Sample records for adhesion related genes

  1. Expression of pathogenicity-related genes of Xylella fastidiosa in vitro and in planta.

    PubMed

    de Souza, Alessandra A; Takita, Marco A; Pereira, Eridan O; Coletta-Filho, Helvécio D; Machado, Marcos A

    2005-04-01

    Xylella fastidiosa is responsible for several economically important plant diseases. It is currently assumed that the symptoms are caused by vascular occlusion due to biofilm formation. Microarray technology was previously used to examine the global gene expression profile of X. fastidiosa freshly isolated from symptomatic plants or after several passages by axenic culture medium, and different pathogenicity profiles have been obtained. In the present study the expression of some pathogenicity-related genes was evaluated in vitro and in planta by RT-PCR. The results suggest that adhesion is important at the beginning of biofilm formation, while the genes related to adaptation are essential for the organism's maintenance in planta. Similar results were observed in vitro mainly for the adhesion genes. The pattern of expression observed suggests that adhesion modulates biofilm formation whereas the expression of some adaptation genes may be related to the environment in which the organism is living.

  2. An epigenetic signature of adhesion molecules predicts poor prognosis of ovarian cancer patients

    PubMed Central

    Chang, Ping-Ying; Liao, Yu-Ping; Wang, Hui-Chen; Chen, Yu-Chih; Huang, Rui-Lan; Wang, Yu-Chi; Yuan, Chiou-Chung; Lai, Hung-Cheng

    2017-01-01

    DNA methylation is a promising biomarker for cancer. The epigenetic effects of cell adhesion molecules may affect the therapeutic outcome and the present study examined their effects on survival in ovarian cancer. We integrated methylomics and genomics datasets in The Cancer Genome Atlas (n = 391) and identified 106 highly methylated adhesion-related genes in ovarian cancer tissues. Univariate analysis revealed the methylation status of eight genes related to progression-free survival. In multivariate Cox regression analysis, four highly methylated genes (CD97, CTNNA1, DLC1, HAPLN2) and three genes (LAMA4, LPP, MFAP4) with low methylation were significantly associated with poor progression-free survival. Low methylation of VTN was an independent poor prognostic factor for overall survival after adjustment for age and stage. Patients who carried any two of CTNNA1, DLC1 or MFAP4 were significantly associated with poor progression-free survival (hazard ratio: 1.59; 95% confidence interval: 1.23, 2.05). This prognostic methylation signature was validated in a methylomics dataset generated in our lab (n = 37, hazard ratio: 16.64; 95% confidence interval: 2.68, 103.14) and in another from the Australian Ovarian Cancer Study (n = 91, hazard ratio: 2.43; 95% confidence interval: 1.11, 5.36). Epigenetics of cell adhesion molecules is related to ovarian cancer prognosis. A more comprehensive methylomics of cell adhesion molecules is needed and may advance personalized treatment with adhesion molecule-related drugs. PMID:28881822

  3. Biodiversity of mannose-specific adhesion in Lactobacillus plantarum revisited: strain-specific domain composition of the mannose-adhesin.

    PubMed

    Gross, G; Snel, J; Boekhorst, J; Smits, M A; Kleerebezem, M

    2010-03-01

    Recently, we have identified the mannose-specific adhesin encoding gene (msa) of Lactobacillus plantarum. In the current study, structure and function of this potentially probiotic effector gene were further investigated, exploring genetic diversity of msa in L. plantarum in relation to mannose adhesion capacity. The results demonstrate that there is considerable variation in quantitative in vitro mannose adhesion capacity, which is paralleled by msa gene sequence variation. The msa genes of different L. plantarum strains encode proteins with variable domain composition. Construction of L. plantarum 299v mutant strains revealed that the msa gene product is the key-protein for mannose adhesion, also in a strain with high mannose adhering capacity. However, no straightforward correlation between adhesion capacity and domain composition of Msa in L. plantarum could be identified. Nevertheless, differences in Msa sequences in combination with variable genetic background of specific bacterial strains appears to determine mannose adhesion capacity and potentially affects probiotic properties. These findings exemplify the strain-specificity of probiotic characteristics and illustrate the need for careful and molecular selection of new candidate probiotics.

  4. Non-human Primate and Rat Cardiac Fibroblasts show similar Extracellular Matrix-related and Cellular Adhesion Gene Responses to Substance P

    PubMed Central

    Meléndez, Giselle C.; Manteufel, Edward J.; Dehlin, Heather M.; Register, Thomas C.; Levick, Scott P.

    2015-01-01

    Background The sensory nerve neuropeptide substance P (SP) regulates cardiac fibrosis in rodents under pressure overload conditions. Interestingly, SP induces transient increase expression of specific genes in isolated rat cardiac fibroblasts, without resultant changes in cell function. This suggests that SP ‘primes’ fibroblasts, but does not directly activate them. We investigated whether these unusual findings are specific to rodent fibroblasts or are translatable to a larger animal model more closely related to humans. Methods We compared the effects of SP on genes associated with extracellular matrix (ECM) regulation, cell-cell adhesion, cell-matrix adhesion and ECM in cardiac fibroblasts isolated from a non-human primate and Sprague-Dawley rats. Results We found that rodent and non-human primate cardiac fibroblasts showed similar ECM regulation and cell adhesion gene expression responses to SP. There were, however, large discrepancies in ECM genes which did not result in collagen or laminin synthesis in rat or non-human primate fibroblasts in response to SP. Conclusions This study further supports the notion that SP serves as a ‘primer’ for fibroblasts rather than initiating direct effects and suggests that rodent fibroblasts are a suitable model for studying gene and functional responses to SP in the absence of human or non-human primate fibroblasts. PMID:25550118

  5. Quantitative differences in adhesiveness of type 1 fimbriated Escherichia coli due to structural differences in fimH genes.

    PubMed Central

    Sokurenko, E V; Courtney, H S; Maslow, J; Siitonen, A; Hasty, D L

    1995-01-01

    Type 1 fimbriae are heteropolymeric surface organelles responsible for the D-mannose-sensitive (MS) adhesion of Escherichia coli. We recently reported that variation of receptor specificity of type 1 fimbriae can result solely from minor alterations in the structure of the gene for the FimH adhesin subunit. To further study the relationship between allelic variation of the fimH gene and adhesive properties of type 1 fimbriae, the fimH genes from five additional strains were cloned and used to complement the FimH deletion in E. coli KB18. When the parental and recombinant strains were tested for adhesion to immobilized mannan, a wide quantitative range in the ability of bacteria to adhere was noted. The differences in adhesion do not appear to be due to differences in the levels of fimbriation or relative levels of incorporation of FimH, because these parameters were similar in low-adhesion and high-adhesion strains. The nucleotide sequence for each of the fimH genes was determined. Analysis of deduced FimH sequences allowed identification of two sequence homology groups, based on the presence of Asn-70 and Ser-78 or Ser-70 and Asn-78 residues. The consensus sequences for each group conferred very low adhesion activity, and this low-adhesion phenotype predominated among a group of 43 fecal isolates. Strains isolated from a different host niche, the urinary tract, expressed type 1 fimbriae that conferred an increased level of adhesion. The results presented here strongly suggest that the quantitative variations in MS adhesion are due primarily to structural differences in the FimH adhesin. The observed differences in MS adhesion among populations of E. coli isolated from different host niches call attention to the possibility that phenotypic variants of FimH may play a functional role in populations dynamics. PMID:7601831

  6. Early Dysregulation of Cell Adhesion and Extracellular Matrix Pathways in Breast Cancer Progression

    PubMed Central

    Emery, Lyndsey A.; Tripathi, Anusri; King, Chialin; Kavanah, Maureen; Mendez, Jane; Stone, Michael D.; de las Morenas, Antonio; Sebastiani, Paola; Rosenberg, Carol L.

    2009-01-01

    Proliferative breast lesions, such as simple ductal hyperplasia (SH) and atypical ductal hyperplasia (ADH), are candidate precursors to ductal carcinoma in situ (DCIS) and invasive cancer. To better understand the relationship of breast lesions to more advanced disease, we used microdissection and DNA microarrays to profile the gene expression of patient-matched histologically normal (HN), ADH, and DCIS from 12 patients with estrogen receptor positive sporadic breast cancer. SH were profiled from a subset of cases. We found 837 differentially expressed genes between DCIS-HN and 447 between ADH-HN, with >90% of the ADH-HN genes also present among the DCIS-HN genes. Only 61 genes were identified between ADH-DCIS. Expression differences were reproduced in an independent cohort of patient-matched lesions by quantitative real-time PCR. Many breast cancer-related genes and pathways were dysregulated in ADH and maintained in DCIS. Particularly, cell adhesion and extracellular matrix interactions were overrepresented. Focal adhesion was the top pathway in each gene set. We conclude that ADH and DCIS share highly similar gene expression and are distinct from HN. In contrast, SH appear more similar to HN. These data provide genetic evidence that ADH (but not SH) are often precursors to cancer and suggest cancer-related genetic changes, particularly adhesion and extracellular matrix pathways, are dysregulated before invasion and even before malignancy is apparent. These findings could lead to novel risk stratification, prevention, and treatment approaches. PMID:19700746

  7. [Effect of Golgi α-mannosidase 2 (GM2) gene knockdown on adhesion abilities of human gastric carcinoma cell line BGC-823 and its mechanism].

    PubMed

    Zeng, Bo; Zeng, Zhen; Liu, Chang; Yang, Yaying

    2017-06-01

    Objective To investigate the effect of Golgi α-mannosidase II (GM2) gene knockdown on adhesion abilities of BGC-823 human gastric carcinoma cells. Methods Three plasmid vectors expressing GM2 shRNAs and a negative control plasmid vector were designed, constructed and then transfected into BGC-823 cells by Lipofectamine TM 2000. After transfection, the mRNA and protein levels of GM2 in BGC-823 cells were detected by real-time quantitative PCR (qRT-PCR) and Western blotting to evaluate the transfection efficacy. The best plasmid for GM2 gene knockdown was selected and stably transfected into BGC-823 cells. Adhesion abilities of BGC-823 cells after GM2 gene silencing were observed by cell-cell, cell-matrix and cell-endothelial cell adhesion assays. At the same time, the expressions of E-cadherin, P-selectin, CD44v6 and intercellular adhesion molecule-1 (ICAM-1) proteins were detected by Western blotting after GM2 gene knockdown. Results The expression of GM2 was effectively knockdown in GM2-shRNA-2-transfected BGC-823 cells. Compared with the blank control group and the negative control group, the intercellular adhesion ability of the GM2-shRNA-2-transfected cells increased significantly, while their cell-matrix and cell-endothelium adhesion abilities markedly decreased. In GM2-shRNA-2 transfection group, E-cadherin expression was significantly elevated and the P-selectin expression was significantly reduced, while the expression levels of CD44v6 and ICAM-1 were not obviously changed. Conclusion After GM2 gene knockdown, the intercellular adhesion ability of gastric carcinoma BGC-823 cells is enhanced, while the adhesion abilities with the extracellular matrix and endothelial cells are weakened. The changes might be related to the up-regulated expression of E-cadherin and the down-regulation of P-selectin.

  8. Microarray expression profiling in adhesion and normal peritoneal tissues.

    PubMed

    Ambler, Dana R; Golden, Alicia M; Gell, Jennifer S; Saed, Ghassan M; Carey, David J; Diamond, Michael P

    2012-05-01

    To identify molecular markers associated with adhesion and normal peritoneal tissue using microarray expression profiling. Comparative study. University hospital. Five premenopausal women. Adhesion and normal peritoneal tissue samples were obtained from premenopausal women. Ribonucleic acid was extracted using standard protocols and processed for hybridization to Affymetrix Whole Transcript Human Gene Expression Chips. Microarray data were obtained from five different patients, each with adhesion tissue and normal peritoneal samples. Real-time polymerase chain reaction was performed for confirmation using standard protocols. Gene expression in postoperative adhesion and normal peritoneal tissues. A total of 1,263 genes were differentially expressed between adhesion and normal tissues. One hundred seventy-three genes were found to be up-regulated and 56 genes were down-regulated in the adhesion tissues compared with normal peritoneal tissues. The genes were sorted into functional categories according to Gene Ontology annotations. Twenty-six up-regulated genes and 11 down-regulated genes were identified with functions potentially relevant to the pathophysiology of postoperative adhesions. We evaluated and confirmed expression of 12 of these specific genes via polymerase chain reaction. The pathogenesis, natural history, and optimal treatment of postoperative adhesive disease remains unanswered. Microarray analysis of adhesions identified specific genes with increased and decreased expression when compared with normal peritoneum. Knowledge of these genes and ontologic pathways with altered expression provide targets for new therapies to treat patients who have or are at risk for postoperative adhesions. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. A Negative Regulator of Cellulose Biosynthesis, bcsR, Affects Biofilm Formation, and Adhesion/Invasion Ability of Cronobacter sakazakii.

    PubMed

    Gao, Jian-Xin; Li, Ping; Du, Xin-Jun; Han, Zhong-Hui; Xue, Rui; Liang, Bin; Wang, Shuo

    2017-01-01

    Cronobacter sakazakii is an important foodborne pathogen that causes neonatal meningitis and sepsis, with high mortality in neonates. However, very little information is available regarding the pathogenesis of C. sakazakii at the genetic level. In our previous study, a cellulose biosynthesis-related gene ( bcsR ) was shown to be involved in C. sakazakii adhesion/invasion into epithelial cells. In this study, the detailed functions of this gene were investigated using a gene knockout technique. A bcsR knockout mutant (Δ bcsR ) of C. sakazakii ATCC BAA-894 showed decreased adhesion/invasion (3.9-fold) in human epithelial cell line HCT-8. Biofilm formation by the mutant was reduced to 50% of that exhibited by the wild-type (WT) strain. Raman spectrometry was used to detect variations in biofilm components caused by bcsR knockout, and certain components, including carotenoids, fatty acids, and amides, were significantly reduced. However, another biofilm component, cellulose, was increased in Δ bcsR , suggesting that bcsR negatively affects cellulose biosynthesis. This result was also verified via RT-PCR, which demonstrated up-regulation of five crucial cellulose synthesis genes ( bcsA, B, C, E, Q ) in Δ bcsR . Furthermore, the expression of other virulence or biofilm-related genes, including flagellar assembly genes ( fliA, C, D ) and toxicity-related genes ( ompA, ompX, hfq ), was studied. The expression of fliC and ompA in the Δ bcsR mutant was found to be remarkably reduced compared with that in the wild-type and the others were also affected excepted ompX . In summary, bcsR is a negative regulator of cellulose biosynthesis but positively regulates biofilm formation and the adhesion/invasion ability of C. sakazakii .

  10. Many Saccharomyces cerevisiae Cell Wall Protein Encoding Genes Are Coregulated by Mss11, but Cellular Adhesion Phenotypes Appear Only Flo Protein Dependent.

    PubMed

    Bester, Michael C; Jacobson, Dan; Bauer, Florian F

    2012-01-01

    The outer cell wall of the yeast Saccharomyces cerevisiae serves as the interface with the surrounding environment and directly affects cell-cell and cell-surface interactions. Many of these interactions are facilitated by specific adhesins that belong to the Flo protein family. Flo mannoproteins have been implicated in phenotypes such as flocculation, substrate adhesion, biofilm formation, and pseudohyphal growth. Genetic data strongly suggest that individual Flo proteins are responsible for many specific cellular adhesion phenotypes. However, it remains unclear whether such phenotypes are determined solely by the nature of the expressed FLO genes or rather as the result of a combination of FLO gene expression and other cell wall properties and cell wall proteins. Mss11 has been shown to be a central element of FLO1 and FLO11 gene regulation and acts together with the cAMP-PKA-dependent transcription factor Flo8. Here we use genome-wide transcription analysis to identify genes that are directly or indirectly regulated by Mss11. Interestingly, many of these genes encode cell wall mannoproteins, in particular, members of the TIR and DAN families. To examine whether these genes play a role in the adhesion properties associated with Mss11 expression, we assessed deletion mutants of these genes in wild-type and flo11Δ genetic backgrounds. This analysis shows that only FLO genes, in particular FLO1/10/11, appear to significantly impact on such phenotypes. Thus adhesion-related phenotypes are primarily dependent on the balance of FLO gene expression.

  11. Non-viral gene delivery regulated by stiffness of cell adhesion substrates.

    PubMed

    Kong, Hyun Joon; Liu, Jodi; Riddle, Kathryn; Matsumoto, Takuya; Leach, Kent; Mooney, David J

    2005-06-01

    Non-viral gene vectors are commonly used for gene therapy owing to safety concerns with viral vectors. However, non-viral vectors are plagued by low levels of gene transfection and cellular expression. Current efforts to improve the efficiency of non-viral gene delivery are focused on manipulations of the delivery vector, whereas the influence of the cellular environment in DNA uptake is often ignored. The mechanical properties (for example, rigidity) of the substrate to which a cell adheres have been found to mediate many aspects of cell function including proliferation, migration and differentiation, and this suggests that the mechanics of the adhesion substrate may regulate a cell's ability to uptake exogeneous signalling molecules. In this report, we present a critical role for the rigidity of the cell adhesion substrate on the level of gene transfer and expression. The mechanism relates to material control over cell proliferation, and was investigated using a fluorescent resonance energy transfer (FRET) technique. This study provides a new material-based control point for non-viral gene therapy.

  12. Comprehensive analysis of genetic variations in strictly-defined Leber congenital amaurosis with whole-exome sequencing in Chinese.

    PubMed

    Wang, Shi-Yuan; Zhang, Qi; Zhang, Xiang; Zhao, Pei-Quan

    2016-01-01

    To make a comprehensive analysis of the potential pathogenic genes related with Leber congenital amaurosis (LCA) in Chinese. LCA subjects and their families were retrospectively collected from 2013 to 2015. Firstly, whole-exome sequencing was performed in patients who had underwent gene mutation screening with nothing found, and then homozygous sites was selected, candidate sites were annotated, and pathogenic analysis was conducted using softwares including Sorting Tolerant from Intolerant (SIFT), Polyphen-2, Mutation assessor, Condel, and Functional Analysis through Hidden Markov Models (FATHMM). Furthermore, Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of pathogenic genes were performed followed by co-segregation analysis using Fisher exact Test. Sanger sequencing was used to validate single-nucleotide variations (SNVs). Expanded verification was performed in the rest patients. Totally 51 LCA families with 53 patients and 24 family members were recruited. A total of 104 SNVs (66 LCA-related genes and 15 co-segregated genes) were submitted for expand verification. The frequencies of homozygous mutation of KRT12 and CYP1A1 were simultaneously observed in 3 families. Enrichment analysis showed that the potential pathogenic genes were mainly enriched in functions related to cell adhesion, biological adhesion, retinoid metabolic process, and eye development biological adhesion. Additionally, WFS1 and STAU2 had the highest homozygous frequencies. LCA is a highly heterogeneous disease. Mutations in KRT12, CYP1A1, WFS1, and STAU2 may be involved in the development of LCA.

  13. Effects of ß-TCP scaffolds on neurogenic and osteogenic differentiation of human embryonic stem cells.

    PubMed

    Arpornmaeklong, Premjit; Pressler, Michael J

    2018-01-01

    Extracellular matrix (ECM) and adhesion molecules play crucial roles in regulating growth and differentiation of stem cells. The current study aimed to investigate the effects of beta-tricalcium phosphate (ß-TCP) scaffolds on differentiation and expression of ECM and adhesion molecules of human embryonic stem cells (hESCs). Undifferentiated hESCs were seeded on ß-TCP scaffolds and cell culture plates and cultured in growth and osteogenic medium for 21 days. Scanning electron microscopy (SEM) displayed adhesion and growth of hESCs on the porous ß-TCP scaffolds. Histological analysis, immunohistochemical staining and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) demonstrated that the scaffolds supported growth and differentiation of hESCs. Expression levels of neural crest related genes (AP2a, FoxD3, HNK1, P75, Sox1, Sox10) and osteoblast-related genes (Runx2, SPP1 and BGLA) on the scaffolds in osteogenic medium were significantly higher than on the scaffolds in growth and cell culture plates in osteogenic medium, respectively (p<0.05). Polymerase chain reaction array experiments demonstrated increased expression of ECM and adhesion molecule-related genes on the scaffolds. In conclusion, osteoconductive scaffolds such as ß-TCP scaffolds promoted differentiation of hESCs, particularly expression of genes related to neural crest stem cell and osteoblastic differentiations. Beta-TCP scaffolds could be an alternative cell culture substrate for neural crest and osteogenic differentiation of hESCs. Optimization of culture medium may be necessary to enhance lineage restriction of hESCs on the ß-TCP scaffolds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Comprehensive analysis of genetic variations in strictly-defined Leber congenital amaurosis with whole-exome sequencing in Chinese

    PubMed Central

    Wang, Shi-Yuan; Zhang, Qi; Zhang, Xiang; Zhao, Pei-Quan

    2016-01-01

    AIM To make a comprehensive analysis of the potential pathogenic genes related with Leber congenital amaurosis (LCA) in Chinese. METHODS LCA subjects and their families were retrospectively collected from 2013 to 2015. Firstly, whole-exome sequencing was performed in patients who had underwent gene mutation screening with nothing found, and then homozygous sites was selected, candidate sites were annotated, and pathogenic analysis was conducted using softwares including Sorting Tolerant from Intolerant (SIFT), Polyphen-2, Mutation assessor, Condel, and Functional Analysis through Hidden Markov Models (FATHMM). Furthermore, Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of pathogenic genes were performed followed by co-segregation analysis using Fisher exact Test. Sanger sequencing was used to validate single-nucleotide variations (SNVs). Expanded verification was performed in the rest patients. RESULTS Totally 51 LCA families with 53 patients and 24 family members were recruited. A total of 104 SNVs (66 LCA-related genes and 15 co-segregated genes) were submitted for expand verification. The frequencies of homozygous mutation of KRT12 and CYP1A1 were simultaneously observed in 3 families. Enrichment analysis showed that the potential pathogenic genes were mainly enriched in functions related to cell adhesion, biological adhesion, retinoid metabolic process, and eye development biological adhesion. Additionally, WFS1 and STAU2 had the highest homozygous frequencies. CONCLUSION LCA is a highly heterogeneous disease. Mutations in KRT12, CYP1A1, WFS1, and STAU2 may be involved in the development of LCA. PMID:27672588

  15. Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells

    PubMed Central

    Tan, David W. M.; Jensen, Kim B.; Trotter, Matthew W. B.; Connelly, John T.; Broad, Simon; Watt, Fiona M.

    2013-01-01

    Human epidermal stem cells express high levels of β1 integrins, delta-like 1 (DLL1) and the EGFR antagonist LRIG1. However, there is cell-to-cell variation in the relative abundance of DLL1 and LRIG1 mRNA transcripts. Single-cell global gene expression profiling showed that undifferentiated cells fell into two clusters delineated by expression of DLL1 and its binding partner syntenin. The DLL1+ cluster had elevated expression of genes associated with endocytosis, integrin-mediated adhesion and receptor tyrosine kinase signalling. Differentially expressed genes were not independently regulated, as overexpression of DLL1 alone or together with LRIG1 led to the upregulation of other genes in the DLL1+ cluster. Overexpression of DLL1 and LRIG1 resulted in enhanced extracellular matrix adhesion and increased caveolin-dependent EGFR endocytosis. Further characterisation of CD46, one of the genes upregulated in the DLL1+ cluster, revealed it to be a novel cell surface marker of human epidermal stem cells. Cells with high endogenous levels of CD46 expressed high levels of β1 integrin and DLL1 and were highly adhesive and clonogenic. Knockdown of CD46 decreased proliferative potential and β1 integrin-mediated adhesion. Thus, the previously unknown heterogeneity revealed by our studies results in differences in the interaction of undifferentiated basal keratinocytes with their environment. PMID:23482486

  16. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  17. Overexpression of adhesion molecules and barrier molecules is associated with differential infiltration of immune cells in non-small cell lung cancer.

    PubMed

    Chae, Young Kwang; Choi, Wooyoung M; Bae, William H; Anker, Jonathan; Davis, Andrew A; Agte, Sarita; Iams, Wade T; Cruz, Marcelo; Matsangou, Maria; Giles, Francis J

    2018-01-18

    Immunotherapy is emerging as a promising option for lung cancer treatment. Various endothelial adhesion molecules, such as integrin and selectin, as well as various cellular barrier molecules such as desmosome and tight junctions, regulate T-cell infiltration in the tumor microenvironment. However, little is known regarding how these molecules affect immune cells in patients with lung cancer. We demonstrated for the first time that overexpression of endothelial adhesion molecules and cellular barrier molecule genes was linked to differential infiltration of particular immune cells in non-small cell lung cancer. Overexpression of endothelial adhesion molecule genes is associated with significantly lower infiltration of activated CD4 and CD8 T-cells, but higher infiltration of activated B-cells and regulatory T-cells. In contrast, overexpression of desmosome genes was correlated with significantly higher infiltration of activated CD4 and CD8 T-cells, but lower infiltration of activated B-cells and regulatory T-cells in lung adenocarcinoma. This inverse relation of immune cells aligns with previous studies of tumor-infiltrating B-cells inhibiting T-cell activation. Although overexpression of endothelial adhesion molecule or cellular barrier molecule genes alone was not predictive of overall survival in our sample, these genetic signatures may serve as biomarkers of immune exclusion, or resistance to T-cell mediated immunotherapy.

  18. Early osteoinductive human bone marrow mesenchymal stromal/stem cells support an enhanced hematopoietic cell expansion with altered chemotaxis- and adhesion-related gene expression profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugino, Noriko; Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto 606-8507; Miura, Yasuo, E-mail: ym58f5@kuhp.kyoto-u.ac.jp

    Bone marrow (BM) microenvironment has a crucial role in supporting hematopoiesis. Here, by using a microarray analysis, we demonstrate that human BM mesenchymal stromal/stem cells (MSCs) in an early osteoinductive stage (e-MSCs) are characterized by unique hematopoiesis-associated gene expression with an enhanced hematopoiesis-supportive ability. In comparison to BM-MSCs without osteoinductive treatment, gene expression in e-MSCs was significantly altered in terms of their cell adhesion- and chemotaxis-related profiles, as identified with Gene Ontology and Gene Set Enrichment Analysis. Noteworthy, expression of the hematopoiesis-associated molecules CXCL12 and vascular cell adhesion molecule 1 was remarkably decreased in e-MSCs. e-MSCs supported an enhanced expansionmore » of CD34{sup +} hematopoietic stem and progenitor cells, and generation of myeloid lineage cells in vitro. In addition, short-term osteoinductive treatment favored in vivo hematopoietic recovery in lethally irradiated mice that underwent BM transplantation. e-MSCs exhibited the absence of decreased stemness-associated gene expression, increased osteogenesis-associated gene expression, and apparent mineralization, thus maintaining the ability to differentiate into adipogenic cells. Our findings demonstrate the unique biological characteristics of e-MSCs as hematopoiesis-regulatory stromal cells at differentiation stage between MSCs and osteoprogenitor cells and have significant implications in developing new strategy for using pharmacological osteoinductive treatment to support hematopoiesis in hematopoietic stem and progenitor cell transplantation. - Highlights: • Human BM-MSCs in an early osteoinductive stage (e-MSCs) support hematopoiesis. • Adhesion- and chemotaxis-associated gene signatures are altered in e-MSCs. • Expression of CXCL12 and VCAM1 is remarkably decreased in e-MSCs. • e-MSCs are at differentiation stage between MSCs and osteoprogenitor cells. • Osteoinductive treatment favors hematopoietic recovery after BMT in mice.« less

  19. [Expression of cell adhesion molecules in acute leukemia cell].

    PubMed

    Ju, Xiaoping; Peng, Min; Xu, Xiaoping; Lu, Shuqing; Li, Yao; Ying, Kang; Xie, Yi; Mao, Yumin; Xia, Fang

    2002-11-01

    To investigate the role of cell adhesion molecule in the development and extramedullary infiltration (EI) of acute leukemia. The expressions of neural cell adhesion molecule (NCAM) gene, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1) genes in 25 acute leukemia patients bone marrow cells were detected by microarray and reverse transcriptase-polymerase chain reaction (RT-PCR). The expressions of NCAM, ICAM-1 and VCAM-1 gene were significantly higher in acute leukemia cells and leukemia cells with EI than in normal tissues and leukemia cells without EI, respectively, both by cDNA microarray and by RT-PCR. The cDNA microarray is a powerful technique in analysis of acute leukemia cells associated genes. High expressions of cell adhesion molecule genes might be correlated with leukemia pathogenesis and infiltration of acute leukemia cell.

  20. [Research progress of mechanism and prevention of peritendinous adhesions].

    PubMed

    Jiang, Shichao; Liu, Shen; Fan, Cunyi

    2013-05-01

    To review the research progress of mechanism and prevention of peritendinous adhesions. Methods Recent literature about peritendinous adhesions was reviewed, and the results from experiments about the mechanism and prevention of peritendinous adhesions were analyzed. The molecular mechanism of peritendinous adhesions is related to overexpressions of transforming growth factor beta 1, early growth response protein 1, matrix metallopeptidase 9, and so on. The present methods of prevention of peritendinous adhesions include drugs, barrier, optimizing rehabilitation, gene therapy, and so on. These methods have achieved good results in experiments, but the clinical applications have not been confirmed yet. It is necessary to pay more attention to the research of mechanism of peritendinous adhesions and methods of its prevention and subsequently to convert them into clinical applications, which is significant to the prevention of peritendinous adhesions in the future.

  1. Comparative analysis of gene expression profiles of OPN signaling pathway in four kinds of liver diseases.

    PubMed

    Wang, Gaiping; Chen, Shasha; Zhao, Congcong; Li, Xiaofang; Zhao, Weiming; Yang, Jing; Chang, Cuifang; Xu, Cunshuan

    2016-09-01

    To explore the relevance of OPN signalling pathway to the occurrence and development of nonalcoholic fatty liver disease (NAFLD), liver cirrhosis (LC), hepatic cancer (HC) and acute hepatic failure (AHF) at transcriptional level, Rat Genome 230 2.0 Array was used to detect expression profiles of OPN signalling pathway-related genes in four kinds of liver diseases. The results showed that 23, 33, 59 and 74 genes were significantly changed in the above four kinds of liver diseases, respectively. H-clustering analysis showed that the expression profiles of OPN signalling-related genes were notably different in four kinds of liver diseases. Subsequently, a total of above-mentioned 147 genes were categorized into four clusters by k-means according to the similarity of gene expression, and expression analysis systematic explorer (EASE) functional enrichment analysis revealed that OPN signalling pathway-related genes were involved in cell adhesion and migration, cell proliferation, apoptosis, stress and inflammatory reaction, etc. Finally, ingenuity pathway analysis (IPA) software was used to predict the functions of OPN signalling-related genes, and the results indicated that the activities of ROS production, cell adhesion and migration, cell proliferation were remarkably increased, while that of apoptosis, stress and inflammatory reaction were reduced in four kinds of liver diseases. In summary, the above physiological activities changed more obviously in LC, HC and AHF than in NAFLD.

  2. Culture Supernatants of Lactobacillus gasseri and L. crispatus Inhibit Candida albicans Biofilm Formation and Adhesion to HeLa Cells.

    PubMed

    Matsuda, Yuko; Cho, Otomi; Sugita, Takashi; Ogishima, Daiki; Takeda, Satoru

    2018-03-30

    Vulvovaginal candidiasis (VVC) is a common superficial infection of the vaginal mucous membranes caused by the fungus Candida albicans. The aim of this study was to assess the mechanisms underlying the inhibitory effects of the culture supernatants of Lactobacillus gasseri and L. crispatus, the predominant microbiota in Asian healthy women, on C. albicans biofilm formation. The inhibition of C. albicans adhesion to HeLa cells by Lactobacillus culture supernatant was also investigated. Candida albicans biofilm was formed on polystyrene flat-bottomed 96-well plates, and the inhibitory effects on the initial colonization and maturation phases were determined using the XTT reduction assay. The expression levels of biofilm formation-associated genes (HWP1, ECE1, ALS3, BCR1, EFG1, TEC1, and CPH1) were determined by reverse transcription quantitative polymerase chain reaction. The inhibition of C. albicans adhesion to HeLa cells by Lactobacillus culture supernatant was evaluated by enumerating viable C. albicans cells. The culture supernatants of both Lactobacillus species inhibited the initial colonization and maturation of C. albicans biofilm. The expression levels of all biofilm formation-related genes were downregulated in the presence of Lactobacillus culture supernatant. The culture supernatant also inhibited C. albicans adhesion to HeLa cells. The culture supernatants of L. gasseri and L. crispatus inhibited C. albicans biofilm formation by downregulating biofilm formation-related genes and C. albicans adhesion to HeLa cells. These findings support the notion that Lactobacillus metabolites may be useful alternatives to antifungal drugs for the management of VVC.

  3. Vizantin inhibits bacterial adhesion without affecting bacterial growth and causes Streptococcus mutans biofilm to detach by altering its internal architecture.

    PubMed

    Takenaka, Shoji; Oda, Masataka; Domon, Hisanori; Ohsumi, Tatsuya; Suzuki, Yuki; Ohshima, Hayato; Yamamoto, Hirofumi; Terao, Yutaka; Noiri, Yuichiro

    2016-11-11

    An ideal antibiofilm strategy is to control both in the quality and quantity of biofilm while maintaining the benefits derived from resident microflora. Vizantin, a recently developed immunostimulating compound, has also been found to have antibiofilm property. This study evaluated the influence on biofilm formation of Streptococcus mutans in the presence of sulfated vizantin and biofilm development following bacterial adhesion on a hydroxyapatite disc coated with sulfated vizantin. Supplementation with sulfated vizantin up to 50 μM did not affect either bacterial growth or biofilm formation, whereas 50 μM sulfated vizantin caused the biofilm to readily detach from the surface. Sulfated vizantin at the concentration of 50 μM upregulated the expression of the gtfB and gtfC genes, but downregulated the expression of the gtfD gene, suggesting altered architecture in the biofilm. Biofilm development on the surface coated with sulfated vizantin was inhibited depending on the concentration, suggesting prevention from bacterial adhesion. Among eight genes related to bacterial adherence in S. mutans, expression of gtfB and gtfC was significantly upregulated, whereas the expression of gtfD, GbpA and GbpC was downregulated according to the concentration of vizantin, especially with 50 μM vizantin by 0.8-, 0.4-, and 0.4-fold, respectively. These findings suggest that sulfated vizantin may cause structural degradation as a result of changing gene regulation related to bacterial adhesion and glucan production of S. mutans. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Cloning, Characterization, and Expression Levels of the Nectin Gene from the Tube Feet of the Sea Urchin Paracentrotus Lividus.

    PubMed

    Toubarro, Duarte; Gouveia, Analuce; Ribeiro, Raquel Mesquita; Simões, Nélson; da Costa, Gonçalo; Cordeiro, Carlos; Santos, Romana

    2016-06-01

    Marine bioadhesives perform in ways that manmade products simply cannot match, especially in wet environments. Despite their technological potential, bioadhesive molecular mechanisms are still largely understudied, and sea urchin adhesion is no exception. These animals inhabit wave-swept shores, relying on specialized adhesive organs, tube feet, composed by an adhesive disc and a motile stem. The disc encloses a duo-gland adhesive system, producing adhesive and deadhesive secretions for strong reversible substratum attachment. The disclosure of sea urchin Paracentrotus lividus tube foot disc proteome led to the identification of a secreted adhesion protein, Nectin, never before reported in adult adhesive organs but, that given its adhesive function in eggs/embryos, was pointed out as a putative substratum adhesive protein in adults. To further understand Nectin involvement in sea urchin adhesion, Nectin cDNA was amplified for the first time from P. lividus adhesive organs, showing that not only the known Nectin mRNA, called Nectin-1 (GenBank AJ578435), is expressed in the adults tube feet but also a new mRNA sequence, called Nectin-2 (GenBank KT351732), differing in 15 missense nucleotide substitutions. Nectin genomic DNA was also obtained for the first time, indicating that both Nectin-1 and Nectin-2 derive from a single gene. In addition, expression analysis showed that both Nectins are overexpressed in tube feet discs, its expression being significantly higher in tube feet discs from sea urchins just after collection from the field relative to sea urchin from aquarium. These data further advocate for Nectin involvement in sea urchin reversible adhesion, suggesting that its expression might be regulated according to the hydrodynamic conditions.

  5. TES is a novel focal adhesion protein with a role in cell spreading.

    PubMed

    Coutts, Amanda S; MacKenzie, Elaine; Griffith, Elen; Black, Donald M

    2003-03-01

    Previously, we identified TES as a novel candidate tumour suppressor gene that mapped to human chromosome 7q31.1. In this report we demonstrate that the TES protein is localised at focal adhesions, actin stress fibres and areas of cell-cell contact. TES has three C-terminal LIM domains that appear to be important for focal adhesion targeting. Additionally, the N-terminal region is important for targeting TES to actin stress fibres. Yeast two-hybrid and biochemical analyses yielded interactions with several focal adhesion and/or cytoskeletal proteins including mena, zyxin and talin. The fact that TES localises to regions of cell adhesion suggests that it functions in events related to cell motility and adhesion. In support of this, we demonstrate that fibroblasts stably overexpressing TES have an increased ability to spread on fibronectin.

  6. Optimization of intrinsic and extrinsic tendon healing through controllable water-soluble mitomycin-C release from electrospun fibers by mediating adhesion-related gene expression.

    PubMed

    Zhao, Xin; Jiang, Shichao; Liu, Shen; Chen, Shuai; Lin, Zhi Yuan William; Pan, Guoqing; He, Fan; Li, Fengfeng; Fan, Cunyi; Cui, Wenguo

    2015-08-01

    To balance intrinsic and extrinsic healing during tendon repair is challenging in tendon surgery. We hypothesized that by mediating apoptotic gene and collagen synthesis of exogenous fibroblasts, the adhesion formation induced by extrinsic healing could be inhibited. With the maintenance of intrinsic healing, the tendon could be healed with proper function with no adhesion. In this study, we loaded hydrophilic mitomycin-C (MMC) into hyaluronan (HA) hydrosols, which were then encapsulated in poly(L-lactic acid) (PLLA) fibers by micro-sol electrospinning. This strategy successfully provided a controlled release of MMC to inhibit adhesion formations with no detrimental effect on intrinsic healing. We found that micro-sol electrospinning was an effective and facile approach to incorporate and control hydrophilic drug release from hydrophobic polyester fibers. MMC exhibited an initially rapid, and gradually steadier release during 40 days, and the release rates could be tuned by its concentration. In vitro studies revealed that low concentrations of MMC could inhibit fibroblast adhesion and proliferation. When lacerate tendons were healed using the MMC-HA loaded PLLA fibers in vivo, they exhibited comparable mechanical strength to the naturally healed tendons but with no significant presence of adhesion formation. We further identified the up-regulation of apoptotic protein Bax expression and down-regulation of proteins Bcl2, collage I, collagen III and α-SMA during the healing process associated with minimum adhesion formations. This approach presented here leverages new advances in drug delivery and nanotechnology and offers a promising strategy to balance intrinsic and extrinsic tendon healing through modulating genes associated with fibroblast apoptosis and collagen synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Characterization of the gene encoding pinin/DRS/memA and evidence for its potential tumor suppressor function.

    PubMed

    Shi, Y; Ouyang, P; Sugrue, S P

    2000-01-13

    Several cell adhesion-related proteins have been shown to act as tumor-suppressors (TS) in the neoplastic progression of epithelial-derived tumors. Pinin/DRS/memA was first identified in our laboratory and it was shown to be a cell adhesion-related molecule. Our previous study demonstrated that restoration of pinin expression in transformed cells not only positively influenced cellular adhesive properties but also reversed the transformed phenotype to more epithelial-like. Here, we show by FISH analysis that the gene locus for pinin is within 14q13. The alignment of the pinin gene with STS markers localized the gene to the previously identified TS locus D14S75-D14S288. Northern analyses revealed diminished pinin mRNA in renal cell carcinomas (RCC) and certain cancer cell lines. Immunohistochemical examination of tumor samples demonstrated absent or greatly reduced pinin in transitional cell carcinoma (TCC) and RCC tumors. TCC-derived J82 cells as well as EcR-293 cells transfected with full-length pinin cDNA demonstrated inhibition of anchorage-independent growth of cells in soft agar. Furthermore, methylation analyses revealed that aberrant methylation of pinin CpG islands was correlated with decreased/absent pinin expression in a subset of tumor tissues. These data lend significant support to the hypothesis that pinin/DRS/memA may act as a tumor suppressor in certain types of cancers.

  8. Mutant matrix metalloproteinase-9 reduces postoperative peritoneal adhesions in rats.

    PubMed

    Atta, Hussein; El-Rehany, Mahmoud; Roeb, Elke; Abdel-Ghany, Hend; Ramzy, Maggie; Gaber, Shereen

    2016-02-01

    Postoperative peritoneal adhesions continue to be a major source of morbidity and occasional mortality. Studies have shown that matrix metalloproteinase-9 (MMP-9) levels are decreased postoperatively which may limits matrix degradation and participate in the development of peritoneal adhesions. In this proof-of-principle study, we evaluated the effect of gene therapy with catalytically inactive mutant MMP-9 on postoperative peritoneal adhesions in rats. Adenovirus encoding mutant MMP-9 (Ad-mMMP-9) or saline was instilled in the peritoneal cavity after cecal and parietal peritoneal injury in rats. Expression of mutant MMP-9 transcript was verified by sequencing. Adenovirus E4 gene expression, adhesion scores, MMP-9, tissue plasminogen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor-β1 (TGF-β1) expression were evaluated at sacrifice one week after treatment. Both mutant MMP-9 transcripts and adenovirus E4 gene were expressed in Ad-mMMP-9 treated adhesions. Adhesions severity decreased significantly (p = 0.036) in the Ad-mMMP-9-treated compared with saline-treated adhesions. Expression of MMP-9 mRNA and protein were elevated (p = 0.001 and p = 0.029, respectively) in the Ad-mMMP-9-treated adhesions compared with saline-treated adhesions. While tPA levels were increased (p = 0.02) in Ad-mMMP-9 treated adhesions compared with saline-treated adhesions, TGF-β1 and PAI-1 levels were decreased (p = 0.017 and p = 0.042, respectively). No difference in mortality were found between groups (p = 0.64). Mutant MMP-9 gene therapy effectively transduced peritoneal adhesions resulting in reduction of severity of primary peritoneal adhesions. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  9. Overexpression of Polygalacturonase in Transgenic Apple Trees Leads to a Range of Novel Phenotypes Involving Changes in Cell Adhesion1

    PubMed Central

    Atkinson, Ross G.; Schröder, Roswitha; Hallett, Ian C.; Cohen, Daniel; MacRae, Elspeth A.

    2002-01-01

    Polygalacturonases (PGs) cleave runs of unesterified GalUA that form homogalacturonan regions along the backbone of pectin. Homogalacturonan-rich pectin is commonly found in the middle lamella region of the wall where two adjacent cells abut and its integrity is important for cell adhesion. Transgenic apple (Malus domestica Borkh. cv Royal Gala) trees were produced that contained additional copies of a fruit-specific apple PG gene under a constitutive promoter. In contrast to previous studies in transgenic tobacco (Nicotiana tabacum) where PG overexpression had no effect on the plant (K.W. Osteryoung, K. Toenjes, B. Hall, V. Winkler, A.B. Bennett [1990] Plant Cell 2: 1239–1248), PG overexpression in transgenic apple led to a range of novel phenotypes. These phenotypes included silvery colored leaves and premature leaf shedding due to reduced cell adhesion in leaf abscission zones. Mature leaves had malformed and malfunctioning stomata that perturbed water relations and contributed to a brittle leaf phenotype. Chemical and ultrastructural analyses were used to relate the phenotypic changes to pectin changes in the leaf cell walls. The modification of apple trees by a single PG gene has offered a new and unexpected perspective on the role of pectin and cell wall adhesion in leaf morphology and stomatal development. PMID:12011344

  10. Genome-wide screen identifies a novel prognostic signature for breast cancer survival

    DOE PAGES

    Mao, Xuan Y.; Lee, Matthew J.; Zhu, Jeffrey; ...

    2017-01-21

    Large genomic datasets in combination with clinical data can be used as an unbiased tool to identify genes important in patient survival and discover potential therapeutic targets. We used a genome-wide screen to identify 587 genes significantly and robustly deregulated across four independent breast cancer (BC) datasets compared to normal breast tissue. Gene expression of 381 genes was significantly associated with relapse-free survival (RFS) in BC patients. We used a gene co-expression network approach to visualize the genetic architecture in normal breast and BCs. In normal breast tissue, co-expression cliques were identified enriched for cell cycle, gene transcription, cell adhesion,more » cytoskeletal organization and metabolism. In contrast, in BC, only two major co-expression cliques were identified enriched for cell cycle-related processes or blood vessel development, cell adhesion and mammary gland development processes. Interestingly, gene expression levels of 7 genes were found to be negatively correlated with many cell cycle related genes, highlighting these genes as potential tumor suppressors and novel therapeutic targets. A forward-conditional Cox regression analysis was used to identify a 12-gene signature associated with RFS. A prognostic scoring system was created based on the 12-gene signature. This scoring system robustly predicted BC patient RFS in 60 sampling test sets and was further validated in TCGA and METABRIC BC data. Our integrated study identified a 12-gene prognostic signature that could guide adjuvant therapy for BC patients and includes novel potential molecular targets for therapy.« less

  11. Genome-wide screen identifies a novel prognostic signature for breast cancer survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Xuan Y.; Lee, Matthew J.; Zhu, Jeffrey

    Large genomic datasets in combination with clinical data can be used as an unbiased tool to identify genes important in patient survival and discover potential therapeutic targets. We used a genome-wide screen to identify 587 genes significantly and robustly deregulated across four independent breast cancer (BC) datasets compared to normal breast tissue. Gene expression of 381 genes was significantly associated with relapse-free survival (RFS) in BC patients. We used a gene co-expression network approach to visualize the genetic architecture in normal breast and BCs. In normal breast tissue, co-expression cliques were identified enriched for cell cycle, gene transcription, cell adhesion,more » cytoskeletal organization and metabolism. In contrast, in BC, only two major co-expression cliques were identified enriched for cell cycle-related processes or blood vessel development, cell adhesion and mammary gland development processes. Interestingly, gene expression levels of 7 genes were found to be negatively correlated with many cell cycle related genes, highlighting these genes as potential tumor suppressors and novel therapeutic targets. A forward-conditional Cox regression analysis was used to identify a 12-gene signature associated with RFS. A prognostic scoring system was created based on the 12-gene signature. This scoring system robustly predicted BC patient RFS in 60 sampling test sets and was further validated in TCGA and METABRIC BC data. Our integrated study identified a 12-gene prognostic signature that could guide adjuvant therapy for BC patients and includes novel potential molecular targets for therapy.« less

  12. Effect of ovarian steroids on gene expression related to synapse assembly in serotonin neurons of macaques.

    PubMed

    Bethea, Cynthia L; Reddy, Arubala P

    2012-07-01

    Dendritic spines are the elementary structural units of neural plasticity. In a model of hormone replacement therapy (HT), we sought to determine the effect of estradiol (E) and progesterone (P) on gene expression related to synapse assembly in a laser-captured preparation enriched for serotonin neurons from rhesus macaques. Microarray analysis was conducted (n = 2 animals/treatment), and the results were confirmed for pivotal genes with qRT-PCR on additional laser-captured material (n = 3 animals/treatment). Ovariectomized rhesus macaques were treated with placebo, E, or E + P via Silastic implants for 1 month. The midbrain was obtained, sectioned, and immunostained for tryptophan hydroxylase (TPH). TPH-positive neurons were laser captured using an arcturus laser dissection microscope (Pixel II). RNA from laser-captured serotonin neurons was hybridized to Rhesus Affymetrix GeneChips for screening purposes. There was a twofold or greater change in the expression of 63 probe sets in the cell adhesion molecule (CAM) category, and 31 probe sets in the synapse assembly category were similarly altered in E- and E + P-treated animals. qRT-PCR assays showed that E treatment induced a significant increase in ephrin receptor A4 (EPHA4) and in integrin A8 (ITGA8) but not in ephrin receptor B4 (EPHB4) or integrin B8 (ITGB8) expression. E also increased expression of cadherin 11 (CDH11), neuroligin 3 (NLGN3), neurexin 3 (NRXN3), syndecan 2 (SCD2), and neural cell adhesion molecule (NCAM) compared with placebo. Supplemental P treatment suppressed E-induced gene expression. In summary, ovarian steroids target gene expression of adhesion molecules in serotonin neurons that are important for synapse assembly. Copyright © 2012 Wiley Periodicals, Inc.

  13. The receptor for advanced glycation end-products (RAGE) is only present in mammals, and belongs to a family of cell adhesion molecules (CAMs).

    PubMed

    Sessa, Luca; Gatti, Elena; Zeni, Filippo; Antonelli, Antonella; Catucci, Alessandro; Koch, Michael; Pompilio, Giulio; Fritz, Günter; Raucci, Angela; Bianchi, Marco E

    2014-01-01

    The human receptor for advanced glycation endproducts (RAGE) is a multiligand cell surface protein belonging to the immunoglobulin superfamily, and is involved in inflammatory and immune responses. Most importantly, RAGE is considered a receptor for HMGB1 and several S100 proteins, which are Damage-Associated Molecular Pattern molecules (DAMPs) released during tissue damage. In this study we show that the Ager gene coding for RAGE first appeared in mammals, and is closely related to other genes coding for cell adhesion molecules (CAMs) such as ALCAM, BCAM and MCAM that appeared earlier during metazoan evolution. RAGE is expressed at very low levels in most cells, but when expressed at high levels, it mediates cell adhesion to extracellular matrix components and to other cells through homophilic interactions. Our results suggest that RAGE evolved from a family of CAMs, and might still act as an adhesion molecule, in particular in the lung where it is highly expressed or under pathological conditions characterized by an increase of its protein levels.

  14. Aberrant methylation accounts for cell adhesion-related gene silencing during 3-methylcholanthrene and diethylnitrosamine induced multistep rat lung carcinogenesis associated with overexpression of DNA methyltransferases 1 and 3a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Wenbin; Cui Zhihong; Ao Lin

    To evaluate the significance of alterations in cell adhesion-related genes methylation during lung multistep carcinogenesis induced by the genotoxic carcinogens 3-methylcholanthrene (MCA) and diethylnitrosamine (DEN), tissue samples microdissected from MCA/DEN-induced rat lung carcinogenesis model were subjected to methylation-specific PCR to evaluate the DNA methylation status of CADM1, TIMP3, E-cadherin and N-cadherin. Immunohistochemistry was used to determine protein expression of CADM1, TIMP3, N-cadherin and the DNA methyltransferases (DNMTs) 1, 3a and 3b. E-cadherin hypermethylation was not detected in any tissue. CADM1, TIMP3 and N-cadherin hypermethylation was correlated with the loss of their protein expression during the progression of pathologic lesions. Themore » prevalence of DNA methylation of at least one gene and the average number of methylated genes increased with the histological progression. DNMT1 and DNMT3a protein expression increased progressively during the stages of lung carcinogenesis, whereas DNMT3b overexpression was only found in several samples. Furthermore, DNMT1 protein expression levels were correlated with CADM1 methylation, and DNMT3a protein expression levels were correlated with CADM1, TIMP3 and N-cadherin methylation. The average number of methylated genes during carcinogenesis was significantly correlated with DNMT1 and DNMT3a protein expression levels. Moreover, mRNA expression of CADM1 significantly increased after treatment with DNMT inhibitor 5-aza-2'-deoxycytidine in CADM1-methylated primary tumor cell lines. Our findings suggest that an accumulation of hypermethylation accounts for cell adhesion-related gene silencing is associated with dynamic changes in the progression of MCA/DEN-induced rat lung carcinogenesis. We suggest that DNMT1 and DNMT3a protein overexpression may be responsible for this aberrant DNA methylation.« less

  15. DDB2 (damaged-DNA binding 2) protein: a new modulator of nanomechanical properties and cell adhesion of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Barbieux, Claire; Bacharouche, Jalal; Soussen, Charles; Hupont, Sébastien; Razafitianamaharavo, Angélina; Klotz, Rémi; Pannequin, Rémi; Brie, David; Bécuwe, Philippe; Francius, Grégory; Grandemange, Stéphanie

    2016-02-01

    DDB2, known for its role in DNA repair, was recently shown to reduce mammary tumor invasiveness by inducing the transcription of IκBα, an inhibitor of NF-κB activity. Since cellular adhesion is a key event during the epithelial to mesenchymal transition (EMT) leading to the invasive capacities of breast tumor cells, the aim of this study was to investigate the role of DDB2 in this process. Thus, using low and high DDB2-expressing MDA-MB231 and MCF7 cells, respectively, in which DDB2 expression was modulated experimentally, we showed that DDB2 overexpression was associated with a decrease of adhesion abilities on glass and plastic areas of breast cancer cells. Then, we investigated cell nanomechanical properties by atomic force microscopy (AFM). Our results revealed significant changes in the Young's Modulus value and the adhesion force in MDA-MB231 and MCF7 cells, whether DDB2 was expressed or not. The cell stiffness decrease observed in MDA-MB231 and MCF7 expressing DDB2 was correlated with a loss of the cortical actin-cytoskeleton staining. To understand how DDB2 regulates these processes, an adhesion-related gene PCR-Array was performed. Several adhesion-related genes were differentially expressed according to DDB2 expression, indicating that important changes are occurring at the molecular level. Thus, this work demonstrates that AFM technology is an important tool to follow cellular changes during tumorigenesis. Moreover, our data revealed that DDB2 is involved in early events occurring during metastatic progression of breast cancer cells and will contribute to define this protein as a new marker of metastatic progression in this type of cancer.

  16. Neurotactin functions in concert with other identified CAMs in growth cone guidance in Drosophila.

    PubMed

    Speicher, S; García-Alonso, L; Carmena, A; Martín-Bermudo, M D; de la Escalera, S; Jiménez, F

    1998-02-01

    We have isolated and characterized mutations in Drosophila neurotactin, a gene that encodes a cell adhesion protein widely expressed during neural development. Analysis of both loss and gain of gene function conditions during embryonic and postembryonic development revealed specific requirements for neurotactin during axon outgrowth, fasciculation, and guidance. Furthermore, embryos of some double mutant combinations of neurotactin and other genes encoding adhesion/signaling molecules, including neuroglian, derailed, and kekkon1, displayed phenotypic synergy. This result provides evidence for functional cooperativity in vivo between the adhesion and signaling pathways controlled by neurotactin and the other three genes.

  17. Deregulation of focal adhesion formation and cytoskeletal tension due to loss of A-type lamins.

    PubMed

    Corne, Tobias D J; Sieprath, Tom; Vandenbussche, Jonathan; Mohammed, Danahe; Te Lindert, Mariska; Gevaert, Kris; Gabriele, Sylvain; Wolf, Katarina; De Vos, Winnok H

    2017-09-03

    The nuclear lamina mechanically integrates the nucleus with the cytoskeleton and extracellular environment and regulates gene expression. These functions are exerted through direct and indirect interactions with the lamina's major constituent proteins, the A-type lamins, which are encoded by the LMNA gene. Using quantitative stable isotope labeling-based shotgun proteomics we have analyzed the proteome of human dermal fibroblasts in which we have depleted A-type lamins by means of a sustained siRNA-mediated LMNA knockdown. Gene ontology analysis revealed that the largest fraction of differentially produced proteins was involved in actin cytoskeleton organization, in particular proteins involved in focal adhesion dynamics, such as actin-related protein 2 and 3 (ACTR2/3), subunits of the ARP2/3 complex, and fascin actin-bundling protein 1 (FSCN1). Functional validation using quantitative immunofluorescence showed a significant reduction in the size of focal adhesion points in A-type lamin depleted cells, which correlated with a reduction in early cell adhesion capacity and an increased cell motility. At the same time, loss of A-type lamins led to more pronounced stress fibers and higher traction forces. This phenotype could not be mimicked or reversed by experimental modulation of the STAT3-IL6 pathway, but it was partly recapitulated by chemical inhibition of the ARP2/3 complex. Thus, our data suggest that the loss of A-type lamins perturbs the balance between focal adhesions and cytoskeletal tension. This imbalance may contribute to mechanosensing defects observed in certain laminopathies.

  18. Adhesive Proteins of Stalked and Acorn Barnacles Display Homology with Low Sequence Similarities

    PubMed Central

    Jonker, Jaimie-Leigh; Abram, Florence; Pires, Elisabete; Varela Coelho, Ana; Grunwald, Ingo; Power, Anne Marie

    2014-01-01

    Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins ‘sticky’ has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the acorn barnacles (order Sessilia) by providing the first protein analysis of a stalked barnacle adhesive, Lepas anatifera (order Lepadiformes). It was possible to separate the L. anatifera adhesive into at least 10 protein bands using SDS-PAGE. Intense bands were present at approximately 30, 70, 90 and 110 kilodaltons (kDa). Mass spectrometry for protein identification was followed by de novo sequencing which detected 52 peptides of 7–16 amino acids in length. None of the peptides matched published or unpublished transcriptome sequences, but some amino acid sequence similarity was apparent between L. anatifera and closely-related Dosima fascicularis. Antibodies against two acorn barnacle proteins (ab-cp-52k and ab-cp-68k) showed cross-reactivity in the adhesive glands of L. anatifera. We also analysed the similarity of adhesive proteins across several barnacle taxa, including Pollicipes pollicipes (a stalked barnacle in the order Scalpelliformes). Sequence alignment of published expressed sequence tags clearly indicated that P. pollicipes possesses homologues for the 19 kDa and 100 kDa proteins in acorn barnacles. Homology aside, sequence similarity in amino acid and gene sequences tended to decline as taxonomic distance increased, with minimum similarities of 18–26%, depending on the gene. The results indicate that some adhesive proteins (e.g. 100 kDa) are more conserved within barnacles than others (20 kDa). PMID:25295513

  19. Adhesive proteins of stalked and acorn barnacles display homology with low sequence similarities.

    PubMed

    Jonker, Jaimie-Leigh; Abram, Florence; Pires, Elisabete; Varela Coelho, Ana; Grunwald, Ingo; Power, Anne Marie

    2014-01-01

    Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins 'sticky' has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the acorn barnacles (order Sessilia) by providing the first protein analysis of a stalked barnacle adhesive, Lepas anatifera (order Lepadiformes). It was possible to separate the L. anatifera adhesive into at least 10 protein bands using SDS-PAGE. Intense bands were present at approximately 30, 70, 90 and 110 kilodaltons (kDa). Mass spectrometry for protein identification was followed by de novo sequencing which detected 52 peptides of 7-16 amino acids in length. None of the peptides matched published or unpublished transcriptome sequences, but some amino acid sequence similarity was apparent between L. anatifera and closely-related Dosima fascicularis. Antibodies against two acorn barnacle proteins (ab-cp-52k and ab-cp-68k) showed cross-reactivity in the adhesive glands of L. anatifera. We also analysed the similarity of adhesive proteins across several barnacle taxa, including Pollicipes pollicipes (a stalked barnacle in the order Scalpelliformes). Sequence alignment of published expressed sequence tags clearly indicated that P. pollicipes possesses homologues for the 19 kDa and 100 kDa proteins in acorn barnacles. Homology aside, sequence similarity in amino acid and gene sequences tended to decline as taxonomic distance increased, with minimum similarities of 18-26%, depending on the gene. The results indicate that some adhesive proteins (e.g. 100 kDa) are more conserved within barnacles than others (20 kDa).

  20. Mitigating effects of L-selenomethionine on low-dose iron ion radiation-induced changes in gene expression associated with cellular stress.

    PubMed

    Nuth, Manunya; Kennedy, Ann R

    2013-07-01

    Ionizing radiation associated with highly energetic and charged heavy (HZE) particles poses a danger to astronauts during space travel. The aim of the present study was to evaluate the patterns of gene expression associated with cellular exposure to low-dose iron ion irradiation, in the presence and absence of L-selenomethionine (SeM). Human thyroid epithelial cells (HTori-3) were exposed to low-dose iron ion (1 GeV/n) irradiation at 10 or 20 cGy with or without SeM pretreatment. The cells were harvested 6 and 16 h post-irradiation and analyzed by the Affymetrix U133Av2 gene chip arrays. Genes exhibiting a 1.5-fold expression cut-off and 5% false discovery rate (FDR) were considered statistically significant and subsequently analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) for pathway analysis. Representative genes were further validated by real-time RT-PCR. Even at low doses of radiation from iron ions, global genome profiling of the irradiated cells revealed the upregulation of genes associated with the activation of stress-related signaling pathways (ubiquitin-mediated proteolysis, p53 signaling, cell cycle and apoptosis), which occurred in a dose-dependent manner. A 24-h pretreatment with SeM was shown to reduce the radiation effects by mitigating stress-related signaling pathways and downregulating certain genes associated with cell adhesion. The mechanism by which SeM prevents radiation-induced transformation in vitro may involve the suppression of the expression of genes associated with stress-related signaling and certain cell adhesion events.

  1. Cellular and molecular mechanisms of pomegranate juice-induced anti-metastatic effect on prostate cancer cells.

    PubMed

    Wang, Lei; Alcon, Andre; Yuan, Hongwei; Ho, Jeffrey; Li, Qi-Jing; Martins-Green, M

    2011-07-01

    Prostate cancer is the second leading cause of cancer-related deaths among US males. Pomegranate juice (PJ), a natural product, was shown in a clinical trial to inhibit progression of this disease. However, the underlying mechanisms involved in the anti-progression effects of PJ on prostate cancer remain unclear. Here we show that, in addition to causing cell death of hormone-refractory prostate cancer cells, PJ also increases cell adhesion and decreases cell migration of the cells that do not die. We hypothesized that PJ does so by stimulating the expression and/or activation of molecules that alter the cytoskeleton and the adhesion machinery of prostate cancer cells, resulting in enhanced cell adhesion and reduced cell migration. We took an integrative approach to these studies by using Affimetrix gene arrays to study gene expression, microRNA arrays to study the non-coding RNAs, molecules known to be disregulated in cancer cells, and Luminex Multiplex array assays to study the level of secreted pro-inflammatory cytokines/chemokines. PJ up-regulates genes involved in cell adhesion such as E-cadherin, intercellular adhesion molecule 1 (ICAM-1) and down-regulates genes involved in cell migration such as hyaluranan-mediated motility receptor (HMMR) and type I collagen. In addition, anti-invasive microRNAs such as miR-335, miR-205, miR-200, and miR-126, were up-regulated, whereas pro-invasive microRNA such as miR-21 and miR-373, were down-regulated. Moreover, PJ significantly reduced the level of secreted pro-inflammatory cytokines/chemokines such as IL-6, IL-12p40, IL-1β and RANTES, thereby having the potential to decrease inflammation and its impact on cancer progression. PJ also inhibits the ability of the chemokine SDF1α to chemoattract these cancer cells. SDF1α and its receptor CXCR4 are important in metastasis of cancer cells to the bone. Discovery of the mechanisms by which this enhanced adhesion and reduced migration are accomplished can lead to sophisticated and effective prevention of metastasis in prostate and potentially other cancers. This journal is © The Royal Society of Chemistry 2011

  2. Identification and characterization of three Vibrio alginolyticus non-coding RNAs involved in adhesion, chemotaxis, and motility processes.

    PubMed

    Huang, Lixing; Hu, Jiao; Su, Yongquan; Qin, Yingxue; Kong, Wendi; Ma, Ying; Xu, Xiaojin; Lin, Mao; Yan, Qingpi

    2015-01-01

    The capability of Vibrio alginolyticus to adhere to fish mucus is a key virulence factor of the bacteria. Our previous research showed that stress conditions, such as Cu(2+), Pb(2+), Hg(2+), and low pH, can reduce this adhesion ability. Non-coding (nc) RNAs play a crucial role in regulating bacterial gene expression, affecting the bacteria's pathogenicity. To investigate the mechanism(s) underlying the decline in adhesion ability caused by stressors, we combined high-throughput sequencing with computational techniques to detect stressed ncRNA dynamics. These approaches yielded three commonly altered ncRNAs that are predicted to regulate the bacterial chemotaxis pathway, which plays a key role in the adhesion process of bacteria. We hypothesized they play a key role in the adhesion process of V. alginolyticus. In this study, we validated the effects of these three ncRNAs on their predicted target genes and their role in the V. alginolyticus adhesion process with RNA interference (i), quantitative real-time polymerase chain reaction (qPCR), northern blot, capillary assay, and in vitro adhesion assays. The expression of these ncRNAs and their predicted target genes were confirmed by qPCR and northern blot, which reinforced the reliability of the sequencing data and the target prediction. Overexpression of these ncRNAs was capable of reducing the chemotactic and adhesion ability of V. alginolyticus, and the expression levels of their target genes were also significantly reduced. Our results indicated that these three ncRNAs: (1) are able to regulate the bacterial chemotaxis pathway, and (2) play a key role in the adhesion process of V. alginolyticus.

  3. Increased Cell Proliferation and Gene Expression of Genes Related to Bone Remodeling, Cell Adhesion and Collagen Metabolism in the Periodontal Ligament of Unopposed Molars in Growing Rats

    PubMed Central

    Dorotheou, Domna; Farsadaki, Vassiliki; Bochaton-Piallat, Marie-Luce; Giannopoulou, Catherine; Halazonetis, Thanos D.; Kiliaridis, Stavros

    2017-01-01

    Tooth eruption, the process by which teeth emerge from within the alveolar bone into the oral cavity, is poorly understood. The post-emergent phase of tooth eruption continues throughout life, in particular, if teeth are not opposed by antagonists. The aim of the present study was to better understand the molecular processes underlying post-emergent tooth eruption. Toward this goal, we removed the crowns of the maxillary molars on one side of the mouth of 14 young rats and examined gene expression patterns in the periodontal ligaments (PDLs) of the ipsilateral and contralateral mandibular molars, 3 and 15 days later. Nine untreated rats served as controls. Expression of six genes, Adamts18, Ostn, P4ha3, Panx3, Pth1r, and Tnmd, was upregulated in unopposed molars relative to molars with antagonists. These genes function in osteoblast differentiation and proliferation, cell adhesion and collagen metabolism. Proliferation of PDL cells also increased following loss of the antagonist teeth. Interestingly, mutations in PTH1R have been linked to defects in the post-emergent phase of tooth eruption in humans. We conclude that post-emergent eruption of unopposed teeth is associated with gene expression patterns conducive to alveolar bone formation and PDL remodeling. PMID:28239357

  4. Epigenetic regulation of integrin-linked kinase expression depending on adhesion of gastric carcinoma cells.

    PubMed

    Kim, Yong-Bae; Lee, Sung-Yul; Ye, Sang-Kyu; Lee, Jung Weon

    2007-02-01

    Cell adhesion to the extracellular matrix (ECM) regulates gene expressions in diverse dynamic environments. However, the manner in which gene expressions are regulated by extracellular cues is largely unknown. In this study, suspended gastric carcinoma cells showed higher basal and transforming growth factor-beta1 (TGFbeta1)-mediated acetylations of histone 3 (H3) and Lys(9) of H3 and levels of integrin-linked kinase (ILK) mRNA and protein than did fibronectin-adherent cells did. Moreover, the insignificant acetylation and ILK expression in adherent cells were recovered by alterations of integrin signaling and actin organization, indicating a connection between cytoplasmic and nuclear changes. Higher acetylations in suspended cells were correlated with associations between Smad4, p300/CBP, and Lys(9)-acetylated H3. Meanwhile, adherent cells showed more associations between HDAC3, Ski, and MeCP2. Chromatin immunoprecipitations with anti-acetylated H3, Lys(9)-acetylated H3, or p300/CBP antibody resulted in more coprecipitated ILK promoter, correlated with enhanced ILK mRNA and protein levels, in suspended cells. Moreover, ILK expression inversely regulated cell adhesion to ECM proteins, and its overexpression enhanced cell growth in soft agar. These observations indicate that cell adhesion and/or its related molecular basis regulate epigenetic mechanisms leading to a loss of ILK transcription, which in turn regulates cell adhesion property in a feedback linkage.

