chemical reaction of the two adhesives with enamel might be associated with the results. The chemical reaction of the adhesives with enamel significantly improved the DC of the strong APLP, but not that of the mild AEB.

  1. Pressure dependence of the absolute rate constant for the reaction OH + C2H2 from 228 to 413K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Borokowski, R. P.; Payne, W. A.; Stief, L. J.

    1980-01-01

    The pressure dependence of absolute rate constants for the reaction of OH + C2H2 yields products has been examined at five temperatures ranging from 228 to 413 K. The experimental techniques which was used is flash photolysis-resonance fluoresence. OH was produced by water photolysis and hydroxyl resonance fluorescent photons were measured by multiscaling techniques. The results indicate that the low pressure bimolecular rate constant is 4 x 10 the the minus 13th power cu cm molecule (-1) s(-1) over the temperature range studied. A substantial increase in the bimolecular rate constant with an increase in pressure was observed at all temperatures except 228 K. This indicates the importance of initial adduct formation and subsequent stablization. The high pressure results are well represented by the Arrhenius expression (k sub bi) sub infinity = (6.83 + or - 1.19) x 10 to the minus 12th power exp(-646 + or - 47/T)cu cm molecule (-1) s(-1). The results are compared to previous investigated and are theoretically discussed. The implications of these results on modeling of terrestrial and planetary atmospheres and also in combustion chemistry are discussed.

  2. Prevailing Torque Locking Feature in Threaded Fasteners Using Anaerobic Adhesive

    NASA Technical Reports Server (NTRS)

    Hernandez, Alan; Hess, Daniel P.

    2016-01-01

    This paper presents results from tests to assess the use of anaerobic adhesive for providing a prevailing torque locking feature in threaded fasteners. Test procedures are developed and tests are performed on three fastener materials, four anaerobic adhesives, and both unseated assembly conditions. Five to ten samples are tested for each combination. Tests for initial use, reuse without additional adhesive, and reuse with additional adhesive are performed for all samples. A 48-hour cure time was used for all initial use and reuse tests. Test data are presented as removal torque versus removal angle with the specification required prevailing torque range added for performance assessment. Percent specification pass rates for the all combinations of fastener material, adhesive, and assembly condition are tabulated and reveal use of anaerobic adhesive as a prevailing torque locking feature is viable. Although not every possible fastener material and anaerobic adhesive combination provides prevailing torque values within specification, any combination can be assessed using the test procedures presented. Reuse without additional anaerobic adhesive generally provides some prevailing torque, and in some cases within specification. Reuse with additional adhesive often provides comparable removal torque data as in initial use.

  3. Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods.

    PubMed

    Gupta, S; Basant, N; Mohan, D; Singh, K P

    2016-07-01

    Experimental determinations of the rate constants of the reaction of NO3 with a large number of organic chemicals are tedious, and time and resource intensive; and the development of computational methods has widely been advocated. In this study, we have developed room-temperature (298 K) and temperature-dependent quantitative structure-reactivity relationship (QSRR) models based on the ensemble learning approaches (decision tree forest (DTF) and decision treeboost (DTB)) for predicting the rate constant of the reaction of NO3 radicals with diverse organic chemicals, under OECD guidelines. Predictive powers of the developed models were established in terms of statistical coefficients. In the test phase, the QSRR models yielded a correlation (r(2)) of >0.94 between experimental and predicted rate constants. The applicability domains of the constructed models were determined. An attempt has been made to provide the mechanistic interpretation of the selected features for QSRR development. The proposed QSRR models outperformed the previous reports, and the temperature-dependent models offered a much wider applicability domain. This is the first report presenting a temperature-dependent QSRR model for predicting the nitrate radical reaction rate constant at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards NO3 radicals in the atmosphere, hence, their persistence and exposure risk assessment.

  4. A photon spectrometric dose-rate constant determination for the Advantage Pd-103 brachytherapy source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder

    Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant ({Lambda}) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and Monte Carlo techniques. Methods: Three Model IAPD-103A Advantage Pd-103 sources were used in this study. The relative photon energy spectrum emitted by each source along the transverse axis wasmore » measured using a high-resolution germanium spectrometer designed for low-energy photons. For each source, the dose-rate constant was determined from its emitted energy spectrum. The PST-determined dose-rate constant ({sub PST}{Lambda}) was then compared to those determined by TLD ({sub TLD}{Lambda}) and Monte Carlo ({sub MC}{Lambda}) techniques. A likely consensus {Lambda} value was estimated as the arithmetic mean of the average {Lambda} values determined by each of three different techniques. Results: The average {sub PST}{Lambda} value for the three Advantage sources was found to be (0.676{+-}0.026) cGyh{sup -1} U{sup -1}. Intersource variation in {sub PST}{Lambda} was less than 0.01%. The {sub PST}{Lambda} was within 2% of the reported {sub MC}{Lambda} values determined by PTRAN, EGSnrc, and MCNP5 codes. It was 3.4% lower than the reported {sub TLD}{Lambda}. A likely consensus {Lambda} value was estimated to be (0.688{+-}0.026) cGyh{sup -1} U{sup -1}, similar to the AAPM consensus values recommended currently for the Theragenics (Buford, GA) Model 200 (0.686{+-}0.033) cGyh{sup -1} U{sup -1}, the NASI (Chatsworth, CA) Model MED3633 (0.688{+-}0.033) cGyh{sup -1} U{sup -1}, and the Best Medical (Springfield, VA) Model 2335 (0.685{+-}0.033) cGyh{sup -1} U{sup -1} {sup 103

  5. Equivalent formulae of stress Green's functions for a constant slip rate on a triangular fault

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Zhang, Haiming

    2017-06-01

    We present an equivalent form of the expressions first obtained by Tada (Geophys J Int 164:653-669, 2006. doi: 10.1111/j.1365-246X.2006.03868.x), which represents the transient stress response of an infinite, homogeneous and isotropic medium to a constant slip rate on a triangular fault that continues perpetually after the slip onset. Our results are simpler than Tada's, and the corresponding codes have a higher running speed.

  6. Protein adhesives

    Treesearch

    Charles R. Frihart; Linda F. Lorenz

    2018-01-01

    Nature uses a wide variety of chemicals for providing adhesion internally (e.g., cell to cell) and externally (e.g., mussels to ships and piers). This adhesive bonding is chemically and mechanically complex, involving a variety of proteins, carbohydrates, and other compounds.Consequently,the effect of protein structures on adhesive properties is only partially...

  7. Quantification of in Situ Biodegradation Rate Constants Using a Novel Combined Isotope Approach

    NASA Astrophysics Data System (ADS)

    Blum, P.; Sültenfuß, J.; Martus, P.

    2014-12-01

    Numerous studies have shown the enormous potential of the compound-specific isotope analysis (CSIA) for studying the biodegradation of organic compounds such as monoaromatic hydrocarbons (BTEX), polyaromatic hydrocarbons (PAH), chlorinated solvents and other organic contaminants and environmental transformation mechanisms in groundwater. In addition, two-dimensional isotope analysis such as carbon and hydrogen have been successfully studied indicating the potential to also investigate site-specific reaction mechanisms. The main objective of the current study however is to quantify real effective in situ biodegradation rate constants in a coal-tar contaminated aquifer by combining compound-specific isotope analysis (CSIA) and tracer-based (3H-3He) ground-water dating (TGD). Hence, groundwater samples are used to determine groundwater residence times, and carbon and hydrogen stable isotopes are analyzed for selected BTEX and PAH. The results of the hydrogen stable isotopes surprisingly indicate no isotope fractionation and therefore no biodegradation. In contrast, for stable carbon isotopes of selected BTEX such as o-xylene and toluene, isotope shifts are detected indicating active biodegradation under sulfate-reducing conditions. These and previous results of stable carbon isotopes show that only for o-xylene a clear evidence for biodegradation is possible for the studied site. Nevertheless, in combining these results with the groundwater residence times, which range between 1 year for the shallow wells (20 m below surface) and 41 years for the deeper wells (40 m below surface), it is feasible to effectively determine in situ biodegradation rate constants for o-xylene. Conversely, the outcome also evidently demonstrate the major limitations of the novel combined isotope approach for a successful implementation of monitored natural attenuation (MNA) at such field sites.

  8. Variational RRKM theory calculation of thermal rate constant for carbon—hydrogen bond fission reaction of nitro benzene

    NASA Astrophysics Data System (ADS)

    Manesh, Afshin Taghva; Heidarnezhad, Zabi alah; Masnabadi, Nasrin

    2013-07-01

    The present work provides quantitative results for the rate of unimolecular carbon-hydrogen bond fission reaction of benzene and nitro benzene at elevated temperatures up to 2000 K. The potential energy surface for each C-H (in the ortho, meta, and para sites) bond fission reaction of nitro benzene was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C-H bond fission channel is barrier less reaction, we have used variational RRKM theory to predict rate constants. By means of calculated rate constant at the different temperatures, the activation energy and exponential factor were determined. The Arrhenius expression for C-H bond fission reaction of nitro benzene on the ortho, meta and para sites are k( T) = 2.1 × 1017exp(-56575.98/ T), k( T) = 2.1 × 1017exp(-57587.45/ T), and k( T) = 3.3 × 1016exp(-57594.79/ T) respectively. The Arrhenius expression for C-H bond fission reaction of benzene is k( T) = 2 × 1018exp(-59343.48.18/ T). The effect of NO2 group, location of hydrogen atoms on the substituted benzene ring, reaction degeneracy, benzene ring resonance and tunneling effect on the rate expression have been discussed.

  9. Rate constant for the H˙ + H2O → ˙OH + H2 reaction at elevated temperatures measured by pulse radiolysis.

    PubMed

    Muroya, Y; Yamashita, S; Lertnaisat, P; Sanguanmith, S; Meesungnoen, J; Jay-Gerin, J-P; Katsumura, Y

    2017-11-22

    Maintaining the structural integrity of materials in nuclear power plants is an essential issue associated with safe operation. Hydrogen (H 2 ) addition or injection to coolants is a powerful technique that has been widely applied such that the reducing conditions in the coolant water avoid corrosion and stress corrosion cracking (SCC). Because the radiation-induced reaction of ˙OH + H 2 → H˙ + H 2 O plays a crucial role in these systems, the rate constant has been measured at operation temperatures of the reactors (285-300 °C) by pulse radiolysis, generating sufficient data for analysis. The reverse reaction H˙ + H 2 O → ˙OH + H 2 is negligibly slow at ambient temperature; however, it accelerates considerably quickly at elevated temperatures. Although the reverse reaction reduces the effectiveness of H 2 addition, reliable rate constants have not yet been measured. In this study, the rate constants have been determined in a temperature range of 250-350 °C by pulse radiolysis in an aqueous I - solution.

  10. Peeling-angle dependence of the stick-slip instability during adhesive tape peeling.

    PubMed

    Dalbe, Marie-Julie; Santucci, Stéphane; Vanel, Loïc; Cortet, Pierre-Philippe

    2014-12-28

    The influence of peeling angle on the dynamics observed during the stick-slip peeling of an adhesive tape has been investigated. This study relies on a new experimental setup for peeling at a constant driving velocity while keeping constant the peeling angle and peeled tape length. The thresholds of the instability are shown to be associated with a subcritical bifurcation and bistability of the system. The velocity onset of the instability is moreover revealed to strongly depend on the peeling angle. This could be the consequence of peeling angle dependance of either the fracture energy of the adhesive-substrate joint or the effective stiffness at play between the peeling front and the point at which the peeling is enforced. The shape of the peeling front velocity fluctuations is finally shown to progressively change from typical stick-slip relaxation oscillations to nearly sinusoidal oscillations as the peeling angle is increased. We suggest that this transition might be controlled by inertial effects possibly associated with the propagation of the peeling force fluctuations through elongation waves in the peeled tape.

  11. Rolling and aging in temperature-ramp soft adhesion

    NASA Astrophysics Data System (ADS)

    Boniello, Giuseppe; Tribet, Christophe; Marie, Emmanuelle; Croquette, Vincent; Zanchi, Dražen

    2018-01-01

    Immediately before adsorption to a horizontal substrate, sinking polymer-coated colloids can undergo a complex sequence of landing, jumping, crawling, and rolling events. Using video tracking, we studied the soft adhesion to a horizontal flat plate of micron-size colloids coated by a controlled molar fraction f of the poly(lysine)-grafted-poly(N-isopropylacrylamide) (PLL-g-PNIPAM) which is a temperature-sensitive polymer. We ramp the temperature from below to above Tc=32 ±1∘C , at which the PNIPAM polymer undergoes a transition, triggering attractive interaction between microparticles and surface. The adsorption rate, the effective in-plane (x -y ) diffusion constant, and the average residence time distribution over z were extracted from the Brownian motion records during last seconds before immobilization. Experimental data are understood within a rate-equations-based model that includes aging effects and includes three populations: the untethered, the rolling, and the arrested colloids. We show that preadsorption dynamics casts a characteristic scaling function α (f ) proportional to the number of available PNIPAM patches met by soft contact during Brownian rolling. In particular, the increase of in-plane diffusivity with increasing f is understood: The stickiest particles have the shortest rolling regime prior to arrest, so that their motion is dominated by the untethered phase.

  12. Characterization of Incorporation the Glass Waste in Adhesive Mortar

    NASA Astrophysics Data System (ADS)

    Santos, D. P.; Azevedo, A. R. G.; Hespanhol, R. L.; Alexandre, J.

    Ehe search for reuse generated waste in urban centers, intending to preserve natural resources, has remained fairly constant, both in context of preventing exploitation of resources as the emplacement of waste on the environment. Glass waste glass created a serious environmental problem, mainly because of inconsistency of its flows. Ehe use of this product as a mineral additive, finely ground, cement replacement and aggregate is a promising direction for recycling. This work aims to study the influence of glass waste from cutting process in adhesive mortar, replacing part of cement. Ehe glass powder is used replacing Portland cement at 10, 15 and 20% by mass. Ehe produced mortars will be evaluated its performance in fresh and hardened states through tests performed in laboratory. Ehe selected feature is indicated by producers of additive and researchers to present good results when used as adhesive mortar.

  13. Collisional excitation of CO by H2O - An astrophysicist's guide to obtaining rate constants from coherent anti-Stokes Raman line shape data

    NASA Technical Reports Server (NTRS)

    Green, Sheldon

    1993-01-01

    Rate constants for excitation of CO by collisions with H2O are needed to understand recent observations of comet spectra. These collision rates are closely related to spectral line shape parameters, especially those for Raman Q-branch spectra. Because such spectra have become quite important for thermometry applications, much effort has been invested in understanding this process. Although it is not generally possible to extract state-to-state rate constants directly from the data as there are too many unknowns, if the matrix of state-to-state rates can be expressed in terms of a rate-law model which depends only on rotational quantum numbers plus a few parameters, the parameters can be determined from the data; this has been done with some success for many systems, especially those relevant to combustion processes. Although such an analysis has not yet been done for CO-H2O, this system is expected to behave similarly to N2-H2O which has been well studies; modifications of parameters for the latter system are suggested which should provide a reasonable description of rate constants for the former.

  14. Switchable bio-inspired adhesives

    NASA Astrophysics Data System (ADS)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  15. Towards the modeling of nanoindentation of virus shells: Do substrate adhesion and geometry matter?

    NASA Astrophysics Data System (ADS)

    Bousquet, Arthur; Dragnea, Bogdan; Tayachi, Manel; Temam, Roger

    2016-12-01

    Soft nanoparticles adsorbing at surfaces undergo deformation and buildup of elastic strain as a consequence of interfacial adhesion of similar magnitude with constitutive interactions. An example is the adsorption of virus particles at surfaces, a phenomenon of central importance for experiments in virus nanoindentation and for understanding of virus entry. The influence of adhesion forces and substrate corrugation on the mechanical response to indentation has not been studied. This is somewhat surprising considering that many single-stranded RNA icosahedral viruses are organized by soft intermolecular interactions while relatively strong adhesion forces are required for virus immobilization for nanoindentation. This article presents numerical simulations via finite elements discretization investigating the deformation of a thick shell in the context of slow evolution linear elasticity and in presence of adhesion interactions with the substrate. We study the influence of the adhesion forces in the deformation of the virus model under axial compression on a flat substrate by comparing the force-displacement curves for a shell having elastic constants relevant to virus capsids with and without adhesion forces derived from the Lennard-Jones potential. Finally, we study the influence of the geometry of the substrate in two-dimensions by comparing deformation of the virus model adsorbed at the cusp between two cylinders with that on a flat surface.

  16. Carbon nanotube dry adhesives with temperature-enhanced adhesion over a large temperature range.

    PubMed

    Xu, Ming; Du, Feng; Ganguli, Sabyasachi; Roy, Ajit; Dai, Liming

    2016-11-16

    Conventional adhesives show a decrease in the adhesion force with increasing temperature due to thermally induced viscoelastic thinning and/or structural decomposition. Here, we report the counter-intuitive behaviour of carbon nanotube (CNT) dry adhesives that show a temperature-enhanced adhesion strength by over six-fold up to 143 N cm -2 (4 mm × 4 mm), among the strongest pure CNT dry adhesives, over a temperature range from -196 to 1,000 °C. This unusual adhesion behaviour leads to temperature-enhanced electrical and thermal transports, enabling the CNT dry adhesive for efficient electrical and thermal management when being used as a conductive double-sided sticky tape. With its intrinsic thermal stability, our CNT adhesive sustains many temperature transition cycles over a wide operation temperature range. We discover that a 'nano-interlock' adhesion mechanism is responsible for the adhesion behaviour, which could be applied to the development of various dry CNT adhesives with novel features.

  17. Dynamic Characteristics of The DSI-Type Constant-Flow Valves

    NASA Astrophysics Data System (ADS)

    Kang, Yuan; Hu, Sheng-Yan; Chou, Hsien-Chin; Lee, Hsing-Han

    Constant flow valves have been presented in industrial applications or academic studies, which compensate recess pressures of a hydrostatic bearing to resist load fluctuating. The flow rate of constant-flow valves can be constant in spite of the pressure changes in recesses, however the design parameters must be specified. This paper analyzes the dynamic responses of DSI-type constant-flow valves that is designed as double pistons on both ends of a spool with single feedback of working pressure and regulating restriction at inlet. In this study the static analysis presents the specific relationships among design parameters for constant flow rate and the dynamic analyses give the variations around the constant flow rate as the working pressure fluctuates.

  18. Calculation of the rate constant for state-selected recombination of H+O2(v) as a function of temperature and pressure

    NASA Astrophysics Data System (ADS)

    Teitelbaum, Heshel; Caridade, Pedro J. S. B.; Varandas, António J. C.

    2004-06-01

    Classical trajectory calculations using the MERCURY/VENUS code have been carried out on the H+O2 reactive system using the DMBE-IV potential energy surface. The vibrational quantum number and the temperature were selected over the ranges v=0 to 15, and T=300 to 10 000 K, respectively. All other variables were averaged. Rate constants were determined for the energy transfer process, H+O2(v)-->H+O2(v''), for the bimolecular exchange process, H+O2(v)-->OH(v')+O, and for the dissociative process, H+O2(v)-->H+O+O. The dissociative process appears to be a mere extension of the process of transferring large amounts of energy. State-to-state rate constants are given for the exchange reaction, and they are in reasonable agreement with previous results, while the energy transfer and dissociative rate constants have never been reported previously. The lifetime distributions of the HO2 complex, calculated as a function of v and temperature, were used as a basis for determining the relative contributions of various vibrational states of O2 to the thermal rate coefficients for recombination at various pressures. This novel approach, based on the complex's ability to survive until it collides in a secondary process with an inert gas, is used here for the first time. Complete falloff curves for the recombination of H+O2 are also calculated over a wide range of temperatures and pressures. The combination of the two separate studies results in pressure- and temperature-dependent rate constants for H+O2(v)(+Ar)⇄HO2(+Ar). It is found that, unlike the exchange reaction, vibrational and rotational-translational energy are liabilities in promoting recombination.

  19. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    PubMed

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  20. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    PubMed Central

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G.; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J.R.; Santos, Romana

    2016-01-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article “Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach” (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives. PMID:27182547

  1. Absolute rate constant for the reaction of atomic chlorine with hydrogen peroxide vapor over the temperature range 265-400 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Whytock, D. A.; Lee, J. H.; Payne, W. A.; Stief, L. J.

    1977-01-01

    Rate constants for the reaction of atomic chlorine with hydrogen peroxide were measured from 265-400 K using the flash photolysis-resonance fluorescence technique. Analytical techniques were developed to measure H2O2 under reaction conditions. Due to ambiguity in the interpretation of the analytical results, the data combine to give two equally acceptable representations of the temperature dependence. The results are compared to previous work at 298 K and are theoretically discussed in terms of the mechanism of the reaction. Additional experiments on the H + H2O2 reaction at 298 and 359 K are compared with earlier results from this laboratory and give a slightly revised bimolecular rate constant.

  2. Electrochemical determination of the onset of bacterial surface adhesion

    NASA Astrophysics Data System (ADS)

    Jones, Akhenaton-Andrew; Buie, Cullen

    2017-11-01

    Microbial biofouling causes economic loss through corrosion and drag losses on ship hulls, and in oil and food distribution. Microorganisms interacting with surfaces under these open channel flows contend with high shear rates and active transport to the surface. The metallic surfaces they interact with carry charge at various potentials that are little addressed in literature. In this study we demonstrate that the Levich curve, chronoamperometry, and cyclic voltammetry in a rotating disk electrode are ideal for studying adhesion of microbes to metallic surfaces. We study the adhesion of Escherichia coli, Bacillus subtilis, and 1 μm silica microspheres over a 0.15 - 37.33 dynes .cm-2 or shear rates of 14.73 - 3727.28 s-1 range. Our results agree with literature on red blood cells in rotating disk electrodes, deposition rates from optical systems, and show that we can quantify changes in active electrode area by bacteria adhesion and protein secretion. These methods measure changes in area instead of mass, are more accurate than fluorescence microscopy, and apply to a larger range of problems than on-chip flow devices.

  3. Creatine kinase rate constant in the human heart measured with 3D-localization at 7 tesla.

    PubMed

    Clarke, William T; Robson, Matthew D; Neubauer, Stefan; Rodgers, Christopher T

    2017-07-01

    We present a new Bloch-Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first-order effective rate constant k f in human myocardium at 7 tesla (T). BOAST combines a variant of the four-angle saturation transfer (FAST) method using amplitude-modulated radiofrequency pulses, phosphorus Bloch-Siegert B1+-mapping to determine the per-voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1 H localization). BOAST kfCK values were 0.281 ± 0.002 s -1 in the calf and 0.35 ± 0.05 s -1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg -1 s -1 . The sensitive volume for BOAST depends on the B 1 inhomogeneity of the transmit coil. BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10-cm loop coil. Magn Reson Med 78:20-32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  4. A new adhesive technique for internal fixation in midfacial surgery

    PubMed Central

    Endres, Kira; Marx, Rudolf; Tinschert, Joachim; Wirtz, Dieter Christian; Stoll, Christian; Riediger, Dieter; Smeets, Ralf

    2008-01-01

    Background The current surgical therapy of midfacial fractures involves internal fixation in which bone fragments are fixed in their anatomical positions with osteosynthesis plates and corresponding screws until bone healing is complete. This often causes new fractures to fragile bones while drilling pilot holes or trying to insert screws. The adhesive fixation of osteosynthesis plates using PMMA bone cement could offer a viable alternative for fixing the plates without screws. In order to achieve the adhesive bonding of bone cement to cortical bone in the viscerocranium, an amphiphilic bone bonding agent was created, analogous to the dentin bonding agents currently on the market. Methods The adhesive bonding strengths were measured using tension tests. For this, metal plates with 2.0 mm diameter screw holes were cemented with PMMA bone cement to cortical bovine bone samples from the femur diaphysis. The bone was conditioned with an amphiphilic bone bonding agent prior to cementing. The samples were stored for 1 to 42 days at 37 degrees C, either moist or completely submerged in an isotonic NaCl-solution, and then subjected to the tension tests. Results Without the bone bonding agent, the bonding strength was close to zero (0.2 MPa). Primary stability with bone bonding agent is considered to be at ca. 8 MPa. Moist storage over 42 days resulted in decreased adhesion forces of ca. 6 MPa. Wet storage resulted in relatively constant bonding strengths of ca. 8 MPa. Conclusion A new amphiphilic bone bonding agent was developed, which builds an optimizied interlayer between the hydrophilic bone surface and the hydrophobic PMMA bone cement and thus leads to adhesive bonding between them. Our in vitro investigations demonstrated the adhesive bonding of PMMA bone cement to cortical bone, which was also stable against hydrolysis. The newly developed adhesive fixing technique could be applied clinically when the fixation of osteosynthesis plates with screws is impossible. With

  5. Chapter 9:Wood Adhesion and Adhesives

    Treesearch

    Charles R. Frihart

    2013-01-01

    The recorded history of bonding wood dates back at least 3000 years to the Egyptians (Skeist and Miron 1990, River 1994a), and adhesive bonding goes back to early mankind (Keimel 2003). Although wood and paper bonding are the largest applications for adhesives, some of the fundamental aspects leading to good bonds are not fully understood. Better understanding of these...

  6. Measurement of Rate Constants for Homodimer Subunit Exchange Using Double Electron-Electron Resonance and Paramagnetic Relaxation Enhancements

    PubMed Central

    Yang, Yunhuang; Ramelot, Theresa A.; Ni, Shuisong; McCarrick, Robert M.; Kennedy, Michael A.

    2013-01-01

    Here, we report novel methods to measure rate constants for homodimer subunit exchange using double electron-electron resonance (DEER) electron paramagnetic resonance spectroscopy measurements and nuclear magnetic resonance spectroscopy based paramagnetic relaxation enhancement (PRE) measurements. The techniques were demonstrated using the homodimeric protein Dsy0195 from the strictly anaerobic bacterium Desulfitobacterium hafniense Y51. At specific times following mixing site-specific MTSL-labeled Dsy0195 with uniformly 15N-labeled Dsy0195, the extent of exchange was determined either by monitoring the decrease of MTSL-labeled homodimer from the decay of the DEER modulation depth or by quantifying the increase of MTSL-labeled/15N-labeled heterodimer using PREs. Repeated measurements at several time points following mixing enabled determination of the homodimer subunit dissociation rate constant, k−1;, which was 0.037 ± 0.005 min−1 derived from DEER experiments with a corresponding half-life time of 18.7 minutes. These numbers agreed with independent measurements obtained from PRE experiments. These methods can be broadly applied to protein-protein and protein-DNA complex studies. PMID:23180051

  7. Direct rate constant measurements for the reaction of ground-state atomic oxygen with ethylene, 244-1052 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klemm, R.B.; Nesbitt, F.L.; Skolnik, E.G.

    The rate constant for the reaction of ground-state atomic oxygen with ethylene was determined by using two techniques: flash photolysis-resonance fluorescence (FP-RF, 244-1052 K) and discharge flow-resonance fluorescence (DF-RF, 298-1017 K). Kinetic complications due to the presence of molecular oxygen in the FP-RF experiments at high temperatures (T > 800 K) were overcome by using NO as the photolytic source of the O atoms. The rate constant, k/sub 1/ (T), derived in this study exhibits extreme non-Arrhenius behavior, but it can be successfully fit to the sum of exponentials expression, 244-1052 K, k/sub 1/(T) = (1.02 +/- 0.06) x 10/supmore » -11/ exp(-753 +/- 17 K/T) + (2.75 +/- 0.26) x 10/sup -10/ exp(-4220 +/- 550 K/T), in units of cm/sup 3/ molecule/sup -1/ s/sup -1/. Additionally, a fit of the results of this work to a simple transition-state theory expression and the comparison of these results with those of other workers are discussed.« less

  8. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors.

    PubMed

    Tsuruoka, Nozomu; Sadakane, Takuya; Hayashi, Rika; Tsujimura, Seiya

    2017-03-10

    The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus . At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k ₂ values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones.

  9. Tissue adhesives for closure of surgical incisions.

    PubMed

    Coulthard, P; Worthington, H; Esposito, M; Elst, M; Waes, O J F

    2004-01-01

    appearance, patient satisfaction or surgeon satisfaction. However a statistically significant difference was found for surgeons' assessment of cosmetic appearance with mean difference 13 (95%CI 5 to 21), the higher mean rating for the tissue adhesive group. Surgeons may consider the use of tissue adhesives as an alternative to sutures or adhesive tape for the closure of incisions in the operating room. There is a need for trials in all areas but in particular to include patients that require incision closure in areas of high tension and patients of general health that may impair wound healing.

  10. Cytotoxicity of four denture adhesives on human gingival fibroblast cells.

    PubMed

    Lee, Yoon; Ahn, Jin-Soo; Yi, Young-Ah; Chung, Shin-Hye; Yoo, Yeon-Jee; Ju, Sung-Won; Hwang, Ji-Yun; Seo, Deog-Gyu

    2015-02-01

    The purpose of this study was to compare the cytotoxicity of four denture adhesives on human gingival fibroblast cells. Immortalized human gingival fibroblasts were cultured with one of four different denture adhesives, Polident, Protefix, Staydent or Denfix-A, which was placed in insert dishes (10% w/v concentration) for 48 h. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and flow cytometric apoptosis assay were used to evaluate cell viability and apoptosis rates. The fibroblasts were also examined under a scanning electron microscope. The MTT assay showed that all denture adhesives resulted in a significantly lower cell viability compared to the control cells propagated in normal culture medium (p < 0.05), with Staydent demonstrating the lowest cell viability. According to the flow cytometric apoptosis assay, Staydent and Protefix showed significantly higher apoptosis rates than the control group (p < 0.05), whereas Polident and Denfix-A did not demonstrate any significant differences (p > 0.05). Staydent showed the highest apoptosis rate. Scanning electron microscopy showed that the cells of the Staydent group underwent cytoplasmic membrane shrinkage, with cell free areas containing residual fragments of the membrane of dead cells. The four denture adhesives evaluated in this study imparted cytotoxic effects on human gingival fibroblast cells. Staydent showed the highest toxicity.