  5. MAPs/bFGF-PLGA microsphere composite-coated titanium surfaces promote increased adhesion and proliferation of fibroblasts.

    PubMed

    Wang, Zhongshan; Wu, Guofeng; Bai, Shizhu; Feng, Zhihong; Dong, Yan; Zhou, Jian; Qin, Haiyan; Zhao, Yimin

    2014-06-01

    Infection and epithelial downgrowth are two major problems with maxillofacial transcutaneous implants, and both are mainly due to lack of stable closure of soft tissues at transcutaneous sites. Fibroblasts have been shown to play a key role in the formation of biological seals. In this work, titanium (Ti) model surfaces were coated with mussel adhesive proteins (MAPs) utilizing its unique adhesion ability on diverse inorganic and organic surfaces in wet environments. Prepared basic fibroblast growth factor (bFGF)-poly(lactic-co-glycolic acid) (PLGA) microspheres can be easily synthesized and combined onto MAPs-coated Ti surfaces, due to the negative surface charges of microspheres in aqueous solution, which is in contrast to the positive charges of MAPs. Titanium model surfaces were divided into three groups. Group A: MAPs/bFGF-PLGA microspheres composite-coated Ti surfaces. Group B: MAPs-coated Ti surfaces. Group C: uncoated Ti surfaces. The effects of coated Ti surfaces on adhesion of fibroblasts, cytoskeletal organization, proliferation, and extracellular matrix (ECM)-related gene expressions were examined. The results revealed increased adhesion (P < 0.05), enhanced actin cytoskeletal organization, and up-regulated ECM-related gene expressions in groups A and B compared with group C. Increased proliferation of fibroblasts during five days of incubation was observed in group A compared with groups B and C (P < 0.05). Collectively, the results from this in vitro study demonstrated that MAPs/bFGF-PLGA microspheres composite-coated Ti surfaces had the ability to increase fibroblast functionality. In addition, MAPs/bFGF-PLGA microsphere composite-coated Ti surfaces should be studied further as a method of promoting formation of stable biological seals around transcutaneous sites.

  6. Dose-related gene expression changes in forebrain following acute, low-level chlorpyrifos exposure in neonatal rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Anamika; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078; Liu Jing

    2010-10-15

    Chlorpyrifos (CPF) is a widely used organophosphorus insecticide (OP) and putative developmental neurotoxicant in humans. The acute toxicity of CPF is elicited by acetylcholinesterase (AChE) inhibition. We characterized dose-related (0.1, 0.5, 1 and 2 mg/kg) gene expression profiles and changes in cell signaling pathways 24 h following acute CPF exposure in 7-day-old rats. Microarray experiments indicated that approximately 9% of the 44,000 genes were differentially expressed following either one of the four CPF dosages studied (546, 505, 522, and 3,066 genes with 0.1, 0.5, 1.0 and 2.0 mg/kg CPF). Genes were grouped according to dose-related expression patterns using K-means clusteringmore » while gene networks and canonical pathways were evaluated using Ingenuity Pathway Analysis (registered) . Twenty clusters were identified and differential expression of selected genes was verified by RT-PCR. The four largest clusters (each containing from 276 to 905 genes) constituted over 50% of all differentially expressed genes and exhibited up-regulation following exposure to the highest dosage (2 mg/kg CPF). The total number of gene networks affected by CPF also rose sharply with the highest dosage of CPF (18, 16, 18 and 50 with 0.1, 0.5, 1 and 2 mg/kg CPF). Forebrain cholinesterase (ChE) activity was significantly reduced (26%) only in the highest dosage group. Based on magnitude of dose-related changes in differentially expressed genes, relative numbers of gene clusters and signaling networks affected, and forebrain ChE inhibition only at 2 mg/kg CPF, we focused subsequent analyses on this treatment group. Six canonical pathways were identified that were significantly affected by 2 mg/kg CPF (MAPK, oxidative stress, NF{Kappa}B, mitochondrial dysfunction, arylhydrocarbon receptor and adrenergic receptor signaling). Evaluation of different cellular functions of the differentially expressed genes suggested changes related to olfactory receptors, cell adhesion/migration, synapse/synaptic transmission and transcription/translation. Nine genes were differentially affected in all four CPF dosing groups. We conclude that the most robust, consistent changes in differential gene expression in neonatal forebrain across a range of acute CPF dosages occurred at an exposure level associated with the classical marker of OP toxicity, AChE inhibition. Disruption of multiple cellular pathways, in particular cell adhesion, may contribute to the developmental neurotoxicity potential of this pesticide.« less

  7. Multi-scale Finite Element Modeling of Eustachian Tube Function: Influence of Mucosal Adhesion

    PubMed Central

    Malik, J.E.; Swarts, J.D.; Ghadiali, S. N.

    2017-01-01

    The inability to open the collapsible Eustachian tube (ET) leads to the development of chronic Otitis Media (OM). Although mucosal inflammation during OM leads to increased mucin gene expression and elevated adhesion forces within the ET lumen, it is not known how changes in mucosal adhesion alter the biomechanical mechanisms of ET function. In this study, we developed a novel multi-scale finite element model of ET function in adults that utilizes adhesion spring elements to simulate changes in mucosal adhesion. Models were created for six adult subjects and dynamic patterns in muscle contraction were used to simulate the wave-like opening of the ET that occurs during swallowing. Results indicate that ET opening is highly sensitive to the level of mucosal adhesion and that exceeding a critical value of adhesion leads to rapid ET dysfunction. Parameter variation studies and sensitivity analysis indicate that increased mucosal adhesion alters the relative importance of several tissue biomechanical properties. For example, increases in mucosal adhesion reduced the sensitivity of ET function to tensor veli palatini muscle forces but did not alter the insensitivity of ET function to levator veli palatini muscle forces. Interestingly, although changes in cartilage stiffness did not significantly influence ET opening under low adhesion conditions, ET opening was highly sensitive to changes in cartilage stiffness under high adhesion conditions. Therefore, our multi-scale computational models indicate that changes in mucosal adhesion as would occur during inflammatory OM alter the biomechanical mechanisms of ET function. PMID:26891171

  8. Phylogenetic, epidemiological and functional analyses of the Streptococcus bovis/Streptococcus equinus complex through an overarching MLST scheme.

    PubMed

    Jans, Christoph; de Wouters, Tomas; Bonfoh, Bassirou; Lacroix, Christophe; Kaindi, Dasel Wambua Mulwa; Anderegg, Janine; Böck, Désirée; Vitali, Sabrina; Schmid, Thomas; Isenring, Julia; Kurt, Fabienne; Kogi-Makau, Wambui; Meile, Leo

    2016-06-21

    The Streptococcus bovis/Streptococcus equinus complex (SBSEC) comprises seven (sub)species classified as human and animal commensals, emerging opportunistic pathogens and food fermentative organisms. Changing taxonomy, shared habitats, natural competence and evidence for horizontal gene transfer pose difficulties for determining their phylogeny, epidemiology and virulence mechanisms. Thus, novel phylogenetic and functional classifications are required. An SBSEC overarching multi locus sequence type (MLST) scheme targeting 10 housekeeping genes was developed, validated and combined with host-related properties of adhesion to extracellular matrix proteins (ECM), activation of the immune responses via NF-KB and survival in simulated gastric juice (SGJ). Commensal and pathogenic SBSEC strains (n = 74) of human, animal and food origin from Europe, Asia, America and Africa were used in the MLST scheme yielding 66 sequence types and 10 clonal complexes differentiated into distinct habitat-associated and mixed lineages. Adhesion to ECMs collagen I and mucin type II was a common characteristic (23 % of strains) followed by adhesion to fibronectin and fibrinogen (19.7 %). High adhesion abilities were found for East African dairy and human blood isolate branches whereas commensal fecal SBSEC displayed low adhesion. NF-KB activation was observed for a limited number of dairy and blood isolates suggesting the potential of some pathogenic strains for reduced immune activation. Strains from dairy MLST clades displayed the highest relative survival to SGJ independently of dairy adaptation markers lacS/lacZ. Combining phylogenetic and functional analyses via SBSEC MLST enabled the clear delineation of strain clades to unravel the complexity of this bacterial group. High adhesion values shared between certain dairy and blood strains as well as the behavior of NF-KB activation are concerning for specific lineages. They highlighted the health risk among shared lineages and establish the basis to elucidate (zoonotic-) transmission, host specificity, virulence mechanisms and enhanced risk assessment as pathobionts in an overarching One Health approach.

  9. Epigallocatechin 3-gallate inhibits 7-ketocholesterol-induced monocyte-endothelial cell adhesion.

    PubMed

    Yamagata, Kazuo; Tanaka, Noriko; Suzuki, Koichi

    2013-07-01

    7-Ketocholesterol (7KC) induces monocytic adhesion to endothelial cells, and induces arteriosclerosis while high-density lipoprotein (HDL) inhibits monocytic adhesion to the endothelium. Epigallocatechin 3-gallate (EGCG) was found to have a protective effect against arteriosclerosis. Therefore, the purpose of this study was to examine the possible HDL-like mechanisms of EGCG in endothelial cells by investigating whether EGCG inhibits 7KC-induced monocyte-endothelial cell adhesion by activating HDL-dependent signal transduction pathways. 7KC and/or EGCG were added to human endothelial cells (ISO-HAS), and the adhesion of pro-monocytic U937 cells was examined. The expression of genes associated with HDL effects such as Ca(2+)/calmodulin-dependent kinase II (CaMKKII), liver kinase B (LKD1), PSD-95/Dlg/ZO-1 kinase 1 (PDZK1), phosphatidylinositol 3-kinase (PI3K), intercellular adhesion molecule-1 (ICAM-1), monocyte chemotactic protein-1 (MCP-1), and endothelial nitric oxide synthase (eNOS) was examined by RT-PCR, and ICAM-1 protein expression was evaluated by western blot (WB). Production of reactive oxygen species (ROS) was examined with H2DCFDA. 7KC significantly induced adhesion of U937 cells to human endothelial cells while significantly increasing gene expressions of ICAM-1 and MCP-1 and decreasing eNOS and CaMKKII gene expressions. EGCG inhibited 7KC-induced monocytic adhesion to endothelial cells, and induced expression of eNOS and several genes involved in the CaMKKII pathway. Stimulation of endothelial cells with EGCG produced intracellular ROS, whereas treatment with N-acetylcysteine (NAC) blocked EGCG-induced expression of eNOS and CaMKKII. These results suggest that inhibition of monocyte-endothelial cell adhesion by EGCG is associated with CaMKKII pathway activation by ROS. Inhibition of 7KC-induced monocyte-endothelial cell adhesion induced by EGCG may function similarly to HDL. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Analyses of the probiotic property and stress resistance-related genes of Lactococcus lactis subsp. lactis NCDO 2118 through comparative genomics and in vitro assays

    PubMed Central

    Saraiva, Tessália D. L.; Silva, Wanderson M.; Pereira, Ulisses P.; Campos, Bruno C.; Benevides, Leandro J.; Rocha, Flávia S.; Figueiredo, Henrique C. P.; Azevedo, Vasco; Soares, Siomar C.

    2017-01-01

    Lactococcus lactis subsp. lactis NCDO 2118 was recently reported to alleviate colitis symptoms via its anti-inflammatory and immunomodulatory activities, which are exerted by exported proteins that are not produced by L. lactis subsp. lactis IL1403. Here, we used in vitro and in silico approaches to characterize the genomic structure, the safety aspects, and the immunomodulatory activity of this strain. Through comparative genomics, we identified genomic islands, phage regions, bile salt and acid stress resistance genes, bacteriocins, adhesion-related and antibiotic resistance genes, and genes encoding proteins that are putatively secreted, expressed in vitro and absent from IL1403. The high degree of similarity between all Lactococcus suggests that the Symbiotic Islands commonly shared by both NCDO 2118 and KF147 may be responsible for their close relationship and their adaptation to plants. The predicted bacteriocins may play an important role against the invasion of competing strains. The genes related to the acid and bile salt stresses may play important roles in gastrointestinal tract survival, whereas the adhesion proteins are important for persistence in the gut, culminating in the competitive exclusion of other bacteria. Finally, the five secreted and expressed proteins may be important targets for studies of new anti-inflammatory and immunomodulatory proteins. Altogether, the analyses performed here highlight the potential use of this strain as a target for the future development of probiotic foods. PMID:28384209

  11. Variation of mucin adhesion, cell surface characteristics, and molecular mechanisms among Lactobacillus plantarum isolated from different habitats.

    PubMed

    Buntin, Nirunya; de Vos, Willem M; Hongpattarakere, Tipparat

    2017-10-01

    The adhesion ability to mucin varied greatly among 18 Lactobacillus plantarum isolates depending on their isolation habitats. Such ability remained at high level even though they were sequentially exposed to the gastrointestinal (GI) stresses. The majority of L. plantarum isolated from shrimp intestine and about half of food isolates exhibited adhesion ability (51.06-55.04%) about the same as the well-known adhesive L. plantarum 299v. Interestingly, five infant isolates of CIF17A2, CIF17A4, CIF17A5, CIF17AN2, and CIF17AN8 exhibited extremely high adhesion ranging from 62.69 to 72.06%. Such highly adhesive property correlating to distinctively high cell surface hydrophobicity was significantly weaken after pretreatment with LiCl and guanidine-HCl confirming the entailment of protein moiety. Regarding the draft genome information, all molecular structures of major cell wall-anchored proteins involved in the adhesion based on L. plantarum WCSF1, including lp_0964, lp_1643, lp_3114, lp_2486, lp_3127, and lp_3059 orthologues were detected in all isolates. Exceptionally, the gene-trait matching between yeast agglutination assay and the relevant mannose-specific adhesin (lp_1229) encoding gene confirmed the Msa absence in five infant isolates expressed distinctively high adhesion. Interestingly, the predicted flagellin encoding genes (fliC) firstly revealed in lp_1643, lp_2486, and lp_3114 orthologues may potentially contribute to such highly adhesive property of these isolates.

  12. Gekko japonicus genome reveals evolution of adhesive toe pads and tail regeneration

    PubMed Central

    Liu, Yan; Zhou, Qian; Wang, Yongjun; Luo, Longhai; Yang, Jian; Yang, Linfeng; Liu, Mei; Li, Yingrui; Qian, Tianmei; Zheng, Yuan; Li, Meiyuan; Li, Jiang; Gu, Yun; Han, Zujing; Xu, Man; Wang, Yingjie; Zhu, Changlai; Yu, Bin; Yang, Yumin; Ding, Fei; Jiang, Jianping; Yang, Huanming; Gu, Xiaosong

    2015-01-01

    Reptiles are the most morphologically and physiologically diverse tetrapods, and have undergone 300 million years of adaptive evolution. Within the reptilian tetrapods, geckos possess several interesting features, including the ability to regenerate autotomized tails and to climb on smooth surfaces. Here we sequence the genome of Gekko japonicus (Schlegel's Japanese Gecko) and investigate genetic elements related to its physiology. We obtain a draft G. japonicus genome sequence of 2.55 Gb and annotated 22,487 genes. Comparative genomic analysis reveals specific gene family expansions or reductions that are associated with the formation of adhesive setae, nocturnal vision and tail regeneration, as well as the diversification of olfactory sensation. The obtained genomic data provide robust genetic evidence of adaptive evolution in reptiles. PMID:26598231

  13. Measurement of leukocyte rheology in vascular disease: clinical rationale and methodology. International Society of Clinical Hemorheology.

    PubMed

    Wautier, J L; Schmid-Schönbein, G W; Nash, G B

    1999-01-01

    The measurement of leukocyte rheology in vascular disease is a recent development with a wide range of new opportunities. The International Society of Clinical Hemorheology has asked an expert panel to propose guidelines for the investigation of leukocyte rheology in clinical situations. This article first discusses the mechanical, adhesive and related functional properties of leukocytes (especially neutrophils) which influence their circulation, and establishes the rationale for clinically-related measurements of parameters which describe them. It is concluded that quantitation of leukocyte adhesion molecules, and of their endothelial receptors may assist understanding of leukocyte behaviour in vascular disease, along with measurements of flow resistance of leukocytes, free radical production, degranulation and gene expression. For instance, vascular cell adhesion molecule (VCAM-1) is abnormally present on endothelial cells in atherosclerosis, diabetes mellitus and inflammatory conditions. Soluble forms of intercellular adhesion molecule (ICAM-1) or VCAM can be found elevated in the blood of patients with rheumatoid arthritis or infections disease. In the second part of the article, possible technical approaches are presented and possible avenues for leukocyte rheological investigations are discussed.

  14. ILK mediates LPS-induced vascular adhesion receptor expression and subsequent leucocyte trans-endothelial migration.

    PubMed

    Hortelano, Sonsoles; López-Fontal, Raquel; Través, Paqui G; Villa, Natividad; Grashoff, Carsten; Boscá, Lisardo; Luque, Alfonso

    2010-05-01

    The inflammatory response to injurious agents is tightly regulated to avoid adverse consequences of inappropriate leucocyte accumulation or failed resolution. Lipopolysaccharide (LPS)-activated endothelium recruits leucocytes to the inflamed tissue through controlled expression of membrane-associated adhesion molecules. LPS responses in macrophages are known to be regulated by integrin-linked kinase (ILK); in this study, we investigated the role of ILK in the regulation of the LPS-elicited inflammatory response in endothelium. This study was performed on immortalized mouse endothelial cells (EC) isolated from lung and coronary vasculature. Cells were thoroughly characterized and the role of ILK in the regulation of the LPS response was investigated by suppressing ILK expression using siRNA and shRNA technologies. Phenotypic and functional analyses confirmed that the immortalized cells behaved as true EC. LPS induced the expression of the inflammatory genes E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). ILK knockdown impaired LPS-mediated endothelial activation by preventing the induction of ICAM-1 and VCAM-1. Blockade of the LPS-induced response inhibited the inflammatory-related processes of firm adhesion and trans-endothelial migration of leucocytes. ILK is involved in the expression of cell adhesion molecules by EC activated with the inflammatory stimulus LPS. This reduced expression modulates leucocyte adhesion to the endothelium and the extravasation process. This finding suggests ILK as a potential anti-inflammatory target for the development of vascular-specific treatments for inflammation-related diseases.

  15. Molecular Typing and Virulence Gene Profiles of Enterotoxin Gene Cluster (egc)-Positive Staphylococcus aureus Isolates Obtained from Various Food and Clinical Specimens.

    PubMed

    Song, Minghui; Shi, Chunlei; Xu, Xuebing; Shi, Xianming

    2016-11-01

    The enterotoxin gene cluster (egc) has been proposed to contribute to the Staphylococcus aureus colonization, which highlights the need to evaluate genetic diversity and virulence gene profiles of the egc-positive population. Here, a total of 43 egc-positive isolates (16.2%) were identified from 266 S. aureus isolates that were obtained from various food and clinical specimens in Shanghai. Seven different egc profiles were found based on the polymerase chain reaction (PCR) result for egc genes. Then, these 43 egc-positive isolates were further typed by multilocus sequence typing, pulsed-field gel electrophoresis (PFGE), multiple-locus variable-number tandem-repeat analysis (MLVA), and accessory gene regulatory (agr) typing. It showed that the 43 egc-positive isolates displayed 17 sequence types, 28 PFGE patterns, 29 MLVA types, and 4 agr types, respectively. Among them, the dominant clonal lineage was CC5-agr II (48.84%). Thirty toxin and 20 adhesion-associated genes were detected by PCR in egc-positive isolates. Notably, invasive toxin genes showed a high prevalence, such as 76.7% for Panton-Valentine leukocidin encoding genes, 27.9% for sec, and 23.3% for tsst-1. Most of the examined adhesion-associated genes were found to be conserved (76.7-100%), whereas the fnbB gene was only found in 8 (18.6%) isolates. In addition, 33 toxin gene profiles and 13 adhesion gene profiles were identified, respectively. Our results imply that isolates belonging to the same clonal lineage harbored similar adhesion gene profiles but diverse toxin gene profiles. Overall, the high prevalence of invasive virulence genes increases the potential risk of egc-positive isolates in S. aureus infection.

  16. Molecular cloning, expression and adhesion analysis of silent slpB of Lactobacillus acidophilus NCFM.

    PubMed

    Guo, Yuxing; Li, Xiangyue; Yang, Yao; Wu, Zhen; Zeng, Xiaoqun; Nadari, Fawze; Pan, Daodong

    2018-06-23

    The slpB gene of Lactobacillus acidophilus NCFM, which differs from the slpA gene and is silent under normal conditions, was successfully amplified and ligated to the corresponding available sites on a recombinant pET-28a vector. Then the pET-28a-slpB vector was transformed into Escherichia coli DH (DE3) and the fusion His-slpB protein was expressed by induction with 1 mM IPTG for 14 h at 37 °C. The resulting His-slpB protein (S B ) had a relative molecular weight of 48 kDa. It was purified using a Ni-NTA column and was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot contrastive analysis. The slpA protein (S A ) from L. acidophilus NCFM was extracted and purified. It had a relative molecular weight of 46 kDa. Circular dichroism measurements suggested that the two S-layer proteins had a high β-sheet content and a low α-helix structure content. In an adhesion experiment, S A displayed higher adhesive capability towards Caco-2 cells than did S B . The results suggest that these two S-layer proteins could have biotechnological applications.

  17. The Differential Expression of Adhesion Molecule and Extracellular Matrix Genes in Mesenchymal Stromal Cells after Interaction with Cord Blood Hematopoietic Progenitors.

    PubMed

    Buravkova, L B; Andreeva, E R; Lobanova, M V; Cotnezova, E V; Grigoriev, A I

    2018-03-01

    The dynamics of the expression of genes encoding adhesion molecules, molecules of the connective tissue matrix, and its remodeling enzymes was studied in multipotent mesenchymal stromal cells (MSCs) from human adipose tissue after interaction with cord blood hematopoietic progenitors (HSPCs). An upregulation of ICAM1 and VCAM1, directly proportional to the coculture time (24-72 h), was found. After 72 h of culturing, a downregulation of the genes encoding the majority of matrix molecules (SPP1; COL6A2,7A1; MMP1,3; TIMP1,3; and HAS1) and cell-matrix adhesion molecules (ITGs) was revealed. The detected changes may ensure the realization of the stromal MSC function due to improvement of adhesion and transmigration of HSPCs into the subcellular space.

  18. Fibronectin-mediation cell adhesion is required for induction of 92-kDa type IV collagenase/gelatinase (MMP-9) gene expression during macrophage differentiation : the signaling role of protein kinase C-{beta}.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, B.; Laouar, A.; Huberman, E.

    1998-05-08

    Induction of the 92-kDa gelatinase (MMP-9) gene expression is associated with macrophage differentiation. In this study, we explored the regulatory mechanisms underlying this differentiation-associated MMP-9 gene expression in human HL-60 myeloid leukemia cells and human peripheral blood monocytes. Phorbol 12-myristate 13-acetate (PMA) markedly induced MMP-9 gene expression in HL-60 cells; the induction closely paralleled the timing and extent of PMA-induced cell adhesion and spreading, a hallmark of macrophage differentiation. Similarly, treatment with PMA or macrophage-colony stimulating factor stimulated adherence and spreading of blood monocytes with a concurrent 7- or 5-fold increase in MMP-9 production, respectively. In protein kinase C (PKC)-betamore » -deficient HL-60 variant cells (HL-525), PMA failed to induce cell adhesion and MMP-9 gene expression. Transfecting HL-525 cells with a PKC-beta expression plasmid restored PKC-beta levels and PMA inducibility of cell adhesion and spreading as well as MMP-9 gene expression. Induction of cell adhesion and MMP-9 gene expression in HL-60 cells and blood monocytes was strongly inhibited by neutralizing monoclonal antibodies to fibronectin (FN) and its receptor {alpha}5{beta}1 integrin. HL-525 cells, which constitutively display high levels of surface {alpha}5{beta}1 integrin, adhered and spread on immobilized FN with concomitant induction of MMP-9 gene expression. Cytochalasins B and D were each a potent inhibitor of MMP-9 production. Our results suggest that {alpha}5{beta}1 integrin-mediated interaction of immature hematopoietic cells with FN plays a critical role in modulating matrix-degrading activities during macrophage differentiation.« less

  19. β-Catenin–regulated myeloid cell adhesion and migration determine wound healing

    PubMed Central

    Amini-Nik, Saeid; Cambridge, Elizabeth; Yu, Winston; Guo, Anne; Whetstone, Heather; Nadesan, Puviindran; Poon, Raymond; Hinz, Boris; Alman, Benjamin A.

    2014-01-01

    A β-catenin/T cell factor–dependent transcriptional program is critical during cutaneous wound repair for the regulation of scar size; however, the relative contribution of β-catenin activity and function in specific cell types in the granulation tissue during the healing process is unknown. Here, cell lineage tracing revealed that cells in which β-catenin is transcriptionally active express a gene profile that is characteristic of the myeloid lineage. Mice harboring a macrophage-specific deletion of the gene encoding β-catenin exhibited insufficient skin wound healing due to macrophage-specific defects in migration, adhesion to fibroblasts, and ability to produce TGF-β1. In irradiated mice, only macrophages expressing β-catenin were able to rescue wound-healing deficiency. Evaluation of scar tissue collected from patients with hypertrophic and normal scars revealed a correlation between the number of macrophages within the wound, β-catenin levels, and cellularity. Our data indicate that β-catenin regulates myeloid cell motility and adhesion and that β-catenin–mediated macrophage motility contributes to the number of mesenchymal cells and ultimate scar size following cutaneous injury. PMID:24837430

  20. Time-series analysis in imatinib-resistant chronic myeloid leukemia K562-cells under different drug treatments.

    PubMed

    Zhao, Yan-Hong; Zhang, Xue-Fang; Zhao, Yan-Qiu; Bai, Fan; Qin, Fan; Sun, Jing; Dong, Ying

    2017-08-01

    Chronic myeloid leukemia (CML) is characterized by the accumulation of active BCR-ABL protein. Imatinib is the first-line treatment of CML; however, many patients are resistant to this drug. In this study, we aimed to compare the differences in expression patterns and functions of time-series genes in imatinib-resistant CML cells under different drug treatments. GSE24946 was downloaded from the GEO database, which included 17 samples of K562-r cells with (n=12) or without drug administration (n=5). Three drug treatment groups were considered for this study: arsenic trioxide (ATO), AMN107, and ATO+AMN107. Each group had one sample at each time point (3, 12, 24, and 48 h). Time-series genes with a ratio of standard deviation/average (coefficient of variation) >0.15 were screened, and their expression patterns were revealed based on Short Time-series Expression Miner (STEM). Then, the functional enrichment analysis of time-series genes in each group was performed using DAVID, and the genes enriched in the top ten functional categories were extracted to detect their expression patterns. Different time-series genes were identified in the three groups, and most of them were enriched in the ribosome and oxidative phosphorylation pathways. Time-series genes in the three treatment groups had different expression patterns and functions. Time-series genes in the ATO group (e.g. CCNA2 and DAB2) were significantly associated with cell adhesion, those in the AMN107 group were related to cellular carbohydrate metabolic process, while those in the ATO+AMN107 group (e.g. AP2M1) were significantly related to cell proliferation and antigen processing. In imatinib-resistant CML cells, ATO could influence genes related to cell adhesion, AMN107 might affect genes involved in cellular carbohydrate metabolism, and the combination therapy might regulate genes involved in cell proliferation.

  1. Multi-scale finite element modeling of Eustachian tube function: influence of mucosal adhesion.

    PubMed

    Malik, J E; Swarts, J D; Ghadiali, S N

    2016-12-01

    The inability to open the collapsible Eustachian tube (ET) leads to the development of chronic Otitis Media (OM). Although mucosal inflammation during OM leads to increased mucin gene expression and elevated adhesion forces within the ET lumen, it is not known how changes in mucosal adhesion alter the biomechanical mechanisms of ET function. In this study, we developed a novel multi-scale finite element model of ET function in adults that utilizes adhesion spring elements to simulate changes in mucosal adhesion. Models were created for six adult subjects, and dynamic patterns in muscle contraction were used to simulate the wave-like opening of the ET that occurs during swallowing. Results indicate that ET opening is highly sensitive to the level of mucosal adhesion and that exceeding a critical value of adhesion leads to rapid ET dysfunction. Parameter variation studies and sensitivity analysis indicate that increased mucosal adhesion alters the relative importance of several tissue biomechanical properties. For example, increases in mucosal adhesion reduced the sensitivity of ET function to tensor veli palatini muscle forces but did not alter the insensitivity of ET function to levator veli palatini muscle forces. Interestingly, although changes in cartilage stiffness did not significantly influence ET opening under low adhesion conditions, ET opening was highly sensitive to changes in cartilage stiffness under high adhesion conditions. Therefore, our multi-scale computational models indicate that changes in mucosal adhesion as would occur during inflammatory OM alter the biomechanical mechanisms of ET function. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. The Human Papillomavirus E6 Oncogene Represses a Cell Adhesion Pathway and Disrupts Focal Adhesion through Degradation of TAp63β upon Transformation

    PubMed Central

    Ben Khalifa, Youcef; Teissier, Sébastien; Tan, Meng-Kwang Marcus; Phan, Quang Tien; Daynac, Mathieu; Wong, Wei Qi; Thierry, Françoise

    2011-01-01

    Cervical carcinomas result from cellular transformation by the human papillomavirus (HPV) E6 and E7 oncogenes which are constitutively expressed in cancer cells. The E6 oncogene degrades p53 thereby modulating a large set of p53 target genes as shown previously in the cervical carcinoma cell line HeLa. Here we show that the TAp63β isoform of the p63 transcription factor is also a target of E6. The p63 gene plays an essential role in skin homeostasis and is expressed as at least six isoforms. One of these isoforms, ΔNp63α, has been found overexpressed in squamous cell carcinomas and is shown here to be constitutively expressed in Caski cells associated with HPV16. We therefore explored the role of p63 in these cells by performing microarray analyses after repression of endogenous E6/E7 expression. Upon repression of the oncogenes, a large set of p53 target genes was found activated together with many p63 target genes related to cell adhesion. However, through siRNA silencing and ectopic expression of various p63 isoforms we demonstrated that TAp63β is involved in activation of this cell adhesion pathway instead of the constitutively expressed ΔNp63α and β. Furthermore, we showed in cotransfection experiments, combined with E6AP siRNA silencing, that E6 induces an accelerated degradation of TAp63β although not through the E6AP ubiquitin ligase used for degradation of p53. Repression of E6 transcription also induces stabilization of endogenous TAp63β in cervical carcinoma cells that lead to an increased concentration of focal adhesions at the cell surface. Consequently, TAp63β is the only p63 isoform suppressed by E6 in cervical carcinoma as demonstrated previously for p53. Down-modulation of focal adhesions through disruption of TAp63β therefore appears as a novel E6-dependent pathway in transformation. These findings identify a major physiological role for TAp63β in anchorage independent growth that might represent a new critical pathway in human carcinogenesis. PMID:21980285

  3. Aberrant expression of genes and proteins in pterygium and their implications in the pathogenesis

    PubMed Central

    Feng, Qing-Yang; Hu, Zi-Xuan; Song, Xi-Ling; Pan, Hong-Wei

    2017-01-01

    Pterygium is a common ocular surface disease induced by a variety of factors. The exact pathogenesis of pterygium remains unclear. Numbers of genes and proteins are discovered in pterygium and they function differently in the occurrence and development of this disease. We searched the Web of Science and PubMed throughout history for literatures about the subject. The keywords we used contain pterygium, gene, protein, angiogenesis, fibrosis, proliferation, inflammation, pathogenesis and therapy. In this review, we summarize the aberrant expression of a range of genes and proteins in pterygium compared with normal conjunctiva or cornea, including growth factors, matrix metalloproteinases and tissue inhibitors of metalloproteinases, interleukins, tumor suppressor genes, proliferation related proteins, apoptosis related proteins, cell adhesion molecules, extracellular matrix proteins, heat shock proteins and tight junction proteins. We illustrate their possible mechanisms in the pathogenesis of pterygium as well as the related intervention based on them for pterygium therapy. PMID:28730091

  4. 3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatta, Mitsutoki, E-mail: hatta@college.fdcnet.ac.jp; Naganuma, Kaori; Kato, Kenichi

    In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial–mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histonemore » H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell–cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns. - Highlights: • DZNep reduced PcG proteins and associated histone modifications in OSCC cells. • DZNep enhanced cell–cell adhesion indicative of epithelial phenotype in OSCC cells. • DZNep suppressed the aggressive phenotype-related gene expression in OSCC cells. • DZNep activated the gene expression of epithelial markers in OSCC cells.« less

  5. Neural cell adhesion molecule-deficient beta-cell tumorigenesis results in diminished extracellular matrix molecule expression and tumour cell-matrix adhesion.

    PubMed

    Håkansson, Joakim; Xian, Xiaojie; He, Liqun; Ståhlberg, Anders; Nelander, Sven; Samuelsson, Tore; Kubista, Mikael; Semb, Henrik

    2005-01-01

    To understand by which mechanism neural cell adhesion molecule (N-CAM) limits beta tumour cell disaggregation and dissemination, we searched for potential downstream genes of N-CAM during beta tumour cell progression by gene expression profiling. Here, we show that N-CAM-deficient beta-cell tumorigenesis is associated with changes in the expression of genes involved in cell-matrix adhesion and cytoskeletal dynamics, biological processes known to affect the invasive and metastatic behaviour of tumour cells. The extracellular matrix (ECM) molecules emerged as the primary target, i.e. N-CAM deficiency resulted in down-regulated mRNA expression of a broad range of ECM molecules. Consistent with this result, deficient deposition of major ECM stromal components, such as fibronectin, laminin 1 and collagen IV, was observed. Moreover, N-CAM-deficient tumour cells displayed defective matrix adhesion. These results offer a potential mechanism for tumour cell disaggregation during N-CAM-deficient beta tumour cell progression. Prospective consequences of these findings for the role of N-CAM in beta tumour cell dissemination are discussed.

  6. The wind god promotes lung cancer.

    PubMed

    Frisch, Steven M; Schaller, Michael D

    2014-05-12

    In this issue of Cancer Cell, Li and colleagues demonstrate that the hematopoietic transcription factor Aiolos (named after the Wind God of Greek mythology) confers anoikis resistance in lung tumor cells through repression of cell adhesion-related genes including the mechanosensor p66Shc. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Cinnamaldehyde inhibits the tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-{kappa}B activation: Effects upon I{kappa}B and Nrf2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, B.-C.; Hsieh, C.-W.; Liu, Y.-C.

    The production of adhesion molecules and subsequent attachment of leukocytes to endothelial cells (ECs) are critical early events in atherogenesis. These adhesion molecules thus play an important role in the development of this disease. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of cinnamaldehyde, a Cinnamomum cassia Presl-specific diterpene. In our current study, we have examined the effects of both cinnamaldehyde and extracts of C. cassia on cytokine-induced monocyte/human endothelial cell interactions. We find that these compounds inhibit the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppress the expression of the cell adhesion molecules, VCAM-1 and ICAM-1, atmore » the transcriptional level. Moreover, in TNF{alpha}-treated ECs, the principal downstream signal of VCAM-1 and ICAM-1, NF-{kappa}B, was also found to be abolished in a time-dependent manner. Interestingly, cinnamaldehyde exerts its anti-inflammatory effects by blocking the degradation of the inhibitory protein I{kappa}B-{alpha}, but only in short term pretreatments, whereas it does so via the induction of Nrf2-related genes, including heme-oxygenase-1 (HO-1), over long term pretreatments. Treating ECs with zinc protoporphyrin, a HO-1 inhibitor, partially blocks the anti-inflammatory effects of cinnamaldehyde. Elevated HO-1 protein levels were associated with the inhibition of TNF{alpha}-induced ICAM-1 expression. In addition to HO-1, we also found that cinnamaldehyde can upregulate Nrf2 in nuclear extracts, and can increase ARE-luciferase activity and upregulate thioredoxin reductase-1, another Nrf2-related gene. Moreover, cinnamaldehyde exposure rapidly reduces the cellular GSH levels in ECs over short term treatments but increases these levels after 9 h exposure. Hence, our present findings indicate that cinnamaldehyde suppresses TNF-induced singling pathways via two distinct mechanisms that are activated by different pretreatment periods.« less

  8. Osteogenic potential of in situ TiO2 nanowire surfaces formed by thermal oxidation of titanium alloy substrate

    NASA Astrophysics Data System (ADS)

    Tan, A. W.; Ismail, R.; Chua, K. H.; Ahmad, R.; Akbar, S. A.; Pingguan-Murphy, B.

    2014-11-01

    Titanium dioxide (TiO2) nanowire surface structures were fabricated in situ by a thermal oxidation process, and their ability to enhance the osteogenic potential of primary osteoblasts was investigated. Human osteoblasts were isolated from nasal bone and cultured on a TiO2 nanowires coated substrate to assess its in vitro cellular interaction. Bare featureless Ti-6Al-4V substrate was used as a control surface. Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression were examined on the TiO2 nanowire surfaces as compared to the control surfaces after 2 weeks of culturing. Cell adhesion and cell proliferation were assayed by field emission scanning electron microscope (FESEM) and Alamar Blue reduction assay, respectively. The nanowire surfaces promoted better cell adhesion and spreading than the control surface, as well as leading to higher cell proliferation. Our results showed that osteoblasts grown onto the TiO2 nanowire surfaces displayed significantly higher production levels of alkaline phosphatase (ALP), extracellular (ECM) mineralization and genes expression of runt-related transcription factor (Runx2), bone sialoprotein (BSP), ostoepontin (OPN) and osteocalcin (OCN) compared to the control surfaces. This suggests the potential use of such surface modification on Ti-6Al-4V substrates as a promising means to improve the osteointegration of titanium based implants.

  9. Colocalization of kindlin-1, kindlin-2, and migfilin at keratinocyte focal adhesion and relevance to the pathophysiology of Kindler syndrome.

    PubMed

    Lai-Cheong, J E; Ussar, S; Arita, K; Hart, I R; McGrath, J A

    2008-09-01

    Kindler syndrome (KS) results from pathogenic loss-of-function mutations in the KIND1 gene, which encodes kindlin-1, a focal adhesion and actin cytoskeleton-related protein. How and why abnormalities in kindlin-1 disrupt keratinocyte cell biology in KS, however, is not yet known. In this study, we identified two previously unreported binding proteins of kindlin-1: kindlin-2 and migfilin. Co-immunoprecipitation and confocal microscopy studies show that these three proteins bind to each other and colocalize at focal adhesion in HaCaT cells and normal human keratinocytes. Moreover, loss-of-function mutations in KIND1 result in marked variability in kindlin-1 immunolabeling in KS skin, which is mirrored by similar changes in kindlin-2 and migfilin immunoreactivity. Kindlin-1, however, may function independently of kindlin-2 and migfilin, as loss of kindlin-1 expression in HaCaT keratinocytes by RNA interference and in KS keratinocytes does not affect KIND2 or FBLIM1 (migfilin) gene expression or kindlin-2 and migfilin protein localization. In addition to identifying protein-binding partners for kindlin-1, this study also highlights that KIND1 gene expression and kindlin-1 protein labeling are not always reduced in KS, findings that are relevant to the accurate laboratory diagnosis of this genodermatosis by skin immunohistochemistry.

  10. Hemorheological alterations in sickle cell anemia and their clinical consequences - The role of genetic modulators.

    PubMed

    Silva, Marisa; Vargas, Sofia; Coelho, Andreia; Dias, Alexandra; Ferreira, Teresa; Morais, Anabela; Maia, Raquel; Kjöllerström, Paula; Lavinha, João; Faustino, Paula

    2016-01-01

    Sickle cell anemia (SCA) is an autosomal recessive disease caused by the HBB:c.20A>T mutation that leads to hemoglobin S synthesis. The disease presents with high clinical heterogeneity characterized by chronic hemolysis, recurrent episodes of vaso-oclusion and infection. This work aimed to characterize by in silico studies some genetic modulators of severe hemolysis and stroke risk in children with SCA, and understand their consequences at the hemorheological level.Association studies were performed between hemolysis biomarkers as well as the degree of cerebral vasculopathy and the inheritance of several polymorphic regions in genes related with vascular cell adhesion and vascular tonus in pediatric SCA patients. In silico tools (e.g. MatInspector) were applied to investigate the main variant consequences.Variants in vascular adhesion molecule-1 (VCAM1) gene promoter and endothelial nitric oxide synthase (NOS3) gene were significantly associated with higher degree of hemolysis and stroke events. They potentially modify transcription factor binding sites (e.g. VCAM1 rs1409419_T allele may lead to an EVI1 gain) or disturb the corresponding protein structure/function. Our findings emphasize the relevance of genetic variation in modulating the disease severity due to their effect on gene expression or modification of protein biological activities related with sickled erythrocyte/endothelial interactions and consequent hemorheological abnormalities.

  11. Arborvitae (Thuja plicata) essential oil significantly inhibited critical inflammation- and tissue remodeling-related proteins and genes in human dermal fibroblasts.

    PubMed

    Han, Xuesheng; Parker, Tory L

    2017-06-01

    Arborvitae ( Thuja plicata ) essential oil (AEO) is becoming increasingly popular in skincare, although its biological activity in human skin cells has not been investigated. Therefore, we sought to study AEO's effect on 17 important protein biomarkers that are closely related to inflammation and tissue remodeling by using a pre-inflamed human dermal fibroblast culture model. AEO significantly inhibited the expression of vascular cell adhesion molecule 1 (VCAM-1), intracellular cell adhesion molecule 1 (ICAM-1), interferon gamma-induced protein 10 (IP-10), interferon-inducible T-cell chemoattractant (I-TAC), monokine induced by interferon gamma (MIG), and macrophage colony-stimulating factor (M-CSF). It also showed significant antiproliferative activity and robustly inhibited collagen-I, collagen-III, plasminogen activator inhibitor-1 (PAI-1), and tissue inhibitor of metalloproteinase 1 and 2 (TIMP-1 and TIMP-2). The inhibitory effect of AEO on increased production of these protein biomarkers suggests it has anti-inflammatory property. We then studied the effect of AEO on the genome-wide expression of 21,224 genes in the same cell culture. AEO significantly and diversely modulated global gene expression. Ingenuity pathway analysis (IPA) showed that AEO robustly affected numerous critical genes and signaling pathways closely involved in inflammatory and tissue remodeling processes. The findings of this study provide the first evidence of the biological activity and beneficial action of AEO in human skin cells.

  12. Tumor cell migration screen identifies SRPK1 as breast cancer metastasis determinant.

    PubMed

    van Roosmalen, Wies; Le Dévédec, Sylvia E; Golani, Ofra; Smid, Marcel; Pulyakhina, Irina; Timmermans, Annemieke M; Look, Maxime P; Zi, Di; Pont, Chantal; de Graauw, Marjo; Naffar-Abu-Amara, Suha; Kirsanova, Catherine; Rustici, Gabriella; Hoen, Peter A C 't; Martens, John W M; Foekens, John A; Geiger, Benjamin; van de Water, Bob

    2015-04-01

    Tumor cell migration is a key process for cancer cell dissemination and metastasis that is controlled by signal-mediated cytoskeletal and cell matrix adhesion remodeling. Using a phagokinetic track assay with migratory H1299 cells, we performed an siRNA screen of almost 1,500 genes encoding kinases/phosphatases and adhesome- and migration-related proteins to identify genes that affect tumor cell migration speed and persistence. Thirty candidate genes that altered cell migration were validated in live tumor cell migration assays. Eight were associated with metastasis-free survival in breast cancer patients, with integrin β3-binding protein (ITGB3BP), MAP3K8, NIMA-related kinase (NEK2), and SHC-transforming protein 1 (SHC1) being the most predictive. Examination of genes that modulate migration indicated that SRPK1, encoding the splicing factor kinase SRSF protein kinase 1, is relevant to breast cancer outcomes, as it was highly expressed in basal breast cancer. Furthermore, high SRPK1 expression correlated with poor breast cancer disease outcome and preferential metastasis to the lungs and brain. In 2 independent murine models of breast tumor metastasis, stable shRNA-based SRPK1 knockdown suppressed metastasis to distant organs, including lung, liver, and spleen, and inhibited focal adhesion reorganization. Our study provides comprehensive information on the molecular determinants of tumor cell migration and suggests that SRPK1 has potential as a drug target for limiting breast cancer metastasis.

  13. Secreted Frizzled-related protein 1 (sFRP1) regulates spermatid adhesion in the testis via dephosphorylation of focal adhesion kinase and the nectin-3 adhesion protein complex

    PubMed Central

    Wong, Elissa W. P.; Lee, Will M.; Cheng, C. Yan

    2013-01-01

    Development of spermatozoa in adult mammalian testis during spermatogenesis involves extensive cell migration and differentiation. Spermatogonia that reside at the basal compartment of the seminiferous epithelium differentiate into more advanced germ cell types that migrate toward the apical compartment until elongated spermatids are released into the tubule lumen during spermiation. Apical ectoplasmic specialization (ES; a testis-specific anchoring junction) is the only cell junction that anchors and maintains the polarity of elongating/elongated spermatids (step 8–19 spermatids) in the epithelium. Little is known regarding the signaling pathways that trigger the disassembly of the apical ES at spermiation. Here, we show that secreted Frizzled-related protein 1 (sFRP1), a putative tumor suppressor gene that is frequently down-regulated in multiple carcinomas, is a crucial regulatory protein for spermiation. The expression of sFRP1 is tightly regulated in adult rat testis to control spermatid adhesion and sperm release at spermiation. Down-regulation of sFRP1 during testicular development was found to coincide with the onset of the first wave of spermiation at approximately age 45 d postpartum, implying that sFRP1 might be correlated with elongated spermatid adhesion conferred by the apical ES before spermiation. Indeed, administration of sFRP1 recombinant protein to the testis in vivo delayed spermiation, which was accompanied by down-regulation of phosphorylated (p)-focal adhesion kinase (FAK)-Tyr397 and retention of nectin-3 adhesion protein at the apical ES. To further investigate the functional relationship between p-FAK-Tyr397 and localization of nectin-3, we overexpressed sFRP1 using lentiviral vectors in the Sertoli-germ cell coculture system. Consistent with the in vivo findings, overexpression of sFRP1 induced down-regulation of p-FAK-Tyr397, leading to a decline in phosphorylation of nectin-3. In summary, this report highlights the critical role of sFRP1 in regulating spermiation via its effects on the FAK signaling and retention of nectin-3 adhesion complex at the apical ES.—Wong, E. W. P., Lee, W. M., Cheng, C. Y. Secreted Frizzled-related protein 1 (sFRP1) regulates spermatid adhesion in the testis via dephosphorylation of focal adhesion kinase and the nectin-3 adhesion protein complex. PMID:23073828

  14. Leader genes in osteogenesis: a theoretical study.

    PubMed

    Orlando, Bruno; Giacomelli, Luca; Ricci, Massimiliano; Barone, Antonio; Covani, Ugo

    2013-01-01

    Little is still known about the molecular mechanisms involved in the process of osteogenesis. In this paper, the leader genes approach, a new bioinformatics method which has already been experimentally validated, is adopted in order to identify the genes involved in human osteogenesis. Interactions among genes are then calculated and genes are ranked according to their relative importance in this process. In total, 167 genes were identified as being involved in osteogenesis. Genes were divided into 4 groups, according to their main function in the osteogenic processes: skeletal development; cell adhesion and proliferation; ossification; and calcium ion binding. Seven genes were consistently identified as leader genes (i.e. the genes with the greatest importance in osteogenesis), while 14 were found to have slightly less importance (class B genes). It was interesting to notice that the larger part of leader and class B genes belonged to the cell adhesion and proliferation or to the ossification sub-groups. This finding suggested that these two particular sub-processes could play a more important role in osteogenesis. Moreover, among the 7 leader genes, it is interesting to notice that RUNX2, BMP2, SPARC, PTH play a direct role in bone formation, while the 3 other leader genes (VEGF, IL6, FGF2) seem to be more connected with an angiogenetic process. Twenty-nine genes have no known interactions (orphan genes). From these results, it may be possible to plan an ad hoc experimentation, for instance by microarray analyses, focused on leader, class B and orphan genes, with the aim to shed new light on the molecular mechanisms underlying osteogenesis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Rifaximin decreases virulence of Crohn's disease-associated Escherichia coli and epithelial inflammatory responses.

    PubMed

    Dogan, Belgin; Fu, Jing; Zhang, Shiying; Scherl, Ellen J; Simpson, Kenneth W

    2018-05-01

    Escherichia coli with an adherent and invasive pathotype (AIEC) is implicated in the pathogenesis of Crohn's disease (CD). Rifaximin improves symptoms in mild-to-moderate CD. It is unclear if this outcome is due to its effects on bacteria or intestinal epithelial inflammatory responses. We examined the effects of rifaximin on the growth and virulence of CD-associated E. coli and intestinal epithelial inflammatory responses. Seven well-characterized CD-associated E. coli strains (six AIEC, one non-AIEC; four rifaximin-resistant, three sensitive) were evaluated. We assessed the effects of rifaximin on CD-associated E. coli growth, adhesion to, and invasion of epithelial cells, virulence gene expression, motility, and survival in macrophages. Additionally, we determined the effects of rifaximin on intestinal epithelial inflammatory responses. In vitro rifaximin exerted a dose-dependent effect on the growth of sensitive strains but did not affect the growth of resistant strains. Rifaximin reduced adhesion, invasion, virulence gene expression and motility of CD-associated E. coli in a manner that was independent of its antimicrobial effect. Furthermore, rifaximin reduced IL-8 secretion from pregnane X receptor-expressing T84 colonic epithelial cells. The effect of rifaximin on adhesion was largely attributable to its action on bacteria, whereas decreases in invasion and cytokine secretion were due to its effect on the epithelium. In conclusion, our results show that rifaximin interferes with multiple steps implicated in host-AIEC interactions related to CD, including adhesion to, and invasion of epithelial cells, virulence gene expression, motility, and pro-inflammatory cytokine secretion. Further study is required to determine the relationship of these effects to clinical responses in CD patients.

  16. Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423, monitored with real-time PCR.

    PubMed

    Ramiah, K; van Reenen, C A; Dicks, L M T

    2007-05-30

    Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA by Lactobacillus plantarum 423, grown in the presence of bile, pancreatin and at low pH, was studied by real-time PCR. Mub, MapA and EF-Tu were up-regulated in the presence of mucus, proportional to increasing concentrations. Expression of MapA was up-regulated in the presence of 3.0 g/l bile and 3.0 g/l pancreatin at pH 6.5. Similar results were recorded in the presence of 10.0 g/l bile and 10.0 g/l pancreatin at pH 6.5. Expression of Mub was down-regulated in the presence of bile and pancreatin, whilst the expression of EF-Tu and plaA remained unchanged. Expression of Mub and MapA remained unchanged at pH 4.0, whilst expression of EF-Tu and plaA were up-regulated. Expression of MapA was down-regulated in the presence of 1.0 g/l l-cysteine HCl, suggesting that the gene is regulated by transcription attenuation that involves cysteine.

  17. Polysialic acid enters the cell nucleus attached to a fragment of the neural cell adhesion molecule NCAM to regulate the circadian rhythm in mouse brain.

    PubMed

    Westphal, Nina; Kleene, Ralf; Lutz, David; Theis, Thomas; Schachner, Melitta

    2016-07-01

    In the mammalian nervous system, the neural cell adhesion molecule NCAM is the major carrier of the glycan polymer polysialic acid (PSA) which confers important functions to NCAM's protein backbone. PSA attached to NCAM contributes not only to cell migration, neuritogenesis, synaptic plasticity, and behavior, but also to regulation of the circadian rhythm by yet unknown molecular mechanisms. Here, we show that a PSA-carrying transmembrane NCAM fragment enters the nucleus after stimulation of cultured neurons with surrogate NCAM ligands, a phenomenon that depends on the circadian rhythm. Enhanced nuclear import of the PSA-carrying NCAM fragment is associated with altered expression of clock-related genes, as shown by analysis of cultured neuronal cells deprived of PSA by specific enzymatic removal. In vivo, levels of nuclear PSA in different mouse brain regions depend on the circadian rhythm and clock-related gene expression in suprachiasmatic nucleus and cerebellum is affected by the presence of PSA-carrying NCAM in the cell nucleus. Our conceptually novel observations reveal that PSA attached to a transmembrane proteolytic NCAM fragment containing part of the extracellular domain enters the cell nucleus, where PSA-carrying NCAM contributes to the regulation of clock-related gene expression and of the circadian rhythm. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features.

    PubMed

    Modrzewska, Barbara; Kurnatowski, Piotr

    2015-01-01

    The ability of Candida sp. cells to adhere to the mucosal surfaces of various host organs as well as synthetic materials is an important pathogenicity feature of those fungi which contributes to the development of infection. This property varies depending on the species of the fungus and is the greatest for C. albicans. The process of adhesion depends on plenty of factors related to the fungal and host cells as well as environmental conditions. The main adhesins present on the fungal cell wall are: Als, Epa, Hwp1, but also Eap1, Sun41, Csh1 and probably Hyr1; for adhesion significant are also secreted aspartyl proteases Sap. Various researchers specify a range of genes which contribute to adhesion, such as: CZF1, EFG1, TUP1, TPK1, TPK2, HGC1, RAS1, RIM101, VPS11, ECM1, CKA2, BCR1, BUD2, RSR1, IRS4, CHS2, SCS7, UBI4, UME6, TEC1 and GAT2. Influence for adherence have also heat shock proteins Hsp70, Mediator Middle domain subunit Med31 and morphological transition. Among factors affecting adhesion related to host cells it is necessary to mention fibronectins and integrins (receptors for Candida sp. adhesins), type of epithelial cells, their morphology and differentiation phase. To a lesser degree influence on adhesion have non-specific factors and environmental conditions.

  19. Dual mechanisms of NF-kappaB inhibition in carnosol-treated endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, K.-C.; Chuang, J.-J.; Hsieh, C.-W.

    2010-05-15

    The increased adhesion of monocytes to injured endothelial layers is a critical early event in atherogenesis. Under inflammatory conditions, there is increased expression of specific cell adhesion molecules on activated vascular endothelial cells, which increases monocyte adhesion. In our current study, we demonstrate a putative mechanism for the anti-inflammatory effects of carnosol, a diterpene derived from the herb rosemary. Our results show that both carnosol and rosemary essential oils inhibit the adhesion of TNFalpha-induced monocytes to endothelial cells and suppress the expression of ICAM-1 at the transcriptional level. Moreover, carnosol was found to exert its inhibitory effects by blocking themore » degradation of the inhibitory protein IkappaBalpha in short term pretreatments but not in 12 h pretreatments. Our data show that carnosol reduces IKK-beta phosphorylation in pretreatments of less than 3 h. In TNFalpha-treated ECs, NF-kappaB nuclear translocation and transcriptional activity was abolished by up to 12 h of carnosol pretreatment and this was blocked by Nrf-2 siRNA. The long-term inhibitory effects of carnosol thus appear to be mediated through its induction of Nrf-2-related genes. The inhibition of ICAM-1 expression and p65 translocation is reversed by HO-1 siRNA. Carnosol also upregulates the Nrf-2-related glutathione synthase gene and thereby increases the GSH levels after 9 h of exposure. Treating ECs with a GSH synthesis inhibitor, BSO, blocks the inhibitory effects of carnosol. In addition, carnosol increases p65 glutathionylation. Hence, our present findings indicate that carnosol suppresses TNFalpha-induced singling pathways through the inhibition of IKK-beta activity or the upregulation of HO-1 expression. The resulting GSH levels are dependent, however, on the length of the carnosol pretreatment period.« less

  20. Effect of Water-Glass Coating on HA and HA-TCP Samples for MSCs Adhesion, Proliferation, and Differentiation.

    PubMed

    Bajpai, Indu; Kim, Duk Yeon; Kyong-Jin, Jung; Song, In-Hwan; Kim, Sukyoung

    2016-01-01

    Ca-P and silicon based materials have become very popular as bone tissue engineering materials. In this study, water-glass (also known as sodium silicate glass) was coated on sintered hydroxyapatite (HA) and HA-TCP (TCP stands for tricalcium phosphate) samples and subsequently heat-treated at 600°C for 2 hrs. X-rays diffraction showed the presence of β- and α-TCP phases along with HA in the HA-TCP samples. Samples without coating, with water-glass coating, and heat-treated after water-glass coating were used to observe the adhesion and proliferation response of bone marrow derived-mesenchymal stem cells (MSCs). Cell culture was carried out for 4 hrs, 1 day, and 7 days. Interestingly, all samples showed similar response for cell adhesion and proliferation up to 7-day culture but fibronectin, E-cadherin, and osteogenic differentiation related genes (osteocalcin and osteopontin) were significantly induced in heat-treated water-glass coated HA-TCP samples. A water-glass coating on Ca-P samples was not found to influence the cell proliferation response significantly but activated some extracellular matrix genes and induced osteogenic differentiation in the MSCs.

  1. Complete genome sequence of bacteriocin-producing Lactobacillus plantarum KLDS1.0391, a probiotic strain with gastrointestinal tract resistance and adhesion to the intestinal epithelial cells.

    PubMed

    Jia, Fang-Fang; Zhang, Lu-Ji; Pang, Xue-Hui; Gu, Xin-Xi; Abdelazez, Amro; Liang, Yu; Sun, Si-Rui; Meng, Xiang-Chen

    2017-10-01

    Lactobacillus plantarum KLDS1.0391 is a probiotic strain isolated from the traditional fermented dairy products and identified to produce bacteriocin against Gram-positive and Gram-negative bacteria. Previous studies showed that the strain has a high resistance to gastrointestinal stress and has a high adhesion ability to the intestinal epithelial cells (Caco-2). We reported the entire genome sequence of this strain, which contains a circular 2,886,607-bp chromosome and three circular plasmids. Genes, which are related to the biosynthesis of bacteriocins, the stress resistance to gastrointestinal tract environment and adhesive performance, were identified. Whole genome sequence of Lactobacillus plantarum KLDS1.0391 will be helpful for its applications in food industry. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. [Construction and characterization of a gspL mutant of avian pathogenic Escherichia coli].

    PubMed

    Fan, Guobo; Han, Yue; Zhang, Yuxi; Han, Xiangan; Wang, Shaohui; Bai, Hao; Meng, Qingmei; Qi, Kezong; Ding, Chan; Yu, Shengqing

    2015-01-04

    To study the role of gspL gene in avian pathogenic Escherichia coli. The gspL mutant of Avian pathogenic Escherichia coli (APEC) was constructed by homologous recombination assay. The growth characteristics, the ability of adhesion and invasion to DF1 cells, the virulence genes transcription level and median lethal dose (LD50) were analyzed between the gspL mutant strain and the wild strain. Compared with the wild strain, the mutant strain had no significant difference in the growth status. However, its ability of adhesion and invasion was significantly lower. The transcription of genes pfs, fyuA, iss and vat increased obviously, the tsh decreased and the transcription level of luxS, ibeA, stx2f and ompA had no significant change. LD50 showed that the gspL mutant strain had 12-fold increase in virulence. The deletion of gspL gene could abate the ability of adhesion and invasion, regulate and control some virulence gene transcription level, enhance the virulence of APEC. The results show that the gspL gene play roles in pathogenicity of APEC.

  3. Association of the 98T ELAM-1 polymorphism with increased bleeding after cardiac surgery.

    PubMed

    Welsby, Ian J; Podgoreanu, Mihai V; Phillips-Bute, Barbara; Morris, Richard; Mathew, Joseph P; Smith, Peter K; Newman, Mark F; Schwinn, Debra A; Stafford-Smith, Mark

    2010-06-01

    Hemorrhage continues to be a major problem after cardiac surgery despite the routine use of antifibrinolytic drugs, with striking inter-patient variability poorly explained by already known risk factors. The authors tested the hypothesis that genetic polymorphisms of inflammatory mediators and cellular adhesion molecules are associated with bleeding after cardiac surgery. Prospective, observational study. Single, tertiary referral university heart center. Adult patients undergoing aortocoronary surgery with cardiopulmonary bypass. Patients (n = 759) had 10 mL of blood drawn preoperatively and genomic DNA isolated then genotyped for 17 polymorphisms in 7 candidate genes: tumor necrosis factor, interleukins 1beta and 6, interleukin 1 receptor antagonist, intercellular adhesion molecule-1 (ICAM-1), P-selectin and endothelial leucocyte adhesion molecule-1 (E-selectin). Multivariate analyses were used to relate clinical and genetic factors to bleeding and transfusion. The 98G/T polymorphism of the E-selectin gene was independently associated with bleeding after cardiac surgery (p = 0.002), after adjusting for significant clinical predictors (patient size and baseline hemoglobin concentration). There was a gene dose effect according to the number of minor alleles in the genotype; carriers of the minor allele bled 17% (GT) and 54% (TT) more than wild type (GG) genotypes, respectively (p = 0.01). Carriers of the minor allele also had longer activated partial thromboplastin times (p = 0.0023) and increased fresh frozen plasma transfusion (p = 0.03) compared with wild type. The authors found a dose-related association between the 98T E-selectin polymorphism and bleeding after cardiac surgery, independent of and additive to standard clinical risk factors. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers.

    PubMed

    Fee, Timothy; Surianarayanan, Swetha; Downs, Crawford; Zhou, Yong; Berry, Joel

    2016-01-01

    To examine the influence of substrate topology on the behavior of fibroblasts, tissue engineering scaffolds were electrospun from polycaprolactone (PCL) and a blend of PCL and gelatin (PCL+Gel) to produce matrices with both random and aligned nanofibrous orientations. The addition of gelatin to the scaffold was shown to increase the hydrophilicity of the PCL matrix and to increase the proliferation of NIH3T3 cells compared to scaffolds of PCL alone. The orientation of nanofibers within the matrix did not have an effect on the proliferation of adherent cells, but cells on aligned substrates were shown to elongate and align parallel to the direction of substrate fiber alignment. A microarray of cyotoskeleton regulators was probed to examine differences in gene expression between cells grown on an aligned and randomly oriented substrates. It was found that transcriptional expression of eight genes was statistically different between the two conditions, with all of them being upregulated in the aligned condition. The proteins encoded by these genes are linked to production and polymerization of actin microfilaments, as well as focal adhesion assembly. Taken together, the data indicates NIH3T3 fibroblasts on aligned substrates align themselves parallel with their substrate and increase production of actin and focal adhesion related genes.

  5. The regulation of Jmjd3 upon the expression of NF-κB downstream inflammatory genes in LPS activated vascular endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shaoqing; Graduate School of Medicine, Nanchang University, Nanchang; Chen, Xia

    Inflammatory mediators and adhesion molecules have been implicated in a variety of diseases including atherosclerosis. As both the mediator-releasing and targeted cells, vascular endothelial cells play key role in pathological processes. NF-κB signaling regulates a cluster of inflammatory factors in LPS-activated vascular endothelial cells but the underlying mechanisms remain largely unknown. Here, we investigated the epigenetic regulation of LPS upon the expression of inflammatory mediators and adhesion molecules. We found that LPS treatment promoted jmjd3 expression, enhanced Jmjd3 nuclear accumulation in human vascular endothelial cells. In addition, LPS enhanced the demethylation of H3K27me3, a specific substrate of Jmjd3. LPS treatmentmore » recruited Jmjd3 and NF-κB to the promoter region of target genes, suggesting Jmjd3 synergizes with NF-κB to activate the expression of target genes. We further found that Jmjd3 attenuated the methylation status in promoter region of target genes, culminating in target gene expression. Our findings unveil epigenetic regulations of LPS upon NF-κB pathway and identify Jmjd3 as a critical modulator of NF-κB pathway and potential therapeutic target for NF-κB related diseases including atherosclerosis.« less

  6. Designing a Binding Interface for Control of Cancer Cell Adhesion via 3D Topography and Metabolic Oligosaccharide Engineering

    PubMed Central

    Du, Jian; Che, Pao-Lin; Wang, Zhi-Yun; Aich, Udayanath; Yarema, Kevin J.

    2011-01-01

    This study combines metabolic oligosaccharide engineering (MOE), a technology where the glycocalyx of living cells is endowed with chemical features not normally found in sugars, with custom-designed three dimensional biomaterial substrates to enhance the adhesion of cancer cells and control their morphology and gene expression. Specifically, Ac5ManNTGc, a thiol-bearing analogue of N-acetyl-d-mannosamine (ManNAc) was used to introduce thiolated sialic acids into the glycocalyx of human Jurkat T-lymphoma derived cells. In parallel 2D films and 3D electrospun nanofibrous scaffolds were prepared from polyethersulfone (PES) and (as controls) left unmodified or aminated. Alternately, the materials were malemided or gold-coated to provide bioorthogonal binding partners for the thiol groups newly expressed on the cell surface. Cell attachment was modulated by both the topography of the substrate surface and by the chemical compatibility of the binding interface between the cell and the substrate; a substantial increase in binding for normally non-adhesive Jurkat line for 3D scaffold compared to 2D surfaces with an added degree of adhesion resulting from chemoselective binding to malemidede-derivatived or gold-coated surfaces. In addition, the morphology of the cells attached to the 3D scaffolds via MOE-mediated adhesion was dramatically altered and the expression of genes involved in cell adhesion changed in a time-dependent manner. This study showed that cell adhesion could be enhanced, gene expression modulated, and cell fate controlled by introducing the 3D topograhical cues into the growth substrate and by creating a glycoengineered binding interface where the chemistry of both the cell surface and biomaterials scaffold was controlled to facilitate a new mode of carbohydrate-mediated adhesion. PMID:21549424

  7. Ankyrin-binding proteins related to nervous system cell adhesion molecules: candidates to provide transmembrane and intercellular connections in adult brain.