  11. Staying sticky: contact self-cleaning of gecko-inspired adhesives.

    PubMed

    Mengüç, Yigit; Röhrig, Michael; Abusomwan, Uyiosa; Hölscher, Hendrik; Sitti, Metin

    2014-05-06

    The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attachment strength and the contact self-cleaning performance of the gecko's foot on a smooth surface. Contact self-cleaning experiments were performed with three different sizes of mushroom-shaped elastomer microfibres and five different sizes of spherical silica contaminants. Using a load-drag-unload dry contact cleaning process similar to the loads acting on the gecko foot during locomotion, our fully contaminated synthetic gecko adhesives could recover lost adhesion at a rate comparable to that of the gecko. We observed that the relative size of contaminants to the characteristic size of the microfibres in the synthetic adhesive strongly determined how and to what degree the adhesive recovered from contamination. Our approximate model and experimental results show that the dominant mechanism of contact self-cleaning is particle rolling during the drag process. Embedding of particles between adjacent fibres was observed for particles with diameter smaller than the fibre tips, and further studied as a temporary cleaning mechanism. By incorporating contact self-cleaning capabilities, real-world applications of synthetic gecko adhesives, such as reusable tapes, clothing closures and medical adhesives, would become feasible.

  12. Staying sticky: contact self-cleaning of gecko-inspired adhesives

    PubMed Central

    Mengüç, Yiğit; Röhrig, Michael; Abusomwan, Uyiosa; Hölscher, Hendrik; Sitti, Metin

    2014-01-01

    The exceptionally adhesive foot of the gecko remains clean in dirty environments by shedding contaminants with each step. Synthetic gecko-inspired adhesives have achieved similar attachment strengths to the gecko on smooth surfaces, but the process of contact self-cleaning has yet to be effectively demonstrated. Here, we present the first gecko-inspired adhesive that has matched both the attachment strength and the contact self-cleaning performance of the gecko's foot on a smooth surface. Contact self-cleaning experiments were performed with three different sizes of mushroom-shaped elastomer microfibres and five different sizes of spherical silica contaminants. Using a load–drag–unload dry contact cleaning process similar to the loads acting on the gecko foot during locomotion, our fully contaminated synthetic gecko adhesives could recover lost adhesion at a rate comparable to that of the gecko. We observed that the relative size of contaminants to the characteristic size of the microfibres in the synthetic adhesive strongly determined how and to what degree the adhesive recovered from contamination. Our approximate model and experimental results show that the dominant mechanism of contact self-cleaning is particle rolling during the drag process. Embedding of particles between adjacent fibres was observed for particles with diameter smaller than the fibre tips, and further studied as a temporary cleaning mechanism. By incorporating contact self-cleaning capabilities, real-world applications of synthetic gecko adhesives, such as reusable tapes, clothing closures and medical adhesives, would become feasible. PMID:24554579

  13. Kinetics and bioreactor studies of immobilized invertase on polyurethane rigid adhesive foam.

    PubMed

    Cadena, Pabyton G; Wiggers, Frank N; Silva, Roberto A; Lima Filho, José L; Pimentel, Maria C B

    2011-01-01

    A new support, polyurethane rigid adhesive foam (PRAF), which can be used to cover internal surface of metallic tubes, was used to immobilize invertase for application in an enzymatic bioreactor. The kinetic parameters were: Km--46.5±1.9 mM (PRAF-invertase) and 61.2±0.1 mM (free enzyme) and Vmax 42.0±4.3 U/mg protein/min (PRAF-invertase) and 445.3±24.0 U/mg protein/min (free invertase). The PRAF-invertase derivative maintained 50.1% of initial activity (69.17 U/g support) for 8 months (4°C) and was not observed microbial contamination. The bioreactor showed the best production of inverted sugar syrup using up-flow rate (0.48 L/h) with average conversion of 10.64±1.5% h(-1) at feeding rate (D) of 104 h(-1). The operational inactivation rate constant (kopi) and half-life were 1.92×10(-4) min(-1) and 60 h (continue use). The PRAF spray support looks promising as a new alternative to produce immobilized derivatives on reactor surfaces. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Humidity-enhanced wet adhesion on insect-inspired fibrillar adhesive pads

    PubMed Central

    Xue, Longjian; Kovalev, Alexander; Eichler-Volf, Anna; Steinhart, Martin; Gorb, Stanislav N.

    2015-01-01

    Many insect species reversibly adhere to surfaces by combining contact splitting (contact formation via fibrillar contact elements) and wet adhesion (supply of liquid secretion via pores in the insects’ feet). Here, we fabricate insect-inspired fibrillar pads for wet adhesion containing continuous pore systems through which liquid is supplied to the contact interfaces. Synergistic interaction of capillarity and humidity-induced pad softening increases the pull-off force and the work of adhesion by two orders of magnitude. This increase and the independence of pull-off force on the applied load are caused by the capillarity-supported formation of solid–solid contact between pad and the surface. Solid–solid contact dominates adhesion at high humidity and capillarity at low humidity. At low humidity, the work of adhesion strongly depends on the amount of liquid deposited on the surface and, therefore, on contact duration. These results may pave the way for the design of insect-inspired adhesive pads. PMID:25791574

  15. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  16. A computational study of photo-induced electron transfer rate constants in subphthalocyanine/C60 organic photovoltaic materials via Fermi's golden rule

    NASA Astrophysics Data System (ADS)

    Lee, Myeong H.; Dunietz, Barry D.; Geva, Eitan

    2014-03-01

    We present a methodology to obtain the photo-induced electron transfer rate constant in organic photovoltaic (OPV) materials within the framework of Fermi's golden rule, using inputs obtained from first-principles electronic structure calculation. Within this approach, the nuclear vibrational modes are treated quantum-mechanically and a short-time approximation is avoided in contrast to the classical Marcus theory where these modes are treated classically within the high-temperature and short-time limits. We demonstrate our methodology on boron-subphthalocyanine-chloride/C60 OPV system to determine the rate constants of electron transfer and electron recombination processes upon photo-excitation. We consider two representative donor/acceptor interface configurations to investigate the effect of interface configuration on the charge transfer characteristics of OPV materials. In addition, we determine the time scale of excited states population by employing a master equation after obtaining the rate constants for all accessible electronic transitions. This work is pursued as part of the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy Office of Science, Office of Basic Energy Sciences under 390 Award No. DE-SC0000957.

  17. Strong composition dependence of adhesive properties of ultraviolet curing adhesives with modified acrylates

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; Li, Yandong; Wang, Fupeng; Peng, Cheng; Xu, Zhichao; Hu, Jianbing

    2018-05-01

    Ultraviolet (UV) curable adhesives have been widely researched in fields of health care and electronic components. UV curing systems with modified acrylic ester prepolymers have been frequently employed. In order to clarify composition dependence of adhesive properties of adhesives containing modified acrylates, in this work, several UV curing adhesives bearing urethane and epoxy acrylates were designed and fabricated. The effects of prepolymer, diluent, feed ratio, initiator and assistant on adhesive performances were investigated. This work might offer a facile route to gain promising high-performance UV curable adhesives with desired adhesive traits through regulating their compositions.

  18. Metabolic Rate Constants for Hydroquinone in F344 Rat and Human Liver Isolated Hepatocytes: Application to a PBPK model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poet, Torka S.; Wu, Hong; English, J C.

    2004-11-15

    Hydroquinone (HQ) is an important industrial chemical that also occurs naturally in foods and in the leaves and bark of a number of plant species. Exposure of laboratory animals to HQ may result in a species-, sex-, and strain-specific nephrotoxicity. The sensitivity of male F344 vs. female F344 and Sprague-Dawley rats or B6C3F1 mice appears to be related to differences in the rates of formation and further metabolism of key nephrotoxic metabolites. Metabolic rate constants for the conversion of HQ through several metabolic steps to the mono-glutathione conjugate and subsequent detoxification via mercapturic acid were measured in suspension cultures ofmore » hepatocytes isolated from male F344 rats and humans. An in vitro mathematic kinetic model was used to analyze each metabolic step by simultaneously fitting the disappearance of each substrate and the appearance of subsequent metabolites. An iterative, nested approach was used whereby downstream metabolites were considered first and the model was constrained by the requirement that rate constants determined during analysis of individual metabolic steps must also satisfy the complete, integrated metabolism scheme, including competitive pathways. The results from this study indicated that the overall capacity for metabolism of HQ and its mono-glutathione conjugate is greater in hepatocytes from humans than those isolated from rats, suggesting a greater capacity for detoxification of the glutathione conjugates. Metabolic rate constants were applied to an existing physiologically based pharmacokinetic model and the model was used to predict total glutathione metabolites produced in the liver. The results showed that body burdens of these metabolites will be much higher in rats than humans.« less

  19. An Analysis of Descriptors of Volatile Organic Compounds and Their Impact on Rate Constant for Reaction with Hydroxyl Radicals

    DTIC Science & Technology

    2018-05-01

    the descriptors were correlated to experimental rate constants. The five descriptors fell into one of two categories: whole molecule descriptors or...model based on these correlations . Although that goal was not achieved in full, considerable progress has been made, and there is potential for a...readme.txt) and compiled. We then searched for correlations between the calculated properties from theory and the experimental measurements of reaction rate

  20. Tunable denture adhesives using biomimetic principles for enhanced tissue adhesion in moist environments.

    PubMed

    Gill, Simrone K; Roohpour, Nima; Topham, Paul D; Tighe, Brian J

    2017-11-01

    Nature provides many interesting examples of adhesive strategies. Of particular note, the protein glue secreted by marine mussels delivers high adhesion in wet and dynamic environments owing to existence of catechol moieties. As such, this study focuses on denture fixatives, where a non-zinc-containing commercial-based formulation has been judiciously modified by a biomimetic catechol-inspired polymer, poly(3,4-dihydroxystyrene/styrene-alt-maleic acid) in a quest to modulate adhesive performance. In vitro studies, in a lap-shear configuration, revealed that the catechol-modified components were able to enhance adhesion to both the denture base and hydrated, functional oral tissue mimic, with the resulting mode of failure prominently being adhesive rather than cohesive. These characteristics are desirable in prosthodontic fixative applications, for which temporary adhesion must be maintained, with ultimately an adhesive failure from the mucosal tissue surface preferred. These insights provide an experimental platform in the design of future biomimetic adhesive systems. Mussel adhesive proteins have proven to be promising biomimetic adhesive candidates for soft tissues and here for the first time we have adapted marine adhesive technology into a denture fixative application. Importantly, we have incorporated a soft tissue mimic in our in vitro adhesion technique that more closely resembles the oral mucosa than previously studied substrates. The novel biomimetic-modified adhesives showed the ability to score the highest adhesive bonding out of all the formulations included in this study, across all moisture levels. This paper will be of major interest to the Acta Biomaterialia readership since the study has illustrated the potential of biomimetic principles in the design of effective prosthodontic tissue adhesives in a series of purpose-designed in vitro experiments in the context of the challenging features of the oral environment. Copyright © 2017 Acta Materialia

  1. Reducing composite restoration polymerization shrinkage stress through resin modified glass-ionomer based adhesives.

    PubMed

    Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E

    2015-12-01

    The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p < 0.05) lower than at the interface of the RBA-RCS. Secondly, at 300 seconds and 6 hours the interface contraction stress magnitude of the RMGIBA-RCS was significantly (p < 0.05) lower than the stress of all assessed RBA-RCS. Thirdly, from 300 seconds to 6 hours both the magnitude and rate of interface stress of the RMGIBA-RCS continued to decline over the 6 hours from the 300 seconds peak. The use of resin modified glass-ionomer based adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.

  2. Cell-matrix adhesion characterization using multiple shear stress zones in single stepwise microchannel

    NASA Astrophysics Data System (ADS)

    Kim, Min-Ji; Doh, Il; Bae, Gab-Yong; Cha, Hyuk-Jin; Cho, Young-Ho

    2014-08-01

    This paper presents a cell chip capable to characterize cell-matrix adhesion by monitoring cell detachment rate. The proposed cell chip can supply multiple levels of shear stress in single stepwise microchannel. As epithelial-mesenchymal transition (EMT), one of hallmarks of cancer metastasis is closely associated to the interaction with extracelluar matrix (ECM), we took advantage of two lung cancer cell models with different adhesion properties to ECM depending their epithelial or mesenchymal properties, including the pair of lung cancer cells with (A549sh) or without E-cadherin expression (A549sh-Ecad), which would be optimal model to examine the alteration of adhesion properties after EMT induction. The cell-matrix adhesion resisting to shear stress appeared to be remarkably differed between lung cancer cells. The detachment rate of epithelial-like H358 and mesenchymal-like H460 cells was 53%-80% and 25%-66% in the shear stress range of 34-60 dyn/cm2, respectively. A549sh-Ecad cells exhibits lower detachment rate (5%-9%) compared to A549sh cells (14%-40%). By direct comparison of adhesion between A549sh and A549sh-Ecad, we demonstrated that A549shE-cad to mimic EMT were more favorable to the ECM attachment under the various levels of shear stress. The present method can be applied to quantitative analysis of tumor cell-ECM adhesion.

  3. Tissue adhesives for simple traumatic lacerations.

    PubMed

    Beam, Joel W

    2008-01-01

    significantly favored tissue adhesives. In 6 studies (584 lacerations), tissue adhesives were significantly favored over SWC in time to complete the procedure. For complication outcomes, 8 groups (727 lacerations) demonstrated significantly fewer incidences of erythema and an increased risk of dehiscence with tissue adhesives compared with SWC. No significant differences were shown for infection, delayed closure, or discharge. Among 83 lacerations, 1 group compared butylcyanoacrylate with octylcyanoacrylate and reported no significant differences in combined patient-reported and parent-reported visual analogue pain scores, time to complete the procedure, dehiscence, or infection. This review provides evidence that tissue adhesives are an option to SWC (sutures, staples, adhesive strips) for the management of simple traumatic lacerations. Overall, no significant differences were found in cosmetic scores at the reported assessment periods between tissue adhesives and SWC. At 1 to 3 months, a subgroup analysis significantly favored butylcyanoacrylate over SWC. Tissue adhesives significantly lowered the time to complete the procedure, levels of pain, and rate of erythema. However, the data revealed a significant increase in the rate of dehiscence with the use of tissue adhesives when compared with SWC. The low methodologic quality of the evidence should be considered in the interpretation of the findings.

  4. Pulsed EPR measurements on reaction rate constants for addition of photo-generated radicals to double bonds of diethyl fumarate and diethyl maleate

    NASA Astrophysics Data System (ADS)

    Takahashi, Hirona; Hagiwara, Kenta; Kawai, Akio

    2016-11-01

    Addition reaction of photo-generated radicals to double bonds of diethyl fumarate (deF) and diethyl maleate (deM), which are geometrical isomers, was studied by means of time-resolved- (TR-) and pulsed-electron paramagnetic resonance (EPR). Analysis of TR-EPR spectra indicates that adduct radicals from deF and deM should have the same structure. The double bonds of these monomers are converted to single ones by addition reaction, which allows hindered internal rotation to give the same structure of adduct radical. The rate constants for addition reaction of photo-generated radicals were determined by Stern-Volmer analysis of the decay time of electron spin-echo intensity of these radicals measured by the pulsed EPR method. Rate constants for deF were found to be larger than those for deM. This relation is in good consistent with efficiency of polymerisation of deF and deM. Experimentally determined rate constants were evaluated by introducing the addition reaction model on the basis of two important factors enthalpy and polar effects.

  5. High-current-density electrodeposition using pulsed and constant currents to produce thick CoPt magnetic films on silicon substrates

    NASA Astrophysics Data System (ADS)

    Ewing, Jacob; Wang, Yuzheng; Arnold, David P.

    2018-05-01

    This paper investigates methods for electroplating thick (>20 μm), high-coercivity CoPt films using high current densities (up to 1 A/cm2) and elevated bath temperatures (70 °C). Correlations are made tying current-density and temperature process parameters with plating rate, elemental ratio and magnetic properties of the deposited CoPt films. It also investigates how pulsed currents can increase the plating rate and film to substrate adhesion. Using 500 mA/cm2 and constant current, high-quality, dense CoPt films were successfully electroplated up to 20 μm thick in 1 hr on silicon substrates (0.35 μm/min plating rate). After standard thermal treatment (675°C, 30 min) to achieve the ordered L10 crystalline phase, strong magnetic properties were measured: coercivities up 850 kA/m, remanences >0.5 T, and maximum energy products up to 46 kJ/m3.

  6. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    NASA Astrophysics Data System (ADS)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  7. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin.

    PubMed

    Türkmen, Cafer; Durkan, Meral; Cimilli, Hale; Öksüz, Mustafa

    2011-08-01

    The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group): direct composite resin restoration (Alert) with etch-and-rinse adhesive system (Bond 1 primer/adhesive), Group 2: indirect composite restoration (Estenia) luted with a resin cement (Cement-It) combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond), Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively) onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7) showed better results compared to the other groups (p<0.05). Group 4 showed the weakest bond strength (p>0.05). The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces.

  8. Estimating emissions from adhesives and sealants uses and manufacturing for environmental risk assessments.

    PubMed

    Tolls, Johannes; Gómez, Divina; Guhl, Walter; Funk, Torsten; Seger, Erich; Wind, Thorsten

    2016-01-01

    Regulation (EC) No 1907/2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) requires that environmental exposure assessments be performed for all uses of dangerous substances that are marketed in the European Union in quantities above 10 tons per year. The quantification of emissions to the environment is a key step in this process. This publication describes the derivation of release factors and gives guidance for estimating use rates for quantifying the emissions from the manufacturing and application of adhesives and sealants. Release factors available for coatings and paints are read across to adhesives or sealants based on similarities between these 2 product groups with regard to chemical composition and to processing during manufacturing and application. The granular emission scenarios in these documents are mapped to the broad emission scenarios for adhesives or sealants. According to the mapping, the worst-case release factors for coatings or paints are identified and assigned to the adhesives or sealants scenarios. The resulting 10 specific environmental release categories (SPERCs) for adhesives and sealants are defined by differentiating between solvent and nonsolvent ingredients and between water-borne and solvent-borne or solvent-free products. These cover the vast majority of the production processes and uses and are more realistic than the 5 relevant emission estimation defaults provided in the REACH guidance. They are accompanied with adhesive or sealant consumption rates in the EU and with guidance for estimating conservative substance use rates at a generic level. The approach of combining conservative SPERC release factors with conservative estimates of substance rates is likely to yield emission estimates that tend to overpredict actual releases. Because this qualifies the approach for use in lower-tier environmental exposure assessment, the Association of the European Adhesive & Sealant Industry

  9. Effects of Water Molecule on CO Oxidation by OH: Reaction Pathways, Kinetic Barriers, and Rate Constants.

    PubMed

    Zhang, Linyao; Yang, Li; Zhao, Yijun; Zhang, Jiaxu; Feng, Dongdong; Sun, Shaozeng

    2017-07-06

    The water dilute oxy-fuel combustion is a clean combustion technology for near-zero emission power; and the presence of water molecule could have both kinetic and dynamic effects on combustion reactions. The reaction OH + CO → CO 2 + H, one of the most important elementary reactions, has been investigated by extensive electronic structure calculations. And the effects of a single water molecule on CO oxidation have been studied by considering the preformed OH(H 2 O) complex reacts with CO. The results show little change in the reaction pathways, but the additional water molecule actually increases the vibrationally adiabatic energy barriers (V a G ). Further thermal rate constant calculations in the temperature range of 200 to 2000 K demonstrate that the total low-pressure limit rate constant for the water assisted OH(H 2 O) + CO → CO 2 + H 2 O + H reaction is 1-2 orders lower than that of the water unassisted one, which is consistent with the change of V a G . Therefore, the hydrated radical OH(H 2 O) would actually slow down the oxidation of CO. Meanwhile, comparisons show that the M06-2X/aug-cc-pVDZ method gives a much better estimation in energy and thus is recommended to be employed for direct dynamics simulations.

  10. Optical factors determined by the T-matrix method in turbidity measurement of absolute coagulation rate constants.

    PubMed

    Xu, Shenghua; Liu, Jie; Sun, Zhiwei

    2006-12-01

    Turbidity measurement for the absolute coagulation rate constants of suspensions has been extensively adopted because of its simplicity and easy implementation. A key factor in deriving the rate constant from experimental data is how to theoretically evaluate the so-called optical factor involved in calculating the extinction cross section of doublets formed during aggregation. In a previous paper, we have shown that compared with other theoretical approaches, the T-matrix method provides a robust solution to this problem and is effective in extending the applicability range of the turbidity methodology, as well as increasing measurement accuracy. This paper will provide a more comprehensive discussion of the physical insight for using the T-matrix method in turbidity measurement and associated technical details. In particular, the importance of ensuring the correct value for the refractive indices for colloidal particles and the surrounding medium used in the calculation is addressed, because the indices generally vary with the wavelength of the incident light. The comparison of calculated results with experiments shows that the T-matrix method can correctly calculate optical factors even for large particles, whereas other existing theories cannot. In addition, the data of the optical factor calculated by the T-matrix method for a range of particle radii and incident light wavelengths are listed.

  11. Hydroxyapatite induces spontaneous polymerization of model self-etch dental adhesives

    PubMed Central

    Zhang, Ying; Wu, Ningjing; Bai, Xinyan; Xu, Changqi; Liu, Yi; Wang, Yong

    2013-01-01

    The objective of this study is to report for the first time the spontaneous polymerization phenomenon of self-etch dental adhesives induced by hydroxylapatite (HAp). Model self-etch adhesives were prepared by using a monomer mixture of bis[2-(methacryloyloxy)ethyl] phosphate (2MP) with 2-hydroxyethyl methacrylate (HEMA). The initiator system consisted of camphorquinone (CQ, 0.022 mmol/g) and ethyl 4-dimethylaminobenzoate (4E, 0.022–0.088 mmol/g). HAp (2–8 wt.%) was added to the neat model adhesive. In a dark environment, the polymerization was monitored in-situ using ATR/FT-IR, and the mechanical properties of the polymerized adhesives were evaluated using nanoindentation technique. Results indicated that spontaneous polymerization was not observed in the absence of HAp. However, as different amounts of HAp were incorporated into the adhesives, spontaneous polymerization was induced. Higher HAp content led to higher degree of conversion (DC), higher rate of polymerization (RP) and shorter induction period (IP). In addition, higher 4E content also elevated DC and RP and reduced IP of the adhesives. Nanoindentation result suggested that the Young's modulus of the polymerized adhesives showed similar dependence on HAp and 4E contents. In summary, interaction with HAp could induce spontaneous polymerization of the model self-etch adhesives. This result provides important information for understanding the initiation mechanism of the self-etch adhesives, and may be of clinical significance to strengthen the adhesive/dentin interface based on the finding. PMID:23910263

  12. Bioinspired Composite Microfibers for Skin Adhesion and Signal Amplification of Wearable Sensors.

    PubMed

    Drotlef, Dirk-M; Amjadi, Morteza; Yunusa, Muhammad; Sitti, Metin

    2017-07-01

    A facile approach is proposed for superior conformation and adhesion of wearable sensors to dry and wet skin. Bioinspired skin-adhesive films are composed of elastomeric microfibers decorated with conformal and mushroom-shaped vinylsiloxane tips. Strong skin adhesion is achieved by crosslinking the viscous vinylsiloxane tips directly on the skin surface. Furthermore, composite microfibrillar adhesive films possess a high adhesion strength of 18 kPa due to the excellent shape adaptation of the vinylsiloxane tips to the multiscale roughness of the skin. As a utility of the skin-adhesive films in wearable-device applications, they are integrated with wearable strain sensors for respiratory and heart-rate monitoring. The signal-to-noise ratio of the strain sensor is significantly improved to 59.7 because of the considerable signal amplification of microfibrillar skin-adhesive films. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of Emodin on Preventing Postoperative Intra-Abdominal Adhesion Formation.

    PubMed

    Wei, Guangbing; Wu, Yunhua; Gao, Qi; Zhou, Cancan; Wang, Kai; Shen, Cong; Wang, Guanghui; Wang, Kang; Sun, Xuejun; Li, Xuqi

    2017-01-01

    Postoperative intra-abdominal adhesions are a major complication after abdominal surgery. Although various methods have been used to prevent and treat adhesions, the effects have not been satisfactory. Emodin, a naturally occurring anthraquinone derivative and an active ingredient in traditional Chinese herbs, exhibits a variety of pharmacological effects. In our study, we demonstrated the effect of emodin treatment on preventing postoperative adhesion formation. A total of 48 rats were divided into six groups. Abdominal adhesions were created by abrasion of the cecum and its opposite abdominal wall. In the experimental groups, the rats were administered daily oral doses of emodin. On the seventh day after operation, the rats were euthanized, and blood and pathological specimens were collected. Abdominal adhesion formation was evaluated by necropsy, pathology, immunohistochemistry, Western blot, and enzyme-linked immunosorbent assay analyses. Abdominal adhesions were markedly reduced by emodin treatment. Compared with the control group, collagen deposition was reduced and the peritoneal mesothelial completeness rate was higher in the emodin-treated groups. Emodin had anti-inflammatory effects, reduced oxidative stress, and promoted the movement of the intestinal tract ( P < 0.05). Emodin significantly reduced intra-abdominal adhesion formation in a rat model.

  14. Landfill gas generation after mechanical biological treatment of municipal solid waste. Estimation of gas generation rate constants.

    PubMed

    Gioannis, G De; Muntoni, A; Cappai, G; Milia, S

    2009-03-01

    Mechanical biological treatment (MBT) of residual municipal solid waste (RMSW) was investigated with respect to landfill gas generation. Mechanically treated RMSW was sampled at a full-scale plant and aerobically stabilized for 8 and 15 weeks. Anaerobic tests were performed on the aerobically treated waste (MBTW) in order to estimate the gas generation rate constants (k,y(-1)), the potential gas generation capacity (L(o), Nl/kg) and the amount of gasifiable organic carbon. Experimental results show how MBT allowed for a reduction of the non-methanogenic phase and of the landfill gas generation potential by, respectively, 67% and 83% (8 weeks treatment), 82% and 91% (15 weeks treatment), compared to the raw waste. The amount of gasified organic carbon after 8 weeks and 15 weeks of treatment was equal to 11.01+/-1.25kgC/t(MBTW) and 4.54+/-0.87kgC/t(MBTW), respectively, that is 81% and 93% less than the amount gasified from the raw waste. The values of gas generation rate constants obtained for MBTW anaerobic degradation (0.0347-0.0803y(-1)) resemble those usually reported for the slowly and moderately degradable fractions of raw MSW. Simulations performed using a prediction model support the hypothesis that due to the low production rate, gas production from MBTW landfills is well-suited to a passive management strategy.

  15. Simultaneous measurement of glucose blood–brain transport constants and metabolic rate in rat brain using in-vivo 1H MRS

    PubMed Central

    Du, Fei; Zhang, Yi; Zhu, Xiao-Hong; Chen, Wei

    2012-01-01

    Cerebral glucose consumption and glucose transport across the blood–brain barrier are crucial to brain function since glucose is the major energy fuel for supporting intense electrophysiological activity associated with neuronal firing and signaling. Therefore, the development of noninvasive methods to measure the cerebral metabolic rate of glucose (CMRglc) and glucose transport constants (KT: half-saturation constant; Tmax: maximum transport rate) are of importance for understanding glucose transport mechanism and neuroenergetics under various physiological and pathological conditions. In this study, a novel approach able to simultaneously measure CMRglc, KT, and Tmax via monitoring the dynamic glucose concentration changes in the brain tissue using in-vivo 1H magnetic resonance spectroscopy (MRS) and in plasma after a brief glucose infusion was proposed and tested using an animal model. The values of CMRglc, Tmax, and KT were determined to be 0.44±0.17 μmol/g per minute, 1.35±0.47 μmol/g per minute, and 13.4±6.8 mmol/L in the rat brain anesthetized with 2% isoflurane. The Monte-Carlo simulations suggest that the measurements of CMRglc and Tmax are more reliable than that of KT. The overall results indicate that the new approach is robust and reliable for in-vivo measurements of both brain glucose metabolic rate and transport constants, and has potential for human application. PMID:22714049

  16. Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive

    PubMed Central

    Ruffatto, Donald; Parness, Aaron; Spenko, Matthew

    2014-01-01

    This paper describes a novel, controllable adhesive that combines the benefits of electrostatic adhesives with gecko-like directional dry adhesives. When working in combination, the two technologies create a positive feedback cycle whose adhesion, depending on the surface type, is often greater than the sum of its parts. The directional dry adhesive brings the electrostatic adhesive closer to the surface, increasing its effect. Similarly, the electrostatic adhesion helps engage more of the directional dry adhesive fibrillar structures, particularly on rough surfaces. This paper presents the new hybrid adhesive's manufacturing process and compares its performance to three other adhesive technologies manufactured using a similar process: reinforced PDMS, electrostatic and directional dry adhesion. Tests were performed on a set of ceramic tiles with varying roughness to quantify its effect on shear adhesive force. The relative effectiveness of the hybrid adhesive increases as the surface roughness is increased. Experimental data are also presented for different substrate materials to demonstrate the enhanced performance achieved with the hybrid adhesive. Results show that the hybrid adhesive provides up to 5.1× greater adhesion than the electrostatic adhesive or directional dry adhesive technologies alone. PMID:24451392

  17. Adhesion behavior of endothelial progenitor cells to endothelial cells in simple shear flow

    NASA Astrophysics Data System (ADS)

    Gong, Xiao-Bo; Li, Yu-Qing; Gao, Quan-Chao; Cheng, Bin-Bin; Shen, Bao-Rong; Yan, Zhi-Qiang; Jiang, Zong-Lai

    2011-12-01

    The adhesion of endothelial progenitor cells (EPCs) on endothelial cells (ECs) is one of the critical physiological processes for the regenesis of vascular vessels and the prevention of serious cardiovascular diseases. Here, the rolling and adhesion behavior of EPCs on ECs was studied numerically. A two-dimensional numerical model was developed based on the immersed boundary method for simulating the rolling and adhesion of cells in a channel flow. The binding force arising from the catch bond of a receptor and ligand pair was modeled with stochastic Monte Carlo method and Hookean spring model. The effect of tumor necrosis factor alpha (TNF- α) on the expression of the number of adhesion molecules in ECs was analyzed experimentally. A flow chamber system with CCD camera was set up to observe the top view of the rolling of EPCs on the substrate cultivated with ECs. Numerical results prove that the adhesion of EPC on ECs is closely related to membrane stiffness of the cell and shear rate of the flow. It also suggests that the adhesion force between EPC and EC by P-selectin glycoprotein ligand-1 only is not strong enough to bond the cell onto vessel walls unless contributions of other catch bond are considered. Experimental results demonstrate that TNF- α enhanced the expressions of VCAM, ICAM, P-selectin and E-selectin in ECs, which supports the numerical results that the rolling velocity of EPC on TNF- α treated EC substrate decreases obviously compared with its velocity on the untreated one. It is found that because the adhesion is affected by both the rolling velocity and the deformability of the cell, an optimal stiffness of EPC may exist at a given shear rate of flow for achieving maximum adhesion rates.

  18. Rate constants of chemical reactions from semiclassical transition state theory in full and one dimension.

    PubMed

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2016-06-28

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods.

  19. Membrane adhesion dictates Golgi stacking and cisternal morphology.

    PubMed

    Lee, Intaek; Tiwari, Neeraj; Dunlop, Myun Hwa; Graham, Morven; Liu, Xinran; Rothman, James E

    2014-02-04

    Two classes of proteins that bind to each other and to Golgi membranes have been implicated in the adhesion of Golgi cisternae to each other to form their characteristic stacks: Golgi reassembly and stacking proteins 55 and 65 (GRASP55 and GRASP65) and Golgin of 45 kDa and Golgi matrix protein of 130 kDa. We report here that efficient stacking occurs in the absence of GRASP65/55 when either Golgin is overexpressed, as judged by quantitative electron microscopy. The Golgi stacks in these GRASP-deficient HeLa cells were normal both in morphology and in anterograde cargo transport. This suggests the simple hypothesis that the total amount of adhesive energy gluing cisternae dictates Golgi cisternal stacking, irrespective of which molecules mediate the adhesive process. In support of this hypothesis, we show that adding artificial adhesive energy between cisternae and mitochondria by dimerizing rapamycin-binding domain and FK506-binding protein domains that are attached to cisternal adhesive proteins allows mitochondria to invade the stack and even replace Golgi cisternae within a few hours. These results indicate that although Golgi stacking is a highly complicated process involving a large number of adhesive and regulatory proteins, the overriding principle of a Golgi stack assembly is likely to be quite simple. From this simplified perspective, we propose a model, based on cisternal adhesion and cisternal maturation as the two core principles, illustrating how the most ancient form of Golgi stacking might have occurred using only weak cisternal adhesive processes because of the differential between the rate of influx and outflux of membrane transport through the Golgi.

  20. Membrane adhesion dictates Golgi stacking and cisternal morphology

    PubMed Central

    Lee, Intaek; Tiwari, Neeraj; Dunlop, Myun Hwa; Graham, Morven; Liu, Xinran; Rothman, James E.

    2014-01-01

    Two classes of proteins that bind to each other and to Golgi membranes have been implicated in the adhesion of Golgi cisternae to each other to form their characteristic stacks: Golgi reassembly and stacking proteins 55 and 65 (GRASP55 and GRASP65) and Golgin of 45 kDa and Golgi matrix protein of 130 kDa. We report here that efficient stacking occurs in the absence of GRASP65/55 when either Golgin is overexpressed, as judged by quantitative electron microscopy. The Golgi stacks in these GRASP-deficient HeLa cells were normal both in morphology and in anterograde cargo transport. This suggests the simple hypothesis that the total amount of adhesive energy gluing cisternae dictates Golgi cisternal stacking, irrespective of which molecules mediate the adhesive process. In support of this hypothesis, we show that adding artificial adhesive energy between cisternae and mitochondria by dimerizing rapamycin-binding domain and FK506-binding protein domains that are attached to cisternal adhesive proteins allows mitochondria to invade the stack and even replace Golgi cisternae within a few hours. These results indicate that although Golgi stacking is a highly complicated process involving a large number of adhesive and regulatory proteins, the overriding principle of a Golgi stack assembly is likely to be quite simple. From this simplified perspective, we propose a model, based on cisternal adhesion and cisternal maturation as the two core principles, illustrating how the most ancient form of Golgi stacking might have occurred using only weak cisternal adhesive processes because of the differential between the rate of influx and outflux of membrane transport through the Golgi. PMID:24449908

  1. Biodegradability and platelets adhesion assessment of magnesium-based alloys using a microfluidic system

    PubMed Central

    Liu, Lumei; Koo, Youngmi; Collins, Boyce; Xu, Zhigang; Sankar, Jagannathan

    2017-01-01

    Magnesium (Mg)-based stents are extensively explored to alleviate atherosclerosis due to their biodegradability and relative hemocompatibility. To ensure the quality, safety and cost-efficacy of bioresorbable scaffolds and full utilization of the material tunability afforded by alloying, it is critical to access degradability and thrombosis potential of Mg-based alloys using improved in vitro models that mimic as closely as possible the in vivo microenvironment. In this study, we investigated biodegradation and initial thrombogenic behavior of Mg-based alloys at the interface between Mg alloys’ surface and simulated physiological environment using a microfluidic system. The degradation properties of Mg-based alloys WE43, AZ31, ZWEK-L, and ZWEK-C were evaluated in complete culture medium and their thrombosis potentials in platelet rich plasma, respectively. The results show that 1) physiological shear stress increased the corrosion rate and decreased platelets adhesion rate as compared to static immersion; 2) secondary phases and impurities in material composition induced galvanic corrosion, resulting in higher corrosion resistance and platelet adhesion rate; 3) Mg-based alloys with higher corrosion rate showed higher platelets adhesion rate. We conclude that a microfluidic-based in vitro system allows evaluation of biodegradation behaviors and platelets responses of Mg-based alloys under specific shear stress, and degradability is related to platelets adhesion. PMID:28797069

  2. Constant strain rate and peri-implant bone modeling: an in vivo longitudinal micro-CT analysis.

    PubMed

    De Smet, Els; Jaecques, Siegfried V N; Wevers, Martine; Sloten, Jos Vander; Naert, Ignace E

    2013-06-01

    Strain, frequency, loading time, and strain rate, among others, determine mechanical parameters in osteogenic loading. We showed a significant osteogenic effect on bone mass (BM) by daily peri-implant loading at 1.600µε.s(-1) after 4 weeks. To study the peri-implant osteogenic effect of frequency and strain in the guinea pig tibia by in vivo longitudinal micro-computed tomography (CT) analysis. One week after implant installation in both hind limb tibiae, one implant was loaded daily for 10' during 4 weeks, while the other served as control. Frequencies (3, 10, and 30Hz) and strains varied alike in the three series to keep the strain rate constant at 1.600µε.s(-1) . In vivo micro-CT scans were taken of both tibiae: 1 week after implantation but before loading (v1) and after 2 (v2) and 4 weeks (v3) of loading as well as postmortem (pm). BM (BM (%) bone-occupied area fraction) was calculated as well as the difference between test and control sides (delta BM) RESULTS: All implants (n=78) were clinically stable at 4 weeks. Significant increase in BM was measured between v1 and v2 (p<.0001) and between v1 and v3 (p<.0001). A significant positive effect of loading on delta BM was observed in the distal peri-implant marrow 500 Region of Interest already 2 weeks after loading (p=.01) and was significantly larger (11%) in series 1 compared with series 2 (p=.006) and 3 (p=.016). Within the constraints of constant loading time and strain rate, the effect of early implant loading on the peri-implant bone is strongly dependent on strain and frequency. This cortical bone model has shown to be most sensitive for high force loading at low frequency. © 2011 Wiley Periodicals, Inc.

  3. Bacterial endotoxin adhesion to different types of orthodontic adhesives

    PubMed Central

    ROMUALDO, Priscilla Coutinho; GUERRA, Thaís Rodrigues; ROMANO, Fábio Lourenço; da SILVA, Raquel Assed Bezerra; BRANDÃO, Izaíra Tincani; SILVA, Célio Lopes; da SILVA, Lea Assed Bezerra; NELSON-FILHO, Paulo

    2017-01-01

    Abstract Bacterial endotoxin (LPS) adhesion to orthodontic brackets is a known contributing factor to inflammation of the adjacent gingival tissues. Objective The aim of this study was to assess whether LPS adheres to orthodontic adhesive systems, comparing two commercial brands. Material and Methods Forty specimens were fabricated from Transbond XT and Light Bond composite and bonding agent components (n=10/component), then contaminated by immersion in a bacterial endotoxin solution. Contaminated and non-contaminated acrylic resin samples were used as positive and negative control groups, respectively. LPS quantification was performed by the Limulus Amebocyte Lysate QCL-1000™ test. Data obtained were scored and subjected to the Chi-square test using a significance level of 5%. Results There was endotoxin adhesion to all materials (p<0.05). No statistically significant difference was found between composites/bonding agents and acrylic resin (p>0.05). There was no significant difference (p>0.05) among commercial brands. Affinity of endotoxin was significantly greater for the bonding agents (p=0.0025). Conclusions LPS adhered to both orthodontic adhesive systems. Regardless of the brand, the endotoxin had higher affinity for the bonding agents than for the composites. There is no previous study assessing the affinity of LPS for orthodontic adhesive systems. This study revealed that LPS adheres to orthodontic adhesive systems. Therefore, additional care is recommended to orthodontic applications of these materials. PMID:28877283

  4. Evaluation of the rate constants of sugar transport through maltoporin (LamB) of Escherichia coli from the sugar-induced current noise

    PubMed Central

    1995-01-01

    LamB (maltoporin) of Escherichia coli outer membrane was reconstituted into artificial lipid bilayer membranes. The channel contains a binding site for sugars and is blocked for ions when the site is occupied by a sugar. The on and off reactions of sugar binding cause an increase of the noise of the current through the channel. The sugar-induced current noise of maltoporin was used for the evaluation of the sugar-binding kinetics for different sugars of the maltooligosaccharide series and for sucrose. The on rate constant for sugar binding was between 10(6) and 10(7) M-1.s-1 for the maltooligosaccharides and corresponds to the movement of the sugars from the aqueous phase to the central binding site. The off rate (corresponding to the release of the sugars from the channel) decreased with increasing number of glucose residues in the maltooligosaccharides from approximately 2,000 s-1 for maltotriose to 180 s-1 for maltoheptaose. The kinetics for sucrose movement was considerably slower. The activation energies of the stability constant and of the rate constants for sugar binding were evaluated from noise experiments at different temperatures. The role of LamB in the transport of maltooligosaccharides across the outer membrane is discussed. PMID:7539481

  5. Cell adhesion to borate glasses by colloidal probe microscopy.

    PubMed

    Wiederhorn, Sheldon M; Chae, Young-Hun; Simon, Carl G; Cahn, Jackson; Deng, Yan; Day, Delbert

    2011-05-01

    The adhesion of osteoblast-like cells to silicate and borate glasses was measured in cell growth medium using colloidal probe microscopy. The probes consisted of silicate and borate glass spheres, 25-50 μm in diameter, attached to atomic force microscope cantilevers. Variables of the study included glass composition and time of contact of the cell to the glasses. Increasing the time of contact from 15 to 900 s increased the force of adhesion. The data could be plotted linearly on a log-log plot of adhesive force versus time. Of the seven glasses tested, five had slopes close to 0.5, suggesting a square root dependence of the adhesive force on the contact time. Such behavior can be interpreted as a diffusion limited process occurring during the early stages of cell attachment. We suggest that the rate limiting step in the adhesion process is the diffusion of integrins resident in the cell membrane to the area of cell attachment. Data presented in this paper support the hypothesis of Hench et al. that strong adhesion depends on the formation of a calcium phosphate reaction layer on the surfaces of the glass. Glasses that did not form a calcium phosphate layer exhibited a weaker adhesive force relative to those glasses that did form a calcium phosphate layer. Published by Elsevier Ltd.

  6. Perturbation theory in the catalytic rate constant of the Henri-Michaelis-Menten enzymatic reaction.

    PubMed

    Bakalis, Evangelos; Kosmas, Marios; Papamichael, Emmanouel M

    2012-11-01

    The Henry-Michaelis-Menten (HMM) mechanism of enzymatic reaction is studied by means of perturbation theory in the reaction rate constant k (2) of product formation. We present analytical solutions that provide the concentrations of the enzyme (E), the substrate (S), as well as those of the enzyme-substrate complex (C), and the product (P) as functions of time. For k (2) small compared to k (-1), we properly describe the entire enzymatic activity from the beginning of the reaction up to longer times without imposing extra conditions on the initial concentrations E ( o ) and S ( o ), which can be comparable or much different.

  7. The reaction H + C4H2 - Absolute rate constant measurement and implication for atmospheric modeling of Titan

    NASA Technical Reports Server (NTRS)

    Nava, D. F.; Mitchell, M. B.; Stief, L. J.

    1986-01-01

    The absolute rate constant for the reaction H + C4H2 has been measured over the temperature (T) interval 210-423 K, using the technique of flash photolysis-resonance fluorescence. At each of the five temperatures employed, the results were independent of variations in C4H2 concentration, total pressure of Ar or N2, and flash intensity (i.e., the initial H concentration). The rate constant, k, was found to be equal to 1.39 x 10 to the -10th exp (-1184/T) cu cm/s, with an error of one standard deviation. The Arrhenius parameters at the high pressure limit determined here for the H + C4H2 reaction are consistent with those for the corresponding reactions of H with C2H2 and C3H4. Implications of the kinetic carbon chemistry results, particularly those at low temperature, are considered for models of the atmospheric carbon chemistry of Titan. The rate of this reaction, relative to that of the analogous, but slower, reaction of H + C2H2, appears to make H + C4H2 a very feasible reaction pathway for effective conversion of H atoms to molecular hydrogen in the stratosphere of Titan.

  8. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  9. Clinical status of ten dentin adhesive systems.

    PubMed

    Van Meerbeek, B; Peumans, M; Verschueren, M; Gladys, S; Braem, M; Lambrechts, P; Vanherle, G

    1994-11-01

    Laboratory testing of dentin adhesive systems still requires corroboration by long-term clinical trials for their ultimate clinical effectiveness to be validated. The objective of this clinical investigation was to evaluate, retrospectively, the clinical effectiveness of earlier-investigated dentin adhesive systems (Scotchbond, Gluma, Clearfil New Bond, Scotchbond 2, Tenure, and Tripton), and to compare their clinical results with those obtained with four modern total-etch adhesive systems (Bayer exp. 1 and 2, Clearfil Liner Bond System, and Scotchbond Multi-Purpose). In total, 1177 Class V cervical lesions in the teeth of 346 patients were restored following two cavity designs: In Group A, enamel was neither beveled nor intentionally etched, as per ADA guidelines; in Group B, adjacent enamel was beveled and conditioned. Clinical retention rates definitely indicated the improved clinical efficacy of the newest dentin adhesives over the earlier systems. With regard to adhesion strategy, adhesive systems that removed the smear layer and concurrently demineralized the dentin surface layer performed clinically better than systems that modified the disorderly layer of smear debris without complete removal. Hybridization by resin interdiffusion into the exposed dentinal collagen layer, combined with attachment of resin tags into the opened dentin tubules, appeared to be essential for reliable dentin bonding but might be insufficient by itself. The additional formation of an elastic bonding area as a polymerization shrinkage absorber and the use of a microfine restorative composite apparently guaranteed an efficient clinical result. The perfect one-year retention recorded for Clearfil Liner Bond System and Scotchbond Multi-Purpose must be confirmed at later recalls.

  10. Optimal decay rate for the wave equation on a square with constant damping on a strip

    NASA Astrophysics Data System (ADS)

    Stahn, Reinhard

    2017-04-01

    We consider the damped wave equation with Dirichlet boundary conditions on the unit square parametrized by Cartesian coordinates x and y. We assume the damping a to be strictly positive and constant for x<σ and zero for x>σ . We prove the exact t^{-4/3}-decay rate for the energy of classical solutions. Our main result (Theorem 1) answers question (1) of Anantharaman and Léautaud (Anal PDE 7(1):159-214, 2014, Section 2C).

  11. From hydration repulsion to dry adhesion between asymmetric hydrophilic and hydrophobic surfaces

    PubMed Central

    Kanduč, Matej; Netz, Roland R.

    2015-01-01

    Using all-atom molecular dynamics (MD) simulations at constant water chemical potential in combination with basic theoretical arguments, we study hydration-induced interactions between two overall charge-neutral yet polar planar surfaces with different wetting properties. Whether the water film between the two surfaces becomes unstable below a threshold separation and cavitation gives rise to long-range attraction, depends on the sum of the two individual surface contact angles. Consequently, cavitation-induced attraction also occurs for a mildly hydrophilic surface interacting with a very hydrophobic surface. If both surfaces are very hydrophilic, hydration repulsion dominates at small separations and direct attractive force contribution can—if strong enough—give rise to wet adhesion in this case. In between the regimes of cavitation-induced attraction and hydration repulsion we find a narrow range of contact angle combinations where the surfaces adhere at contact in the absence of cavitation. This dry adhesion regime is driven by direct surface–surface interactions. We derive simple laws for the cavitation transition as well as for the transition between hydration repulsion and dry adhesion, which favorably compare with simulation results in a generic adhesion state diagram as a function of the two surface contact angles. PMID:26392526

  12. Impact of the differential fluence distribution of brachytherapy sources on the spectroscopic dose-rate constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malin, Martha J.; Bartol, Laura J.; DeWerd, Larry A., E-mail: mmalin@wisc.edu, E-mail: ladewerd@wisc.edu

    2015-05-15

    Purpose: To investigate why dose-rate constants for {sup 125}I and {sup 103}Pd seeds computed using the spectroscopic technique, Λ{sub spec}, differ from those computed with standard Monte Carlo (MC) techniques. A potential cause of these discrepancies is the spectroscopic technique’s use of approximations of the true fluence distribution leaving the source, φ{sub full}. In particular, the fluence distribution used in the spectroscopic technique, φ{sub spec}, approximates the spatial, angular, and energy distributions of φ{sub full}. This work quantified the extent to which each of these approximations affects the accuracy of Λ{sub spec}. Additionally, this study investigated how the simplified water-onlymore » model used in the spectroscopic technique impacts the accuracy of Λ{sub spec}. Methods: Dose-rate constants as described in the AAPM TG-43U1 report, Λ{sub full}, were computed with MC simulations using the full source geometry for each of 14 different {sup 125}I and 6 different {sup 103}Pd source models. In addition, the spectrum emitted along the perpendicular bisector of each source was simulated in vacuum using the full source model and used to compute Λ{sub spec}. Λ{sub spec} was compared to Λ{sub full} to verify the discrepancy reported by Rodriguez and Rogers. Using MC simulations, a phase space of the fluence leaving the encapsulation of each full source model was created. The spatial and angular distributions of φ{sub full} were extracted from the phase spaces and were qualitatively compared to those used by φ{sub spec}. Additionally, each phase space was modified to reflect one of the approximated distributions (spatial, angular, or energy) used by φ{sub spec}. The dose-rate constant resulting from using approximated distribution i, Λ{sub approx,i}, was computed using the modified phase space and compared to Λ{sub full}. For each source, this process was repeated for each approximation in order to determine which approximations

  13. Hydroxyapatite induces spontaneous polymerization of model self-etch dental adhesives.

    PubMed

    Zhang, Ying; Wu, Ningjing; Bai, Xinyan; Xu, Changqi; Liu, Yi; Wang, Yong

    2013-10-01

    The objective of this study is to report for the first time the spontaneous polymerization phenomenon of self-etch dental adhesives induced by hydroxylapatite (HAp). Model self-etch adhesives were prepared by using a monomer mixture of bis[2-(methacryloyloxy)ethyl] phosphate (2MP) with 2-hydroxyethyl methacrylate (HEMA). The initiator system consisted of camphorquinone (CQ, 0.022 mmol/g) and ethyl 4-dimethylaminobenzoate (4E, 0.022-0.088 mmol/g). HAp (2-8 wt.%) was added to the neat model adhesive. In a dark environment, the polymerization was monitored in-situ using ATR/FT-IR, and the mechanical properties of the polymerized adhesives were evaluated using nanoindentation technique. Results indicated that spontaneous polymerization was not observed in the absence of HAp. However, as different amounts of HAp were incorporated into the adhesives, spontaneous polymerization was induced. Higher HAp content led to higher degree of conversion (DC), higher rate of polymerization (RP) and shorter induction period (IP). In addition, higher 4E content also elevated DC and RP and reduced IP of the adhesives. Nanoindentation result suggested that the Young's modulus of the polymerized adhesives showed similar dependence on HAp and 4E contents. In summary, interaction with HAp could induce spontaneous polymerization of the model self-etch adhesives. This result provides important information for understanding the initiation mechanism of the self-etch adhesives, and may be of clinical significance to strengthen the adhesive/dentin interface based on the finding. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Long-term stability of dental adhesive incorporated by boron nitride nanotubes.

    PubMed

    Degrazia, Felipe Weidenbach; Leitune, Vicente Castelo Branco; Visioli, Fernanda; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo

    2018-03-01

    The aim of this study was to evaluate physicochemical properties, long-term microtensile bond strength and cytotoxicity of methacrylate-based adhesive containing boron nitride nanotubes (BNNTs) as fillers. A dental adhesive was formulated using BisGMA/HEMA, 66/33wt% (control). Inorganic BNNT fillers were incorporated into the adhesive at different concentrations (0.05, 0.075, 0.1 and 0.15wt%). Analyses of degree of conversion (DC), polymerization rate [Rp.(s -1 )], contact angle (CA) on dentin, after 24h and 6 months microtensile bond strength (μTBS-24h and 6 months) were assessed. Cytotoxicity was performed through viability of fibroblast cells (%) by sulforhodamine B (SRB) colorimetry. DC and max. polymerization rate increased (p<0.05) after incorporating 0.075 and 0.1wt% BNNT. The contact angle on dentin increased (p<0.05) after incorporating 0.15wt% BNNT. The μTBS-24h showed no changes (p>0.05) after incorporating up to 0.15wt% BNNT comparing to control. After 6 months, μTBS decreased (p<0.05) for control and 0.15wt% BNNT and BNNT groups up to 0.15wt% showed higher μTBS than control (p<0.05). No difference of fibroblast growth was found among adhesives (p>0.05) and up to 19% of cell viability was found comparing 0.05wt% BNNT to positive control group (100%). Incorporating boron nitride nanotubes up to 0.1wt% into dental adhesive increased the long-term stability to dentin without decreasing viability of fibroblast cell growth. Thus, the use of BNNTs as filler may decrease failure rate of current dentinal adhesives. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Computational study of the reactions of methanol with the hydroperoxyl and methyl radicals. 2. Accurate thermal rate constants.

    PubMed

    Alecu, I M; Truhlar, Donald G

    2011-12-29

    Multistructural canonical variational-transition-state theory with multidimensional tunneling (MS-CVT/MT) is employed to calculate thermal rate constants for the abstraction of hydrogen atoms from both positions of methanol by the hydroperoxyl and methyl radicals over the temperature range 100-3000 K. The M08-HX hybrid meta-generalized gradient approximation density functional and M08-HX with specific reaction parameters, both with the maug-cc-pVTZ basis set, were validated in part 1 of this study (Alecu, I. M.; Truhlar, D. G. J. Phys. Chem. A2011, 115, 2811) against highly accurate CCSDT(2)(Q)/CBS calculations for the energetics of these reactions, and they are used here to compute the properties of all stationary points and the energies, gradients, and Hessians of nonstationary points along each considered reaction path. The internal rotations in some of the transition states are found to be highly anharmonic and strongly coupled to each other, and they generate multiple structures (conformations) whose contributions are included in the partition function. It is shown that the previous estimates for these rate constants used to build kinetic models for the combustion of methanol, some of which were based on transition state theory calculations with one-dimensional tunneling corrections and harmonic-oscillator approximations or separable one-dimensional hindered rotor treatments of torsions, are appreciably different than the ones presently calculated using MS-CVT/MT. The rate constants obtained from the best MS-CVT/MT calculations carried out in this study, in which the important effects of corner cutting due to small and large reaction path curvature are captured via a microcanonical optimized multidimensional tunneling (μOMT) treatment, are recommended for future refinement of the kinetic model for methanol combustion. © 2011 American Chemical Society

  16. Assessment of Volumetric-Modulated Arc Therapy for Constant and Variable Dose Rates

    PubMed Central

    De Ornelas-Couto, Mariluz; Mihaylov, Ivaylo; Dogan, Nesrin

    2017-01-01

    Purpose: The aim of this study is to compare the effects of dose rate on volumetric-modulated arc therapy plans to determine optimal dose rates for prostate and head and neck (HN) cases. Materials and Methods: Ten prostate and ten HN cases were retrospectively studied. For each case, seven plans were generated: one variable dose rate (VDR) and six constant dose rate (CDR) (100–600 monitor units [MUs]/min) plans. Prescription doses were: 80 Gy to planning target volume (PTV) for the prostate cases, and 70, 60, and 54 Gy to PTV1, PTV2, and PTV3, respectively, for HN cases. Plans were normalized to 95% of the PTV and PTV1, respectively, with the prescription dose. Plans were assessed using Dose-Volume-Histogram metrics, homogeneity index, conformity index, MUs, and delivery time. Results: For the prostate cases, significant differences were found for rectum D35 between VDR and all CDR plans, except CDR500. Furthermore, VDR was significantly different than CDR100 and 200 for bladder D50. Delivery time for all CDR plans and MUs for CDR400–600 were significantly higher when compared to VDR. HN cases showed significant differences between VDR and CDR100, 500 and 600 for D2 to the cord and brainstem. Significant differences were found for delivery time and MUs for all CDR plans, except CDR100 for number of MUs. Conclusion: The most significant differences were observed in delivery time and number of MUs. All-in-all, the best CDR for prostate cases was found to be 300 MUs/min and 200 or 300 MUs/min for HN cases. However, VDR plans are still the choice in terms of MU efficiency and plan quality. PMID:29296033

  17. Study protocol for a multi-center, randomized controlled trial to develop Japanese denture adhesive guidelines for patients with complete dentures: the Denture Adhesive Guideline trial: study protocol for a randomized controlled trial.

    PubMed

    Kimoto, Suguru; Kawai, Yasuhiko; Gunji, Atsuko; Kondo, Hisatomo; Nomura, Taro; Murakami, Tomohiko; Tsuboi, Akito; Hong, Guang; Minakuchi, Shunsuke; Sato, Yusuke; Ohwada, Gaku; Suzuki, Tetsuya; Kimoto, Katsuhiko; Hoshi, Noriyuki; Saita, Makiko; Yoneyama, Yoshikazu; Sato, Yohei; Morokuma, Masakazu; Okazaki, Joji; Maeda, Takeshi; Nakai, Kenichiro; Ichikawa, Tetsuo; Nagao, Kan; Fujimoto, Keiko; Murata, Hiroshi; Kurogi, Tadafumi; Yoshida, Kazuhiro; Nishimura, Masahiro; Nishi, Yasuhiro; Murakami, Mamoru; Hosoi, Toshio; Hamada, Taizo

    2016-10-18

    Denture adhesives, characterized as medical products in 1935 by the American Dental Association, have been considered useful adjuncts for improving denture retention and stability. However, many dentists in Japan are hesitant to acknowledge denture adhesives in daily practice because of the stereotype that dentures should be inherently stable, without the aid of adhesives. The aim of this study is to verify the efficacy of denture adhesives to establish guidelines for Japanese users. The null hypothesis is that the application of denture adhesives, including the cream and powder types, or a control (isotonic sodium chloride solution) would not produce different outcomes nor would they differentially improve the set outcomes between baseline and day 4 post-application. This ten-center, randomized controlled trial with parallel groups is ongoing. Three hundred edentulous patients with complete dentures will be allocated to three groups (cream-type adhesive, powder-type adhesive, and control groups). The participants will wear their dentures with the denture adhesive for 4 days, including during eight meals (three breakfasts, two lunches, and three dinners). The baseline measurements and final measurements for the denture adhesives will be performed on the first day and after breakfast on the fourth day. The primary outcome is a general satisfaction rating for the denture. The secondary outcomes are denture satisfaction ratings for various denture functions, occlusal bite force, resistance to dislodgement, masticatory performance, perceived chewing ability, and oral health-related quality of life. Between-subjects comparisons among the three groups and within-subjects comparisons of the pre- and post-intervention measurements will be performed. Furthermore, a multiple regression analysis will be performed. The main analyses will be based on the intention-to-treat principle. A sample size of 100 subjects per group, including an assumed dropout rate of 10 %, will be

  18. High-Temperature Adhesives for Thermally Stable Aero-Assist Technologies

    NASA Technical Reports Server (NTRS)

    Eberts, Kenneth; Ou, Runqing

    2013-01-01

    Aero-assist technologies are used to control the velocity of exploration vehicles (EVs) when entering Earth or other planetary atmospheres. Since entry of EVs in planetary atmospheres results in significant heating, thermally stable aero-assist technologies are required to avoid the high heating rates while maintaining low mass. Polymer adhesives are used in aero-assist structures because of the need for high flexibility and good bonding between layers of polymer films or fabrics. However, current polymer adhesives cannot withstand temperatures above 400 C. This innovation utilizes nanotechnology capabilities to address this need, leading to the development of high-temperature adhesives that exhibit high thermal conductivity in addition to increased thermal decomposition temperature. Enhanced thermal conductivity will help to dissipate heat quickly and effectively to avoid temperature rising to harmful levels. This, together with increased thermal decomposition temperature, will enable the adhesives to sustain transient high-temperature conditions.