    PubMed

    Davis, J Q; McLaughlin, T; Bennett, V

    1993-04-01

    A major class of ankyrin-binding glycoproteins have been identified in adult rat brain of 186, 155, and 140 kD that are alternatively spliced products of the same pre-mRNA. Characterization of cDNAs demonstrated that ankyrin-binding glycoproteins (ABGPs) share 72% amino acid sequence identity with chicken neurofascin, a membrane-spanning neural cell adhesion molecule in the Ig super-family expressed in embryonic brain. ABGP polypeptides have the following features consistent with a role as ankyrin-binding proteins in vitro and in vivo: (a) ABGPs and ankyrin associate as pure proteins in a 1:1 molar stoichiometry; (b) the ankyrin-binding site is located in the COOH-terminal 21 kD of ABGP186 which contains the predicted cytoplasmic domain; (c) ABGP186 is expressed at approximately the same levels as ankyrin (15 pmoles/milligram of membrane protein); and (d) ABGP polypeptides are co-expressed with the adult form of ankyrinB late in postnatal development and are colocalized with ankyrinB by immunofluorescence. Similarity in amino acid sequence and conservation of sites of alternative splicing indicate that genes encoding ABGPs and neurofascin share a common ancestor. However, the major differences in developmental expression reported for neurofascin in embryos versus the late postnatal expression of ABGPs suggest that ABGPs and neurofascin represent products of gene duplication events that have subsequently evolved in parallel with distinct roles. The predicted cytoplasmic domains of rat ABGPs and chicken neurofascin are nearly identical to each other and closely related to a group of nervous system cell adhesion molecules with variable extracellular domains, which includes L1, Nr-CAM, and Ng-CAM of vertebrates, and neuroglian of Drosophila. The ankyrin-binding site of rat ABGPs is localized to the C-terminal 200 residues which encompass the cytoplasmic domain, suggesting the hypothesis that ability to associate with ankyrin may be a shared feature of neurofascin and related nervous system cell adhesion molecules.

  8. The role of type III secretion system and lens material on adhesion of Pseudomonas aeruginosa to contact lenses.

    PubMed

    Shen, Elizabeth P; Tsay, Ruey-Yug; Chia, Jean-San; Wu, Semon; Lee, Jing-Wen; Hu, Fung-Rong

    2012-09-21

    To determine the distribution of invasive and cytotoxic genotypes among ocular isolates of P. aeruginosa and investigate the influence of the type III secretion system (T3SS) on adhesion to conventional, cosmetic, and silicone hydrogel contact lenses (CL). Clinical isolates from 2001 to 2010 were analyzed by multiplex PCR for exoS, exoU, and exoT genes. Bacterial adhesion to etafilcon, nelfilcon (gray colored), balafilcon, and galyfilcon CL with or without artificial tear fluid (ATF) incubation were compared. Surface characteristics were determined with scanning electron microscopy (SEM). Among 87 total isolates, 64 strains were from microbial keratitis cases. CL-related microbial keratitis (CLMK) isolates were mostly of the cytotoxic genotype (expressing exoU) (P = 0.002). No significant differences were found in bacterial adhesion to all types of CL between the genotypes under T3SS-inducing conditions. A trend for least bacterial adhesion of galyfilcon compared to the other CL was noted for both genotypes. Needle complex pscC mutants adhered less to all materials than the wild type (P < 0.05), indicating a role of the T3SS in contact lens adhesion. ATF-incubated CL had significantly more bacterial adhesion (P < 0.05). SEM showed most of the bacteria adhering on CL surfaces. CLMK isolates were mostly of cytotoxic genotype. Different genotypes did not significantly differ in its adhesion to various CL. T3SS and other adhesins are involved in bacteria-contact lens adhesion through complex interactions. Contact lens materials may also play an important role in the adherence of both genotypes of P. aeruginosa.

  9. DNA methylome signature in rheumatoid arthritis.

    PubMed

    Nakano, Kazuhisa; Whitaker, John W; Boyle, David L; Wang, Wei; Firestein, Gary S

    2013-01-01

    Epigenetics can influence disease susceptibility and severity. While DNA methylation of individual genes has been explored in autoimmunity, no unbiased systematic analyses have been reported. Therefore, a genome-wide evaluation of DNA methylation loci in fibroblast-like synoviocytes (FLS) isolated from the site of disease in rheumatoid arthritis (RA) was performed. Genomic DNA was isolated from six RA and five osteoarthritis (OA) FLS lines and evaluated using the Illumina HumanMethylation450 chip. Cluster analysis of data was performed and corrected using Benjamini-Hochberg adjustment for multiple comparisons. Methylation was confirmed by pyrosequencing and gene expression was determined by qPCR. Pathway analysis was performed using the Kyoto Encyclopedia of Genes and Genomes. RA and control FLS segregated based on DNA methylation, with 1859 differentially methylated loci. Hypomethylated loci were identified in key genes relevant to RA, such as CHI3L1, CASP1, STAT3, MAP3K5, MEFV and WISP3. Hypermethylation was also observed, including TGFBR2 and FOXO1. Hypomethylation of individual genes was associated with increased gene expression. Grouped analysis identified 207 hypermethylated or hypomethylated genes with multiple differentially methylated loci, including COL1A1, MEFV and TNF. Hypomethylation was increased in multiple pathways related to cell migration, including focal adhesion, cell adhesion, transendothelial migration and extracellular matrix interactions. Confirmatory studies with OA and normal FLS also demonstrated segregation of RA from control FLS based on methylation pattern. Differentially methylated genes could alter FLS gene expression and contribute to the pathogenesis of RA. DNA methylation of critical genes suggests that RA FLS are imprinted and implicate epigenetic contributions to inflammatory arthritis.

  10. Adhesive pad differentiation in Drosophila melanogaster depends on the Polycomb group gene Su(z)2.

    PubMed

    Hüsken, Mirko; Hufnagel, Kim; Mende, Katharina; Appel, Esther; Meyer, Heiko; Peisker, Henrik; Tögel, Markus; Wang, Shuoshuo; Wolff, Jonas; Gorb, Stanislav N; Paululat, Achim

    2015-04-15

    The ability of many insects to walk on vertical smooth surfaces such as glass or even on the ceiling has fascinated biologists for a long time, and has led to the discovery of highly specialized adhesive organs located at the distal end of the animals' legs. So far, research has primarily focused on structural and ultrastructural investigations leading to a deeper understanding of adhesive organ functionality and to the development of new bioinspired materials. Genetic approaches, e.g. the analysis of mutants, to achieve a better understanding of adhesive organ differentiation have not been used so far. Here, we describe the first Drosophila melanogaster mutant that develops malformed adhesive organs, resulting in a complete loss of climbing ability on vertical smooth surfaces. Interestingly, these mutants fail to make close contact between the setal tips and the smooth surface, a crucial condition for wet adhesion mediated by capillary forces. Instead, these flies walk solely on their claws. Moreover, we were able to show that the mutation is caused by a P-element insertion into the Su(z)2 gene locus. Remobilization of the P-element restores climbing ability. Furthermore, we provide evidence that the P-element insertion results in an artificial Su(z)2 transcript, which most likely causes a gain-of-function mutation. We presume that this transcript causes deregulation of yet unknown target genes involved in pulvilli differentiation. Our results nicely demonstrate that the genetically treatable model organism Drosophila is highly suitable for future investigations on adhesive organ differentiation. © 2015. Published by The Company of Biologists Ltd.

  11. Mammary epithelial-specific disruption of focal adhesion kinase retards tumor formation and metastasis in a transgenic mouse model of human breast cancer.

    PubMed

    Provenzano, Paolo P; Inman, David R; Eliceiri, Kevin W; Beggs, Hilary E; Keely, Patricia J

    2008-11-01

    Focal adhesion kinase (FAK) is a central regulator of the focal adhesion, influencing cell proliferation, survival, and migration. Despite evidence demonstrating FAK overexpression in human cancer, its role in tumor initiation and progression is not well understood. Using Cre/LoxP technology to specifically knockout FAK in the mammary epithelium, we showed that FAK is not required for tumor initiation but is required for tumor progression. The mechanistic underpinnings of these results suggested that FAK regulates clinically relevant gene signatures and multiple signaling complexes associated with tumor progression and metastasis, such as Src, ERK, and p130Cas. Furthermore, a systems-level analysis identified FAK as a major regulator of the tumor transcriptome, influencing genes associated with adhesion and growth factor signaling pathways, and their cross talk. Additionally, FAK was shown to down-regulate the expression of clinically relevant proliferation- and metastasis-associated gene signatures, as well as an enriched group of genes associated with the G(2) and G(2)/M phases of the cell cycle. Computational analysis of transcription factor-binding sites within ontology-enriched or clustered gene sets suggested that the differentially expressed proliferation- and metastasis-associated genes in FAK-null cells were regulated through a common set of transcription factors, including p53. Therefore, FAK acts as a primary node in the activated signaling network in transformed motile cells and is a prime candidate for novel therapeutic interventions to treat aggressive human breast cancers.

  12. The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials.

    PubMed

    Yang, Dayun; Lü, Xiaoying; Hong, Ying; Xi, Tingfei; Zhang, Deyuan

    2013-07-01

    To explore molecular mechanism of mediation of adsorbed proteins to cell adhesion and growth on biomaterials, this study examined endothelial cell adhesion, morphology and viability on bare and titanium nitride (TiN) coated nickel titanium (NiTi) alloys and chitosan film firstly, and then identified the type and amount of serum proteins adsorbed on the three surfaces by proteomic technology. Subsequently, the mediation role of the identified proteins to cell adhesion and growth was investigated with bioinformatics analyses, and further confirmed by a series of cellular and molecular biological experiments. Results showed that the type and amount of adsorbed serum proteins associated with cell adhesion and growth was obviously higher on the alloys than on the chitosan film, and these proteins mediated endothelial cell adhesion and growth on the alloys via four ways. First, proteins such as adiponectin in the adsorbed protein layer bound with cell surface receptors to generate signal transduction, which activated cell surface integrins through increasing intracellular calcium level. Another way, thrombospondin 1 in the adsorbed protein layer promoted TGF-β signaling pathway activation and enhanced integrins expression. The third, RGD sequence containing proteins such as fibronectin 1, vitronectin and thrombospondin 1 in the adsorbed protein layer bound with activated integrins to activate focal adhesion pathway, increased focal adhesion formation and actin cytoskeleton organization and mediated cell adhesion and spreading. In addition, the activated focal adhesion pathway promoted the expression of cell growth related genes and resulted in cell proliferation. The fourth route, coagulation factor II (F2) and fibronectin 1 in the adsorbed protein layer bound with cell surface F2 receptor and integrin, activated regulation of actin cytoskeleton pathway and regulated actin cytoskeleton organization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Investigation of the antibiotic resistance and biofilm-forming ability of Staphylococcus aureus from subclinical bovine mastitis cases.

    PubMed

    Aslantaş, Özkan; Demir, Cemil

    2016-11-01

    A total of 112 Staphylococcus aureus isolates obtained from subclinical bovine mastitis cases were examined for antibiotic susceptibility and biofilm-forming ability as well as genes responsible for antibiotic resistance, biofilm-forming ability, and adhesin. Antimicrobial susceptibility of the isolates were determined by disk diffusion method. Biofilm forming ability of the isolates were investigated by Congo red agar method, standard tube method, and microplate method. The genes responsible for antibiotic resistance, biofilm-forming ability, and adhesion were examined by PCR. Five isolates (4.5%) were identified as methicillin-resistant Staph. aureus by antibiotic susceptibility testing and confirmed by mecA detection. The resistance rates to penicillin, ampicillin, tetracycline, erythromycin, trimethoprim-sulfamethoxazole, enrofloxacin, and amoxicillin-clavulanic acid were 45.5, 39.3, 33, 26.8, 5.4, 0.9, and 0.9%, respectively. All isolates were susceptible against vancomycin and gentamicin. The blaZ (100%), tetK (67.6%), and ermA (70%) genes were the most common antibiotic-resistance genes. Using Congo red agar, microplate, and standard tube methods, 70.5, 67, and 62.5% of the isolates were found to be biofilm producers, respectively. The percentage rate of icaA, icaD, and bap genes in Staph. aureus isolates were 86.6, 86.6, and 13.4%, respectively. The adhesion molecules fnbA, can, and clfA were detected in 87 (77.7%), 98 (87.5%), and 75 (70%) isolates, respectively. The results indicated that Staph. aureus from sublinical bovine mastitis cases were mainly resistant to β-lactams and, to a lesser extent, to tetracycline and erythromycin. Also, biofilm- and adhesion-related genes, which are increasingly accepted as an important virulence factor in the pathogenesis of Staph. aureus infections, were detected at a high rate. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Metastatic outgrowth encompasses COL-I, FN1, and POSTN up-regulation and assembly to fibrillar networks regulating cell adhesion, migration, and growth.

    PubMed

    Soikkeli, Johanna; Podlasz, Piotr; Yin, Miao; Nummela, Pirjo; Jahkola, Tiina; Virolainen, Susanna; Krogerus, Leena; Heikkilä, Päivi; von Smitten, Karl; Saksela, Olli; Hölttä, Erkki

    2010-07-01

    Although the outgrowth of micrometastases into macrometastases is the rate-limiting step in metastatic progression and the main determinant of cancer fatality, the molecular mechanisms involved have been little studied. Here, we compared the gene expression profiles of melanoma lymph node micro- and macrometastases and unexpectedly found no common up-regulation of any single growth factor/cytokine, except for the cytokine-like SPP1. Importantly, metastatic outgrowth was found to be consistently associated with activation of the transforming growth factor-beta signaling pathway (confirmed by phospho-SMAD2 staining) and concerted up-regulation of POSTN, FN1, COL-I, and VCAN genes-all inducible by transforming growth factor-beta. The encoded extracellular matrix proteins were found to together form intricate fibrillar networks around tumor cell nests in melanoma and breast cancer metastases from various organs. Functional analyses suggested that these newly synthesized protein networks regulate adhesion, migration, and growth of tumor cells, fibroblasts, and endothelial cells. POSTN acted as an anti-adhesive molecule counteracting the adhesive functions of FN1 and COL-I. Further, cellular FN and POSTN were specifically overexpressed in the newly forming/formed tumor blood vessels. Transforming growth factor-beta receptors and the metastasis-related matrix proteins, POSTN and FN1, in particular, may thus provide attractive targets for development of new therapies against disseminated melanoma, breast cancer, and possibly other tumors, by affecting key processes of metastasis: tumor/stromal cell migration, growth, and angiogenesis.

  15. Distinct mechanisms for N-acetylcysteine inhibition of cytokine-induced E-selectin and VCAM-1 expression.

    PubMed

    Faruqi, R M; Poptic, E J; Faruqi, T R; De La Motte, C; DiCorleto, P E

    1997-08-01

    We have examined the effects of N-acetyl-L-cysteine (NAC), a well-characterized, thiol-containing antioxidant, on agonist-induced monocytic cell adhesion to endothelial cells (EC). NAC inhibited interleukin-1 (IL-1 beta)-induced, but not basal, adhesion with 50% inhibition at approximately 20 mM. Monocytic cell adhesion to EC in response to tumor necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), alpha-thrombin, or phorbol 12-myristate 13-acetate (PMA) was similarly inhibited by NAC. Unlike published studies with pyrrolidinedithiocarbamate, which specifically inhibited vascular cell adhesion molecule 1 (VCAM-1), NAC inhibited IL-1 beta-induced mRNA and cell surface expression of both E-selectin and VCAM-1. NAC had no effect on the half-life of E-selectin or VCAM-1 mRNA. Although NAC reduced nuclear factor-kappa B (NF-kappa B) activation in EC as measured by gel-shift assays using an oligonucleotide probe corresponding to the consensus NF-kappa B binding sites of the VCAM-1 gene (VCAM-NF-kappa B), the antioxidant had no appreciable effect when an oligomer corresponding to the consensus NF-kappa B binding site of the E-selectin gene (E-selectin-NF-kappa B) was used. Because NF-kappa B has been reported to be redox sensitive, we studied the effects of NAC on the EC redox environment. NAC caused an expected dramatic increase in the reduced glutathione (GSH) levels in EC. In vitro studies demonstrated that whereas the binding affinity of NF-kappa B to the VCAM-NF-kappa B oligomer peaked at a GSH-to-oxidized glutathione (GSSG) ratio of approximately 200 and decreased at higher ratios, the binding to the E-selectin-NF-kappa B oligomer appeared relatively unaffected even at ratios > 400, i.e., those achieved in EC treated with 40 mM NAC. These results suggest that NF-kappa B binding to its consensus sequences in the VCAM-1 and E-selectin gene exhibits marked differences in redox sensitivity, allowing for differential gene expression regulated by the same transcription factor. Our data also demonstrate that NAC increases the GSH-to-GSSG ratio within the EC suggesting one possible mechanism through which this antioxidant inhibits agonist-induced monocyte adhesion to EC.

  16. Screening for genes and subnetworks associated with pancreatic cancer based on the gene expression profile.

    PubMed

    Long, Jin; Liu, Zhe; Wu, Xingda; Xu, Yuanhong; Ge, Chunlin

    2016-05-01

    The present study aimed to screen for potential genes and subnetworks associated with pancreatic cancer (PC) using the gene expression profile. The expression profile GSE 16515 was downloaded from the Gene Expression Omnibus database, which included 36 PC tissue samples and 16 normal samples. Limma package in R language was used to screen differentially expressed genes (DEGs), which were grouped as up‑ and downregulated genes. Then, PFSNet was applied to perform subnetwork analysis for all the DEGs. Moreover, Gene Ontology (GO) and REACTOME pathway enrichment analysis of up‑ and downregulated genes was performed, followed by protein‑protein interaction (PPI) network construction using Search Tool for the Retrieval of Interacting Genes Search Tool for the Retrieval of Interacting Genes. In total, 1,989 DEGs including 1,461 up‑ and 528 downregulated genes were screened out. Subnetworks including pancreatic cancer in PC tissue samples and intercellular adhesion in normal samples were identified, respectively. A total of 8 significant REACTOME pathways for upregulated DEGs, such as hemostasis and cell cycle, mitotic were identified. Moreover, 4 significant REACTOME pathways for downregulated DEGs, including regulation of β‑cell development and transmembrane transport of small molecules were screened out. Additionally, DEGs with high connectivity degrees, such as CCNA2 (cyclin A2) and PBK (PDZ binding kinase), of the module in the protein‑protein interaction network were mainly enriched with cell‑division cycle. CCNA2 and PBK of the module and their relative pathway cell‑division cycle, and two subnetworks (pancreatic cancer and intercellular adhesion subnetworks) may be pivotal for further understanding of the molecular mechanism of PC.

  17. ERK5/KLF2 activation is involved in the reducing effects of puerarin on monocyte adhesion to endothelial cells and atherosclerotic lesion in apolipoprotein E-deficient mice.

    PubMed

    Deng, Yan; Lei, Tingwen; Li, Hongmei; Mo, Xiaochuan; Wang, Zhuting; Ou, Hailong

    2018-04-30

    Puerarin has properties of anti-oxidation and anti-inflammation, which has been demonstrated protective effects in atherosclerosis and other cardiovascular diseases. However, the detail molecular mechanism still remains unclear. Here, we determined whether the atheroprotective effect of puerarin was by reducing monocyte adhesion and explored the underlying mechanism. The results showed that puerarin dose- and time-dependently reduced oxLDL-induced monocyte THP-1 adhesion to HUVECs and the expression of adhesion-related genes such as VCAM-1, ICAM-1, MCP-1 and IL-8 in HUVECs. Puerarin activated ERK5 phosphorylation and up-regulated expressions of downstream KLF2 and its targeted genes endothelial nitric oxide synthase and thrombomodulin. However, the protective effects were reversed by ERK5/KLF2 pathway inhibitor XDM8-92, BIX02189 or KLF2 siRNA suggesting the pathway involved in the function. The ex vivo assay, in which THP-1 adhesion to endothelium isolated from apoE-/- mice received various treatment further confirmed the results from HUVECs. Finally, we found that the atherosclerotic lesions in both cross sections at aortic root and whole aorta were significantly reduced in high fat-diet (HFD) mice with puerarin treatment compared with the HFD-only mice, but were increased respectively by 76% and 71% in XMD8-92 group, and 82% and 73% in BIX02189 group. Altogether, the data revealed that puerarin inhibited the monocyte adhesion in vitro and in vivo and thus reduced atherosclerotic lesions in apoE-/- mice; the protective effects were mediated by activation of ERK5/KLF2 signaling pathway. Our findings advance the understanding of puerarin function in atherosclerosis and point out a way to prevent the disease. Copyright © 2018. Published by Elsevier B.V.

  18. Influence of Silver-hydroxyapatite Nanocomposite Coating on Biofilm Formation of Joint Prosthesis and Its Mechanism.

    PubMed

    Zhao, L; Ashraf, M A

    2015-12-01

    The main reason for biomaterial related refractory infections is biofilm formation caused by bacterial adhesion on the surface of materials. Silver-hydroxyapatite (Ag/HA) nanocomposite coating can inhibit the formation of biofilm, but its mechanism is not clear. In order to clarify the mechanism, the amounts of biofilm on the Ag/HA composite coating and HA coating were determined, the release rates of silver nanoparticles in simulated body fluid (SBF) were detected by atomic absorption spectrometry, and the expression values of atlE , fbe , sap , iapB genes of Staphylococcus aureus were studied when they grew on Ag/HA composite coating and HA coating. The amount of the biofilm on the Ag/HA composite coating was significantly less than that on the HA coating, and the bacterial adhesion was decreased. The silver nanoparticles were released continuously in SBF and the release rate decreased gradually with time. The expression values of atlE , fbe and sap were high in the initial stage of adhesion and the expression value of iapB was high in the colonies-gathering stage in the control group, but they were all significantly inhibited in the presence of Ag. These results indicated that the main antibacterial effect of Ag/HA composite coating was achieved by the release of silver nanoparticles. The addition of Ag inhibited the expression of genes related to biofilm formation, which in turn inhibited the formation of biofilms. This provided theoretical support for the clinical application of Ag/HA composite coating.

  19. Tumor cell migration screen identifies SRPK1 as breast cancer metastasis determinant

    PubMed Central

    van Roosmalen, Wies; Le Dévédec, Sylvia E.; Golani, Ofra; Smid, Marcel; Pulyakhina, Irina; Timmermans, Annemieke M.; Look, Maxime P.; Zi, Di; Pont, Chantal; de Graauw, Marjo; Naffar-Abu-Amara, Suha; Kirsanova, Catherine; Rustici, Gabriella; Hoen, Peter A.C. ‘t; Martens, John W.M.; Foekens, John A.; Geiger, Benjamin; van de Water, Bob

    2015-01-01

    Tumor cell migration is a key process for cancer cell dissemination and metastasis that is controlled by signal-mediated cytoskeletal and cell matrix adhesion remodeling. Using a phagokinetic track assay with migratory H1299 cells, we performed an siRNA screen of almost 1,500 genes encoding kinases/phosphatases and adhesome- and migration-related proteins to identify genes that affect tumor cell migration speed and persistence. Thirty candidate genes that altered cell migration were validated in live tumor cell migration assays. Eight were associated with metastasis-free survival in breast cancer patients, with integrin β3–binding protein (ITGB3BP), MAP3K8, NIMA-related kinase (NEK2), and SHC-transforming protein 1 (SHC1) being the most predictive. Examination of genes that modulate migration indicated that SRPK1, encoding the splicing factor kinase SRSF protein kinase 1, is relevant to breast cancer outcomes, as it was highly expressed in basal breast cancer. Furthermore, high SRPK1 expression correlated with poor breast cancer disease outcome and preferential metastasis to the lungs and brain. In 2 independent murine models of breast tumor metastasis, stable shRNA-based SRPK1 knockdown suppressed metastasis to distant organs, including lung, liver, and spleen, and inhibited focal adhesion reorganization. Our study provides comprehensive information on the molecular determinants of tumor cell migration and suggests that SRPK1 has potential as a drug target for limiting breast cancer metastasis. PMID:25774502

  20. Cloning and expression of recombinant adhesive protein MEFP-2 of the blue mussel, Mytilus edulis

    DOEpatents

    Silverman, Heather G.; Roberto, Francisco F.

    2006-02-07

    The present invention includes a Mytilus edulis cDNA having a nucleotide sequence that encodes for the Mytilus edulis foot protein-2 (Mefp-2), an example of a mollusk foot protein. Mefp-2 is an integral component of the blue mussels' adhesive protein complex, which allows the mussel to attach to objects underwater. The isolation, purification and sequencing of the Mefp-2 gene will allow researchers to produce Mefp-2 protein using genetic engineering techniques. The discovery of Mefp-2 gene sequences will also allow scientists to better understand how the blue mussel creates its waterproof adhesive protein complex.

  1. Cloning and expression of recombinant adhesive protein Mefp-1 of the blue mussel, Mytilus edulis

    DOEpatents

    Silverman, Heather G.; Roberto, Francisco F.

    2006-01-17

    The present invention comprises a Mytilus edulis cDNA sequenc having a nucleotide sequence that encodes for the Mytilus edulis foot protein-1 (Mefp-1), an example of a mollusk foot protein. Mefp-1 is an integral component of the blue mussels' adhesive protein complex, which allows the mussel to attach to objects underwater. The isolation, purification and sequencing of the Mefp-1 gene will allow researchers to produce Mefp-1 protein using genetic engineering techniques. The discovery of Mefp-1 gene sequence will also allow scientists to better understand how the blue mussel creates its waterproof adhesive protein complex.

  2. The analysis of genomic structures in the L1 family of cell adhesion molecules provides no evidence for exon shuffling events after the separation of arthropod and chordate lineages.

    PubMed

    Zhao, G; Hortsch, M

    1998-07-17

    Members of the L1 family of neural cell adhesion molecules consist of multiple extracellular immunoglobulin and fibronectin type III domains that mediate the adhesive properties of this group of transmembrane proteins. In vertebrate genomes, these protein domains are separated by introns, and it has been suggested that L1-type genes might have been subject to exon-shuffling events during evolution. However, comparison of the human L1-CAM and the chicken neurofascin gene with the genomic structure of their Drosophila homologue, neuroglian, indicates that no major rearrangement of protein domains has taken place subsequent to the split of the arthropod and chordate phyla. The Drosophila neuroglian gene appears to have lost most of the introns that have been conserved in the human L1-CAM and the chicken neurofascin gene. Nevertheless, exon shuffling or the generation of new exons by mutational changes might have been responsible for the generation of additional, alternatively spliced exons in L1-type genes.

  3. Differential splicing generates a nervous system-specific form of Drosophila neuroglian.

    PubMed

    Hortsch, M; Bieber, A J; Patel, N H; Goodman, C S

    1990-05-01

    We recently described the characterization and cloning of Drosophila neuroglian, a member of the immunoglobulin superfamily. Neuroglian contains six immunoglobulin-like domains and five fibronectin type III domains and shows strong sequence homology to the mouse neural cell adhesion molecule L1. Here we show that the neuroglian gene generates at least two different protein products by tissue-specific alternative splicing. The two protein forms differ in their cytoplasmic domains. The long form is restricted to the surface of neurons in the CNS and neurons and some support cells in the PNS; in contrast, the short form is expressed on a wide range of other cells and tissues. Thus, whereas the mouse L1 gene appears to encode only one protein that functions largely as a neural cell adhesion molecule, its Drosophila homolog, the neuroglian gene, encodes at least two protein forms that may play two different roles, one as a neural cell adhesion molecule and the other as a more general cell adhesion molecule involved in other tissues and imaginal disc morphogenesis.

  4. Functional Analysis of the Lactobacillus casei BL23 Sortases

    PubMed Central

    Muñoz-Provencio, Diego; Rodríguez-Díaz, Jesús; Collado, María Carmen; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2012-01-01

    Sortases are a class of enzymes that anchor surface proteins to the cell wall of Gram-positive bacteria. Lactobacillus casei BL23 harbors four sortase genes, two belonging to class A (srtA1 and srtA2) and two belonging to class C (srtC1 and srtC2). Class C sortases were clustered with genes encoding their putative substrates that were homologous to the SpaEFG and SpaCBA proteins that encode mucus adhesive pili in Lactobacillus rhamnosus GG. Twenty-three genes encoding putative sortase substrates were identified in the L. casei BL23 genome with unknown (35%), enzymatic (30%), or adhesion-related (35%) functions. Strains disrupted in srtA1, srtA2, srtC1, and srtC2 and an srtA1 srtA2 double mutant were constructed. The transcription of all four sortase encoding genes was detected, but only the mutation of srtA1 resulted in a decrease in bacterial surface hydrophobicity. The β-N-acetyl-glucosaminidase and cell wall proteinase activities of whole cells diminished in the srtA1 mutant and, to a greater extent, in the srtA1 srtA2 double mutant. Cell wall anchoring of the staphylococcal NucA reporter protein fused to a cell wall sorting sequence was also affected in the srtA mutants, and the percentages of adhesion to Caco-2 and HT-29 intestinal epithelial cells were reduced for the srtA1 srtA2 strain. Mutations in srtC1 or srtC2 result in an undetectable phenotype. Together, these results suggest that SrtA1 is the housekeeping sortase in L. casei BL23 and SrtA2 would carry out redundant or complementary functions that become evident when SrtA1 activity is absent. PMID:23042174

  5. In vitro adhesion and anti-inflammatory properties of native Lactobacillus fermentum and Lactobacillus delbrueckii spp.

    PubMed

    Archer, A C; Kurrey, N K; Halami, P M

    2018-03-14

    This study aimed at characterizing the adhesion and immune-stimulatory properties of native probiotic Lactobacillus fermentum (MCC 2759 and MCC 2760) and Lactobacillus delbrueckii MCC 2775. Adhesion of the strains was assessed in Caco-2 and HT-29 cell lines. Expression of adhesion and immune markers were evaluated in Caco-2 cells by real-time qPCR. The cultures displayed >80% of adhesion to both cell lines and also induced the expression of mucin-binding protein (mub) gene in the presence of mucin, bile and pancreatin. Adhesion was mediated by carbohydrate and proteinaceous factors. The cultures stimulated the expression of inflammatory cytokines in Caco-2 cells. However, pro-inflammatory genes were down-regulated upon challenge with lipopolysaccharide and IL-10 was up-regulated by the cultures. Cell wall extract of L. fermentum MCC 2760 induced the expression of IL-6 by 5·47-fold, whereas crude culture filtrate enhanced the expression of IL-10 by 14·87-fold compared to LPS control. The bacterial cultures exhibited strong adhesion and anti-inflammatory properties. This is the first report to reveal the role of adhesion markers of L. fermentum and L. delbrueckii by qPCR. The strain-specific anti-inflammatory property of native cultures may be useful to alleviate inflammatory conditions and develop a target-based probiotic. © 2018 The Society for Applied Microbiology.

  6. A screen to identify Drosophila genes required for integrin-mediated adhesion.

    PubMed Central

    Walsh, E P; Brown, N H

    1998-01-01

    Drosophila integrins have essential adhesive roles during development, including adhesion between the two wing surfaces. Most position-specific integrin mutations cause lethality, and clones of homozygous mutant cells in the wing do not adhere to the apposing surface, causing blisters. We have used FLP-FRT induced mitotic recombination to generate clones of randomly induced mutations in the F1 generation and screened for mutations that cause wing blisters. This phenotype is highly selective, since only 14 lethal complementation groups were identified in screens of the five major chromosome arms. Of the loci identified, 3 are PS integrin genes, 2 are blistered and bloated, and the remaining 9 appear to be newly characterized loci. All 11 nonintegrin loci are required on both sides of the wing, in contrast to integrin alpha subunit genes. Mutations in 8 loci only disrupt adhesion in the wing, similar to integrin mutations, while mutations in the 3 other loci cause additional wing defects. Mutations in 4 loci, like the strongest integrin mutations, cause a "tail-up" embryonic lethal phenotype, and mutant alleles of 1 of these loci strongly enhance an integrin mutation. Thus several of these loci are good candidates for genes encoding cytoplasmic proteins required for integrin function. PMID:9755209

  7. Computational dissection of human episodic memory reveals mental process-specific genetic profiles

    PubMed Central

    Luksys, Gediminas; Fastenrath, Matthias; Coynel, David; Freytag, Virginie; Gschwind, Leo; Heck, Angela; Jessen, Frank; Maier, Wolfgang; Milnik, Annette; Riedel-Heller, Steffi G.; Scherer, Martin; Spalek, Klara; Vogler, Christian; Wagner, Michael; Wolfsgruber, Steffen; Papassotiropoulos, Andreas; de Quervain, Dominique J.-F.

    2015-01-01

    Episodic memory performance is the result of distinct mental processes, such as learning, memory maintenance, and emotional modulation of memory strength. Such processes can be effectively dissociated using computational models. Here we performed gene set enrichment analyses of model parameters estimated from the episodic memory performance of 1,765 healthy young adults. We report robust and replicated associations of the amine compound SLC (solute-carrier) transporters gene set with the learning rate, of the collagen formation and transmembrane receptor protein tyrosine kinase activity gene sets with the modulation of memory strength by negative emotional arousal, and of the L1 cell adhesion molecule (L1CAM) interactions gene set with the repetition-based memory improvement. Furthermore, in a large functional MRI sample of 795 subjects we found that the association between L1CAM interactions and memory maintenance revealed large clusters of differences in brain activity in frontal cortical areas. Our findings provide converging evidence that distinct genetic profiles underlie specific mental processes of human episodic memory. They also provide empirical support to previous theoretical and neurobiological studies linking specific neuromodulators to the learning rate and linking neural cell adhesion molecules to memory maintenance. Furthermore, our study suggests additional memory-related genetic pathways, which may contribute to a better understanding of the neurobiology of human memory. PMID:26261317

  8. Computational dissection of human episodic memory reveals mental process-specific genetic profiles.

    PubMed

    Luksys, Gediminas; Fastenrath, Matthias; Coynel, David; Freytag, Virginie; Gschwind, Leo; Heck, Angela; Jessen, Frank; Maier, Wolfgang; Milnik, Annette; Riedel-Heller, Steffi G; Scherer, Martin; Spalek, Klara; Vogler, Christian; Wagner, Michael; Wolfsgruber, Steffen; Papassotiropoulos, Andreas; de Quervain, Dominique J-F

    2015-09-01

    Episodic memory performance is the result of distinct mental processes, such as learning, memory maintenance, and emotional modulation of memory strength. Such processes can be effectively dissociated using computational models. Here we performed gene set enrichment analyses of model parameters estimated from the episodic memory performance of 1,765 healthy young adults. We report robust and replicated associations of the amine compound SLC (solute-carrier) transporters gene set with the learning rate, of the collagen formation and transmembrane receptor protein tyrosine kinase activity gene sets with the modulation of memory strength by negative emotional arousal, and of the L1 cell adhesion molecule (L1CAM) interactions gene set with the repetition-based memory improvement. Furthermore, in a large functional MRI sample of 795 subjects we found that the association between L1CAM interactions and memory maintenance revealed large clusters of differences in brain activity in frontal cortical areas. Our findings provide converging evidence that distinct genetic profiles underlie specific mental processes of human episodic memory. They also provide empirical support to previous theoretical and neurobiological studies linking specific neuromodulators to the learning rate and linking neural cell adhesion molecules to memory maintenance. Furthermore, our study suggests additional memory-related genetic pathways, which may contribute to a better understanding of the neurobiology of human memory.

  9. MERP1: a mammalian ependymin-related protein gene differentially expressed in hematopoietic cells.

    PubMed

    Gregorio-King, Claudia C; McLeod, Janet L; Collier, Fiona McL; Collier, Gregory R; Bolton, Karyn A; Van Der Meer, Gavin J; Apostolopoulos, Jim; Kirkland, Mark A

    2002-03-20

    We have utilized differential display polymerase chain reaction to investigate the gene expression of hematopoietic progenitor cells from adult bone marrow and umbilical cord blood. A differentially expressed gene was identified in CD34+ hematopoietic progenitor cells, with low expression in CD34- cells. We have obtained the full coding sequence of this gene which we designated human mammalian ependymin-related protein 1 (MERP1). Expression of MERP1 was found in a variety of normal human tissues, and is 4- and 10-fold higher in adult bone marrow and umbilical cord blood CD34+ cells, respectively, compared to CD34- cells. Additionally, MERP1 expression in a hematopoietic stem cell enriched population was down-regulated with proliferation and differentiation. Conceptual translation of the MERP1 open reading frame reveals significant homology to two families of glycoprotein calcium-dependant cell adhesion molecules: ependymins and protocadherins.

  10. Differential Adipose Tissue Gene Expression Profiles in Abacavir Treated Patients That May Contribute to the Understanding of Cardiovascular Risk: A Microarray Study

    PubMed Central

    Shahmanesh, Mohsen; Phillips, Kenneth; Boothby, Meg; Tomlinson, Jeremy W.

    2015-01-01

    Objective To compare changes in gene expression by microarray from subcutaneous adipose tissue from HIV treatment naïve patients treated with efavirenz based regimens containing abacavir (ABC), tenofovir (TDF) or zidovidine (AZT). Design Subcutaneous fat biopsies were obtained before, at 6- and 18–24-months after treatment, and from HIV negative controls. Groups were age, ethnicity, weight, biochemical profile, and pre-treatment CD4 count matched. Microarray data was generated using the Agilent Whole Human Genome Microarray. Identification of differentially expressed genes and genomic response pathways was performed using limma and gene set enrichment analysis. Results There were significant divergences between ABC and the other two groups 6 months after treatment in genes controlling cell adhesion and environmental information processing, with some convergence at 18–24 months. Compared to controls the ABC group, but not AZT or TDF showed enrichment of genes controlling adherence junction, at 6 months and 18–24 months (adjusted p<0.05) and focal adhesions and tight junction at 6 months (p<0.5). Genes controlling leukocyte transendothelial migration (p<0.05) and ECM-receptor interactions (p = 0.04) were over-expressed in ABC compared to TDF and AZT at 6 months but not at 18–24 months. Enrichment of pathways and individual genes controlling cell adhesion and environmental information processing were specifically dysregulated in the ABC group in comparison with other treatments. There was little difference between AZT and TDF. Conclusion After initiating treatment, there is divergence in the expression of genes controlling cell adhesion and environmental information processing between ABC and both TDF and AZT in subcutaneous adipose tissue. If similar changes are also taking place in other tissues including the coronary vasculature they may contribute to the increased risk of cardiovascular events reported in patients recently started on abacavir-containing regimens. PMID:25617630

  11. Enhanced osteogenic differentiation of rat bone marrow mesenchymal stem cells on titanium substrates by inhibiting Notch3.

    PubMed

    Wang, Huiming; Jiang, Zhiwei; Zhang, Jing; Xie, Zhijian; Wang, Ying; Yang, Guoli

    2017-08-01

    The role of the Notch pathway has already been identified as a crucial regulator of bone development. However, the Notch signaling pathway has gone largely unexplored during osseointegration. This study aims to investigate the role of Notch signaling on osteogenic differentiation of rat derived bone marrow mesenchymal stem cells (BMSCs) on sandblasted, large-grit, acid-etched (SLA) treated Ti disks. The involved target genes in Notch pathways were identified by in vitro microarray and bioinformatics analyses with or without osteogenic induction. Adhesion, proliferation, and osteogenic related assay were subsequently conducted with target gene shRNA treatment. We found that 11 genes in the Notch signaling pathway were differentially expressed after osteogenic induction on SLA-treated Ti disks, which included up-regulated genes (Notch2, Dll1, Dll3, Ncstn, Ncor2, and Hes5) and down-regulated genes (Notch3, Lfng, Mfng, Jag2 and Maml2). With Notch3 shRNA treatment, the adhesion and proliferation of BMSCs on SLA-treated Ti disks were inhibited. Moreover, the expression levels of alkaline phosphatase (ALP), osteocalcin (OCN), calcium deposition, BMP2 and Runx2 increased significantly compared with that observed in control groups, suggesting that the function of Notch3 was inhibitory in the osteogenic differentiation of BMSCs on SLA-treated titanium. Inhibition Notch3 can enhance osteogenic differentiation of BMSCs on SLA-treated Ti disks, which potentially provides a gene target for improving osseointegration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Establishment of feeder-free culture system for human induced pluripotent stem cell on DAS nanocrystalline graphene

    NASA Astrophysics Data System (ADS)

    Lee, Hyunah; Nam, Donggyu; Choi, Jae-Kyung; Araúzo-Bravo, Marcos J.; Kwon, Soon-Yong; Zaehres, Holm; Lee, Taehee; Park, Chan Young; Kang, Hyun-Wook; Schöler, Hans R.; Kim, Jeong Beom

    2016-02-01

    The maintenance of undifferentiated human pluripotent stem cells (hPSC) under xeno-free condition requires the use of human feeder cells or extracellular matrix (ECM) coating. However, human-derived sources may cause human pathogen contamination by viral or non-viral agents to the patients. Here we demonstrate feeder-free and xeno-free culture system for hPSC expansion using diffusion assisted synthesis-grown nanocrystalline graphene (DAS-NG), a synthetic non-biological nanomaterial which completely rule out the concern of human pathogen contamination. DAS-NG exhibited advanced biocompatibilities including surface nanoroughness, oxygen containing functional groups and hydrophilicity. hPSC cultured on DAS-NG could maintain pluripotency in vitro and in vivo, and especially cell adhesion-related gene expression profile was comparable to those of cultured on feeders, while hPSC cultured without DAS-NG differentiated spontaneously with high expression of somatic cell-enriched adhesion genes. This feeder-free and xeno-free culture method using DAS-NG will facilitate the generation of clinical-grade hPSC.

  13. The Abl-related gene (Arg) requires its F-actin-microtubule cross-linking activity to regulate lamellipodial dynamics during fibroblast adhesion.

    PubMed

    Miller, Ann L; Wang, Yinxiang; Mooseker, Mark S; Koleske, Anthony J

    2004-05-10

    Microtubules (MTs) help establish and maintain cell polarity by promoting actin-dependent membrane protrusion at the leading edge of the cell, but the molecular mechanisms that mediate cross-talk between actin and MTs during this process are unclear. We demonstrate that the Abl-related gene (Arg) nonreceptor tyrosine kinase is required for dynamic lamellipodial protrusions after adhesion to fibronectin. arg-/- fibroblasts exhibit reduced lamellipodial dynamics as compared with wild-type fibroblasts, and this defect can be rescued by reexpression of an Arg-yellow fluorescent protein fusion. We show that Arg can bind MTs with high affinity and cross-link filamentous actin (F-actin) bundles and MTs in vitro. MTs concentrate and insert into Arg-induced F-actin-rich cell protrusions. Arg requires both its F-actin-binding domains and its MT-binding domain to rescue the defects in lamellipodial dynamics of arg-/- fibroblasts. These findings demonstrate that Arg can mediate physical contact between F-actin and MTs at the cell periphery and that this cross-linking activity is required for Arg to regulate lamellipodial dynamics in fibroblasts. Copyright the Rockefeller University Press

  14. Substance P acting via the neurokinin-1 receptor regulates adverse myocardial remodeling in a rat model of hypertension

    PubMed Central

    Dehlin, Heather M.; Manteufel, Edward J.; Monroe, Andrew L.; Reimer, Michael H.; Levick, Scott P.

    2013-01-01

    Background Substance P is a sensory nerve neuropeptide located near coronary vessels in the heart. Therefore, substance P may be one of the first mediators released in the heart in response to hypertension, and can contribute to adverse myocardial remodeling via interactions with the neurokinin-1 receptor. We asked: 1) whether substance P promoted cardiac hypertrophy, including the expression of fetal genes known to be re-expressed during pathological hypertrophy; and 2) the extent to which substance P regulated collagen production and fibrosis. Methods and Results Spontaneously hypertensive rats (SHR) were treated with the neurokinin-1 receptor antagonist L732138 (5 mg/kg/d) from 8 to 24 weeks of age. Age-matched WKY served as controls. The gene encoding substance P, TAC1, was up-regulated as blood pressure increased in SHR. Fetal gene expression by cardiomyocytes was increased in SHR and was prevented by L732138. Cardiac fibrosis also occurred in the SHR and was prevented by L732138. Endothelin-1 was up-regulated in the SHR and this was prevented by L732138. In isolated cardiac fibroblasts, substance P transiently up-regulated several genes related to cell-cell adhesion, cell-matrix adhesion, and extracellular matrix regulation, however, no changes in fibroblast function were observed. Conclusions Substance P activation of the neurokinin-1 receptor induced expression of fetal genes related to pathological hypertrophy in the hypertensive heart. Additionally, activation of the neurokinin-1 receptor was critical to the development of cardiac fibrosis. Since no functional changes were induced in isolated cardiac fibroblasts by substance P, we conclude that substance P mediates fibrosis via up-regulation of endothelin-1. PMID:23962787

  15. Comparison of quaternary ammonium-containing with nano-silver-containing adhesive in antibacterial properties and cytotoxicity

    PubMed Central

    Li, Fang; Weir, Michael D.; Chen, Jihua; Xu, Hockin H. K.

    2013-01-01

    Objective Antibacterial primer and adhesive are promising to help combat biofilms and recurrent caries. The objectives of this study were to compare novel bonding agent containing quaternary ammonium dimethacrylate (QADM) with bonding agent containing nanoparticles of silver (NAg) in antibacterial activity, contact-inhibition vs. long-distance inhibition, glucosyltransferases (gtf) gene expressions, and cytotoxicity for the first time. Methods QADM and NAg were incorporated into Scotchbond Multi-Purpose adhesive and primer. Microtensile dentin bond strength was measured. Streptococcus mutans (S. mutans) biofilm on resin surface (contact-inhibition) as well as S. mutans in culture medium away from the resin surface (long-distance inhibition) were tested for metabolic activity, colony-forming units (CFU), lactic acid production, and gtf gene expressions. Eluents from cured primer/adhesive samples were used to examine cytotoxicity against human gingival fibroblasts. Results Bonding agent with QADM greatly reduced CFU and lactic acid of biofilms on the resin surface (p < 0.05), while having no effect on S. mutans in culture medium away from the resin surface. In contrast, bonding agent with NAg inhibited not only S. mutans on the resin surface, but also S. mutans in culture medium away from the resin surface. Bonding agent with QADM suppressed gtfB, gtfC and gtfD gene expressions of S. mutans on its surface, but not away from its surface. Bonding agent with NAg suppressed S. mutans gene expressions both on its surface and away from its surface. Bonding agents with QADM and NAg did not adversely affect microtensile bond strength or fibroblast cytotoxicity, compared to control (p > 0.1). Significance QADM-containing adhesive had contact-inhibition and inhibited bacteria on its surface, but not away from its surface. NAg-containing adhesive had long-distance killing capability and inhibited bacteria on its surface and away from its surface. The novel antibacterial adhesives are promising for caries-inhibition restorations, and QADM and NAg could be complimentary agents in inhibiting bacteria on resin surface as well as away from resin surface. PMID:23428077

  16. Organization and PprB-dependent control of the Pseudomonas aeruginosa tad Locus, involved in Flp pilus biology.

    PubMed

    Bernard, Christophe S; Bordi, Christophe; Termine, Elise; Filloux, Alain; de Bentzmann, Sophie

    2009-03-01

    Bacterial attachment to the substratum involves several cell surface organelles, including various types of pili. The Pseudomonas aeruginosa Tad machine assembles type IVb pili, which are required for adhesion to abiotic surfaces and to eukaryotic cells. Type IVb pili consist of a major subunit, the Flp pilin, processed by the FppA prepilin peptidase. In this study, we investigated the regulatory mechanism of the tad locus. We showed that the flp gene is expressed late in the stationary growth phase in aerobic conditions. We also showed that the tad locus was composed of five independent transcriptional units. We used transcriptional fusions to show that tad gene expression was positively controlled by the PprB response regulator. We subsequently showed that PprB bound to the promoter regions, directly controlling the expression of these genes. We then evaluated the contribution of two genes, tadF and rcpC, to type IVb pilus assembly. The deletion of these two genes had no effect on Flp production, pilus assembly, or Flp-mediated adhesion to abiotic surfaces in our conditions. However, our results suggest that the putative RcpC protein modifies the Flp pilin, thereby promoting Flp-dependent adhesion to eukaryotic cells.

  17. Gene-Expression Signature Predicts Postoperative Recurrence in Stage I Non-Small Cell Lung Cancer Patients

    PubMed Central

    Lu, Yan; Wang, Liang; Liu, Pengyuan; Yang, Ping; You, Ming

    2012-01-01

    About 30% stage I non-small cell lung cancer (NSCLC) patients undergoing resection will recur. Robust prognostic markers are required to better manage therapy options. The purpose of this study is to develop and validate a novel gene-expression signature that can predict tumor recurrence of stage I NSCLC patients. Cox proportional hazards regression analysis was performed to identify recurrence-related genes and a partial Cox regression model was used to generate a gene signature of recurrence in the training dataset −142 stage I lung adenocarcinomas without adjunctive therapy from the Director's Challenge Consortium. Four independent validation datasets, including GSE5843, GSE8894, and two other datasets provided by Mayo Clinic and Washington University, were used to assess the prediction accuracy by calculating the correlation between risk score estimated from gene expression and real recurrence-free survival time and AUC of time-dependent ROC analysis. Pathway-based survival analyses were also performed. 104 probesets correlated with recurrence in the training dataset. They are enriched in cell adhesion, apoptosis and regulation of cell proliferation. A 51-gene expression signature was identified to distinguish patients likely to develop tumor recurrence (Dxy = −0.83, P<1e-16) and this signature was validated in four independent datasets with AUC >85%. Multiple pathways including leukocyte transendothelial migration and cell adhesion were highly correlated with recurrence-free survival. The gene signature is highly predictive of recurrence in stage I NSCLC patients, which has important prognostic and therapeutic implications for the future management of these patients. PMID:22292069

  18. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 5: intercellular junctions and contacts between germs cells and Sertoli cells and their regulatory interactions, testicular cholesterol, and genes/proteins associated with more than one germ cell generation.

    PubMed

    Hermo, Louis; Pelletier, R-Marc; Cyr, Daniel G; Smith, Charles E

    2010-04-01

    In the testis, cell adhesion and junctional molecules permit specific interactions and intracellular communication between germ and Sertoli cells and apposed Sertoli cells. Among the many adhesion family of proteins, NCAM, nectin and nectin-like, catenins, and cadherens will be discussed, along with gap junctions between germ and Sertoli cells and the many members of the connexin family. The blood-testis barrier separates the haploid spermatids from blood borne elements. In the barrier, the intercellular junctions consist of many proteins such as occludin, tricellulin, and claudins. Changes in the expression of cell adhesion molecules are also an essential part of the mechanism that allows germ cells to move from the basal compartment of the seminiferous tubule to the adluminal compartment thus crossing the blood-testis barrier and well-defined proteins have been shown to assist in this process. Several structural components show interactions between germ cells to Sertoli cells such as the ectoplasmic specialization which are more closely related to Sertoli cells and tubulobulbar complexes that are processes of elongating spermatids embedded into Sertoli cells. Germ cells also modify several Sertoli functions and this also appears to be the case for residual bodies. Cholesterol plays a significant role during spermatogenesis and is essential for germ cell development. Lastly, we list genes/proteins that are expressed not only in any one specific generation of germ cells but across more than one generation. Copyright 2009 Wiley-Liss, Inc.

  19. Genome analysis of Clostridium perfringens isolates from healthy and necrotic enteritis infected chickens and turkeys.

    PubMed

    Ronco, Troels; Stegger, Marc; Ng, Kim Lee; Lilje, Berit; Lyhs, Ulrike; Andersen, Paal Skytt; Pedersen, Karl

    2017-07-11

    Clostridium perfringens causes gastrointestinal diseases in both humans and domestic animals. Type A strains expressing the NetB toxin are the main cause of necrotic enteritis (NE) in chickens, which has remarkable impact on animal welfare and production economy in the international poultry industry. Three pathogenicity loci NELoc-1, -2 and -3 and a collagen adhesion gene cnaA have been found to be associated with NE in chickens, whereas the presence of these has not been investigated in diseased turkeys. The purpose was to investigate the virulence associated genome content and the genetic relationship among 30 C. perfringens isolates from both healthy and NE infected chickens and turkeys, applying whole-genome sequencing. NELoc-1, -3, netB and cnaA were significantly associated with NE isolates from chickens, whereas only NELoc-2 was commonly observed in both diseased turkeys and chickens. A putative collagen adhesion gene that encodes a von Willebrand Factor (vWF) domain was identified in all diseased turkeys and designated as cnaD. The phylogenetic analysis based on single nucleotide polymorphisms showed that the isolates generally were not closely related. These results indicate that virulence factors and pathogenicity loci associated with NE in chickens are not important to the same extent in diseased turkeys except for NELoc-2. A putative collagen adhesion gene which potentially could be of importance in regard to the NE pathogenesis in turkeys was identified and need to be further investigated. Thus, the pathogenesis of NE in turkeys appears to be different from that of broiler chickens.

  20. Multifunctional Self-Adhesive Fibrous Layered Matrix (FiLM) for Tissue Glues and Therapeutic Carriers.

    PubMed

    Yoon, Ye-Eun; Im, Byung Gee; Kim, Jung-Suk; Jang, Jae-Hyung

    2017-01-09

    Tissue adhesives, which inherently serve as wound sealants or as hemostatic agents, can be further augmented to acquire crucial functions as scaffolds, thereby accelerating wound healing or elevating the efficacy of tissue regeneration. Herein, multifunctional adherent fibrous matrices, acting as self-adhesive scaffolds capable of cell/gene delivery, were devised by coaxially electrospinning poly(caprolactone) (PCL) and poly(vinylpyrrolidone) (PVP). Wrapping the building block PCL fibers with the adherent PVP layers formed film-like fibrous matrices that could rapidly adhere to wet biological surfaces, referred to as fibrous layered matrix (FiLM) adhesives. The inclusion of ionic salts (i.e., dopamine hydrochloride) in the sheath layers generated spontaneously multilayered fibrous adhesives, whose partial layers could be manually peeled off, termed derivative FiLM (d-FiLM). In the context of scaffolds/tissue adhesives, both FiLM and d-FiLM demonstrated almost identical characteristics (i.e., sticky, mechanical, and performances as cell/gene carriers). Importantly, the single FiLM-process can yield multiple sets of d-FiLM by investing the same processing time, materials, and labor required to form a single conventional adhesive fibrous mat, thereby highlighting the economic aspects of the process. The FiLM/d-FiLM offer highly impacting contributions to many biomedical applications, especially in fields that require urgent aids (e.g., endoscopic surgeries, implantation in wet environments, severe wounds).

  1. Global impact of Salmonella type III secretion effector SteA on host cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenal-Muñoz, Elena, E-mail: e_cardenal@us.es; Gutiérrez, Gabriel, E-mail: ggpozo@us.es; Ramos-Morales, Francisco, E-mail: framos@us.es

    Highlights: • We analyzed HeLa cells transcriptome in response to Salmonella SteA. • Significant differential expression was detected for 58 human genes. • They are involved in ECM organization and regulation of some signaling pathways. • Cell death, cell adhesion and cell migration were decreased in SteA-expressing cells. • These results contribute to understand the role of SteA during infections. - Abstract: Salmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems, encoded in pathogenicity islands 1 and 2. Thesemore » systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both type III secretion systems. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in HeLa cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also causes repression of genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. In addition, a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, and decreased cytotoxicity, cell–cell adhesion and migration.« less

  2. Influence of Silver-hydroxyapatite Nanocomposite Coating on Biofilm Formation of Joint Prosthesis and Its Mechanism

    PubMed Central

    Zhao, L; Ashraf, MA

    2015-01-01

    ABSTRACT Background: The main reason for biomaterial related refractory infections is biofilm formation caused by bacterial adhesion on the surface of materials. Silver-hydroxyapatite (Ag/HA) nanocomposite coating can inhibit the formation of biofilm, but its mechanism is not clear. Material and Method: In order to clarify the mechanism, the amounts of biofilm on the Ag/HA composite coating and HA coating were determined, the release rates of silver nanoparticles in simulated body fluid (SBF) were detected by atomic absorption spectrometry, and the expression values of atlE, fbe, sap, iapB genes of Staphylococcus aureus were studied when they grew on Ag/HA composite coating and HA coating. Results: The amount of the biofilm on the Ag/HA composite coating was significantly less than that on the HA coating, and the bacterial adhesion was decreased. The silver nanoparticles were released continuously in SBF and the release rate decreased gradually with time. The expression values of atlE, fbe and sap were high in the initial stage of adhesion and the expression value of iapB was high in the colonies-gathering stage in the control group, but they were all significantly inhibited in the presence of Ag. Conclusion: These results indicated that the main antibacterial effect of Ag/HA composite coating was achieved by the release of silver nanoparticles. The addition of Ag inhibited the expression of genes related to biofilm formation, which in turn inhibited the formation of biofilms. This provided theoretical support for the clinical application of Ag/HA composite coating. PMID:27400164

  3. Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray

    PubMed Central

    Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua

    2003-01-01

    AIM: To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. METHODS: The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. RESULTS: Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. CONCLUSION: Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators. PMID:12632483

  4. Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray.

    PubMed

    Wang, Hai-Tao; Kong, Jian-Ping; Ding, Fang; Wang, Xiu-Qin; Wang, Ming-Rong; Liu, Lian-Xin; Wu, Min; Liu, Zhi-Hua

    2003-03-01

    To obtain human esophageal cancer cell EC9706 stably expressed epithelial membrane protein-1 (EMP-1) with integrated eukaryotic plasmid harboring the open reading frame (ORF) of human EMP-1, and then to study the mechanism by which EMP-1 exerts its diverse cellular action on cell proliferation and altered gene profile by exploring the effect of EMP-1. The authors first constructed pcDNA3.1/myc-his expression vector harboring the ORF of EMP-1 and then transfected it into human esophageal carcinoma cell line EC9706. The positive clones were analyzed by Western blot and RT-PCR. Moreover, the cell growth curve was observed and the cell cycle was checked by FACS technique. Using cDNA microarray technology, the authors compared the gene expression pattern in positive clones with control. To confirm the gene expression profile, semi-quantitative RT-PCR was carried out for 4 of the randomly picked differentially expressed genes. For those differentially expressed genes, classification was performed according to their function and cellular component. Human EMP-1 gene can be stably expressed in EC9706 cell line transfected with human EMP-1. The authors found the cell growth decreased, among which S phase was arrested and G1 phase was prolonged in the transfected positive clones. By cDNA microarray analysis, 35 genes showed an over 2.0 fold change in expression level after transfection, with 28 genes being consistently up-regulated and 7 genes being down-regulated. Among the classified genes, almost half of the induced genes (13 out of 28 genes) were related to cell signaling, cell communication and particularly to adhesion. Overexpression of human EMP-1 gene can inhibit the proliferation of EC9706 cell with S phase arrested and G1 phase prolonged. The cDNA microarray analysis suggested that EMP-1 may be one of regulators involved in cell signaling, cell communication and adhesion regulators.

  5. Associations of chemo- and radio-resistant phenotypes with the gap junction, adhesion and extracellular matrix in a three-dimensional culture model of soft sarcoma.

    PubMed

    Bai, Chujie; Yang, Min; Fan, Zhengfu; Li, Shu; Gao, Tian; Fang, Zhiwei

    2015-06-10

    Three-dimensional (3D) culture models are considered to recapitulate the cell microenvironment in solid tumors, including the extracellular matrix (ECM), cell-cell interactions, and signal transduction. These functions are highly correlated with cellular behaviors and contribute to resistances against chemo- and radio-therapies. However, the biochemical effects and mechanisms remain unknown in soft sarcoma. Therefore, we developed an in vitro 3D model of sarcoma to analyze the reasons of the chemo- and radio-resistance in therapies. Four soft sarcoma cell lines, HT1080, RD, SW872, and human osteosarcoma cell line 1 (HOSS1), a cell line established from a patient-derived xenograft, were applied to 3D culture and treated with growth factors in methylcellulose-containing medium. Spheroids were examined morphologically and by western blotting, RT-qPCR, and immunofluorescence staining to analyze cell adhesion, gap junctions, ECM genes, and related factors. Proliferation and colony formation assays were performed to assess chemo- and radio-resistances between 3D and two-dimensional (2D) cell cultures. Annexin V and Propidium Iodide staining was used to detect early apoptotic sarcoma cells treated with Doxorubicin, Gemcitabine, and Docetaxel in the 3D model. The four soft sarcoma cell lines formed spheres in vitro by culture in modified condition medium. Compared with 2D cell culture, expression of ECM genes and proteins, including COL1A1, LOX, SED1, FN1, and LAMA4, was significantly increased in 3D culture. Analysis of cadherin and gap junction molecules showed significant changes in the gene and protein expression profiles under 3D conditions. These changes affected cell-cell communication and were mainly associated with biological processes such as cell proliferation and apoptosis related to chemo- and radio-resistances. Our findings revealed significant differences between 3D and 2D cell culture systems, and indicated that cellular responsiveness to external stress such as radiation and chemotherapeutics is influenced by differential expression of genes and proteins involved in regulation of the ECM, cell adhesion, and gap junction signaling.

  6. Co-Flocculation of Yeast Species, a New Mechanism to Govern Population Dynamics in Microbial Ecosystems

    PubMed Central

    Rossouw, Debra; Bagheri, Bahareh; Setati, Mathabatha Evodia; Bauer, Florian Franz

    2015-01-01

    Flocculation has primarily been studied as an important technological property of Saccharomyces cerevisiae yeast strains in fermentation processes such as brewing and winemaking. These studies have led to the identification of a group of closely related genes, referred to as the FLO gene family, which controls the flocculation phenotype. All naturally occurring S. cerevisiae strains assessed thus far possess at least four independent copies of structurally similar FLO genes, namely FLO1, FLO5, FLO9 and FLO10. The genes appear to differ primarily by the degree of flocculation induced by their expression. However, the reason for the existence of a large family of very similar genes, all involved in the same phenotype, has remained unclear. In natural ecosystems, and in wine production, S. cerevisiae growth together and competes with a large number of other Saccharomyces and many more non-Saccharomyces yeast species. Our data show that many strains of such wine-related non-Saccharomyces species, some of which have recently attracted significant biotechnological interest as they contribute positively to fermentation and wine character, were able to flocculate efficiently. The data also show that both flocculent and non-flocculent S. cerevisiae strains formed mixed species flocs (a process hereafter referred to as co-flocculation) with some of these non-Saccharomyces yeasts. This ability of yeast strains to impact flocculation behaviour of other species in mixed inocula has not been described previously. Further investigation into the genetic regulation of co-flocculation revealed that different FLO genes impact differently on such adhesion phenotypes, favouring adhesion with some species while excluding other species from such mixed flocs. The data therefore strongly suggest that FLO genes govern the selective association of S. cerevisiae with specific species of non-Saccharomyces yeasts, and may therefore be drivers of ecosystem organisational patterns. Our data provide, for the first time, insights into the role of the FLO gene family beyond intraspecies cellular association, and suggest a wider evolutionary role for the FLO genes. Such a role would explain the evolutionary persistence of a large multigene family of genes with apparently similar function. PMID:26317200

  7. Changes in the Transcriptome of the Human Endometrial Ishikawa Cancer Cell Line Induced by Estrogen, Progesterone, Tamoxifen, and Mifepristone (RU486) as Detected by RNA-Sequencing

    PubMed Central

    Tamm-Rosenstein, Karin; Simm, Jaak; Suhorutshenko, Marina; Salumets, Andres; Metsis, Madis

    2013-01-01

    Background Estrogen (E2) and progesterone (P4) are key players in the maturation of the human endometrium. The corresponding steroid hormone modulators, tamoxifen (TAM) and mifepristone (RU486) are widely used in breast cancer therapy and for contraception purposes, respectively. Methodology/Principal findings Gene expression profiling of the human endometrial Ishikawa cancer cell line treated with E2 and P4 for 3 h and 12 h, and TAM and RU486 for 12 h, was performed using RNA-sequencing. High levels of mRNA were detected for genes, including PSAP, ATP5G2, ATP5H, and GNB2L1 following E2 or P4 treatment. A total of 82 biomarkers for endometrial biology were identified among E2 induced genes, and 93 among P4 responsive genes. Identified biomarkers included: EZH2, MDK, MUC1, SLIT2, and IL6ST, which are genes previously associated with endometrial receptivity. Moreover, 98.8% and 98.6% of E2 and P4 responsive genes in Ishikawa cells, respectively, were also detected in two human mid-secretory endometrial biopsy samples. TAM treatment exhibited both antagonistic and agonistic effects of E2, and also regulated a subset of genes independently. The cell cycle regulator cyclin D1 (CCND1) showed significant up-regulation following treatment with TAM. RU486 did not appear to act as a pure antagonist of P4 and a functional analysis of RU486 response identified genes related to adhesion and apoptosis, including down-regulated genes associated with cell-cell contacts and adhesion as CTNND1, JUP, CDH2, IQGAP1, and COL2A1. Conclusions Significant changes in gene expression by the Ishikawa cell line were detected after treatments with E2, P4, TAM, and RU486. These transcriptome data provide valuable insight into potential biomarkers related to endometrial receptivity, and also facilitate an understanding of the molecular changes that take place in the endometrium in the early stages of breast cancer treatment and contraception usage. PMID:23874806

  8. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum.

    PubMed Central

    Scherf, A; Hernandez-Rivas, R; Buffet, P; Bottius, E; Benatar, C; Pouvelle, B; Gysin, J; Lanzer, M

    1998-01-01

    Members of the Plasmodium falciparum var gene family encode clonally variant adhesins, which play an important role in the pathogenicity of tropical malaria. Here we employ a selective panning protocol to generate isogenic P.falciparum populations with defined adhesive phenotypes for CD36, ICAM-1 and CSA, expressing single and distinct var gene variants. This technique has established the framework for examining var gene expression, its regulation and switching. It was found that var gene switching occurs in situ. Ubiquitous transcription of all var gene variants appears to occur in early ring stages. However, var gene expression is tightly regulated in trophozoites and is exerted through a silencing mechanism. Transcriptional control is mutually exclusive in parasites that express defined adhesive phenotypes. In situ var gene switching is apparently mediated at the level of transcriptional initiation, as demonstrated by nuclear run-on analyses. Our results suggest that an epigenetic mechanism(s) is involved in var gene regulation. PMID:9736619

  9. BIGH3 modulates adhesion and migration of hematopoietic stem and progenitor cells

    PubMed Central

    Klamer, Sofieke E; Kuijk, Carlijn GM; Hordijk, Peter L; van der Schoot, C Ellen; von Lindern, Marieke; van Hennik, Paula B; Voermans, Carlijn

    2013-01-01

    Cell adhesion and migration are important determinants of homing and development of hematopoietic stem and progenitor cells (HSPCs) in bone marrow (BM) niches. The extracellular matrix protein transforming growth factor-β (TGF-β) inducible gene H3 (BIGH3) is involved in adhesion and migration, although the effect of BIGH3 is highly cell type-dependent. BIGH3 is abundantly expressed by mesenchymal stromal cells, while its expression in HSPCs is relatively low unless induced by certain BM stressors. Here, we set out to determine how BIGH3 modulates HSPC adhesion and migration. We show that primary HSPCs adhere to BIGH3-coated substrates, which is, in part, integrin-dependent. Overexpression of BIGH3 in HSPCs and HL60 cells reduced the adhesion to the substrate fibronectin in adhesion assays, which was even more profound in electrical cell-substrate impedance sensing (ECIS) assays. Accordingly, the CXCL12 induced migration over fibronectin-coated surface was reduced in BIGH3-expressing HSPCs. The integrin expression profile of HSPCs was not altered upon BIGH3 expression. Although expression of BIGH3 did not alter actin polymerization in response to CXCL12, it inhibited the PMA-induced activation of the small GTPase RAC1 as well as the phosphorylation and activation of extracellular-regulated kinases (ERKs). Reduced activation of ERK and RAC1 may be responsible for the inhibition of cell adhesion and migration by BIGH3 in HSPCs. Induced BIGH3 expression upon BM stress may contribute to the regulation of BM homeostasis. PMID:24152593

  10. Engrailed negatively regulates the expression of cell adhesion molecules connectin and neuroglian in embryonic Drosophila nervous system.