  19. The effect of fatigue and environment on the adhesion and delamination of thin polymer films

    NASA Astrophysics Data System (ADS)

    Snodgrass, Jeffrey Matthew

    Polymers are increasingly used in the interconnect and packaging levels of microelectronic devices. Thus, adhesion of polymer films to their adjacent inorganic layers is critical to the manufacturability and reliability of microelectronic components. Weak interfacial adhesion can result in delamination, causing a loss of package hermeticity or the failure of electrical contacts. Recently, interface fracture mechanics techniques have been applied to the problem of thin film delamination and are now used to measure interface adhesion. These techniques allow for characterization of interface adhesion in terms of the critical strain energy release rate, GC, in units of J/m2. In this dissertation, studies are described that quantify the effects of fundamental parameters on the critical adhesion and resistance to subcritical (time-dependent) delamination of benzocyclobutene (BCB)/silica and epoxy underfill/polyimide interfaces. Results are presented detailing the action of small-molecule adhesion promoters on the critical interface adhesion energy of BCB/silica. Silane coupling agents with different functional end groups were used to increase chemical bonding at this interface in order to achieve optimized adhesion. Testing was performed at different mode mixities to evaluate the effect of loading mode on the polymer interface fracture. Subcritical debonding data were measured under two different loading conditions and results are presented in terms of the debond growth rate as a function of applied strain energy release rate. Monotonic loading was used to examine environment-assisted delamination processes, while fatigue loading was used to understand the effects of thermomechanical cycling. Debond growth rates over the range of 10-3 to 10-9 m/s were characterized under mode I and mixed-mode loading. Atomic force microscopy and X-ray photoelectron spectroscopy were used to characterize the fracture surfaces of these interfaces and to generate detailed information about

  20. Effect of Emodin on Preventing Postoperative Intra-Abdominal Adhesion Formation

    PubMed Central

    Wei, Guangbing; Zhou, Cancan; Wang, Guanghui; Wang, Kang

    2017-01-01

    Background Postoperative intra-abdominal adhesions are a major complication after abdominal surgery. Although various methods have been used to prevent and treat adhesions, the effects have not been satisfactory. Emodin, a naturally occurring anthraquinone derivative and an active ingredient in traditional Chinese herbs, exhibits a variety of pharmacological effects. In our study, we demonstrated the effect of emodin treatment on preventing postoperative adhesion formation. Materials and Methods A total of 48 rats were divided into six groups. Abdominal adhesions were created by abrasion of the cecum and its opposite abdominal wall. In the experimental groups, the rats were administered daily oral doses of emodin. On the seventh day after operation, the rats were euthanized, and blood and pathological specimens were collected. Abdominal adhesion formation was evaluated by necropsy, pathology, immunohistochemistry, Western blot, and enzyme-linked immunosorbent assay analyses. Results Abdominal adhesions were markedly reduced by emodin treatment. Compared with the control group, collagen deposition was reduced and the peritoneal mesothelial completeness rate was higher in the emodin-treated groups. Emodin had anti-inflammatory effects, reduced oxidative stress, and promoted the movement of the intestinal tract (P < 0.05). Conclusion Emodin significantly reduced intra-abdominal adhesion formation in a rat model. PMID:28831292

  1. Simultaneous measurement of glucose blood-brain transport constants and metabolic rate in rat brain using in-vivo 1H MRS.

    PubMed

    Du, Fei; Zhang, Yi; Zhu, Xiao-Hong; Chen, Wei

    2012-09-01

    Cerebral glucose consumption and glucose transport across the blood-brain barrier are crucial to brain function since glucose is the major energy fuel for supporting intense electrophysiological activity associated with neuronal firing and signaling. Therefore, the development of noninvasive methods to measure the cerebral metabolic rate of glucose (CMR(glc)) and glucose transport constants (K(T): half-saturation constant; T(max): maximum transport rate) are of importance for understanding glucose transport mechanism and neuroenergetics under various physiological and pathological conditions. In this study, a novel approach able to simultaneously measure CMR(glc), K(T), and T(max) via monitoring the dynamic glucose concentration changes in the brain tissue using in-vivo (1)H magnetic resonance spectroscopy (MRS) and in plasma after a brief glucose infusion was proposed and tested using an animal model. The values of CMR(glc), T(max), and K(T) were determined to be 0.44 ± 0.17 μmol/g per minute, 1.35 ± 0.47 μmol/g per minute, and 13.4 ± 6.8 mmol/L in the rat brain anesthetized with 2% isoflurane. The Monte-Carlo simulations suggest that the measurements of CMR(glc) and T(max) are more reliable than that of K(T). The overall results indicate that the new approach is robust and reliable for in-vivo measurements of both brain glucose metabolic rate and transport constants, and has potential for human application.

  2. Absolute rate constants for O + NO + M /= He, Ne, Ar, Kr/ yields NO2 + M from 217-500 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Payne, W. A.; Whytock, D. A.

    1976-01-01

    Rate constants for the reaction O + NO + M yields NO2 + M have been obtained at temperatures from 217-500 K in four different rare gases by a method combining flash photolysis with time resolved detection of O(3-P) by resonance fluorescence. The measured rate constants in Arrhenius form are (10.8 plus or minus 1.2) x 10 to the -33rd exp(1040 plus or minus 60/1.987 T) for helium; (9.01 plus or minus 1.16) x 10 to the -33rd exp(1180 plus or minus 70/1.987 T) for argon; (9.33 plus or minus 1.10) x 10 to the -33rd exp(1030 plus or minus 60/1.987 T) for neon; and (9.52 plus or minus 1.10) x 10 to the -33rd exp(1140 plus or minus 70/1.987 T) for krypton in units of cm to the 6th/sq molecule/s.

  3. Changes in materials properties explain the effects of humidity on gecko adhesion.

    PubMed

    Puthoff, Jonathan B; Prowse, Michael S; Wilkinson, Matt; Autumn, Kellar

    2010-11-01

    Geckos owe their remarkable stickiness to millions of dry setae on their toes, and the mechanism of adhesion in gecko setae has been the topic of scientific scrutiny for over two centuries. Previously, we demonstrated that van der Waals forces are sufficient for strong adhesion and friction in gecko setae, and that water-based capillary adhesion is not required. However, recent studies demonstrated that adhesion increases with relative humidity (RH) and proposed that surface hydration and capillary water bridge formation is important or even necessary. In this study, we confirmed a significant effect of RH on gecko adhesion, but rejected the capillary adhesion hypothesis. While contact forces of isolated tokay gecko setal arrays increased with humidity, the increase was similar on hydrophobic and hydrophilic surfaces, inconsistent with a capillary mechanism. Contact forces increased with RH even at high shear rates, where capillary bridge formation is too slow to affect adhesion. How then can a humidity-related increase in adhesion and friction be explained? The effect of RH on the mechanical properties of setal β-keratin has escaped consideration until now. We discovered that an increase in RH softens setae and increases viscoelastic damping, which increases adhesion. Changes in setal materials properties, not capillary forces, fully explain humidity-enhanced adhesion, and van der Waals forces remain the only empirically supported mechanism of adhesion in geckos.

  4. Morphological Evaluation of the Adhesive/Enamel interfaces of Two-step Self-etching Adhesives and Multimode One-bottle Self-etching Adhesives.

    PubMed

    Sato, Takaaki; Takagaki, Tomohiro; Matsui, Naoko; Hamba, Hidenori; Sadr, Alireza; Nikaido, Toru; Tagami, Junji

    To evaluate the acid-base resistant zone (ABRZ) at the adhesive/enamel interface of self-etching adhesives with or without prior phosphoric acid etching. Four adhesives were used in 8 groups: Clearfil SE Bond (SEB), Optibond XTR (XTR), Scotchbond Universal Adhesive (SBU), and Clearfil BOND SE ONE (ONE) without prior phosphoric-acid etching, and each adhesive with phosphoric acid etching for 10 s (P-SEB, P-XTR, P-SBU and P-ONE, respectively). After application of self-etching adhesives on ground enamel surfaces of human teeth, a flowable composite was placed. For observation of the acid-base resistant zone (ABRZ), the bonded interface was exposed to demineralizing solution (pH 4.5) for 4.5 h, followed by 5% NaOCl with ultrasonication for 20 min. After the acid-base challenge, morphological attributes of the interface were observed using SEM. ABRZ formation was confirmed in all groups. The funnel-shaped erosion beneath the interface was present in SBU and ONE, where nearly 10 to 15 μm of enamel was dissolved. With phosphoric acid etching, the ABRZs were obviously thicker compared with no phosphoric acid etching. Enamel beneath the bonding interface was more susceptible to acid dissolution in SBU and ONE. In the case of the one-bottle self-etching adhesives and universal adhesives that intrinsically have higher pH values, enamel etching should be recommended to improve the interfacial quality.

  5. Influence of Application Time and Etching Mode of Universal Adhesives on Enamel Adhesion.

    PubMed

    Sai, Keiichi; Takamizawa, Toshiki; Imai, Arisa; Tsujimoto, Akimasa; Ishii, Ryo; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi

    2018-01-01

    To investigate the influence of application time and etching mode of universal adhesives on enamel adhesion. Five universal adhesives, Adhese Universal, Bondmer Lightless, Clearfil Universal Bond Quick, G-Premio Bond, and Scotchbond Universal, were used. Bovine incisors were prepared and divided into four groups of ten teeth each. SBS, Ra, and SFE were determined after the following procedures: 1. self-etch mode with immediate air blowing after application (IA); 2. self-etch mode with prolonged application time (PA); 3. etch-and-rinse mode with IA; 4. etch-and-rinse mode with PA. After 24-h water storage, the bonded assemblies were subjected to shear bond strength (SBS) tests. For surface roughness (Ra) and surface free energy (SFE) measurements, the adhesives were simply applied to the enamel and rinsed with acetone and water before the measurements were carried out. Significantly higher SBS and Ra values were obtained with etch-and-rinse mode than with self-etch mode regardless of the application time or type of adhesive. Although most adhesives showed decreased SFE values with increased application time in self-etch mode, SFE values in etch-and-rinse mode were dependent on the adhesive type and application time. Etching mode, application time, and type of adhesive significantly influenced the SBS, Ra, and SFE values.

  6. The failure rate of adhesively retained composite core build-ups in comparison with metal-added glass ionomer core build-ups.

    PubMed

    Stober, Thomas; Rammelsberg, P

    2005-01-01

    The purpose of this study was to evaluate the clinical performance of two adhesively retained composite core materials and compare them with a metal-added glass ionomer. The main objective evaluated was total or partial loss of build-ups during the treatment prior to crown cementation. In 187 patients, 315 vital and non-vital teeth were built up after randomisation with either Rebilda D (RD), Rebilda SC (RSC) or Ketac Silver Aplicap (KSA). The composites were applied in the total-etch-technique with the corresponding dentin bonding agent. The metal-added glass ionomer was used with a conditioner. One group of patients was treated by experienced dentists, the other by dental students, in order to evaluate the effects of different levels of experience. Data were analysed using Mann-Whitney-U-Test and binomial logistic regression. The early failure rate (partial or total loss) of core build-ups before crown cementation was significantly higher for KSA (28.8%), as compared to RSC (15.3%, p=0.037) and RD (15%, p=0.025). Most failures were observed during the removal of the temporary crowns. The rate of replacements was between 3.0 (RD/dentists) and 20.4% (KSA/students). Furthermore, we found that build-ups made by students had a significantly higher risk of loss than those made by dentists (p=0.028). Adhesively retained self-curing composites show a better clinical short-term performance and can be recommended as core build-up materials.

  7. Constant voltage electro-slag remelting control

    DOEpatents

    Schlienger, M.E.

    1996-10-22

    A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an electrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable. 1 fig.

  8. Constant voltage electro-slag remelting control

    DOEpatents

    Schlienger, Max E.

    1996-01-01

    A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an eletrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable.

  9. The Influence of Pre-Heated Treatment to Improve Adhesion Bond Coating Strength of Fly Ash Based Geopolymer Ceramic

    NASA Astrophysics Data System (ADS)

    Jamaludin, L.; Abdullah, M. M. A. B.; Hussin, K.; Kadir, A. Abdul

    2018-06-01

    The study focus on effect of pre-heated ceramic surface on the adhesion bond strength between geopolymer coating coating and ceramic substrates. Ceramic substrates was pre-heated at different temperature (400 °C, 600 °C, 800 °C and 1000 °C). Fly ash geopolymer coating material potential used to protect surface used in exposure conditions after sintering at high temperature. Fly ash and alkali activator (Al2O3/Na2SiO3) were mixed with 2.0 solids-to-liquid ratios to prepare geopolymer coating material at constant NaOH concentration of 12M. Adhesion test was conducted to determine the adhesion bond between ceramic substrates and fly ash coating material. The results showed the pre-heated ceramic substrates effect the adhesion bond of coating compared with untreated substrates with increasing of strength up to 20 % for temperature 600 °C.

  10. Adhesion behaviors on superhydrophobic surfaces.

    PubMed

    Zhu, Huan; Guo, Zhiguang; Liu, Weimin

    2014-04-18

    The adhesion behaviors of superhydrophobic surfaces have become an emerging topic to researchers in various fields as a vital step in the interactions between materials and organisms/materials. Controlling the chemical compositions and topological structures via various methods or technologies is essential to fabricate and modulate different adhesion properties, such as low-adhesion, high-adhesion and anisotropic adhesion on superhydrophobic surfaces. We summarize the recent developments in both natural superhydrophobic surfaces and artificial superhydrophobic surfaces with various adhesions and also pay attention to superhydrophobic surfaces switching between low- and high-adhesion. The methods to regulate or translate the adhesion of superhydrophobic surfaces can be considered from two perspectives. One is to control the chemical composition and change the surface geometric structure on the surfaces, respectively or simultaneously. The other is to provide external stimulations to induce transitions, which is the most common method for obtaining switchable adhesions. Additionally, adhesion behaviors on solid-solid interfaces, such as the behaviors of cells, bacteria, biomolecules and icing on superhydrophobic surfaces are also noticeable and controversial. This review is aimed at giving a brief and crucial overview of adhesion behaviors on superhydrophobic surfaces.

  11. Bulk & Interfacial Contributions to the Adhesion of Acrylic Emulsion-Based Pressure Sensitive Adhesives

    NASA Astrophysics Data System (ADS)

    Wang, Qifeng

    The performance of pressure sensitive adhesives (PSAs) depends strongly on the viscoelastic properties of the adhesive material itself and the surface that it is placed into contact with. In this work we use a multiple- oscillatory test with microindentation apparatus that is able to quantify the mechanical response of adhesive materials in the linear regime, and also in the highly strained regime where the adhesive layer has cavitated to form mechanically isolated brils. The experiments involved the use of hemispherical indenters made of glass or polyethylene, brought into contact with a thin adhesive layer and then retracted, with comprehensive displacement history. A set of model acrylic emulsion-based PSAs were used in the experiments which show a suprising degree of elastic character at high strain. The experiment result suggest that an adhesive failure criterion based on the stored elastic energy is appropriate for these systems. The primary effect of the substrate is to modify the maximum strain where adhesive detachment from the indenter occurs.

  12. A new method for promoting adhesion between precious metal alloys and dental adhesives.

    PubMed

    Ohno, H; Araki, Y; Endo, K

    1992-06-01

    A new, simple method of modifying the adherend metal surface by a liquid Ga-Sn alloy (Adlloy) was applied to dental precious and base-metal alloys for adhesion with 4-META adhesive resin. Adhesions of 4-META resin to three other surface states--as-polished, oxidized at high temperature, and electroplated tin--were also performed for comparison with the adhesion on Adlloy-modified surfaces. Bond strength measurements were made, and the durability against water at the adhering interface was evaluated. The Adlloy-modified gold alloys (Type IV and 14 K) and silver-based alloys (Ag-Pd and Ag-Cu) showed not only high bond strengths but also excellent water durability at the adhesion interface. Surface modification by Adlloy, however, did not affect adhesion to Ag-In-Zn and base-metal (SUS, Co-Cr, and Ni-Cr) alloys. Adhesion to the tin-electroplated specimens was comparable with that to the Adlloy-modified specimens.

  13. Adhesion of Escherichia coli onto quartz, hematite and corundum: extended DLVO theory and flotation behavior.

    PubMed

    Farahat, Mohsen; Hirajima, Tsuyoshi; Sasaki, Keiko; Doi, Katsumi

    2009-11-01

    The adhesion of Escherichia coli onto quartz, hematite and corundum was experimentally investigated. A strain of E. coli was used that had the genes for expressing protein for silica precipitation. The maximum cell adhesion was observed at pH <4.3 for quartz and at pH 4.5-8.5 for corundum. For hematite, cell adhesion remained low at all pH values. The microbe-mineral adhesion was assessed by the extended DLVO theory approach. The essential parameters for calculation of microbe-mineral interaction energy (Hamaker constants and acid-base components) were experimentally determined. The extended DLVO approach could be used to explain the results of the adhesion experiments. The effect of E. coli on the floatability of three oxide minerals was determined and the results showed that E. coli can act as a selective collector for quartz at acidic pH values, with 90% of the quartz floated at 1.5 x 10(9)cells/ml. However, only 9% hematite and 30% corundum could be floated under similar conditions. By using E. coli and no reagents, it was possible to separate quartz from a hematite-quartz mixture with Newton's efficiency of 0.70. Removal of quartz from the corundum mixture was achieved by E. coli with Newton's efficiency of 0.62.

  14. Recovering a full dimensional quantum rate constant from a reduced dimensionality calculation: Application to the OH+CO{r_arrow}H+CO{sub 2} reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzegilenko, F.N.; Bowman, J.M.

    1996-08-01

    Two reduced dimensionality theories are used to calculate the thermal rate constant for the OH+CO{r_arrow}H+CO{sub 2} reaction. The standard theory employs energy-shift approximations to extract the full six degree-of-freedom quantum rate constant for this reaction from the previous two degree-of-freedom (2-DOF) quantum calculations of Hernandez and Clary [M.I. Hernandez and D.C. Clary, J. Chem. Phys. {bold 101}, 2779 (1994)]. Three extra bending modes and one extra {open_quote}{open_quote}spectator{close_quote}{close_quote} CO stretch mode are treated adiabatically in the harmonic fashion. The parameters of the exit channel transition state are used to evaluate the frequencies of those additional modes. A new reduced dimensionality theorymore » is also applied to this reaction. This theory explicitly addresses the finding from the 2-DOF calculations that the reaction proceeds mainly via complex formation. A J-shifting approximation has been used to take into account the initial states with non-zero values of total angular momentum in both reduced dimensionality theories. Cumulative reaction probabilities and thermal rate constants are calculated and compared with the previous quasiclassical and reduced dimensionality quantum calculations and with experiment. The rate constant from the new reduced dimensionality theory is between a factor of 5 and 100 times smaller than the statistical transition state theory result, and is in much better agreement with experiment. {copyright} {ital 1996 American Institute of Physics.}« less

  15. Bacterial Adhesion to Hexadecane (Model NAPL)-Water Interfaces

    NASA Astrophysics Data System (ADS)

    Ghoshal, S.; Zoueki, C. R.; Tufenkji, N.

    2009-05-01

    The rates of biodegradation of NAPLs have been shown to be influenced by the adhesion of hydrocarbon- degrading microorganisms as well as their proximity to the NAPL-water interface. Several studies provide evidence for bacterial adhesion or biofilm formation at alkane- or crude oil-water interfaces, but there is a significant knowledge gap in our understanding of the processes that influence initial adhesion of bacteria on to NAPL-water interfaces. In this study bacterial adhesion to hexadecane, and a series of NAPLs comprised of hexadecane amended with toluene, and/or with asphaltenes and resins, which are the surface active fractions of crude oils, were examined using a Microbial Adhesion to Hydrocarbons (MATH) assay. The microorganisms employed were Mycobacterium kubicae, Pseudomonas aeruginosa and Pseudomonas putida, which are hydrocarbon degraders or soil microorganisms. MATH assays as well as electrophoretic mobility measurements of the bacterial cells and the NAPL droplet surfaces in aqueous solutions were conducted at three solution pHs (4, 6 and 7). Asphaltenes and resins were shown to generally decrease microbial adhesion. Results of the MATH assay were not in qualitative agreement with theoretical predictions of bacteria- hydrocarbon interactions based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model of free energy of interaction between the cell and NAPL droplets. In this model the free energy of interaction between two colloidal particles is predicted based on electrical double layer, van der Waals and hydrophobic forces. It is likely that the steric repulsion between bacteria and NAPL surfaces, caused by biopolymers on bacterial surfaces and aphaltenes and resins at the NAPL-water interface contributed to the decreased adhesion compared to that predicted by the XDLVO model.

  16. Adhesion in a Vacuum Environment and its Implications for Dust Mitigation Techniques on Airless Bodies

    NASA Technical Reports Server (NTRS)

    Berkebile, Stephen; Gaier, James R.

    2012-01-01

    During the Apollo missions, the adhesion of dust to critical spacecraft systems was a greater problem than anticipated and resulted in functional degradation of thermal control surfaces, spacesuit seals, and other spacecraft components. Notably, Earth-based simulation efforts did not predict the magnitude and effects of dust adhesion in the lunar environment. Forty years later, we understand that the ultrahigh vacuum (UHV) environment, coupled with micrometeorite impacts and constant ion and photon bombardment from the sun result in atomically clean and high surface energy dust particles and spacecraft surfaces. However, both the dominant mechanism of adhesion in airless environments and the conditions for high fidelity simulation tests have still to be determined. The experiments presented in here aim to aid in the development of dust mitigation techniques for airless bodies (e.g., lunar surface, asteroids, moons of outer planets). The approach taken consists of (a) quantifying the adhesion between common polymer and metallic spacecraft materials and a synthetic noritic volcanic glass, as a function of surface cleanliness and of triboelectric charge transfer in a UHV environment, and (b) determining parameters for high fidelity tests through investigation of adhesion dependence on vacuum environment and sample treatment. Adhesion force has been measured between pins of spacecraft materials and a plate of synthetic volcanic glass by determining the pull-off force with a torsion balance. Although no significant adhesion is generally observed directly as a result of high surface energies, the adhesion due to induced electrostatic charge is observed to increase with spacecraft material cleanliness, in some cases by over a factor of 10. Furthermore, electrostatically-induced adhesion is found to decrease rapidly above pressures of 10-6 torr. It is concluded that high-fidelity tests should be conducted in high to ultrahigh vacuum and include an ionized surface cleaning

  17. Fitting the Elementary Rate Constants of the P-gp Transporter Network in the hMDR1-MDCK Confluent Cell Monolayer Using a Particle Swarm Algorithm

    PubMed Central

    Agnani, Deep; Acharya, Poulomi; Martinez, Esteban; Tran, Thuy Thanh; Abraham, Feby; Tobin, Frank; Ellens, Harma; Bentz, Joe

    2011-01-01

    P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3∶1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the apical membrane. PMID

  18. Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion

    PubMed Central

    Paim, A.; Braghirolli, D.I.; Cardozo, N.S.M.; Pranke, P.; Tessaro, I.C.

    2018-01-01

    Cell adhesion in three-dimensional scaffolds plays a key role in tissue development. However, stem cell behavior in electrospun scaffolds under perfusion is not fully understood. Thus, an investigation was made on the effect of flow rate and shear stress, adhesion time, and seeding density under direct perfusion in polycaprolactone electrospun scaffolds on human dental pulp stem cell detachment. Polycaprolactone scaffolds were electrospun using a solvent mixture of chloroform and methanol. The viable cell number was determined at each tested condition. Cell morphology was analyzed by confocal microscopy after various incubation times for static cell adhesion with a high seeding density. Scanning electron microscopy images were obtained before and after perfusion for the highest flow rate tested. The wall pore shear stress was calculated for all tested flow rates (0.005–3 mL/min). An inversely proportional relationship between adhesion time with cell detachment under perfusion was observed. Lower flow rates and lower seeding densities reduced the drag of cells by shear stress. However, there was an operational limit for the lowest flow rate that can be used without compromising cell viability, indicating that a flow rate of 0.05 mL/min might be more suitable for the tested cell culture in electrospun scaffolds under direct perfusion. PMID:29590258

  19. Mesoscopic Modeling of Blood Clotting: Coagulation Cascade and Platelets Adhesion

    NASA Astrophysics Data System (ADS)

    Yazdani, Alireza; Li, Zhen; Karniadakis, George

    2015-11-01

    The process of clot formation and growth at a site on a blood vessel wall involve a number of multi-scale simultaneous processes including: multiple chemical reactions in the coagulation cascade, species transport and flow. To model these processes we have incorporated advection-diffusion-reaction (ADR) of multiple species into an extended version of Dissipative Particle Dynamics (DPD) method which is considered as a coarse-grained Molecular Dynamics method. At the continuum level this is equivalent to the Navier-Stokes equation plus one advection-diffusion equation for each specie. The chemistry of clot formation is now understood to be determined by mechanisms involving reactions among many species in dilute solution, where reaction rate constants and species diffusion coefficients in plasma are known. The role of blood particulates, i.e. red cells and platelets, in the clotting process is studied by including them separately and together in the simulations. An agonist-induced platelet activation mechanism is presented, while platelets adhesive dynamics based on a stochastic bond formation/dissociation process is included in the model.

  20. Inertial and stick-slip regimes of unstable adhesive tape peeling.

    PubMed

    Dalbe, Marie-Julie; Villey, Richard; Ciccotti, Matteo; Santucci, Stéphane; Cortet, Pierre-Philippe; Vanel, Loïc

    2016-05-18

    We present an experimental characterization of the detachment front unstable dynamics observed during the peeling of pressure sensitive adhesives. We use an experimental set-up specifically designed to control the peeling angle θ and the peeled tape length L, while peeling an adhesive tape from a flat substrate at a constant driving velocity V. High-speed imaging allows us to report the evolution of the period and amplitude of the front oscillations, as well as the relative durations of their fast and slow phases, as a function of the control parameters V, L and θ. Our study shows that, as the driving velocity or the peeling angle increases, the oscillations of the peeling front progressively evolve from genuine "stick-slip" oscillations, made of alternating long stick phases and very brief slip phases, to sinusoidal oscillations of amplitude twice the peeling velocity. We propose a model which, taking into account the peeling angle-dependent kinetic energy cost to accelerate and decelerate the peeled tape, explains the transition from the "stick-slip" to the "inertial" regime of the dynamical instability. Using independent direct measurements of the effective fracture energy of the adhesive-substrate joint, we show that our model quantitatively accounts for the two regimes of the unstable dynamics.

  1. Evaluated rate constants for selected HCFC's and HFC's with OH and O((sup)1D)

    NASA Technical Reports Server (NTRS)

    Hampson, Robert F.; Kurylo, Michael J.; Sander, Stanley P.

    1990-01-01

    The chemistry of HCFC's and HFC's in the troposphere is controlled by reactions with OH in which a hydrogen atom is abstracted from the halocarbon to form water and a halo-alkyl radical. The halo-alkyl radical subsequently reacts with molecular oxygen to form a peroxy radical. The reactions of HCFC's and HFC's with O(exp1D) atoms are unimportant in the troposphere, but may be important in producing active chlorine of OH in the stratosphere. Here, the rate constants for the reactions of OH and O(exp1D) with many HFC's and HCFC's are evaluated. Recommendations are given for the five HCFC's and three HFC's specified by AFEAS as primary alternatives as well as for all other isomers of C1 and C2 HCFC's and HFC's where rate data exist. In addition, recommendations are included for CH3CCl3, CH2Cl2, and CH4.

  2. Insights into the relation between adhesion force and chalcopyrite-bioleaching by Acidithiobacillus ferrooxidans.

    PubMed

    Zhu, Jianyu; Wang, Qianfen; Zhou, Shuang; Li, Qian; Gan, Min; Jiang, Hao; Qin, Wenqing; Liu, Xueduan; Hu, Yuehua; Qiu, Guanzhou

    2015-02-01

    This paper presents a study on the relation between bacterial adhesion force and bioleaching rate of chalcopyrite, which sheds light on the influence of interfacial interaction on bioleaching behavior. In our research, Acidithiobacillus ferrooxidans (A. ferrooxidans) were adapted to grow with FeSO4 · 7H2O, element sulfur or chalcopyrite. Then, surface properties of Acidithiobacillus ferrooxidans and chalcopyrite were analyzed by contact angle, zeta potential and Fourier transform infrared spectroscopy (FTIR). Adhesion force between bacteria and chalcopyrite was measured by atomic force microscopy (AFM). Attachment and bioleaching behaviors were also monitored. The results showed that A. ferrooxidans adapted with chalcopyrite exhibited the strongest adhesion force to chalcopyrite and the highest bioleaching rate. Culture adapted with sulfur bacteria took second place and FeSO4 · 7H2O-adapted bacteria were the lowest. Bioleaching rate and bacterial attachment capacity were positively related to bacterial adhesion force, which is affected by the nature of energy source. According to this work, the attachment of bacteria to chalcopyrite surface is one of the most important aspects that influence the bioleaching process of chalcopyrite. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Adhesion to brown trout skin mucus, antagonism against cyst adhesion and pathogenicity to rainbow trout of some inhibitory bacteria against Saprolegnia parasitica .

    PubMed

    Carbajal-González, M T; Fregeneda-Grandes, J M; González-Palacios, C; Aller-Gancedo, J M

    2013-04-29

    Biological control of saprolegniosis with bacteria might be an alternative to the use of chemical compounds. Among criteria for the selection of such bacteria are their absence of pathogenicity to fish and their ability to prevent adhesion of the pathogen to the skin mucus. The pathogenicity to rainbow trout of 21 bacterial isolates with in vitro inhibitory activity against Saprolegnia parasitica was studied. Fifteen of the isolates, identified as Aeromonas sobria, Pantoea agglomerans, Pseudomonas fluorescens, Serratia fonticola, Xanthomonas retroflexus and Yersinia kristensenii, were non-pathogenic when injected into rainbow trout. Their capacity to adhere to the skin mucus of male and female brown trout and to reduce the adhesion of S. parasitica cysts under exclusion, competition and displacement conditions was tested. The 15 bacterial isolates showed a low adhesion rate, ranging between 1.7% (for an A. sobria isolate) and 15.3% (a P. fluorescens isolate). This adhesion was greater in the case of mucus from male brown trout than from females. Similarities in the adhesion to male mucus and other substrates and correlation to that observed to polystyrene suggest that adhesion to skin mucus does not depend on the substrate. A high percentage (88.9%) of the S. parasitica cysts adhered to the skin mucus of male brown trout. Almost all of the bacteria reduced this adhesion ratio significantly under exclusion and competition conditions. However, only half of the isolates displaced cysts from skin mucus, and more bacterial cells were necessary for this effect. A novel method to study the adhesion of S. parasitica cysts to skin mucus of trout and their interactions with inhibitory bacteria is described.

  4. Reaction of H2 with O2 in Excited Electronic States: Reaction Pathways and Rate Constants.

    PubMed

    Pelevkin, Alexey V; Loukhovitski, Boris I; Sharipov, Alexander S

    2017-12-21

    Comprehensive quantum chemical analysis with the use of the multireference state-averaged complete active space self-consistent field approach was carried out to study the reactions of H 2 with O 2 in a 1 Δ g , b 1 Σ g + , c 1 Σ u - , and A' 3 Δ u electronically excited states. The energetically favorable reaction pathways and possible intersystem crossings have been revealed. The energy barriers were refined employing the extended multiconfiguration quasi-degenerate second-order perturbation theory. It has been shown that the interaction of O 2 (a 1 Δ g ) and O 2 (A' 3 Δ u ) with H 2 occurs through the H-abstraction process with relatively low activation barriers that resulted in the formation of the HO 2 molecule in A″ and A' electronic states, respectively. Meanwhile, molecular oxygen in singlet sigma states (b 1 Σ g + and c 1 Σ u - ) was proved to be nonreactive with respect to the molecular hydrogen. Appropriate rate constants for revealed reaction and quenching channels have been estimated using variational transition-state theory including corrections for the tunneling effect, possible nonadiabatic transitions, and anharmonicity of vibrations for transition states and reactants. It was demonstrated that the calculated reaction rate constant for the H 2 + O 2 (a 1 Δ g ) process is in reasonable agreement with known experimental data. The Arrhenius approximations for these processes have been proposed for the temperature range T = 300-3000 K.

  5. A critical review of the measurement of ice adhesion to solid substrates

    NASA Astrophysics Data System (ADS)

    Work, Andrew; Lian, Yongsheng

    2018-04-01

    Ice adhesion is an issue spanning a wide range of technical fields. In the aerospace industry, ice accretion has led to a large number of casualties and costs the industry billions of dollars every year. To design effective anti-/de-icing systems, the adhesion of ice to surfaces must be understood. In this review paper, the authors surveyed for papers providing methods for the measurement of ice adhesion. 113 papers were identified for comparison, with data being extracted from 58 papers with common test surfaces (aluminum, steel, Teflon® (Chemours), and polyurethane). The methods used were categorized and data were compared based on their precision and the trends they demonstrated. Conceptual problems were identified with the tests used in the literature and discussed, and open questions relevant to testing the adhesion of ice were identified. Several key parameters affecting ice adhesion identified from the literature were temperature, surface roughness, strain rate, and impact velocity. Their effects on adhesion strength were discussed. While researching this topic, it was discovered that many papers did not report the strain rate in their tests, and the vast majority of papers did not correct their data for stress concentrations on the surface, either of which has been shown to cause variation in the data by one order of magnitude. Data compared from the literature typically spanned one to three orders of magnitude. The causes of these variations were discussed.

  6. Adhesion of multimode adhesives to enamel and dentin after one year of water storage.

    PubMed

    Vermelho, Paulo Moreira; Reis, André Figueiredo; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2017-06-01

    This study aimed to evaluate the ultramorphological characteristics of tooth-resin interfaces and the bond strength (BS) of multimode adhesive systems to enamel and dentin. Multimode adhesives (Scotchbond Universal (SBU) and All-Bond Universal) were tested in both self-etch and etch-and-rinse modes and compared to control groups (Optibond FL and Clearfil SE Bond (CSB)). Adhesives were applied to human molars and composite blocks were incrementally built up. Teeth were sectioned to obtain specimens for microtensile BS and TEM analysis. Specimens were tested after storage for either 24 h or 1 year. SEM analyses were performed to classify the failure pattern of beam specimens after BS testing. Etching increased the enamel BS of multimode adhesives; however, BS decreased after storage for 1 year. No significant differences in dentin BS were noted between multimode and control in either evaluation period. Storage for 1 year only reduced the dentin BS for SBU in self-etch mode. TEM analysis identified hybridization and interaction zones in dentin and enamel for all adhesives. Silver impregnation was detected on dentin-resin interfaces after storage of specimens for 1 year only with the SBU and CSB. Storage for 1 year reduced enamel BS when adhesives are applied on etched surface; however, BS of multimode adhesives did not differ from those of the control group. In dentin, no significant difference was noted between the multimode and control group adhesives, regardless of etching mode. In general, multimode adhesives showed similar behavior when compared to traditional adhesive techniques. Multimode adhesives are one-step self-etching adhesives that can also be used after enamel/dentin phosphoric acid etching, but each product may work better in specific conditions.

  7. THz Properties of Adhesives

    NASA Astrophysics Data System (ADS)

    Stübling, E.; Gomell, L.; Sommer, S.; Winkel, A.; Kahlmeyer, M.; Böhm, S.; Koch, M.

    2018-04-01

    We determined the THz properties of 12 different adhesives which are mainly used for industrial purposes. The adhesives applied can be classified according to their chemical structure: epoxy resins, acrylic resins, and polyurethane based materials. This work represents a basis for future studies, which will concentrate on aging effects, including the absorption of water of adhesive joints. Thus, the dielectric properties of the unaged adhesives are investigated and the results of these measurements are described herein.

  8. THz Properties of Adhesives

    NASA Astrophysics Data System (ADS)

    Stübling, E.; Gomell, L.; Sommer, S.; Winkel, A.; Kahlmeyer, M.; Böhm, S.; Koch, M.

    2018-06-01

    We determined the THz properties of 12 different adhesives which are mainly used for industrial purposes. The adhesives applied can be classified according to their chemical structure: epoxy resins, acrylic resins, and polyurethane based materials. This work represents a basis for future studies, which will concentrate on aging effects, including the absorption of water of adhesive joints. Thus, the dielectric properties of the unaged adhesives are investigated and the results of these measurements are described herein.

  9. Measurement of nucleotide exchange rate constants in single rabbit soleus myofibrils during shortening and lengthening using a fluorescent ATP analog.

    PubMed Central

    Shirakawa, I; Chaen, S; Bagshaw, C R; Sugi, H

    2000-01-01

    The kinetics of displacement of a fluorescent nucleotide, 2'(3')-O-[N[2-[[Cy3]amido]ethyl]carbamoyl]-adenosine 5'-triphosphate (Cy3-EDA-ATP), bound to rabbit soleus muscle myofibrils were studied using flash photolysis of caged ATP. Use of myofibrils from this slow twitch muscle allowed better resolution of the kinetics of nucleotide exchange than previous studies with psoas muscle myofibrils (, Biophys. J. 73:2033-2042). Soleus myofibrils in the presence of Cy3-EDA-nucleotides (Cy3-EDA-ATP or Cy3-EDA-ADP) showed selective fluorescence staining of the A-band. The K(m) for Cy3-EDA-ATP and the K(d) for Cy3-EDA-ADP binding to the myofibril A-band were 1.9 microM and 3.8 microM, respectively, indicating stronger binding of nucleotide to soleus cross-bridges compared to psoas cross-bridges (2.6 microM and 50 microM, respectively). After flash photolysis of caged ATP, the A-band fluorescence of the myofibril in the Cy3-EDA-ATP solution under isometric conditions decayed exponentially with a rate constant of 0.045 +/- 0.007 s(-1) (n = 32) at 10 degrees C, which was about seven times slower than that for psoas myofibrils. When a myofibril was allowed to shorten with a constant velocity, the nucleotide displacement rate constant increased from 0.066 s(-1) (isometric) to 0.14 s(-1) at 20 degrees C with increasing shortening velocity up to 0.1 myofibril length/s (V(max), the shortening velocity under no load was approximately 0. 2 myofibril lengths/s). The rate constant was not significantly affected by an isovelocity stretch of up to 0.1 myofibril lengths/s. These results suggest that the cross-bridge kinetics are not significantly affected at higher strain during lengthening but depend on the lower strain during shortening. These data also indicate that the interaction distance between a cross-bridge and the actin filament is at least 16 nm for a single cycle of the ATPase. PMID:10653804

  10. Bio-inspired reversible underwater adhesive.

    PubMed

    Zhao, Yanhua; Wu, Yang; Wang, Liang; Zhang, Manman; Chen, Xuan; Liu, Minjie; Fan, Jun; Liu, Junqiu; Zhou, Feng; Wang, Zuankai

    2017-12-20

    The design of smart surfaces with switchable adhesive properties in a wet environment has remained a challenge in adhesion science and materials engineering. Despite intense demands in various industrial applications and exciting progress in mimicking the remarkable wet adhesion through the delicate control of catechol chemistry, polyelectrolyte complex, and supramolecular architectures, the full recapitulation of nature's dynamic function is limited. Here, we show a facile approach to synthesize bioinspired adhesive, which entails the reversible, tunable, and fast regulation of the wet adhesion on diverse surfaces. The smart wet adhesive takes advantage of the host-guest molecular interaction and the adhesive nature of catechol chemistry, as well as the responsive polymer, allowing for screening and activation of the interfacial interaction simply by a local temperature trigger in an on-demand manner. Our work opens up an avenue for the rational design of bioinspired adhesives with performances even beyond nature.

  11. Long-term In Vitro Adhesion of Polyalkenoate-based Adhesives to Dentin.

    PubMed

    Sezinando, Ana; Perdigão, Jorge; Ceballos, Laura

    2017-01-01

    To study the influence of a polyalkenoate copolymer (VCP) on the immediate (24 h) and 6-month dentin bonding stability of VCP-based adhesives, using microtensile bond strength (μTBS), nanoleakage (NL), and ultramorphological analyses (FE-SEM). Eighty-four caries-free molars were randomly assigned to seven adhesives: Clearfil SE Bond (CSE, Kuraray Noritake); Adper Single Bond Plus (SB, 3M ESPE); SB without VCP (SBnoVCP, 3M ESPE); Scotchbond Universal Adhesive applied as a etch-and-rinse adhesive (SBU_ER); SBU without VCP applied as an etch-and-rinse adhesive (SBUnoVCP_ER); SBU applied as a self-etch adhesive (SBU_SE, 3M ESPE); SBU without VCP applied as a self-etch adhesive (SBUnoVCP_SE, 3M ESPE). Half of the beams were tested after 24 h, and the other half was aged in water for 6 months prior to testing. For each tooth/evaluation time, two beams were randomly selected for NL analysis. Statistical analyses of µTBS results were performed using two-way ANOVA, Tukey's post-hoc tests, and Student's t-test for paired data (α = 0.05). Nanoleakage was statistically analyzed using the Kruskal-Wallis and Mann-Whitney tests, with Wilcoxon's test for paired data. For FE-SEM, four caries-free molars were assigned to each of the seven groups. Dentin disks were restored and cross sectioned into halves. One half was observed at 24 h, and the other at 6 months. The highest 6-month mean μTBS was obtained with SBU_SE/SBUnoVCP_SE and SBUnoVCP_ER. SBUnoVCP_SE resulted in greater silver deposition at 6 months. FE-SEM observations showed that CSE and SBU_SE specimens resulted in a submicron hybrid layer without signs of degradation at 6 months. VCP may contribute to the long-term bonding stability of VCP-based adhesives.

  12. Rate and Equilibrium Constants for an Enzyme Conformational Change during Catalysis by Orotidine 5'-Monophosphate Decarboxylase.

    PubMed

    Goryanova, Bogdana; Goldman, Lawrence M; Ming, Shonoi; Amyes, Tina L; Gerlt, John A; Richard, John P

    2015-07-28

    The caged complex between orotidine 5'-monophosphate decarboxylase (ScOMPDC) and 5-fluoroorotidine 5'-monophosphate (FOMP) undergoes decarboxylation ∼300 times faster than the caged complex between ScOMPDC and the physiological substrate, orotidine 5'-monophosphate (OMP). Consequently, the enzyme conformational changes required to lock FOMP at a protein cage and release product 5-fluorouridine 5'-monophosphate (FUMP) are kinetically significant steps. The caged form of ScOMPDC is stabilized by interactions between the side chains from Gln215, Tyr217, and Arg235 and the substrate phosphodianion. The control of these interactions over the barrier to the binding of FOMP and the release of FUMP was probed by determining the effect of all combinations of single, double, and triple Q215A, Y217F, and R235A mutations on kcat/Km and kcat for turnover of FOMP by wild-type ScOMPDC; its values are limited by the rates of substrate binding and product release, respectively. The Q215A and Y217F mutations each result in an increase in kcat and a decrease in kcat/Km, due to a weakening of the protein-phosphodianion interactions that favor fast product release and slow substrate binding. The Q215A/R235A mutation causes a large decrease in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of OMP, which are limited by the rate of the decarboxylation step, but much smaller decreases in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of FOMP, which are limited by the rate of enzyme conformational changes. By contrast, the Y217A mutation results in large decreases in kcat/Km for ScOMPDC-catalyzed decarboxylation of both OMP and FOMP, because of the comparable effects of this mutation on rate-determining decarboxylation of enzyme-bound OMP and on the rate-determining enzyme conformational change for decarboxylation of FOMP. We propose that kcat = 8.2 s(-1) for decarboxylation of FOMP by the Y217A mutant is equal to the rate constant for cage formation from the

  13. Properties of pressure-sensitive adhesive tapes with soft adhesives to human skin and their mechanism.

    PubMed

    Tokumura, Fumio; Homma, Takeyasu; Tomiya, Toshiki; Kobayashi, Yuko; Matsuda, Tetsuaki

    2007-05-01

    The use of soft adhesives in the manufacture of pressure-sensitive adhesive tapes has recently increased. The dermal peeling force of adhesive tapes with soft adhesives was studied. Four kinds of adhesive tapes with adhesives of different softness were made, by adding varying amounts of isopropyl myristate as a softener. The tapes were applied on the flexor side of the forearm of six healthy male volunteers. The dermal peeling force, the amount of stripped corneocytes, the level of pain when the tapes were removed and the degree of penetration of adhesives into the sulcus cutis (skin furrows) were evaluated at 1 and 24 h after application of the tapes. Furthermore, a skin model panel (a sulcus cutis and crista cutis model panel) and a crista cutis model panel were constructed from a general stainless-steel panel, and the peeling force of the tapes against the model panels was measured. As the softness of adhesives increased, the peeling force against a general stainless-steel panel with a flat surface decreased, although the peeling force against human skin did not significantly change. The amount of stripped corneocytes on the removed tapes and the level of pain when the tapes were removed decreased with the increase in softness of the adhesives. These results suggest that adhesive tapes with soft adhesives that contain isopropyl myristate as a softener are suitable for the skin. Furthermore, the degree of penetration of adhesive into the sulcus cutis increased as the softness of adhesives increased. Upon evaluation of the peeling force against the model panels, as the softness of adhesives increased, there was a slight decrease in the peeling force against the skin model panel, while there was a remarkable decrease in the peeling force against the crista cutis model panel. These results suggest that the lack of change in the dermal peeling force as the softness of adhesives increased was caused by penetration of soft adhesive into the sulcus cutis, and that the

  14. Coordinated Mechanosensitivity of Membrane Rafts and Focal Adhesions

    PubMed Central

    Fuentes, Daniela E.; Butler, Peter J.

    2013-01-01

    Endothelial cells sense mechanical forces of blood flow through mechanisms that involve focal adhesions (FAs). The mechanosensitive pathways that originate from FA-associated integrin activation may involve membrane rafts, small cholesterol- and sphigolipid-rich domains that are either immobilized, by virtue of their attachment to the cytoskeleton, or highly mobile in the plane of the plasma membrane. In this study, we fluorescently labeled non-mobile and mobile populations of GM1, a ganglioside associated with lipid rafts, and transfected cells with the red fluorescent protein-(RFP-) talin, an indicator of integrin activation at FAs, in order to determine the kinetics and sequential order of raft and talin mechanosensitivity. Cells were imaged under confocal microscopy during mechanical manipulation of a FA induced by a fibronectin (FN)-functionalized nanoelectrode with feedback control of position. First, FA deformation led to long range deformation of immobile rafts followed by active recoil of a subpopulation of displaced rafts. Second, initial adhesion between the FN-probe and the cell induced rapid accumulation of GM1 at the probe site with a time constant of 1.7 s. Talin accumulated approximately 20 s later with a time constant of 0.6 s. Third, a 1 μm deformation of the FA lead to immediate (0.3 s) increase in GM1 fluorescence and a later (6 s) increase in talin. Fourth, long term deformation of FAs led to continual GM1 accumulation at the probe site that was reversed upon removal of the deformation. These results demonstrate that rafts are directly mechanosensitive and that raft mobility may enable the earliest events related to FA mechanosensing and reinforcement upon force application. PMID:23487555

  15. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  16. The chemistry of bromine in the stratosphere: Influence of a new rate constant for the reaction BrO + HO2

    NASA Technical Reports Server (NTRS)

    Pirre, Michel; Marceau, Francois J.; Lebras, Georges; Maguin, Francoise; Poulet, Gille; Ramaroson, Radiela

    1994-01-01

    The impact of new laboratory data for the reaction BrO + HO2 yields HOBr + O2 in the depletion of global stratospheric ozone has been estimated using a one-dimensional photochemical model taking into account the heterogeneous reaction on sulphate aerosols which converts N2O5 into HNO3. Assuring an aerosol loading 2 times as large as the 'background' and a reaction probability of 0.1 for the above heterogeneous reaction, the 6 fold increase in the measured rate constant for the reaction of BrO with HO2 increases the computed depletion of global ozone produced by 20 ppt of total bromine from 2.01 percent to 2.36 percent. The use of the higher rate constant increases the HOBr mixing ratio and makes the bromine partitioning and the ozone depletion very sensitive to the branching ratio of the potential channel forming HBr in the BrO + HO2 reaction.

  17. Adhesion Between Volcanic Glass and Spacecraft Materials in an Airless Body Environment

    NASA Technical Reports Server (NTRS)

    Berkebile, Stephen; Street, Kenneth W., Jr.; Gaier, James R.

    2012-01-01

    The successful exploration of airless bodies, such as the Earth s moon, many smaller moons of the outer planets (including those of Mars) and asteroids, will depend on the development and implementation of effective dust mitigation strategies. The ultrahigh vacuum environment (UHV) on the surfaces of these bodies, coupled with constant ion and photon bombardment from the Sun and micrometeorite impacts (space weathering), makes dust adhesion to critical spacecraft systems a severe problem. As a result, the performance of thermal control surfaces, photovoltaics and mechanical systems can be seriously degraded even to the point of failure. The severe dust adhesion experienced in these environments is thought to be primarily due to two physical mechanisms, electrostatic attraction and high surface energies, but the dominant of these has yet to be determined. The experiments presented here aim to address which of these two mechanisms is dominant by quantifying the adhesion between common spacecraft materials (polycarbonate, FEP and PTFE Teflon, (DuPont) Ti-6-4) and a synthetic noritic volcanic glass, as a function of surface cleanliness and triboelectric charge transfer in a UHV environment. Adhesion force has been measured between pins of spacecraft materials and a plate of synthetic volcanic glass by determining the pull-off force with a torsion balance. Although no significant adhesion is observed directly as a result of high surface energies, the adhesion due to induced electrostatic charge is observed to increase with spacecraft material cleanliness, in some cases by over a factor of 10, although the increase is dependent on the particular material pair. The knowledge gained by these studies is envisioned to aid the development of new dust mitigation strategies and improve existing strategies by helping to identify and characterize mechanisms of glass to spacecraft adhesion for norite volcanic glass particles. Furthermore, the experience of the Apollo missions

  18. Tough Adhesives for Diverse Wet Surfaces

    PubMed Central

    Li, J.; Celiz, A. D.; Yang, J.; Yang, Q.; Wamala, I.; Whyte, W.; Seo, B. R.; Vasilyev, N. V.; Vlassak, J. J.; Suo, Z.; Mooney, D. J.

    2018-01-01

    Adhesion to wet and dynamic surfaces, including biological tissues, is important in many fields, but has proven extremely challenging. Existing adhesives are either cytotoxic, adhere weakly to tissues, or cannot be utilized in wet environments. We report a bio-inspired design for adhesives consisting of two layers: an adhesive surface and a dissipative matrix. The former adheres to the substrate by electrostatic interactions, covalent bonds, and physical interpenetration. The latter amplifies energy dissipation through hysteresis. The two layers synergistically lead to higher adhesion energy on wet surfaces than existing adhesives. Adhesion occurs within minutes, independent of blood exposure, and compatible with in vivo dynamic movements. This family of adhesives may be useful in many areas of application, including tissue adhesives, wound dressings and tissue repair. PMID:28751604

  19. Reflected shock tube studies of high-temperature rate constants for OH + NO2 --> HO2 + NO and OH + HO2 --> H2O + O2.

    PubMed

    Srinivasan, Nanda K; Su, Meng-Chih; Sutherland, James W; Michael, Joe V; Ruscic, Branko

    2006-06-01

    The motivation for the present study comes from the preceding paper where it is suggested that accepted rate constants for OH + NO2 --> NO + HO2 are high by approximately 2. This conclusion was based on a reevaluation of heats of formation for HO2, OH, NO, and NO2 using the Active Thermochemical Table (ATcT) approach. The present experiments were performed in C2H5I/NO2 mixtures, using the reflected shock tube technique and OH-radical electronic absorption detection (at 308 nm) and using a multipass optical system. Time-dependent profile decays were fitted with a 23-step mechanism, but only OH + NO2, OH + HO2, both HO2 and NO2 dissociations, and the atom molecule reactions, O + NO2 and O + C2H4, contributed to the decay profile. Since all of the reactions except the first two are known with good accuracy, the profiles were fitted by varying only OH + NO2 and OH + HO2. The new ATcT approach was used to evaluate equilibrium constants so that back reactions were accurately taken into account. The combined rate constant from the present work and earlier work by Glaenzer and Troe (GT) is k(OH+NO2) = 2.25 x 10(-11) exp(-3831 K/T) cm3 molecule(-1) s(-1), which is a factor of 2 lower than the extrapolated direct value from Howard but agrees well with NO + HO2 --> OH + NO2 transformed with the updated equilibrium constants. Also, the rate constant for OH + HO2 suitable for combustion modeling applications over the T range (1200-1700 K) is (5 +/- 3) x 10(-11) cm3 molecule(-1) s(-1). Finally, simulating previous experimental results of GT using our updated mechanism, we suggest a constant rate for k(HO2+NO2) = (2.2 +/- 0.7) x 10(-11) cm3 molecule(-1) s(-1) over the T range 1350-1760 K.

  20. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins

    NASA Astrophysics Data System (ADS)

    Petrone, Luigi; Kumar, Akshita; Sutanto, Clarinda N.; Patil, Navinkumar J.; Kannan, Srinivasaraghavan; Palaniappan, Alagappan; Amini, Shahrouz; Zappone, Bruno; Verma, Chandra; Miserez, Ali

    2015-10-01

    Interfacial water constitutes a formidable barrier to strong surface bonding, hampering the development of water-resistant synthetic adhesives. Notwithstanding this obstacle, the Asian green mussel Perna viridis attaches firmly to underwater surfaces via a proteinaceous secretion (byssus). Extending beyond the currently known design principles of mussel adhesion, here we elucidate the precise time-regulated secretion of P. viridis mussel adhesive proteins. The vanguard 3,4-dihydroxy-L-phenylalanine (Dopa)-rich protein Pvfp-5 acts as an adhesive primer, overcoming repulsive hydration forces by displacing surface-bound water and generating strong surface adhesion. Using homology modelling and molecular dynamics simulations, we find that all mussel adhesive proteins are largely unordered, with Pvfp-5 adopting a disordered structure and elongated conformation whereby all Dopa residues reside on the protein surface. Time-regulated secretion and structural disorder of mussel adhesive proteins appear essential for optimizing extended nonspecific surface interactions and byssus' assembly. Our findings reveal molecular-scale principles to help the development of wet-resistant adhesives.

  1. Intervention criterion and control research for active front steering with consideration of road adhesion

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojian; Zhou, Bing; Wen, Guilin; Long, Lefei; Cui, Qingjia

    2018-04-01

    A multi-objective active front steering (AFS) control system considering the road adhesion constraint on vehicle stability is developed using the sliding mode control (SMC) method. First, an identification function combined with the relationship between the yaw rate and the steering angle is developed to determine whether the tyre state is linear or nonlinear. On this basis, an intervention criterion for the AFS system is proposed to improve vehicle handling and stability in emergent conditions. A sideslip angle stability domain enveloped by the upper, lower, left, and right boundaries, as well as the constraint of road adhesion coefficient, is constructed based on the ? phase-plane method. A dynamic weighting coefficient to coordinate the control of yaw rate and sideslip angle, and a control strategy that considers changing control objectives based on the desired yaw rate, the desired sideslip angle, and their proportional weights, are proposed for the SMC controller. Because road adhesion has a significant effect on vehicle stability and to meet the control algorithm's requirement of real-time access to vehicle states, a unscented Kalman filter-based state observer is proposed to estimate the adhesion coefficient and the required states. Finally, simulations are performed using high and low road adhesion conditions in a Matlab/Simulink environment, and the results show that the proposed AFS control system promptly intervenes according to the intervention criterion, effectively improving vehicle handling and stability.

  2. Rate Constants for Fine-Structure Excitations in O - H Collisions with Error Bars Obtained by Machine Learning

    NASA Astrophysics Data System (ADS)

    Vieira, Daniel; Krems, Roman

    2017-04-01

    Fine-structure transitions in collisions of O(3Pj) with atomic hydrogen are an important cooling mechanism in the interstellar medium; knowledge of the rate coefficients for these transitions has a wide range of astrophysical applications. The accuracy of the theoretical calculation is limited by inaccuracy in the ab initio interaction potentials used in the coupled-channel quantum scattering calculations from which the rate coefficients can be obtained. In this work we use the latest ab initio results for the O(3Pj) + H interaction potentials to improve on previous calculations of the rate coefficients. We further present a machine-learning technique based on Gaussian Process regression to determine the sensitivity of the rate coefficients to variations of the underlying adiabatic interaction potentials. To account for the inaccuracy inherent in the ab initio calculations we compute error bars for the rate coefficients corresponding to 20% variation in each of the interaction potentials. We obtain these error bars by fitting a Gaussian Process model to a data set of potential curves and rate constants. We use the fitted model to do sensitivity analysis, determining the relative importance of individual adiabatic potential curves to a given fine-structure transition. NSERC.

  3. Determination of the rate constant for the NH2(X(2)B1) + NH2(X(2)B1) reaction at low pressure and 293 K.

    PubMed

    Bahng, Mi-Kyung; Macdonald, R Glen

    2008-12-25

    The rate constant for the reaction NH(2)(X(2)B(1)) + NH(2)(X(2)B(1)) --> products was measured in CF(4), N(2) and Ar carrier gases at 293 +/- 2 K over a pressure range from 2 to 10 Torr. The NH(2) radical was produced by the 193 nm photolysis of NH(3) dilute in the carrier gas. Both the loss of NH(3) and its subsequent recovery and the production of NH(2) and subsequent reaction were monitored simultaneously following the photolysis laser pulse. Both species were detected using quantitative time-resolved high-resolution absorption spectroscopy. The NH(3) molecule was monitored in the NIR using a rotation transition of the nu(1) + nu(3) first combination band near 1500 nm, and the NH(2) radical was monitored using the (1)2(21) <-- (1)3(31) rotational transition of the (0,7,0)A(2)A(1) <-- (0,0,0) X(2)B(1) band near 675 nm. The low-pressure rate constant showed a linear dependence on pressure. The slope of the pressure dependence was dominated by a recombination rate constant for NH(2) + NH(2) given by (8.0 +/- 0.5) x 10(-29), (5.7 +/- 0.7) x 10(-29), and (3.9 +/- 0.4) x 10(-29) cm(6) molecule(-2) s(-1) in CF(4), N(2), and Ar bath gases, respectively, where the uncertainties are +/-2sigma in the scatter of the measurements. The average of the three independent measurements of the sum of the disproportionation rate constants (the zero pressure rate constant) was (3.4 +/- 6) x 10(-13) cm(3) molecule(-1) s(-1), where the uncertainty is +/-2sigma in the scatter of the measurements.