    PubMed

    Siegler, M V; Jia, X X

    1999-02-01

    Engrailed is expressed in subsets of interneurons that do not express Connectin or appreciable Neuroglian, whereas other neurons that are Engrailed negative strongly express these adhesion molecules. Connectin and Neuroglian expression are virtually eliminated in interneurons when engrailed expression is driven ubiquitously in neurons, and greatly increased when engrailed genes are lacking in mutant embryos. The data suggest that Engrailed is normally a negative regulator of Connectin and neuroglian. These are the first two "effector" genes identified in the nervous system of Drosophila as regulatory targets for Engrailed. We argue that differential Engrailed expression is crucial in determining the pattern of expression of cell adhesion molecules and thus constitutes an important determinant of neuronal shape and perhaps connectivity.

  11. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells.

    PubMed Central

    Marui, N; Offermann, M K; Swerlick, R; Kunsch, C; Rosen, C A; Ahmad, M; Alexander, R W; Medford, R M

    1993-01-01

    Oxidative stress and expression of the vascular cell adhesion molecule-1 (VCAM-1) on vascular endothelial cells are early features in the pathogenesis of atherosclerosis and other inflammatory diseases. Regulation of VCAM-1 gene expression may be coupled to oxidative stress through specific reduction-oxidation (redox) sensitive transcriptional or posttranscriptional regulatory factors. In cultured human umbilical vein endothelial (HUVE) cells, the cytokine interleukin 1 beta (IL-1 beta) activated VCAM-1 gene expression through a mechanism that was repressed approximately 90% by the antioxidants pyrrolidine dithiocarbamate (PDTC) and N-acetylcysteine (NAC). Furthermore, PDTC selectively inhibited the induction of VCAM-1, but not intercellular adhesion molecule-1 (ICAM-1), mRNA and protein accumulation by the cytokine tumor necrosis factor-alpha (TNF alpha) as well as the noncytokines bacterial endotoxin lipopolysaccharide (LPS) and double-stranded RNA, poly(I:C) (PIC). PDTC also markedly attenuated TNF alpha induction of VCAM-1-mediated cellular adhesion. In a distinct pattern, PDTC partially inhibited E-selectin gene expression in response to TNF alpha but not to LPS, IL-1 beta, or PIC. TNF alpha and LPS-mediated transcriptional activation of the human VCAM-1 promoter through NF-kappa B-like DNA enhancer elements and associated NF-kappa B-like DNA binding proteins was inhibited by PDTC. These studies suggest a molecular linkage between an antioxidant sensitive transcriptional regulatory mechanism and VCAM-1 gene expression that expands on the notion of oxidative stress as an important regulatory signal in the pathogenesis of atherosclerosis. Images PMID:7691889

  12. Sarcoptes scabiei Mites Modulate Gene Expression in Human Skin Equivalents

    PubMed Central

    Morgan, Marjorie S.; Arlian, Larry G.; Markey, Michael P.

    2013-01-01

    The ectoparasitic mite, Sarcoptes scabiei that burrows in the epidermis of mammalian skin has a long co-evolution with its hosts. Phenotypic studies show that the mites have the ability to modulate cytokine secretion and expression of cell adhesion molecules in cells of the skin and other cells of the innate and adaptive immune systems that may assist the mites to survive in the skin. The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents (HSEs) that changed expression in response to the burrowing of live scabies mites. Overall, of the more than 25,800 genes measured, 189 genes were up-regulated >2-fold in response to scabies mite burrowing while 152 genes were down-regulated to the same degree. HSEs differentially expressed large numbers of genes that were related to host protective responses including those involved in immune response, defense response, cytokine activity, taxis, response to other organisms, and cell adhesion. Genes for the expression of interleukin-1α (IL-1α) precursor, IL-1β, granulocyte/macrophage-colony stimulating factor (GM-CSF) precursor, and G-CSF precursor were up-regulated 2.8- to 7.4-fold, paralleling cytokine secretion profiles. A large number of genes involved in epithelium development and keratinization were also differentially expressed in response to live scabies mites. Thus, these skin cells are directly responding as expected in an inflammatory response to products of the mites and the disruption of the skin’s protective barrier caused by burrowing. This suggests that in vivo the interplay among these skin cells and other cell types, including Langerhans cells, dendritic cells, lymphocytes and endothelial cells, is responsible for depressing the host’s protective response allowing these mites to survive in the skin. PMID:23940705

  13. Role of the autonomic nervous system in rat liver regeneration.

    PubMed

    Xu, Cunshuan; Zhang, Xinsheng; Wang, Gaiping; Chang, Cuifang; Zhang, Lianxing; Cheng, Qiuyan; Lu, Ailing

    2011-05-01

    To study the regulatory role of autonomic nervous system in rat regenerating liver, surgical operations of rat partial hepatectomy (PH) and its operation control (OC), sympathectomy combining partial hepatectomy (SPH), vagotomy combining partial hepatectomy (VPH), and total liver denervation combining partial hepatectomy (TDPH) were performed, then expression profiles of regenerating livers at 2 h after operation were detected using Rat Genome 230 2.0 array. It was shown that the expressions of 97 genes in OC, 230 genes in PH, 253 genes in SPH, 187 genes in VPH, and 177 genes in TDPH were significantly changed in biology. The relevance analysis showed that in SPH, genes involved in stimulus response, immunity response, amino acids and K(+) transport, amino acid catabolism, cell adhesion, cell proliferation mediated by JAK-STAT, Ca(+), and platelet-derived growth factor receptor, cell growth and differentiation through JAK-STAT were up-regulated, while the genes involved in chromatin assembly and disassembly, and cell apoptosis mediated by MAPK were down-regulated. In VPH, the genes associated with chromosome modification-related transcription factor, oxygen transport, and cell apoptosis mediated by MAPK pathway were up-regulated, but the genes associated with amino acid catabolism, histone acetylation-related transcription factor, and cell differentiation mediated by Wnt pathway were down-regulated. In TDPH, the genes related to immunity response, growth and development of regenerating liver, cell growth by MAPK pathway were up-regulated. Our data suggested that splanchnic and vagal nerves could regulate the expressions of liver regeneration-related genes.

  14. Multiple conserved cell adhesion protein interactions mediate neural wiring of a sensory circuit in C. elegans.

    PubMed

    Kim, Byunghyuk; Emmons, Scott W

    2017-09-13

    Nervous system function relies on precise synaptic connections. A number of widely-conserved cell adhesion proteins are implicated in cell recognition between synaptic partners, but how these proteins act as a group to specify a complex neural network is poorly understood. Taking advantage of known connectivity in C. elegans , we identified and studied cell adhesion genes expressed in three interacting neurons in the mating circuits of the adult male. Two interacting pairs of cell surface proteins independently promote fasciculation between sensory neuron HOA and its postsynaptic target interneuron AVG: BAM-2/neurexin-related in HOA binds to CASY-1/calsyntenin in AVG; SAX-7/L1CAM in sensory neuron PHC binds to RIG-6/contactin in AVG. A third, basal pathway results in considerable HOA-AVG fasciculation and synapse formation in the absence of the other two. The features of this multiplexed mechanism help to explain how complex connectivity is encoded and robustly established during nervous system development.

  15. Drosophila neuroglian: a member of the immunoglobulin superfamily with extensive homology to the vertebrate neural adhesion molecule L1.

    PubMed

    Bieber, A J; Snow, P M; Hortsch, M; Patel, N H; Jacobs, J R; Traquina, Z R; Schilling, J; Goodman, C S

    1989-11-03

    Drosophila neuroglian is an integral membrane glycoprotein that is expressed on a variety of cell types in the Drosophila embryo, including expression on a large subset of glial and neuronal cell bodies in the central and peripheral nervous systems and on the fasciculating axons that extend along them. Neuroglian cDNA clones were isolated by expression cloning. cDNA sequence analysis reveals that neuroglian is a member of the immunoglobulin superfamily. The extracellular portion of the protein consists of six immunoglobulin C2-type domains followed by five fibronectin type III domains. Neuroglian is closely related to the immunoglobulin-like vertebrate neural adhesion molecules and, among them, shows most extensive homology to mouse L1. Its homology to L1 and its embryonic localization suggest that neuroglian may play a role in neural and glial cell adhesion in the developing Drosophila embryo. We report here on the identification of a lethal mutation in the neuroglian gene.

  16. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial

    PubMed Central

    Mujagic, Zlatan; de Vos, Paul; Boekschoten, Mark V.; Govers, Coen; Pieters, Harm-Jan H. M.; de Wit, Nicole J. W.; Bron, Peter A.; Masclee, Ad A. M.; Troost, Freddy J.

    2017-01-01

    The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein rearrangement, which may lead to beneficial effects in a stressed human gut mucosa. Ten healthy volunteers participated in four different intervention periods: 7-day oral intake of either L. plantarum WCFS1, CIP104448, TIFN101 or placebo, proceeded by a 4 weeks wash-out period. Lactulose-rhamnose ratio (an indicator of small intestinal permeability) increased after intake of indomethacin, which was given as an artificial stressor of the gut mucosal barrier (mean ratio 0.06 ± 0.04 to 0.10 ± 0.06, p = 0.001), but was not significantly affected by the bacterial interventions. However, analysis in small intestinal biopsies, obtained by gastroduodenoscopy, demonstrated that particularly L. plantarum TIFN101 modulated gene transcription pathways related to cell-cell adhesion with high turnover of genes involved in tight- and adhesion junction protein synthesis and degradation (e.g. actinin alpha-4, metalloproteinase-2). These effects were less pronounced for L. plantarum WCFS1 and CIP104448. In conclusion, L. plantarum TIFN101 induced the most pronounced probiotic properties with specific gene transcriptional effects on repair processes in the compromised intestine of healthy subjects. PMID:28045137

  17. Relating the physical properties of Pseudomonas aeruginosa lipopolysaccharides to virulence by atomic force microscopy.

    PubMed

    Ivanov, Ivan E; Kintz, Erica N; Porter, Laura A; Goldberg, Joanna B; Burnham, Nancy A; Camesano, Terri A

    2011-03-01

    Lipopolysaccharides (LPS) are an important class of macromolecules that are components of the outer membrane of Gram-negative bacteria such as Pseudomonas aeruginosa. P. aeruginosa contains two different sugar chains, the homopolymer common antigen (A band) and the heteropolymer O antigen (B band), which impart serospecificity. The characteristics of LPS are generally assessed after isolation rather than in the context of whole bacteria. Here we used atomic force microscopy (AFM) to probe the physical properties of the LPS of P. aeruginosa strain PA103 (serogroup O11) in situ. This strain contains a mixture of long and very long polymers of O antigen, regulated by two different genes. For this analysis, we studied the wild-type strain and four mutants, ΔWzz1 (producing only very long LPS), ΔWzz2 (producing only long LPS), DΔM (with both the wzz1 and wzz2 genes deleted), and Wzy::GM (producing an LPS core oligosaccharide plus one unit of O antigen). Forces of adhesion between the LPS on these strains and the silicon nitride AFM tip were measured, and the Alexander and de Gennes model of steric repulsion between a flat surface and a polymer brush was used to calculate the LPS layer thickness (which we refer to as length), compressibility, and spacing between the individual molecules. LPS chains were longest for the wild-type strain and ΔWzz1, at 170.6 and 212.4 nm, respectively, and these values were not statistically significantly different from one another. Wzy::GM and DΔM have reduced LPS lengths, at 34.6 and 37.7 nm, respectively. Adhesion forces were not correlated with LPS length, but a relationship between adhesion force and bacterial pathogenicity was found in a mouse acute pneumonia model of infection. The adhesion forces with the AFM probe were lower for strains with LPS mutations, suggesting that the wild-type strain is optimized for maximal adhesion. Our research contributes to further understanding of the role of LPS in the adhesion and virulence of P. aeruginosa.

  18. The Highly Autoaggregative and Adhesive Phenotype of the Vaginal Lactobacillus plantarum Strain CMPG5300 Is Sortase Dependent

    PubMed Central

    Malik, Shweta; Petrova, Mariya I.; Claes, Ingmar J. J.; Verhoeven, Tine L. A.; Busschaert, Pieter; Vaneechoutte, Mario; Lievens, Bart; Lambrichts, Ivo; Siezen, Roland J.; Balzarini, Jan; Vanderleyden, Jos

    2013-01-01

    Lactobacilli are important for the maintenance of a healthy ecosystem in the human vagina. Various mechanisms are postulated but so far are poorly substantiated by molecular studies, such as mutant analysis. Bacterial autoaggregation is an interesting phenomenon that can promote adhesion to host cells and displacement of pathogens. In this study, we report on the identification of a human vaginal isolate, Lactobacillus plantarum strain CMPG5300, which shows high autoaggregative and adhesive capacity. To investigate the importance of sortase-dependent proteins (SDPs) in these phenotypes, a gene deletion mutant was constructed for srtA, the gene encoding the housekeeping sortase that covalently anchors these SDPs to the cell surface. This mutant lost the capacity to autoaggregate, showed a decrease in adhesion to vaginal epithelial cells, and lost biofilm-forming capacity under the conditions tested. These results indicate that the housekeeping sortase SrtA of CMPG5300 is a key determinant of the peculiar surface properties of this vaginal Lactobacillus strain. PMID:23709503

  19. Frequency of enterotoxins, toxic shock syndrome toxin-1, and biofilm formation genes in Staphylococcus aureus isolates from cows with mastitis in the Northeast of Brazil.

    PubMed

    Costa, F N; Belo, N O; Costa, E A; Andrade, G I; Pereira, L S; Carvalho, I A; Santos, R L

    2018-06-01

    Staphylococcus aureus is among the microorganisms more frequently associated with subclinical bovine mastitis. S. aureus may produce several virulence factors. This study aimed at determining the frequency of virulence factors such as enterotoxins, toxic shock syndrome toxin 1, and ica adhesion genes. In addition, we assessed antimicrobial drug resistance in S. aureus isolated from clinical and subclinical cases of mastitis. A total of 88 cows with clinical or subclinical mastitis were sampled, resulting in 38 S. aureus isolates, from which 25 (65.78%) carried toxin genes, including seb, sec, sed, tst, and icaD adhesion gene. These S. aureus isolates belong to 21 ribotypes and three S. aureus strains belonged to the same ribotype producing ica adhesion gene. Approximately 90% of S. aureus strains obtained in our study demonstrated multiple resistance to different antimicrobial agents. The most efficacious antimicrobial agents against the isolates were gentamicin, amoxicillin, and norfloxacin. Gentamicin was the most efficacious agent inhibiting 78.95% of the S. aureus isolates. The least efficacious were penicillin, streptomycin, and ampicillin. Our results can help in understanding the relationship between virulence factors and subclinical mastitis caused by S. aureus. Further research about diversity of S. aureus isolates and genes responsible for the pathogenicity of subclinical mastitis is essential.

  20. PCR detection of four virulence-associated genes of Campylobacter jejuni isolates from Thai broilers and their abilities of adhesion to and invasion of INT-407 cells.

    PubMed

    Chansiripornchai, Niwat; Sasipreeyajan, Jiroj

    2009-06-01

    Campylobacter jejuni is a major cause of food borne pathogens in humans and a major reservoir for this pathogen is poultry. The C. jejuni in broilers was investigated from in the caeca of broilers. Twenty broiler/flock samples from 7 flocks were assessed. The average prevalence of C. jejuni was 65% in the broiler flocks. The adhesion and invasion ability of 48 strains of C. jejuni on INT 407 were studied. The adhesion and invasion ability of 48 Campylobacter isolates from caecal contents were analyzed with Human embryonic intestine (INT-407) cells being used as a gentamicin resistance assay. The caecal isolates exhibited a wide range of adherence and invasion ability. There was a significant correlation (p<0.01) between the adherence and the invasion ability of the Campylobacter isolates. Each of the virulence-associated genes: dnaJ, cadF, pldA and ciaB was detected by polymerase chain reaction from 100, 76, 31 and 41% of the Campylobacter strains, respectively. All of four virulence-associated genes were detected in 11 isolates. However, there was unclear association between the invasion ability and the presence of virulence-associated genes in this experiment, suggesting that more genes may be involved in the invasion process.

  1. The dipeptidyl peptidase-4 inhibitor Saxagliptin improves function of circulating pro-angiogenic cells from type 2 diabetic patients

    PubMed Central

    2014-01-01

    Background Type 2 diabetes (T2D) is associated with reduction and dysfunction of circulating pro-angiogenic cells (PACs). DPP-4 inhibitors, a class of oral agents for T2D, might possess pleiotropic vasculoprotective activities. Herein, we tested whether DPP-4 inhibition with Saxagliptin affects the function of circulating PACs from T2D and healthy subjects. Methods PACs were isolated from T2D (n = 20) and healthy (n = 20) subjects. Gene expression, clonogenesis, proliferation, adhesion, migration and tubulisation were assessed in vitro by incubating PACs with or without Saxagliptin and SDF-1α. Stimulation of angiogenesis by circulating cells from T2D patients treated with Saxagliptin or other non-incretinergic drugs was assessed in vivo using animal models. Results Soluble DPP-4 activity was predominant over cellular activity and was successfully inhibited by Saxagliptin. At baseline, T2D compared to healthy PACs contained less acLDL+Lectin+ cells, and showed altered expression of genes related to adhesion and cell cycle regulation. This was reflected by impaired adhesion and clonogenesis/proliferative response of T2D PACs. Saxagliptin + SDF-1α improved adhesion and tube sustaining capacity of PACs from T2D patients. CD14+ PACs were more responsive to Saxagliptin than CD14- PACs. While Saxagliptin modestly reduced angiogenesis by mature endothelial cells, circulating PACs-progeny cells from T2D patients on Saxagliptin treatment displayed higher growth factor-inducible in vivo angiogenetic activity, compared to cells from T2D patients on non-incretinergic regimen. Conclusions Saxagliptin reverses PACs dysfunction associated with T2D in vitro and improves inducible angiogenesis by circulating cells in vivo. These data add knowledge to the potential pleiotropic cardiovascular effects of DPP-4 inhibition. PMID:24886621

  2. The dipeptidyl peptidase-4 inhibitor saxagliptin improves function of circulating pro-angiogenic cells from type 2 diabetic patients.

    PubMed

    Poncina, Nicol; Albiero, Mattia; Menegazzo, Lisa; Cappellari, Roberta; Avogaro, Angelo; Fadini, Gian Paolo

    2014-05-14

    Type 2 diabetes (T2D) is associated with reduction and dysfunction of circulating pro-angiogenic cells (PACs). DPP-4 inhibitors, a class of oral agents for T2D, might possess pleiotropic vasculoprotective activities. Herein, we tested whether DPP-4 inhibition with Saxagliptin affects the function of circulating PACs from T2D and healthy subjects. PACs were isolated from T2D (n = 20) and healthy (n = 20) subjects. Gene expression, clonogenesis, proliferation, adhesion, migration and tubulisation were assessed in vitro by incubating PACs with or without Saxagliptin and SDF-1α. Stimulation of angiogenesis by circulating cells from T2D patients treated with Saxagliptin or other non-incretinergic drugs was assessed in vivo using animal models. Soluble DPP-4 activity was predominant over cellular activity and was successfully inhibited by Saxagliptin. At baseline, T2D compared to healthy PACs contained less acLDL(+)Lectin(+) cells, and showed altered expression of genes related to adhesion and cell cycle regulation. This was reflected by impaired adhesion and clonogenesis/proliferative response of T2D PACs. Saxagliptin + SDF-1α improved adhesion and tube sustaining capacity of PACs from T2D patients. CD14+ PACs were more responsive to Saxagliptin than CD14- PACs. While Saxagliptin modestly reduced angiogenesis by mature endothelial cells, circulating PACs-progeny cells from T2D patients on Saxagliptin treatment displayed higher growth factor-inducible in vivo angiogenetic activity, compared to cells from T2D patients on non-incretinergic regimen. Saxagliptin reverses PACs dysfunction associated with T2D in vitro and improves inducible angiogenesis by circulating cells in vivo. These data add knowledge to the potential pleiotropic cardiovascular effects of DPP-4 inhibition.

  3. Role of luxS in Stress Tolerance and Adhesion Ability in Lactobacillus plantarum KLDS1.0391

    PubMed Central

    Jia, Fang-Fang; Zheng, Hui-Qi; Sun, Si-Rui; Pang, Xue-Hui; Liang, Yu; Shang, Jia-Cui; Zhu, Zong-Tao

    2018-01-01

    Lactobacillus plantarum, a probiotic, has a high survival rate and high colonization ability in the gastrointestinal tract. Tolerance to the gastrointestinal environment and adhesion to intestinal epithelial cells by some Lactobacillus species (excluding L. plantarum) are related to luxS/AI-2. Here, the role of luxS in tolerance to simulated digestive juice (SDJ) and adhesion to Caco-2 cells by L. plantarum KLDS1.0391 (hereafter, KLDS1.0391) was investigated. The KLDS1.0391 luxS mutant strain was constructed by homologous recombination. When luxS was deleted, acid and bile salt tolerance and survival rates in SDJ significantly decreased (p < 0.05 for all). The ability of the luxS deletion strain to adhere to Caco-2 cells was markedly lower than that of the wild-type strain (p < 0.05). The ability of the luxS mutant strain to adhere (competition, exclusion, and displacement) to Escherichia coli ATCC 25922 was significantly lower than that of the wild-type strain (p < 0.05 for all). A significant decrease was noted only in the exclusion adhesion inhibition of the luxS mutant strain to Salmonella typhimurium ATCC 14028 (p < 0.05). These results indicate that the luxS gene plays an important role in the gastrointestinal environment tolerance and adhesion ability of KLDS1.0391. PMID:29651434

  4. A conserved role for L1 as a transmembrane link between neuronal adhesion and membrane cytoskeleton assembly.

    PubMed

    Hortsch, M; O'Shea, K S; Zhao, G; Kim, F; Vallejo, Y; Dubreuil, R R

    1998-01-01

    The L1-family of cell adhesion molecules is involved in many important aspects of nervous system development. Mutations in the human L1-CAM gene cause a complicated array of neurological phenotypes; however, the molecular basis of these effects cannot be explained by a simple loss of adhesive function. Human L1-CAM and its Drosophila homolog neuroglian are rather divergent in sequence, with the highest degree of amino acid sequence conservation between segments of their cytoplasmic domains. In an attempt to elucidate the fundamental functions shared between these distantly related members of the L1-family, we demonstrate here that the extracellular domains of mammalian L1-CAMs and Drosophila neuroglian are both able to induce the aggregation of transfected Drosophila S2 cells in vitro. To a limited degree they even interact with each other in cell adhesion and neurite outgrowth assays. The cytoplasmic domains of human L1-CAM and neuroglian are both able to interact with the Drosophila homolog of the cytoskeletal linker protein ankyrin. Moreover the recruitment of ankyrin to cell-cell contacts is completely dependent on L1-mediated cell adhesion. These findings support a model of L1 function in which the phenotypes of human L1-CAM mutations results from a disruption of the link between the extracellular environment and the neuronal cytoskeleton.

  5. Vaccine-induced modulation of gene expression in turbot peritoneal cells. A microarray approach.

    PubMed

    Fontenla, Francisco; Blanco-Abad, Verónica; Pardo, Belén G; Folgueira, Iria; Noia, Manuel; Gómez-Tato, Antonio; Martínez, Paulino; Leiro, José M; Lamas, Jesús

    2016-07-01

    We used a microarray approach to examine changes in gene expression in turbot peritoneal cells after injection of the fish with vaccines containing the ciliate parasite Philasterides dicentrarchi as antigen and one of the following adjuvants: chitosan-PVMMA microspheres, Freund́s complete adjuvant, aluminium hydroxide gel or Matrix-Q (Isconova, Sweden). We identified 374 genes that were differentially expressed in all groups of fish. Forty-two genes related to tight junctions and focal adhesions and/or actin cytoskeleton were differentially expressed in free peritoneal cells. The profound changes in gene expression related to cell adherence and cytoskeleton may be associated with cell migration and also with the formation of cell-vaccine masses and their attachment to the peritoneal wall. Thirty-five genes related to apoptosis were differentially expressed. Although most of the proteins coded by these genes have a proapoptotic effect, others are antiapoptotic, indicating that both types of signals occur in peritoneal leukocytes of vaccinated fish. Interestingly, many of the genes related to lymphocytes and lymphocyte activity were downregulated in the groups injected with vaccine. We also observed decreased expression of genes related to antigen presentation, suggesting that macrophages (which were abundant in the peritoneal cavity after vaccination) did not express these during the early inflammatory response in the peritoneal cavity. Finally, several genes that participate in the inflammatory response were differentially expressed, and most participated in resolution of inflammation, indicating that an M2 macrophage response is generated in the peritoneal cavity of fish one day post vaccination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. High potential of adhesion to biotic and abiotic surfaces by opportunistic Staphylococcus aureus strains isolated from orthodontic appliances.

    PubMed

    Merghni, Abderrahmen; Ben Nejma, Mouna; Dallel, Ines; Tobji, Samir; Ben Amor, Adel; Janel, Sébastien; Lafont, Frank; Aouni, Mahjoub; Mastouri, Maha

    2016-02-01

    Orthodontic and other oral appliances act as reservoir of opportunistic pathogens that can easily become resistant to antibiotics and cause systemic infections. The aim of this study was to investigate the ability of Staphylococcus aureus strains isolated from healthy patients with orthodontic appliances, to adhere to biotic (HeLa cells) and abiotic surfaces (polystyrene and dental alloy). Adhesive ability to polystyrene was tested by crystal violet staining and quantitative biofilm production on dental alloy surfaces was evaluated by MTT reduction assay. In addition, the presence of icaA and icaD genes was achieved by polymerase chain reaction (PCR). Qualitative biofilm production revealed that 70.6% of strains were slime producers. The metabolic activity of S. aureus biofilms on dental alloy surfaces was high and did not differ between tested strains. Moreover, all the isolates were adhesive to HeLa cells and 94% of them harbor icaA and icaD genes. Considerable adhesion and internalization capacity to the epithelial HeLa cells and strong biofilm production abilities together, with a high genotypic expression of icaA/icaD genes are an important equipment of S. aureus to colonize orthodontic appliances and eventually to disseminate towards other body areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Distortion of the normal function of synaptic cell adhesion molecules by genetic variants as a risk for autism spectrum disorders.

    PubMed

    Baig, Deeba Noreen; Yanagawa, Toru; Tabuchi, Katsuhiko

    2017-03-01

    Synaptic cell adhesion molecules (SCAMs) are a functional category of cell adhesion molecules that connect pre- and postsynapses by the protein-protein interaction via their extracellular cell adhesion domains. Countless numbers of common genetic variants and rare mutations in SCAMs have been identified in the patients with autism spectrum disorders (ASDs). Among these, NRXN and NLGN family proteins cooperatively function at synaptic terminals both of which genes are strongly implicated as risk genes for ASDs. Knock-in mice carrying a single rare point mutation of NLGN3 (NLGN3 R451C) discovered in the patients with ASDs display a deficit in social interaction and an enhancement of spatial learning and memory ability reminiscent of the clinical phenotype of ASDs. NLGN4 knockout (KO) and NRXN2α KO mice also show a deficit in sociability as well as some specific neuropsychiatric behaviors. In this review, we selected NRXNs/NLGNs, CNTNAP2/CNTNAP4, CNTN4, ITGB3, and KIRREL3 as strong ASD risk genes based on SFARI score and summarize the protein structures, functions at synapses, representative discoveries in human genetic studies, and phenotypes of the mutant model mice in light of the pathophysiology of ASDs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Genome-Wide Analysis of DNA Methylation before-and after Exercise in the Thoroughbred Horse with MeDIP-Seq

    PubMed Central

    Gim, Jeong-An; Hong, Chang Pyo; Kim, Dae-Soo; Moon, Jae-Woo; Choi, Yuri; Eo, Jungwoo; Kwon, Yun-Jeong; Lee, Ja-Rang; Jung, Yi-Deun; Bae, Jin-Han; Choi, Bong-Hwan; Ko, Junsu; Song, Sanghoon; Ahn, Kung; Ha, Hong-Seok; Yang, Young Mok; Lee, Hak-Kyo; Park, Kyung-Do; Do, Kyoung-Tag; Han, Kyudong; Yi, Joo Mi; Cha, Hee-Jae; Ayarpadikannan, Selvam; Cho, Byung-Wook; Bhak, Jong; Kim, Heui-Soo

    2015-01-01

    Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethylated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits. PMID:25666347

  9. CRISPR/Cas9n-Mediated Deletion of the Snail 1Gene (SNAI1) Reveals Its Role in Regulating Cell Morphology, Cell-Cell Interactions, and Gene Expression in Ovarian Cancer (RMG-1) Cells.

    PubMed

    Haraguchi, Misako; Sato, Masahiro; Ozawa, Masayuki

    2015-01-01

    Snail1 is a transcription factor that induces the epithelial to mesenchymal transition (EMT). During EMT, epithelial cells lose their junctions, reorganize their cytoskeletons, and reprogram gene expression. Although Snail1 is a prominent repressor of E-cadherin transcription, its precise roles in each of the phenomena of EMT are not completely understood, particularly in cytoskeletal changes. Previous studies have employed gene knockdown systems to determine the functions of Snail1. However, incomplete protein knockdown is often associated with these systems, which may cause incorrect interpretation of the data. To more precisely evaluate the functions of Snail1, we generated a stable cell line with a targeted ablation of Snail1 (Snail1 KO) by using the CRISPR/Cas9n system. Snail1 KO cells show increased cell-cell adhesion, decreased cell-substrate adhesion and cell migration, changes to their cytoskeletal organization that include few stress fibers and abundant cortical actin, and upregulation of epithelial marker genes such as E-cadherin, occludin, and claudin-1. However, morphological changes were induced by treatment of Snail1 KO cells with TGF-beta. Other transcription factors that induce EMT were also induced by treatment with TGF-beta. The precise deletion of Snail1 by the CRISPR/Cas9n system provides clear evidence that loss of Snail1 causes changes in the actin cytoskeleton, decreases cell-substrate adhesion, and increases cell-cell adhesion. Treatment of RMG1 cells with TGF-beta suggests redundancy among the transcription factors that induce EMT.

  10. TAIL1: an isthmin-like gene, containing type 1 thrombospondin-repeat and AMOP domain, mapped to ARVD1 critical region.

    PubMed

    Rossi, Valeria; Beffagna, Giorgia; Rampazzo, Alessandra; Bauce, Barbara; Danieli, Gian Antonio

    2004-06-23

    Isthmins represent a novel family of vertebrate secreted proteins containing one copy of the thrombospondin type 1 repeat (TSR), which in mammals is shared by several proteins with diverse biological functions, including cell adhesion, angiogenesis, and patterning of developing nervous system. We have determined the genomic organization of human TAIL1 (thrombospondin and AMOP containing isthmin-like 1), a novel isthmin-like gene encoding a protein that contains a TSR and a C-terminal AMOP domain (adhesion-associated domain in MUC4 and other proteins), characteristic of extracellular proteins involved in adhesion processes. TAIL1 gene encompasses more than 24.4 kb. Analysis of the DNA sequence surrounding the putative transcriptional start region revealed a TATA-less promoter located in a CpG island. Several consensus binding sites for the transcription factors Sp1 and MZF-1 were identified in this promoter region. In humans, TAIL1 gene is located on chromosome 14q24.3 within ARVD1 (arrhythmogenic right ventricular dysplasia/cardiomyopathy, type 1) critical region; preliminary evidence suggests that it is expressed in several tissues, showing multiple alternative splicing.

  11. P-glycoprotein Mediates Postoperative Peritoneal Adhesion Formation by Enhancing Phosphorylation of the Chloride Channel-3

    PubMed Central

    Deng, Lulu; Li, Qin; Lin, Guixian; Huang, Dan; Zeng, Xuxin; Wang, Xinwei; Li, Ping; Jin, Xiaobao; Zhang, Haifeng; Li, Chunmei; Chen, Lixin; Wang, Liwei; Huang, Shulin; Shao, Hongwei; Xu, Bin; Mao, Jianwen

    2016-01-01

    P-glycoprotein (P-gp) is encoded by the multidrug resistance (MDR1) gene and is well studied as a multi-drug resistance transporter. Peritoneal adhesion formation following abdominal surgery remains an important clinical problem. Here, we found that P-gp was highly expressed in human adhesion fibroblasts and promoted peritoneal adhesion formation in a rodent model. Knockdown of P-gp expression by intraperitoneal injection of MDR1-targeted siRNA significantly reduced both the peritoneal adhesion development rate and adhesion grades. Additionally, we found that operative injury up-regulated P-gp expression in peritoneal fibroblasts through the TGF-β1/Smad signaling pathway and histone H3 acetylation. The overexpression of P-gp accelerated migration and proliferation of fibroblasts via volume-activated Cl- current and cell volume regulation by enhancing phosphorylation of the chloride channel-3. Therefore, P-gp plays a critical role in postoperative peritoneal adhesion formation and may be a valuable therapeutic target for preventing the formation of peritoneal adhesions. PMID:26877779

  12. Biological adhesion of the flatworm Macrostomum lignano relies on a duo-gland system and is mediated by a cell type-specific intermediate filament protein.

    PubMed

    Lengerer, Birgit; Pjeta, Robert; Wunderer, Julia; Rodrigues, Marcelo; Arbore, Roberto; Schärer, Lukas; Berezikov, Eugene; Hess, Michael W; Pfaller, Kristian; Egger, Bernhard; Obwegeser, Sabrina; Salvenmoser, Willi; Ladurner, Peter

    2014-02-12

    Free-living flatworms, in both marine and freshwater environments, are able to adhere to and release from a substrate several times within a second. This reversible adhesion relies on adhesive organs comprised of three cell types: an adhesive gland cell, a releasing gland cell, and an anchor cell, which is a modified epidermal cell responsible for structural support. However, nothing is currently known about the molecules that are involved in this adhesion process. In this study we present the detailed morphology of the adhesive organs of the free-living marine flatworm Macrostomum lignano. About 130 adhesive organs are located in a horse-shoe-shaped arc along the ventral side of the tail plate. Each organ consists of exactly three cells, an adhesive gland cell, a releasing gland cell, and an anchor cell. The necks of the two gland cells penetrate the anchor cell through a common pore. Modified microvilli of the anchor cell form a collar surrounding the necks of the adhesive- and releasing glands, jointly forming the papilla, the outer visible part of the adhesive organs. Next, we identified an intermediate filament (IF) gene, macif1, which is expressed in the anchor cells. RNA interference mediated knock-down resulted in the first experimentally induced non-adhesion phenotype in any marine animal. Specifically, the absence of intermediate filaments in the anchor cells led to papillae with open tips, a reduction of the cytoskeleton network, a decline in hemidesmosomal connections, and to shortened microvilli containing less actin. Our findings reveal an elaborate biological adhesion system in a free-living flatworm, which permits impressively rapid temporary adhesion-release performance in the marine environment. We demonstrate that the structural integrity of the supportive cell, the anchor cell, is essential for this adhesion process: the knock-down of the anchor cell-specific intermediate filament gene resulted in the inability of the animals to adhere. The RNAi mediated changes of the anchor cell morphology are comparable to situations observed in human gut epithelia. Therefore, our current findings and future investigations using this powerful flatworm model system might contribute to a better understanding of the function of intermediate filaments and their associated human diseases.

  13. Identification of ORF636 in phage phiSLT carrying Panton-Valentine leukocidin genes, acting as an adhesion protein for a poly(glycerophosphate) chain of lipoteichoic acid on the cell surface of Staphylococcus aureus.

    PubMed

    Kaneko, Jun; Narita-Yamada, Sachiko; Wakabayashi, Yukari; Kamio, Yoshiyuki

    2009-07-01

    The temperate phage phiSLT of Staphylococcus aureus carries genes for Panton-Valentine leukocidin. Here, we identify ORF636, a constituent of the phage tail tip structure, as a recognition/adhesion protein for a poly(glycerophosphate) chain of lipoteichoic acid on the cell surface of S. aureus. ORF636 bound specifically to S. aureus; it did not bind to any other staphylococcal species or to several gram-positive bacteria.

  14. Investigation of chitosan-phenolics systems as wood adhesives.

    PubMed

    Peshkova, Svetlana; Li, Kaichang

    2003-04-24

    Chitosan-phenolics systems were investigated as wood adhesives. Adhesion between two pieces of wood veneer developed only when all three components-chitosan, a phenolic compound, and laccase-were present. For the adhesive systems containing a phenolic compound with only one phenolic hydroxyl group, adhesive strengths were highly dependent upon the chemical structures of phenolic compounds used in the system and the relative oxidation rates of the phenolic compounds by laccase. The adhesive strengths were also directly related to the viscosity of the adhesive systems. However, for the adhesive systems containing a phenolic compound with two or three phenolic hydroxyl groups adjacent to each other, no correlations among adhesive strengths, relative oxidation rates of the phenolic compounds by laccase, and viscosities were observed. The adhesion mechanisms of these chitosan-phenolics systems were proposed to be similar to those of mussel adhesive proteins.

  15. Estrogenic modulation of inflammation-related genes in male rats following volume overload

    PubMed Central

    McLarty, Jennifer L.; Meléndez, Giselle C.; Levick, Scott P.; Bennett, Shanté; Sabo-Attwood, Tara; Brower, Gregory L.

    2012-01-01

    Our laboratory has previously reported significant increases of the proinflammatory cytokine TNF-α in male hearts secondary to sustained volume overload. These elevated levels of TNF-α are accompanied by left ventricular (LV) dilatation and cardiac dysfunction. In contrast, estrogen has been shown to protect against this adverse cardiac remodeling in both female and male rats. The purpose of this study was to determine whether estrogen has an effect on inflammation-related genes that contribute to this estrogen-mediated cardioprotection. Myocardial volume overload was induced by aortocaval fistula in 8 wk old male Sprague-Dawley rats (n = 30), and genes of interest were identified using an inflammatory PCR array in Sham, Fistula, and Fistula + Estrogen-treated (0.02 mg/kg per day beginning 2 wk prior to fistula) groups. A total of 55 inflammatory genes were modified (≥2-fold change) at 3 days postfistula. The number of inflammatory gene was reduced to 21 genes by estrogen treatment, whereas 13 genes were comparably modulated in both fistula groups. The most notable were TNF-α, which was downregulated by estrogen, and the TNF-α receptors, which were differentially regulated by estrogen. Specific genes related to arachidonic acid metabolism were downregulated by estrogen, including cyclooxygenase-1 and -2. Finally, gene expression for the β1-integrin cell adhesion subunit was significantly upregulated in the LV of estrogen-treated animals. Protein levels reflected the changes observed at the gene level. These data suggest that estrogen provides its cardioprotective effects, at least in part, via genomic modulation of numerous inflammation-related genes. PMID:22274565

  16. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression.

    PubMed Central

    Gerritsen, M. E.; Carley, W. W.; Ranges, G. E.; Shen, C. P.; Phan, S. A.; Ligon, G. F.; Perry, C. A.

    1995-01-01

    Treatment of human endothelial cells with cytokines such as interleukin-1, tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma induces the expression of specific leukocyte adhesion molecules on the endothelial cell surface. Interfering with either leukocyte adhesion or adhesion protein upregulation is an important therapeutic target as evidenced by the potent anti-inflammatory actions of neutralizing antibodies to these ligands in various animal models and in patients. In the present study we report that cotreatment of human endothelial cells with certain hydroxyflavones and flavanols blocks cytokine-induced ICAM-1, VCAM-1, and E-selectin expression on human endothelial cells. One of the most potent flavones, apigenin, exhibited a dose- and time-dependent, reversible effect on adhesion protein expression as well as inhibiting adhesion protein upregulation at the transcriptional level. Apigenin also inhibited IL-1 alpha-induced prostaglandin synthesis and TNF-alpha-induced IL-6 and IL-8 production, suggesting that the hydroxyflavones may act as general inhibitors of cytokine-induced gene expression. Although apigenin did not inhibit TNF-alpha-induced nuclear translocation of NF-kappa B(p50(NFKB1)/p65(RelA)) we found this flavonoid did inhibit TNF-alpha induced beta-galactosidase activity in SW480 cells stably transfected with a beta-galactosidase reporter construct driven by four NF-kappa B elements, suggesting an action on NF-kappa B transcriptional activation. Adhesion of leukocytes to cytokine-treated endothelial cells was blocked in endothelial cells cotreated with apigenin. Finally, apigenin demonstrated potent anti-inflammatory activity in carrageenan induced rat paw edema and delayed type hypersensitivity in the mouse. We conclude that flavonoids offer important therapeutic potential for the treatment of a variety of inflammatory diseases involving an increase in leukocyte adhesion and trafficking. Images Figure 7 Figure 8 Figure 11 PMID:7543732

  17. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans.

    PubMed

    Sun, Lingmei; Liao, Kai; Wang, Dayong

    2015-01-01

    The first step in infection by Candida albicans is adhesion to host cells or implanted medical devices and this followed by hyphal growth and biofilm formation. Yeast-to-hyphal transition has long been identified as a key factor in fungal virulence. Following biofilm formation, C. albicans is usually less sensitive or insensitive to antifungals. Therefore, development of new antifungals with inhibitory action on adhesion, yeast-hyphal transition and biofilm formation by C. albicans is very necessary. The effects of magnolol and honokiol on hypha growth were investigated using different induction media. Their inhibitory effects were determined using the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5- carboxanilide assay, and biofilm thickness and viability were observed by a confocal scanning laser microscope. Mammalian cells were used in adhesion assays. Genes related to hyphae development and cell adhesions were analyzed by real-time reverse transcription-polymerase chain reaction. The exogenous cyclic adenosine monophosphate was used to determine the mechanisms of action of magnolol and honokiol. Caenorhabditis elegans was used as an in vivo model to estimate the antifungal activities of magnolol and honokiol. Magnolol and honokiol inhibited adhesion, the transition from yeast to hypha, and biofilm formation by C. albicans through the Ras1-cAMP-Efg1 pathway. Moreover, magnolol and honokiol prolonged the survival of nematodes infected by C. albicans. Magnolol and honokiol have potential inhibitory effects against biofilm formation by C. albicans. This study provides useful information towards the development of new strategies to reduce the incidence of C. albicans biofilm-associated infection.

  18. Rapamycin promotes differentiation increasing βIII-tubulin, NeuN, and NeuroD while suppressing nestin expression in glioblastoma cells

    PubMed Central

    Lenzi, Paola; Gambardella, Stefano; Ferese, Rosangela; Calierno, Maria Teresa; Falleni, Alessandra; Grimaldi, Alfonso; Frati, Alessandro; Esposito, Vincenzo; Limatola, Cristina; Fornai, Francesco

    2017-01-01

    Glioblastoma cells feature mammalian target of rapamycin (mTOR) up-regulation which relates to a variety of effects such as: lower survival, higher infiltration, high stemness and radio- and chemo-resistance. Recently, it was demonstrated that mTOR may produce a gene shift leading to altered protein expression. Therefore, in the present study we administered different doses of the mTOR inhibitor rapamycin to explore whether the transcription of specific genes are modified. By using a variety of methods we demonstrate that rapamycin stimulates gene transcription related to neuronal differentiation while inhibiting stemness related genes such as nestin. In these experimental conditions, cell phenotype shifts towards a pyramidal neuron-like shape owing long branches. Rapamycin suppressed cell migration when exposed to fetal bovine serum (FBS) while increasing the cell adhesion protein phospho-FAK (pFAK). The present study improves our awareness of basic mechanisms which relate mTOR activity to the biology of glioblastoma cells. These findings apply to a variety of effects which can be induced by mTOR regulation in the brain. In fact, the ability to promote neuronal differentiation might be viewed as a novel therapeutic pathway to approach neuronal regeneration. PMID:28418837

  19. Rapamycin promotes differentiation increasing βIII-tubulin, NeuN, and NeuroD while suppressing nestin expression in glioblastoma cells.

    PubMed

    Ferrucci, Michela; Biagioni, Francesca; Lenzi, Paola; Gambardella, Stefano; Ferese, Rosangela; Calierno, Maria Teresa; Falleni, Alessandra; Grimaldi, Alfonso; Frati, Alessandro; Esposito, Vincenzo; Limatola, Cristina; Fornai, Francesco

    2017-05-02

    Glioblastoma cells feature mammalian target of rapamycin (mTOR) up-regulation which relates to a variety of effects such as: lower survival, higher infiltration, high stemness and radio- and chemo-resistance. Recently, it was demonstrated that mTOR may produce a gene shift leading to altered protein expression. Therefore, in the present study we administered different doses of the mTOR inhibitor rapamycin to explore whether the transcription of specific genes are modified. By using a variety of methods we demonstrate that rapamycin stimulates gene transcription related to neuronal differentiation while inhibiting stemness related genes such as nestin. In these experimental conditions, cell phenotype shifts towards a pyramidal neuron-like shape owing long branches. Rapamycin suppressed cell migration when exposed to fetal bovine serum (FBS) while increasing the cell adhesion protein phospho-FAK (pFAK). The present study improves our awareness of basic mechanisms which relate mTOR activity to the biology of glioblastoma cells. These findings apply to a variety of effects which can be induced by mTOR regulation in the brain. In fact, the ability to promote neuronal differentiation might be viewed as a novel therapeutic pathway to approach neuronal regeneration.

  20. A Strontium-Modified Titanium Surface Produced by a New Method and Its Biocompatibility In Vitro

    PubMed Central

    Liu, Chundong; Zhang, Yanli; Wang, Lichao; Zhang, Xinhua; Chen, Qiuyue; Wu, Buling

    2015-01-01

    Objective To present a new and effective method of producing titanium surfaces modified with strontium and to investigate the surface characteristics and in vitro biocompatibility of titanium (Ti) surfaces modified with strontium (Sr) for bone implant applications. Materials and Methods Sr-modified Ti surfaces were produced by sequential treatments with NaOH, strontium acetate, heat and water. The surface characteristics and the concentration of the Sr ions released from the samples were examined. Cell adhesion, morphology and growth were investigated using osteoblasts isolated from the calvaria of neonatal Sprague-Dawley rats. Expression of osteogenesis-related genes and proteins was examined to assess the effect of the Sr-modified Ti surfaces on osteoblasts. Results The modified titanium surface had a mesh structure with significantly greater porosity, and approximately5.37±0.35at.% of Sr was incorporated into the surface. The hydrophilicity was enhanced by the incorporation of Sr ions and water treatment. The average amounts of Sr released from the Sr-modified plates subjected to water treatment were slight higher than the plates without water treatment. Sr promoted cellular adhesion, spreading and growth compared with untreated Ti surfaces. The Sr-modified Ti plates also promoted expression of osteogenesis-related genes,and expression of OPN and COL-І by osteoblasts. Ti plates heat treated at 700°C showed increased bioactivity in comparison with those treated at 600°C. Water treatment upregulated the expression of osteogenesis-related genes. Conclusions These results show that Sr-modification of Ti surfaces may improve bioactivity in vitro. Water treatment has enhanced the response of osteoblasts. The Sr-modified Ti heat-treated at 700°C exhibited better bioactivity compared with that heated at 600°C. PMID:26529234

  1. A Strontium-Modified Titanium Surface Produced by a New Method and Its Biocompatibility In Vitro.

    PubMed

    Liu, Chundong; Zhang, Yanli; Wang, Lichao; Zhang, Xinhua; Chen, Qiuyue; Wu, Buling

    2015-01-01

    To present a new and effective method of producing titanium surfaces modified with strontium and to investigate the surface characteristics and in vitro biocompatibility of titanium (Ti) surfaces modified with strontium (Sr) for bone implant applications. Sr-modified Ti surfaces were produced by sequential treatments with NaOH, strontium acetate, heat and water. The surface characteristics and the concentration of the Sr ions released from the samples were examined. Cell adhesion, morphology and growth were investigated using osteoblasts isolated from the calvaria of neonatal Sprague-Dawley rats. Expression of osteogenesis-related genes and proteins was examined to assess the effect of the Sr-modified Ti surfaces on osteoblasts. The modified titanium surface had a mesh structure with significantly greater porosity, and approximately5.37±0.35at.% of Sr was incorporated into the surface. The hydrophilicity was enhanced by the incorporation of Sr ions and water treatment. The average amounts of Sr released from the Sr-modified plates subjected to water treatment were slight higher than the plates without water treatment. Sr promoted cellular adhesion, spreading and growth compared with untreated Ti surfaces. The Sr-modified Ti plates also promoted expression of osteogenesis-related genes,and expression of OPN and COL-І by osteoblasts. Ti plates heat treated at 700°C showed increased bioactivity in comparison with those treated at 600°C. Water treatment upregulated the expression of osteogenesis-related genes. These results show that Sr-modification of Ti surfaces may improve bioactivity in vitro. Water treatment has enhanced the response of osteoblasts. The Sr-modified Ti heat-treated at 700°C exhibited better bioactivity compared with that heated at 600°C.

  2. The expression and activity of thioredoxin reductase 1 splice variants v1 and v2 regulate the expression of genes associated with differentiation and adhesion

    PubMed Central

    Nalvarte, Ivan; Damdimopoulos, Anastasios E.; Rüegg, Joëlle; Spyrou, Giannis

    2015-01-01

    The mammalian redox-active selenoprotein thioredoxin reductase (TrxR1) is a main player in redox homoeostasis. It transfers electrons from NADPH to a large variety of substrates, particularly to those containing redox-active cysteines. Previously, we reported that the classical form of cytosolic TrxR1 (TXNRD1_v1), when overexpressed in human embryonic kidney cells (HEK-293), prompted the cells to undergo differentiation [Nalvarte et al. (2004) J. Biol. Chem. 279, 54510–54517]. In the present study, we show that several genes associated with differentiation and adhesion are differentially expressed in HEK-293 cells stably overexpressing TXNRD1_v1 compared with cells expressing its splice variant TXNRD1_v2. Overexpression of these two splice forms resulted in distinctive effects on various aspects of cellular functions including gene regulation patterns, alteration of growth rate, migration and morphology and susceptibility to selenium-induced toxicity. Furthermore, differentiation of the neuroblastoma cell line SH-SY5Y induced by all-trans retinoic acid (ATRA) increased both TXNRD1_v1 and TXNRD1_v2 expressions along with several of the identified genes associated with differentiation and adhesion. Selenium supplementation in the SH-SY5Y cells also induced a differentiated morphology and changed expression of the adhesion protein fibronectin 1 and the differentiation marker cadherin 11, as well as different temporal expression of the studied TXNRD1 variants. These data suggest that both TXNRD1_v1 and TXNRD1_v2 have distinct roles in differentiation, possibly by altering the expression of the genes associated with differentiation, and further emphasize the importance in distinguishing each unique action of different TrxR1 splice forms, especially when studying the gene silencing or knockout of TrxR1. PMID:26464515

  3. Interspecific and host-related gene expression patterns in nematode-trapping fungi.

    PubMed

    Andersson, Karl-Magnus; Kumar, Dharmendra; Bentzer, Johan; Friman, Eva; Ahrén, Dag; Tunlid, Anders

    2014-11-11

    Nematode-trapping fungi are soil-living fungi that capture and kill nematodes using special hyphal structures called traps. They display a large diversity of trapping mechanisms and differ in their host preferences. To provide insights into the genetic basis for this variation, we compared the transcriptome expressed by three species of nematode-trapping fungi (Arthrobotrys oligospora, Monacrosporium cionopagum and Arthrobotrys dactyloides, which use adhesive nets, adhesive branches or constricting rings, respectively, to trap nematodes) during infection of two different plant-pathogenic nematode hosts (the root knot nematode Meloidogyne hapla and the sugar beet cyst nematode Heterodera schachtii). The divergence in gene expression between the fungi was significantly larger than that related to the nematode species being infected. Transcripts predicted to encode secreted proteins and proteins with unknown function (orphans) were overrepresented among the highly expressed transcripts in all fungi. Genes that were highly expressed in all fungi encoded endopeptidases, such as subtilisins and aspartic proteases; cell-surface proteins containing the carbohydrate-binding domain WSC; stress response proteins; membrane transporters; transcription factors; and transcripts containing the Ricin-B lectin domain. Differentially expressed transcripts among the fungal species encoded various lectins, such as the fungal fruit-body lectin and the D-mannose binding lectin; transcription factors; cell-signaling components; proteins containing a WSC domain; and proteins containing a DUF3129 domain. A small set of transcripts were differentially expressed in infections of different host nematodes, including peptidases, WSC domain proteins, tyrosinases, and small secreted proteins with unknown function. This is the first study on the variation of infection-related gene expression patterns in nematode-trapping fungi infecting different host species. A better understanding of these patterns will facilitate the improvements of these fungi in biological control programs, by providing molecular markers for screening programs and candidates for genetic manipulations of virulence and host preferences.

  4. Characterization and comparative analyses of transcriptomes for in vivo and in vitro produced peri-implantation conceptuses and endometria from sheep

    PubMed Central

    WEI, Xia; XIAOLING, Zhang; KAI, Miao; RUI, Wang; JING, Xu; MIN, Guo; ZHONGHONG, Wu; JIANHUI, Tian; XINYU, Zhang; LEI, An

    2016-01-01

    An increasing number of reports indicate that in vitro fertilization (IVF) is highly associated with long‑term side effects on embryonic and postnatal development, and can sometimes result in embryonic implant failure. While high‑throughput gene expression analysis has been used to explore the mechanisms underlying IVF-induced side effects on embryonic development, little is known about the effects of IVF on conceptus–endometrial interactions during the peri-implantation period. Using sheep as a model, we performed a comparative transcriptome analysis between in vivo (IVO; in vivo fertilized followed by further development in the uterus) and in vitro produced (IVP; IVF with further culture in the incubator) conceptuses, and the caruncular and intercaruncular areas of the ovine endometrium. We identified several genes that were differentially expressed between the IVO and IVP groups on day 17, when adhesion between the trophoblast and the uterine luminal epithelium begins in sheep. By performing Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, we found that, in the conceptus, differentially expressed genes (DEGs) were associated mainly with functions relating to cell binding and the cell cycle. In the endometrial caruncular area, DEGs were involved in cell adhesion/migration and apoptosis, and in the intercaruncular area, they were significantly enriched in pathways of signal transduction and transport. Thus, these DEGs are potential candidates for further exploring the mechanism underlying IVF/IVP-induced embryonic implant failure that occurs due to a loss of interaction between the conceptus and endometrium during the peri-implantation period. PMID:26946921

  5. Characterization and complete genome sequences of L. rhamnosus DSM 14870 and L. gasseri DSM 14869 contained in the EcoVag® probiotic vaginal capsules.

    PubMed

    Marcotte, Harold; Krogh Andersen, Kasper; Lin, Yin; Zuo, Fanglei; Zeng, Zhu; Larsson, Per Göran; Brandsborg, Erik; Brønstad, Gunnar; Hammarström, Lennart

    2017-12-01

    Lactobacillus rhamnosus DSM 14870 and Lactobacillus gasseri DSM 14869 were previously isolated from the vaginal epithelial cells (VEC) of healthy women and selected for the development of the vaginal EcoVag ® probiotic capsules. EcoVag ® was subsequently shown to provide long-term cure and reduce relapse of bacterial vaginosis (BV) as an adjunct to antibiotic therapy. To identify genes potentially involved in probiotic activity, we performed genome sequencing and characterization of the two strains. The complete genome analysis of both strains revealed the presence of genes encoding functions related to adhesion, exopolysaccharide (EPS) biosynthesis, antimicrobial activity, and CRISPR adaptive immunity but absence of antibiotic resistance genes. Interesting features of L. rhamnosus DSM 14870 genome include the presence of the spaCBA-srtC gene encoding spaCBA pili and interruption of the gene cluster encoding long galactose-rich EPS by integrases. Unique to L. gasseri DSM 14869 genome was the presence of a gene encoding a putative (1456 amino acid) new adhesin containing two rib/alpha-like repeats. L. rhamnosus DSM 14870 and L. gasseri DSM 14869 showed acidification of the culture medium (to pH 3.8) and a strong adhesion capability to the Caco-2 cell line and VEC. L. gasseri DSM 14869 could produce a thick (40nm) EPS layer and hydrogen peroxide. L. rhamnosus DSM 14870 was shown to produce SpaCBA pili and a 20nm EPS layer, and could inhibit the growth of Gardnerella vaginalis, a bacterium commonly associated with BV. The genome sequences provide a basis for further elucidation of the molecular basis for their probiotic functions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. ADHESION AND POLLUTION PARTICLE-INDUCED OXIDANT GENERATION IS NEITHER NECESSARY NOR SUFFICIENT FOR CYTOKINE INDUCTION IN HUMAN ALVEOLAR MACROPHAGES

    EPA Science Inventory

    Adhesion of human monocytes (MOs) results in the rapid transcriptional activation of cytokine genes that are dependent on nuclear factor (NF)-kappaB. Several pathways leading to activation of NF-kappaB have been described, including those involving reactive oxygen intermediates (...

  7. Comparative genome analysis of Prevotella intermedia strain isolated from infected root canal reveals features related to pathogenicity and adaptation.

    PubMed

    Ruan, Yunfeng; Shen, Lu; Zou, Yan; Qi, Zhengnan; Yin, Jun; Jiang, Jie; Guo, Liang; He, Lin; Chen, Zijiang; Tang, Zisheng; Qin, Shengying

    2015-02-25

    Many species of the genus Prevotella are pathogens that cause oral diseases. Prevotella intermedia is known to cause various oral disorders e.g. periodontal disease, periapical periodontitis and noma as well as colonize in the respiratory tract and be associated with cystic fibrosis and chronic bronchitis. It is of clinical significance to identify the main drive of its various adaptation and pathogenicity. In order to explore the intra-species genetic differences among strains of Prevotella intermedia of different niches, we isolated a strain Prevotella intermedia ZT from the infected root canal of a Chinese patient with periapical periodontitis and gained a draft genome sequence. We annotated the genome and compared it with the genomes of other taxa in the genus Prevotella. The raw data set, consisting of approximately 65X-coverage reads, was trimmed and assembled into contigs from which 2165 ORFs were predicted. The comparison of the Prevotella intermedia ZT genome sequence with the published genome sequence of Prevotella intermedia 17 and Prevotella intermedia ATCC25611 revealed that ~14% of the genes were strain-specific. The Preveotella intermedia strains share a set of conserved genes contributing to its adaptation and pathogenic and possess strain-specific genes especially those involved in adhesion and secreting bacteriocin. The Prevotella intermedia ZT shares similar gene content with other taxa of genus Prevotella. The genomes of the genus Prevotella is highly dynamic with relative conserved parts: on average, about half of the genes in one Prevotella genome were not included in another genome of the different Prevotella species. The degree of conservation varied with different pathways: the ability of amino acid biosynthesis varied greatly with species but the pathway of cell wall components biosynthesis were nearly constant. Phylogenetic tree shows that the taxa from different niches are scarcely distributed among clades. Prevotella intermedia ZT belongs to a genus marked with highly dynamic genomes. The specific genes of Prevotella intermedia indicate that adhesion, competing with surrounding microbes and horizontal gene transfer are the main drive of the evolution of Prevotella intermedia.

  8. Comparing the transcriptomes of embryos from domesticated and wild Atlantic salmon (Salmo salar L.) stocks and examining factors that influence heritability of gene expression.

    PubMed

    Bicskei, Beatrix; Taggart, John B; Glover, Kevin A; Bron, James E

    2016-03-17

    Due to selective breeding, domesticated and wild Atlantic salmon are genetically diverged, which raises concerns about farmed escapees having the potential to alter the genetic composition of wild populations and thereby disrupting local adaptation. Documenting transcriptional differences between wild and domesticated stocks under controlled conditions is one way to explore the consequences of domestication and selection. We compared the transcriptomes of wild and domesticated Atlantic salmon embryos, by using a custom 44k oligonucleotide microarray to identify perturbed gene pathways between the two stocks, and to document the inheritance patterns of differentially-expressed genes by examining gene expression in their reciprocal hybrids. Data from 24 array interrogations were analysed: four reciprocal cross types (W♀ × W♂, D♀ × W♂; W♀ × D♂, D♀ × D♂) × six biological replicates. A common set of 31,491 features on the microarrays passed quality control, of which about 62 % were assigned a KEGG Orthology number. A total of 6037 distinct genes were identified for gene-set enrichment/pathway analysis. The most highly enriched functional groups that were perturbed between the two stocks were cellular signalling and immune system, ribosome and RNA transport, and focal adhesion and gap junction pathways, relating to cell communication and cell adhesion molecules. Most transcripts that were differentially expressed between the stocks were governed by additive gene interaction (33 to 42 %). Maternal dominance and over-dominance were also prevalent modes of inheritance, with no convincing evidence for a stock effect. Our data indicate that even at this relatively early developmental stage, transcriptional differences exist between the two stocks and affect pathways that are relevant to wild versus domesticated environments. Many of the identified differentially perturbed pathways are involved in organogenesis, which is expected to be an active process at the eyed egg stage. The dominant effects are more largely due to the maternal line than to the origin of the stock. This finding is particularly relevant in the context of potential introgression between farmed and wild fish, since female escapees tend to have a higher spawning success rate compared to males.

  9. Differences in elasticity of vinculin-deficient F9 cells measured by magnetometry and atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Goldmann, W. H.; Galneder, R.; Ludwig, M.; Xu, W.; Adamson, E. D.; Wang, N.; Ezzell, R. M.; Ingber, D. E. (Principal Investigator)

    1998-01-01

    We have investigated a mouse F9 embryonic carcinoma cell line, in which both vinculin genes were inactivated by homologous recombination, that exhibits defective adhesion and spreading [Coll et al. (1995) Proc. Natl. Acad. Sci. USA 92, 9161-9165]. Using a magnetometer and RGD-coated magnetic microbeads, we measured the local effect of loss and replacement of vinculin on mechanical force transfer across integrins. Vinculin-deficient F9Vin(-/-) cells showed a 21% difference in relative stiffness compared to wild-type cells. This was restored to near wild-type levels after transfection and constitutive expression of increasing amounts of vinculin into F9Vin(-/-) cells. In contrast, the transfection of vinculin constructs deficient in amino acids 1-288 (containing the talin- and alpha-actinin-binding site) or substituting tyrosine for phenylalanine (phosphorylation site, amino acid 822) in F9Vin(-/-) cells resulted in partial restoration of stiffness. Using atomic force microscopy to map the relative elasticity of entire F9 cells by 128 x 128 (n = 16,384) force scans, we observed a correlation with magnetometer measurements. These findings suggest that vinculin may promote cell adhesions and spreading by stabilizing focal adhesions and transferring mechanical stresses that drive cytoskeletal remodeling, thereby affecting the elastic properties of the cell.

  10. Biphasic influence of Miz1 on neural crest development by regulating cell survival and apical adhesion complex formation in the developing neural tube

    PubMed Central

    Kerosuo, Laura; Bronner, Marianne E.

    2014-01-01

    Myc interacting zinc finger protein-1 (Miz1) is a transcription factor known to regulate cell cycle– and cell adhesion–related genes in cancer. Here we show that Miz1 also plays a critical role in neural crest development. In the chick, Miz1 is expressed throughout the neural plate and closing neural tube. Its morpholino-mediated knockdown affects neural crest precursor survival, leading to reduction of neural plate border and neural crest specifier genes Msx-1, Pax7, FoxD3, and Sox10. Of interest, Miz1 loss also causes marked reduction of adhesion molecules (N-cadherin, cadherin6B, and α1-catenin) with a concomitant increase of E-cadherin in the neural folds, likely leading to delayed and decreased neural crest emigration. Conversely, Miz1 overexpression results in up-regulation of cadherin6B and FoxD3 expression in the neural folds/neural tube, leading to premature neural crest emigration and increased number of migratory crest cells. Although Miz1 loss effects cell survival and proliferation throughout the neural plate, the neural progenitor marker Sox2 was unaffected, suggesting a neural crest–selective effect. The results suggest that Miz1 is important not only for survival of neural crest precursors, but also for maintenance of integrity of the neural folds and tube, via correct formation of the apical adhesion complex therein. PMID:24307680

  11. 49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When..., paint-related material, adhesives, ink and resins must be packaged as follows: (1) As prescribed in...

  12. 49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When..., paint-related material, adhesives, ink and resins must be packaged as follows: (1) As prescribed in...

  13. 49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When..., paint-related material, adhesives, ink and resins must be packaged as follows: (1) As prescribed in...

  14. 49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When..., paint-related material, adhesives, ink and resins must be packaged as follows: (1) As prescribed in...

  15. 49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When..., paint-related material, adhesives, ink and resins must be packaged as follows: (1) As prescribed in...

  16. Molecular and functional characterization of a Taenia adhesion gene family (TAF) encoding potential protective antigens of Taenia saginata oncospheres.

    PubMed

    Gonzalez, Luis Miguel; Bonay, Pedro; Benitez, Laura; Ferrer, Elizabeth; Harrison, Leslie J S; Parkhouse, R Michael E; Garate, Teresa

    2007-02-01

    Two clones from an activated Taenia saginata oncosphere cDNA library, Ts45W and Ts45S, were isolated and sequenced. Both of these genes belong to the Taenia ovis 45W gene family. The Ts45W and Ts45S cDNAs are 997- and 1,004-bp-long, each corresponding to 255 amino acids and with theoretical molecular masses of 27.8 and 27.7 kDa, respectively. Southern blot profiles obtained with Ts45W cDNA as a probe suggest that these two genes are members of a multigene family with tandem organization. The full genomic sequence was determined for the Ts45W gene and a new family member, the Ts45W/2 gene. The genomic sequences of the T. saginata Ts45W and Ts45W/2 genes were at least 2.2 kb in length with four exons separated by three introns. Exons 1 and 4 coded for hydrophobic domains, while, importantly, exons 2 and 3 coded for fibronectin homologous domains. These domains are presumably responsible for the demonstrated cell adhesion and, perhaps, the protective nature of this family of molecules and the acronym TAF (Taenia adhesion family) is proposed for this group of genes. We hypothesize that these TAF proteins and another T. saginata-protective antigen, HP6, have evolved the dual functions of facilitating tissue invasion and stimulating protective immunity to first ensure primary infection and subsequently to establish a concomitant protective immunity to protect the host from death or debilitation through superinfection by subsequent infections and thus help ensure parasite survival.