  4. A direct comparison of U.S. Environmental Protection Agency's method 304B and batch tests for determining activated-sludge biodegradation rate constants for volatile organic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano, M.L.; Wilcox, M.E.; Compernolle, R. van

    Biodegradation rate constants for volatile organic compounds (VOCs) in activated-sludge systems are needed to quantify emissions. One current US environmental Protection Agency method for determining a biodegradation rate constant is Method 304B. In this approach, a specific activated-sludge unit is simulated by a continuous biological treatment system with a sealed headspace. Batch experiments, however, can be alternatives to Method 304B. Two of these batch methods are the batch test that uses oxygen addition (BOX) and the serum bottle test (SBT). In this study, Method 304B was directly compared to BOX and SBT experiments. A pilot-scale laboratory reactor was constructed tomore » serve as the Method 304B unit. Biomass from the unit was also used to conduct BOX and modified SBT experiments (modification involved use of a sealed draft-tube reactor with a headspace recirculation pump instead of a serum bottle) for 1,2-dichloroethane, diisopropyl ether, methyl tertiary butyl ether, and toluene. Three experimental runs--each consisting of one Method 304B experiment, one BOX experiment, and one modified SBT experiment--were completed. The BOX and SBT data for each run were analyzed using a Monod model, and best-fit biodegradation kinetic parameters were determined for each experiment, including a first-order biodegradation rate constant (K{sub 1}). Experimental results suggest that for readily biodegradable VOCs the two batch techniques can provide improved means of determining biodegradation rate constants compared with Method 304B. In particular, these batch techniques avoid the Method 304B problem associated with steady-state effluent concentrations below analytical detection limits. However, experimental results also suggest that the two batch techniques should not be used to determine biodegradation rate constants for slowly degraded VOCs (i.e., K{sub 1} {lt} 0.1 L/g VSS-h).« less

  5. Mixed-mode fatigue fracture of adhesive joints in harsh environments and nonlinear viscoelastic modeling of the adhesive

    NASA Astrophysics Data System (ADS)

    Arzoumanidis, Alexis Gerasimos

    A four point bend, mixed-mode, reinforced, cracked lap shear specimen experimentally simulated adhesive joints between load bearing composite parts in automotive components. The experiments accounted for fatigue, solvent and temperature effects on a swirled glass fiber composite adherend/urethane adhesive system. Crack length measurements based on compliance facilitated determination of da/dN curves. A digital image processing technique was also utilized to monitor crack growth from in situ images of the side of the specimen. Linear elastic fracture mechanics and finite elements were used to determine energy release rate and mode-mix as a function of crack length for this specimen. Experiments were conducted in air and in a salt water bath at 10, 26 and 90°C. Joints tested in the solvent were fully saturated. In air, both increasing and decreasing temperature relative to 26°C accelerated crack growth rates. In salt water, crack growth rates increased with increasing temperature. Threshold energy release rate is shown to be the most appropriate design criteria for joints of this system. In addition, path of the crack is discussed and fracture surfaces are examined on three length scales. Three linear viscoelastic properties were measured for the neat urethane adhesive. Dynamic tensile compliance (D*) was found using a novel extensometer and results were considerably more accurate and precise than standard DMTA testing. Dynamic shear compliance (J*) was determined using an Arcan specimen. Dynamic Poisson's ratio (nu*) was extracted from strain gage data analyzed to include gage reinforcement. Experiments spanned three frequency decades and isothermal data was shifted by time-temperature superposition to create master curves spanning thirty decades. Master curves were fit to time domain Prony series. Shear compliance inferred from D* and nu* compared well with measured J*, forming a basis for finding the complete time dependent material property matrix for this

  6. Analytical cell adhesion chromatography reveals impaired persistence of metastatic cell rolling adhesion to P-selectin

    PubMed Central

    Oh, Jaeho; Edwards, Erin E.; McClatchey, P. Mason; Thomas, Susan N.

    2015-01-01

    ABSTRACT Selectins facilitate the recruitment of circulating cells from the bloodstream by mediating rolling adhesion, which initiates the cell–cell signaling that directs extravasation into surrounding tissues. To measure the relative efficiency of cell adhesion in shear flow for in vitro drug screening, we designed and implemented a microfluidic-based analytical cell adhesion chromatography system. The juxtaposition of instantaneous rolling velocities with elution times revealed that human metastatic cancer cells, but not human leukocytes, had a reduced capacity to sustain rolling adhesion with P-selectin. We define a new parameter, termed adhesion persistence, which is conceptually similar to migration persistence in the context of chemotaxis, but instead describes the capacity of cells to resist the influence of shear flow and sustain rolling interactions with an adhesive substrate that might modulate the probability of extravasation. Among cell types assayed, adhesion persistence to P-selectin was specifically reduced in metastatic but not leukocyte-like cells in response to a low dose of heparin. In conclusion, we demonstrate this as an effective methodology to identify selectin adhesion antagonist doses that modulate homing cell adhesion and engraftment in a cell-subtype-selective manner. PMID:26349809

  7. SU-F-T-33: Air-Kerma Strength and Dose Rate Constant by the Full Monte Carlo Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuji, S; Oita, M; Narihiro, N

    2016-06-15

    Purpose: In general, the air-kerma strength (Sk) has been determined by the energy weighting the photon energy fluence and the corresponding mass-energy absorption coefficient or mass-energy transfer coefficient. Kerma is an acronym for kinetic energy released per unit mass, defined as the sum of the initial kinetic energies of all the charged particles. Monte Carlo (MC) simulations can investigate the kinetic energy of the charged particles after photo interactions and sum the energy. The Sk of {sup 192}Ir source is obtained in the full MC simulation and finally the dose rate constant Λ is determine. Methods: MC simulations were performedmore » using EGS5 with the microSelectron HDR v2 type of {sup 192}Ir source. The air-kerma rate obtained to sum the electron kinetic energy after photoelectric absorption or Compton scattering for transverse-axis distance from 1 to 120 cm with a 10 m diameter air phantom. Absorbed dose in water is simulated with a 30 cm diameter water phantom. The transport cut-off energy is 10 keV and primary photons from the source need two hundred and forty billion in the air-kerma rate and thirty billion in absorbed dose in water. Results: Sk is multiplied by the square of the distance in air-kerma rate and determined by fitting a linear function. The result of Sk is (2.7039±0.0085)*10-{sup −11} µGy m{sup 2} Bq{sup −1} s{sup −1}. Absorbed dose rate in water at 1 cm transverse-axis distance D(r{sub 0}, θ{sub 0}) is (3.0114±0.0015)*10{sup −11} cGy Bq{sup −1} s{sup −1}. Conclusion: From the results, dose rate constant Λ of the microSelectron HDR v2 type of {sup 192}Ir source is (1.1137±0.0035) cGy h{sup −1} U{sup −1} by the full MC simulations. The consensus value conΛ is (1.109±0.012) cGy h{sup −1} U{sup −1}. The result value is consistent with the consensus data conΛ.« less

  8. The Role of Glottal Surface Adhesion on Vocal Folds Biomechanics

    PubMed Central

    Bhattacharya, Pinaki; Siegmund, Thomas

    2014-01-01

    The airway surface liquid (ASL) is a very thin mucus layer and covers the vocal fold (VF) surface. Adhesion mediated by the ASL occurs during phonation as the VFs separate after collision. Such adhesion is hypothesized to determine voice quality and health. However, biomechanical insights into the adhesive processes during VF oscillation are lacking. Here, a computational study is reported on self-sustained VF vibration involving contact and adhesion. The VF structural model and the glottal airflow are considered fully three-dimensional. The mechanical behavior of the ASL is described through a constitutive traction–separation law where mucosal cohesive strength, cohesive energy and rupture length enter. Cohesive energy values considered are bound below by the cohesive energy of water at standard temperature and pressure. Cohesive strength values considered are bound above by prior reported data on the adhesive strength of mucosal surface of rat small intestine. This model introduces a mechanical length scale into the analysis. The sensitivity of various aspects of VF dynamics such as flow-declination rate, VF separation under adhesive condition and formation of multiple local fluid bridges is determined in relation to specific ASL adhesive properties. It is found that for the ASL considered here, the characteristics of the VF separation process are of debond type. Instabilities lead to the breakup of the bond area into several smaller bond patches. Such finding is consistent with in-vivo observations. PMID:25034504

  9. A postoperative anti-adhesion barrier based on photoinduced imine-crosslinking hydrogel with tissue-adhesive ability.

    PubMed

    Yang, Yunlong; Liu, Xiaolin; Li, Yan; Wang, Yang; Bao, Chunyan; Chen, Yunfeng; Lin, Qiuning; Zhu, Linyong

    2017-10-15

    Postoperative adhesion is a serious complication that can further lead to morbidity and/or mortality. Polymer anti-adhesion barrier material provides an effective precaution to reduce the probability of postoperative adhesion. Clinical application requires these materials to be easily handled, biocompatible, biodegradable, and most importantly tissue adherent to provide target sites with reliable isolation. However, currently there is nearly no polymer barrier material that can fully satisfy these requirements. In this study, based on the photoinduced imine-crosslinking (PIC) reaction, we had developed a photo-crosslinking hydrogel (CNG hydrogel) that composed of o-nitrobenzyl alcohol (NB) modified carboxymethyl cellulose (CMC-NB) and glycol chitosan (GC) as an anti-adhesion barrier material. Under light irradiation, CMC-NB generated aldehyde groups which subsequently reacted with amino groups distributed on GC or tissue surface to form a hydrogel barrier that covalently attached to tissue surface. Rheological analysis demonstrated that CNG hydrogel (30mg/mL polymer content) could be formed in 30s upon light irradiation. Tissue adhesive tests showed that the tissue adhesive strength of CNG hydrogel (30mg/mL) was about 8.32kPa-24.65kPa which increased with increasing CMC-NB content in CNG hydrogel. Toxicity evaluation by L929 cells demonstrated that CNG hydrogel was cytocompatible. Furthermore, sidewall defect-cecum abrasion model of rat was employed to evaluate the postoperative anti-adhesion efficacy of CNG hydrogel. And a significantly reduction of tissue adhesion (20% samples with low score adhesion) was found in CNG hydrogel treated group, compared with control group (100% samples with high score adhesion). In addition, CNG hydrogel could be degraded in nearly 14days and showed no side effect on wound healing. These findings indicated that CNG hydrogel can effectively expanded the clinical treatments of postoperative tissue adhesion. In this study, a tissue

  10. Injectable Dopamine-Modified Poly(ethylene glycol) Nanocomposite Hydrogel with Enhanced Adhesive Property and Bioactivity

    PubMed Central

    2015-01-01

    A synthetic mimic of mussel adhesive protein, dopamine-modified four-armed poly(ethylene glycol) (PEG-D4), was combined with a synthetic nanosilicate, Laponite (Na0.7+(Mg5.5Li0.3Si8)O20(OH)4)0.7–), to form an injectable naoncomposite tissue adhesive hydrogel. Incorporation of up to 2 wt % Laponite significantly reduced the cure time while enhancing the bulk mechanical and adhesive properties of the adhesive due to strong interfacial binding between dopamine and Laponite. The addition of Laponite did not alter the degradation rate and cytocompatibility of PEG-D4 adhesive. On the basis of subcutaneous implantation in rat, PEG-D4 nanocomposite hydrogels elicited minimal inflammatory response and exhibited an enhanced level of cellular infiltration as compared to Laponite-free samples. The addition of Laponite is potentially a simple and effective method for promoting bioactivity in a bioinert, synthetic PEG-based adhesive while simultaneously enhancing its mechanical and adhesive properties. PMID:25222290

  11. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  12. The link between the peel force of adhesive dressings and subjective discomfort in volunteer subjects.

    PubMed

    Dykes, P J; Heggie, R

    2003-07-01

    The study compared the level of discomfort experienced by healthy volunteers on the removal of a range of adhesive wounds. This was an open, within subject comparative study of six adhesive dressings in 24 volunteers. The test site was the lower back. Allocation of test materials to the test sites was randomised. The peel force of removal was recorded after 24 hours of application using a device that removed the dressing at a constant speed and angle to the skin surface. The discomfort experienced at each removal was assessed by the subjects themselves using an electronic visual analogue scale. Overall, Mepilex Border was given a significantly lower discomfort score (p < or = 0.01) by the subjects than the other dressings. There were no clear differences between the five other products tested. Tielle and Allevyn Adhesive had significantly higher (p < or = 0.05) peel force than the other products. Mepilex Border caused less discomfort on removal than Duoderm Extra Thin, Biatain and Versiva, even though the peel force was similar. Tielle and Allevyn had higher peel force, but the levels of discomfort were not significantly higher for these products. It may be that the level of discomfort experienced by subjects on removal of an adhesive dressing is not entirely dependent on the peel force and that other aspects of the interaction of the skin surface and adhesive play a role.

  13. Investigation of the influence of process parameters on adhesive wear under hot stamping conditions

    NASA Astrophysics Data System (ADS)

    Schwingenschlögl, P.; Weldi, M.; Merklein, M.

    2017-09-01

    Current challenges like increasing safety standards and reducing fuel consumption motivate lightweight construction in modern car bodies. Besides using lightweight workpiece materials like aluminum, hot stamping has been established as a key technology for producing safety relevant components. Producing hot stamped parts out of ultra-high strength steels offers the possibility to improve the crash performance. At the same time the weight of car structure is reduced by using thinner sheet thicknesses. In order to avoid oxide scale formation and ensure corrosion protection, AlSi coatings are commonly deposited on the sheet surfaces used for direct hot stamping. This workpiece coating has a critical impact on the tribological conditions within the forming process and, as a consequence, influences the quality of hot stamped parts as well as tool wear. AlSi coatings have been identified as major reason for adhesive wear, which represents the main wear mechanism in hot stamping. Within this study, the influence of the process parameters on adhesive wear are investigated in dependency of workpiece and tool temperatures, drawing velocities and contact pressures. The tribological behavior is analyzed based on strip drawing experiments under direct hot stamping conditions. The experiments are performed with AlSi coated 22MnB5 in contact with the hot working tool steel 1.2367. For analyzing the amount of adhesion on the friction jaws, the surfaces are characterized by optical measurements. The experiments indicate that higher workpiece temperatures cause severe adhesive wear on the tool surface, while an increase of drawing velocity or contact pressure led to reduced adhesion. The measured friction coefficients decreased with rising amount of adhesion and remained at a constant level after a certain adhesive layer was built up on the tool surface.

  14. Comparison of VOC and ammonia emissions from individual PVC materials, adhesives and from complete structures.

    PubMed

    Järnström, H; Saarela, K; Kalliokoski, P; Pasanen, A-L

    2008-04-01

    Emission rates of volatile organic compounds (VOCs) and ammonia measured from six PVC materials and four adhesives in the laboratory were compared to the emission rates measured on site from complete structures. Significantly higher specific emission rates (SERs) were generally measured from the complete structures than from individual materials. There were large differences between different PVC materials in their permeability for VOCs originating from the underlying structure. Glycol ethers and esters from adhesives used in the installation contributed to the emissions from the PVC covered structure. Emissions of 2-ethylhexanol and TXIB (2,2,4-trimethyl-1,3-pentanediol diisobutyrate) were common. High ammonia SERs were measured from single adhesives but their contribution to the emissions from the complete structure did not appear as obvious as for VOCs. The results indicate that three factors affected the VOC emissions from the PVC flooring on a structure: 1) the permeability of the PVC product for VOCs, 2) the VOC emission from the adhesive used, and 3) the VOC emission from the backside of the PVC product.

  15. LARC-13 adhesive development

    NASA Technical Reports Server (NTRS)

    Hill, S. G.; Sheppard, C. H.; Johnson, J. C.

    1980-01-01

    A LARC-13 type adhesive system was developed and property data obtained that demonstrated improved thermomechanical properties superior to base LARC-13 adhesive. An improved adhesive for 589 K (600 F) use was developed by physical or chemical modification of LARC-13. The adhesive was optimized for titanium and composite bonding, and a compatible surface preparation for titanium and composite substrates was identified. The data obtained with the improved adhesive system indicated it would meet the 589 K (600 F) properties desired for application on space shuttle components. Average titanium lap shear data were: (1) 21.1 MPa (3355 psi) at RT, (2) 13.0 MPa (1881 psi) at 600 F, and (3) 16.4 MPa (2335) after aging 125 hours at 600 F and tested at 600 F.

  16. The Henry's constant of monochloramine.

    PubMed

    Garcia, Miguel A; Anderson, Michael A

    2018-02-01

    Monochloramine is a secondary disinfectant used in drinking water and is also formed in chlorinated wastewater. While known to hydrolyze over time and react with dissolved organic matter, its partitioning between the aqueous and gas phase has not been extensively studied. Preliminary experiments demonstrated that monochloramine concentrations in solutions open to the atmosphere or actively aerated decreased more rapidly than in sealed solutions, indicating significant losses to the atmosphere. For example, a monochloramine solution open to the atmosphere yielded a loss rate constant of 0.08 d -1 , a value twice that for sealed samples without headspace (0.04 d -1 ) where loss occurs exclusively as a result of hydrolysis. A solution aerated at 10 mL s -1 had a loss rate constant nearly 10× greater than that for hydrolysis alone (0.35 d -1 ). To better understand partitioning of monochloramine to the gas phase and potential for volatilization, the dimensionless Henry's law constants of monochloramine (K H ) were determined using an equilibrium headspace technique at five different temperatures (11, 16, 21, 27, and 32 °C). The resulting values ranged from 8 × 10 -3 to 4 × 10 -2 , indicating a semi-volatile compound, and were found to be consistent with quantitative structure activity relationship predictions. At 20 °C, monochloramine exhibits a dimensionless Henry's constant of about 1.7 × 10 -2 which is 35 times greater than ammonia but comparable to the Henry's constant of inorganic semi-volatile compounds such sulfur dioxide. The Henry's constant values for monochloramine suggests that volatilization could be a relevant loss process in open systems such as rivers receiving chlorinated wastewater effluent, swimming pools and cooling towers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Compositional design and optimization of dentin adhesive with neutralization capability.

    PubMed

    Song, Linyong; Ye, Qiang; Ge, Xueping; Spencer, Paulette

    2015-09-01

    The objective of this work was to investigate the polymerization behavior, neutralization capability, and mechanical properties of dentin adhesive formulations with the addition of the tertiary amine co-monomer, 2-N-morpholinoethyl methacrylate (MEMA). A co-monomer mixture based on HEMA/BisGMA (45/55, w/w) was used as a control adhesive. Compared with the control formulation, the MEMA-containing adhesive formulations were characterized comprehensively with regard to water miscibility of liquid resin, water sorption and solubility of cured polymer, real-time photopolymerization kinetics, dynamic mechanical analysis (DMA), and modulated differential scanning calorimetry (MDSC). The neutralization capacity was characterized by monitoring the pH shift of 1mM lactic acid (LA) solution, in which the adhesive polymers were soaked. With increasing MEMA concentrations, experimental copolymers showed higher water sorption, lower glass transition temperature and lower crosslinking density compared to the control. The pH values of LA solution gradually increased from 3.5 to about 6.0-6.5 after 90 days. With the increase in crosslinking density of the copolymers, the neutralization rate was depressed. The optimal MEMA concentration was between 20 and 40 wt%. As compared to the control, the results indicated that the MEMA-functionalized copolymer showed neutralization capability. The crosslinking density of the copolymer networks influenced the neutralization rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Adhesive Contact Sweeper

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.

    1993-01-01

    Adhesive contact sweeper removes hair and particles vacuum cleaner leaves behind, without stirring up dust. Also cleans loose rugs. Sweeper holds commercially available spools of inverted adhesive tape. Suitable for use in environments in which air kept free of dust; optics laboratories, computer rooms, and areas inhabited by people allergic to dust. For carpets, best used in tandem with vacuum cleaner; first pass with vacuum cleaner removes coarse particles, and second pass with sweeper extracts fine particles. This practice extends useful life of adhesive spools.

  19. Cohesion and Adhesion with Proteins

    Treesearch

    Charles R. Frihart

    2016-01-01

    With increasing interest in bio-based adhesives, research on proteins has expanded because historically they have been used by both nature and humans as adhesives. A wide variety of proteins have been used as wood adhesives. Ancient Egyptians most likely used collagens tobond veneer to wood furniture, then came casein (milk), blood, fish scales, and soy adhesives, with...

  20. Effects of enamel sealing on shear bond strength and the adhesive remnant index : Study of three fluoride-releasing adhesives in combination with metal and ceramic brackets.

    PubMed

    Hofmann, Elisabeth; Elsner, Laura; Hirschfelder, Ursula; Ebert, Thomas; Hanke, Sebastian

    2017-01-01

    Selected combinations of materials were used to create tooth-adhesive-bracket complexes to evaluate shear bond strength (SBS) and the adhesive remnant index (ARI) with regard to enamel sealing. Four adhesive systems also appropriate for use as enamel sealants were combined with four bracket types, resulting in 16 adhesive-bracket combinations, each of which was tested on 15 permanent bovine incisors. Sealant-adhesives included two recently introduced fluoride-releasing systems (Riva bond LC ® and go! ® ), one established primer (Opal ® Seal™), and one commonly used adhesive as control (Transbond™ XT). Brackets included two metal (discovery ® by Dentaurum and Sprint ® ) and two ceramic (discovery ® pearl and GLAM ® ) systems. After embedding the bovine teeth, bonding the brackets to their surface, and storing the resultant samples as per DIN 13990-2 with modifications, an SBS test was performed by applying the shear force directly at the bracket base in an incisocervical direction. Then the ARI scores were determined. Discovery ®  + Transbond™ XT yielded the highest (47.2 MPa) and GLAM ®  + go! ® the lowest (17.0 MPa) mean SBS values. Significant differences (p < 0.0001) were found between metal and ceramic brackets of the same manufacturers (Dentaurum and Forestadent). Our ratings of the failure modes upon debonding predominantly yielded ARI 0 or 1. The high SBS values and low ARI scores observed with discovery ®  + Transbond XT™ were reflected in a high rate of enamel fracture, which occurred on 11 of the 15 tooth specimens in this group. All sealant-bracket combinations were found to yield levels of SBS adequate for clinical application. SBS values and ARI scores varied significantly depending on which sealant-brackets were used.

  1. Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons.

    PubMed

    Abbasnezhad, Hassan; Gray, Murray; Foght, Julia M

    2011-11-01

    Biodegradation of poorly water-soluble liquid hydrocarbons is often limited by low availability of the substrate to microbes. Adhesion of microorganisms to an oil-water interface can enhance this availability, whereas detaching cells from the interface can reduce the rate of biodegradation. The capability of microbes to adhere to the interface is not limited to hydrocarbon degraders, nor is it the only mechanism to enable rapid uptake of hydrocarbons, but it represents a common strategy. This review of the literature indicates that microbial adhesion can benefit growth on and biodegradation of very poorly water-soluble hydrocarbons such as n-alkanes and large polycyclic aromatic hydrocarbons dissolved in a non-aqueous phase. Adhesion is particularly important when the hydrocarbons are not emulsified, giving limited interfacial area between the two liquid phases. When mixed communities are involved in biodegradation, the ability of cells to adhere to the interface can enable selective growth and enhance bioremediation with time. The critical challenge in understanding the relationship between growth rate and biodegradation rate for adherent bacteria is to accurately measure and observe the population that resides at the interface of the hydrocarbon phase. © Springer-Verlag 2011

  2. Joining Tubes With Adhesive

    NASA Technical Reports Server (NTRS)

    Bateman, W. A.

    1984-01-01

    Cylindrical tubes joined together, end to end, by method employing adhesive, tapered ends, and spacing wires. Tapered joint between tubular structural elements provides pressure between bonding surfaces during adhesive curing. Spacing wires prevent adhesive from being scraped away when one element inserted in other. Method developed for assembling structural elements made of composite materials.

  3. Accelerating effects of cellulase in the removal of denture adhesives from acrylic denture bases.

    PubMed

    Harada-Hada, Kae; Mimura, Sumiyo; Hong, Guang; Hashida, Tatsumi; Abekura, Hitoshi; Murata, Hiroshi; Nishimura, Masahiro; Nikawa, Hiroki

    2017-04-01

    Studies of effective methods for the easy removal of denture adhesives from a denture base are not well represented in the literature. We previously assessed the removability of denture adhesives by immersing within denture cleaners, showing that some cleaners have a weak effect, insufficiently effective in daily use. In this study, we prepared a cellulase, as a potential component for denture adhesive removers, and we examined whether the addition of cellulase to denture cleaners is effective in the removal of cream denture adhesives. We prepared the cellulase Meicelase as one component for the liquefaction of denture adhesives. We used two denture cleaners and two cream adhesives. After the immersion of plates in sample solutions, we evaluated the area of the sample plate still covered with adhesives. Biofilm removal assay was also performed using denture cleaners containing cellulase. The addition of cellulase accelerated the removal of cream adhesives in immersion experiments to a rate faster than that of water and denture cleaners. However, it did not influence the removability of Candida albicans biofilms from acrylic resin specimens. Cellulase hastened the liquefaction of cream adhesives. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  4. Viscoelastic and fatigue properties of model methacrylate-based dentin adhesives

    PubMed Central

    Singh, Viraj; Misra, Anil; Marangos, Orestes; Park, Jonggu; Ye, Qiang; Kieweg, Sarah L.; Spencer, Paulette

    2013-01-01

    The objective of the current study is to characterize the viscoelastic and fatigue properties of model methacrylate-based dentin adhesives under dry and wet conditions. Static, creep, and fatigue tests were performed on cylindrical samples in a 3-point bending clamp. Static results showed that the apparent elastic modulus of the model adhesive varied from 2.56 to 3.53 GPa in the dry condition, and from 1.04 to 1.62 GPa in the wet condition, depending upon the rate of loading. Significant differences were also found for the creep behavior of the model adhesive under dry and wet conditions. A linear viscoelastic model was developed by fitting the adhesive creep behavior. The developed model with 5 Kelvin Voigt elements predicted the apparent elastic moduli measured in the static tests. The model was then utilized to interpret the fatigue test results. It was found that the failure under cyclic loading can be due to creep or fatigue, which has implications for the failure criterion that are applied for these types of tests. Finally, it was found that the adhesive samples tested under dry conditions were more durable than those tested under wet conditions. PMID:20848661

  5. Assessment of Risk Factors of Intrauterine Adhesions in Patients With Induced Abortion and the Curative Effect of Hysteroscopic Surgery.

    PubMed

    Mo, Xiaoliang; Qin, Guirong; Zhou, Zhoulin; Jiang, Xiaoli

    2017-10-03

    To explore the risk factors for intrauterine adhesions in patients with artificial abortion and clinical efficacy of hysteroscopic dissection. 1500 patients undergoing artificial abortion between January 2014 and June 2015 were enrolled into this study. The patients were divided into two groups with or without intrauterine adhesions. Univariate and Multiple logistic regression were conducted to assess the effects of multiple factors on the development of intrauterine adhesions following induced abortion. The incidence rate for intrauterine adhesions following induced abortion is 17.0%. Univariate showed that preoperative inflammation, multiple pregnancies and suction evacuation time are the influence risk factors of intrauterine adhesions. Multiple logistic regression demonstrates that multiple pregnancies, high intrauterine negative pressure, and long suction evacuation time are independent risk factors for the development of intrauterine adhesions following induced abortion. Additionally, intrauterine adhesions were observed in 105 mild, 80 moderate, and 70 severe cases. The cure rates for these three categories of intrauterine adhesions by hysteroscopic surgery were 100.0%, 93.8%, and 85.7%, respectively. Multiple pregnancies, high negative pressure suction evacuation and long suction evacuation time are independent risk factors for the development of intrauterine adhesions following induced abortions. Hysteroscopic surgery substantially improves the clinical outcomes of intrauterine adhesions.

  6. Fibrinogen, Riboflavin, and UVA to Immobilize a Corneal Flap—Conditions for Tissue Adhesion

    PubMed Central

    Littlechild, Stacy L.; Brummer, Gage; Zhang, Yuntao; Conrad, Gary W.

    2012-01-01

    Purpose. Laser-assisted in situ keratomileus (LASIK) creates a permanent flap that remains non-attached to the underlying laser-modified stroma. This lack of permanent adhesion is a liability. To immobilize a corneal flap, a protocol using fibrinogen (FIB), riboflavin (RF), and ultraviolet (UVA) light (FIB+RF+UVA) was devised to re-adhere the flap to the stroma. Methods. A model flap was created using rabbit (Oryctolagus cuniculus) and shark (Squalus acanthias) corneas. Solutions containing FIB and RF were applied between corneal strips as glue. Experimental corneas were irradiated with long wavelength (365 nm) UVA. To quantify adhesive strength between corneal strips, the glue-tissue interface was subjected to a constant force while a digital force gauge recorded peak tension. Results. In the presence of FIB, substantive non-covalent interactions occurred between rabbit corneal strips. Adhesiveness was augmented if RF and UVA also were applied, suggesting formation of covalent bonds. Additionally, exposing both sides of rabbit corneas to UVA generated more adhesion than exposure from one side, suggesting that RF in the FIB solution catalyzes formation of covalent bonds at only the interface between stromal molecules and FIB closest to the UVA. In contrast, in the presence of FIB, shark corneal strips interacted non-covalently more substantively than those of rabbits, and adhesion was not augmented by applying RF+UVA, from either or both sides. Residual RF could be rinsed away within 1 hour. Conclusions. Glue solution containing FIB and RF, together with UVA treatment, may aid immobilization of a corneal flap, potentially reducing risk of flap dislodgement. PMID:22589434

  7. Many Roles of Wood Adhesives

    Treesearch

    Charles R. Frihart

    2014-01-01

    Although wood bonding is one of the oldest applications of adhesives, going back to early recorded history (1), some aspects of wood bonds are still not fully understood. Most books in the general area of adhesives and adhesion do not cover wood bonding. However, a clearer understanding of wood bonding and wood adhesives can lead to improved products. This is important...

  8. Mussel-Inspired Adhesives and Coatings

    PubMed Central

    Lee, Bruce P.; Messersmith, P.B.; Israelachvili, J.N.; Waite, J.H.

    2011-01-01

    Mussels attach to solid surfaces in the sea. Their adhesion must be rapid, strong, and tough, or else they will be dislodged and dashed to pieces by the next incoming wave. Given the dearth of synthetic adhesives for wet polar surfaces, much effort has been directed to characterizing and mimicking essential features of the adhesive chemistry practiced by mussels. Studies of these organisms have uncovered important adaptive strategies that help to circumvent the high dielectric and solvation properties of water that typically frustrate adhesion. In a chemical vein, the adhesive proteins of mussels are heavily decorated with Dopa, a catecholic functionality. Various synthetic polymers have been functionalized with catechols to provide diverse adhesive, sealant, coating, and anchoring properties, particularly for critical biomedical applications. PMID:22058660

  9. On the validity of specific rate constants (kSA) in Fe0/H2O systems.

    PubMed

    Noubactep, C

    2009-05-30

    The validity of the specific reaction rate constants (k(SA)) in modelling contaminant removal in Fe(0)/H(2)O systems is questioned. It is shown that the current k(SA)-model does not consider the large reactive surface area provided by the in-situ formed oxide film, and thus the adsorptive interactions between contaminants and film materials. Furthermore, neither the dynamic nature of film formation nor the fact that the Fe(0) surface is shielded by the film is considered. Suggestions are made how the k(SA)-model could be further developed to meet its original goal.