  17. Cell-cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis.

    PubMed

    Magie, Craig R; Martindale, Mark Q

    2008-06-01

    Cell adhesion is a major aspect of cell biology and one of the fundamental processes involved in the development of a multicellular animal. Adhesive mechanisms, both cell-cell and between cell and extracellular matrix, are intimately involved in assembling cells into the three-dimensional structures of tissues and organs. The modulation of adhesive complexes could therefore be seen as a central component in the molecular control of morphogenesis, translating information encoded within the genome into organismal form. The availability of whole genomes from early-branching metazoa such as cnidarians is providing important insights into the evolution of adhesive processes by allowing for the easy identification of the genes involved in adhesion in these organisms. Discovery of the molecular nature of cell adhesion in the early-branching groups, coupled with comparisons across the metazoa, is revealing the ways evolution has tinkered with this vital cellular process in the generation of the myriad forms seen across the animal kingdom.

  18. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    PubMed

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  19. Exosomes from iPSCs Delivering siRNA Attenuate Intracellular Adhesion Molecule-1 Expression and Neutrophils Adhesion in Pulmonary Microvascular Endothelial Cells.

    PubMed

    Ju, Zhihai; Ma, Jinhui; Wang, Chen; Yu, Jie; Qiao, Yeru; Hei, Feilong

    2017-04-01

    The pro-inflammatory activation of pulmonary microvascular endothelial cells resulting in continuous expression of cellular adhesion molecules, and subsequently recruiting primed neutrophils to form a firm neutrophils-endothelium (PMN-EC) adhesion, has been examined and found to play a vital role in acute lung injury (ALI). RNA interference (RNAi) is a cellular process through harnessing a natural pathway silencing target gene based on recognition and subsequent degradation of specific mRNA sequences. It opens a promising approach for precision medicine. However, this application was hampered by many obstacles, such as immunogenicity, instability, toxicity problems, and difficulty in across the biological membrane. In this study, we reprogrammed urine exfoliated renal epithelial cells into human induced pluripotent stem cells (huiPSCs) and purified the exosomes (Exo) from huiPSCs as RNAi delivery system. Through choosing the episomal system to deliver transcription factors, we obtained a non-integrating huiPSCs. Experiments in both vitro and vivo demonstrated that these huiPSCs possess the pluripotent properties. The exosomes of huiPSCs isolated by differential centrifugation were visualized by transmission electron microscopy (TEM) showing a typical exosomal appearance with an average diameter of 122 nm. Immunoblotting confirmed the presence of the typical exosomal markers, including CD63, TSG 101, and Alix. Co-cultured PKH26-labeled exosomes with human primary pulmonary microvascular endothelial cells (HMVECs) confirmed that they could be internalized by recipient cells at a time-dependent manner. Then, electroporation was used to introduce siRNA against intercellular adhesion molecule-1 (ICAM-1) into exosomes to form an Exo/siRNA compound. The Exo/siRNA compound efficiently delivered the target siRNA into HMVECs causing selective gene silencing, inhibiting the ICAM-1 protein expression, and PMN-EC adhesion induced by lipopolysaccharide (LPS). These data suggest that huiPSCs exosomes could be used as a natural gene delivery vector to transport therapeutic siRNAs for alleviating inflammatory responses in recipient cells.

  20. Structural Analysis of the Synaptic Protein Neuroligin and Its β-Neurexin Complex: Determinants for Folding and Cell Adhesion

    PubMed Central

    Fabrichny, Igor P.; Leone, Philippe; Sulzenbacher, Gerlind; Comoletti, Davide; Miller, Meghan T.; Taylor, Palmer; Bourne, Yves; Marchot, Pascale

    2009-01-01

    SUMMARY The neuroligins are postsynaptic cell adhesion proteins whose associations with presynaptic neurexins participate in synaptogenesis. Mutations in the neuroligin and neurexin genes appear to be associated with autism and mental retardation. The crystal structure of a neuroligin reveals features not found in its catalytically active relatives, such as the fully hydrophobic interface forming the functional neuroligin dimer; the conformations of surface loops surrounding the vestigial active center; the location of determinants that are critical for folding and processing; and the absence of a macromolecular dipole and presence of an electronegative, hydrophilic surface for neurexin binding. The structure of a β-neurexin-neuroligin complex reveals the precise orientation of the bound neurexin and, despite a limited resolution, provides substantial information on the Ca2+-dependent interactions network involved in trans-synaptic neurexin-neuroligin association. These structures exemplify how an α/β-hydrolase fold varies in surface topography to confer adhesion properties and provide templates for analyzing abnormal processing or recognition events associated with autism. PMID:18093521

  1. Anthocyanins and their gut metabolites reduce the adhesion of monocyte to TNFα-activated endothelial cells at physiologically relevant concentrations.

    PubMed

    Krga, Irena; Monfoulet, Laurent-Emmanuel; Konic-Ristic, Aleksandra; Mercier, Sylvie; Glibetic, Maria; Morand, Christine; Milenkovic, Dragan

    2016-06-01

    An increasing number of evidence suggests a protective role of dietary anthocyanins against cardiovascular diseases. Anthocyanins' extensive metabolism indicates that their metabolites could be responsible for the protective effects associated with consumption of anthocyanin-rich foods. The aim of this work was to investigate the effect of plasma anthocyanins and their metabolites on the adhesion of monocytes to TNFα-activated endothelial cells and on the expression of genes encoding cell adhesion molecules. Human umbilical vein endothelial cells (HUVECs) were exposed to circulating anthocyanins: cyanidin-3-arabinoside, cyanidin-3-galactoside, cyanidin-3-glucoside, delphinidin-3-glucoside, peonidin-3-glucoside, anthocyanin degradation product: 4-hydroxybenzaldehyde, or to their gut metabolites: protocatechuic, vanillic, ferulic and hippuric acid, at physiologically-relevant concentrations (0.1-2 μM) and time of exposure. Both anthocyanins and gut metabolites decreased the adhesion of monocytes to HUVECs, with a magnitude ranging from 18.1% to 47%. The mixture of anthocyanins and that of gut metabolites also reduced monocyte adhesion. However, no significant effect on the expression of genes encoding E-selectin, ICAM1 and VCAM1 was observed, suggesting that other molecular targets are involved in the observed effect. In conclusion, this study showed the potency of anthocyanins and their gut metabolites to modulate the adhesion of monocytes to endothelial cells, the initial step in atherosclerosis development, under physiologically-relevant conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. New domains of neural cell-adhesion molecule L1 implicated in X-linked hydrocephalus and MASA syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouet, M.; Kenwick, S.; Moncla, A.

    1995-06-01

    The neural cell-adhesion molecule L1 is involved in intercellular recognition and neuronal migration in the CNS. Recently, we have shown that mutations in the gene encoding L1 are responsible for three related disorders; X-linked hydrocephalus, MASA (mental retardation, aphasia, shuffling gait, and adducted thumbs) syndrome, and spastic paraplegia type I (SPG1). These three disorders represent a clinical spectrum that varies not only between families but sometimes also within families. To date, 14 independent L1 mutations have been reported and shown to be disease causing. Here we report nine novel L1 mutations in X-linked hydrocephalus and MASA-syndrome families, including the firstmore » examples of mutations affecting the fibronectin type III domains of the molecule. They are discussed in relation both to phenotypes and to the insights that they provide into L1 function. 39 refs., 5 figs., 3 tabs.« less

  3. Nanobiotechnology Perspectives on Prevention and Treatment of Ortho-paedic Implant Associated Infection.

    PubMed

    Borse, Vivek; Pawar, Vaishali; Shetty, Gautam; Mullaji, Arun; Srivastava, Rohit

    2016-01-01

    Implants are an inevitable part of orthopaedic surgery. However, implant associated infection remains a major challenge for orthopaedic surgeons and researchers. This review focuses on current options available for prevention of implant associated infection, their drawbacks and future promising applications of nanotechnology-based approaches. Nanobiotechnology has shown remarkable progress in recent years especially in biomaterials, diagnostics, and drug delivery system. Although several applications of nanobiotechnology in orthopaedics have been described, few have elaborated their role in the prevention of implant related infection in orthopaedics. Novel "smart" drug delivery systems that release antibiotics locally in response to stimuli such as pH, temperature, enzymes or antigens; implant surface modification on a nanoscale to inhibit bacterial adhesion and propagation at the surgical site and biological approaches such as gene therapy to neutralize bacterial virulence and biomolecules to inhibit the quorum sensing adhesion of bacteria and disruption of biofilms can be used effectively to prevent orthopaedic implant related bacterial infection.

  4. Identification of ORF636 in Phage φSLT Carrying Panton-Valentine Leukocidin Genes, Acting as an Adhesion Protein for a Poly(Glycerophosphate) Chain of Lipoteichoic Acid on the Cell Surface of Staphylococcus aureus▿

    PubMed Central

    Kaneko, Jun; Narita-Yamada, Sachiko; Wakabayashi, Yukari; Kamio, Yoshiyuki

    2009-01-01

    The temperate phage φSLT of Staphylococcus aureus carries genes for Panton-Valentine leukocidin. Here, we identify ORF636, a constituent of the phage tail tip structure, as a recognition/adhesion protein for a poly(glycerophosphate) chain of lipoteichoic acid on the cell surface of S. aureus. ORF636 bound specifically to S. aureus; it did not bind to any other staphylococcal species or to several gram-positive bacteria. PMID:19429614

  5. Blockage of hemichannels alters gene expression in osteocytes in a high magneto-gravitational environment

    PubMed Central

    Xu, Huiyun; Ning, Dandan; Zhao, Dezhi; Chen, Yunhe; Zhao, Dongdong; Gu, Sumin; Jiang, Jean X.; Shang, Peng

    2017-01-01

    Osteocytes, the most abundant cells in bone, are highly responsive to external environmental changes. We tested how Cx43 hemichannels which mediate the exchange of small molecules between cells and extracellular environment impact genome wide gene expression under conditions of abnormal gravity and magnetic field. To this end, we subjected osteocytic MLO-Y4 cells to a high magneto-gravitational environment and used microarray to examine global gene expression and a specific blocking antibody was used to assess the role of Cx43 hemichannels. While 3 hr exposure to abnormal gravity and magnetic field had relatively minor effects on global gene expression, blocking hemichannels significantly impacted the expression of a number of genes which are involved in cell viability, apoptosis, mineral absorption, protein absorption and digestion, and focal adhesion. Also, blocking of hemichannels enriched genes in multiple signaling pathways which are enaged by TGF-beta, Jak-STAT and VEGF. These results show the role of connexin hemichannels in bone cells in high magneto-gravitational environments. PMID:27814646

  6. Regulating the migration of smooth muscle cells by a vertically distributed poly(2-hydroxyethyl methacrylate) gradient on polymer brushes covalently immobilized with RGD peptides.

    PubMed

    Wu, Sai; Du, Wang; Duan, Yiyuan; Zhang, Deteng; Liu, Yixiao; Wu, Bingbing; Zou, Xiaohui; Ouyang, Hongwei; Gao, Changyou

    2018-05-30

    The gradient localization of biological cues is of paramount importance to guide directional migration of cells. In this study, poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate)-block- poly(2-hydroxyethyl methacrylate) (P(HEMA-co-GMA)-b-PHEMA) brushes with a uniform underneath P(HEMA-co-GMA) layer and a gradient thickness of PHEMA blocks were prepared by using surface-initiated atom-transfer radical polymerization and a dynamically controlled polymerization process. The polymer chains were subsequently functionalized with the cell-adhesive arginine-glycine-aspartic acid (RGD) peptides by reaction with the glycidyl groups, and their structures and properties were characterized by X-ray photoelectron spectrometry (XPS), quartz crystal microbalance with dissipation (QCM-D) and air contact angle. Adhesion and migration processes of smooth muscle cells (SMCs) were then studied. Compared with those on the sufficiently exposed RGD surface, the cell adhesion and mobility were well maintained when the RGD peptides were localized at 18.9 nm depth, whereas the adhesion, spreading and migration rate of SMCs were significantly impaired when the RGD peptides were localized at a depth of 38.4 nm. On the RGD depth gradient surface, the SMCs exhibited preferential orientation and enhanced directional migration toward the direction of reduced thickness of the second PHEMA brushes. Half of the cells were oriented within ± 30° to the x-axis direction, and 72% of the cells moved directionally at the optimal conditions. Cell adhesion strength, arrangement of cytoskeleton, and gene and protein expression levels of adhesion-related proteins were studied to corroborate the mechanisms, demonstrating that the cell mobility is regulated by the complex and synergetic intracellular signals resulted from the difference in surface properties. Cell migration is of paramount importance for the processes of tissue repair and regeneration. So far, the gradient localization of biological cues perpendicular to the substrate, which is the usual case for the biological signaling molecules to locate in ECM in vivo, has been scarcely studied, and has not been used to guide the directional migration of cells. In this study, we prepare a depth gradient of RGD peptides along the polymer chains, which is used to guide the directional migration of SMCs after a second hydrophilic bock is prepared in a gradient manner. For the first time the directional migration of SMCs is achieved under the guidance of a depth gradient of RGD ligands. The mechanisms of different cell migration abilities are further discussed based on the results of cell adhesion, cell adhesion force, cytoskeleton alignment and expression of relative proteins and genes. This work paves a new strategy by fabricating a gradient polymer brushes with immobilized bioactive molecules to dominate the directional cell migration, and elucidates the mechanisms underlining the biased migration along RGD depth localization gradients, shedding a light for the design of novel biomaterials to control and guide cell migration and invasion. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. MiR-578 and miR-573 as potential players in BRCA-related breast cancer angiogenesis

    PubMed Central

    Danza, Katia; Summa, Simona De; Pinto, Rosamaria; Pilato, Brunella; Palumbo, Orazio; Merla, Giuseppe; Simone, Gianni; Tommasi, Stefania

    2015-01-01

    The involvement of microRNA (miRNAs), a new class of small RNA molecules, in governing angiogenesis has been well described. Our aim was to investigate miRNA-mediated regulation of angiogenesis in a series of familial breast cancers stratified by BRCA1/2 mutational status in BRCA carriers and BRCA non-carriers (BRCAX). Affymetrix GeneChip miRNA Arrays were used to perform miRNA expression analysis on 43 formalin-fixed paraffin-embedded (FFPE) tumour tissue familial breast cancers (22 BRCA 1/2-related and 21 BRCAX). Pathway enrichment analysis was carried out with the DIANA miRPath v2.0 web-based computational tool, and the miRWalk database was used to identify target genes of deregulated miRNAs. An independent set of 8 BRCA 1/2-related and 11 BRCAX breast tumors was used for validation by Real-Time PCR. In vitro analysis on HEK293, MCF-7 and SUM149PT cells were performed to best-clarify miR-573 and miR-578 role. A set of 16 miRNAs differentially expressed between BRCA 1/2-related and BRCAX breast tumors emerged from the profile analysis. Among these, miR-578 and miR-573 were found to be down-regulated in BRCA 1/2-related breast cancer and associated to the Focal adhesion, Vascular Endothelial Growth Factor (VEGF) and Hypoxia Inducible Factor-1 (HIF-1) signaling pathways. Our data highlight the role of miR-578 and miR-573 in controlling BRCA 1/2-related angiogenesis by targeting key regulators of Focal adhesion, VEGF and HIF-1 signaling pathways. PMID:25333258

  8. Functional pathway analysis of genes associated with response to treatment for chronic hepatitis C.

    PubMed

    Birerdinc, A; Afendy, A; Stepanova, M; Younossi, I; Manyam, G; Baranova, A; Younossi, Z M

    2010-10-01

    Chronic hepatitis C (CH-C) is among the most common causes of chronic liver disease. Approximately 50% of patients with CH-C treated with pegylated interferon-α and ribavirin (PEG-IFN-α + RBV) achieve a sustained virological response (SVR). Several factors such as genotype 1, African American (AA) race, obesity and the absence of an early virological response (EVR) are associated with low SVR. This study elucidates molecular pathways deregulated in patients with CH-C with negative predictors of response to antiviral therapy. Sixty-eight patients with CH-C who underwent a full course of treatment with PEG-IFN-α + RBV were included in the study. Pretreatment blood samples were collected in PAXgene™ RNA tubes. EVR, complete EVR (cEVR), and SVR rates were 76%, 57% and 41%, respectively. Total RNA was extracted from pretreatment peripheral blood mononuclear cells, quantified and used for one-step RT-PCR to profile 154 mRNAs. The expression of mRNAs was normalized with six 'housekeeping' genes. Differentially expressed genes were separated into up and downregulated gene lists according to the presence or absence of a risk factor and subjected to KEGG Pathway Painter which allows high-throughput visualization of the pathway-specific changes in expression profiles. The genes were consolidated into the networks associated with known predictors of response. Before treatment, various genes associated with core components of the JAK/STAT pathway were activated in the cohorts least likely to achieve SVR. Genes related to focal adhesion and TGF-β pathways were activated in some patients with negative predictors of response. Pathway-centred analysis of gene expression profiles from treated patients with CH-C points to the Janus kinase-signal transducers and activators of transcription signalling cascade as the major pathogenetic component responsible for not achieving SVR. In addition, focal adhesion and TGF-β pathways are associated with some predictors of response. © 2009 Blackwell Publishing Ltd.

  9. Age Increases Monocyte Adhesion on Collagen

    NASA Astrophysics Data System (ADS)

    Khalaji, Samira; Zondler, Lisa; Kleinjan, Fenneke; Nolte, Ulla; Mulaw, Medhanie A.; Danzer, Karin M.; Weishaupt, Jochen H.; Gottschalk, Kay-E.

    2017-05-01

    Adhesion of monocytes to micro-injuries on arterial walls is an important early step in the occurrence and development of degenerative atherosclerotic lesions. At these injuries, collagen is exposed to the blood stream. We are interested whether age influences monocyte adhesion to collagen under flow, and hence influences the susceptibility to arteriosclerotic lesions. Therefore, we studied adhesion and rolling of human peripheral blood monocytes from old and young individuals on collagen type I coated surface under shear flow. We find that firm adhesion of monocytes to collagen type I is elevated in old individuals. Pre-stimulation by lipopolysaccharide increases the firm adhesion of monocytes homogeneously in older individuals, but heterogeneously in young individuals. Blocking integrin αx showed that adhesion of monocytes to collagen type I is specific to the main collagen binding integrin αxβ2. Surprisingly, we find no significant age-dependent difference in gene expression of integrin αx or integrin β2. However, if all integrins are activated from the outside, no differences exist between the age groups. Altered integrin activation therefore causes the increased adhesion. Our results show that the basal increase in integrin activation in monocytes from old individuals increases monocyte adhesion to collagen and therefore the risk for arteriosclerotic plaques.

  10. Identification of differentially expressed genes in human lung squamous cell carcinoma using suppression subtractive hybridization.

    PubMed

    Sun, Wenyue; Zhang, Kaitai; Zhang, Xinyu; Lei, Wendong; Xiao, Ting; Ma, Jinfang; Guo, Suping; Shao, Shujuan; Zhang, Husheng; Liu, Yan; Yuan, Jinsong; Hu, Zhi; Ma, Ying; Feng, Xiaoli; Hu, Songnian; Zhou, Jun; Cheng, Shujun; Gao, Yanning

    2004-08-20

    Lung cancer is one of the major causes of cancer-related deaths. Over the past decade, much has been known about the molecular changes associated with lung carcinogenesis; however, our understanding to lung tumorigenesis is still incomplete. To identify genes that are differentially expressed in squamous cell carcinoma (SCC) of the lung, we compared the expression profiles between primarily cultured SCC tumor cells and bronchial epithelial cells derived from morphologically normal bronchial epithelium of the same patient. Using suppression subtractive hybridization (SSH), two cDNA libraries containing up- and down-regulated genes in the tumor cells were constructed, named as LCTP and LCBP. The two libraries comprise 258 known genes and 133 unknown genes in total. The known up-regulated genes in the library LCTP represented a variety of functional groups; including metabolism-, cell adhesion and migration-, signal transduction-, and anti-apoptosis-related genes. Using semi-quantitative reverse transcription-polymerase chain reaction, seven genes chosen randomly from the LCTP were analyzed in the tumor tissue paired with its corresponding adjacent normal lung tissue derived from 16 cases of the SCC. Among them, the IQGAP1, RAP1GDS1, PAICS, MLF1, and MARK1 genes showed a consistent expression pattern with that of the SSH analysis. Identification and further characterization of these genes may allow a better understanding of lung carcinogenesis.

  11. Baicalein suppresses 17-β-estradiol-induced migration, adhesion and invasion of breast cancer cells via the G protein-coupled receptor 30 signaling pathway.

    PubMed

    Shang, Dandan; Li, Zheng; Zhu, Zhuxia; Chen, Huamei; Zhao, Lujun; Wang, Xudong; Chen, Yan

    2015-04-01

    Flavonoids are structurally similar to steroid hormones, particularly estrogens, and therefore have been studied for their potential effects on hormone-dependent cancers. Baicalein is the primary flavonoid derived from the root of Scutellaria baicalensis Georgi. In the present study, we investigated the effects of baicalein on 17β-estradiol (E2)-induced migration, adhesion and invasion of MCF-7 and SK-BR-3 breast cancer cells. The results demonstrated that baicalein suppressed E2-stimulated wound-healing migration and cell‑Matrigel adhesion, and ameliorated E2-promoted invasion across a Matrigel-coated Transwell membrane. Furthermore, baicalein interfered with E2-induced novel G protein-coupled estrogen receptor (GPR30)-related signaling, including a decrease in tyrosine phosphorylation of epidermal growth factor receptor (EGFR) as well as phosphorylation of extracellular signal-regulated kinase (ERK) and serine/threonine kinase Akt, without affecting GPR30 expression. The results also showed that baicalein suppressed the expression of GPR30 target genes, cysteine-rich 61 (CYR61) and connective tissue growth factor (CTGF) induced by E2. Furthermore, baicalein prevented GPR30-related signaling activation and upregulation of CYR61 and CTGF mRNA levels induced by G1, a specific GPR 30 agonist. The results suggest that baicalein inhibits E2-induced migration, adhesion and invasion through interfering with GPR30 signaling pathway activation, which indicates that it may act as a therapeutic candidate for the treatment of GPR30-positive breast cancer metastasis.

  12. PGC-1-related coactivator (PRC) negatively regulates endothelial adhesion of monocytes via inhibition of NF κB activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chengye, Zhan; Daixing, Zhou, E-mail: dxzhou7246@hotmail.com; Qiang, Zhong

    2013-09-13

    Highlights: •First time to display that LPS downregulate the expression of PRC. •First time to show that PRC inhibits the induction of VCAM-1 and E-selectin. •First time to show that PRC inhibit monocytes attachment to endothelial cells. •First time to display that PRC inhibits transcriptional activity of NF-κB. •PRC protects the respiration rate and suppresses the glycolysis rate against LPS. -- Abstract: PGC-1-related coactivator (PRC) is a growth-regulated transcriptional cofactor known to activate many of the nuclear genes specifying mitochondrial respiratory function. Endothelial dysfunction is a prominent feature found in many inflammatory diseases. Adhesion molecules, such as VCAM-1, mediate themore » attachment of monocytes to endothelial cells, thereby playing an important role in endothelial inflammation. The effects of PRC in regards to endothelial inflammation remain unknown. In this study, our findings show that PRC can be inhibited by the inflammatory cytokine LPS in cultured human umbilical vein endothelial cells (HUVECs). In the presence of LPS, the expression of endothelial cell adhesion molecular, such as VCAM1 and E-selectin, is found to be increased. These effects can be negated by overexpression of PRC. Importantly, monocyte adhesion to endothelial cells caused by LPS is significantly attenuated by PRC. In addition, overexpression of PRC protects mitochondrial metabolic function and suppresses the rate of glycolysis against LPS. It is also found that overexpression of PRC decreases the transcriptional activity of NF-κB. These findings suggest that PRC is a negative regulator of endothelial inflammation.« less

  13. Gene transcription in sea otters (Enhydra lutris); development of a diagnostic tool for sea otter and ecosystem health

    USGS Publications Warehouse

    Bowen, Lizabeth; Miles, A. Keith; Murray, Michael; Haulena, Martin; Tuttle, Judy; van Bonn, William; Adams, Lance; Bodkin, James L.; Ballachey, Brenda E.; Estes, James A.; Tinker, M. Tim; Keister, Robin; Stott, Jeffrey L.

    2012-01-01

    Gene transcription analysis for diagnosing or monitoring wildlife health requires the ability to distinguish pathophysiological change from natural variation. Herein, we describe methodology for the development of quantitative real-time polymerase chain reaction (qPCR) assays to measure differential transcript levels of multiple immune function genes in the sea otter (Enhydra lutris); sea otter-specific qPCR primer sequences for the genes of interest are defined. We establish a ‘reference’ range of transcripts for each gene in a group of clinically healthy captive and free-ranging sea otters. The 10 genes of interest represent multiple physiological systems that play a role in immuno-modulation, inflammation, cell protection, tumour suppression, cellular stress response, xenobiotic metabolizing enzymes, antioxidant enzymes and cell–cell adhesion. The cycle threshold (CT) measures for most genes were normally distributed; the complement cytolysis inhibitor was the exception. The relative enumeration of multiple gene transcripts in simple peripheral blood samples expands the diagnostic capability currently available to assess the health of sea otters in situ and provides a better understanding of the state of their environment.

  14. Effects of Magnolol and Honokiol on Adhesion, Yeast-Hyphal Transition, and Formation of Biofilm by Candida albicans

    PubMed Central

    Sun, Lingmei; Liao, Kai; Wang, Dayong

    2015-01-01

    Background The first step in infection by Candida albicans is adhesion to host cells or implanted medical devices and this followed by hyphal growth and biofilm formation. Yeast-to-hyphal transition has long been identified as a key factor in fungal virulence. Following biofilm formation, C. albicans is usually less sensitive or insensitive to antifungals. Therefore, development of new antifungals with inhibitory action on adhesion, yeast-hyphal transition and biofilm formation by C. albicans is very necessary. Methods The effects of magnolol and honokiol on hypha growth were investigated using different induction media. Their inhibitory effects were determined using the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5- carboxanilide assay, and biofilm thickness and viability were observed by a confocal scanning laser microscope. Mammalian cells were used in adhesion assays. Genes related to hyphae development and cell adhesions were analyzed by real-time reverse transcription-polymerase chain reaction. The exogenous cyclic adenosine monophosphate was used to determine the mechanisms of action of magnolol and honokiol. Caenorhabditis elegans was used as an in vivo model to estimate the antifungal activities of magnolol and honokiol. Results and conclusions Magnolol and honokiol inhibited adhesion, the transition from yeast to hypha, and biofilm formation by C. albicans through the Ras1-cAMP-Efg1 pathway. Moreover, magnolol and honokiol prolonged the survival of nematodes infected by C. albicans. Magnolol and honokiol have potential inhibitory effects against biofilm formation by C. albicans. General Significance This study provides useful information towards the development of new strategies to reduce the incidence of C. albicans biofilm-associated infection. PMID:25710475

  15. Bruton's tyrosine kinase is a potential therapeutic target in prostate cancer

    PubMed Central

    Kokabee, Leila; Wang, Xianhui; Sevinsky, Christopher J; Wang, Wei Lin Winnie; Cheu, Lindsay; Chittur, Sridar V; Karimipoor, Morteza; Tenniswood, Martin; Conklin, Douglas S

    2015-01-01

    Bruton's tyrosine kinase (BTK) is a non-receptor tyrosine kinase that has mainly been studied in haematopoietic cells. We have investigated whether BTK is a potential therapeutic target in prostate cancer. We find that BTK is expressed in prostate cells, with the alternate BTK-C isoform predominantly expressed in prostate cancer cells and tumors. This isoform is transcribed from an alternative promoter and results in a protein with an amino-terminal extension. Prostate cancer cell lines and prostate tumors express more BTK-C transcript than the malignant NAMALWA B-cell line or human lymphomas. BTK protein expression is also observed in tumor tissue from prostate cancer patients. Down regulation of this protein with RNAi or inhibition with BTK-specific inhibitors, Ibrutinib, AVL-292 or CGI-1746 decrease cell survival and induce apoptosis in prostate cancer cells. Microarray results show that inhibiting BTK under these conditions increases expression of apoptosis related genes, while overexpression of BTK-C is associated with elevated expression of genes with functions related to cell adhesion, cytoskeletal structure and the extracellular matrix. These results are consistent with studies that show that BTK signaling is important for adhesion and migration of B cells and suggest that BTK-C may confer similar properties to prostate cancer cells. Since BTK-C is a survival factor for these cells, it represents both a potential biomarker and novel therapeutic target for prostate cancer. PMID:26383180

  16. Bruton's tyrosine kinase is a potential therapeutic target in prostate cancer.

    PubMed

    Kokabee, Leila; Wang, Xianhui; Sevinsky, Christopher J; Wang, Wei Lin Winnie; Cheu, Lindsay; Chittur, Sridar V; Karimipoor, Morteza; Tenniswood, Martin; Conklin, Douglas S

    2015-01-01

    Bruton's tyrosine kinase (BTK) is a non-receptor tyrosine kinase that has mainly been studied in haematopoietic cells. We have investigated whether BTK is a potential therapeutic target in prostate cancer. We find that BTK is expressed in prostate cells, with the alternate BTK-C isoform predominantly expressed in prostate cancer cells and tumors. This isoform is transcribed from an alternative promoter and results in a protein with an amino-terminal extension. Prostate cancer cell lines and prostate tumors express more BTK-C transcript than the malignant NAMALWA B-cell line or human lymphomas. BTK protein expression is also observed in tumor tissue from prostate cancer patients. Down regulation of this protein with RNAi or inhibition with BTK-specific inhibitors, Ibrutinib, AVL-292 or CGI-1746 decrease cell survival and induce apoptosis in prostate cancer cells. Microarray results show that inhibiting BTK under these conditions increases expression of apoptosis related genes, while overexpression of BTK-C is associated with elevated expression of genes with functions related to cell adhesion, cytoskeletal structure and the extracellular matrix. These results are consistent with studies that show that BTK signaling is important for adhesion and migration of B cells and suggest that BTK-C may confer similar properties to prostate cancer cells. Since BTK-C is a survival factor for these cells, it represents both a potential biomarker and novel therapeutic target for prostate cancer.

  17. Cellulose modulates biofilm formation by counteracting curli-mediated colonization of solid surfaces in Escherichia coli.

    PubMed

    Gualdi, Luciana; Tagliabue, Letizia; Bertagnoli, Stefano; Ieranò, Teresa; De Castro, Cristina; Landini, Paolo

    2008-07-01

    In enterobacteria, the CsgD protein activates production of two extracellular structures: thin aggregative fimbriae (curli) and cellulose. While curli fibres promote biofilm formation and cell aggregation, the evidence for a direct role of cellulose as an additional determinant for biofilm formation is not as straightforward. The MG1655 laboratory strain of Escherichia coli only produces limited amounts of curli and cellulose; however, ectopic csgD expression results in strong stimulation of curli and cellulose production. We show that, in a csgD-overexpressing derivative of MG1655, cellulose production negatively affects curli-mediated surface adhesion and cell aggregation, thus acting as a negative determinant for biofilm formation. Consistent with this observation, deletion of the bcsA gene, necessary for cellulose production, resulted in a significant increase in curli-dependent adhesion. We found that cellulose production increased tolerance to desiccation, suggesting that the function of cellulose might be related to resistance to environmental stresses rather than to biofilm formation. Production of the curli/cellulose network in enterobacteria typically takes place at low growth temperature (<32 degrees C), but not at 37 degrees C. We show that CsgD overexpression can overcome temperature-dependent control of the curli-encoding csgBA operon, but not of the cellulose-related adrA gene, suggesting very tight temperature control of cellulose production in E. coli MG1655.

  18. MMSET deregulation affects cell cycle progression and adhesion regulons in t(4;14) myeloma plasma cells

    PubMed Central

    Brito, Jose L.R.; Walker, Brian; Jenner, Matthew; Dickens, Nicholas J.; Brown, Nicola J.M.; Ross, Fiona M.; Avramidou, Athanasia; Irving, Julie A.E.; Gonzalez, David; Davies, Faith E.; Morgan, Gareth J.

    2009-01-01

    Background The recurrent immunoglobulin translocation, t(4;14)(p16;q32) occurs in 15% of multiple myeloma patients and is associated with poor prognosis, through an unknown mechanism. The t(4;14) up-regulates fibroblast growth factor receptor 3 (FGFR3) and multiple myeloma SET domain (MMSET) genes. The involvement of MMSET in the pathogenesis of t(4;14) multiple myeloma and the mechanism or genes deregulated by MMSET upregulation are still unclear. Design and Methods The expression of MMSET was analyzed using a novel antibody. The involvement of MMSET in t(4;14) myelomagenesis was assessed by small interfering RNA mediated knockdown combined with several biological assays. In addition, the differential gene expression of MMSET-induced knockdown was analyzed with expression microarrays. MMSET gene targets in primary patient material was analyzed by expression microarrays. Results We found that MMSET isoforms are expressed in multiple myeloma cell lines, being exclusively up-regulated in t(4;14)-positive cells. Suppression of MMSET expression affected cell proliferation by both decreasing cell viability and cell cycle progression of cells with the t(4;14) translocation. These findings were associated with reduced expression of genes involved in the regulation of cell cycle progression (e.g. CCND2, CCNG1, BRCA1, AURKA and CHEK1), apoptosis (CASP1, CASP4 and FOXO3A) and cell adhesion (ADAM9 and DSG2). Furthermore, we identified genes involved in the latter processes that were differentially expressed in t(4;14) multiple myeloma patient samples. Conclusions In conclusion, dysregulation of MMSET affects the expression of several genes involved in the regulation of cell cycle progression, cell adhesion and survival. PMID:19059936

  19. Regulation of Bacteria-Induced Intercellular Adhesion Molecule-1 by CCAAT/Enhancer Binding Proteins

    PubMed Central

    Manzel, Lori J.; Chin, Cecilia L.; Behlke, Mark A.; Look, Dwight C.

    2009-01-01

    Direct interaction between bacteria and epithelial cells may initiate or amplify the airway response through induction of epithelial defense gene expression by nuclear factor-κB (NF-κB). However, multiple signaling pathways modify NF-κB effects to modulate gene expression. In this study, the effects of CCAAT/enhancer binding protein (C/EBP) family members on induction of the leukocyte adhesion glycoprotein intercellular adhesion molecule-1 (ICAM-1) was examined in primary cultures of human tracheobronchial epithelial cells incubated with nontypeable Haemophilus influenzae. Increased ICAM-1 gene transcription in response to H. influenzae required gene sequences located at −200 to −135 in the 5′-flanking region that contain a C/EBP-binding sequence immediately upstream of the NF-κB enhancer site. Constitutive C/EBPβ was found to have an important role in epithelial cell ICAM-1 regulation, while the adjacent NF-κB sequence binds the RelA/p65 and NF-κB1/p50 members of the NF-κB family to induce ICAM-1 expression in response to H. influenzae. The expression of C/EBP proteins is not regulated by p38 mitogen-activated protein kinase activation, but p38 affects gene transcription by increasing the binding of TATA-binding protein to TATA-box–containing gene sequences. Epithelial cell ICAM-1 expression in response to H. influenzae was decreased by expressing dominant-negative protein or RNA interference against C/EBPβ, confirming its role in ICAM-1 regulation. Although airway epithelial cells express multiple constitutive and inducible C/EBP family members that bind C/EBP sequences, the results indicate that C/EBPβ plays a central role in modulation of NF-κB–dependent defense gene expression in human airway epithelial cells after exposure to H. influenzae. PMID:18703796

  20. Transcriptome Analysis in Prenatal IGF1-Deficient Mice Identifies Molecular Pathways and Target Genes Involved in Distal Lung Differentiation

    PubMed Central

    Hernández-Porras, Isabel; López, Icíar Paula; De Las Rivas, Javier; Pichel, José García

    2013-01-01

    Background Insulin-like Growth Factor 1 (IGF1) is a multifunctional regulator of somatic growth and development throughout evolution. IGF1 signaling through IGF type 1 receptor (IGF1R) controls cell proliferation, survival and differentiation in multiple cell types. IGF1 deficiency in mice disrupts lung morphogenesis, causing altered prenatal pulmonary alveologenesis. Nevertheless, little is known about the cellular and molecular basis of IGF1 activity during lung development. Methods/Principal Findings Prenatal Igf1−/− mutant mice with a C57Bl/6J genetic background displayed severe disproportional lung hypoplasia, leading to lethal neonatal respiratory distress. Immuno-histological analysis of their lungs showed a thickened mesenchyme, alterations in extracellular matrix deposition, thinner smooth muscles and dilated blood vessels, which indicated immature and delayed distal pulmonary organogenesis. Transcriptomic analysis of Igf1−/− E18.5 lungs using RNA microarrays identified deregulated genes related to vascularization, morphogenesis and cellular growth, and to MAP-kinase, Wnt and cell-adhesion pathways. Up-regulation of immunity-related genes was verified by an increase in inflammatory markers. Increased expression of Nfib and reduced expression of Klf2, Egr1 and Ctgf regulatory proteins as well as activation of ERK2 MAP-kinase were corroborated by Western blot. Among IGF-system genes only IGFBP2 revealed a reduction in mRNA expression in mutant lungs. Immuno-staining patterns for IGF1R and IGF2, similar in both genotypes, correlated to alterations found in specific cell compartments of Igf1−/− lungs. IGF1 addition to Igf1−/− embryonic lungs cultured ex vivo increased airway septa remodeling and distal epithelium maturation, processes accompanied by up-regulation of Nfib and Klf2 transcription factors and Cyr61 matricellular protein. Conclusions/Significance We demonstrated the functional tissue specific implication of IGF1 on fetal lung development in mice. Results revealed novel target genes and gene networks mediators of IGF1 action on pulmonary cellular proliferation, differentiation, adhesion and immunity, and on vascular and distal epithelium maturation during prenatal lung development. PMID:24391734

  1. Pre-Treatment of Human Mesenchymal Stem Cells With Inflammatory Factors or Hypoxia Does Not Influence Migration to Osteoarthritic Cartilage and Synovium.

    PubMed

    Leijs, Maarten J C; van Buul, Gerben M; Verhaar, Jan A N; Hoogduijn, Martin J; Bos, Pieter K; van Osch, Gerjo J V M

    2017-04-01

    Mesenchymal stem cells (MSCs) are promising candidates as a cell-based therapy for osteoarthritis (OA), although current results are modest. Pre-treatment of MSCs before application might improve their therapeutic efficacy. Pre-treatment of MSCs with inflammatory factors or hypoxia will improve their migration and adhesion capacities toward OA-affected tissues. Controlled laboratory study. We used real-time polymerase chain reaction to determine the effects of different fetal calf serum (FCS) batches, platelet lysate (PL), hypoxia, inflammatory factors, factors secreted by OA tissues, and OA synovial fluid (SF) on the expression of 12 genes encoding chemokine or adhesion receptors. Migration of MSCs toward factors secreted by OA tissues was studied in vitro, and attachment of injected MSCs was evaluated in vivo in healthy and OA knees of male Wistar rats. Different FCS batches, PL, or hypoxia did not influence the expression of the migration and adhesion receptor genes. Exposure to inflammatory factors altered the expression of CCR1, CCR4, CD44, PDGFRα, and PDGFRβ. MSCs migrated toward factors secreted by OA tissues in vitro. Neither pre-treatment with inflammatory factors nor the presence of OA influenced MSC migration in vitro or adhesion in vivo. Factors secreted by OA tissues increase MSC migration in vitro. In vivo, no difference in MSC adhesion was found between OA and healthy knees. Pre-treatment with inflammatory factors influenced the expression of migration and adhesion receptors of MSCs but not their migration in vitro or adhesion in vivo. To improve the therapeutic capacity of intra-articular injection of MSCs, they need to remain intra-articular for a longer period of time. Pre-treatment of MSCs with hypoxia or inflammatory factors did not increase the migration or adhesion capacity of MSCs and will therefore not likely prolong their intra-articular longevity. Alternative approaches to prolong the intra-articular presence of MSCs should be developed to increase the therapeutic effect of MSCs in OA.

  2. MK2 inhibitor reduces alkali burn-induced inflammation in rat cornea

    PubMed Central

    Chen, Yanfeng; Yang, Wenzhao; Zhang, Xiaobo; Yang, Shu; Peng, Gao; Wu, Ting; Zhou, Yueping; Huang, Caihong; Reinach, Peter S.; Li, Wei; Liu, Zuguo

    2016-01-01

    MK2 activation by p38 MAPK selectively induces inflammation in various diseases. We determined if a MK2 inhibitor (MK2i), improves cornea wound healing by inhibiting inflammation caused by burning rat corneas with alkali. Our study, for the first time, demonstrated that MK2i inhibited alkali burn-induced MK2 activation as well as rises in inflammation based on: a) blunting rises in inflammatory index, inflammatory cell infiltration, ED1+ macrophage and PMN+ neutrophil infiltration; b) suppressing IL-6 and IL-1β gene expression along with those of macrophage inflammatory protein-1α (MIP-1α), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1); c) reducing angiogenic gene expression levels and neovascularization (NV) whereas anti-angiogenic PEDF levels increased. In addition, this study found that MK2i did not affect human corneal epithelial cell (HCEC) proliferation and migration and had no detectable side effects on ocular surface integrity. Taken together, MK2i selectively inhibited alkali burn-induced corneal inflammation by blocking MK2 activation, these effects have clinical relevance in the treatment of inflammation related ocular surface diseases. PMID:27329698

  3. The sticky business of adhesion prevention in minimally invasive gynecologic surgery.

    PubMed

    Han, Esther S; Scheib, Stacey A; Patzkowsky, Kristin E; Simpson, Khara; Wang, Karen C

    2017-08-01

    The negative impact of postoperative adhesions has long been recognized, but available options for prevention remain limited. Minimally invasive surgery is associated with decreased adhesion formation due to meticulous dissection with gentile tissue handling, improved hemostasis, and limiting exposure to reactive foreign material; however, there is conflicting evidence on the clinical significance of adhesion-related disease when compared to open surgery. Laparoscopic surgery does not guarantee the prevention of adhesions because longer operative times and high insufflation pressure can promote adhesion formation. Adhesion barriers have been available since the 1980s, but uptake among surgeons remains low and there is no clear evidence that they reduce clinically significant outcomes such as chronic pain or infertility. In this article, we review the ongoing magnitude of adhesion-related complications in gynecologic surgery, currently available interventions and new research toward more effective adhesion prevention. Recent literature provides updated epidemiologic data and estimates of healthcare costs associated with adhesion-related complications. There have been important advances in our understanding of normal peritoneal healing and the pathophysiology of adhesions. Adhesion barriers continue to be tested for safety and effectiveness and new agents have shown promise in clinical studies. Finally, there are many experimental studies of new materials and pharmacologic and biologic prevention agents. There is great interest in new adhesion prevention technologies, but new agents are unlikely to be available for clinical use for many years. High-quality effectiveness and outcomes-related research is still needed.

  4. Adhesive Properties of YapV and Paralogous Autotransporter Proteins of Yersinia pestis

    PubMed Central

    Nair, Manoj K. M.; De Masi, Leon; Yue, Min; Galván, Estela M.; Chen, Huaiqing; Wang, Fang

    2015-01-01

    Yersinia pestis is the causative agent of plague. This bacterium evolved from an ancestral enteroinvasive Yersinia pseudotuberculosis strain by gene loss and acquisition of new genes, allowing it to use fleas as transmission vectors. Infection frequently leads to a rapidly lethal outcome in humans, a variety of rodents, and cats. This study focuses on the Y. pestis KIM yapV gene and its product, recognized as an autotransporter protein by its typical sequence, outer membrane localization, and amino-terminal surface exposure. Comparison of Yersinia genomes revealed that DNA encoding YapV or each of three individual paralogous proteins (YapK, YapJ, and YapX) was present as a gene or pseudogene in a strain-specific manner and only in Y. pestis and Y. pseudotuberculosis. YapV acted as an adhesin for alveolar epithelial cells and specific extracellular matrix (ECM) proteins, as shown with recombinant Escherichia coli, Y. pestis, or purified passenger domains. Like YapV, YapK and YapJ demonstrated adhesive properties, suggesting that their previously related in vivo activity is due to their capacity to modulate binding properties of Y. pestis in its hosts, in conjunction with other adhesins. A differential host-specific type of binding to ECM proteins by YapV, YapK, and YapJ suggested that these proteins participate in broadening the host range of Y. pestis. A phylogenic tree including 36 Y. pestis strains highlighted an association between the gene profile for the four paralogous proteins and the geographic location of the corresponding isolated strains, suggesting an evolutionary adaption of Y. pestis to specific local animal hosts or reservoirs. PMID:25690102

  5. Identification of transcriptional factors and key genes in primary osteoporosis by DNA microarray.

    PubMed

    Xie, Wengui; Ji, Lixin; Zhao, Teng; Gao, Pengfei

    2015-05-09

    A number of genes have been identified to be related with primary osteoporosis while less is known about the comprehensive interactions between regulating genes and proteins. We aimed to identify the differentially expressed genes (DEGs) and regulatory effects of transcription factors (TFs) involved in primary osteoporosis. The gene expression profile GSE35958 was obtained from Gene Expression Omnibus database, including 5 primary osteoporosis and 4 normal bone tissues. The differentially expressed genes between primary osteoporosis and normal bone tissues were identified by the same package in R language. The TFs of these DEGs were predicted with the Essaghir A method. DAVID (The Database for Annotation, Visualization and Integrated Discovery) was applied to perform the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of DEGs. After analyzing regulatory effects, a regulatory network was built between TFs and the related DEGs. A total of 579 DEGs was screened, including 310 up-regulated genes and 269 down-regulated genes in primary osteoporosis samples. In GO terms, more up-regulated genes were enriched in transcription regulator activity, and secondly in transcription factor activity. A total 10 significant pathways were enriched in KEGG analysis, including colorectal cancer, Wnt signaling pathway, Focal adhesion, and MAPK signaling pathway. Moreover, total 7 TFs were enriched, of which CTNNB1, SP1, and TP53 regulated most up-regulated DEGs. The discovery of the enriched TFs might contribute to the understanding of the mechanism of primary osteoporosis. Further research on genes and TFs related to the WNT signaling pathway and MAPK pathway is urgent for clinical diagnosis and directing treatment of primary osteoporosis.

  6. Genetic Analysis of 13 Iranian Families With Leukocyte Adhesion Deficiency Type 1.

    PubMed

    Teimourian, Shahram; De Boer, Martin; Roos, Dirk; Isaian, Anna; Bemanian, Mohammad Hassan; Lashkary, Sharhzad; Nabavi, Mohammad; Arshi, Saba; Nateghian, Alireza; Sayyahfar, Shirin; Sazgara, Faezeh; Taheripak, Gholamreza; Alipour Fayez, Elham

    2018-05-10

    Leukocyte adhesion deficiency type 1 is a rare, autosomal recessive disorder that results from mutations in the ITGB2 gene. This gene encodes the CD18 subunit of β2 integrin leukocyte adhesion cell molecules. Leukocyte adhesion deficiency type 1 is characterized by recurrent bacterial infections, impaired wound healing, inadequate pus formation, and delayed separation of the umbilical cord. Blood samples were taken from 13 patients after written consent had been obtained. Genomic DNA was extracted, and ITGB2 exons and exon-intron boundaries were amplified by polymerase chain reaction. The products were examined by Sanger sequencing. In this study, 8 different previously reported mutations (intron7+1G>A, c.715G>A, c.1777 C>T, c.843del C, c.1768T>C, c.1821C>A, Intron7+1G>A, c.1885G>A) and 2 novel mutations (c.1821C>A; p.Tyr607Ter and c.1822C>T; p.Gln608Ter) were found. c.1821C>A (p.Tyr607Ter) and c.1822C>T (p.Gln608Ter) mutations should be included in the panel of carrier detection and prenatal diagnosis.

  7. Activation of EGF receptor kinase by L1-mediated homophilic cell interactions.

    PubMed

    Islam, Rafique; Kristiansen, Lars V; Romani, Susana; Garcia-Alonso, Luis; Hortsch, Michael

    2004-04-01

    Neural cell adhesion molecules (CAMs) are important players during neurogenesis and neurite outgrowth as well as axonal fasciculation and pathfinding. Some of these developmental processes entail the activation of cellular signaling cascades. Pharmacological and genetic evidence indicates that the neurite outgrowth-promoting activity of L1-type CAMs is at least in part mediated by the stimulation of neuronal receptor tyrosine kinases (RTKs), especially FGF and EGF receptors. It has long been suspected that neural CAMs might physically interact with RTKs, but their activation by specific cell adhesion events has not been directly demonstrated. Here we report that gain-of-function conditions of the Drosophila L1-type CAM Neuroglian result in profound sensory axon pathfinding defects in the developing Drosophila wing. This phenotype can be suppressed by decreasing the normal gene dosage of the Drosophila EGF receptor gene. Furthermore, in Drosophila S2 cells, cell adhesion mediated by human L1-CAM results in the specific activation of human EGF tyrosine kinase at cell contact sites and EGF receptors engage in a physical interaction with L1-CAM molecules. Thus L1-type CAMs are able to promote the adhesion-dependent activation of EGF receptor signaling in vitro and in vivo.

  8. [Changes of biological behavioral of E. coli K1 after ppk1 gene deletion].

    PubMed

    Peng, Liang; Pan, Jiayun; Luo, Su; Yang, Zhenghui; Huang, Mufang; Cao, Hong

    2014-06-01

    To study the changes in biological behaviors of meningitis E. coli K1 strain E44 after deletion of polyphosphate kinase 1 (ppk1) gene and explore the role of ppk1 in the pathogenesis of E. coli K1-induced meningitis. The wild-type strain E. coli K1 and ppk1 deletion mutant were exposed to heat at 56 degrees celsius; for 6 min, and their survival rates were determined. The adhesion and invasion of the bacteria to human brain microvascular endothelial cells (HBMECs) were observed using electron microscopy and quantitative tests. HBMECs were co-incubated with wild-type strain or ppk1 deletion mutant, and the cytoskeleton rearrangement was observed under laser scanning confocal microscope. The survival rate of the ppk1 deletion mutant was significantly lower than that of the wild-type strain after heat exposure. The ppk1 deletion mutant also showed lowered cell adhesion and invasion abilities and weakened ability to induce cytoskeleton rearrangement in HBMECs. ppk1 gene is important for E.coli K1 for heat resistance, cell adhesion and invasion, and for inducing cytoskeletal rearrangement in HBMECs.

  9. Identification of a novel adhesion molecule involved in the virulence of Legionella pneumophila.

    PubMed

    Chang, Bin; Kura, Fumiaki; Amemura-Maekawa, Junko; Koizumi, Nobuo; Watanabe, Haruo

    2005-07-01

    Legionella pneumophila is an intracellular bacterium, and its successful parasitism in host cells involves two reciprocal phases: transmission and intracellular replication. In this study, we sought genes that are involved in virulence by screening a genomic DNA library of an L. pneumophila strain, 80-045, with convalescent-phase sera of Legionnaires' disease patients. Three antigens that reacted exclusively with the convalescent-phase sera were isolated. One of them, which shared homology with an integrin analogue of Saccharomyces cerevisiae, was named L. pneumophila adhesion molecule homologous with integrin analogue of S. cerevisiae (LaiA). The laiA gene product was involved in L. pneumophila adhesion to and invasion of the human lung alveolar epithelial cell line A549 during in vitro coculture. However, its presence did not affect multiplication of L. pneumophila within a U937 human macrophage cell line. Furthermore, after intranasal infection of A/J mice, the laiA mutant was eliminated from lungs and caused reduced mortality compared to the wild isolate. Thus, we conclude that the laiA gene encodes a virulence factor that is involved in transmission of L. pneumophila 80-045 and may play a role in Legionnaires' disease in humans.

  10. Capric Acid Secreted by S. boulardii Inhibits C. albicans Filamentous Growth, Adhesion and Biofilm Formation

    PubMed Central

    Murzyn, Anna; Krasowska, Anna; Stefanowicz, Piotr; Dziadkowiec, Dorota; Łukaszewicz, Marcin

    2010-01-01

    Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and biofilm formation. PMID:20706577

  11. TRAF3IP2 mediates atherosclerotic plaque development and vulnerability in ApoE−/− mice

    PubMed Central

    Prasad, Sakamuri Siva Sankara Vara; Higashi, Yusuke; Sukhanov, Sergiy; Siddesha, Jalahalli M; Delafontaine, Patrice; Siebenlist, Ulrich; Chandrasekar, Bysani

    2016-01-01

    Background and aims Atherosclerosis is a major cause of heart attack and stroke. Inflammation plays a critical role in the development of atherosclerosis. Since the cytoplasmic adaptor molecule TRAF3IP2 (TRAF3-Interacting Protein 2) plays a causal role in various autoimmune and inflammatory diseases, we hypothesized that TRAF3IP2 mediates atherosclerotic plaque development. Methods TRAF3IP2/ApoE double knockout (DKO) mice were generated by crossing TRAF3IP2−/− and ApoE−/− mice. ApoE−/− mice served as controls. Both DKO and control mice were fed a high-fat diet for 12 weeks. Plasma lipids were measured by ELISA, atherosclerosis by en face analysis of aorta and plaque cross-section measurements at the aortic valve region, plaque necrotic core area, collagen and smooth muscle cell content by histomorphometry, and aortic gene expression by RT-qPCR. Results The plasma lipoprotein profile was not altered by TRAF3IP2 gene deletion in ApoE−/− mice. While total aortic plaque area was decreased in DKO female, but not male mice, the plaque necrotic area was significantly decreased in DKO mice of both genders. Plaque collagen and smooth muscle cell contents were increased significantly in both female and male DKO mice compared to respective controls. Aortic expression of proinflammatory cytokine (Tumor necrosis factor α, TNFα), chemokine (Chemokine (C-X-C motif) Ligand 1, CXCL1) and adhesion molecule (Vascular cell adhesion molecule 1, VCAM1; and Intercellular adhesion molecule 1, ICAM1) gene expression were decreased in both male and female DKO mice. In addition, the male DKO mice showed a markedly reduced expression of extracellular matrix (ECM)-related genes, including TIMP1 (Tissue inhibitor of metalloproteinase 1), RECK (Reversion-Inducing- Cysteine-Rich Protein with Kazal Motifs) and ADAM17 (A Disintegrin And Metalloproteinase 17). Conclusions TRAF3IP2 plays a causal role in atherosclerotic plaque development and vulnerability, possibly by inducing the expression of multiple proinflammatory mediators. TRAF3IP2 could be a potential therapeutic target in atherosclerotic vascular diseases. PMID:27237075

  12. Cochlear Transcriptome Following Acoustic Trauma and Dexamethasone Administration Identified by a Combination of RNA-seq and DNA Microarray.

    PubMed

    Maeda, Yukihide; Omichi, Ryotaro; Sugaya, Akiko; Kariya, Shin; Nishizaki, Kazunori

    2017-08-01

    To elucidate molecular mechanisms of noise-induced hearing loss (NIHL) and glucocorticoid therapy in the cochlea. Glucocorticoids are used to treat many forms of acute sensorineural hearing loss, but their molecular action in the cochlea remains poorly understood. Dexamethasone was administered intraperitoneally immediately following acoustic overstimulation at 120 dB SPL for 2 hours to mice. The whole cochlear transcriptome was analyzed 12 and 24 hours following noise trauma and dexamethasone administration by both next-generation sequencing (RNA-seq) and DNA microarray. Differentially expressed genes (DEGs) with more than 2-fold changes after noise trauma and dexamethasone administration were identified. The functions of these DEGs were analyzed by David Bioinformatics Resources and a literature search. Twelve hours after acoustic overstimulation, immune-related gene pathways such as "chemokine signaling activity," "cytokine-cytokine receptor interaction," and "cell adhesion molecules (CAMs) in the immune system" were significantly changed compared with the baseline level without noise. These DEGs were involved in immune and defense responses in the cochlea. Dexamethasone was administered to this NIHL model, and it modulated gene pathways of "cytokine-cytokine receptor interaction" and "cell adhesion molecules (CAMs) in the immune system" at 12 hours, compared with saline-injected control. Dexamethasone-dependent DEGs were also involved in immune and defense responses. A literature search showed that 10 other genes associated with hearing functions were regulated by dexamethasone both at 12 and 24 hours post-administration. Dexamethasone modulates the immune reaction in the traumatized cochlea following acoustic overstimulation. Dexamethasone may also regulate cochlear functions other than immunity.

  13. Identification of dysregulated long non-coding RNAs/microRNAs/mRNAs in TNM I stage lung adenocarcinoma

    PubMed Central

    Tian, Ziqiang; Wen, Shiwang; Zhang, Yuefeng; Shi, Xinqiang; Zhu, Yonggang; Xu, Yanzhao; Lv, Huilai; Wang, Guiying

    2017-01-01

    Lung adenocarcinoma (LUAD) is the primary subtype in lung cancer, which is the leading cause of cancer-related death worldwide. This study aimed to investigate the aberrant expression profiling of long non-coding RNA (lncRNA) in TNM I stage (stage I) LUAD. The lncRNA/mRNA/miRNA expression profiling of stage I LUAD and adjacent non-tumor tissues from 4 patients were measured by RNA-sequencing. Total of 175 differentially expressed lncRNAs (DELs), 1321 differentially expressed mRNAs (DEMs) and 94 differentially expressed microRNAs (DEMIs) were identified in stage I LUAD. DEMI-DEM regulatory network consisted of 544 nodes and 1123 edge; miR-200 family members had high connectivity with DEMs. In DEL-DEM co-expression network, CDKN2B-AS1, FENDRR and LINC00312 had the high connectivity with DEMs, which co-expressed with 105, 63 and 61 DEMs, respectively. DEL-DEMI-DEM network depicted the links among DELs, DEMI and DEMs. Identified DEMs were significantly enriched in cell adhesion molecules, focal adhesion and tight junction of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways; and enriched in cell adhesion, angiogenesis and regulation of cell proliferation of Gene Ontology biological processes. Quantitative real-time polymerase chain reaction results were generally consistent with our bioinformatics analyses. LINC00312 and FENDRR had diagnostic value for LUAD patients in The Cancer Genome Atlas database. Our study might lay the foundation for illumination of pathogenesis of LUAD and identification of potential therapeutic targets and novel diagnosis biomarkers for LUAD patients. PMID:28881680

  14. Encapsulated human hepatocellular carcinoma cells by alginate gel beads as an in vitro metastasis model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiao-xi; Liu, Chang; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049

    2013-08-15

    Hepatocellular carcinoma (HCC) is the most common primary liver cancer and often forms metastases, which are the most important prognostic factors. For further elucidation of the mechanism underlying the progression and metastasis of HCC, a culture system mimicking the in vivo tumor microenvironment is needed. In this study, we investigated the metastatic ability of HCC cells cultured within alginate gel (ALG) beads. In the culture system, HCC cells formed spheroids by proliferation and maintained in nuclear abnormalities. The gene and protein expression of metastasis-related molecules was increased in ALG beads, compared with the traditional adhesion culture. Furthermore, several gene expressionmore » levels in ALG bead culture system were even closer to liver cancer tissues. More importantly, in vitro invasion assay showed that the invasion cells derived from ALG beads was 7.8-fold higher than adhesion cells. Our results indicated that the in vitro three-dimensional (3D) model based on ALG beads increased metastatic ability compared with adhesion culture, even partly mimicked the in vivo tumor tissues. Moreover, due to the controllable preparation conditions, steady characteristics and production at large-scale, the 3D ALG bead model would become an important tool used in the high-throughput screening of anti-metastasis drugs and the metastatic mechanism research. -- Highlights: •We established a 3D metastasis model mimicking the metastatic ability in vivo. •The invasion ability of cells derived from our model was increased significantly. •The model is easy to reproduce, convenient to handle, and amenable for large-scale.« less

  15. The shed ectodomain of Nr-CAM stimulates cell proliferation and motility, and confers cell transformation.

    PubMed

    Conacci-Sorrell, Maralice; Kaplan, Anna; Raveh, Shani; Gavert, Nancy; Sakurai, Takeshi; Ben-Ze'ev, Avri

    2005-12-15

    Nr-CAM, a cell-cell adhesion molecule of the immunoglobulin-like cell adhesion molecule family, known for its function in neuronal outgrowth and guidance, was recently identified as a target gene of beta-catenin signaling in human melanoma and colon carcinoma cells and tissue. Retrovirally mediated transduction of Nr-CAM into fibroblasts induces cell motility and tumorigenesis. We investigated the mechanisms by which Nr-CAM can confer properties related to tumor cell behavior and found that Nr-CAM expression in NIH3T3 cells protects cells from apoptosis in the absence of serum by constitutively activating the extracellular signal-regulated kinase and AKT signaling pathways. We detected a metalloprotease-mediated shedding of Nr-CAM into the culture medium of cells transfected with Nr-CAM, and of endogenous Nr-CAM in B16 melanoma cells. Conditioned medium and purified Nr-CAM-Fc fusion protein both enhanced cell motility, proliferation, and extracellular signal-regulated kinase and AKT activation. Moreover, Nr-CAM was found in complex with alpha4beta1 integrins in melanoma cells, indicating that it can mediate, in addition to homophilic cell-cell adhesion, heterophilic adhesion with extracellular matrix receptors. Suppression of Nr-CAM levels by small interfering RNA in B16 melanoma inhibited the adhesive and tumorigenic capacities of these cells. Stable expression of the Nr-CAM ectodomain in NIH3T3 cells conferred cell transformation and tumorigenesis in mice, suggesting that the metalloprotease-mediated shedding of Nr-CAM is a principal route for promoting oncogenesis by Nr-CAM.

  16. Positive Selection of Plasmodium falciparum Parasites With Multiple var2csa-Type PfEMP1 Genes During the Course of Infection in Pregnant Women

    PubMed Central

    Salanti, Ali; Lavstsen, Thomas; Nielsen, Morten A.; Theander, Thor G.; Leke, Rose G. F.; Lo, Yeung Y.; Bobbili, Naveen; Arnot, David E.; Taylor, Diane W.

    2011-01-01

    Placental malaria infections are caused by Plasmodium falciparum–infected red blood cells sequestering in the placenta by binding to chondroitin sulfate A, mediated by VAR2CSA, a variant of the PfEMP1 family of adhesion antigens. Recent studies have shown that many P. falciparum genomes have multiple genes coding for different VAR2CSA proteins, and parasites with >1 var2csa gene appear to be more common in pregnant women with placental malaria than in nonpregnant individuals. We present evidence that, in pregnant women, parasites containing multiple var2csa-type genes possess a selective advantage over parasites with a single var2csa gene. Accumulation of parasites with multiple copies of the var2csa gene during the course of pregnancy was also correlated with the development of antibodies involved in blocking VAR2CSA adhesion. The data suggest that multiplicity of var2csa-type genes enables P. falciparum parasites to persist for a longer period of time during placental infections, probably because of their greater capacity for antigenic variation and evasion of variant-specific immune responses. PMID:21592998

  17. Signet-ring cell carcinoma of colorectum--current perspectives and molecular biology.

    PubMed

    Gopalan, Vinod; Smith, Robert Anthony; Ho, Yik-Hong; Lam, Alfred King-Yin

    2011-02-01

    Colorectal signet-ring cell carcinoma (SRCC) is rare, and very little detailed information on the molecular biology of the disease is available. The literature on the clinical, pathological and, in particular, the molecular biology of this rare entity was critically reviewed. The reviewed articles take into account a total of 1,817 cases of SRCC, but only 143 cases have molecular data available. The characteristics of two patients with colorectal SRCC were also discussed. Colorectal SRCC mostly occurs in younger patients, is larger and has different site predilection compared with conventional colorectal adenocarcinoma. It can occur as one of the synchronous cancers in the colorectum. The cancer is usually diagnosed at advanced stages because of the late manifestation of symptoms, and aggressive treatment strategy is required. Limited reports in the literature have shown that the variant of colorectal cancer demonstrated a different pattern of genetic alterations of common growth kinase-related oncogenes (K-ras, BRAF), tumour suppressor genes (p53, p16), gene methylation and cell adhesion-related genes related to the Wingless signalling pathway (E-cadherin and beta-catenin) from conventional colorectal adenocarcinoma. Colorectal SRCC also showed high expression of mucin-related genes and genes related to the gastrointestinal system. There was also a higher prevalence of microsatellite instability-high tumours and low Cox-2 expression in colorectal SRCC as opposed to conventional adenocarcinoma. Colorectal SRCC has unique molecular pathological features. The unique molecular profiles in SRCC may provide molecular-based improvements to patient management in colorectal SRCC.

  18. Attachment of Asaia bogorensis Originating in Fruit-Flavored Water to Packaging Materials

    PubMed Central

    Otlewska, Anna; Antolak, Hubert

    2014-01-01

    The objective of this study was to investigate the adhesion of isolated spoilage bacteria to packaging materials used in the food industry. Microorganisms were isolated from commercial fruit-flavored mineral water in plastic bottles with flocks as a visual defect. The Gram-negative rods were identified using the molecular method through the amplification of a partial region of the 16S rRNA gene. Based on the sequence identity (99.6%) between the spoilage organism and a reference strain deposited in GenBank, the spoilage isolate was identified as Asaia bgorensis. Experiments on bacterial adhesion were conducted using plates made of glass and polystyrene (packaging materials commonly used in the beverage industry). Cell adhesion ability was determined using luminometry, plate count, and the microscopic method. The strain of A. bogorensis was characterized by strong adhesion properties which were dependent on the surface type, with the highest cell adhesion detected on polystyrene. PMID:25295262

  19. Up-regulation of tumor suppressor carcinoembryonic antigen-related cell adhesion molecule 1 in human colon cancer Caco-2 cells following repetitive exposure to dietary levels of a polyphenol-rich chokeberry juice.

    PubMed

    Bermúdez-Soto, María J; Larrosa, Mar; Garcia-Cantalejo, Jesús M; Espín, Juan C; Tomás-Barberan, Francisco A; García-Conesa, María T

    2007-04-01

    Consumption of berries and red fruits rich in polyphenols may contribute to the reduction of colon cancer through mechanisms not yet understood. In this study, we investigated the response of subconfluent Caco-2 cells (a human colon carcinoma model) to repetitive exposure (2 h a day for a 4-day period) of a subtoxic dose of a chokeberry (Aronia melanocarpa) juice containing mixed polyphenols. To mimic physiological conditions, we subjected the chokeberry juice to in vitro gastric and pancreatic digestion. The effects on viability, proliferation and cell cycle were determined, and changes in the expression of genes in response to the chokeberry treatment were screened using Affymetrix oligonucleotide microarrays. Exposure to the chokeberry juice inhibited Caco-2 cell proliferation by causing G(2)/M cell cycle arrest. We detected changes in the expression of a group of genes involved in cell growth and proliferation and cell cycle regulation, as well as those associated to colorectal cancer. A selection of these genes was further confirmed by quantitative RT-PCR. Among these, the tumor suppressor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), whose expression is known to be reduced in the majority of early adenomas and carcinomas, was up-regulated by the treatment both at the mRNA and protein levels (as shown by flow cytometry analysis). CEACAM1, with a significant regulatory role on cell proliferation of particular interest at early stages of cancer development, may be a potential target for chemoprevention by food components such as those present in polyphenol-rich fruits.

  20. Virulence Genes of S. aureus from Dairy Cow Mastitis and Contagiousness Risk.

    PubMed

    Magro, Giada; Biffani, Stefano; Minozzi, Giulietta; Ehricht, Ralf; Monecke, Stefan; Luini, Mario; Piccinini, Renata

    2017-06-21

    Staphylococcus aureus ( S. aureus ) is a major agent of dairy cow intramammary infections: the different prevalences of mastitis reported might be related to a combination of S. aureus virulence factors beyond host factors. The present study considered 169 isolates from different Italian dairy herds that were classified into four groups based on the prevalence of S. aureus infection at the first testing: low prevalence (LP), medium-low (MLP), medium-high (MHP) and high (HP). We aimed to correlate the presence of virulence genes with the prevalence of intramammary infections in order to develop new strategies for the control of S. aureus mastitis. Microarray data were statistically evaluated using binary logistic regression and correspondence analysis to screen the risk factors and the relationship between prevalence group and gene. The analysis showed: (1) 24 genes at significant risk of being detected in all the herds with infection prevalence >5%, including genes belonging to microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), immune evasion and serine proteases; and (2) a significant correlation coefficient between the genes interacting with the host immune response and HP isolates against LP ones. These results support the hypothesis that virulence factors, in addition to cow management, could be related to strain contagiousness, offering new insights into vaccine development.

  1. [Regulation of microRNA-199a on adhesion, migration and invasion ability of human endometrial stromal cells].

    PubMed

    Dai, Lan; Gu, Li-ying; Zhu, Jie; Shi, Jun; Wang, Yao; Ji, Fang; Di, Wen

    2011-11-01

    To study the regulation of microRNA 199a (miR-199a) on adhesion, migration and invasion ability of human eutopic endometrial stromal cells (ESC) from patients with endometriosis. ESC were transfected with miR-199a mimics or negative control (NC) RNA by lipofectamine 2000. The adhesion, migration and invasion ability of ESC were detected by cell adhesion assay, scratch assay, cell migration assay and matrigel invasion assay, respectively. Luciferase reporter assay was used to evaluate whether IKKβ was the target gene of miR-199a. The expression of ikappa B kinase beta (IKKβ), inhibitory kappa B alpha (IκB-α), phospho-IκB-α(p-IκB-α) and nuclear factor-kappa B (NF-κB) protein were measured by western blot. (1) Adhesion potential: the adhesion inhibitory rates were (14 ± 4)% in miR-199a group and 0 in control group, which showed significant difference (P < 0.01). (2) Migration and invasion: in the scratch assay, ESC transfected with miR-199a exhibited a lower scratch closure rate than that of controls. In migration and invasion assays, the migration and invasion ability of miR-199a group were significantly decreased compared with those of NC group [130 ± 31 vs. 247 ± 36 (P < 0.01); 63 ± 15 vs. 133 ± 17 (P < 0.01), respectively]. (3) The luciferase activity of miR-199a group was significantly lowered than that of control group [0.160 ± 0.006 vs. 0.383 ± 0.083 (P < 0.01)]. The protein levels of IKKβ, p-IκB-α, IκB-α and NF-κB of 0.350 ± 0.195, 0.443 ± 0.076, 1.970 ± 0.486 and 0.454 ± 0.147 in miR-199a group were significantly different compared with the NC group in which the protein levels were set at 1.000 (P < 0.01). miR-199a can inhibit the adhesion, migration and invasion of the ESC. IKKβ is the target gene of miR-199a in ESC. One of the mechanisms of the inhibition effect is probably that miR-199a inhibits the activation of NF-κB signaling pathway by targeting IKKβ gene.

  2. Humidity effects on adhesion of nickel-zinc ferrite in elastic contact with magnetic tape and itself

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Kusaka, T.; Maeda, C.

    1985-01-01

    The effects of humidity on the adhesion of Ni-Zn ferrite and magnetic tape in elastic contact with a Ni-Zn ferrite hemispherical pin in moist nitrogen were studied. Adhesion was independent of normal load in dry, humid, and saturated nitrogen. Ferrites adhere to ferrites in a saturated atmosphere primarily from the surface tension effects of a thin film of water adsorbed on the ferrite surfaces. The surface tension of the water film calculated from the adhesion results was 48 times 0.00001 to 56 times 0.00001 N/cm; the accepted value for water is 72.7 x 0.00001 N/cm. The adhesion of ferrite-ferrite contacts increased gradually with increases in relative humidity to 80 percent, but rose rapidly above 80 percent. The adhesion at saturation was 30 times or more greater than that below 80 percent relative humidity. Although the adhesion of magnetic tape - ferrite contacts remained low below 40 percent relative humidity and the effect of humidity was small, the adhesion increased considerably with increasing relative humidity above 40 percent. The changes in adhesion of elastic contacts were reversible on humidifying and dehumidifying.

  3. Functional and evolutionary insights from the Ciona notochord transcriptome.

    PubMed

    Reeves, Wendy M; Wu, Yuye; Harder, Matthew J; Veeman, Michael T

    2017-09-15

    The notochord of the ascidian Ciona consists of only 40 cells, and is a longstanding model for studying organogenesis in a small, simple embryo. Here, we perform RNAseq on flow-sorted notochord cells from multiple stages to define a comprehensive Ciona notochord transcriptome. We identify 1364 genes with enriched expression and extensively validate the results by in situ hybridization. These genes are highly enriched for Gene Ontology terms related to the extracellular matrix, cell adhesion and cytoskeleton. Orthologs of 112 of the Ciona notochord genes have known notochord expression in vertebrates, more than twice as many as predicted by chance alone. This set of putative effector genes with notochord expression conserved from tunicates to vertebrates will be invaluable for testing hypotheses about notochord evolution. The full set of Ciona notochord genes provides a foundation for systems-level studies of notochord gene regulation and morphogenesis. We find only modest overlap between this set of notochord-enriched transcripts and the genes upregulated by ectopic expression of the key notochord transcription factor Brachyury, indicating that Brachyury is not a notochord master regulator gene as strictly defined. © 2017. Published by The Company of Biologists Ltd.

  4. Modulation of extracellular matrix/adhesion molecule expression by BRG1 is associated with increased melanoma invasiveness.

    PubMed

    Saladi, Srinivas Vinod; Keenen, Bridget; Marathe, Himangi G; Qi, Huiling; Chin, Khew-Voon; de la Serna, Ivana L

    2010-10-22

    Metastatic melanoma is an aggressive malignancy that is resistant to therapy and has a poor prognosis. The progression of primary melanoma to metastatic disease is a multi-step process that requires dynamic regulation of gene expression through currently uncharacterized epigenetic mechanisms. Epigenetic regulation of gene expression often involves changes in chromatin structure that are catalyzed by chromatin remodeling enzymes. Understanding the mechanisms involved in the regulation of gene expression during metastasis is important for developing an effective strategy to treat metastatic melanoma. SWI/SNF enzymes are multisubunit complexes that contain either BRG1 or BRM as the catalytic subunit. We previously demonstrated that heterogeneous SWI/SNF complexes containing either BRG1 or BRM are epigenetic modulators that regulate important aspects of the melanoma phenotype and are required for melanoma tumorigenicity in vitro. To characterize BRG1 expression during melanoma progression, we assayed expression of BRG1 in patient derived normal skin and in melanoma specimen. BRG1 mRNA levels were significantly higher in stage IV melanomas compared to stage III tumors and to normal skin. To determine the role of BRG1 in regulating the expression of genes involved in melanoma metastasis, we expressed BRG1 in a melanoma cell line that lacks BRG1 expression and examined changes in extracellular matrix and adhesion molecule expression. We found that BRG1 modulated the expression of a subset of extracellular matrix remodeling enzymes and adhesion proteins. Furthermore, BRG1 altered melanoma adhesion to different extracellular matrix components. Expression of BRG1 in melanoma cells that lack BRG1 increased invasive ability while down-regulation of BRG1 inhibited invasive ability in vitro. Activation of metalloproteinase (MMP) 2 expression greatly contributed to the BRG1 induced increase in melanoma invasiveness. We found that BRG1 is recruited to the MMP2 promoter and directly activates expression of this metastasis associated gene. We provide evidence that BRG1 expression increases during melanoma progression. Our study has identified BRG1 target genes that play an important role in melanoma metastasis and we show that BRG1 promotes melanoma invasive ability in vitro. These results suggest that increased BRG1 levels promote the epigenetic changes in gene expression required for melanoma metastasis to proceed.

  5. Exploring the key genes and pathways in enchondromas using a gene expression microarray.

    PubMed

    Shi, Zhongju; Zhou, Hengxing; Pan, Bin; Lu, Lu; Kang, Yi; Liu, Lu; Wei, Zhijian; Feng, Shiqing

    2017-07-04

    Enchondromas are the most common primary benign osseous neoplasms that occur in the medullary bone; they can undergo malignant transformation into chondrosarcoma. However, enchondromas are always undetected in patients, and the molecular mechanism is unclear. To identify key genes and pathways associated with the occurrence and development of enchondromas, we downloaded the gene expression dataset GSE22855 and obtained the differentially expressed genes (DEGs) by analyzing high-throughput gene expression in enchondromas. In total, 635 genes were identified as DEGs. Of these, 225 genes (35.43%) were up-regulated, and the remaining 410 genes (64.57%) were down-regulated. We identified the predominant gene ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were significantly over-represented in the enchondromas samples compared with the control samples. Subsequently the top 10 core genes were identified from the protein-protein interaction (PPI) network. The enrichment analyses of the genes mainly involved in two significant modules showed that the DEGs were principally related to ribosomes, protein digestion and absorption, ECM-receptor interaction, focal adhesion, amoebiasis and the PI3K-Akt signaling pathway.Together, these data elucidate the molecular mechanisms underlying the occurrence and development of enchondromas and provide promising candidates for therapeutic intervention and prognostic evaluation. However, further experimental studies are needed to confirm these results.

  6. Reversible adhesion switching of porous fibrillar adhesive pads by humidity.

    PubMed

    Xue, Longjian; Kovalev, Alexander; Dening, Kirstin; Eichler-Volf, Anna; Eickmeier, Henning; Haase, Markus; Enke, Dirk; Steinhart, Martin; Gorb, Stanislav N

    2013-01-01

    We report reversible adhesion switching on porous fibrillar polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) adhesive pads by humidity changes. Adhesion at a relative humidity of 90% was more than nine times higher than at a relative humidity of 2%. On nonporous fibrillar adhesive pads of the same material, adhesion increased only by a factor of ~3.3. The switching performance remained unchanged in at least 10 successive high/low humidity cycles. Main origin of enhanced adhesion at high humidity is the humidity-induced decrease in the elastic modulus of the polar component P2VP rather than capillary force. The presence of spongelike continuous internal pore systems with walls consisting of P2VP significantly leveraged this effect. Fibrillar adhesive pads on which adhesion is switchable by humidity changes may be used for preconcentration of airborne particulates, pollutants, and germs combined with triggered surface cleaning.

  7. A transcription factor network coordinates attraction, repulsion, and adhesion combinatorially to control motor axon pathway selection.

    PubMed

    Zarin, Aref Arzan; Asadzadeh, Jamshid; Hokamp, Karsten; McCartney, Daniel; Yang, Long; Bashaw, Greg J; Labrador, Juan-Pablo

    2014-03-19

    Combinations of transcription factors (TFs) instruct precise wiring patterns in the developing nervous system; however, how these factors impinge on surface molecules that control guidance decisions is poorly understood. Using mRNA profiling, we identified the complement of membrane molecules regulated by the homeobox TF Even-skipped (Eve), the major determinant of dorsal motor neuron (dMN) identity in Drosophila. Combinatorial loss- and gain-of-function genetic analyses of Eve target genes indicate that the integrated actions of attractive, repulsive, and adhesive molecules direct eve-dependent dMN axon guidance. Furthermore, combined misexpression of Eve target genes is sufficient to partially restore CNS exit and can convert the guidance behavior of interneurons to that of dMNs. Finally, we show that a network of TFs, comprised of eve, zfh1, and grain, induces the expression of the Unc5 and Beaten-path guidance receptors and the Fasciclin 2 and Neuroglian adhesion molecules to guide individual dMN axons. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A Transcription Factor Network Coordinates Attraction, Repulsion, and Adhesion Combinatorially to Control Motor Axon Pathway Selection

    PubMed Central

    Zarin, Aref Arzan; Asadzadeh, Jamshid; Hokamp, Karsten; McCartney, Daniel; Yang, Long; Bashaw, Greg J.; Labrador, Juan-Pablo

    2014-01-01

    SUMMARY Combinations of transcription factors (TFs) instruct precise wiring patterns in the developing nervous system; however, how these factors impinge on surface molecules that control guidance decisions is poorly understood. Using mRNA profiling, we identified the complement of membrane molecules regulated by the homeobox TF Even-skipped (Eve), the major determinant of dorsal motor neuron (dMN) identity in Drosophila. Combinatorial loss- and gain-of-function genetic analyses of Eve target genes indicate that the integrated actions of attractive, repulsive, and adhesive molecules direct eve-dependent dMN axon guidance. Furthermore, combined misexpression of Eve target genes is sufficient to partially restore CNS exit and can convert the guidance behavior of interneurons to that of dMNs. Finally, we show that a network of TFs, comprised of eve, zfh1, and grain, induces the expression of the Unc5 and Beaten-path guidance receptors and the Fasciclin 2 and Neuroglian adhesion molecules to guide individual dMN axons. PMID:24560702

  9. Short communication: Conservation of Streptococcus uberis adhesion molecule and the sua gene in strains of Streptococcus uberis isolated from geographically diverse areas.

    PubMed

    Yuan, Ying; Dego, Oudessa Kerro; Chen, Xueyan; Abadin, Eurife; Chan, Shangfeng; Jory, Lauren; Kovacevic, Steven; Almeida, Raul A; Oliver, Stephen P

    2014-12-01

    The objective was to identify and sequence the sua gene (GenBank no. DQ232760; http://www.ncbi.nlm.nih.gov/genbank/) and detect Streptococcus uberis adhesion molecule (SUAM) expression by Western blot using serum from naturally S. uberis-infected cows in strains of S. uberis isolated in milk from cows with mastitis from geographically diverse areas of the world. All strains evaluated yielded a 4.4-kb sua-containing PCR fragment that was subsequently sequenced. Deduced SUAM AA sequences from those S. uberis strains evaluated shared >97% identity. The pepSUAM sequence located at the N terminus of SUAM was >99% identical among strains of S. uberis. Streptococcus uberis adhesion molecule expression was detected in all strains of S. uberis tested. These results suggest that sua is ubiquitous among strains of S. uberis isolated from diverse geographic locations and that SUAM is immunogenic. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease

    PubMed Central

    Berchtold, Nicole C.; Coleman, Paul D.; Cribbs, David H.; Rogers, Joseph; Gillen, Daniel L.; Cotman, Carl W.

    2014-01-01

    Synapses are essential for transmitting, processing, and storing information, all of which decline in aging and Alzheimer’s disease (AD). Because synapse loss only partially accounts for the cognitive declines seen in aging and AD, we hypothesized that existing synapses might undergo molecular changes that reduce their functional capacity. Microarrays were used to evaluate expression profiles of 340 synaptic genes in aging (20–99 years) and AD across 4 brain regions from 81 cases. The analysis revealed an unexpectedly large number of significant expression changes in synapse-related genes in aging, with many undergoing progressive downregulation across aging and AD. Functional classification of the genes showing altered expression revealed that multiple aspects of synaptic function are affected, notably synaptic vesicle trafficking and release, neurotransmitter receptors and receptor trafficking, postsynaptic density scaffolding, cell adhesion regulating synaptic stability, and neuromodulatory systems. The widespread declines in synaptic gene expression in normal aging suggests that function of existing synapses might be impaired, and that a common set of synaptic genes are vulnerable to change in aging and AD. PMID:23273601

  11. Role of the teneurins, teneurin C-terminal associated peptides (TCAP) in reproduction: clinical perspectives.

    PubMed

    Lovejoy, David A; Pavlović, Téa

    2015-11-01

    In humans, the teneurin gene family consists of four highly conserved paralogous genes that are the result of early vertebrate gene duplications arising from a gene introduced into multicellular organisms from a bacterial ancestor. In vertebrates and humans, the teneurins have become integrated into a number of critical physiological systems including several aspects of reproductive physiology. Structurally complex, these genes possess a sequence in their terminal exon that encodes for a bioactive peptide sequence termed the 'teneurin C-terminal associated peptide' (TCAP). The teneurin/TCAP protein forms an intercellular adhesive unit with its receptor, latrophilin, an Adhesion family G-protein coupled receptor. It is present in numerous cell types and has been implicated in gamete migration and gonadal morphology. Moreover, TCAP is highly effective at reducing the corticotropin-releasing factor (CRF) stress response. As a result, TCAP may also play a role in regulating the stress-associated inhibition of reproduction. In addition, the teneurins and TCAP have been implicated in tumorigenesis associated with reproductive tissues. Therefore, the teneurin/TCAP system may offer clinicians a novel biomarker system upon which to diagnose some reproductive pathologies.

  12. Identifying arsenic trioxide (ATO) functions in leukemia cells by using time series gene expression profiles.

    PubMed

    Yang, Hong; Lin, Shan; Cui, Jingru

    2014-02-10

    Arsenic trioxide (ATO) is presently the most active single agent in the treatment of acute promyelocytic leukemia (APL). In order to explore the molecular mechanism of ATO in leukemia cells with time series, we adopted bioinformatics strategy to analyze expression changing patterns and changes in transcription regulation modules of time series genes filtered from Gene Expression Omnibus database (GSE24946). We totally screened out 1847 time series genes for subsequent analysis. The KEGG (Kyoto encyclopedia of genes and genomes) pathways enrichment analysis of these genes showed that oxidative phosphorylation and ribosome were the top 2 significantly enriched pathways. STEM software was employed to compare changing patterns of gene expression with assigned 50 expression patterns. We screened out 7 significantly enriched patterns and 4 tendency charts of time series genes. The result of Gene Ontology showed that functions of times series genes mainly distributed in profiles 41, 40, 39 and 38. Seven genes with positive regulation of cell adhesion function were enriched in profile 40, and presented the same first increased model then decreased model as profile 40. The transcription module analysis showed that they mainly involved in oxidative phosphorylation pathway and ribosome pathway. Overall, our data summarized the gene expression changes in ATO treated K562-r cell lines with time and suggested that time series genes mainly regulated cell adhesive. Furthermore, our result may provide theoretical basis of molecular biology in treating acute promyelocytic leukemia. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Effect of tributyltin on mammalian endothelial cell integrity.

    PubMed

    Botelho, G; Bernardini, C; Zannoni, A; Ventrella, V; Bacci, M L; Forni, M

    2015-01-01

    Tributyltin (TBT), is a man-made pollutants, known to accumulate along the food chain, acting as an endocrine disruptor in marine organisms, with toxic and adverse effects in many tissues including vascular system. Based on the absence of specific studies of TBT effects on endothelial cells, we aimed to evaluate the toxicity of TBT on primary culture of porcine aortic endothelial cells (pAECs), pig being an excellent model to study human cardiovascular disease. pAECs were exposed for 24h to TBT (100, 250, 500, 750 and 1000nM) showing a dose dependent decrease in cell viability through both apoptosis and necrosis. Moreover the ability of TBT (100 and 500nM) to influence endothelial gene expression was investigated at 1, 7 and 15h of treatment. Gene expression of tight junction molecules, occludin (OCLN) and tight junction protein-1 (ZO-1) was reduced while monocyte adhesion and adhesion molecules ICAM-1 and VCAM-1 (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) levels increased significantly at 1h. IL-6 and estrogen receptors 1 and 2 (ESR-1 and ESR-2) mRNAs, after a transient decrease, reached the maximum levels after 15h of exposure. Finally, we demonstrated that TBT altered endothelial functionality greatly increasing monocyte adhesion. These findings indicate that TBT deeply alters endothelial profile, disrupting their structure and interfering with their ability to interact with molecules and other cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli.

    PubMed

    Pesavento, Christina; Becker, Gisela; Sommerfeldt, Nicole; Possling, Alexandra; Tschowri, Natalia; Mehlis, Anika; Hengge, Regine

    2008-09-01

    During the transition from post-exponential to stationary phase, Escherichia coli changes from the motile-planktonic to the adhesive-sedentary "lifestyle." We demonstrate this transition to be controlled by mutual inhibition of the FlhDC/motility and sigma(S)/adhesion control cascades at two distinct hierarchical levels. At the top level, motility gene expression and the general stress response are inversely coordinated by sigma(70)/sigma(FliA)/sigma(S) competition for core RNA polymerase and the FlhDC-controlled FliZ protein acting as a sigma(S) inhibitor. At a lower level, the signaling molecule bis-(3'-5')-cyclic-diguanosine monophosphate (c-di-GMP) reduces flagellar activity and stimulates transcription of csgD, which encodes an essential activator of adhesive curli fimbriae expression. This c-di-GMP is antagonistically controlled by sigma(S)-regulated GGDEF proteins (mainly YegE) and YhjH, an EAL protein and c-di-GMP phosphodiesterase under FlhDC/FliA control. The switch from motility-based foraging to the general stress response and curli expression requires sigma(S)-modulated down-regulation of expression of the flagellar regulatory cascade as well as proteolysis of the flagellar master regulator FlhDC. Control of YhjH by FlhDC and of YegE by sigma(S) produces a fine-tuned checkpoint system that "unlocks" curli expression only after down-regulation of flagellar gene expression. In summary, these data reveal the logic and sequence of molecular events underlying the motile-to-adhesive "lifestyle" switch in E. coli.

  15. Influence on proliferation and adhesion of human gingival fibroblasts from different titanium surface decontamination treatments: An in vitro study.

    PubMed

    Cao, Jie; Wang, Tong; Pu, Yinfei; Tang, Zhihui; Meng, Huanxin

    2018-03-01

    To investigate the effects of different decontamination treatments on microstructure of titanium (Ti) surface as well as proliferation and adhesion of human gingival fibroblasts (HGFs). Ti discs with machined (M) and sand blasted, acid etched (SAE) surfaces were treated with five different decontamination treatments: (1) stainless steel curette (SSC), ultrasonic system with (2) straight carbon fiber tip (UCF) or (3) metal tip (UM), (4) rotating Ti brush (RTB), and (5) Er:YAG laser (30 mJ/pulse at 30 Hz). Surface roughness was analyzed under optical interferometry. HGFs were cultured on each disc. Proliferation and adhesive strength were analyzed. qRT-PCR and ELISA were performed to detect the RNA and protein expression of FAK, ITGB1, COL1A1, and FN1 respectively from different Ti surfaces. Surface roughness increased on M surface. Proliferation, adhesive strength and gene expression were higher on M surface than SAE surface. Decontamination treatments affected surface parameters significantly (P < 0.001), making M surface less smooth while SAE surface became less rough. SSC, UCF, UM and RTB decreased proliferation on M surfaces significantly (P < 0.05). UCF, RTB and laser increased proliferation on SAE surface significantly (P < 0.05). UM decreased adhesive strength on M surface significantly and laser increased adhesive strength on SAE surface significantly (P < 0.05). Gene expression increased with time and was altered by decontamination treatments significantly (P < 0.001). Decontamination treatments influence surface roughness and cell behavior of HGFs. Laser might be an optimal decontamination treatment which has the least negative effect on M surface and the most positive effect on SAE surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Involvement of Escherichia coli K1 ibeT in bacterial adhesion that is associated with the entry into human brain microvascular endothelial cells.

    PubMed

    Zou, Yanming; He, Lina; Chi, Feng; Jong, Ambrose; Huang, Sheng-He

    2008-12-01

    IbeT is a downstream gene of the invasion determinant ibeA in the chromosome of a clinical isolate of Escherichia coli K1 strain RS218 (serotype 018:K1:H7). Both ibeT and ibeA are in the same operon. Our previous mutagenesis and complementation studies suggested that ibeT may coordinately contribute to E. coli K1 invasion with ibeA. An isogenic in-frame deletion mutant of ibeT has been made by chromosomal gene replacement with a recombinant suicide vector carrying a fragment with an ibeT internal deletion. The characteristics of the mutant in meningitic E. coli infection were examined in vitro [cell culture of human brain microvascular endothelial cells (HBMEC)] and in vivo (infant rat model of E. coli meningitis) in comparison with the parent strain. The ibeT deletion mutant was significantly less adhesive and invasive than its parent strain E. coli E44 in vitro, and the adhesion- and invasion-deficient phenotypes of the mutant can be complemented by the ibeT gene. Recombinant IbeT protein is able to block E. coli E44 invasion of HBMEC. Furthermore, the ibeT deletion mutant is less capable of colonizing intestine and less virulent in bacterial translocation across the blood-brain barrier (BBB) than its parent E. coli E44 in vivo. These data suggest that ibeT-mediated E. coli K1 adhesion is associated with the bacterial invasion process.

  17. Redox sensor CtBP mediates hypoxia-induced tumor cell migration

    PubMed Central

    Zhang, Qinghong; Wang, Su-Yan; Nottke, Amanda C.; Rocheleau, Jonathan V.; Piston, David W.; Goodman, Richard H.

    2006-01-01

    The rapid growth and poor vascularization of solid tumors expose cancer cells to hypoxia, which promotes the metastatic phenotype by reducing intercellular adhesion and increasing cell motility and invasiveness. In this study, we found that hypoxia increased free NADH levels in cancer cells, promoting CtBP recruitment to the E-cadherin promoter. This effect was blocked by pyruvate, which prevents the NADH increase. Furthermore, hypoxia repressed E-cadherin gene expression and increased tumor cell migration, effects that were blocked by CtBP knockdown. We propose that CtBP senses levels of free NADH to control expression of cell adhesion genes, thereby promoting tumor cell migration under hypoxic stress. PMID:16740659

  18. Effects of dietary supplementation with EPA and/or α-lipoic acid on adipose tissue transcriptomic profile of healthy overweight/obese women following a hypocaloric diet.

    PubMed

    Huerta, Ana E; Prieto-Hontoria, Pedro L; Fernández-Galilea, Marta; Escoté, Xavier; Martínez, J Alfredo; Moreno-Aliaga, María J

    2017-01-02

    In obesity, the increment of adiposity levels disrupts the whole body homeostasis, promoting an over production of oxidants and inflammatory mediators. The current study aimed to characterize the transcriptomic changes promoted by supplementation with eicosapentaenoic acid (EPA, 1.3 g/day), α-lipoic acid (0.3 g/day), or both (EPA + α-lipoic acid, 1.3 g/day + 0.3 g/day) in subcutaneous abdominal adipose tissue from overweight/obese healthy women, who followed a hypocaloric diet (30% of total energy expenditure) during ten weeks, by using a microarray approach. At the end of the intervention, a total of 33,297 genes were analyzed using Affymetrix GeneChip arrays. EPA promoted changes in extracellular matrix remodeling gene expression, besides a rise of genes associated with either chemotaxis or wound repair. α-Lipoic acid decreased expression of genes related with cell adhesion and inflammation. Furthermore, α-lipoic acid, especially in combination with EPA, upregulated the expression of genes associated with lipid catabolism while downregulated genes involved in lipids storage. Together, all these data suggest that some of the metabolic effects of EPA and α-lipoic acid could be related to their regulatory actions on adipose tissue metabolism. © 2016 BioFactors, 43(1):117-131, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  19. YAP and MRTF-A, transcriptional co-activators of RhoA-mediated gene expression, are critical for glioblastoma tumorigenicity.

    PubMed

    Yu, Olivia M; Benitez, Jorge A; Plouffe, Steven W; Ryback, Daniel; Klein, Andrea; Smith, Jeff; Greenbaum, Jason; Delatte, Benjamin; Rao, Anjana; Guan, Kun-Liang; Furnari, Frank B; Chaim, Olga Meiri; Miyamoto, Shigeki; Brown, Joan Heller

    2018-06-11

    The role of YAP (Yes-associated protein 1) and MRTF-A (myocardin-related transcription factor A), two transcriptional co-activators regulated downstream of GPCRs (G protein-coupled receptors) and RhoA, in the growth of glioblastoma cells and in vivo glioblastoma multiforme (GBM) tumor development was explored using human glioblastoma cell lines and tumor-initiating cells derived from patient-derived xenografts (PDX). Knockdown of these co-activators in GSC-23 PDX cells using short hairpin RNA significantly attenuated in vitro self-renewal capability assessed by limiting dilution, oncogene expression, and neurosphere formation. Orthotopic xenografts of the MRTF-A and YAP knockdown PDX cells formed significantly smaller tumors and were of lower morbidity than wild-type cells. In vitro studies used PDX and 1321N1 glioblastoma cells to examine functional responses to sphingosine 1-phosphate (S1P), a GPCR agonist that activates RhoA signaling, demonstrated that YAP signaling was required for cell migration and invasion, whereas MRTF-A was required for cell adhesion; both YAP and MRTF-A were required for proliferation. Gene expression analysis by RNA-sequencing of S1P-treated MRTF-A or YAP knockout cells identified 44 genes that were induced through RhoA and highly dependent on YAP, MRTF-A, or both. Knockdown of F3 (tissue factor (TF)), a target gene regulated selectively through YAP, blocked cell invasion and migration, whereas knockdown of HBEGF (heparin-binding epidermal growth factor-like growth factor), a gene selectively induced through MRTF-A, prevented cell adhesion in response to S1P. Proliferation was sensitive to knockdown of target genes regulated through either or both YAP and MRTF-A. Expression of TF and HBEGF was also selectively decreased in tumors from PDX cells lacking YAP or MRTF-A, indicating that these transcriptional pathways are regulated in preclinical GBM models and suggesting that their activation through GPCRs and RhoA contributes to growth and maintenance of human GBM.

  20. Polymorphisms and linkage analysis for ICAM-1 and the selectin gene cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vora, D.K.; Rosenbloom, C.L.; Cottingham, R.W.

    1994-06-01

    Genetic polymorphisms in leukocyte and endothelial cell adhesion molecules may be important variables with regard to susceptibility to multifactorial disease processes that include an inflammatory component. For this reason, polymorphisms were sought for intercellular adhesion molecule-1 (ICAM-1; gene symbol ICAM1) and for the three genes in the selectin cluster, P-selectin, L-selectin, and E-selectin (gene symbols SELP, SELL, and SELE, respectively). Two amino acid polymorphisms were identified for ICAM-1; Gly or Arg at codon 241 and Lys or Glu at codon 469. Dinucleotide repeat polymorphisms were identified in the 3{prime}-untranslated region for ICAM-1 and in intron 9 for P-selectin. Restriction fragmentmore » length polymorphisms were found using cDNAs for each of the three selectin genes as probes; E-selectin with BglII, P-selectin with ScaI, and L-selectin with HincII. Linkage analysis was performed for the selectin gene cluster and for ICAM-1 using the CEPH families; ICAM-1 is very tightly linked to the LDL receptor on chromosome 19, and the selectin cluster is linked to markers at chromosome 1q23. 41 refs., 2 tabs.« less

  1. X-ray irradiation has positive effects for the recovery of peripheral nerve injury maybe through the vascular smooth muscle contraction signaling pathway.

    PubMed

    Jiang, Bo; Zhang, Yong; She, Chang; Zhao, Jiaju; Zhou, Kailong; Zuo, Zhicheng; Zhou, Xiaozhong; Wang, Peiji; Dong, Qirong

    2017-09-01

    It is well known that moderate to high doses of ionizing radiation have a toxic effect on the organism. However, there are few experimental studies on the mechanisms of LDR ionizing radiation on nerve regeneration after peripheral nerve injury. We established the rats' peripheral nerve injury model via repaired Peripheral nerve injury nerve, vascular endothelial growth factor a and Growth associated protein-43 were detected from different treatment groups. We performed transcriptome sequencing focusing on investigating the differentially expressed genes and gene functions between the control group and 1Gy group. Sequencing was done by using high-throughput RNA-sequencing (RNA-seq) technologies. The results showed the 1Gy group to be the most effective promoting repair. RNA-sequencing identified 619 differently expressed genes between control and treated groups. A Gene Ontology analysis of the differentially expressed genes revealed enrichment in the functional pathways. Among them, candidate genes associated with nerve repair were identified. Pathways involved in cell-substrate adhesion, vascular smooth muscle contraction and cell adhesion molecule signaling may be involved in recovery from peripheral nerve injury. Copyright © 2017. Published by Elsevier B.V.

  2. Factors Affecting the Initial Adhesion and Retention of the Plant Pathogen Xylella fastidiosa in the Foregut of an Insect Vector

    PubMed Central

    Almeida, Rodrigo P. P.

    2014-01-01

    Vector transmission of bacterial plant pathogens involves three steps: pathogen acquisition from an infected host, retention within the vector, and inoculation of cells into susceptible tissue of an uninfected plant. In this study, a combination of plant and artificial diet systems were used to determine the importance of several genes on the initial adhesion and retention of the bacterium Xylella fastidiosa to an efficient insect vector. Mutant strains included fimbrial (fimA and pilB) and afimbrial (hxfA and hxfB) adhesins and three loci involved in regulatory systems (rpfF, rpfC, and cgsA). Transmission assays with variable retention time indicated that HxfA and HxfB were primarily important for early adhesion to vectors, while FimA was necessary for both adhesion and retention. The long pilus protein PilB was not deficient in initial adhesion but may be important for retention. Genes upregulated under the control of rpfF are important for both initial adhesion and retention, as transmission rates of this mutant strain were initially low and decreased over time, while disruption of rpfC and cgsA yielded trends similar to that shown by the wild-type control. Because induction of an X. fastidiosa transmissible state requires pectin, a series of experiments were used to test the roles of a polygalacturonase (pglA) and the pectin and galacturonic acid carbohydrates on the transmission of X. fastidiosa. Results show that galacturonic acid, or PglA activity breaking pectin into its major subunit (galacturonic acid), is required for X. fastidiosa vector transmission using an artificial diet system. This study shows that early adhesion and retention of X. fastidiosa are mediated by different factors. It also illustrates that the interpretation of results of vector transmission experiments, in the context of vector-pathogen interaction studies, is highly dependent on experimental design. PMID:24185853

  3. Factors affecting the initial adhesion and retention of the plant pathogen Xylella fastidiosa in the foregut of an insect vector.

    PubMed

    Killiny, Nabil; Almeida, Rodrigo P P

    2014-01-01

    Vector transmission of bacterial plant pathogens involves three steps: pathogen acquisition from an infected host, retention within the vector, and inoculation of cells into susceptible tissue of an uninfected plant. In this study, a combination of plant and artificial diet systems were used to determine the importance of several genes on the initial adhesion and retention of the bacterium Xylella fastidiosa to an efficient insect vector. Mutant strains included fimbrial (fimA and pilB) and afimbrial (hxfA and hxfB) adhesins and three loci involved in regulatory systems (rpfF, rpfC, and cgsA). Transmission assays with variable retention time indicated that HxfA and HxfB were primarily important for early adhesion to vectors, while FimA was necessary for both adhesion and retention. The long pilus protein PilB was not deficient in initial adhesion but may be important for retention. Genes upregulated under the control of rpfF are important for both initial adhesion and retention, as transmission rates of this mutant strain were initially low and decreased over time, while disruption of rpfC and cgsA yielded trends similar to that shown by the wild-type control. Because induction of an X. fastidiosa transmissible state requires pectin, a series of experiments were used to test the roles of a polygalacturonase (pglA) and the pectin and galacturonic acid carbohydrates on the transmission of X. fastidiosa. Results show that galacturonic acid, or PglA activity breaking pectin into its major subunit (galacturonic acid), is required for X. fastidiosa vector transmission using an artificial diet system. This study shows that early adhesion and retention of X. fastidiosa are mediated by different factors. It also illustrates that the interpretation of results of vector transmission experiments, in the context of vector-pathogen interaction studies, is highly dependent on experimental design.

  4. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells

    PubMed Central

    Zhang, Bo; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2015-01-01

    Adhesion to host cells is considered important for Lactobacillus plantarum as well as other lactic acid bacteria (LAB) to persist in human gut and thus exert probiotic effects. Here, we sequenced the genome of Lt. plantarum strain NL42 originating from a traditional Chinese dairy product, performed comparative genomic analysis and characterized a novel adhesion factor. The genome of NL42 was highly divergent from its closest neighbors, especially in six large genomic regions. NL42 harbors a total of 42 genes encoding adhesion-associated proteins; among them, cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif. Expression of cwaA in Lactococcus lactis significantly increased its autoaggregation and hydrophobicity, and conferred the new ability to adhere to human colonic epithelial HT-29 cells by targeting cellular surface proteins, and not carbohydrate moieties, for CwaA adhesion. In addition, the recombinant Lc. lactis inhibited adhesion of Staphylococcus aureus and Escherichia coli to HT-29 cells, mainly by exclusion. We conclude that CwaA is a novel adhesion factor in Lt. plantarum and a potential candidate for improving the adhesion ability of probiotics or other bacteria of interest. PMID:26370773

  5. Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells.

    PubMed

    Zhang, Bo; Zuo, Fanglei; Yu, Rui; Zeng, Zhu; Ma, Huiqin; Chen, Shangwu

    2015-09-15

    Adhesion to host cells is considered important for Lactobacillus plantarum as well as other lactic acid bacteria (LAB) to persist in human gut and thus exert probiotic effects. Here, we sequenced the genome of Lt. plantarum strain NL42 originating from a traditional Chinese dairy product, performed comparative genomic analysis and characterized a novel adhesion factor. The genome of NL42 was highly divergent from its closest neighbors, especially in six large genomic regions. NL42 harbors a total of 42 genes encoding adhesion-associated proteins; among them, cwaA encodes a protein containing multiple domains, including five cell wall surface anchor repeat domains and an LPxTG-like cell wall anchor motif. Expression of cwaA in Lactococcus lactis significantly increased its autoaggregation and hydrophobicity, and conferred the new ability to adhere to human colonic epithelial HT-29 cells by targeting cellular surface proteins, and not carbohydrate moieties, for CwaA adhesion. In addition, the recombinant Lc. lactis inhibited adhesion of Staphylococcus aureus and Escherichia coli to HT-29 cells, mainly by exclusion. We conclude that CwaA is a novel adhesion factor in Lt. plantarum and a potential candidate for improving the adhesion ability of probiotics or other bacteria of interest.

  6. TLX-Its Emerging Role for Neurogenesis in Health and Disease.

    PubMed

    Sobhan, Praveen K; Funa, Keiko

    2017-01-01

    The orphan nuclear receptor TLX, also called NR2E1, is a factor important in the regulation of neural stem cell (NSC) self-renewal, neurogenesis, and maintenance. As a transcription factor, TLX is vital for the expression of genes implicated in neurogenesis, such as DNA replication, cell cycle, adhesion and migration. It acts by way of repressing or activating target genes, as well as controlling protein-protein interactions. Growing evidence suggests that dysregulated TLX acts in the initiation and progression of human disorders of the nervous system. This review describes recent knowledge about TLX expression, structure, targets, and biological functions, relevant to maintaining adult neural stem cells related to both neuropsychiatric conditions and certain nervous system tumours.

  7. A nanoporous titanium surface promotes the maturation of focal adhesions and formation of filopodia with distinctive nanoscale protrusions by osteogenic cells.

    PubMed

    Guadarrama Bello, Dainelys; Fouillen, Aurélien; Badia, Antonella; Nanci, Antonio

    2017-09-15

    While topography is a key determinant of the cellular response to biomaterials, the mechanisms implicated in the cell-surface interactions are complex and still not fully elucidated. In this context, we have examined the effect of nanoscale topography on the formation of filopodia, focal adhesions, and gene expression of proteins associated with cell adhesion and sensing. Commercially pure titanium discs were treated by oxidative nanopatterning with a solution of H 2 SO 4 /H 2 O 2 50:50 (v/v). Scanning electron microscopy and atomic force microscopy characterizations showed that this facile chemical treatment efficiently creates a unique nanoporous surface with a root-mean-square roughness of 11.5nm and pore diameter of 20±5nm. Osteogenic cells were cultured on polished (control) and nanotextured discs for periods of 6, 24, and 72h. Immunofluorescence analysis revealed increases in the adhesion formation per cell area, focal adhesion length, and maturity on the nanoporous surface. Gene expression for various focal adhesion markers, including paxillin and talin, and different integrins (e.g. α1, β1, and α5) was also significantly increased. Scanning electron microscopy revealed the presence of more filopodia on cells grown on the nanoporous surface. These cell extensions displayed abundant and distinctive nanoscale lateral protrusions of 10-15nm diameter that molded the nanopore walls. Together the increase in the focal adhesions and abundance of filopodia and associated protrusions could contribute to strengthening the adhesive interaction of cells with the surface, and thereby, alter the nanoscale biomechanical relationships that trigger cellular cascades that regulate cell behavior. Oxidative patterning was exploited to create a unique three-dimensional network of nanopores on titanium surfaces. Our study illustrates how a facile chemical treatment can be advantageously used to modulate cellular behavior. The nanoscale lateral protrusions on filopodia elicited by this surface are novel adhesive structures. Altogether, the increases in focal adhesion, length, maturity, and filopodia with distinctive lateral protrusions could substantially increase the contact area and adhesion strength of cells, thereby promoting the activation of cellular signaling cascades that may explain the positive osteogenic outcomes previously achieved with this surface. Such physicochemical cueing offers a simple attractive alternative to the use of bioactive agents for guiding tissue repair/regeneration around implantable metals. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas.

    PubMed

    Xu, Xiao Hui; Chen, Hao; Sang, Ya Lin; Wang, Fang; Ma, Jun Ping; Gao, Xin-Qi; Zhang, Xian Sheng

    2012-07-02

    In plants, pollination is a critical step in reproduction. During pollination, constant communication between male pollen and the female stigma is required for pollen adhesion, germination, and tube growth. The detailed mechanisms of stigma-mediated reproductive processes, however, remain largely unknown. Maize (Zea mays L.), one of the world's most important crops, has been extensively used as a model species to study molecular mechanisms of pollen and stigma interaction. A comprehensive analysis of maize silk transcriptome may provide valuable information for investigating stigma functionality. A comparative analysis of expression profiles between maize silk and dry stigmas of other species might reveal conserved and diverse mechanisms that underlie stigma-mediated reproductive processes in various plant species. Transcript abundance profiles of mature silk, mature pollen, mature ovary, and seedling were investigated using RNA-seq. By comparing the transcriptomes of these tissues, we identified 1,427 genes specifically or preferentially expressed in maize silk. Bioinformatic analyses of these genes revealed many genes with known functions in plant reproduction as well as novel candidate genes that encode amino acid transporters, peptide and oligopeptide transporters, and cysteine-rich receptor-like kinases. In addition, comparison of gene sets specifically or preferentially expressed in stigmas of maize, rice (Oryza sativa L.), and Arabidopsis (Arabidopsis thaliana [L.] Heynh.) identified a number of homologous genes involved either in pollen adhesion, hydration, and germination or in initial growth and penetration of pollen tubes into the stigma surface. The comparison also indicated that maize shares a more similar profile and larger number of conserved genes with rice than with Arabidopsis, and that amino acid and lipid transport-related genes are distinctively overrepresented in maize. Many of the novel genes uncovered in this study are potentially involved in stigma-mediated reproductive processes, including genes encoding amino acid transporters, peptide and oligopeptide transporters, and cysteine-rich receptor-like kinases. The data also suggest that dry stigmas share similar mechanisms at early stages of pollen-stigma interaction. Compared with Arabidopsis, maize and rice appear to have more conserved functional mechanisms. Genes involved in amino acid and lipid transport may be responsible for mechanisms in the reproductive process that are unique to maize silk.

  9. Identification of genes specifically or preferentially expressed in maize silk reveals similarity and diversity in transcript abundance of different dry stigmas

    PubMed Central

    2012-01-01

    Background In plants, pollination is a critical step in reproduction. During pollination, constant communication between male pollen and the female stigma is required for pollen adhesion, germination, and tube growth. The detailed mechanisms of stigma-mediated reproductive processes, however, remain largely unknown. Maize (Zea mays L.), one of the world’s most important crops, has been extensively used as a model species to study molecular mechanisms of pollen and stigma interaction. A comprehensive analysis of maize silk transcriptome may provide valuable information for investigating stigma functionality. A comparative analysis of expression profiles between maize silk and dry stigmas of other species might reveal conserved and diverse mechanisms that underlie stigma-mediated reproductive processes in various plant species. Results Transcript abundance profiles of mature silk, mature pollen, mature ovary, and seedling were investigated using RNA-seq. By comparing the transcriptomes of these tissues, we identified 1,427 genes specifically or preferentially expressed in maize silk. Bioinformatic analyses of these genes revealed many genes with known functions in plant reproduction as well as novel candidate genes that encode amino acid transporters, peptide and oligopeptide transporters, and cysteine-rich receptor-like kinases. In addition, comparison of gene sets specifically or preferentially expressed in stigmas of maize, rice (Oryza sativa L.), and Arabidopsis (Arabidopsis thaliana [L.] Heynh.) identified a number of homologous genes involved either in pollen adhesion, hydration, and germination or in initial growth and penetration of pollen tubes into the stigma surface. The comparison also indicated that maize shares a more similar profile and larger number of conserved genes with rice than with Arabidopsis, and that amino acid and lipid transport-related genes are distinctively overrepresented in maize. Conclusions Many of the novel genes uncovered in this study are potentially involved in stigma-mediated reproductive processes, including genes encoding amino acid transporters, peptide and oligopeptide transporters, and cysteine-rich receptor-like kinases. The data also suggest that dry stigmas share similar mechanisms at early stages of pollen-stigma interaction. Compared with Arabidopsis, maize and rice appear to have more conserved functional mechanisms. Genes involved in amino acid and lipid transport may be responsible for mechanisms in the reproductive process that are unique to maize silk. PMID:22748054

  10. Clonal yeast biofilms can reap competitive advantages through cell differentiation without being obligatorily multicellular

    PubMed Central

    Hanghøj, Kristian Ebbesen; Andersen, Kaj Scherz; Boomsma, Jacobus J.

    2016-01-01

    How differentiation between cell types evolved is a fundamental question in biology, but few studies have explored single-gene phenotypes that mediate first steps towards division of labour with selective advantage for groups of cells. Here, we show that differential expression of the FLO11 gene produces stable fractions of Flo11+ and Flo11− cells in clonal Saccharomyces cerevisiae biofilm colonies on medium with intermediate viscosity. Differentiated Flo11+/− colonies, consisting of adhesive and non-adhesive cells, obtain a fourfold growth advantage over undifferentiated colonies by overgrowing glucose resources before depleting them, rather than depleting them while they grow as undifferentiated Flo11− colonies do. Flo11+/− colonies maintain their structure and differentiated state by switching non-adhesive cells to adhesive cells with predictable probability. Mixtures of Flo11+ and Flo11− cells from mutant strains that are unable to use this epigenetic switch mechanism produced neither integrated colonies nor growth advantages, so the condition-dependent selective advantages of differentiated FLO11 expression can only be reaped by clone-mate cells. Our results show that selection for cell differentiation in clonal eukaryotes can evolve before the establishment of obligate undifferentiated multicellularity, and without necessarily leading to more advanced organizational complexity. PMID:27807261

  11. Activation of EGF Receptor Kinase by L1-mediated Homophilic Cell Interactions

    PubMed Central

    Islam, Rafique; Kristiansen, Lars V.; Romani, Susana; Garcia-Alonso, Luis; Hortsch, Michael

    2004-01-01

    Neural cell adhesion molecules (CAMs) are important players during neurogenesis and neurite outgrowth as well as axonal fasciculation and pathfinding. Some of these developmental processes entail the activation of cellular signaling cascades. Pharmacological and genetic evidence indicates that the neurite outgrowth-promoting activity of L1-type CAMs is at least in part mediated by the stimulation of neuronal receptor tyrosine kinases (RTKs), especially FGF and EGF receptors. It has long been suspected that neural CAMs might physically interact with RTKs, but their activation by specific cell adhesion events has not been directly demonstrated. Here we report that gain-of-function conditions of the Drosophila L1-type CAM Neuroglian result in profound sensory axon pathfinding defects in the developing Drosophila wing. This phenotype can be suppressed by decreasing the normal gene dosage of the Drosophila EGF receptor gene. Furthermore, in Drosophila S2 cells, cell adhesion mediated by human L1-CAM results in the specific activation of human EGF tyrosine kinase at cell contact sites and EGF receptors engage in a physical interaction with L1-CAM molecules. Thus L1-type CAMs are able to promote the adhesion-dependent activation of EGF receptor signaling in vitro and in vivo. PMID:14718570

  12. Nuclear factor I-A represses expression of the cell adhesion molecule L1

    PubMed Central

    2009-01-01

    Background The neural cell adhesion molecule L1 plays a crucial role in development and plasticity of the nervous system. Neural cells thus require precise control of L1 expression. Results We identified a full binding site for nuclear factor I (NFI) transcription factors in the regulatory region of the mouse L1 gene. Electrophoretic mobility shift assay (EMSA) showed binding of nuclear factor I-A (NFI-A) to this site. Moreover, for a brain-specific isoform of NFI-A (NFI-A bs), we confirmed the interaction in vivo using chromatin immunoprecipitation (ChIP). Reporter gene assays showed that in neuroblastoma cells, overexpression of NFI-A bs repressed L1 expression threefold. Conclusion Our findings suggest that NFI-A, in particular its brain-specific isoform, represses L1 gene expression, and might act as a second silencer of L1 in addition to the neural restrictive silencer factor (NRSF). PMID:20003413

  13. Differential expression of neuroligin genes in the nervous system of zebrafish.

    PubMed

    Davey, Crystal; Tallafuss, Alexandra; Washbourne, Philip

    2010-02-01

    The establishment and maturation of appropriate synaptic connections is crucial in the development of neuronal circuits. Cellular adhesion is believed to play a central role in this process. Neuroligins are neuronal cell adhesion molecules that are hypothesized to act in the initial formation and maturation of synaptic connections. In order to establish the zebrafish as a model to investigate the in vivo role of Neuroligin proteins in nervous system development, we identified the zebrafish orthologs of neuroligin family members and characterized their expression. Zebrafish possess seven neuroligin genes. Synteny analysis and sequence comparisons show that NLGN2, NLGN3, and NLGN4X are duplicated in zebrafish, but NLGN1 has a single zebrafish ortholog. All seven zebrafish neuroligins are expressed in complex patterns in the developing nervous system and in the adult brain. The spatial and temporal expression patterns of these genes suggest that they occupy a role in nervous system development and maintenance.

  14. [Inhibition of monocytes adhesion to the intima of arterial wall by local expression of antisense monocyte chemotactic protein-1].

    PubMed

    Wu, Q; Qiao, H; Wang, Z; Zhang, H; Liu, P; Xu, M; Ren, G; Zhao, S; She, M

    2000-04-01

    To study the mechanism of monocyte recruitment in atherogenesis and to clarify the effect of monocyte chemotactic protein-1 (MCP-1) in this process. Femoral arteries isolated from the rabbits which had been fed with a high cholesterol diet and locally perfused with MM-LDL within the artery beforehand, were used as the models. Antisense MCP-1cDNA was transferred into the arterial wall by injecting recombinant LNCX-anti-MCP-1/liposomal complex in the femoral sheath and the periarterial tissue. Expression of antisense MCP-1 mediated by recombinant LNCX plasmid/lipsomal complex gene transfer enabled to inhibit MCP-1 gene expression and adhesion of monocyte to the intima. MCP-1 plays an important role on the recruitment of monocytes in the arterial wall, which provides a potential clue in developing a gene therapy project for the prevention and treatment of atherogenesis.

  15. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications.

    PubMed

    Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong

    2015-08-07

    Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts.

  16. A Study of the Effects of Relative Humidity on Small Particle Adhesion to Surfaces

    NASA Technical Reports Server (NTRS)

    Whitfield, W. J.; David, T.

    1971-01-01

    Ambient dust ranging in size from less than one micron up to 140 microns was used as test particles. Relative humidities of 33% to 100% were used to condition test surfaces after loading with the test particles. A 20 psi nitrogen blowoff was used as the removal mechanism to test for particle adhesion. Particles were counted before and after blowoff to determine retention characteristics. Particle adhesion increased drastically as relative humidity increased above 50%. The greatest adhesion changes occurred within the first hour of conditioning time. Data are presented for total particle adhesion, for particles 10 microns and larger, and 50 microns and larger.

  17. The tight-adhesion proteins TadGEF of Bradyrhizobium diazoefficiens USDA 110 are involved in cell adhesion and infectivity on soybean roots.

    PubMed

    Mongiardini, Elías J; Parisi, Gustavo D; Quelas, Juan I; Lodeiro, Aníbal R

    2016-01-01

    Adhesion of symbiotic bacteria to host plants is an essential early step of the infection process that leads to the beneficial interaction. In the Bradyrhizobium diazoefficiens-soybean symbiosis few molecular determinants of adhesion are known. Here we identified the tight-adhesion gene products TadGEF in the open-reading frames blr3941-blr3943 of the B. diazoefficiens USDA 110 complete genomic sequence. Predicted structure of TadG indicates a transmembrane domain and two extracytosolic domains, from which the C-terminal has an integrin fold. TadE and TadF are also predicted as bearing transmembrane segments. Mutants in tadG or the small cluster tadGEF were impaired in adhesion to soybean roots, and the root infection was delayed. However, nodule histology was not compromised by the mutations, indicating that these effects were restricted to the earliest contact of the B. diazoefficiens and root surfaces. Knowledge of preinfection determinants is important for development of inoculants that are applied to soybean crops worldwide. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Heterologous expression of pathogen-specific genes ligA and ligB in the saprophyte Leptospira biflexa confers enhanced adhesion to cultured cells and fibronectin.

    PubMed

    Figueira, Cláudio Pereira; Croda, Julio; Choy, Henry A; Haake, David A; Reis, Mitermayer G; Ko, Albert I; Picardeau, Mathieu

    2011-06-09

    In comparison to other bacterial pathogens, our knowledge of the molecular basis of the pathogenesis of leptospirosis is extremely limited. An improved understanding of leptospiral pathogenetic mechanisms requires reliable tools for functional genetic analysis. Leptospiral immunoglobulin-like (Lig) proteins are surface proteins found in pathogenic Leptospira, but not in saprophytes. Here, we describe a system for heterologous expression of the Leptospira interrogans genes ligA and ligB in the saprophyte Leptospira biflexa serovar Patoc. The genes encoding LigA and LigB under the control of a constitutive spirochaetal promoter were inserted into the L. biflexa replicative plasmid. We were able to demonstrate expression and surface localization of LigA and LigB in L. biflexa. We found that the expression of the lig genes significantly enhanced the ability of transformed L. biflexa to adhere in vitro to extracellular matrix components and cultured cells, suggesting the involvement of Lig proteins in cell adhesion. This work reports a complete description of the system we have developed for heterologous expression of pathogen-specific proteins in the saprophytic L. biflexa. We show that expression of LigA and LigB proteins from the pathogen confers a virulence-associated phenotype on L. biflexa, namely adhesion to eukaryotic cells and fibronectin in vitro. This study indicates that L. biflexa can serve as a surrogate host to characterize the role of key virulence factors of the causative agent of leptospirosis.

  19. Comprehensive transcriptional map of primate brain development

    PubMed Central

    Bakken, Trygve E.; Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A.; Ng, Lydia; Szafer, Aaron; Dalley, Rachel A.; Royall, Joshua J.; Lemon, Tracy; Shapouri, Sheila; Aiona, Kaylynn; Arnold, James; Bennett, Jeffrey L.; Bertagnolli, Darren; Bickley, Kristopher; Boe, Andrew; Brouner, Krissy; Butler, Stephanie; Byrnes, Emi; Caldejon, Shiella; Carey, Anita; Cate, Shelby; Chapin, Mike; Chen, Jefferey; Dee, Nick; Desta, Tsega; Dolbeare, Tim A.; Dotson, Nadia; Ebbert, Amanda; Fulfs, Erich; Gee, Garrett; Gilbert, Terri L.; Goldy, Jeff; Gourley, Lindsey; Gregor, Ben; Gu, Guangyu; Hall, Jon; Haradon, Zeb; Haynor, David R.; Hejazinia, Nika; Hoerder-Suabedissen, Anna; Howard, Robert; Jochim, Jay; Kinnunen, Marty; Kriedberg, Ali; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Luong, Lon; Mastan, Naveed; May, Ryan; Melchor, Jose; Mosqueda, Nerick; Mott, Erika; Ngo, Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana; Pendergraft, Julie; Potekhina, Lydia; Reding, Melissa; Riley, Zackery L.; Roberts, Tyson; Rogers, Brandon; Roll, Kate; Rosen, David; Sandman, David; Sarreal, Melaine; Shapovalova, Nadiya; Shi, Shu; Sjoquist, Nathan; Sodt, Andy J.; Townsend, Robbie; Velasquez, Lissette; Wagley, Udi; Wakeman, Wayne B.; White, Cassandra; Bennett, Crissa; Wu, Jennifer; Young, Rob; Youngstrom, Brian L.; Wohnoutka, Paul; Gibbs, Richard A.; Rogers, Jeffrey; Hohmann, John G.; Hawrylycz, Michael J.; Hevner, Robert F.; Molnár, Zoltán; Phillips, John W.; Dang, Chinh; Jones, Allan R.; Amaral, David G.; Bernard, Amy; Lein, Ed S.

    2017-01-01

    The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high resolution transcriptional atlas of rhesus monkey brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical parcellation of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons, and cortical layers and areas acquire adult-like molecular profiles surprisingly late postnatally. Disparate cell populations exhibit distinct developmental timing but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, and approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny. PMID:27409810

  20. Hypotrichosis and juvenile macular dystrophy caused by CDH3 mutation: A candidate disease for retinal gene therapy.

    PubMed

    Singh, Mandeep S; Broadgate, Suzanne; Mathur, Ranjana; Holt, Richard; Halford, Stephanie; MacLaren, Robert E

    2016-05-09

    Hypotrichosis with juvenile macular dystrophy (HJMD) is an autosomal recessive disorder that causes childhood visual impairment. HJMD is caused by mutations in CDH3 which encodes cadherin-3, a protein expressed in retinal pigment epithelium (RPE) cells that may have a key role in intercellular adhesion. We present a case of HJMD and analyse its phenotypic and molecular characteristics to assess the potential for retinal gene therapy as a means of preventing severe visual loss in this condition. Longitudinal in vivo imaging of the retina showed the relative anatomical preservation of the macula, which suggested the presence of a therapeutic window for gene augmentation therapy to preserve visual acuity. The coding sequence of CDH3 fits within the packaging limit of recombinant adeno-associated virus vectors that have been shown to be safe in clinical trials and can efficiently target RPE cells. This report expands the number of reported cases of HJMD and highlights the phenotypic characteristics to consider when selecting candidates for retinal gene therapy.

  1. Chlorella 11-Peptide Inhibits the Production of Macrophage-Induced Adhesion Molecules and Reduces Endothelin-1 Expression and Endothelial Permeability

    PubMed Central

    Shih, Mei Fen; Chen, Lih Chi; Cherng, Jong Yuh

    2013-01-01

    The inflammation process in large vessels involves the up-regulation of vascular adhesion molecules such as endothelial cell selectin (E-selectin), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) which are also known as the markers of atherosclerosis. We have reported that Chlorella 11-peptide exhibited effective anti-inflammatory effects. This peptide with an amino sequence Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Gln-Phe was further examined for its potential in preventing atherosclerosis in this study. In particular, the roles of Chlorella 11-peptide in lowering the production of vascular adhesion molecules, monocyte chemoattractant protein (MCP-1) and expression of endothelin-1 (ET-1) from endothelia (SVEC4-10 cells) were studied. The production of E-selectin, ICAM-1, VCAM-1 and MCP-1 in SVEC4-10 cells was measured with ELISA. The mRNA expression of ET-1 was analyzed by RT-PCR and agarose gel. Results showed that Chlorella 11-peptide significantly suppressed the levels of E-selectin, ICAM, VCAM, MCP-1 as well as ET-1 gene expression. The inhibition of ICAM-1 and VCAM-1 production by Chlorella 11-peptide was reversed in the presence of protein kinase A inhibitor (H89) which suggests that the cAMP pathway was involved in the inhibitory cause of the peptide. In addition, this peptide was shown to reduce the extent of increased intercellular permeability induced by combination of 50% of lipopolysaccharide (LPS)-activated RAW 264.7 cells medium and 50% normal SEVC cell culture medium (referred to as 50% RAW-conditioned medium). These data demonstrate that Chlorella 11-peptide is a promising biomolecule in preventing chronic inflammatory-related vascular diseases. PMID:24129228

  2. RNA Sequencing Reveals Differential Expression of Mitochondrial and Oxidation Reduction Genes in the Long-Lived Naked Mole-Rat When Compared to Mice

    PubMed Central

    Holmes, Andrew; Szafranski, Karol; Faulkes, Chris G.; Coen, Clive W.; Buffenstein, Rochelle; Platzer, Matthias; de Magalhães, João Pedro; Church, George M.

    2011-01-01

    The naked mole-rat (Heterocephalus glaber) is a long-lived, cancer resistant rodent and there is a great interest in identifying the adaptations responsible for these and other of its unique traits. We employed RNA sequencing to compare liver gene expression profiles between naked mole-rats and wild-derived mice. Our results indicate that genes associated with oxidoreduction and mitochondria were expressed at higher relative levels in naked mole-rats. The largest effect is nearly 300-fold higher expression of epithelial cell adhesion molecule (Epcam), a tumour-associated protein. Also of interest are the protease inhibitor, alpha2-macroglobulin (A2m), and the mitochondrial complex II subunit Sdhc, both ageing-related genes found strongly over-expressed in the naked mole-rat. These results hint at possible candidates for specifying species differences in ageing and cancer, and in particular suggest complex alterations in mitochondrial and oxidation reduction pathways in the naked mole-rat. Our differential gene expression analysis obviated the need for a reference naked mole-rat genome by employing a combination of Illumina/Solexa and 454 platforms for transcriptome sequencing and assembling transcriptome contigs of the non-sequenced species. Overall, our work provides new research foci and methods for studying the naked mole-rat's fascinating characteristics. PMID:22073188

  3. [Adhesive properties and related phenomena for powdered pharmaceuticals].

    PubMed

    Otsuka, A

    1998-04-01

    This report deals with adhesive properties and related phenomena of powdered materials including pharmaceuticals. The adhesive force between a powder particle and substrate as well as the tensile strength of a powder bed and tablet was measured. Various factors were found to affect powder adhesion. Physical properties such as the size, shape and surface roughness were examined. The adhesive force between a particle and substrate decreased remarkably in the presence of ultrafine particles, which is of interest since the addition of adequate amount of "glidant" causes an increase in powder fluidity. From a pharmaceutical point of view, temperature and humidity were essential to particle adhesion. For several organic substances, the adhesive force increased significantly at homologous temperatures more than ca. 0.7, suggesting the sintering mechanism to be operative. The adhsive force between polymer films and glass beads varied according to polymer and relative humidity. A close correlation of water sorbed by the polymer film with adhesive force was noted. In connection with powder fluidity, compaction properties were studied by the centrifugal and tapping methods. Apparent adhesion defined as the ratio of the adhesive force between two contacting particles to the external force acting on a particle was noted to be the primary determinant of the void fraction or the porosity of the powder bed, indicating that the probability of particle displacement essentially depended on apparent adhesion.

  4. Functional variants in intercellular adhesion molecule-1 and toll-like receptor-4 genes are more frequent in children with febrile urinary tract infection with renal parenchymal involvement.

    PubMed

    Hussein, Almontaser; Saad, Khaled; Askar, Eman; Zahran, Asmaa M; Farghaly, Hekma; Metwalley, Kotb; Elderwy, Ahmad A

    2018-02-01

    We studied the functional polymorphisms of intercellular adhesion molecule-1 (ICAM-1) and toll-like receptor-4 (TLR-4) genes and risk of acute pyelonephritis (APN) in children attending Assiut University Children's Hospitals, Egypt, from 2011 to 2015. Urinary tract infections (UTIs) were diagnosed in 380 children: 98 had APN and 282 had lower UTIs. Four single-nucleotide polymorphisms in ICAM-1 and TLR-4 genes were genotyped in all subjects: ICAM-1 rs1799969 Gly241Arg, ICAM-1 rs5498 Glu469Lys, TLR-4 rs4896791 Thr399Ile and TLR-4 rs4896790 Asp299Gly. Patients with APN were significantly more likely to have AA genotype of the ICAM-1 rs5498 (1462 A/G) polymorphism (p = 0.04) than children with lower UTIs and the TLR-4 Asp299Gly GG genotype (p = 0.002) and G allele (p = 0.006) than healthy controls. The association with the ICAM-1 Glu469Lys (1462A/G) was less evident. The GG genotype was associated with a modest relative risk of 1.4 (p = 0.1) of developing APN, but was not an independent odds ratio, at 1.2 (p = 0.48). Functional variants in ICAM-1 and TLR-4 genes were increasingly common in children with febrile UTIs with renal parenchymal involvement, but the ICAM-1 Glu469Lys (1462A/G) association was less evident. TLR4 Asp299Gly might independently increase renal parenchymal infection rather than renal scarring. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  5. Plant pressure sensitive adhesives: similar chemical properties in distantly related plant lineages.

    PubMed

    Frenzke, Lena; Lederer, Albena; Malanin, Mikhail; Eichhorn, Klaus-Jochen; Neinhuis, Christoph; Voigt, Dagmar

    2016-07-01

    A mixture of resins based on aliphatic esters and carboxylic acids occurs in distantly related genera Peperomia and Roridula , serving different functions as adhesion in seed dispersal and prey capture. According to mechanical characteristics, adhesive secretions on both leaves of the carnivorous flypaper Roridula gorgonias and epizoochorous fruits of Peperomia polystachya were expected to be similar. The chemical analysis of these adhesives turned out to be challenging because of the limited available mass for analysis. Size exclusion chromatography and Fourier transform infrared spectroscopy were suitable methods for the identification of a mixture of compounds, most appropriately containing natural resins based on aliphatic esters and carboxylic acids. The IR spectra of the Peperomia and Roridula adhesive resemble each other; they correspond to that of a synthetic ethylene-vinyl acetate copolymer, but slightly differ from that of natural tree resins. Thus, the pressure sensitive adhesive properties of the plant adhesives are chemically proved. Such adhesives seem to appear independently in distantly related plant lineages, habitats, life forms, as well as plant organs, and serve different functions such as prey capture in Roridula and fruit dispersal in Peperomia. However, more detailed chemical analyses still remain challenging because of the small available volume of plant adhesive.