  10. Platelet-independent adhesion of calcium-loaded erythrocytes to von Willebrand factor

    PubMed Central

    Bierings, Ruben; Meems, Henriet; Mul, Frederik P. J.; Geerts, Dirk; Vlaar, Alexander P. J.; Voorberg, Jan; Hordijk, Peter L.

    2017-01-01

    Adhesion of erythrocytes to endothelial cells lining the vascular wall can cause vaso-occlusive events that impair blood flow which in turn may result in ischemia and tissue damage. Adhesion of erythrocytes to vascular endothelial cells has been described in multiple hemolytic disorders, especially in sickle cell disease, but the adhesion of normal erythrocytes to endothelial cells has hardly been described. It was shown that calcium-loaded erythrocytes can adhere to endothelial cells. Because sickle erythrocyte adhesion to ECs can be enhanced by ultra-large von Willebrand factor multimers, we investigated whether calcium loading of erythrocytes could promote binding to endothelial cells via ultra-large von Willebrand factor multimers. We used (immunofluorescent) live-cell imaging of washed erythrocytes perfused over primary endothelial cells at venular flow rate. Using this approach, we show that calcium-loaded erythrocytes strongly adhere to histamine-stimulated primary human endothelial cells. This adhesion is mediated by ultra-large von Willebrand factor multimers. Von Willebrand factor knockdown or ADAMTS13 cleavage abolished the binding of erythrocytes to activated endothelial cells under flow. Platelet depletion did not interfere with erythrocyte binding to von Willebrand factor. Our results reveal platelet-independent adhesion of calcium-loaded erythrocytes to endothelium-derived von Willebrand factor. Erythrocyte adhesion to von Willebrand factor may be particularly relevant for venous thrombosis, which is characterized by the formation of erythrocyte-rich thrombi. PMID:28249049

  11. Adhesive Properties of Polyacrylate Gels

    NASA Astrophysics Data System (ADS)

    Flanigan, Cynthia; Shull, Kenneth

    1998-03-01

    Soft, low-modulus gels provide an interesting opportunity to examine small adhesive interactions between two bodies in contact. As shown through dynamic rheological studies, our materials undergo a rapid gelation as they are cooled from a viscous liquid at elevated temperatures to a soft, elastic solid at room temperature. At low temperatures, the gels exhibit a linearly elastic response and display moduli close to 100Pa, thereby forming materials with great potential for quantifying weak adhesive interactions with a variety of bodies ranging from polymer surfaces to biological entities. Our current studies focus on investigating interfacial effects by performing axisymmetric adhesion tests with a model polyacrylate gel formed by diluting the copolymer poly(methyl methacrylate)-poly(n-butyl acrylate)-poly(methyl methacrylate) to a 5-15 percent solution in 2-ethyl hexanol, a selective solvent for the midblock. We have explored two different experimental geometries including a hemispherical rigid indenter of glass pressed into a gel layer of varying thicknesses, and a soft, gel cap in contact with a rigid polymer surface. By simultaneously measuring the applied load, displacement between the two bodies, and contact area during loading cycles, we are able to employ a linearly elastic fracture mechanics analysis to obtain estimates of the gel's modulus over a range of polymer concentrations, and G, the energy release rate.

  12. Rates and equilibrium constants of the ligand-induced conformational transition of an HCN ion channel protein domain determined by DEER spectroscopy.

    PubMed

    Collauto, Alberto; DeBerg, Hannah A; Kaufmann, Royi; Zagotta, William N; Stoll, Stefan; Goldfarb, Daniella

    2017-06-14

    Ligand binding can induce significant conformational changes in proteins. The mechanism of this process couples equilibria associated with the ligand binding event and the conformational change. Here we show that by combining the application of W-band double electron-electron resonance (DEER) spectroscopy with microfluidic rapid freeze quench (μRFQ) it is possible to resolve these processes and obtain both equilibrium constants and reaction rates. We studied the conformational transition of the nitroxide labeled, isolated carboxy-terminal cyclic-nucleotide binding domain (CNBD) of the HCN2 ion channel upon binding of the ligand 3',5'-cyclic adenosine monophosphate (cAMP). Using model-based global analysis, the time-resolved data of the μRFQ DEER experiments directly provide fractional populations of the open and closed conformations as a function of time. We modeled the ligand-induced conformational change in the protein using a four-state model: apo/open (AO), apo/closed (AC), bound/open (BO), bound/closed (BC). These species interconvert according to AC + L ⇌ AO + L ⇌ BO ⇌ BC. By analyzing the concentration dependence of the relative contributions of the closed and open conformations at equilibrium, we estimated the equilibrium constants for the two conformational equilibria and the open-state ligand dissociation constant. Analysis of the time-resolved μRFQ DEER data gave estimates for the intrinsic rates of ligand binding and unbinding as well as the rates of the conformational change. This demonstrates that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational change.

  13. Tissue adhesives in otorhinolaryngology

    PubMed Central

    Schneider, Gerlind

    2011-01-01

    The development of medical tissue adhesives has a long history without finding an all-purpose tissue adhesive for clinical daily routine. This is caused by the specific demands which are made on a tissue adhesive, and the different areas of application. In otorhinolaryngology, on the one hand, this is the mucosal environment as well as the application on bones, cartilage and periphery nerves. On the other hand, there are stressed regions (skin, oral cavity, pharynx, oesophagus, trachea) and unstressed regions (middle ear, nose and paranasal sinuses, cranial bones). But due to the facts that adhesives can have considerable advantages in assuring surgery results, prevention of complications and so reduction of medical costs/treatment expenses, the search for new adhesives for use in otorhinolaryngology will be continued intensively. In parallel, appropriate application systems have to be developed for microscopic and endoscopic use. PMID:22073094

  14. The Br+HO 2 reaction revisited: Absolute determination of the rate constant at 298 K

    NASA Astrophysics Data System (ADS)

    Laverdet, G.; Le Bras, G.; Mellouki, A.; Poulet, G.

    1990-09-01

    The absolute determination of the rate constant for the reaction Br+HO 2→HBr+O 2 has been done at 298 K using the discharge-flor EPR method. The value k1 = (1.5±0.2) × 10 -12 cm 3 molecule -1 s -1 was obtained. Previous indirect measurements of k1 from a discharge-flow, LIF/mass spectrometric study of the Br/H 2CO/O 2 system have been reinterpreted, leading to values for k1 ranging from 1.0 × 10 -12 to 2.2 × 10 -12 cm 3 molecule -1 s -1 at 298 K. These results are discussed and compared with other literature values.

  15. Rheology and adhesion of poly(acrylic acid)/laponite nanocomposite hydrogels as biocompatible adhesives.

    PubMed

    Shen, Muxian; Li, Li; Sun, Yimin; Xu, Jun; Guo, Xuhong; Prud'homme, Robert K

    2014-02-18

    Biocompatible nanocomposite hydrogels (NC gels) consisting of poly(acrylic acid) (PAA) and nanosized clay (Laponite) were successfully synthesized by in situ free-radical polymerization of acrylic acid (AA) in aqueous solutions of Laponite. The obtained NC gels were uniform and transparent. Their viscosity, storage modulus G', and loss modulus G″ increased significantly upon increasing the content of Laponite and the dose of AA, while exhibiting a maximum with increasing the neutralization degree of AA. They showed tunable adhesion by changing the dose of Laponite and monomer as well as the neutralization degree of AA, as determined by 180° peel strength measurement. The maximal adhesion was shown when reaching a balance between cohesion and fluidity. A homemade Johnson-Kendall-Roberts (JKR) instrument was employed to study the surface adhesion behavior of the NC gels. The combination of peel strength, rheology, and JKR measurements offers the opportunity of insight into the mechanism of adhesion of hydrogels. The NC gels with tunable adhesion should be ideal candidates for dental adhesive, wound dressing, and tissue engineering.

  16. Polymerisation, antibacterial and bioactivity properties of experimental orthodontic adhesives containing triclosan-loaded halloysite nanotubes.

    PubMed

    Degrazia, Felipe Weidenbach; Genari, Bruna; Leitune, Vicente Castelo Branco; Arthur, Rodrigo Alex; Luxan, Santiago Arias; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo; Sauro, Salvatore

    2018-02-01

    To evaluate the immediate enamel bond strength, in situ degree of conversion and the polymerisation rate of three experimental orthodontic adhesives containing triclosan-loaded halloysite nanotubes. The antibacterial and bioactivity properties of such experimental materials were also assessed. Three experimental orthodontic adhesives were formulated by incorporating triclosan-loaded halloysite nanotubes (TCN-HNT) at different concentrations (5wt%, 10wt% and 20wt%) into a resin blend (Control). The maximum polymerisation rate of the tested adhesives was evaluated trough FTIR, while Raman was used to analyse the in situ degree of conversion (DC) at the bracket/enamel interface. The shear bond strength (SBS) of the enamel-bonded specimens was assessed at 24h. The antibacterial properties of the experimental materials against S. Mutans were evaluate up to 72h, while, their bioactivity was evaluated after 14days of artificial saliva (AS) storage through SEM-EDS and Raman spectromicroscopy. Incorporation of TCN-HNT increased the polymerisation properties without interfering with the immediate bonding properties of the experimental adhesives. All experimental adhesives containing TCN-HNT inhibited bacterial growth at 24h, and induced mineral deposition after 14days of AS storage. At 72h, only the experimental system containing 20% TCN-HNT maintained such a capability. Adhesives doped with TCN-HNT present improved polymerisation properties and suitable bonding performance. However, only the adhesives containing TCN-HNT >10% might promote long-term antibacterial activity and reliable mineral deposition. The use of adhesives containing triclosan-loaded halloysite represents a promising "smart" approach to bond orthodontic brackets and bands; these might prevent enamel demineralisation and induce enamel remineralisation during the treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Hidden order in crackling noise during peeling of an adhesive tape.

    PubMed

    Kumar, Jagadish; Ciccotti, M; Ananthakrishna, G

    2008-04-01

    We address the longstanding problem of recovering dynamical information from noisy acoustic emission signals arising from peeling of an adhesive tape subject to constant traction velocity. Using the phase space reconstruction procedure we demonstrate the deterministic chaotic dynamics by establishing the existence of correlation dimension as also a positive Lyapunov exponent in a midrange of traction velocities. The results are explained on the basis of the model that also emphasizes the deterministic origin of acoustic emission by clarifying its connection to stick-slip dynamics.

  18. Surface deformation and shear flow in ligand mediated cell adhesion.

    PubMed

    Sircar, Sarthok; Roberts, Anthony J

    2016-10-01

    We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, charged, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous, ionic fluid medium. The binding ligands on the surface of the cells experience both attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a selected range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function [Formula: see text]) between the adhesion phase (when [Formula: see text]) and the fragmentation phase (when [Formula: see text]) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favoured in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical threshold value of shear rate is reached). Within a selected range of critical shear rates, the continuation of the limit points (i.e., the turning points where the slope of [Formula: see text] changes sign) predict a bistable region, indicating an abrupt switching between the adhesion and the fragmentation regimes. Although, bistability in the adhesion-fragmentation phase diagram of two deformable, charged cells immersed in an ionic aqueous environment has been identified by some in vitro experiments, but until now, has not been quantified theoretically.

  19. Effect of inorganic fillers in paper on the adhesion of pressure-sensitive adhesives

    Treesearch

    Weixu Chen; Xiaoyan Tang; John Considine; Kevin T. Turner

    2011-01-01

    Inorganic fillers are inexpensive materials used to increase the density, smoothness and other properties of paper that are important for printing. In the current study, the adhesion of pressure-sensitive adhesives (PSAs), a common type of adhesive used in labels and tapes, to papers containing varying amounts and types of fillers is investigated. Papers with three...

  20. Competition kinetics using the UV/H2O2 process: a structure reactivity correlation for the rate constants of hydroxyl radicals toward nitroaromatic compounds.

    PubMed

    García Einschlag, Fernando S; Carlos, Luciano; Capparelli, Alberto L

    2003-10-01

    The rate constants for hydroxyl radical reaction toward a set of nitroaromatic substrates kS, have been measured at 25 degrees C using competition experiments in the UV/H2O2 process. For a given pair of substrates S1 and S2, the relative reactivity beta (defined as kS1/kS2) was calculated from the slope of the corresponding double logarithmic plot, i.e., of ln[S1] vs. ln[S2]. This method is more accurate and remained linear for larger conversions in comparison with the plots of ln[S1] and ln[S2] against time. The rate constants measured ranged from 0.33 to 8.6 x 10(9) M(-1)s(-1). A quantitative structure-reactivity relationship was found using the Hammett equation. Assuming sigma values to be additive, a value of -0.60 was obtained for the reaction constant rho. This value agrees with the high reactivity and the electrophilic nature of HO* radical.

  1. Glucocorticoid-induced tumor necrosis factor receptor family-related ligand triggering upregulates vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 and promotes leukocyte adhesion.

    PubMed

    Lacal, Pedro Miguel; Petrillo, Maria Grazia; Ruffini, Federica; Muzi, Alessia; Bianchini, Rodolfo; Ronchetti, Simona; Migliorati, Graziella; Riccardi, Carlo; Graziani, Grazia; Nocentini, Giuseppe

    2013-10-01

    The interaction of glucocorticoid-induced tumor necrosis factor receptor-family related (GITR) protein with its ligand (GITRL) modulates different functions, including immune/inflammatory response. These effects are consequent to intracellular signals activated by both GITR and GITRL. Previous results have suggested that lack of GITR expression in GITR(-/-) mice decreases the number of leukocytes within inflamed tissues. We performed experiments to analyze whether the GITRL/GITR system modulates leukocyte adhesion and extravasation. For that purpose, we first evaluated the capability of murine splenocytes to adhere to endothelial cells (EC). Our results indicated that adhesion of GITR(-/-) splenocytes to EC was reduced as compared with wild-type cells, suggesting that GITR plays a role in adhesion and that this effect may be due to GITRL-GITR interaction. Moreover, adhesion was increased when EC were pretreated with an agonist GITR-Fc fusion protein, thus indicating that triggering of GITRL plays a role in adhesion by EC regulation. In a human in vitro model, the adhesion to human EC of HL-60 cells differentiated toward the monocytic lineage was increased by EC pretreatment with agonist GITR-Fc. Conversely, antagonistic anti-GITR and anti-GITRL Ab decreased adhesion, thus further indicating that GITRL triggering increases the EC capability to support leukocyte adhesion. EC treatment with GITR-Fc favored extravasation, as demonstrated by a transmigration assay. Notably, GITRL triggering increased intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression and anti-ICAM-1 and anti-VCAM-1 Abs reversed GITR-Fc effects. Our study demonstrates that GITRL triggering in EC increases leukocyte adhesion and transmigration, suggesting new anti-inflammatory therapeutic approaches based on inhibition of GITRL-GITR interaction.

  2. Single cell adhesion force measurement for cell viability identification using an AFM cantilever-based micro putter

    NASA Astrophysics Data System (ADS)

    Shen, Yajing; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Kojima, Masaru; Fukuda, Toshio

    2011-11-01

    Fast and sensitive cell viability identification is a key point for single cell analysis. To address this issue, this paper reports a novel single cell viability identification method based on the measurement of single cell shear adhesion force using an atomic force microscopy (AFM) cantilever-based micro putter. Viable and nonviable yeast cells are prepared and put onto three kinds of substrate surfaces, i.e. tungsten probe, gold and ITO substrate surfaces. A micro putter is fabricated from the AFM cantilever by focused ion beam etching technique. The spring constant of the micro putter is calibrated using the nanomanipulation approach. The shear adhesion force between the single viable or nonviable cell and each substrate is measured using the micro putter based on the nanorobotic manipulation system inside an environmental scanning electron microscope. The adhesion force is calculated based on the deflection of the micro putter beam. The results show that the adhesion force of the viable cell to the substrate is much larger than that of the nonviable cell. This identification method is label free, fast, sensitive and can give quantitative results at the single cell level.

  3. New perspectives on constant-roll inflation

    NASA Astrophysics Data System (ADS)

    Cicciarella, Francesco; Mabillard, Joel; Pieroni, Mauro

    2018-01-01

    We study constant-roll inflation using the β-function formalism. We show that the constant rate of the inflaton roll is translated into a first order differential equation for the β-function which can be solved easily. The solutions to this equation correspond to the usual constant-roll models. We then construct, by perturbing these exact solutions, more general classes of models that satisfy the constant-roll equation asymptotically. In the case of an asymptotic power law solution, these corrections naturally provide an end to the inflationary phase. Interestingly, while from a theoretical point of view (in particular in terms of the holographic interpretation) these models are intrinsically different from standard slow-roll inflation, they may have phenomenological predictions in good agreement with present cosmological data.

  4. Measuring Rock-Fluid Adhesion Directly

    NASA Astrophysics Data System (ADS)

    Tadmor, R.

    2017-12-01

    We show how to measure directly solid-liquid adhesion. We consider the normal adhesion, the work adhesion, and the lateral adhesion. The technique at the center of the method is Centrifugal Adhesion Balance (CAB) which allows coordinated manipulation of normal and lateral forces. For example: 1. It allows to induce an increase in the normal force which pulls on a liquid drop while keeping zero lateral force. This method mimics a drop that is subjected to a gravitational force that is gradually increasing. 2. It allows to increase the lateral force at zero normal force, mimicking zero gravity. From this one can obtain additional solid-liquid interaction parameters. When performing work of adhesion measurements, the values obtained are independent of drop size and are in agreement with theoretical predictions.

  5. Nucleation theory with delayed interactions: An application to the early stages of the receptor-mediated adhesion/fusion kinetics of lipid vesicles

    NASA Astrophysics Data System (ADS)

    Raudino, Antonio; Pannuzzo, Martina

    2010-01-01

    A semiquantitative theory aimed to describe the adhesion kinetics between soft objects, such as living cells or vesicles, has been developed. When rigid bodies are considered, the adhesion kinetics is successfully described by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) picture, where the energy profile of two approaching bodies is given by a two asymmetrical potential wells separated by a barrier. The transition probability from the long-distance to the short-distance minimum defines the adhesion rate. Conversely, soft bodies might follow a different pathway to reach the short-distance minimum: thermally excited fluctuations give rise to local protrusions connecting the approaching bodies. These transient adhesion sites are stabilized by short-range adhesion forces (e.g., ligand-receptor interactions between membranes brought at contact distance), while they are destabilized both by repulsive forces and by the elastic deformation energy. Above a critical area of the contact site, the adhesion forces prevail: the contact site grows in size until the complete adhesion of the two bodies inside a short-distance minimum is attained. This nucleation mechanism has been developed in the framework of a nonequilibrium Fokker-Planck picture by considering both the adhesive patch growth and dissolution processes. In addition, we also investigated the effect of the ligand-receptor pairing kinetics at the adhesion site in the time course of the patch expansion. The ratio between the ligand-receptor pairing kinetics and the expansion rate of the adhesion site is of paramount relevance in determining the overall nucleation rate. The theory enables one to self-consistently include both thermodynamics (energy barrier height) and dynamic (viscosity) parameters, giving rise in some limiting cases to simple analytical formulas. The model could be employed to rationalize fusion kinetics between vesicles, provided the short-range adhesion transition is the rate

  6. Nucleation theory with delayed interactions: an application to the early stages of the receptor-mediated adhesion/fusion kinetics of lipid vesicles.

    PubMed

    Raudino, Antonio; Pannuzzo, Martina

    2010-01-28

    A semiquantitative theory aimed to describe the adhesion kinetics between soft objects, such as living cells or vesicles, has been developed. When rigid bodies are considered, the adhesion kinetics is successfully described by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) picture, where the energy profile of two approaching bodies is given by a two asymmetrical potential wells separated by a barrier. The transition probability from the long-distance to the short-distance minimum defines the adhesion rate. Conversely, soft bodies might follow a different pathway to reach the short-distance minimum: thermally excited fluctuations give rise to local protrusions connecting the approaching bodies. These transient adhesion sites are stabilized by short-range adhesion forces (e.g., ligand-receptor interactions between membranes brought at contact distance), while they are destabilized both by repulsive forces and by the elastic deformation energy. Above a critical area of the contact site, the adhesion forces prevail: the contact site grows in size until the complete adhesion of the two bodies inside a short-distance minimum is attained. This nucleation mechanism has been developed in the framework of a nonequilibrium Fokker-Planck picture by considering both the adhesive patch growth and dissolution processes. In addition, we also investigated the effect of the ligand-receptor pairing kinetics at the adhesion site in the time course of the patch expansion. The ratio between the ligand-receptor pairing kinetics and the expansion rate of the adhesion site is of paramount relevance in determining the overall nucleation rate. The theory enables one to self-consistently include both thermodynamics (energy barrier height) and dynamic (viscosity) parameters, giving rise in some limiting cases to simple analytical formulas. The model could be employed to rationalize fusion kinetics between vesicles, provided the short-range adhesion transition is the rate

  7. Multivariate curve resolution-alternating least squares and kinetic modeling applied to near-infrared data from curing reactions of epoxy resins: mechanistic approach and estimation of kinetic rate constants.

    PubMed

    Garrido, M; Larrechi, M S; Rius, F X

    2006-02-01

    This study describes the combination of multivariate curve resolution-alternating least squares with a kinetic modeling strategy for obtaining the kinetic rate constants of a curing reaction of epoxy resins. The reaction between phenyl glycidyl ether and aniline is monitored by near-infrared spectroscopy under isothermal conditions for several initial molar ratios of the reagents. The data for all experiments, arranged in a column-wise augmented data matrix, are analyzed using multivariate curve resolution-alternating least squares. The concentration profiles recovered are fitted to a chemical model proposed for the reaction. The selection of the kinetic model is assisted by the information contained in the recovered concentration profiles. The nonlinear fitting provides the kinetic rate constants. The optimized rate constants are in agreement with values reported in the literature.

  8. Comparison of enamel bond fatigue durability of universal adhesives and two-step self-etch adhesives in self-etch mode.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Hosoya, Yumiko; Nojiri, Kie; Nagura, Yuko; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2017-10-01

    To comparatively evaluate universal adhesives and two-step self-etch adhesives for enamel bond fatigue durability in self-etch mode. Three universal adhesives (Clearfil Universal Bond; G-Premio Bond; Scotchbond Universal Adhesive) and three two-step self-etch adhesives (Clearfil SE Bond; Clearfil SE Bond 2; OptiBond XTR) were used. The initial shear bond strength and shear fatigue strength of the adhesive to enamel in self-etch mode were determined. The initial shear bond strengths of the universal adhesives to enamel in self-etch mode was significantly lower than those of two-step self-etch adhesives and initial shear bond strengths were not influenced by type of adhesive in each adhesive category. The shear fatigue strengths of universal adhesives to enamel in self-etch mode were significantly lower than that of Clearfil SE Bond and Clearfil SE Bond 2, but similar to that OptiBond XTR. Unlike two-step self-etch adhesives, the initial shear bond strength and shear fatigue strength of universal adhesives to enamel in self-etch mode was not influenced by the type of adhesive. This laboratory study showed that the enamel bond fatigue durability of universal adhesives was lower than Clearfil SE Bond and Clearfil SE Bond 2, similar to Optibond XTR, and was not influenced by type of adhesive, unlike two-step self-etch adhesives.

  9. Poly(ester urea)-Based Adhesives: Improved Deployment and Adhesion by Incorporation of Poly(propylene glycol) Segments.

    PubMed

    Zhou, Jinjun; Bhagat, Vrushali; Becker, Matthew L

    2016-12-14

    The adhesive nature of mussels arises from the catechol moiety in the 3,4-dihydroxyphenylalanine (DOPA) amino acid, one of the many proteins that contribute to the unique adhesion properties of mussels. Inspired by these properties, many biomimetic adhesives have been developed over the past few years in an attempt to replace adhesives such as fibrin, cyanoacrylate, and epoxy glues. In the present work, we synthesized ethanol soluble but water insoluble catechol functionalized poly(ester urea) random copolymers that help facilitate delivery and adhesion in wet environments. Poly(propylene glycol) units incorporated into the polymer backbone impart ethanol solubility to these polymers, making them clinically relevant. A catechol to cross-linker ratio of 10:1 with a curing time of 4 h exceeded the performance of commercial fibrin glue (4.8 ± 1.4 kPa) with adhesion strength of 10.6 ± 2.1 kPa. These adhesion strengths are significant with the consideration that the adhesion studies were performed under wet conditions.

  10. Gastrin-releasing peptide induces monocyte adhesion to vascular endothelium by upregulating endothelial adhesion molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Mi-Kyoung; Park, Hyun-Joo; Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 626-870

    Gastrin-releasing peptide (GRP) is a neuropeptide that plays roles in various pathophysiological conditions including inflammatory diseases in peripheral tissues; however, little is known about whether GRP can directly regulate endothelial inflammatory processes. In this study, we showed that GRP promotes the adhesion of leukocytes to human umbilical vein endothelial cells (HUVECs) and the aortic endothelium. GRP increased the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by activating nuclear factor-κB (NF-κB) in endothelial cells. In addition, GRP activated extracellular signal-regulated kinase 1/2 (ERK1/2), p38MAPK, and AKT, and the inhibition of these signaling pathways significantly reduced GRP-inducedmore » monocyte adhesion to the endothelium. Overall, our results suggested that GRP may cause endothelial dysfunction, which could be of particular relevance in the development of vascular inflammatory disorders. - Highlights: • GRP induces adhesion of monocytes to vascular endothelium. • GRP increases the expression of endothelial adhesion molecules through the activation of NF-κB. • ERK1/2, p38MAPK, and Akt pathways are involved in the GRP-induced leukocyte adhesiveness to endothelium.« less

  11. Ab initio rate constants from hyperspherical quantum scattering: Application to H+C2H6 and H+CH3OH

    NASA Astrophysics Data System (ADS)

    Kerkeni, Boutheïna; Clary, David C.

    2004-10-01

    The dynamics and kinetics of the abstraction reactions of H atoms with ethane and methanol have been studied using a quantum mechanical procedure. Bonds being broken and formed are treated with explicit hyperspherical quantum dynamics. The ab initio potential energy surfaces for these reactions have been developed from a minimal number of grid points (average of 48 points) and are given by analytical functionals. All the degrees of freedom except the breaking and forming bonds are optimized using the second order perturbation theory method with a correlation consistent polarized valence triple zeta basis set. Single point energies are calculated on the optimized geometries with the coupled cluster theory and the same basis set. The reaction of H with C2H6 is endothermic by 1.5 kcal/mol and has a vibrationally adiabatic barrier of 12 kcal/mol. The reaction of H with CH3OH presents two reactive channels: the methoxy and the hydroxymethyl channels. The former is endothermic by 0.24 kcal/mol and has a vibrationally adiabatic barrier of 13.29 kcal/mol, the latter reaction is exothermic by 7.87 kcal/mol and has a vibrationally adiabatic barrier of 8.56 kcal/mol. We report state-to-state and state-selected cross sections together with state-to-state rate constants for the title reactions. Thermal rate constants for these reactions exhibit large quantum tunneling effects when compared to conventional transition state theory results. For H+CH3OH, it is found that the CH2OH product is the dominant channel, and that the CH3O channel contributes just 2% at 500 K. For both reactions, rate constants are in good agreement with some measurements.

  12. Microsurgical principles and postoperative adhesions: lessons from the past.

    PubMed

    Gomel, Victor; Koninckx, Philippe R

    2016-10-01

    "Microsurgery" is a set of principles developed to improve fertility surgery outcomes. These principles were developed progressively based on common sense and available evidence, under control of clinical feedback obtained with the use of second-look laparoscopy. Fertility outcome was the end point; significant improvement in fertility rates validated the concept clinically. Postoperative adhesion formation being a major cause of failure in fertility surgery, the concept of microsurgery predominantly addresses prevention of postoperative adhesions. In this concept, magnification with a microscope or laparoscope plays a minor role as technical facilitator. Not surprisingly, the principles to prevent adhesion formation are strikingly similar to our actual understanding: gentle tissue handling, avoiding desiccation, irrigation at room temperature, shielding abdominal contents from ambient air, meticulous hemostasis and lavage, avoiding foreign body contamination and infection, administration of dexamethasone postoperatively, and even the concept of keeping denuded areas separated by temporary adnexal or ovarian suspension. The actual concepts of peritoneal conditioning during surgery and use of dexamethasone and a barrier at the end of surgery thus confirm without exception the tenets of microsurgery. Although recent research helped to clarify the pathophysiology of adhesion formation, refined its prevention and the relative importance of each factor, the clinical end point of improvement of fertility rates remains demonstrated for only the microsurgical tenets as a whole. In conclusion, the principles of microsurgery remain fully valid as the cornerstones of reproductive microsurgery, whether performed by means of open access or laparoscopy. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Fracture in Westerly granite under AE feedback and constant strain rate loading: Nucleation, quasi-static propagation, and the transition to unstable fracture propagation

    USGS Publications Warehouse

    Thompson, B.D.; Young, R.P.; Lockner, D.A.