  6. Controlling the migration behaviors of vascular smooth muscle cells by methoxy poly(ethylene glycol) brushes of different molecular weight and density.

    PubMed

    Wu, Jindan; Mao, Zhengwei; Gao, Changyou

    2012-01-01

    Cell migration is an important biological activity. Regulating the migration of vascular smooth muscle cells (VSMCs) is critical in tissue engineering and therapy of cardiovascular disease. In this work, methoxy poly(ethylene glycol) (mPEG) brushes of different molecular weight (Mw 2 kDa, 5 kDa and 10 kDa) and grafting mass (0-859 ng/cm(2)) were prepared on aldehyde-activated glass slides, and were characterized by X-ray photoelectron spectrometer (XPS) and quartz crystal microbalance with dissipation (QCM-d). Adhesion and migration processes of VSMCs were studied as a function of different mPEG Mw and grafting density. We found that these events were mainly regulated by the grafting mass of mPEG regardless of mPEG Mw and grafting density. The VSMCs migrated on the surfaces randomly without a preferential direction. Their migration rates increased initially and then decreased along with the increase of mPEG grafting mass. The fastest rates (~24 μm/h) appeared on the mPEG brushes with grafting mass of 300-500 ng/cm(2) depending on the Mw. Cell adhesion strength, arrangement of cytoskeleton, and gene and protein expression levels of adhesion related proteins were studied to unveil the intrinsic mechanism. It was found that the cell-substrate interaction controlled the cell mobility, and the highest migration rate was achieved on the surfaces with appropriate adhesion force. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Neuropeptides, via specific receptors, regulate T cell adhesion to fibronectin.

    PubMed

    Levite, M; Cahalon, L; Hershkoviz, R; Steinman, L; Lider, O

    1998-01-15

    The ability of T cells to adhere to and interact with components of the blood vessel walls and the extracellular matrix is essential for their extravasation and migration into inflamed sites. We have found that the beta1 integrin-mediated adhesion of resting human T cells to fibronectin, a major glycoprotein component of the extracellular matrix, is induced by physiologic concentrations of three neuropeptides: calcitonin gene-related protein (CGRP), neuropeptide Y, and somatostatin; each acts via its own specific receptor on the T cell membrane. In contrast, substance P (SP), which coexists with CGRP in the majority of peripheral endings of sensory nerves, including those innervating the lymphoid organs, blocks T cell adhesion to fibronectin when induced by CGRP, neuropeptide Y, somatostatin, macrophage inflammatory protein-1beta, and PMA. Inhibition of T cell adhesion was obtained both by the intact SP peptide and by its 1-4 N-terminal and its 4-11, 5-11, and 6-11 C-terminal fragments, used at similar nanomolar concentrations. The inhibitory effects of the parent SP peptide and its fragments were abrogated by an SP NK-1 receptor antagonist, suggesting they all act through the same SP NK-1 receptor. These findings suggest that neuropeptides, by activating their specific T cell-expressed receptors, can provide the T cells with both positive (proadhesive) and negative (antiadhesive) signals and thereby regulate their function. Thus, neuropeptides may influence diverse physiologic processes involving integrins, including leukocyte-mediated migration and inflammation.

  8. Slime-producing Staphylococcus epidermidis and S. aureus in acute bacterial conjunctivitis in soft contact lens wearers.

    PubMed

    Catalanotti, Piergiorgio; Lanza, Michele; Del Prete, Antonio; Lucido, Maria; Catania, Maria Rosaria; Gallè, Francesca; Boggia, Daniela; Perfetto, Brunella; Rossano, Fabio

    2005-10-01

    In recent years, an increase in ocular pathologies related to soft contact lens has been observed. The most common infectious agents were Staphylococcus spp. Some strains produce an extracellular polysaccharidic slime that can cause severe infections. Polysaccharide synthesis is under genetic control and involves a specific intercellular adhesion (ica) locus, in particular, icaA and icaD genes. Conjunctival swabs from 97 patients with presumably bacterial bilateral conjunctivitis, wearers of soft contact lenses were examined. We determined the ability of staphylococci to produce slime, relating it to the presence of icaA and icaD genes. We also investigated the antibiotic susceptibility and Pulsed Field Gel Electrophoresis (PFGE) patterns of the clinical isolates. We found that 74.1% of the S. epidermidis strains and 61.1% of the S. aureus strains isolated were slime producers and showed icaA and icaD genes. Both S. epidermidis and S. aureus slime-producing strains exhibited more surface hydrophobicity than non-producing slime strains. The PFGE patterns overlapped in S. epidermidis strains with high hydrophobicity. The similar PFGE patterns were not related to biofilm production. We found scarce matching among the Staphylococcus spp. studied, slime production, surface hydrophobicity and antibiotic susceptibility.

  9. Genome and Transcriptome Sequences Reveal the Specific Parasitism of the Nematophagous Purpureocillium lilacinum 36-1

    PubMed Central

    Xie, Jialian; Li, Shaojun; Mo, Chenmi; Xiao, Xueqiong; Peng, Deliang; Wang, Gaofeng; Xiao, Yannong

    2016-01-01

    Purpureocillium lilacinum is a promising nematophagous ascomycete able to adapt diverse environments and it is also an opportunistic fungus that infects humans. A microbial inoculant of P. lilacinum has been registered to control plant parasitic nematodes. However, the molecular mechanism of the toxicological processes is still unclear because of the relatively few reports on the subject. In this study, using Illumina paired-end sequencing, the draft genome sequence and the transcriptome of P. lilacinum strain 36-1 infecting nematode-eggs were determined. Whole genome alignment indicated that P. lilacinum 36-1 possessed a more dynamic genome in comparison with P. lilacinum India strain. Moreover, a phylogenetic analysis showed that the P. lilacinum 36-1 had a closer relation to entomophagous fungi. The protein-coding genes in P. lilacinum 36-1 occurred much more frequently than they did in other fungi, which was a result of the depletion of repeat-induced point mutations (RIP). Comparative genome and transcriptome analyses revealed the genes that were involved in pathogenicity, particularly in the recognition, adhesion of nematode-eggs, downstream signal transduction pathways and hydrolase genes. By contrast, certain numbers of cellulose and xylan degradation genes and a lack of polysaccharide lyase genes showed the potential of P. lilacinum 36-1 as an endophyte. Notably, the expression of appressorium-formation and antioxidants-related genes exhibited similar infection patterns in P. lilacinum strain 36-1 to those of the model entomophagous fungi Metarhizium spp. These results uncovered the specific parasitism of P. lilacinum and presented the genes responsible for the infection of nematode-eggs. PMID:27486440

  10. Changes in the expression profiles of claudins during gonocyte differentiation and in seminomas.

    PubMed

    Manku, G; Hueso, A; Brimo, F; Chan, P; Gonzalez-Peramato, P; Jabado, N; Gayden, T; Bourgey, M; Riazalhosseini, Y; Culty, M

    2016-01-01

    Testicular germ cell tumors (TGCTs) are the most common type of cancer in young men and their incidence has been steadily increasing for the past decades. TGCTs and their precursor carcinoma in situ (CIS) are thought to arise from the deficient differentiation of gonocytes, precursors of spermatogonial stem cells. However, the mechanisms relating failed gonocyte differentiation to CIS formation remain unknown. The goal of this study was to uncover genes regulated during gonocyte development that would show abnormal patterns of expression in testicular tumors, as prospective links between failed gonocyte development and TGCT. To identify common gene and protein signatures between gonocytes and seminomas, we first performed gene expression analyses of transitional rat gonocytes, spermatogonia, human normal testicular, and TGCT specimens. Gene expression arrays, pathway analysis, and quantitative real-time PCR analysis identified cell adhesion molecules as a functional gene category including genes downregulated during gonocyte differentiation and highly expressed in seminomas. In particular, the mRNA and protein expressions of claudins 6 and 7 were found to decrease during gonocyte transition to spermatogonia, and to be abnormally elevated in seminomas. The dynamic changes in these genes suggest that they may play important physiological roles during gonocyte development. Moreover, our findings support the idea that TGCTs arise from a disruption of gonocyte differentiation, and position claudins as interesting genes to further study in relation to testicular cancer. © 2015 American Society of Andrology and European Academy of Andrology.

  11. Identification of Differentially Expressed IGFBP5-Related Genes in Breast Cancer Tumor Tissues Using cDNA Microarray Experiments.

    PubMed

    Akkiprik, Mustafa; Peker, İrem; Özmen, Tolga; Amuran, Gökçe Güllü; Güllüoğlu, Bahadır M; Kaya, Handan; Özer, Ayşe

    2015-11-10

    IGFBP5 is an important regulatory protein in breast cancer progression. We tried to identify differentially expressed genes (DEGs) between breast tumor tissues with IGFBP5 overexpression and their adjacent normal tissues. In this study, thirty-eight breast cancer and adjacent normal breast tissue samples were used to determine IGFBP5 expression by qPCR. cDNA microarrays were applied to the highest IGFBP5 overexpressed tumor samples compared to their adjacent normal breast tissue. Microarray analysis revealed that a total of 186 genes were differentially expressed in breast cancer compared with normal breast tissues. Of the 186 genes, 169 genes were downregulated and 17 genes were upregulated in the tumor samples. KEGG pathway analyses showed that protein digestion and absorption, focal adhesion, salivary secretion, drug metabolism-cytochrome P450, and phenylalanine metabolism pathways are involved. Among these DEGs, the prominent top two genes (MMP11 and COL1A1) which potentially correlated with IGFBP5 were selected for validation using real time RT-qPCR. Only COL1A1 expression showed a consistent upregulation with IGFBP5 expression and COL1A1 and MMP11 were significantly positively correlated. We concluded that the discovery of coordinately expressed genes related with IGFBP5 might contribute to understanding of the molecular mechanism of the function of IGFBP5 in breast cancer. Further functional studies on DEGs and association with IGFBP5 may identify novel biomarkers for clinical applications in breast cancer.

  12. Positive evolution of the glycoprotein (GP) gene is related to transmission of the Ebola virus.

    PubMed

    Jing, Y X; Wang, L N; Wu, X M; Song, C X

    2016-03-28

    Ebola hemorrhagic fever is a fatal disease caused by the negative-strand RNA of the Ebola virus. A high-intensity outbreak of this fever was reported in West Africa last year; however, there is currently no definitive treatment strategy available for this disease. In this study, we analyzed the molecular evolutionary history and attempted to determine the positive selection sites in the Ebola genes using multiple-genomic sequences of the various Ebola virus subtypes, in order to gain greater clarity into the evolution of the virus and its various subtypes. Only the glycoprotein (GP) gene was positively selected among the 8 Ebola genes, with the other genes remaining in the purification stage. The positive selection sites in the GP gene were identified by a random-site model; these sites were found to be located in the mucin-like region, which is associated with transmembrane protein binding. Additionally, different branches of the phylogenetic tree displayed different positive sites, which in turn was responsible for differences in the cell adhesion ability of the virus. In conclusion, the pattern of positive sites in the GP gene is associated with the epidemiology and prevalence of Ebola in different areas.

  13. Effects of phosphorus-containing additives on soy and cottonseed protein as wood adhesives

    USDA-ARS?s Scientific Manuscript database

    Soy and cottonseed proteins appear promising as sustainable and environment-friendly wood adhesives. Because of their higher cost relative to formaldehyde-based adhesives, improvement in the adhesive performance of proteins is needed. In this work, we evaluated the adhesive properties of soy and co...

  14. The activities of progesterone receptor isoform A and B are differentially modulated by their ligands in a gene-selective manner.

    PubMed

    Leo, Joyce C L; Lin, Valerie C L

    2008-01-01

    It is known that progesterone receptor (PR) isoform A (PR-A) and isoform B (PR-B) may mediate different effects of progesterone. The objective of this study was to determine if the functions of PR isoforms also vary in response to different PR modulators (PRM). The effects of 7 synthetic PRM were tested in MDA-MB-231 cells engineered to express PR-A, PR-B, or both PR isoforms. The effects of progesterone were similar in cells expressing PR-A or PR-B in which it inhibited growth and induced focal adhesion. On the other hand, synthetic PRM modulated the activity of the PR isoforms differently. RU486, CDB4124, 17alpha-hydroxy CDB4124 and VA2914 exerted agonist activities on cell growth and adhesion via PR-B. Via PR-A, however, these compounds displayed agonist effect on cell growth but induced stellate morphology which was distinct from the agonist's effect. Their dual properties via PR-A were also displayed at the gene expression level: the compounds acted as agonists on cell cycle genes but exhibited antagonistic effect on cell adhesion genes. Introduction of ERalpha by adenoviral vector to these cells did not change PR-A or PR-B mediated effect of PRM radically, but it causes significant cell rounding and modified the magnitudes of the responses to PRM. The findings suggest that the activities of PR isoforms may be modulated by different PRM through gene-specific regulatory mechanisms. This raises an interesting possibility that PRM may be designed to be PR isoform and cellular pathway selective to achieve targeted therapy in breast cancer. Copyright 2007 Wiley-Liss, Inc.

  15. Computational identification and validation of alternative splicing in ZSF1 rat RNA-seq data, a preclinical model for type 2 diabetic nephropathy.

    PubMed

    Zhang, Chi; Dower, Ken; Zhang, Baohong; Martinez, Robert V; Lin, Lih-Ling; Zhao, Shanrong

    2018-05-16

    Obese ZSF1 rats exhibit spontaneous time-dependent diabetic nephropathy and are considered to be a highly relevant animal model of progressive human diabetic kidney disease. We previously identified gene expression changes between disease and control animals across six time points from 12 to 41 weeks. In this study, the same data were analysed at the isoform and exon levels to reveal additional disease mechanisms that may be governed by alternative splicing. Our analyses identified alternative splicing patterns in genes that may be implicated in disease pathogenesis (such as Shc1, Serpinc1, Epb4.1l5, and Il-33), which would have been overlooked in standard gene-level analysis. The alternatively spliced genes were enriched in pathways related to cell adhesion, cell-cell interactions/junctions, and cytoskeleton signalling, whereas the differentially expressed genes were enriched in pathways related to immune response, G protein-coupled receptor, and cAMP signalling. Our findings indicate that additional mechanistic insights can be gained from exon- and isoform-level data analyses over standard gene-level analysis. Considering alternative splicing is poorly conserved between rodents and humans, it is noted that this work is not translational, but the point holds true that additional insights can be gained from alternative splicing analysis of RNA-seq data.

  16. Gene array analysis reveals a common Runx transcriptional program controlling cell adhesion and survival

    PubMed Central

    Wotton, Sandy; Terry, Anne; Kilbey, Anna; Jenkins, Alma; Herzyk, Pawel; Cameron, Ewan; Neil, James C.

    2008-01-01

    The Runx genes play divergent roles in development and cancer, where they can act either as oncogenes or tumour suppressors. We compared the effects of ectopic Runx expression in established fibroblasts, where all three genes produce an indistinguishable phenotype entailing epithelioid morphology and increased cell survival under stress conditions. Gene array analysis revealed a strongly overlapping transcriptional signature, with no examples of opposing regulation of the same target gene. A common set of 50 highly regulated genes was identified after further filtering on regulation by inducible RUNX1-ER. This set revealed a strong bias towards genes with annotated roles in cancer and development, and a preponderance of targets encoding extracellular or surface proteins, reflecting the marked effects of Runx on cell adhesion. Furthermore, in silico prediction of resistance to glucocorticoid growth inhibition was confirmed in fibroblasts and lymphoid cells expressing ectopic Runx. The effects of fibroblast expression of common RUNX1 fusion oncoproteins (RUNX1-ETO, TEL-RUNX1, CBFB-MYH11) were also tested. While two direct Runx activation target genes were repressed (Ncam1, Rgc32), the fusion proteins appeared to disrupt regulation of down-regulated targets (Cebpd, Id2, Rgs2) rather than impose constitutive repression. These results elucidate the oncogenic potential of the Runx family and reveal novel targets for therapeutic inhibition. PMID:18560354

  17. Evidence for a Pneumocystis carinii Flo8-like transcription factor: insights into organism adhesion.

    PubMed

    Kottom, Theodore J; Limper, Andrew H

    2016-02-01

    Pneumocystis carinii (Pc) adhesion to alveolar epithelial cells is well established and is thought to be a prerequisite for the initiation of Pneumocystis pneumonia. Pc binding events occur in part through the major Pc surface glycoprotein Msg, as well as an integrin-like molecule termed PcInt1. Recent data from the Pc sequencing project also demonstrate DNA sequences homologous to other genes important in Candida spp. binding to mammalian host cells, as well as organism binding to polystyrene surfaces and in biofilm formation. One of these genes, flo8, a transcription factor needed for downstream cAMP/PKA-pathway-mediated activation of the major adhesion/flocculin Flo11 in yeast, was cloned from a Pc cDNA library utilizing a partial sequence available in the Pc genome database. A CHEF blot of Pc genomic DNA yielded a single band providing evidence this gene is present in the organism. BLASTP analysis of the predicted protein demonstrated 41 % homology to the Saccharomyces cerevisiae Flo8. Northern blotting demonstrated greatest expression at pH 6.0-8.0, pH comparable to reported fungal biofilm milieu. Western blot and immunoprecipitation assays of PcFlo8 protein in isolated cyst and tropic life forms confirmed the presence of the cognate protein in these Pc life forms. Heterologous expression of Pcflo8 cDNA in flo8Δ-deficient yeast strains demonstrated that the Pcflo8 was able to restore yeast binding to polystyrene and invasive growth of yeast flo8Δ cells. Furthermore, Pcflo8 promoted yeast binding to HEK293 human epithelial cells, strengthening its functional classification as a Flo8 transcription factor. Taken together, these data suggest that PcFlo8 is expressed by Pc and may exert activity in organism adhesion and biofilm formation.

  18. Universal aspects of brittle fracture, adhesion, and atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1989-01-01

    This universal relation between binding energy and interatomic separation was originally discovered for adhesion at bimetallic interfaces involving the simple metals Al, Zn, Mg, and Na. It is shown here that the same universal relation extends to adhesion at transition-metal interfaces. Adhesive energies have been computed for the low-index interfaces of Al, Ni, Cu, Ag, Fe, and W, using the equivalent-crystal theory (ECT) and keeping the atoms in each semiinfinite slab fixed rigidly in their equilibrium positions. These adhesive energy curves can be scaled onto each other and onto the universal adhesion curve. The effect of tip shape on the adhesive forces in the atomic-force microscope (AFM) is studied by computing energies and forces using the ECT. While the details of the energy-distance and force-distance curves are sensitive to tip shape, all of these curves can be scaled onto the universal adhesion curve.

  19. NLRC5 deficiency protects against acute kidney injury in mice by mediating carcinoembryonic antigen-related cell adhesion molecule 1 signaling.

    PubMed

    Li, Quanxin; Wang, Ziying; Zhang, Yan; Zhu, Jiaqing; Li, Liang; Wang, Xiaojie; Cui, Xiaoyang; Sun, Yu; Tang, Wei; Gao, Chengjiang; Ma, Chunhong; Yi, Fan

    2018-06-12

    There is significant progress in understanding the structure and function of NLRC5, a member of the nucleotide oligomerization domain-like receptor family. However, in the context of MHC class I gene expression, the functions of NLRC5 in innate and adaptive immune responses beyond the regulation of MHC class I genes remain controversial and unresolved. In particular, the role of NLRC5 in the kidney is unknown. NLRC5 was significantly upregulated in the kidney from mice with renal ischemia/reperfusion injury. NLRC5 deficient mice significantly ameliorated renal injury as evidenced by decreased serum creatinine levels, improved morphological injuries, and reduced inflammatory responses versus wild type mice. Similar protective effects were also observed in cisplatin-induced acute kidney injury. Mechanistically, NLRC5 contributed to renal injury by promoting tubular epithelial cell apoptosis and reducing inflammatory responses were, at least in part, associated with the negative regulation of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). To determine the relative contribution of NLRC5 expression by parenchymal cells or leukocytes to renal damage during ischemia/reperfusion injury, we generated bone marrow chimeric mice. NLRC5 deficient mice engrafted with wild type hematopoietic cells had significantly lower serum creatinine and less tubular damage than wild type mice reconstituted with NLRC5 deficient bone marrow. This suggests that NLRC5 signaling in renal parenchymal cells plays the dominant role in mediating renal damage. Thus, modulation of the NLRC5-mediated pathway may have important therapeutic implications for patients with acute kidney injury. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  20. Relative Contribution of P5 and Hap Surface Proteins to Nontypable Haemophilus influenzae Interplay with the Host Upper and Lower Airways

    PubMed Central

    Viadas, Cristina; Ruiz de los Mozos, Igor; Valle, Jaione; Bengoechea, José Antonio; Garmendia, Junkal

    2015-01-01

    Nontypable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract disease, and initiates infection by colonizing the nasopharynx. Bacterial surface proteins play determining roles in the NTHi-airways interplay, but their specific and relative contribution to colonization and infection of the respiratory tract has not been addressed comprehensively. In this study, we focused on the ompP5 and hap genes, present in all H. influenzae genome sequenced isolates, and encoding the P5 and Hap surface proteins, respectively. We employed isogenic single and double mutants of the ompP5 and hap genes generated in the pathogenic strain NTHi375 to evaluate P5 and Hap contribution to biofilm growth under continuous flow, to NTHi adhesion, and invasion/phagocytosis on nasal, pharyngeal, bronchial, alveolar cultured epithelial cells and alveolar macrophages, and to NTHi murine pulmonary infection. We show that P5 is not required for bacterial biofilm growth, but it is involved in NTHi interplay with respiratory cells and in mouse lung infection. Mechanistically, P5NTHi375 is not a ligand for CEACAM1 or α5 integrin receptors. Hap involvement in NTHi375-host interaction was shown to be limited, despite promoting bacterial cell adhesion when expressed in H. influenzae RdKW20. We also show that Hap does not contribute to bacterial biofilm growth, and that its absence partially restores the deficiency in lung infection observed for the ΔompP5 mutant. Altogether, this work frames the relative importance of the P5 and Hap surface proteins in NTHi virulence. PMID:25894755

  1. Experimental strategies for the identification and characterization of adhesive proteins in animals: a review

    PubMed Central

    Hennebert, Elise; Maldonado, Barbara; Ladurner, Peter; Flammang, Patrick; Santos, Romana

    2015-01-01

    Adhesive secretions occur in both aquatic and terrestrial animals, in which they perform diverse functions. Biological adhesives can therefore be remarkably complex and involve a large range of components with different functions and interactions. However, being mainly protein based, biological adhesives can be characterized by classical molecular methods. This review compiles experimental strategies that were successfully used to identify, characterize and obtain the full-length sequence of adhesive proteins from nine biological models: echinoderms, barnacles, tubeworms, mussels, sticklebacks, slugs, velvet worms, spiders and ticks. A brief description and practical examples are given for a variety of tools used to study adhesive molecules at different levels from genes to secreted proteins. In most studies, proteins, extracted from secreted materials or from adhesive organs, are analysed for the presence of post-translational modifications and submitted to peptide sequencing. The peptide sequences are then used directly for a BLAST search in genomic or transcriptomic databases, or to design degenerate primers to perform RT-PCR, both allowing the recovery of the sequence of the cDNA coding for the investigated protein. These sequences can then be used for functional validation and recombinant production. In recent years, the dual proteomic and transcriptomic approach has emerged as the best way leading to the identification of novel adhesive proteins and retrieval of their complete sequences. PMID:25657842

  2. Genetic predictors of antipsychotic response to lurasidone identified in a genome wide association study and by schizophrenia risk genes.

    PubMed

    Li, Jiang; Yoshikawa, Akane; Brennan, Mark D; Ramsey, Timothy L; Meltzer, Herbert Y

    2018-02-01

    Biomarkers which predict response to atypical antipsychotic drugs (AAPDs) increases their benefit/risk ratio. We sought to identify common variants in genes which predict response to lurasidone, an AAPD, by associating genome-wide association study (GWAS) data and changes (Δ) in Positive And Negative Syndrome Scale (PANSS) scores from two 6-week randomized, placebo-controlled trials of lurasidone in schizophrenia (SCZ) patients. We also included SCZ risk SNPs identified by the Psychiatric Genomics Consortium using a polygenic risk analysis. The top genomic loci, with uncorrected p<10 -4 , include: 1) synaptic adhesion (PTPRD, LRRC4C, NRXN1, ILIRAPL1, SLITRK1) and scaffolding (MAGI1, MAGI2, NBEA) genes, both essential for synaptic function; 2) other synaptic plasticity-related genes (NRG1/3 and KALRN); 3) the neuron-specific RNA splicing regulator, RBFOX1; and 4) ion channel genes, e.g. KCNA10, KCNAB1, KCNK9 and CACNA2D3). Some genes predicted response for patients with both European and African Ancestries. We replicated some SNPs reported to predict response to other atypical APDs in other GWAS. Although none of the biomarkers reached genome-wide significance, many of the genes and associated pathways have previously been linked to SCZ. Two polygenic modeling approaches, GCTA-GREML and PLINK-Polygenic Risk Score, demonstrated that some risk genes related to neurodevelopment, synaptic biology, immune response, and histones, also contributed to prediction of response. The top hits predicting response to lurasidone did not predict improvement with placebo. This is the first evidence from clinical trials that SCZ risk SNPs are related to clinical response to an AAPD. These results need to be replicated in an independent sample. Copyright © 2017. Published by Elsevier B.V.

  3. Validation of osteogenic properties of Cytochalasin D by high-resolution RNA-sequencing in mesenchymal stem cells derived from bone marrow and adipose tissues.

    PubMed

    Samsonraj, Rebekah; Paradise, Christopher R; Dudakovic, Amel; Sen, Buer; Nair, Asha A; Dietz, Allan B; Deyle, David R; Cool, Simon M; Rubin, Janet; van Wijnen, Andre

    2018-06-08

    Differentiation of mesenchymal stromal/stem cells (MSCs) involves a series of molecular signals and gene transcription events required for attaining cell lineage commitment. Modulation of the actin cytoskeleton using cytochalasin D (CytoD) drives osteogenesis at early time points in bone marrow-derived MSCs, and also initiates a robust osteogenic differentiation program in adipose-derived MSCs. To understand the molecular basis for these pronounced effects on osteogenic differentiation, we investigated global changes in gene expression in CytoD-treated murine and human MSCs by high-resolution RNA-sequencing (RNA-seq) analysis. A three-way bioinformatic comparison between human adipose-derived, human bone marrow-derived and mouse bone marrow-derived MSCs revealed significant upregulation of genes linked to extracellular matrix organization, cell adhesion and bone metabolism. As anticipated, the activation of these differentiation related genes is accompanied by a downregulation of nuclear and cell cycle-related genes presumably reflecting cytostatic effects of CytoD. We also identified eight novel CytoD activated genes - VGLL4, ARHGAP24, KLHL24, RCBTB2, BDH2, SCARF2, ACAD10, HEPH - which are commonly upregulated across the two species and tissue sources of our MSC samples. We selected the Hippo-pathway related VGLL4 gene, which encodes the transcriptional co-factor Vestigial-like 4, for further study because this pathway is linked to osteogenesis. VGLL4 siRNA depletion reduces mineralization of adipose-derived MSCs during CytoD-induced osteogenic differentiation. Together, our RNA-seq analyses suggest that while the stimulatory effects of CytoD on osteogenesis are pleiotropic and depend on the biological state of the cell type, a small group of genes including VGLL4 may contribute to MSC commitment towards the bone lineage.

  4. The microRNA-200 family coordinately regulates cell adhesion and proliferation in hair morphogenesis.

    PubMed

    Hoefert, Jaimee E; Bjerke, Glen A; Wang, Dongmei; Yi, Rui

    2018-06-04

    The microRNA (miRNA)-200 (miR-200) family is highly expressed in epithelial cells and frequently lost in metastatic cancer. Despite intensive studies into their roles in cancer, their targets and functions in normal epithelial tissues remain unclear. Importantly, it remains unclear how the two subfamilies of the five-miRNA family, distinguished by a single nucleotide within the seed region, regulate their targets. By directly ligating miRNAs to their targeted mRNA regions, we identify numerous miR-200 targets involved in the regulation of focal adhesion, actin cytoskeleton, cell cycle, and Hippo/Yap signaling. The two subfamilies bind to largely distinct target sites, but many genes are coordinately regulated by both subfamilies. Using inducible and knockout mouse models, we show that the miR-200 family regulates cell adhesion and orientation in the hair germ, contributing to precise cell fate specification and hair morphogenesis. Our findings demonstrate that combinatorial targeting of many genes is critical for miRNA function and provide new insights into miR-200's functions. © 2018 Hoefert et al.

  5. F4/80: the macrophage-specific adhesion-GPCR and its role in immunoregulation.

    PubMed

    Lin, Hsi-Hsien; Stacey, Martin; Stein-Streilein, Joan; Gordon, Siamon

    2010-01-01

    As a macrophage-restricted reagent, the generation and application of the F4/80 mAb has greatly benefited the phenotypic characterization of mouse tissue macrophages for three decades. Following the molecular identification of the F4/80 antigen as an EGF-TM7 member of the adhesion-GPCR family, great interest was ignited to understand its cell type-specific expression pattern as well as its functional role in macrophage biology. Recent studies have shown that the F4/80 gene is regulated by a novel set of transcription factors that recognized a unique promoter sequence. Gene targeting experiments have produced two F4/80 knock out animal models and showed that F4/80 is not required for normal macrophage development. Nevertheless, the F4/80 receptor was found to be necessary for the induction of efferent CD8+ regulatory T cells responsible for peripheral immune tolerance. The identification of cellular ligands for F4/80 and delineation of its signaling pathway remain elusive but are critical to understand the in vivo role of this macrophage-specific adhesion-GPCR.

  6. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    PubMed

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  7. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    PubMed Central

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G.; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J.R.; Santos, Romana

    2016-01-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article “Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach” (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives. PMID:27182547

  8. Smart biomaterials: Surfaces functionalized with proteolytically stable osteoblast-adhesive peptides.

    PubMed

    Zamuner, Annj; Brun, Paola; Scorzeto, Michele; Sica, Giuseppe; Castagliuolo, Ignazio; Dettin, Monica

    2017-09-01

    Engineered scaffolds for bone tissue regeneration are designed to promote cell adhesion, growth, proliferation and differentiation. Recently, covalent and selective functionalization of glass and titanium surfaces with an adhesive peptide (HVP) mapped on [351-359] sequence of human Vitronectin allowed to selectively increase osteoblast attachment and adhesion strength in in vitro assays, and to promote osseointegration in in vivo studies. For the first time to our knowledge, in this study we investigated the resistance of adhesion sequences to proteolytic digestion: HVP was completely cleaved after 5 h. In order to overcome the enzymatic degradation of the native peptide under physiological conditions we synthetized three analogues of HVP sequence. A retro-inverted peptide D-2HVP, composed of D amino acids, was completely stable in serum-containing medium. In addition, glass surfaces functionalized with D-2HVP increased human osteoblast adhesion as compared to the native peptide and maintained deposition of calcium. Interestingly, D-2HVP increased expression of IBSP, VTN and SPP1 genes as compared to HVP functionalized surfaces. Total internal reflection fluorescence microscope analysis showed cells with numerous filopodia spread on D-2HVP-functionalized surfaces. Therefore, the D-2HVP sequence is proposed as new osteoblast adhesive peptide with increased bioactivity and high proteolytic resistance.

  9. Interactions with nanoscale topography: adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage.

    PubMed

    Biggs, Manus J P; Richards, R Geoff; Gadegaard, Nikolaj; McMurray, Rebecca J; Affrossman, Stanley; Wilkinson, Chris D W; Oreffo, Richard O C; Dalby, Mathew J

    2009-10-01

    Polymeric medical devices widely used in orthopedic surgery play key roles in fracture fixation and orthopedic implant design. Topographical modification and surface micro-roughness of these devices regulate cellular adhesion, a process fundamental in the initiation of osteoinduction and osteogenesis. Advances in fabrication techniques have evolved the field of surface modification; in particular, nanotechnology has allowed the development of nanoscale substrates for the investigation into cell-nanofeature interactions. In this study human osteoblasts (HOBs) were cultured on ordered nanoscale pits and random nano "craters" and "islands". Adhesion subtypes were quantified by immunofluorescent microscopy and cell-substrate interactions investigated via immuno-scanning electron microscopy. To investigate the effects of these substrates on cellular function 1.7 k microarray analysis was used to establish gene profiles of enriched STRO-1+ progenitor cell populations cultured on these nanotopographies. Nanotopographies affected the formation of adhesions on experimental substrates. Adhesion formation was prominent on planar control substrates and reduced on nanocrater and nanoisland topographies; nanopits, however, were shown to inhibit directly the formation of large adhesions. STRO-1+ progenitor cells cultured on experimental substrates revealed significant changes in genetic expression. This study implicates nanotopographical modification as a significant modulator of osteoblast adhesion and cellular function in mesenchymal populations.

  10. Basal Lamina Mimetic Nanofibrous Peptide Networks for Skeletal Myogenesis

    NASA Astrophysics Data System (ADS)

    Yasa, I. Ceren; Gunduz, Nuray; Kilinc, Murat; Guler, Mustafa O.; Tekinay, Ayse B.

    2015-11-01

    Extracellular matrix (ECM) is crucial for the coordination and regulation of cell adhesion, recruitment, differentiation and death. Therefore, equilibrium between cell-cell and cell-matrix interactions and matrix-associated signals are important for the normal functioning of cells, as well as for regeneration. In this work, we describe importance of adhesive signals for myoblast cells’ growth and differentiation by generating a novel ECM mimetic peptide nanofiber scaffold system. We show that not only structure but also composition of bioactive signals are important for cell adhesion, growth and differentiation by mimicking the compositional and structural properties of native skeletal muscle basal lamina. We conjugated laminin-derived integrin binding peptide sequence, “IKVAV”, and fibronectin-derived well known adhesive sequence, “RGD”, into peptide nanostructures to provide adhesive and myogenic cues on a nanofibrous morphology. The myogenic and adhesive signals exhibited a synergistic effect on model myoblasts, C2C12 cells. Our results showed that self-assembled peptide nanofibers presenting laminin derived epitopes support adhesion, growth and proliferation of the cells and significantly promote the expression of skeletal muscle-specific marker genes. The functional peptide nanofibers used in this study present a biocompatible and biodegradable microenvironment, which is capable of supporting the growth and differentiation of C2C12 myoblasts into myotubes.

  11. Basal Lamina Mimetic Nanofibrous Peptide Networks for Skeletal Myogenesis

    PubMed Central

    Yasa, I. Ceren; Gunduz, Nuray; Kilinc, Murat; Guler, Mustafa O.; Tekinay, Ayse B.

    2015-01-01

    Extracellular matrix (ECM) is crucial for the coordination and regulation of cell adhesion, recruitment, differentiation and death. Therefore, equilibrium between cell-cell and cell-matrix interactions and matrix-associated signals are important for the normal functioning of cells, as well as for regeneration. In this work, we describe importance of adhesive signals for myoblast cells’ growth and differentiation by generating a novel ECM mimetic peptide nanofiber scaffold system. We show that not only structure but also composition of bioactive signals are important for cell adhesion, growth and differentiation by mimicking the compositional and structural properties of native skeletal muscle basal lamina. We conjugated laminin-derived integrin binding peptide sequence, “IKVAV”, and fibronectin-derived well known adhesive sequence, “RGD”, into peptide nanostructures to provide adhesive and myogenic cues on a nanofibrous morphology. The myogenic and adhesive signals exhibited a synergistic effect on model myoblasts, C2C12 cells. Our results showed that self-assembled peptide nanofibers presenting laminin derived epitopes support adhesion, growth and proliferation of the cells and significantly promote the expression of skeletal muscle-specific marker genes. The functional peptide nanofibers used in this study present a biocompatible and biodegradable microenvironment, which is capable of supporting the growth and differentiation of C2C12 myoblasts into myotubes. PMID:26555958

  12. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data.

    PubMed

    Zhang, Chaoyang; Peng, Li; Zhang, Yaqin; Liu, Zhaoyang; Li, Wenling; Chen, Shilian; Li, Guancheng

    2017-06-01

    Liver cancer is a serious threat to public health and has fairly complicated pathogenesis. Therefore, the identification of key genes and pathways is of much importance for clarifying molecular mechanism of hepatocellular carcinoma (HCC) initiation and progression. HCC-associated gene expression dataset was downloaded from Gene Expression Omnibus database. Statistical software R was used for significance analysis of differentially expressed genes (DEGs) between liver cancer samples and normal samples. Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, based on R software, were applied for the identification of pathways in which DEGs significantly enriched. Cytoscape software was for the construction of protein-protein interaction (PPI) network and module analysis to find the hub genes and key pathways. Finally, weighted correlation network analysis (WGCNA) was conducted to further screen critical gene modules with similar expression pattern and explore their biological significance. Significance analysis identified 1230 DEGs with fold change >2, including 632 significantly down-regulated DEGs and 598 significantly up-regulated DEGs. GO term enrichment analysis suggested that up-regulated DEG significantly enriched in immune response, cell adhesion, cell migration, type I interferon signaling pathway, and cell proliferation, and the down-regulated DEG mainly enriched in response to endoplasmic reticulum stress and endoplasmic reticulum unfolded protein response. KEGG pathway analysis found DEGs significantly enriched in five pathways including complement and coagulation cascades, focal adhesion, ECM-receptor interaction, antigen processing and presentation, and protein processing in endoplasmic reticulum. The top 10 hub genes in HCC were separately GMPS, ACACA, ALB, TGFB1, KRAS, ERBB2, BCL2, EGFR, STAT3, and CD8A, which resulted from PPI network. The top 3 gene interaction modules in PPI network enriched in immune response, organ development, and response to other organism, respectively. WGCNA revealed that the confirmed eight gene modules significantly enriched in monooxygenase and oxidoreductase activity, response to endoplasmic reticulum stress, type I interferon signaling pathway, processing, presentation and binding of peptide antigen, cellular response to cadmium and zinc ion, cell locomotion and differentiation, ribonucleoprotein complex and RNA processing, and immune system process, respectively. In conclusion, we identified some key genes and pathways closely related with HCC initiation and progression by a series of bioinformatics analysis on DEGs. These screened genes and pathways provided for a more detailed molecular mechanism underlying HCC occurrence and progression, holding promise for acting as biomarkers and potential therapeutic targets.

  13. Sustained phenotypic reversion of junctional epidermolysis bullosa dog keratinocytes: Establishment of an immunocompetent animal model for cutaneous gene therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spirito, Flavia; Capt, Annabelle; Rio, Marcela Del

    2006-01-20

    Gene transfer represents the unique therapeutic issue for a number of inherited skin disorders including junctional epidermolysis bullosa (JEB), an untreatable genodermatose caused by mutations in the adhesion ligand laminin 5 ({alpha}3{beta}3{gamma}2) that is secreted in the extracellular matrix by the epidermal basal keratinocytes. Because gene therapy protocols require validation in animal models, we have phenotypically reverted by oncoretroviral transfer of the curative gene the keratinocytes isolated from dogs with a spontaneous form of JEB associated with a genetic mutation in the {alpha}3 chain of laminin 5. We show that the transduced dog JEB keratinocytes: (1) display a sustained secretionmore » of laminin 5 in the extracellular matrix; (2) recover the adhesion, proliferation, and clonogenic capacity of wild-type keratinocytes; (3) generate fully differentiated stratified epithelia that after grafting on immunocompromised mice produce phenotypically normal skin and sustain permanent expression of the transgene. We validate an animal model that appears particularly suitable to demonstrate feasibility, efficacy, and safety of genetic therapeutic strategies for cutaneous disorders before undertaking human clinical trials.« less

  14. Biodegradable DNA Nanoparticles that Provide Widespread Gene Delivery in the Brain

    PubMed Central

    Mastorakos, Panagiotis; Song, Eric; Zhang, Clark; Berry, Sneha; Park, Hee Won; Kim, Young Eun; Park, Jong Sung; Lee, Seulki; Suk, Jung Soo; Hanes, Justin

    2016-01-01

    Successful gene therapy of neurological disorders is predicated on achieving widespread and uniform transgene expression throughout the affected disease area in the brain. However, conventional gene vectors preferentially travel through low-resistance perivascular spaces and/or are confined to the administration site even with the aid of a pressure-driven flow provided by convection-enhanced delivery. Biodegradable DNA nanoparticles offer a safe gene delivery platform devoid of adverse effects associated with virus-based or synthetic non-biodegradable systems. Using a state-of-the-art biodegradable polymer, poly(β-amino ester), we engineered colloidally stable sub-100 nm DNA nanoparticles coated with a non-adhesive polyethylene glycol corona that are able to avoid the adhesive and steric hindrances imposed by the extracellular matrix. Following convection enhanced delivery, these brain-penetrating nanoparticles were able to homogeneously distribute throughout the rodent striatum and mediate widespread and high-level transgene expression. These nanoparticles provide a biodegradable DNA nanoparticle platform enabling uniform transgene expression patterns in vivo and hold promise for the treatment of neurological diseases. PMID:26680637

  15. Different Type 1 Fimbrial Genes and Tropisms of Commensal and Potentially Pathogenic Actinomyces spp. with Different Salivary Acidic Proline-Rich Protein and Statherin Ligand Specificities

    PubMed Central

    Li, Tong; Khah, Massoud Kheir; Slavnic, Snjezana; Johansson, Ingegerd; Strömberg, Nicklas

    2001-01-01

    Actinomyces spp. exhibit type 1 fimbria-mediated adhesion to salivary acidic proline-rich proteins (PRPs) and statherin ligands. Actinomyces spp. with different animal and tissue origins belong to three major adhesion types as relates to ligand specificity and type 1 fimbria genes. (i) In preferential acidic-PRP binding, strains of Actinomyces naeslundii genospecies 1 and 2 from human and monkey mouths displayed at least three ligand specificities characterized by preferential acidic-PRP binding. Slot blot DNA hybridization showed seven highly conserved type 1 fimbria genes (orf1- to -6 and fimP) in genospecies 1 and 2 strains, except that orf5 and orf3 were divergent in genospecies 1. (ii) In preferential statherin binding, oral Actinomyces viscosus strains of rat and hamster origin (and strain 19246 from a human case of actinomycosis) bound statherin preferentially. DNA hybridization and characterization of the type 1 fimbria genes from strain 19246 revealed a homologous gene cluster of four open reading frames (orfA to -C and fimP). Bioinformatics suggested sortase (orfB, orf4, and part of orf5), prepilin peptidase (orfC and orf6), fimbria subunit (fimP), and usher- and autotransporter-like (orfA and orf1 to -3) functions. Those gene regions corresponding to orf3 and orf5 were divergent, those corresponding to orf2, orf1, and fimP were moderately conserved, and those corresponding to orf4 and orf6 were highly conserved. Restriction fragment length polymorphism analyses using a fimP probe separated human and monkey and rat and hamster strains into phylogenetically different groups. (iii) In statherin-specific binding, strains of A. naeslundii genospecies 1 from septic and other human infections displayed a low-avidity binding to statherin. Only the orf4 and orf6 gene regions were highly conserved. Finally, rat saliva devoid of statherin bound bacterial strains avidly irrespective of ligand specificity, and specific antisera detected either type 1, type 2, or both types of fimbria on the investigated Actinomyces strains. PMID:11705891

  16. Advanced colorectal adenoma related gene expression signature may predict prognostic for colorectal cancer patients with adenoma-carcinoma sequence.

    PubMed

    Li, Bing; Shi, Xiao-Yu; Liao, Dai-Xiang; Cao, Bang-Rong; Luo, Cheng-Hua; Cheng, Shu-Jun

    2015-01-01

    There are still no absolute parameters predicting progression of adenoma into cancer. The present study aimed to characterize functional differences on the multistep carcinogenetic process from the adenoma-carcinoma sequence. All samples were collected and mRNA expression profiling was performed by using Agilent Microarray high-throughput gene-chip technology. Then, the characteristics of mRNA expression profiles of adenoma-carcinoma sequence were described with bioinformatics software, and we analyzed the relationship between gene expression profiles of adenoma-adenocarcinoma sequence and clinical prognosis of colorectal cancer. The mRNA expressions of adenoma-carcinoma sequence were significantly different between high-grade intraepithelial neoplasia group and adenocarcinoma group. The biological process of gene ontology function enrichment analysis on differentially expressed genes between high-grade intraepithelial neoplasia group and adenocarcinoma group showed that genes enriched in the extracellular structure organization, skeletal system development, biological adhesion and itself regulated growth regulation, with the P value after FDR correction of less than 0.05. In addition, IPR-related protein mainly focused on the insulin-like growth factor binding proteins. The variable trends of gene expression profiles for adenoma-carcinoma sequence were mainly concentrated in high-grade intraepithelial neoplasia and adenocarcinoma. The differentially expressed genes are significantly correlated between high-grade intraepithelial neoplasia group and adenocarcinoma group. Bioinformatics analysis is an effective way to study the gene expression profiles in the adenoma-carcinoma sequence, and may provide an effective tool to involve colorectal cancer research strategy into colorectal adenoma or advanced adenoma.

  17. Drosophila cellular immunity: a story of migration and adhesion.

    PubMed

    Fauvarque, Marie-Odile; Williams, Michael J

    2011-05-01

    Research during the past 15 years has led to significant breakthroughs, providing evidence of a high degree of similarity between insect and mammalian innate immune responses, both humoural and cellular, and highlighting Drosophila melanogaster as a model system for studying the evolution of innate immunity. In a manner similar to cells of the mammalian monocyte and macrophage lineage, Drosophila immunosurveillance cells (haemocytes) have a number of roles. For example, they respond to wound signals, are involved in wound healing and contribute to the coagulation response. Moreover, they participate in the phagocytosis and encapsulation of invading pathogens, are involved in the removal of apoptotic bodies and produce components of the extracellular matrix. There are several reasons for using the Drosophila cellular immune response as a model to understand cell signalling during adhesion and migration in vivo: many genes involved in the regulation of Drosophila haematopoiesis and cellular immunity have been maintained across taxonomic groups ranging from flies to humans, many aspects of Drosophila and mammalian innate immunity seem to be conserved, and Drosophila is a simplified and well-studied genetic model system. In the present Commentary, we will discuss what is known about cellular adhesion and migration in the Drosophila cellular immune response, during both embryonic and larval development, and where possible compare it with related mechanisms in vertebrates.

  18. Tissue transglutaminase contributes to the all-trans-retinoic acid-induced differentiation syndrome phenotype in the NB4 model of acute promyelocytic leukemia.

    PubMed

    Csomós, Krisztián; Német, István; Fésüs, László; Balajthy, Zoltán

    2010-11-11

    Treatment of acute promyelocytic leukemia (APL) with all-trans-retinoic acid (ATRA) results in terminal differentiation of leukemic cells toward neutrophil granulocytes. Administration of ATRA leads to massive changes in gene expression, including down-regulation of cell proliferation-related genes and induction of genes involved in immune function. One of the most induced genes in APL NB4 cells is transglutaminase 2 (TG2). RNA interference-mediated stable silencing of TG2 in NB4 cells (TG2-KD NB4) coupled with whole genome microarray analysis revealed that TG2 is involved in the expression of a large number of ATRA-regulated genes. The affected genes participate in granulocyte functions, and their silencing lead to reduced adhesive, migratory, and phagocytic capacity of neutrophils and less superoxide production. The expression of genes related to cell-cycle control also changed, suggesting that TG2 regulates myeloid cell differentiation. CC chemokines CCL2, CCL3, CCL22, CCL24, and cytokines IL1B and IL8 involved in the development of differentiation syndrome are expressed at significantly lower level in TG2-KD NB4 than in wild-type NB4 cells upon ATRA treatment. Based on our results, we propose that reduced expression of TG2 in differentiating APL cells may suppress effector functions of neutrophil granulocytes and attenuate the ATRA-induced inflammatory phenotype of differentiation syndrome.

  19. Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signalling, and secondary metabolism

    PubMed Central

    Cookson, Sarah Jane; Clemente Moreno, Maria José; Hevin, Cyril; Nyamba Mendome, Larissa Zita; Delrot, Serge; Trossat-Magnin, Claudine; Ollat, Nathalie

    2013-01-01

    Grafting is particularly important to the cultivation of perennial crops such as grapevine (Vitis vinifera) because rootstocks can provide resistance to soil-borne pests and diseases as well as improve tolerance to some abiotic stresses. Successful grafting is a complex biochemical and structural process beginning with the adhesion of the two grafted partners, followed by callus formation and the establishment of a functional vascular system. At the molecular level, the sequence of events underlying graft union formation remains largely uncharacterized. The present study investigates the transcriptome of grapevine rootstock and graft interface tissues sampled 3 d and 28 d after grafting of over-wintering stems in the spring. Many genes were differentially expressed over time, from 3 d to 28 d after grafting, which could be related to the activation of stem growth and metabolic activity in the spring. This hypothesis is supported by the up-regulation of many genes associated with cell wall synthesis, and phloem and xylem development. Generally, there was an up-regulation of gene expression in the graft interface tissue compared with the rootstock, particularly genes involved in cell wall synthesis, secondary metabolism, and signalling. Although there was overlap between the genes differentially expressed over time (from 3 d to 28 d after grafting) with the gene differentially expressed between the rootstock and the graft interface, numerous graft interface-specific genes were identified. PMID:23698628

  20. Decreased expression of cell adhesion genes in cancer stem-like cells isolated from primary oral squamous cell carcinomas.

    PubMed

    Mishra, Amrendra; Sriram, Harshini; Chandarana, Pinal; Tanavde, Vivek; Kumar, Rekha V; Gopinath, Ashok; Govindarajan, Raman; Ramaswamy, S; Sadasivam, Subhashini

    2018-05-01

    The goal of this study was to isolate cancer stem-like cells marked by high expression of CD44, a putative cancer stem cell marker, from primary oral squamous cell carcinomas and identify distinctive gene expression patterns in these cells. From 1 October 2013 to 4 September 2015, 76 stage III-IV primary oral squamous cell carcinoma of the gingivobuccal sulcus were resected. In all, 13 tumours were analysed by immunohistochemistry to visualise CD44-expressing cells. Expression of CD44 within The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma RNA-sequencing data was also assessed. Seventy resected tumours were dissociated into single cells and stained with antibodies to CD44 as well as CD45 and CD31 (together referred as Lineage/Lin). From 45 of these, CD44 + Lin - and CD44 - Lin - subpopulations were successfully isolated using fluorescence-activated cell sorting, and good-quality RNA was obtained from 14 such sorted pairs. Libraries from five pairs were sequenced and the results analysed using bioinformatics tools. Reverse transcription quantitative polymerase chain reaction was performed to experimentally validate the differential expression of selected candidate genes identified from the transcriptome sequencing in the same 5 and an additional 9 tumours. CD44 was expressed on the surface of poorly differentiated tumour cells, and within the The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma samples, its messenger RNA levels were higher in tumours compared to normal. Transcriptomics revealed that 102 genes were upregulated and 85 genes were downregulated in CD44 + Lin - compared to CD44 - Lin - cells in at least 3 of the 5 tumours sequenced. The upregulated genes included those involved in immune regulation, while the downregulated genes were enriched for genes involved in cell adhesion. Decreased expression of PCDH18, MGP, SPARCL1 and KRTDAP was confirmed by reverse transcription quantitative polymerase chain reaction. Lower expression of the cell-cell adhesion molecule PCDH18 correlated with poorer overall survival in the The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma data highlighting it as a potential negative prognostic factor in this cancer.

  1. Post-Training Intrahippocampal Injection of Synthetic Poly-Alpha-2,8-Sialic Acid-Neural Cell Adhesion Molecule Mimetic Peptide Improves Spatial Long-Term Performance in Mice

    ERIC Educational Resources Information Center

    Florian, Cedrick; Foltz, Jane; Norreel, Jean-Chretien; Rougon, Genevieve; Roullet, Pascal

    2006-01-01

    Several data have shown that the neural cell adhesion molecule (NCAM) is necessary for long-term memory formation and might play a role in the structural reorganization of synapses. The NCAM, encoded by a single gene, is represented by several isoforms that differ with regard to their content of alpha-2,8-linked sialic acid residues (PSA) on their…

  2. The N-Myc down regulated Gene1 (NDRG1) Is a Rab4a effector involved in vesicular recycling of E-cadherin.

    PubMed

    Kachhap, Sushant K; Faith, Dennis; Qian, David Z; Shabbeer, Shabana; Galloway, Nathan L; Pili, Roberto; Denmeade, Samuel R; DeMarzo, Angelo M; Carducci, Michael A

    2007-09-05

    Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1) increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein.

  3. The Arabidopsis SOS5 Locus Encodes a Putative Cell Surface Adhesion Protein and Is Required for Normal Cell Expansion

    PubMed Central

    Shi, Huazhong; Kim, YongSig; Guo, Yan; Stevenson, Becky; Zhu, Jian-Kang

    2003-01-01

    Cell surface proteoglycans have been implicated in many aspects of plant growth and development, but genetic evidence supporting their function has been lacking. Here, we report that the Salt Overly Sensitive5 (SOS5) gene encodes a putative cell surface adhesion protein and is required for normal cell expansion. The sos5 mutant was isolated in a screen for Arabidopsis salt-hypersensitive mutants. Under salt stress, the root tips of sos5 mutant plants swell and root growth is arrested. The root-swelling phenotype is caused by abnormal expansion of epidermal, cortical, and endodermal cells. The SOS5 gene was isolated through map-based cloning. The predicted SOS5 protein contains an N-terminal signal sequence for plasma membrane localization, two arabinogalactan protein–like domains, two fasciclin-like domains, and a C-terminal glycosylphosphatidylinositol lipid anchor signal sequence. The presence of fasciclin-like domains, which typically are found in animal cell adhesion proteins, suggests a role for SOS5 in cell-to-cell adhesion in plants. The SOS5 protein was present at the outer surface of the plasma membrane. The cell walls are thinner in the sos5 mutant, and those between neighboring epidermal and cortical cells in sos5 roots appear less organized. SOS5 is expressed ubiquitously in all plant organs and tissues, including guard cells in the leaf. PMID:12509519

  4. Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer.

    PubMed

    Bi, Dongbin; Ning, Hao; Liu, Shuai; Que, Xinxiang; Ding, Kejia

    2015-06-01

    To explore molecular mechanisms of bladder cancer (BC), network strategy was used to find biomarkers for early detection and diagnosis. The differentially expressed genes (DEGs) between bladder carcinoma patients and normal subjects were screened using empirical Bayes method of the linear models for microarray data package. Co-expression networks were constructed by differentially co-expressed genes and links. Regulatory impact factors (RIF) metric was used to identify critical transcription factors (TFs). The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and clusters were obtained through molecular complex detection (MCODE) algorithm. Centralities analyses for complex networks were performed based on degree, stress and betweenness. Enrichment analyses were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Co-expression networks and TFs (based on expression data of global DEGs and DEGs in different stages and grades) were identified. Hub genes of complex networks, such as UBE2C, ACTA2, FABP4, CKS2, FN1 and TOP2A, were also obtained according to analysis of degree. In gene enrichment analyses of global DEGs, cell adhesion, proteinaceous extracellular matrix and extracellular matrix structural constituent were top three GO terms. ECM-receptor interaction, focal adhesion, and cell cycle were significant pathways. Our results provide some potential underlying biomarkers of BC. However, further validation is required and deep studies are needed to elucidate the pathogenesis of BC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Differential expression of extracellular matrix constituents and cell adhesion molecules between malignant pleural mesothelioma and mesothelial hyperplasia.

    PubMed

    Alì, Greta; Borrelli, Nicla; Riccardo, Giannini; Proietti, Agnese; Pelliccioni, Serena; Niccoli, Cristina; Boldrini, Laura; Lucchi, Marco; Mussi, Alfredo; Fontanini, Gabriella

    2013-11-01

    Malignant pleural mesothelioma (MPM) is a highly aggressive neoplasm associated with asbestos exposure. Currently, the molecular mechanisms that induce MPM development are still unknown. The purpose of this study was to identify new molecular biomarkers for mesothelial carcinogenesis. We analyzed a panel of 84 genes involved in extracellular matrix remodeling and cell adhesion by polymerase chain reaction (PCR) array in 15 samples of epithelioid mesothelioma and 10 samples of reactive mesothelial hyperplasia (MH; 3 of 25 samples were inadequate for mRNA analysis). To validate the differentially expressed genes identified by PCR array, we analyzed 27 more samples by immunohistochemistry, in addition to the 25 samples already studied. Twenty-five genes were differentially expressed in MPM and MH by PCR array. Of these we studied matrix metalloproteinase 7 (MMP7), MMP14, CD44, and integrin, alpha3 expression by immunohistochemistry in 26 epithelioid MPM and 26 MH samples from the entire series of 52 cases. We observed higher MMP14 and integrin, alpha3 expression in MPM samples compared with MH samples (p = 0.000002 and p = 0.000002, respectively). Conversely, CD44 expression was low in most (57.7%) mesothelioma samples but only in 11.5% of the MH samples (p = 0.0013). As regards MMP7, we did not observe differential expression between MH and MPM samples. We have extensively studied genes involved in cell adhesion and extracellular matrix remodeling in MPM and MH samples, gaining new insight into the pathophysiology of mesothelioma. Moreover, our data suggest that these factors could be potential biomarkers for MPM.

  6. Heterologous expression of pathogen-specific genes ligA and ligB in the saprophyte Leptospira biflexa confers enhanced adhesion to cultured cells and fibronectin

    PubMed Central

    2011-01-01

    Background In comparison to other bacterial pathogens, our knowledge of the molecular basis of the pathogenesis of leptospirosis is extremely limited. An improved understanding of leptospiral pathogenetic mechanisms requires reliable tools for functional genetic analysis. Leptospiral immunoglobulin-like (Lig) proteins are surface proteins found in pathogenic Leptospira, but not in saprophytes. Here, we describe a system for heterologous expression of the Leptospira interrogans genes ligA and ligB in the saprophyte Leptospira biflexa serovar Patoc. Results The genes encoding LigA and LigB under the control of a constitutive spirochaetal promoter were inserted into the L. biflexa replicative plasmid. We were able to demonstrate expression and surface localization of LigA and LigB in L. biflexa. We found that the expression of the lig genes significantly enhanced the ability of transformed L. biflexa to adhere in vitro to extracellular matrix components and cultured cells, suggesting the involvement of Lig proteins in cell adhesion. Conclusions This work reports a complete description of the system we have developed for heterologous expression of pathogen-specific proteins in the saprophytic L. biflexa. We show that expression of LigA and LigB proteins from the pathogen confers a virulence-associated phenotype on L. biflexa, namely adhesion to eukaryotic cells and fibronectin in vitro. This study indicates that L. biflexa can serve as a surrogate host to characterize the role of key virulence factors of the causative agent of leptospirosis. PMID:21658265

  7. Diverse roles of integrin receptors in articular cartilage.

    PubMed

    Shakibaei, M; Csaki, C; Mobasheri, A

    2008-01-01

    Integrins are heterodimeric integral membrane proteins made up of alpha and beta subunits. At least eighteen alpha and eight beta subunit genes have been described in mammals. Integrin family members are plasma membrane receptors involved in cell adhesion and active as intra- and extracellular signalling molecules in a variety of processes including embryogenesis, hemostasis, tissue repair, immune response and metastatic spread of tumour cells. Integrin beta 1 (beta1-integrin), the protein encoded by the ITGB1 gene (also known as CD29 and VLAB), is a multi-functional protein involved in cell-matrix adhesion, cell signalling, cellular defense, cell adhesion, protein binding, protein heterodimerisation and receptor-mediated activity. It is highly expressed in the human body (17.4 times higher than the average gene in the last updated revision of the human genome). The extracellular matrix (ECM) of articular cartilage is a unique environment. Interactions between chondrocytes and the ECM regulate many biological processes important to homeostasis and repair of articular cartilage, including cell attachment, growth, differentiation and survival. The beta1-integrin family of cell surface receptors appears to play a major role in mediating cell-matrix interactions that are important in regulating these fundamental processes. Chondrocyte mechanoreceptors have been proposed to incorporate beta1-integrins and mechanosensitive ion channels which link with key ECM, cytoskeletal and signalling proteins to maintain the chondrocyte phenotype, prevent chondrocyte apoptosis and regulate chondrocyte-specific gene expression. This review focuses on the expression and function of beta1-integrins in articular chondrocytes, its role in the unique biology of these cells and its distribution in cartilage.

  8. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    PubMed

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  9. Bending energy penalty enhances the adhesive strength of functional amyloid curli to surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Wang, Ao; DeBenedictis, Elizabeth P.; Keten, Sinan

    2017-11-01

    The functional amyloid curli fiber, a major proteinaceous component of biofilm extracellular matrices, plays an important role in biofilm formation and enterobacteriaceae adhesion. Curli nanofibers exhibit exceptional underwater adhesion to various surfaces, have high rigidity and strong tensile mechanical properties, and thus hold great promise in biomaterials. The mechanisms of how curli fibers strongly attach to surfaces and detach under force remain elusive. To investigate curli fiber adhesion to surfaces, we developed a coarse-grained curli fiber model, in which the protein subunit CsgA (curli specific gene A) self-assembles into the fiber. The coarse-grained model yields physiologically relevant and tunable bending rigidity and persistence length. The force-induced desorption of a single curli fiber is examined using coarse-grained modeling and theoretical analysis. We find that the bending energy penalty arising from high persistence length enhances the resistance of the curli fiber against desorption and thus strengthens the adhesion of the curli fiber to surfaces. The CsgA-surface adhesion energy and the curli fiber bending rigidity both play crucial roles in the resistance of curli fiber against desorption from surfaces. To enable the desorption process, the applied peeling force must overcome both the interfacial adhesion energy and the energy barrier for bending the curli fiber at the peeling front. We show that the energy barrier to desorption increases with the interfacial adhesion energy, however, the bending induced failure of a single curli fiber limits the work of adhesion if the proportion of the CsgA-surface adhesion energy to the CsgA-CsgA cohesive energy becomes large. These results illustrate that the optimal adhesion performance of nanofibers is dictated by the interplay between bending, surface energy and cohesive energy. Our model provides timely insight into enterobacteriaceae adhesion mechanisms as well as future designs of engineered curli fiber based adhesives.

  10. The absence of N-acetylglucosamine in wall teichoic acids of Listeria monocytogenes modifies biofilm architecture and tolerance to rinsing and cleaning procedures

    PubMed Central

    Faille, Christine; Sadovskaya, Irina; Charbit, Alain; Benezech, Thierry; Shen, Yang; Loessner, Martin J.; Bautista, Jean Romain; Midelet-Bourdin, Graziella

    2018-01-01

    The wall teichoic acid (WTA) is the major carbohydrate found within the extracellular matrix of the Listeria monocytogenes biofilm. We first addressed the frequency of spontaneous mutations in two genes (lmo2549 and lmo2550) responsible for the GlcNAcylation in 93 serotype 1/2a strains that were mainly isolated from seafood industries. We studied the impact of mutations in lmo2549 or lmo2550 genes on biofilm formation by using one mutant carrying a natural mutation inactivating the lmo2550 gene (DSS 1130 BFA2 strain) and two EGD-e mutants that lack respective genes by in-frame deletion of lmo2549 or lmo2550 using splicing-by-overlap-extension PCR, followed by allelic exchange mutagenesis. The lmo2550 gene mutation, occurring in around 50% isolates, caused a decrease in bacterial adhesion to stainless steel compared to wild-type EGD-e strain during the adhesion step. On the other hand, bacterial population weren’t significantly different after 24h-biofilm formation. The biofilm architecture was different between the wild-type strain and the two mutants inactivated for lmo2549 or lmo2550 genes respectively with the presence of bacterial micro-colonies for mutants which were not observed in the wild-type EGD-e strain biofilm. These differences might account for the stronger hydrophilic surface exhibited by the mutant cells. Upon a water flow or to a cleaning procedure at a shear stress of 0.16 Pa, the mutant biofilms showed the higher detachment rate compared to wild-type strain. Meanwhile, an increase in the amount of residual viable but non-culturable population on stainless steel was recorded in two mutants. Our data suggests that the GlcNAc residue of WTA played a role in adhesion and biofilm formation of Listeria monocyctogenes. PMID:29320565

  11. The absence of N-acetylglucosamine in wall teichoic acids of Listeria monocytogenes modifies biofilm architecture and tolerance to rinsing and cleaning procedures.

    PubMed

    Brauge, Thomas; Faille, Christine; Sadovskaya, Irina; Charbit, Alain; Benezech, Thierry; Shen, Yang; Loessner, Martin J; Bautista, Jean Romain; Midelet-Bourdin, Graziella

    2018-01-01

    The wall teichoic acid (WTA) is the major carbohydrate found within the extracellular matrix of the Listeria monocytogenes biofilm. We first addressed the frequency of spontaneous mutations in two genes (lmo2549 and lmo2550) responsible for the GlcNAcylation in 93 serotype 1/2a strains that were mainly isolated from seafood industries. We studied the impact of mutations in lmo2549 or lmo2550 genes on biofilm formation by using one mutant carrying a natural mutation inactivating the lmo2550 gene (DSS 1130 BFA2 strain) and two EGD-e mutants that lack respective genes by in-frame deletion of lmo2549 or lmo2550 using splicing-by-overlap-extension PCR, followed by allelic exchange mutagenesis. The lmo2550 gene mutation, occurring in around 50% isolates, caused a decrease in bacterial adhesion to stainless steel compared to wild-type EGD-e strain during the adhesion step. On the other hand, bacterial population weren't significantly different after 24h-biofilm formation. The biofilm architecture was different between the wild-type strain and the two mutants inactivated for lmo2549 or lmo2550 genes respectively with the presence of bacterial micro-colonies for mutants which were not observed in the wild-type EGD-e strain biofilm. These differences might account for the stronger hydrophilic surface exhibited by the mutant cells. Upon a water flow or to a cleaning procedure at a shear stress of 0.16 Pa, the mutant biofilms showed the higher detachment rate compared to wild-type strain. Meanwhile, an increase in the amount of residual viable but non-culturable population on stainless steel was recorded in two mutants. Our data suggests that the GlcNAc residue of WTA played a role in adhesion and biofilm formation of Listeria monocyctogenes.

  12. Targeted adenovirus mediated inhibition of NF-κB-dependent inflammatory gene expression in endothelial cells in vitro and in vivo.