    2006-01-01

    New observations of fracture nucleation are presented from three triaxial compression experiments on intact samples of Westerly granite, using Acoustic Emission (AE) monitoring. By conducting the tests under different loading conditions, the fracture process is demonstrated for quasi-static fracture (under AE Feedback load), a slowly developing unstable fracture (loaded at a 'slow' constant strain rate of 2.5 ?? 10-6/s) and an unstable fracture that develops near instantaneously (loaded at a 'fast' constant strain rate of 5 ?? 10-5/s). By recording a continuous ultrasonic waveform during the critical period of fracture, the entire AE catalogue can be captured and the exact time of fracture defined. Under constant strain loading, three stages are observed: (1) An initial nucleation or stable growth phase at a rate of ??? 1.3 mm/s, (2) a sudden increase to a constant or slowly accelerating propagation speed of ??? 18 mm/s, and (3) unstable, accelerating propagation. In the ??? 100 ms before rupture, the high level of AE activity (as seen on the continuous record) prevented the location of discrete AE events. A lower bound estimate of the average propagation velocity (using the time-to-rupture and the existing fracture length) suggests values of a few m/s. However from a low gain acoustic record, we infer that in the final few ms, the fracture propagation speed increased to 175 m/s. These results demonstrate similarities between fracture nucleation in intact rock and the nucleation of dynamic instabilities in stick slip experiments. It is suggested that the ability to constrain the size of an evolving fracture provides a crucial tool in further understanding the controls on fracture nucleation. ?? Birkha??user Verlag, Basel, 2006.

  14. Effect of fibril shape on adhesive properties

    NASA Astrophysics Data System (ADS)

    Soto, Daniel; Hill, Ginel; Parness, Aaron; Esparza, Noé; Cutkosky, Mark; Kenny, Tom

    2010-08-01

    Research into the gecko's adhesive system revealed a unique architecture for adhesives using tiny hairs. By using a stiff material (β-keratin) to create a highly structured adhesive, the gecko's system demonstrates properties not seen in traditional pressure-sensitive adhesives which use a soft, unstructured planar layer. In contrast to pressure sensitive adhesives, the gecko adhesive displays frictional adhesion, in which increased shear force allows it to withstand higher normal loads. Synthetic fibrillar adhesives have been fabricated but not all demonstrate this frictional adhesion property. Here we report the dual-axis force testing of single silicone rubber pillars from synthetic adhesive arrays. We find that the shape of the adhesive pillar dictates whether frictional adhesion or pressure-sensitive behavior is observed. This work suggests that both types of behavior can be achieved with structures much larger than gecko terminal structures. It also indicates that subtle differences in the shape of these pillars can significantly influence their properties.

  15. In vitro Flow Adhesion Assay for Analyzing Shear-resistant Adhesion of Metastatic Cancer Cells to Endothelial Cells.

    PubMed

    Kang, Shin-Ae; Bajana, Sandra; Tanaka, Takemi

    2016-02-20

    Hematogenous metastasis is a primary cause of mortality from metastatic cancer. The shear-resistant adhesion of circulating tumor cells to the vascular endothelial cell surface under blood flow is an essential step in cell extravasation and further tissue invasion. This is similar to a process exploited by leukocytes for adhesion to inflamed blood vessels (leukocyte mimicry). The shear resistant adhesion is mediated by high affinity interactions between endothelial adhesion molecules and their counter receptor ligand expressed on circulating cells. Thus, weak interaction results in a rapid detachment of circulating cells from endothelium. Despite the critical role of vascular adhesion of cancer cells in hematogenous metastasis, our knowledge regarding this process has been limited due to the difficulty of mimicking dynamic flow conditions in vitro . In order to gain better insight into the shear-resistant adhesion of cancer cells to the endothelium, we developed a protocol for measuring the shear resistant adhesion of circulating tumor cells to endothelial cells under physiologic flow conditions by adapting a well established flow adhesion assay for inflammatory cells. This technique is useful to evaluate 1) the shear resistant adhesion competency of cancer cells and 2) the endothelial adhesion molecules necessary to support cancer cell adhesion (Kang et al. , 2015).

  16. Slow Crack Growth of Brittle Materials With Exponential Crack-Velocity Formulation. Part 2; Constant Stress Rate Experiments

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.

    2002-01-01

    The previously determined life prediction analysis based on an exponential crack-velocity formulation was examined using a variety of experimental data on glass and advanced structural ceramics in constant stress rate and preload testing at ambient and elevated temperatures. The data fit to the relation of strength versus the log of the stress rate was very reasonable for most of the materials. Also, the preloading technique was determined equally applicable to the case of slow-crack-growth (SCG) parameter n greater than 30 for both the power-law and exponential formulations. The major limitation in the exponential crack-velocity formulation, however, was that the inert strength of a material must be known a priori to evaluate the important SCG parameter n, a significant drawback as compared with the conventional power-law crack-velocity formulation.

  17. Investigation of organic adhesives for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1975-01-01

    The properties of organic adhesives were investigated to acquire information for a guideline document regarding the selection of adhesives for use in high reliability hybrid microcircuits. Specifically, investigations were made of (1) alternate methods for determining the outgassing of cured adhesives, (2) effects of long term aging at 150 C on the electrical properties of conductive adhesives, (3) effects of shelf life age on adhesive characteristics, (4) bond strengths of electrically conductive adhesives on thick film gold metallization, (5) a copper filled adhesive, (6) effects of products outgassed from cured adhesives on device electrical parameters, (7) metal migration from electrically conductive adhesives, and (8) ionic content of electrically insulative adhesives. The tests performed during these investigations are described, and the results obtained are discussed.

  18. Direct Dynamics Simulation of the Thermal 3CH2 + 3O2 Reaction. Rate Constant and Product Branching Ratios.

    PubMed

    Lakshmanan, Sandhiya; Pratihar, Subha; Machado, Francisco B C; Hase, William L

    2018-05-31

    The reaction of 3 CH 2 with 3 O 2 is of fundamental importance in combustion, and the reaction is complex as a result of multiple extremely exothermic product channels. In the present study, direct dynamics simulations were performed to study the reaction on both the singlet and triplet potential energy surfaces (PESs). The simulations were performed at the UM06/6-311++G(d,p) level of theory. Trajectories were calculated at a temperature of 300 K, and all reactive trajectories proceeded through the carbonyl oxide Criegee intermediate, CH 2 OO, on both the singlet and triplet PESs. The triplet surface leads to only one product channel, H 2 CO + O( 3 P), while the singlet surface leads to eight product channels with their relative importance as CO + H 2 O > CO + OH + H ∼ H 2 CO + O( 1 D) > HCO + OH ∼ CO 2 + H 2 ∼ CO + H 2 + O( 1 D) > CO 2 + H + H > HCO + O( 1 D) + H. The reaction on the singlet PES is barrierless, consistent with experiment, and the total rate constant on the singlet surface is (0.93 ± 0.22) × 10 -12 cm 3 molecule -1 s -1 in comparison to the recommended experimental rate constant of 3.3 × 10 -12 cm 3 molecule -1 s -1 . The simulation product yields for the singlet PES are compared with experiment, and the most significant differences are for H, CO 2 , and H 2 O. The reaction on the triplet surface is also barrierless, inconsistent with experiment. A discussion is given of the need for future calculations to address (1) the barrier on the triplet PES for 3 CH 2 + 3 O 2 → 3 CH 2 OO, (2) the temperature dependence of the 3 CH 2 + 3 O 2 reaction rate constant and product branching ratios, and (3) the possible non-RRKM dynamics of the 1 CH 2 OO Criegee intermediate.

  19. Effect of antioxidants on the dentin interface bond stability of adhesives exposed to hydrolytic degradation.

    PubMed

    Gotti, Valéria B; Feitosa, Victor P; Sauro, Salvatore; Correr-Sobrinho, Lourenço; Leal, Fernanda B; Stansbury, Jeffrey W; Correr, Américo B

    2015-02-01

    This study assessed the effect of antioxidants vitamin C (Vit. C), vitamin E (Vit. E) and quercetin (Querc) on the dentin bonding performance, degree of conversion, and rate of polymerization of three commercial adhesive systems (Adper Single Bond 2 [SB], Clearfil SE Bond [CSE], Adper Easy Bond [EB]). Human premolars were restored using antioxidant-doped adhesives. The samples were stored for 24 h in distilled water or 6 months under simulated pulpal pressure. Teeth were cut into sticks and the microtensile bond strength (μTBS) to dentin was tested in a universal testing machine. Qualitative nanoleakage analysis was performed from a central stick of each restored tooth. Degree of conversion and rate of polymerization of adhesive systems were evaluated in triplicate using real-time FT-IR. Although the inclusion of the antioxidants negatively affected the μTBS over 24 h, the antioxidant-doped adhesives maintained (SB-Vit. C, SB-Vit. E, CSE-Vit. C, EB-Querc) or increased (SB-Querc, CSE-Vit. E, CSE-Querc, EB-Vit. E, and EB-Vit. C) their μTBS during 6 months of storage. Only the μTBS of Adper Single Bond 2 dropped significantly after 6 months among the control groups. Slight changes in the nanoleakage pattern after aging were observed in all groups, except for the EB-control group, which showed a noteworthy increase in nanoleakage after 6 months, and for EB-Vit. C, which presented a remarkable decrease. A lower degree of conversion was obtained with all antioxidants in SB and EB, except for the EB-Vit. E group. Similar degrees of conversion were attained in control and experimental groups for CSE. The rate of polymerization was reduced in antioxidant-doped adhesives. The performance of antioxidants changed according to the adhesive system to which they were added, and antioxidant-doped adhesives appear to have a positive effect on the adhesive interface durability, since their bond strength obtained after 24 h was maintained or increased over time.

  20. P-glycoprotein Mediates Postoperative Peritoneal Adhesion Formation by Enhancing Phosphorylation of the Chloride Channel-3

    PubMed Central

    Deng, Lulu; Li, Qin; Lin, Guixian; Huang, Dan; Zeng, Xuxin; Wang, Xinwei; Li, Ping; Jin, Xiaobao; Zhang, Haifeng; Li, Chunmei; Chen, Lixin; Wang, Liwei; Huang, Shulin; Shao, Hongwei; Xu, Bin; Mao, Jianwen

    2016-01-01

    P-glycoprotein (P-gp) is encoded by the multidrug resistance (MDR1) gene and is well studied as a multi-drug resistance transporter. Peritoneal adhesion formation following abdominal surgery remains an important clinical problem. Here, we found that P-gp was highly expressed in human adhesion fibroblasts and promoted peritoneal adhesion formation in a rodent model. Knockdown of P-gp expression by intraperitoneal injection of MDR1-targeted siRNA significantly reduced both the peritoneal adhesion development rate and adhesion grades. Additionally, we found that operative injury up-regulated P-gp expression in peritoneal fibroblasts through the TGF-β1/Smad signaling pathway and histone H3 acetylation. The overexpression of P-gp accelerated migration and proliferation of fibroblasts via volume-activated Cl- current and cell volume regulation by enhancing phosphorylation of the chloride channel-3. Therefore, P-gp plays a critical role in postoperative peritoneal adhesion formation and may be a valuable therapeutic target for preventing the formation of peritoneal adhesions. PMID:26877779

  1. Intercellular adhesion molecule-1 augments myoblast adhesion and fusion through homophilic trans-interactions.

    PubMed

    Pizza, Francis X; Martin, Ryan A; Springer, Evan M; Leffler, Maxwell S; Woelmer, Bryce R; Recker, Isaac J; Leaman, Douglas W

    2017-07-11

    The overall objective of the study was to identify mechanisms through which intercellular adhesion molecule-1 (ICAM-1) augments the adhesive and fusogenic properties of myogenic cells. Hypotheses were tested using cultured myoblasts and fibroblasts, which do not constitutively express ICAM-1, and myoblasts and fibroblasts forced to express full length ICAM-1 or a truncated form lacking the cytoplasmic domain of ICAM-1. ICAM-1 mediated myoblast adhesion and fusion were quantified using novel assays and cell mixing experiments. We report that ICAM-1 augments myoblast adhesion to myoblasts and myotubes through homophilic trans-interactions. Such adhesive interactions enhanced levels of active Rac in adherent and fusing myoblasts, as well as triggered lamellipodia, spreading, and fusion of myoblasts through the signaling function of the cytoplasmic domain of ICAM-1. Rac inhibition negated ICAM-1 mediated lamellipodia, spreading, and fusion of myoblasts. The fusogenic property of ICAM-1-ICAM-1 interactions was restricted to myogenic cells, as forced expression of ICAM-1 by fibroblasts did not augment their fusion to ICAM-1+ myoblasts/myotubes. We conclude that ICAM-1 augments myoblast adhesion and fusion through its ability to self-associate and initiate Rac-mediated remodeling of the actin cytoskeleton.

  2. Rate and Equilibrium Constants for the Addition of N-Heterocyclic Carbenes into Benzaldehydes: A Remarkable 2-Substituent Effect**

    PubMed Central

    Collett, Christopher J; Massey, Richard S; Taylor, James E; Maguire, Oliver R; O'Donoghue, AnnMarie C; Smith, Andrew D

    2015-01-01

    Rate and equilibrium constants for the reaction between N-aryl triazolium N-heterocyclic carbene (NHC) precatalysts and substituted benzaldehyde derivatives to form 3-(hydroxybenzyl)azolium adducts under both catalytic and stoichiometric conditions have been measured. Kinetic analysis and reaction profile fitting of both the forward and reverse reactions, plus onwards reaction to the Breslow intermediate, demonstrate the remarkable effect of the benzaldehyde 2-substituent in these reactions and provide insight into the chemoselectivity of cross-benzoin reactions. PMID:25908493

  3. Mussel-inspired tough hydrogels with self-repairing and tissue adhesion

    NASA Astrophysics Data System (ADS)

    Gao, Zijian; Duan, Lijie; Yang, Yongqi; Hu, Wei; Gao, Guanghui

    2018-01-01

    The mussel-inspired polymeric hydrogels have been attractively explored owing to their self-repairing or adhesive property when the catechol groups of dopamine could chelate metal ions. However, it was a challenge for self-repairing hydrogels owning high mechanical properties. Herein, a synergistic strategy was proposed by combining catechol-Fe3+ complexes and hydrophobic association. The resulting hydrogels exhibited seamless self-repairing behavior, tissue adhesion and high mechanical property. Moreover, the pH-dependent stoichiometry of catechol-Fe3+ and temperature-sensitive hydrophobic association endue hydrogels with pH/thermo responsive characteristics. Subsequently, the self-repairing rate and mechanical property of hydrogels were investigated at different pH and temperature. This bio-inspired strategy would build an avenue for designing and constructing a new generation of self-repairing, tissue-adhesive and tough hydrogel.

  4. Autophagy promotes degradation of internalized collagen and regulates distribution of focal adhesions to suppress cell adhesion

    PubMed Central

    Kawano, Shinichi; Esaki, Motohiro; Torisu, Kumiko; Matsuno, Yuichi; Kitazono, Takanari

    2017-01-01

    ABSTRACT Adhesion of cells to the extracellular matrix (ECM) via focal adhesions (FAs) is crucial for cell survival, migration, and differentiation. Although the regulation of FAs, including by integrins and the ECM, is important to cell behavior, how FAs are regulated is not well known. Autophagy is induced by both cell adhesion and cell detachment. Here, we showed that autophagosomes are located close to internalized collagen and paxillin, which is a well-known marker of FAs. Autophagy-deficient cells showed increased levels of internalized collagen compared with control cells. Moreover, paxillin exhibited a more peripheral distribution and the area of paxillin was increased, and adhesion-induced focal adhesion kinase signaling was impaired and adhesion was enhanced, in autophagy-deficient cells. These results suggest that autophagy suppressed cell adhesion by regulating internalized ECM and FAs. PMID:28970230

  5. Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ruijie; Wang, Junjie, E-mail: junjiewang47@yahoo.com; Xu, Feng

    2013-10-01

    To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDRmore » plans delivered a slightly greater V{sub 20} of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability.« less

  6. Ceramic Adhesive for High Temperatures

    NASA Technical Reports Server (NTRS)

    Stevens, Everett G.

    1987-01-01

    Fused-silica/magnesium-phosphate adhesive resists high temperatures and vibrations. New adhesive unaffected by extreme temperatures and vibrations. Assuring direct bonding of gap filters to tile sidewalls, adhesive obviates expensive and time-consuming task of removal, treatment, and replacement of tiles.

  7. Biophysics of cadherin adhesion.

    PubMed

    Leckband, Deborah; Sivasankar, Sanjeevi

    2012-01-01

    Since the identification of cadherins and the publication of the first crystal structures, the mechanism of cadherin adhesion, and the underlying structural basis have been studied with a number of different experimental techniques, different classical cadherin subtypes, and cadherin fragments. Earlier studies based on biophysical measurements and structure determinations resulted in seemingly contradictory findings regarding cadherin adhesion. However, recent experimental data increasingly reveal parallels between structures, solution binding data, and adhesion-based biophysical measurements that are beginning to both reconcile apparent differences and generate a more comprehensive model of cadherin-mediated cell adhesion. This chapter summarizes the functional, structural, and biophysical findings relevant to cadherin junction assembly and adhesion. We emphasize emerging parallels between findings obtained with different experimental approaches. Although none of the current models accounts for all of the available experimental and structural data, this chapter discusses possible origins of apparent discrepancies, highlights remaining gaps in current knowledge, and proposes challenges for further study.

  8. Characterization of mode 1 and mixed-mode failure of adhesive bonds between composite adherends

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.

    1985-01-01

    A combined experimental and analytical investigation of an adhesively bonded composite joint was conducted to characterize both the static and fatigue beyond growth mechanism under mode 1 and mixed-mode 1 and 2 loadings. Two bonded systems were studied: graphite/epoxy adherends bonded with EC 3445 and FM-300 adhesives. For each bonded system, two specimen types were tested: a double-cantilever-beam specimen for mode 1 loading and a cracked-lapshear specimen for mixed-mode 1 and 2 loading. In all specimens tested, failure occurred in the form of debond growth. Debonding always occurred in a cohesive manner with EC 3445 adhesive. The FM-300 adhesive debonded in a cohesive manner under mixed-mode 1 and 2 loading, but in a cohesive, adhesive, or combined cohesive and adhesive manner under mode 1 loading. Total strain-energy release rate appeared to be the driving parameter for debond growth under static and fatigue loadings.

  9. Flow limitation and wheezes in a constant flow and volume lung preparation.

    PubMed

    Gavriely, N; Grotberg, J B

    1988-01-01

    To facilitate the study of respiratory wheezes in an animal lung model, an isovolume, constant-flow excised dog lung preparation was developed. Dog lungs were inflated to 26 +/- 4 cmH2O and coated with layers of epoxy glue and polyester compound. A rigid shell 2 mm thick was obtained around the entire pleural surface and the extra-pulmonary airways. The adhesive forces between the pleura and the shell were strong enough to hold the lung distended after the inflation pressure was removed. Holes 2 mm diam were drilled through the shell over one of the lung lobes in an array, 4 cm across. The holes penetrated the pleural surface, so that constant flow could be maintained in the expiratory direction by activating a suction pump connected to the trachea. Downstream suction pressure and flow rate were measured with a mercury manometer and a rotameter, respectively. Sounds were recorded by a small (0.6 cm OD) microphone inserted into the trachea. When suction pressure was increased, flow initially increased to 31 +/- 3 l/min. Further increase of suction pressure caused only very slight additional increase in flow (i.e., flow limitation). During this plateau of flow, a pure tone was generated with acoustic properties similar to respiratory wheezes. Both the flow plateau and the wheezing sounds could be eliminated by freezing the lungs. It is concluded that wheezing sounds were associated with flow limitation in this preparation. It is suggested that the stable acoustic properties obtained by this preparation may become useful in the analysis of mechanisms of wheezing lung sounds generation.

  10. Natural Underwater Adhesives

    PubMed Central

    Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

    2011-01-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  11. Biological adhesives and fastening devices

    NASA Astrophysics Data System (ADS)

    Wolpert, H. D.

    2012-04-01

    Sea creatures are a leading source to some of the more interesting discoveries in adhesives. Because sea water naturally breaks down even the strongest conventional adhesive, an alternative is important that could be used in repairing or fabricating anything that might have regular contact with moisture such as: Repairing broken and shattered bones, developing a surgical adhesive, use in the dental work, repairing and building ships, and manufacturing plywood. Some of nature's prototypes include the common mussel, limpet, some bacteria and abalone. As we learn more about these adhesives we are also developing non adhesive fasteners, such as mimicked after studying the octopus, burdock burrs (i.e. Velcro®) and the gecko.

  12. The glycocalyx promotes cooperative binding and clustering of adhesion receptors.

    PubMed

    Xu, Guang-Kui; Qian, Jin; Hu, Jinglei

    2016-05-18

    Cell adhesion plays a pivotal role in various biological processes, e.g., immune responses, cancer metastasis, and stem cell differentiation. The adhesion behaviors depend subtly on the binding kinetics of receptors and ligands restricted at the cell-substrate interfaces. Although much effort has been directed toward investigating the kinetics of adhesion molecules, the role of the glycocalyx, anchored on cell surfaces as an exterior layer, is still unclear. In this paper, we propose a theoretical approach to study the collective binding kinetics of a few and a large number of binders in the presence of the glycocalyx, representing the cases of initial and mature adhesions of cells, respectively. The analytical results are validated by finding good agreement with our Monte Carlo simulations. In the force loading case, the on-rate and affinity increase as more bonds form, whereas this cooperative effect is not observed in the displacement loading case. The increased thickness and stiffness of the glycocalyx tend to decrease the affinity for a few bonds, while they have less influence on the affinity for a large number of bonds. Moreover, for a flexible membrane with thermally-excited shape fluctuations, the glycocalyx is exhibited to promote the formation of bond clusters, mainly due to the cooperative binding of binders. This study helps to understand the cooperative kinetics of adhesion receptors under physiologically relevant loading conditions and sheds light on the novel role of the glycocalyx in cell adhesion.

  13. EFFECT OF AN ADDITIONAL HYDROPHILIC VERSUS HYDROPHOBIC COAT ON THE QUALITY OF DENTINAL SEALING PROVIDED BY TWO-STEP ETCH-AND-RINSE ADHESIVES

    PubMed Central

    Silva, Safira Marques de Andrade; Carrilho, Marcela Rocha de Oliveira; Marquezini, Luiz; Garcia, Fernanda Cristina Pimentel; Manso, Adriana Pigozzo; Alves, Marcelo Corrêa; de Carvalho, Ricardo Marins

    2009-01-01

    Objective: To test the hypothesis that the quality of the dentinal sealing provided by two-step etch-and-rinse adhesives cannot be altered by the addition of an extra layer of the respective adhesive or the application of a more hydrophobic, non-solvated resin. Material and Methods: full-crown preparations were acid-etched with phosphoric acid for 15 s and bonded with Adper Single Bond (3M ESPE), Excite DSC (Ivoclar/Vivadent) or Prime & Bond NT (Dentsply). The adhesives were used according to the manufacturers' instructions (control groups) or after application to dentin they were a) covered with an extra coat of each respective system or b) coated with a non-solvated bonding agent (Adper Scotchbond Multi-Purpose Adhesive, 3M ESPE). Fluid flow rate was measured before and after dentin surfaces were acid-etched and bonded with adhesives. Results: None of the adhesives or experimental treatments was capable to block completely the fluid transudation across the treated dentin. Application of an extra coat of the adhesive did not reduce the fluid flow rate of adhesive-bonded dentin (p>0.05). Conversely, the application of a more hydrophobic non-solvated resin resulted in significant reductions in the fluid flow rate (p<0.05) for all tested adhesives. Conclusions: The quality of the dentinal sealing provided by etch-and-rinse adhesives can be significantly improved by the application of a more hydrophobic, non-solvated bonding agent. PMID:19466248

  14. Hydrolysis rate constants and activation parameters for phosphate- and phosphonate-bridged phthalonitrile monomers under acid, neutral and alkali conditions.

    PubMed

    Belsky, Kirill S; Sulimov, Artem V; Bulgakov, Boris A; Babkin, Alexandr V; Kepman, Alexey V

    2017-08-01

    Hydrolysis data for Bis(3-(3,4-dicyanophenoxy)phenyl) phenyl phosphate and Bis(3-(3,4-dicyanophenoxy)phenyl) phenylphosphonate under pH 4, 7 and 10 are presented. Conversion/time plots collected by HPLC analysis, typical chromatograms and NMR spectra of the reactions products are given. Pseudo-first order rate constants are determined for both substrates at 25, 50 and 80 °C. Activation parameters were calculated from Arrhenius equation.

  15. Rationale choosing interval of a piecewise-constant approximation of input rate of non-stationary queue system

    NASA Astrophysics Data System (ADS)

    Korelin, Ivan A.; Porshnev, Sergey V.

    2018-01-01

    The paper demonstrates the possibility of calculating the characteristics of the flow of visitors to objects carrying out mass events passing through checkpoints. The mathematical model is based on the non-stationary queuing system (NQS) where dependence of requests input rate from time is described by the function. This function was chosen in such way that its properties were similar to the real dependencies of speed of visitors arrival on football matches to the stadium. A piecewise-constant approximation of the function is used when statistical modeling of NQS performing. Authors calculated the dependencies of the queue length and waiting time for visitors to service (time in queue) on time for different laws. Time required to service the entire queue and the number of visitors entering the stadium at the beginning of the match were calculated too. We found the dependence for macroscopic quantitative characteristics of NQS from the number of averaging sections of the input rate.

  16. Mussel adhesion – essential footwork

    PubMed Central

    2017-01-01

    ABSTRACT Robust adhesion to wet, salt-encrusted, corroded and slimy surfaces has been an essential adaptation in the life histories of sessile marine organisms for hundreds of millions of years, but it remains a major impasse for technology. Mussel adhesion has served as one of many model systems providing a fundamental understanding of what is required for attachment to wet surfaces. Most polymer engineers have focused on the use of 3,4-dihydroxyphenyl-l-alanine (Dopa), a peculiar but abundant catecholic amino acid in mussel adhesive proteins. The premise of this Review is that although Dopa does have the potential for diverse cohesive and adhesive interactions, these will be difficult to achieve in synthetic homologs without a deeper knowledge of mussel biology; that is, how, at different length and time scales, mussels regulate the reactivity of their adhesive proteins. To deposit adhesive proteins onto target surfaces, the mussel foot creates an insulated reaction chamber with extreme reaction conditions such as low pH, low ionic strength and high reducing poise. These conditions enable adhesive proteins to undergo controlled fluid–fluid phase separation, surface adsorption and spreading, microstructure formation and, finally, solidification. PMID:28202646

  17. USING IN VIVO GAS UPDATE STUDIES TO ESTIMATE METABOLIC RATE CONSTANTS FOR CCL CHEMICALS: 1,1-DICHLOROPROPANE AND 2,2-DICHLOROPROPANE

    EPA Science Inventory

    USING IN VIVO GAS UPTAKE STUDIES TO ESTIMATE METABOLIC RATE CONSTANTS FOR CCL CHEMICALS: 1,1-DICHLOROPROPENE AND 2,2-DICHLOROPROPANE.
    Mitchell, C T, Evans, M V, Kenyon, E M. NHEERL, U.S. EPA, ORD, ETD, RTP, NC

    The Safe Drinking Water Act Amendments of 1996 required ...

  18. Contact compliance effects in the frictional response of bioinspired fibrillar adhesives

    PubMed Central

    Piccardo, Marco; Chateauminois, Antoine; Fretigny, Christian; Pugno, Nicola M.; Sitti, Metin

    2013-01-01

    The shear failure and friction mechanisms of bioinspired adhesives consisting of elastomer arrays of microfibres terminated by mushroom-shaped tips are investigated in contact with a rigid lens. In order to reveal the interplay between the vertical and lateral loading directions, experiments are carried out using a custom friction set-up in which normal stiffness can be made either high or low when compared with the stiffness of the contact between the fibrillar adhesive and the lens. Using in situ contact imaging, the shear failure of the adhesive is found to involve two successive mechanisms: (i) cavitation and peeling at the contact interface between the mushroom-shaped fibre tip endings and the lens; and (ii) side re-adhesion of the fibre's stem to the lens. The extent of these mechanisms and their implications regarding static friction forces is found to depend on the crosstalk between the normal and lateral loading directions that can result in contact instabilities associated with fibre buckling. In addition, the effects of the viscoelastic behaviour of the polyurethane material on the rate dependence of the shear response of the adhesive are accounted for. PMID:23554349

  19. Comparing Soy Flour Wood Adhesives to Purified Soy Protein Adhesives

    Treesearch

    Charles R. Frihart; Linda F. Lorenz

    2013-01-01

    While economics dictate that soy-based wood adhesives be made with soy flour, much of the recent literature on soy-based wood adhesives has involved using soy protein isolate. The obvious assumption is that the additional carbohydrates in the flour but not in the isolate only serve as inert diluents. Our studies have shown that the isolate can provide 10 times the wet...

  20. Constant strain rate experiments and constitutive modeling for a class of bitumen

    NASA Astrophysics Data System (ADS)

    Reddy, Kommidi Santosh; Umakanthan, S.; Krishnan, J. Murali

    2012-08-01

    The mechanical properties of bitumen vary with the nature of the crude source and the processing methods employed. To understand the role of the processing conditions played in the mechanical properties, bitumen samples derived from the same crude source but processed differently (blown and blended) are investigated. The samples are subjected to constant strain rate experiments in a parallel plate rheometer. The torque applied to realize the prescribed angular velocity for the top plate and the normal force applied to maintain the gap between the top and bottom plate are measured. It is found that when the top plate is held stationary, the time taken by the torque to be reduced by a certain percentage of its maximum value is different from the time taken by the normal force to decrease by the same percentage of its maximum value. Further, the time at which the maximum torque occurs is different from the time at which the maximum normal force occurs. Since the existing constitutive relations for bitumen cannot capture the difference in the relaxation times for the torque and normal force, a new rate type constitutive model, incorporating this response, is proposed. Although the blended and blown bitumen samples used in this study correspond to the same grade, the mechanical responses of the two samples are not the same. This is also reflected in the difference in the values of the material parameters in the model proposed. The differences in the mechanical properties between the differently processed bitumen samples increase further with aging. This has implications for the long-term performance of the pavement.