    PubMed

    Kułdo, J M; Ásgeirsdóttir, S A; Zwiers, P J; Bellu, A R; Rots, M G; Schalk, J A C; Ogawara, K I; Trautwein, C; Banas, B; Haisma, H J; Molema, G; Kamps, J A A M

    2013-02-28

    In chronic inflammatory diseases the endothelium expresses mediators responsible for harmful leukocyte infiltration. We investigated whether targeted delivery of a therapeutic transgene that inhibits nuclear factor κB signal transduction could silence the proinflammatory activation status of endothelial cells. For this, an adenovirus encoding dominant-negative IκB (dnIκB) as a therapeutic transgene was employed. Selectivity for the endothelial cells was achieved by introduction of antibodies specific for inflammatory endothelial adhesion molecules E-selectin or VCAM-1 chemically linked to the virus via polyethylene glycol. In vitro, the retargeted adenoviruses selectively infected cytokine-activated endothelial cells to express functional transgene. The comparison of transductional capacity of both retargeted viruses revealed that E-selectin based transgene delivery exerted superior pharmacological effects. Targeted delivery mediated dnIκB transgene expression in endothelial cells inhibited the induced expression of several inflammatory genes, including adhesion molecules, cytokines, and chemokines. In vivo, in mice suffering from glomerulonephritis, E-selectin-retargeted adenovirus selectively homed in the kidney to microvascular glomerular endothelium. Subsequent downregulation of endothelial adhesion molecule expression 2 days after induction of inflammation demonstrated the pharmacological potential of this gene therapy approach. The data justify further studies towards therapeutic virus design and optimization of treatment schedules to investigate their capacity to interfere with inflammatory disease progression. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Enantioselective Effects of o,p'-DDT on Cell Invasion and Adhesion of Breast Cancer Cells: Chirality in Cancer Development.

    PubMed

    He, Xiangming; Dong, Xiaowu; Zou, Dehong; Yu, Yang; Fang, Qunying; Zhang, Quan; Zhao, Meirong

    2015-08-18

    The o,p'-dichlorodiphenyltrichloroethane (DDT) with a chiral center possesses enantioselective estrogenic activity, in which R-(-)-o,p'-DDT exerts a more potent estrogenic effect than S-(+)-o,p'-DDT. Although concern regarding DDT exposure and breast cancer has increased in recent decades, the mode of enantioselective action of o,p'-DDT in breast cancer development is still unknown. Herein, we conducted a systematic study of the effect of o,p'-DDT on stereoselective breast tumor cell progression in a widely used in vitro breast tumor cell model, MCF-7 cells. We demonstrated that R-(-)-o,p'-DDT promoted more cancer cell invasion mediated by the human estrogen receptor (ER) by inducing invasion-promoted genes (matrix metalloproteinase-2 and -9 and human telomerase reverse transcriptase) and inhibiting invasion-inhibited genes (tissue inhibitor of metalloproteinase-1 and -4). Molecular docking verified that the binding affinity between R-(-)-o,p'-DDT and human ER was stronger than that of S-(+)-o,p'-DDT. The enantioselective-induced decrease in cell-to-cell adhesion may involve the downregulation of adhesion-promoted genes (E-cadherin and β-catenin). For the first time, these results reveal that estrogenic-like chiral compounds are of significant concern in the progression of human cancers and that human health risk assessment of chiral chemicals should consider enantioselectivity.

  14. Transcriptional Profiling of Murine Organ Genes in Response to Infection with Bacillus anthracis Ames Spores

    PubMed Central

    Moen, Scott T.; Yeager, Linsey A.; Lawrence, William S.; Ponce, Cindy; Galindo, Cristi L.; Garner, Harold R.; Baze, Wallace B.; Suarez, Giovanni; Peterson, Johnny W.; Chopra, Ashok K.

    2008-01-01

    Bacillus anthracis is the gram positive, spore-forming etiological agent of anthrax, an affliction studied because of its importance as a potential bioweapon. Although in vitro transcriptional responses of macrophages to either spore or anthrax toxins have been previously reported, little is known regarding the impact of infection on gene expression in host tissues. We infected Swiss-Webster mice intranasally with 5 LD50 of B. anthracis virulent Ames spores and observed the global transcriptional profiles of various tissues over a 48 hr time period. RNA was extracted from spleen, lung, and heart tissues of infected and control mice and examined by Affymetrix GeneChip analysis. Approximately 580 host genes were significantly over or under expressed among the lung, spleen, and heart tissues at 8 hr and 48 hr time points. Expression of genes encoding for surfactant and major histocompatibility complex (MHC) presentation was diminished during the early phase of infection in lungs. By 48 hr, a significant number of genes were modulated in the heart, including up-regulation of calcium-binding related gene expression, and down-regulation of multiple genes related to cell adhesion, formation of the extracellular matrix, and the cell cytoskeleton. Interestingly, the spleen 8 hr post-infection showed striking increases in the expression of genes that encode hydrolytic enzymes, and these levels remained elevated throughout infection. Further, genes involving antigen presentation and interferon responses were down-regulated in the spleen at 8 hr. In late stages of infection, splenic genes related to the inflammatory response were up-regulated. This study is the first to describe the in vivo global transcriptional response of multiple organs during inhalational anthrax. Although numerous genes related to the host immunological response and certain protection mechanisms were up-regulated in these organs, a vast list of genes important for fully developing and maintaining this response were decreased. Additionally, the lung, spleen, and heart showed differential responses to the infection, further validating the demand for a better understanding of anthrax pathogenesis in order to design therapies against novel targets. PMID:18037264

  15. Proteome analysis of the plant pathogen Xylella fastidiosa reveals major cellular and extracellular proteins and a peculiar codon bias distribution.

    PubMed

    Smolka, Marcus Bustamante; Martins-de-Souza, Daniel; Martins, Daniel; Winck, Flavia Vischi; Santoro, Carlos Eduardo; Castellari, Rafael Ramos; Ferrari, Fernanda; Brum, Itaraju Junior; Galembeck, Eduardo; Della Coletta Filho, Helvécio; Machado, Marcos Antonio; Marangoni, Sergio; Novello, Jose Camillo

    2003-02-01

    The bacteria Xylella fastidiosa is the causative agent of a number of economically important crop diseases, including citrus variegated chlorosis. Although its complete genome is already sequenced, X. fastidiosa is very poorly characterized by biochemical approaches at the protein level. In an initial effort to characterize protein expression in X. fastidiosa we used one- and two-dimensional gel electrophoresis and mass spectrometry to identify the products of 142 genes present in a whole cell extract and in an extracellular fraction of the citrus isolated strain 9a5c. Of particular interest for the study of pathogenesis are adhesion and secreted proteins. Homologs to proteins from three different adhesion systems (type IV fimbriae, mrk pili and hsf surface fibrils) were found to be coexpressed, the last two being detected only as multimeric complexes in the high molecular weight region of one-dimensional electrophoresis gels. Using a procedure to extract secreted proteins as well as proteins weakly attached to the cell surface we identified 30 different proteins including toxins, adhesion related proteins, antioxidant enzymes, different types of proteases and 16 hypothetical proteins. These data suggest that the intercellular space of X. fastidiosa colonies is a multifunctional microenvironment containing proteins related to in vivo bacterial survival and pathogenesis. A codon usage analysis of the most expressed proteins from the whole cell extract revealed a low biased distribution, which we propose is related to the slow growing nature of X. fastidiosa. A database of the X. fastidiosa proteome was developed and can be accessed via the internet (URL: www.proteome.ibi.unicamp.br).

  16. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment.

    PubMed

    de Vallière, Cheryl; Vidal, Solange; Clay, Ieuan; Jurisic, Giorgia; Tcymbarevich, Irina; Lang, Silvia; Ludwig, Marie-Gabrielle; Okoniewski, Michal; Eloranta, Jyrki J; Kullak-Ublick, Gerd A; Wagner, Carsten A; Rogler, Gerhard; Seuwen, Klaus

    2015-09-15

    The pH-sensing receptor ovarian cancer G protein-coupled receptor 1 (OGR1; GPR68) is expressed in the gut. Inflammatory bowel disease is typically associated with a decrease in local pH, which may lead to altered epithelial barrier function and subsequent gastrointestinal repair involving epithelial cell adhesion and migration. As the mechanisms underlying the response to pH changes are not well understood, we have investigated OGR1-mediated, pH-dependent signaling pathways in intestinal epithelial cells. Caco-2 cells stably overexpressing OGR1 were created and validated as tools to study OGR1 signaling. Barrier function, migration, and proliferation were measured using electric cell-substrate impedance-sensing technology. Localization of the tight junction proteins zonula occludens protein 1 and occludin and the rearrangement of cytoskeletal actin were examined by confocal microscopy. Paracellular permeability and protein and gene expression analysis using DNA microarrays were performed on filter-grown Caco-2 monolayers. We report that an acidic pH shift from pH 7.8 to 6.6 improved barrier function and stimulated reorganization of filamentous actin with prominent basal stress fiber formation. Cell migration and proliferation during in vitro wound healing were inhibited. Gene expression analysis revealed significant upregulation of genes related to cytoskeleton remodeling, cell adhesion, and growth factor signaling. We conclude that acidic extracellular pH can have a signaling function and impact the physiology of intestinal epithelial cells. The deconstruction of OGR1-dependent signaling may aid our understanding of mucosal inflammation mechanisms. Copyright © 2015 the American Physiological Society.

  17. Integrating Structure to Protein-Protein Interaction Networks That Drive Metastasis to Brain and Lung in Breast Cancer

    PubMed Central

    Engin, H. Billur; Guney, Emre; Keskin, Ozlem; Oliva, Baldo; Gursoy, Attila

    2013-01-01

    Blocking specific protein interactions can lead to human diseases. Accordingly, protein interactions and the structural knowledge on interacting surfaces of proteins (interfaces) have an important role in predicting the genotype-phenotype relationship. We have built the phenotype specific sub-networks of protein-protein interactions (PPIs) involving the relevant genes responsible for lung and brain metastasis from primary tumor in breast cancer. First, we selected the PPIs most relevant to metastasis causing genes (seed genes), by using the “guilt-by-association” principle. Then, we modeled structures of the interactions whose complex forms are not available in Protein Databank (PDB). Finally, we mapped mutations to interface structures (real and modeled), in order to spot the interactions that might be manipulated by these mutations. Functional analyses performed on these sub-networks revealed the potential relationship between immune system-infectious diseases and lung metastasis progression, but this connection was not observed significantly in the brain metastasis. Besides, structural analyses showed that some PPI interfaces in both metastasis sub-networks are originating from microbial proteins, which in turn were mostly related with cell adhesion. Cell adhesion is a key mechanism in metastasis, therefore these PPIs may be involved in similar molecular pathways that are shared by infectious disease and metastasis. Finally, by mapping the mutations and amino acid variations on the interface regions of the proteins in the metastasis sub-networks we found evidence for some mutations to be involved in the mechanisms differentiating the type of the metastasis. PMID:24278371

  18. Identification of gene expression profiles and key genes in subchondral bone of osteoarthritis using weighted gene coexpression network analysis.

    PubMed

    Guo, Sheng-Min; Wang, Jian-Xiong; Li, Jin; Xu, Fang-Yuan; Wei, Quan; Wang, Hai-Ming; Huang, Hou-Qiang; Zheng, Si-Lin; Xie, Yu-Jie; Zhang, Chi

    2018-06-15

    Osteoarthritis (OA) significantly influences the quality life of people around the world. It is urgent to find an effective way to understand the genetic etiology of OA. We used weighted gene coexpression network analysis (WGCNA) to explore the key genes involved in the subchondral bone pathological process of OA. Fifty gene expression profiles of GSE51588 were downloaded from the Gene Expression Omnibus database. The OA-associated genes and gene ontologies were acquired from JuniorDoc. Weighted gene coexpression network analysis was used to find disease-related networks based on 21756 gene expression correlation coefficients, hub-genes with the highest connectivity in each module were selected, and the correlation between module eigengene and clinical traits was calculated. The genes in the traits-related gene coexpression modules were subject to functional annotation and pathway enrichment analysis using ClusterProfiler. A total of 73 gene modules were identified, of which, 12 modules were found with high connectivity with clinical traits. Five modules were found with enriched OA-associated genes. Moreover, 310 OA-associated genes were found, and 34 of them were among hub-genes in each module. Consequently, enrichment results indicated some key metabolic pathways, such as extracellular matrix (ECM)-receptor interaction (hsa04512), focal adhesion (hsa04510), the phosphatidylinositol 3'-kinase (PI3K)-Akt signaling pathway (PI3K-AKT) (hsa04151), transforming growth factor beta pathway, and Wnt pathway. We intended to identify some core genes, collagen (COL)6A3, COL6A1, ITGA11, BAMBI, and HCK, which could influence downstream signaling pathways once they were activated. In this study, we identified important genes within key coexpression modules, which associate with a pathological process of subchondral bone in OA. Functional analysis results could provide important information to understand the mechanism of OA. © 2018 Wiley Periodicals, Inc.

  19. In Vitro Evaluation of Beneficial Properties of Bacteriocinogenic Lactobacillus plantarum ST8Sh.

    PubMed

    Todorov, Svetoslav Dimitrov; Holzapfel, Wilhelm; Nero, Luis Augusto

    2017-06-01

    Lactobacillus plantarum ST8Sh, isolated from Bulgarian salami "shpek" and previously characterized as bacteriocin producer, was evaluated for its beneficial properties. Based on the PCR analysis, Lb. plantarum ST8Sh was shown to host a gene related to the production of adhesion proteins such as Mab, Mub, EF, and PrgB. Genetic and physiological tests suggest Lb. plantarum ST8Sh to represent a potential probiotic candidate, including survival in the presence of low levels of pH and high levels of ox bile, production of β-galactosidase, bile salt deconjugation, high level of hydrophobicity, functional auto- and co-aggregation properties, and adhesion to cell lines. Application of semi-purified bacteriocin produced by Lb. plantarum ST8Sh in combination with ciprofloxacin presented synergistic effect on inhibition of Listeria monocytogenes Scott A. Based on observed properties, Lb. plantarum ST8Sh can be considered as a potential probiotic candidate with additional bacteriocinogenic properties.

  20. Targeting tumor cell motility to prevent metastasis

    PubMed Central

    Palmer, Trenis D.; Ashby, William J.; Lewis, John D.; Zijlstra, Andries

    2011-01-01

    Mortality and morbidity in patients with solid tumors invariably results from the disruption of normal biological function caused by disseminating tumor cells. Tumor cell migration is under intense investigation as the underlying cause of cancer metastasis. The need for tumor cell motility in the progression of metastasis has been established experimentally and is supported empirically by basic and clinical research implicating a large collection of migration-related genes. However, there are few clinical interventions designed to specifically target the motility of tumor cells and adjuvant therapy to specifically prevent cancer cell dissemination is severely limited. In an attempt to define motility targets suitable for treating metastasis, we have parsed the molecular determinants of tumor cell motility into five underlying principles including cell autonomous ability, soluble communication, cell-cell adhesion, cell-matrix adhesion, and integrating these determinants of migration on molecular scaffolds. The current challenge is to implement meaningful and sustainable inhibition of metastasis by developing clinically viable disruption of molecular targets that control these fundamental capabilities. PMID:21664937

  1. Molecular response of Escherichia coli adhering onto nanoscale topography

    NASA Astrophysics Data System (ADS)

    Rizzello, Loris; Galeone, Antonio; Vecchio, Giuseppe; Brunetti, Virgilio; Sabella, Stefania; Pompa, Pier Paolo

    2012-10-01

    Bacterial adhesion onto abiotic surfaces is an important issue in biology and medicine since understanding the bases of such interaction represents a crucial aspect in the design of safe implant devices with intrinsic antibacterial characteristics. In this framework, we investigated the effects of nanostructured metal substrates on Escherichia coli adhesion and adaptation in order to understand the bio-molecular dynamics ruling the interactions at the interface. In particular, we show how highly controlled nanostructured gold substrates impact the bacterial behavior in terms of morphological changes and lead to modifications in the expression profile of several genes, which are crucially involved in the stress response and fimbrial synthesis. These results mainly demonstrate that E. coli cells are able to sense even slight changes in surface nanotopography and to actively respond by activating stress-related pathways. At the same time, our findings highlight the possibility of designing nanoengineered substrates able to trigger specific bio-molecular effects, thus opening the perspective of smartly tuning bacterial behavior by biomaterial design.

  2. Interferon regulatory factor 1 and a variant of heterogeneous nuclear ribonucleoprotein L coordinately silence the gene for adhesion protein CEACAM1.

    PubMed

    Dery, Kenneth J; Silver, Craig; Yang, Lu; Shively, John E

    2018-06-15

    The adhesion protein carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is widely expressed in epithelial cells as a short cytoplasmic isoform (S-iso) and in leukocytes as a long cytoplasmic isoform (L-iso) and is frequently silenced in cancer by unknown mechanisms. Previously, we reported that interferon response factor 1 (IRF1) biases alternative splicing (AS) to include the variable exon 7 (E7) in CEACAM1, generating long cytoplasmic isoforms. We now show that IRF1 and a variant of heterogeneous nuclear ribonucleoprotein L (Lv1) coordinately silence the CEACAM1 gene. RNAi-mediated Lv1 depletion in IRF1-treated HeLa and melanoma cells induced significant CEACAM1 protein expression, reversed by ectopic Lv1 expression. The Lv1-mediated CEACAM1 repression resided in residues Gly 71 -Gly 89 and Ala 38 -Gly 89 in Lv1's N-terminal extension. ChIP analysis of IRF1- and FLAG-tagged Lv1-treated HeLa cells and global treatment with the global epigenetic modifiers 5-aza-2'-deoxycytidine and trichostatin A indicated that IRF1 and Lv1 together induce chromatin remodeling, restricting IRF1 access to the CEACAM1 promoter. In interferon γ-treated HeLa cells, the transcription factor SP1 did not associate with the CEACAM1 promoter, but binding by upstream transcription factor 1 (USF1), a known CEACAM1 regulator, was greatly enhanced. ChIP-sequencing revealed that Lv1 overexpression in IRF1-treated cells induces transcriptional silencing across many genes, including DCC ( d eleted in c olorectal c arcinoma), associated with CEACAM5 in colon cancer. Notably, IRF1, but not IRF3 and IRF7, affected CEACAM1 expression via translational repression. We conclude that IRF1 and Lv1 coordinately regulate CEACAM1 transcription, alternative splicing, and translation and may significantly contribute to CEACAM1 silencing in cancer. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Construction of a cell-surface display system based on the N-terminal domain of ice nucleation protein and its application in identification of mycoplasma adhesion proteins.

    PubMed

    Bao, S; Yu, S; Guo, X; Zhang, F; Sun, Y; Tan, L; Duan, Y; Lu, F; Qiu, X; Ding, C

    2015-07-01

    To construct and demonstrate a surface display system that could be used to identify mycoplasma adhesion proteins. Using the N-terminal domain of InaZ (InaZN) as the anchoring motif and the enhanced green fluorescent protein (EGFP) as the reporter, the surface display system pET-InaZN-EGFP was constructed. Then, the mgc2 gene which encodes an adhesin and the holB gene which encodes DNA polymerase III subunit delta' (nonadhesin, negative control) of Mycoplasma gallisepticum were cloned into the pET-InaZN-EGFP respectively. The fusion proteins were expressed in Escherichia coli BL21 (DE3). The distribution of the fusion proteins in E. coli cells was determined using SDS-PAGE followed by Western blotting, based on cell fractionation. Escherichia coli cell surface display of the fusion protein was confirmed by immunofluorescence microscopy. The results indicated that the fusion proteins were not only anchored to the outer membrane fraction but also were successfully displayed on the surface of E. coli cells. Adhesion analysis of E. coli harbouring InaZN-EGFP-mgc2 to host cells showed that the MGC2-positive E. coli cells can effectively adhere to the surfaces of DF-1 cells. A surface display system using the InaZN as the anchoring motif and EGFP as the reporter was developed to identify putative adhesins of mycoplasma. Results indicated that adhesion by the cytadhesin-like protein MGC2 of mycoplasma can be reproduced using this surface display system. This is the first construction of surface display system which could be used to identify the adhesion proteins of mycoplasma. The method developed in this study can even be used to select and identify the adhesion proteins of other pathogens. © 2015 The Society for Applied Microbiology.

  4. Leukocyte-inspired biodegradable particles that selectively and avidly adhere to inflamed endothelium in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Sakhalkar, Harshad S.; Dalal, Milind K.; Salem, Aliasger K.; Ansari, Ramin; Fu, Jie; Kiani, Mohammad F.; Kurjiaka, David T.; Hanes, Justin; Shakesheff, Kevin M.; Goetz, Douglas J.

    2003-12-01

    We exploited leukocyte-endothelial cell adhesion chemistry to generate biodegradable particles that exhibit highly selective accumulation on inflamed endothelium in vitro and in vivo. Leukocyte-endothelial cell adhesive particles exhibit up to 15-fold higher adhesion to inflamed endothelium, relative to noninflamed endothelium, under in vitro flow conditions similar to that present in blood vessels, a 6-fold higher adhesion to cytokine inflamed endothelium relative to non-cytokine-treated endothelium in vivo, and a 10-fold enhancement in adhesion to trauma-induced inflamed endothelium in vivo due to the addition of a targeting ligand. The leukocyte-inspired particles have adhesion efficiencies similar to that of leukocytes and were shown to target each of the major inducible endothelial cell adhesion molecules (E-selectin, P-selectin, vascular cell adhesion molecule 1, and intercellular adhesion molecule 1) that are up-regulated at sites of pathological inflammation. The potential for targeted drug delivery to inflamed endothelium has significant implications for the improved treatment of an array of pathologies, including cardiovascular disease, arthritis, inflammatory bowel disease, and cancer.

  5. Identification of differentially expressed genes and pathways for intramuscular fat deposition in pectoralis major tissues of fast-and slow-growing chickens.

    PubMed

    Cui, Huan-Xian; Liu, Ran-Ran; Zhao, Gui-Ping; Zheng, Mai-Qing; Chen, Ji-Lan; Wen, Jie

    2012-05-30

    Intramuscular fat (IMF) is one of the important factors influencing meat quality, however, for chickens, the molecular regulatory mechanisms underlying this trait have not yet been determined. In this study, a systematic identification of candidate genes and new pathways related to IMF deposition in chicken breast tissue has been made using gene expression profiles of two distinct breeds: Beijing-you (BJY), a slow-growing Chinese breed possessing high meat quality and Arbor Acres (AA), a commercial fast-growing broiler line. Agilent cDNA microarray analyses were conducted to determine gene expression profiles of breast muscle sampled at different developmental stages of BJY and AA chickens. Relative to d 1 when there is no detectable IMF, breast muscle at d 21, d 42, d 90 and d 120 (only for BJY) contained 1310 differentially expressed genes (DEGs) in BJY and 1080 DEGs in AA. Of these, 34-70 DEGs related to lipid metabolism or muscle development processes were examined further in each breed based on Gene Ontology (GO) analysis. The expression of several DEGs was correlated, positively or negatively, with the changing patterns of lipid content or breast weight across the ages sampled, indicating that those genes may play key roles in these developmental processes. In addition, based on KEGG pathway analysis of DEGs in both BJY and AA chickens, it was found that in addition to pathways affecting lipid metabolism (pathways for MAPK & PPAR signaling), cell junction-related pathways (tight junction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton), which play a prominent role in maintaining the integrity of tissues, could contribute to the IMF deposition. The results of this study identified potential candidate genes associated with chicken IMF deposition and imply that IMF deposition in chicken breast muscle is regulated and mediated not only by genes and pathways related to lipid metabolism and muscle development, but also by others involved in cell junctions. These findings establish the groundwork and provide new clues for deciphering the molecular mechanisms underlying IMF deposition in poultry. Further studies at the translational and posttranslational level are now required to validate the genes and pathways identified here.

  6. [Recent research advance on bone marrow microenvironment-mediated leukemia drug resistant mechanism].

    PubMed

    Fu, Bing; Ling, Yan-Juan

    2011-06-01

    The bone marrow microenvironment consists of bone marrow stromal cells, osteoblasts and osteoclasts which facilities the survival, differentiation and proliferation of hematopoietic cells through secreting soluble factors and extracellular matrix proteins that mediate these functions. This environment not only supports the growth of normal and malignant hematopoietic cells, but also protects them against the damage from chemotherapeutic agents through the secretion of soluble cytokines, cell adhesion, up-regulation of resistant genes and changes of cell cycle. In this review, the research advances on drug-resistance mechanisms mediated by bone marrow microenvironment are summarized briefly, including soluble factors mediating drug resistance, intercellular adhesion inducing drug resistance, up-regulation of some drug resistance genes, regulation in metabolism of leukemic cells, changes in cell cycles of tumor cells and so on.

  7. Manual Physical Therapy for Non-Surgical Treatment of Adhesion-Related Small Bowel Obstructions: Two Case Reports

    PubMed Central

    Rice, Amanda D.; King, Richard; Reed, Evette D’Avy; Patterson, Kimberley; Wurn, Belinda F.; Wurn, Lawrence J.

    2013-01-01

    Background: Adhesion formation is a widely acknowledged risk following abdominal or pelvic surgery. Adhesions in the abdomen or pelvis can cause or contribute to partial or total small bowel obstruction (SBO). These adhesions deter or prevent the passage of nutrients through the digestive tract, and may bind the bowel to the peritoneum, or other organs. Small bowel obstructions can quickly become life-threatening, requiring immediate surgery to resect the bowel, or lyse any adhesions the surgeon can safely access. Bowel repair is an invasive surgery, with risks including bowel rupture, infection, and peritonitis. An additional risk includes the formation of new adhesions during the healing process, creating the potential for subsequent adhesiolysis or SBO surgeries. Objective: Report the use of manual soft tissue physical therapy for the reversal of adhesion-related partial SBOs, and create an initial inquiry into the possibility of nonsurgical lysis of adhesions. Case Reports: Two patients presenting with SBO symptoms due to abdominal adhesions secondary to abdominal and pelvic surgery were treated with manual soft tissue physical therapy focused on decreasing adhesions. Conclusions: Successful treatment with resolution of symptom presentation of partial SBO and sustained results were observed in both patients treated. PMID:26237678

  8. TES was epigenetically silenced and suppressed the epithelial-mesenchymal transition in breast cancer.

    PubMed

    Yongbin, Yang; Jinghua, Li; Zhanxue, Zhao; Aimin, Zang; Youchao, Jia; Yanhong, Shang; Manjing, Jiao

    2014-11-01

    The TES gene was frequently lost in breast cancer, which could inhibit tumor invasion and the formation of distant metastasis. However, the underlying mechanisms remain unknown yet. In the present study, we aimed to investigate how TES was silenced and its roles in EMT--the key step for tumor metastasis. Real-time polymerase chain reaction (PCR) and Western blot were used to detect the mRNA and protein expression of target genes; the status of TES promoter was determined by methylation-specific PCR and subsequently, DNA sequencing. Overexpression or downregulation of TES was achieved by pcDNA3.1-TES or shRNA-TES transfection. Cellular adhesion and migration were investigated by the adhesion and Transwell assays. Morphological changes of breast cancer cells were observed under the optical microscope. The Rho A activity was measured using a commercial kit, and its roles in TES-manipulated EMT were determined by real-time PCR and Western blot. The 42.3% (33/78) breast cancer tissues presented hypermethylation of the TES gene, whereas only 2 (2.6%) non-malignant cases were hypermethylated (P<0.001). Moreover, TES hypermethylation was significantly correlated with larger tumor diameter (P=0.03) and lympho node metastasis (P=0.024). In primary cultured breast cancer cells, the demethylation treatment using 5-aza-dC notably restored the expression of TES. In vitro, overexpression of TES enhanced cellular adhesion inhibited migration and suppressed EMT, while downregulation of TES impaired cellular adhesion, promoted migration, and enhanced EMT. TES overexpression also activated the Rho A signal, which is a critical factor for the effects of TES on the EMT procedure. We firstly proved that frequent loss of TES in breast cancer was caused by promoter hypermethylation, which was correlated with poor prognosis. In vitro, TES enhanced cellular adhesion, suppressed tumor migration, and inhibited EMT. Moreover, the Rho A pathway was critical for the effects of TES on EMT, which can be blocked by the Rho A inhibitor. Therefore, we propose restoration of TES as a potent strategy for breast cancer therapy.

  9. Fungicidal Monoclonal Antibody C7 Interferes with Iron Acquisition in Candida albicans ▿ †

    PubMed Central

    Brena, Sonia; Cabezas-Olcoz, Jonathan; Moragues, María D.; Fernández de Larrinoa, Iñigo; Domínguez, Angel; Quindós, Guillermo; Pontón, José

    2011-01-01

    We have developed a monoclonal antibody (MAb), C7, that reacts with the Als3p and enolase present in the Candida albicans cell wall and exerts three anti-Candida activities: candidacidal activity and inhibition of both adhesion and filamentation. To investigate the mode of action of MAb C7 on fungal viability, we examined changes in the genome-wide gene expression profile of C. albicans grown in the presence of a subinhibitory concentration of MAb C7 (12.5 μg/ml) by using microarrays. A total of 49 genes were found to be differentially expressed upon treatment with MAb C7. Of these, 28 were found to be upregulated and 21 were found to be downregulated. The categories of upregulated genes with the largest number of variations were those involved in iron uptake or related to iron homeostasis (42.86%), while the energy-related group accounted for 38.10% of the downregulated genes (8/21). Results were validated by real-time PCR. Since these effects resembled those found under iron-limited conditions, the activity of MAb C7 on C. albicans mutants with deletions in key genes implicated in the three iron acquisition systems described in this yeast was also assessed. Only mutants lacking the TPK1 gene and, to a lesser extent, the TPK2 gene were less sensitive to the candidacidal effect of MAb C7. FeCl3 or hemin at concentrations of ≥7.8 μM reversed the candidacidal effect of MAb C7 on C. albicans in a concentration-dependent manner. The results presented in this study provide evidence that the candidacidal effect of MAb C7 is related to the blockage of the reductive iron uptake pathway of C. albicans. PMID:21518848

  10. Protein Interaction Networks Reveal Novel Autism Risk Genes within GWAS Statistical Noise

    PubMed Central

    Correia, Catarina; Oliveira, Guiomar; Vicente, Astrid M.

    2014-01-01

    Genome-wide association studies (GWAS) for Autism Spectrum Disorder (ASD) thus far met limited success in the identification of common risk variants, consistent with the notion that variants with small individual effects cannot be detected individually in single SNP analysis. To further capture disease risk gene information from ASD association studies, we applied a network-based strategy to the Autism Genome Project (AGP) and the Autism Genetics Resource Exchange GWAS datasets, combining family-based association data with Human Protein-Protein interaction (PPI) data. Our analysis showed that autism-associated proteins at higher than conventional levels of significance (P<0.1) directly interact more than random expectation and are involved in a limited number of interconnected biological processes, indicating that they are functionally related. The functionally coherent networks generated by this approach contain ASD-relevant disease biology, as demonstrated by an improved positive predictive value and sensitivity in retrieving known ASD candidate genes relative to the top associated genes from either GWAS, as well as a higher gene overlap between the two ASD datasets. Analysis of the intersection between the networks obtained from the two ASD GWAS and six unrelated disease datasets identified fourteen genes exclusively present in the ASD networks. These are mostly novel genes involved in abnormal nervous system phenotypes in animal models, and in fundamental biological processes previously implicated in ASD, such as axon guidance, cell adhesion or cytoskeleton organization. Overall, our results highlighted novel susceptibility genes previously hidden within GWAS statistical “noise” that warrant further analysis for causal variants. PMID:25409314

  11. Protein interaction networks reveal novel autism risk genes within GWAS statistical noise.

    PubMed

    Correia, Catarina; Oliveira, Guiomar; Vicente, Astrid M

    2014-01-01

    Genome-wide association studies (GWAS) for Autism Spectrum Disorder (ASD) thus far met limited success in the identification of common risk variants, consistent with the notion that variants with small individual effects cannot be detected individually in single SNP analysis. To further capture disease risk gene information from ASD association studies, we applied a network-based strategy to the Autism Genome Project (AGP) and the Autism Genetics Resource Exchange GWAS datasets, combining family-based association data with Human Protein-Protein interaction (PPI) data. Our analysis showed that autism-associated proteins at higher than conventional levels of significance (P<0.1) directly interact more than random expectation and are involved in a limited number of interconnected biological processes, indicating that they are functionally related. The functionally coherent networks generated by this approach contain ASD-relevant disease biology, as demonstrated by an improved positive predictive value and sensitivity in retrieving known ASD candidate genes relative to the top associated genes from either GWAS, as well as a higher gene overlap between the two ASD datasets. Analysis of the intersection between the networks obtained from the two ASD GWAS and six unrelated disease datasets identified fourteen genes exclusively present in the ASD networks. These are mostly novel genes involved in abnormal nervous system phenotypes in animal models, and in fundamental biological processes previously implicated in ASD, such as axon guidance, cell adhesion or cytoskeleton organization. Overall, our results highlighted novel susceptibility genes previously hidden within GWAS statistical "noise" that warrant further analysis for causal variants.

  12. Downregulation of connective tissue growth factor by three-dimensional matrix enhances ovarian carcinoma cell invasion.

    PubMed

    Barbolina, Maria V; Adley, Brian P; Kelly, David L; Shepard, Jaclyn; Fought, Angela J; Scholtens, Denise; Penzes, Peter; Shea, Lonnie D; Stack, M Sharon

    2009-08-15

    Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancies, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intraperitoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hr of 3D collagen culture) coupled with confirmatory real-time reverse-transcriptase polymerase chain reaction, multiple 3D cell culture matrices, Western blot, immunostaining, adhesion, migration and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion- mimicking conditions (3D Type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n = 41), but was present in 100% of normal ovarian epithelium samples (n = 7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using alpha6beta1 and alpha3beta1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion.

  13. Downregulation of Connective Tissue Growth Factor by Three-Dimensional Matrix Enhances Ovarian Carcinoma Cell Invasion

    PubMed Central

    Barbolina, Maria V.; Adley, Brian P.; Kelly, David L.; Shepard, Jaclyn; Fought, Angela J.; Scholtens, Denise; Penzes, Peter; Shea, Lonnie D.; Sharon Stack, M

    2010-01-01

    Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancy, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intra-peritoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hours of 3-dimensional collagen culture) coupled with confirmatory real-time RT-PCR, multiple three-dimensional cell culture matrices, Western blot, immunostaining, adhesion, migration, and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion-mimicking conditions (3-dimensional type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n=41), but was present in 100% of normal ovarian epithelium samples (n=7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced, collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using α6β1 and α3β1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion. PMID:19382180

  14. Anti-metastasis effect of fucoidan from Undaria pinnatifida sporophylls in mouse hepatocarcinoma Hca-F cells.

    PubMed

    Wang, Peisheng; Liu, Zhichao; Liu, Xianli; Teng, Hongming; Zhang, Cuili; Hou, Lin; Zou, Xiangyang

    2014-01-01

    Metastasis is one of the major causes of cancer-related death. It is a complex biological process involving multiple genes, steps, and phases. It is also closely connected to many biological activities of cancer cells, such as growth, invasion, adhesion, hematogenous metastasis, and lymphatic metastasis. Fucoidan derived from Undaria pinnatifida sporophylls (Ups-fucoidan) is a sulfated polysaccharide with more biological activities than other fucoidans. However, there is no information on the effects of Ups-fucoidan on tumor invasion and metastasis. We used the mouse hepatocarcinoma Hca-F cell line, which has high invasive and lymphatic metastasis potential in vitro and in vivo, to examine the effect of Ups-fucoidan on cancer cell invasion and metastasis. Ups-fucoidan exerted a concentration- and time-dependent inhibitory effect on tumor metastasis in vivo and inhibited Hca-F cell growth, migration, invasion, and adhesion capabilities in vitro. Ups-fucoidan inhibited growth and metastasis by downregulating vascular endothelial growth factor (VEGF) C/VEGF receptor 3, hepatocyte growth factor/c-MET, cyclin D1, cyclin-dependent kinase 4, phosphorylated (p) phosphoinositide 3-kinase, p-Akt, p-extracellular signal regulated kinase (ERK) 1/2, and nuclear transcription factor-κB (NF-κB), and suppressed adhesion and invasion by downregulating L-Selectin, and upregulating protein levels of tissue inhibitor of metalloproteinases (TIMPs). The results suggest that Ups-fucoidan suppresses Hca-F cell growth, adhesion, invasion, and metastasis capabilities and that these functions are mediated through the mechanism involving inactivation of the NF-κB pathway mediated by PI3K/Akt and ERK signaling pathways.

  15. Anti-Metastasis Effect of Fucoidan from Undaria pinnatifida Sporophylls in Mouse Hepatocarcinoma Hca-F Cells

    PubMed Central

    Wang, Peisheng; Liu, Zhichao; Liu, Xianli; Teng, Hongming; Zhang, Cuili; Hou, Lin; Zou, Xiangyang

    2014-01-01

    Metastasis is one of the major causes of cancer-related death. It is a complex biological process involving multiple genes, steps, and phases. It is also closely connected to many biological activities of cancer cells, such as growth, invasion, adhesion, hematogenous metastasis, and lymphatic metastasis. Fucoidan derived from Undaria pinnatifida sporophylls (Ups-fucoidan) is a sulfated polysaccharide with more biological activities than other fucoidans. However, there is no information on the effects of Ups-fucoidan on tumor invasion and metastasis. We used the mouse hepatocarcinoma Hca-F cell line, which has high invasive and lymphatic metastasis potential in vitro and in vivo, to examine the effect of Ups-fucoidan on cancer cell invasion and metastasis. Ups-fucoidan exerted a concentration- and time-dependent inhibitory effect on tumor metastasis in vivo and inhibited Hca-F cell growth, migration, invasion, and adhesion capabilities in vitro. Ups-fucoidan inhibited growth and metastasis by downregulating vascular endothelial growth factor (VEGF) C/VEGF receptor 3, hepatocyte growth factor/c-MET, cyclin D1, cyclin-dependent kinase 4, phosphorylated (p) phosphoinositide 3-kinase, p-Akt, p-extracellular signal regulated kinase (ERK) 1/2, and nuclear transcription factor-κB (NF-κB), and suppressed adhesion and invasion by downregulating L-Selectin, and upregulating protein levels of tissue inhibitor of metalloproteinases (TIMPs). The results suggest that Ups-fucoidan suppresses Hca-F cell growth, adhesion, invasion, and metastasis capabilities and that these functions are mediated through the mechanism involving inactivation of the NF-κB pathway mediated by PI3K/Akt and ERK signaling pathways. PMID:25162296

  16. Organization, regulatory sequences, and alternatively spliced transcripts of the mucosal addressin cell adhesion molecule-1 (MAdCAM-1) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampaio, S.O.; Mei, C.; Butcher, E.C.

    The mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is expressed selectively at venular sites of lymphocyte extravasation into mucosal lymphoid tissues and lamina propria, where it directs local lymphocyte trafficking. MAdCAM-1 is a multifunctional type I transmembrane adhesion molecule comprising two distal Ig domains involved in {alpha}4{beta}7 integrin binding, a mucin-like region able to display L-selectin-binding carbohydrates, and a membrane-proximal Ig domain homologous to IgA. We show in this work that the MAdCAM-1 gene is located on chromosome 10 and contains five exons. The signal peptide and each one of the three Ig domains are encoded by a distinct exon, whereasmore » the transmembrane, cytoplasmic tail, and 3{prime}-untranslated region of MAdCAM-1 are combined on a single exon. The mucin-like region and the third Ig domain are encoded together on exon 4. An alternatively spliced MAdCAM-1 mRNA is identified that lacks the mucin/IgA-homologous exon 4-encoded sequences. This short variant of MAdCAM-1 may be specialized to support {alpha}4{beta}7-dependent adhesion strengthening, independent of carbohydrate-presenting function. Sequences 5{prime} of the transcription start site include tandem nuclear factor-KB sites; AP-1, AP-2, and signal peptide-1 binding sites; and an estrogen response element. Our findings reinforce the correspondence between the multidomain structure and versatile functions of this vascular addressin, and suggest an additional level of regulation of carbohydrate-presenting capability, and thus of its importance in lectin-mediated vs. {alpha}4{beta}7-dependent adhesive events in lymphocyte trafficking. 46 refs., 6 figs., 1 tab.« less

  17. Mutations of Cystic Fibrosis Transmembrane Conductance Regulator Gene Cause a Monocyte-Selective Adhesion Deficiency.

    PubMed

    Sorio, Claudio; Montresor, Alessio; Bolomini-Vittori, Matteo; Caldrer, Sara; Rossi, Barbara; Dusi, Silvia; Angiari, Stefano; Johansson, Jan E; Vezzalini, Marzia; Leal, Teresinha; Calcaterra, Elisa; Assael, Baroukh M; Melotti, Paola; Laudanna, Carlo

    2016-05-15

    Cystic fibrosis (CF) is a common genetic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Persistent lung inflammation, characterized by increasing polymorphonuclear leukocyte recruitment, is a major cause of the decline in respiratory function in patients with CF and is a leading cause of morbidity and mortality. CFTR is expressed in various cell types, including leukocytes, but its involvement in the regulation of leukocyte recruitment is unknown. We evaluated whether CF leukocytes might present with alterations in cell adhesion and migration, a key process governing innate and acquired immune responses. We used ex vivo adhesion and chemotaxis assays, flow cytometry, immunofluorescence, and GTPase activity assays in this study. We found that chemoattractant-induced activation of β1 and β2 integrins and of chemotaxis is defective in mononuclear cells isolated from patients with CF. In contrast, polymorphonuclear leukocyte adhesion and chemotaxis were normal. The functionality of β1 and β2 integrins was restored by treatment of CF monocytes with the CFTR-correcting drugs VRT325 and VX809. Moreover, treatment of healthy monocytes with the CFTR inhibitor CFTR(inh)-172 blocked integrin activation by chemoattractants. In a murine model of lung inflammation, we found that integrin-independent migration of CF monocytes into the lung parenchyma was normal, whereas, in contrast, integrin-dependent transmigration into the alveolar space was impaired. Finally, signal transduction analysis showed that, in CF monocytes, chemoattractant-triggered activation of RhoA and CDC42 Rho small GTPases (controlling integrin activation and chemotaxis, respectively) was strongly deficient. Altogether, these data highlight the critical regulatory role of CFTR in integrin activation by chemoattractants in monocytes and identify CF as a new, cell type-selective leukocyte adhesion deficiency disease, providing new insights into CF pathogenesis.

  18. The clinical spectrum of mutations in L1, a neuronal cell adhesion molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fransen, E.; Vits, L.; Van Camp, G.

    1996-07-12

    Mutations in the gene encoding the neuronal cell adhesion molecule L1 are responsible for several syndromes with clinical overlap, including X-linked hydrocephalus (XLH, HSAS), MASA (mental retardation, aphasia, shuffling gait, adducted thumbs) syndrome, complicated X-linked spastic paraplegia (SP 1), X-linked mental retardation-clasped thumb (MR-CT) syndrome, and some forms of X-linked agenesis of the corpus callosum (ACC). We review 34 L1 mutations in patients with these phenotypes. 22 refs., 3 figs., 4 tabs.

  19. Holding Tight: Cell Junctions and Cancer Spread.

    PubMed

    Knights, Alexander J; Funnell, Alister P W; Crossley, Merlin; Pearson, Richard C M

    2012-01-01

    Cell junctions are sites of intercellular adhesion that maintain the integrity of epithelial tissue and regulate signalling between cells. These adhesive junctions are comprised of protein complexes that serve to establish an intercellular cytoskeletal network for anchoring cells, in addition to regulating cell polarity, molecular transport and communication. The expression of cell adhesion molecules is tightly controlled and their downregulation is essential for epithelial-mesenchymal transition (EMT), a process that facilitates the generation of morphologically and functionally diverse cell types during embryogenesis. The characteristics of EMT are a loss of cell adhesion and increased cellular mobility. Hence, in addition to its normal role in development, dysregulated EMT has been linked to cancer progression and metastasis, the process whereby primary tumors migrate to invasive secondary sites in the body. This paper will review the current understanding of cell junctions and their role in cancer, with reference to the abnormal regulation of junction protein genes. The potential use of cell junction molecules as diagnostic and prognostic markers will also be discussed, as well as possible therapies for adhesive dysregulation.

  20. Regulation of adhesion and growth of fibrosarcoma cells by NF-kappa B RelA involves transforming growth factor beta.

    PubMed Central

    Perez, J R; Higgins-Sochaski, K A; Maltese, J Y; Narayanan, R

    1994-01-01

    The NF-kappa B transcription factor is a pleiotropic activator that participates in the induction of a wide variety of cellular genes. Antisense oligomer inhibition of the RelA subunit of NF-kappa B results in a block of cellular adhesion and inhibition of tumor cell growth. Investigation of the molecular basis for these effects showed that in vitro inhibition of the growth of transformed fibroblasts by relA antisense oligonucleotides can be reversed by the parental-cell-conditioned medium. Cytokine profile analysis of these cells treated with relA antisense oligonucleotides revealed inhibition of transforming growth factor beta 1 (TGF-beta 1 to the transformed fibroblasts reversed the inhibitory effects of relA antisense oligomers on soft agar colony formation and cell adhesion to the substratum. Direct inhibition of TGF-beta 1 expression by antisense phosphorothioates to TGF-beta 1 mimicked the in vitro effects of blocking cell adhesion that are elicited by antisense relA oligomers. These results may explain the in vitro effects of relA antisense oligomers on fibrosarcoma cell growth and adhesion. Images PMID:8035811

  1. The conveyor belt hypothesis for thymocyte migration: participation of adhesion and de-adhesion molecules.

    PubMed

    Villa-Verde, D M; Calado, T C; Ocampo, J S; Silva-Monteiro, E; Savino, W

    1999-05-01

    Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble beta-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.

  2. Trimeric autotransporter adhesins contribute to Actinobacillus pleuropneumoniae pathogenicity in mice and regulate bacterial gene expression during interactions between bacteria and porcine primary alveolar macrophages.

    PubMed

    Qin, Wanhai; Wang, Lei; Zhai, Ruidong; Ma, Qiuyue; Liu, Jianfang; Bao, Chuntong; Zhang, Hu; Sun, Changjiang; Feng, Xin; Gu, Jingmin; Du, Chongtao; Han, Wenyu; Langford, P R; Lei, Liancheng

    2016-01-01

    Actinobacillus pleuropneumoniae is an important pathogen that causes respiratory disease in pigs. Trimeric autotransporter adhesin (TAA) is a recently discovered bacterial virulence factor that mediates bacterial adhesion and colonization. Two TAA coding genes have been found in the genome of A. pleuropneumoniae strain 5b L20, but whether they contribute to bacterial pathogenicity is unclear. In this study, we used homologous recombination to construct a double-gene deletion mutant, ΔTAA, in which both TAA coding genes were deleted and used it in in vivo and in vitro studies to confirm that TAAs participate in bacterial auto-aggregation, biofilm formation, cell adhesion and virulence in mice. A microarray analysis was used to determine whether TAAs can regulate other A. pleuropneumoniae genes during interactions with porcine primary alveolar macrophages. The results showed that deletion of both TAA coding genes up-regulated 36 genes, including ene1514, hofB and tbpB2, and simultaneously down-regulated 36 genes, including lgt, murF and ftsY. These data illustrate that TAAs help to maintain full bacterial virulence both directly, through their bioactivity, and indirectly by regulating the bacterial type II and IV secretion systems and regulating the synthesis or secretion of virulence factors. This study not only enhances our understanding of the role of TAAs but also has significance for those studying A. pleuropneumoniae pathogenesis.

  3. Changes in materials properties explain the effects of humidity on gecko adhesion.

    PubMed

    Puthoff, Jonathan B; Prowse, Michael S; Wilkinson, Matt; Autumn, Kellar

    2010-11-01

    Geckos owe their remarkable stickiness to millions of dry setae on their toes, and the mechanism of adhesion in gecko setae has been the topic of scientific scrutiny for over two centuries. Previously, we demonstrated that van der Waals forces are sufficient for strong adhesion and friction in gecko setae, and that water-based capillary adhesion is not required. However, recent studies demonstrated that adhesion increases with relative humidity (RH) and proposed that surface hydration and capillary water bridge formation is important or even necessary. In this study, we confirmed a significant effect of RH on gecko adhesion, but rejected the capillary adhesion hypothesis. While contact forces of isolated tokay gecko setal arrays increased with humidity, the increase was similar on hydrophobic and hydrophilic surfaces, inconsistent with a capillary mechanism. Contact forces increased with RH even at high shear rates, where capillary bridge formation is too slow to affect adhesion. How then can a humidity-related increase in adhesion and friction be explained? The effect of RH on the mechanical properties of setal β-keratin has escaped consideration until now. We discovered that an increase in RH softens setae and increases viscoelastic damping, which increases adhesion. Changes in setal materials properties, not capillary forces, fully explain humidity-enhanced adhesion, and van der Waals forces remain the only empirically supported mechanism of adhesion in geckos.

  4. Microarray-based gene expression profiling in patients with cryopyrin-associated periodic syndromes defines a disease-related signature and IL-1-responsive transcripts.

    PubMed

    Balow, James E; Ryan, John G; Chae, Jae Jin; Booty, Matthew G; Bulua, Ariel; Stone, Deborah; Sun, Hong-Wei; Greene, James; Barham, Beverly; Goldbach-Mansky, Raphaela; Kastner, Daniel L; Aksentijevich, Ivona

    2013-06-01

    To analyse gene expression patterns and to define a specific gene expression signature in patients with the severe end of the spectrum of cryopyrin-associated periodic syndromes (CAPS). The molecular consequences of interleukin 1 inhibition were examined by comparing gene expression patterns in 16 CAPS patients before and after treatment with anakinra. We collected peripheral blood mononuclear cells from 22 CAPS patients with active disease and from 14 healthy children. Transcripts that passed stringent filtering criteria (p values≤false discovery rate 1%) were considered as differentially expressed genes (DEG). A set of DEG was validated by quantitative reverse transcription PCR and functional studies with primary cells from CAPS patients and healthy controls. We used 17 CAPS and 66 non-CAPS patient samples to create a set of gene expression models that differentiates CAPS patients from controls and from patients with other autoinflammatory conditions. Many DEG include transcripts related to the regulation of innate and adaptive immune responses, oxidative stress, cell death, cell adhesion and motility. A set of gene expression-based models comprising the CAPS-specific gene expression signature correctly classified all 17 samples from an independent dataset. This classifier also correctly identified 15 of 16 post-anakinra CAPS samples despite the fact that these CAPS patients were in clinical remission. We identified a gene expression signature that clearly distinguished CAPS patients from controls. A number of DEG were in common with other systemic inflammatory diseases such as systemic onset juvenile idiopathic arthritis. The CAPS-specific gene expression classifiers also suggest incomplete suppression of inflammation at low doses of anakinra.

  5. Microarray-based gene expression profiling in patients with cryopyrin-associated periodic syndromes defines a disease-related signature and IL-1-responsive transcripts

    PubMed Central

    Balow, James E; Ryan, John G; Chae, Jae Jin; Booty, Matthew G; Bulua, Ariel; Stone, Deborah; Sun, Hong-Wei; Greene, James; Barham, Beverly; Goldbach-Mansky, Raphaela; Kastner, Daniel L; Aksentijevich, Ivona

    2014-01-01

    Objective To analyse gene expression patterns and to define a specific gene expression signature in patients with the severe end of the spectrum of cryopyrin-associated periodic syndromes (CAPS). The molecular consequences of interleukin 1 inhibition were examined by comparing gene expression patterns in 16 CAPS patients before and after treatment with anakinra. Methods We collected peripheral blood mononuclear cells from 22 CAPS patients with active disease and from 14 healthy children. Transcripts that passed stringent filtering criteria (p values ≤ false discovery rate 1%) were considered as differentially expressed genes (DEG). A set of DEG was validated by quantitative reverse transcription PCR and functional studies with primary cells from CAPS patients and healthy controls. We used 17 CAPS and 66 non-CAPS patient samples to create a set of gene expression models that differentiates CAPS patients from controls and from patients with other autoinflammatory conditions. Results Many DEG include transcripts related to the regulation of innate and adaptive immune responses, oxidative stress, cell death, cell adhesion and motility. A set of gene expression-based models comprising the CAPS-specific gene expression signature correctly classified all 17 samples from an independent dataset. This classifier also correctly identified 15 of 16 postanakinra CAPS samples despite the fact that these CAPS patients were in clinical remission. Conclusions We identified a gene expression signature that clearly distinguished CAPS patients from controls. A number of DEG were in common with other systemic inflammatory diseases such as systemic onset juvenile idiopathic arthritis. The CAPS-specific gene expression classifiers also suggest incomplete suppression of inflammation at low doses of anakinra. PMID:23223423

  6. Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation

    PubMed Central

    Feng, Yun; Li, Xiaomin; Zou, Chenggang; Xu, Jianping; Ren, Yan; Mi, Qili; Wu, Junli; Liu, Shuqun; Liu, Yu; Huang, Xiaowei; Wang, Haiyan; Niu, Xuemei; Li, Juan; Liang, Lianming; Luo, Yanlu; Ji, Kaifang; Zhou, Wei; Yu, Zefen; Li, Guohong; Liu, Yajun; Li, Lei; Qiao, Min; Feng, Lu; Zhang, Ke-Qin

    2011-01-01

    Nematode-trapping fungi are “carnivorous” and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions. PMID:21909256

  7. Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation.

    PubMed

    Yang, Jinkui; Wang, Lei; Ji, Xinglai; Feng, Yun; Li, Xiaomin; Zou, Chenggang; Xu, Jianping; Ren, Yan; Mi, Qili; Wu, Junli; Liu, Shuqun; Liu, Yu; Huang, Xiaowei; Wang, Haiyan; Niu, Xuemei; Li, Juan; Liang, Lianming; Luo, Yanlu; Ji, Kaifang; Zhou, Wei; Yu, Zefen; Li, Guohong; Liu, Yajun; Li, Lei; Qiao, Min; Feng, Lu; Zhang, Ke-Qin

    2011-09-01

    Nematode-trapping fungi are "carnivorous" and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions.

  8. Development of a torsion balance for adhesion measurements

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Maeda, Chikayoshi; Masuo, Ryuichi

    1988-01-01

    A new torsion balance for study of adhesion in ceramics is discussed. A torsion wire and a linear variable differential transformer are used to monitor load and to measure pull-off force (adhesion force). The investigation suggests that this torsion balance is valuable in studying the interfacial properties of ceramics in controlled environments such as in ultrahigh vacuum. The pull-off forces measured in dry, moist, and saturated nitrogen atmosphere demonstrate that the adhesion of silicon nitride contacts remains low at humidities below 80 percent but rises rapidly above that. The adhesion at saturation is 10 times or more greater than that below 80 percent relative humidity. The adhesion in a saturated atmosphere arises primarily from the surface tension effects of a thin film of water adsorbed on the surface. The surface tension of the water film was 58 x 10 to the minus 5 to 65 x 10 to the minus 5 power. The accepted value for water is 72.7 x 10 to the minus 5 power N/cm. Adhesion characteristics of silicon nitride in contact with metals, like the friction characteristics of silicon carbide to metal contacts, can be related to the relative chemical activity of metals in ultrahigh vacuum. The more active the metal, the higher the adhesion.

  9. Improving controllable adhesion on both rough and smooth surfaces with a hybrid electrostatic/gecko-like adhesive

    PubMed Central

    Ruffatto, Donald; Parness, Aaron; Spenko, Matthew

    2014-01-01

    This paper describes a novel, controllable adhesive that combines the benefits of electrostatic adhesives with gecko-like directional dry adhesives. When working in combination, the two technologies create a positive feedback cycle whose adhesion, depending on the surface type, is often greater than the sum of its parts. The directional dry adhesive brings the electrostatic adhesive closer to the surface, increasing its effect. Similarly, the electrostatic adhesion helps engage more of the directional dry adhesive fibrillar structures, particularly on rough surfaces. This paper presents the new hybrid adhesive's manufacturing process and compares its performance to three other adhesive technologies manufactured using a similar process: reinforced PDMS, electrostatic and directional dry adhesion. Tests were performed on a set of ceramic tiles with varying roughness to quantify its effect on shear adhesive force. The relative effectiveness of the hybrid adhesive increases as the surface roughness is increased. Experimental data are also presented for different substrate materials to demonstrate the enhanced performance achieved with the hybrid adhesive. Results show that the hybrid adhesive provides up to 5.1× greater adhesion than the electrostatic adhesive or directional dry adhesive technologies alone. PMID:24451392

  10. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation.

    PubMed

    Massberg, Steffen; Brand, Korbinian; Grüner, Sabine; Page, Sharon; Müller, Elke; Müller, Iris; Bergmeier, Wolfgang; Richter, Thomas; Lorenz, Michael; Konrad, Ildiko; Nieswandt, Bernhard; Gawaz, Meinrad

    2002-10-07

    The contribution of platelets to the process of atherosclerosis remains unclear. Here, we show in vivo that platelets adhere to the vascular endothelium of the carotid artery in ApoE(-)(/)(-) mice before the development of manifest atherosclerotic lesions. Platelet-endothelial cell interaction involved both platelet glycoprotein (GP)Ibalpha and GPIIb-IIIa. Platelet adhesion to the endothelium coincides with inflammatory gene expression and preceded atherosclerotic plaque invasion by leukocytes. Prolonged blockade of platelet adhesion in ApoE(-)(/)(-) mice profoundly reduced leukocyte accumulation in the arterial intima and attenuated atherosclerotic lesion formation in the carotid artery bifurcation, the aortic sinus, and the coronary arteries. These findings establish the platelet as a major player in initiation of the atherogenetic process.

  11. Desmosomes in acquired disease

    PubMed Central

    Stahley, Sara N.; Kowalczyk, Andrew P.

    2015-01-01

    Desmosomes are cell-cell junctions that mediate adhesion and couple the intermediate filament cytoskeleton to sites of cell-cell contact. This architectural arrangement functions to integrate adhesion and cytoskeletal elements of adjacent cells. The importance of this robust adhesion system is evident in numerous human diseases, both inherited and acquired, that occur when desmosome function is compromised. This review focuses on autoimmune and infectious diseases that impair desmosome function. In addition, we discuss emerging evidence that desmosomal genes are often misregulated in cancer. The emphasis of our discussion is placed on how human diseases inform our understanding of basic desmosome biology, and in turn, how fundamental advances in the cell biology of desmosomes may lead to new treatments for acquired diseases of the desmosome. PMID:25795143

  12. A conserved gene family encodes transmembrane proteins with fibronectin, immunoglobulin and leucine-rich repeat domains (FIGLER)

    PubMed Central

    Munfus, Delicia L; Haga, Christopher L; Burrows, Peter D; Cooper, Max D

    2007-01-01

    Background In mouse the cytokine interleukin-7 (IL-7) is required for generation of B lymphocytes, but human IL-7 does not appear to have this function. A bioinformatics approach was therefore used to identify IL-7 receptor related genes in the hope of identifying the elusive human cytokine. Results Our database search identified a family of nine gene candidates, which we have provisionally named fibronectin immunoglobulin leucine-rich repeat (FIGLER). The FIGLER 1–9 genes are predicted to encode type I transmembrane glycoproteins with 6–12 leucine-rich repeats (LRR), a C2 type Ig domain, a fibronectin type III domain, a hydrophobic transmembrane domain, and a cytoplasmic domain containing one to four tyrosine residues. Members of this multichromosomal gene family possess 20–47% overall amino acid identity and are differentially expressed in cell lines and primary hematopoietic lineage cells. Genes for FIGLER homologs were identified in macaque, orangutan, chimpanzee, mouse, rat, dog, chicken, toad, and puffer fish databases. The non-human FIGLER homologs share 38–99% overall amino acid identity with their human counterpart. Conclusion The extracellular domain structure and absence of recognizable cytoplasmic signaling motifs in members of the highly conserved FIGLER gene family suggest a trophic or cell adhesion function for these molecules. PMID:17854505

  13. RNA-Seq reveals seven promising candidate genes affecting the proportion of thick egg albumen in layer-type chickens.

    PubMed

    Wan, Yi; Jin, Sihua; Ma, Chendong; Wang, Zhicheng; Fang, Qi; Jiang, Runshen

    2017-12-22

    Eggs with a much higher proportion of thick albumen are preferred in the layer industry, as they are favoured by consumers. However, the genetic factors affecting the thick egg albumen trait have not been elucidated. Using RNA sequencing, we explored the magnum transcriptome in 9 Rhode Island white layers: four layers with phenotypes of extremely high ratios of thick to thin albumen (high thick albumen, HTA) and five with extremely low ratios (low thick albumen, LTA). A total of 220 genes were differentially expressed, among which 150 genes were up-regulated and 70 were down-regulated in the HTA group compared with the LTA group. Gene Ontology (GO) analysis revealed that the up-regulated genes in HTA were mainly involved in a wide range of regulatory functions. In addition, a large number of these genes were related to glycosphingolipid biosynthesis, focal adhesion, ECM-receptor interactions and cytokine-cytokine receptor interactions. Based on functional analysis, ST3GAL4, FUT4, ITGA2, SDC3, PRLR, CDH4 and GALNT9 were identified as promising candidate genes for thick albumen synthesis and metabolism during egg formation. These results provide new insights into the molecular mechanisms of egg albumen traits and may contribute to future breeding strategies that optimise the proportion of thick egg albumen.

  14. Anisotropic adhesion properties of triangular-tip-shaped micropillars.

    PubMed

    Kwak, Moon Kyu; Jeong, Hoon Eui; Bae, Won Gyu; Jung, Ho-Sup; Suh, Kahp Y

    2011-08-22

    Directional dry adhesive microstructures consisting of high-density triangular-tip-shaped micropillars are described. The wide-tip structures allow for unique directional shear adhesion properties with respect to the peeling direction, along with relatively high normal adhesion. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Study on expression of CDH4 in lung cancer.

    PubMed

    Li, Zhupeng; Su, Dan; Ying, Lisha; Yu, Guangmao; Mao, Weimin

    2017-01-17

    The human CDH4 gene, which encodes the R-cadherin protein, has an important role in cell migration and cell adhesion, sorting, tissue morphogenesis, and tumor genesis. This study analyzed the relationship of CDH4 mRNA expression with lung cancer. Real time PCR was applied to detect CDH4 mRNA transcription in 142 paired cases of lung cancer and noncancerous regions. No correlation was identified between CDH4 mRNA expression and gender, age, lymphnode metastasis, TNM stage, family history, smoking state, drinking state (P > 0.05), but grade and histotype (P < 0.05). The relative CDH4 mRNA value was remarkably decreased in lung cancer tissues compared with noncancerous tissues (P = 0.001). We found that CDH4 mRNA expression was associated with grade and histotype. What is more, the relative CDH4 mRNA value was decreased in the lung cancer tissues. Our results suggested that CDH4 might be a putative tumor suppressor gene (TSG) in lung cancer.

  16. Stable engineered vascular networks from human induced pluripotent stem cell-derived endothelial cells cultured in synthetic hydrogels

    PubMed Central

    Zanotelli, Matthew R.; Ardalani, Hamisha; Zhang, Jue; Hou, Zhonggang; Nguyen, Eric H.; Swanson, Scott; Nguyen, Bao Kim; Bolin, Jennifer; Elwell, Angela; Bischel, Lauren L.; Xie, Angela W.; Stewart, Ron; Beebe, David J.; Thomson, James A.; Schwartz, Michael P.; Murphy, William L.

    2016-01-01

    Here, we describe an in vitro strategy to model vascular morphogenesis where human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) are encapsulated in peptide-functionalized poly(ethylene glycol) (PEG) hydrogels, either on standard well plates or within a passive pumping polydimethylsiloxane (PDMS) tri-channel microfluidic device. PEG hydrogels permissive towards cellular remodeling were fabricated using thiol-ene photopolymerization to incorporate matrix metalloproteinase (MMP)-degradable crosslinks and CRGDS cell adhesion peptide. Time lapse microscopy, immunofluorescence imaging, and RNA sequencing (RNA-Seq) demonstrated that iPSC-ECs formed vascular networks through mechanisms that were consistent with in vivo vasculogenesis and angiogenesis when cultured in PEG hydrogels. Migrating iPSC-ECs condensed into clusters, elongated into tubules, and formed polygonal networks through sprouting. Genes upregulated for iPSC-ECs cultured in PEG hydrogels relative to control cells on tissue culture polystyrene (TCP) surfaces included adhesion, matrix remodeling, and Notch signaling pathway genes relevant to in vivo vascular development. Vascular networks with lumens were stable for at least 14 days when iPSC-ECs were encapsulated in PEG hydrogels that were polymerized within the central channel of the microfluidic device. Therefore, iPSC-ECs cultured in peptide-functionalized PEG hydrogels offer a defined platform for investigating vascular morphogenesis in vitro using both standard and microfluidic formats. PMID:26945632

  17. Effects of the micro-nano surface topography of titanium alloy on the biological responses of osteoblast.

    PubMed

    Yin, Chengcheng; Zhang, Yanjing; Cai, Qing; Li, Baosheng; Yang, Hua; Wang, Heling; Qi, Hua; Zhou, Yanmin; Meng, Weiyan

    2017-03-01

    In clinical applications, osseointegration is essential for the long-term stability of dental implants. Inspired by the hierarchical structure of natural bone, we applied the electrochemical etching (EC) technique to form a micro-nano structure on a titanium alloy (Ti6Al4V) substrate, called EC surface. Sand blasting and acid etching (SLA) and machined (M) methods were employed to generate micro and smooth textures, respectively, as the control groups. The surface topographies of the three substrates were characterized using scanning electron microscopy (SEM). Then, human osteoblast-like cells (MG63) were cultured on substrates, and adhesion, proliferation, morphology, alkaline phosphatase activity (ALP), and gene expression levels of Runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN), and type I collagen (COLIA 1) were analyzed. MG63 cells cultured on the EC Ti alloy substrates displayed better cell adhesion, significant proliferation, and a higher production level of ALP, gene expressions of RUNX2, OCN, OPN and COLIA 1 (p < 0.01 or p < 0.05) compared with those of SLA and M substrates. These results indicate that the micro-nano structure fabricated by electrochemical etching method is beneficial for the biological functions of MG63 cells and may be a promising candidate in dental implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 757-769, 2017. © 2016 Wiley Periodicals, Inc.

  18. DR-nm23 gene expression in neuroblastoma cells: relationship to integrin expression, adhesion characteristics, and differentiation.

    PubMed

    Amendola, R; Martinez, R; Negroni, A; Venturelli, D; Tanno, B; Calabretta, B; Raschellà, G

    1997-09-03

    Neuroblastoma, a childhood tumor originating from cells of the embryonic neural crest, retains the ability to differentiate, yielding cells with epithelial-Schwann-like, neuronal, or melanocytic characteristics. Since nm23 gene family members have been proposed to play a role in cellular differentiation, as well as in metastasis suppression, we investigated whether and how DR-nm23, a recently identified third member of the human nm23 gene family, might be involved in neuroblastoma differentiation. Three neuroblastoma cell lines (human LAN-5, human SK-N-SH, and murine N1E-115) were used in these experiments; cells from two of the lines (SK-N-SH and N1E-115) were also studied after being stably transfected with a plasmid containing a full-length DR-nm23 complementary DNA. Cellular expression of specific messenger RNAs and proteins was assessed by use of standard techniques. Cellular adhesion to a variety of protein substrates was also evaluated. DR-nm23 messenger RNA levels in nontransfected LAN-5 and SK-N-SH cells generally increased with time after exposure to differentiation-inducing conditions; levels of the other two human nm23 messenger RNAs (nm23-H1 and nm23-H2) remained essentially constant. Transfected SK-N-SH cells overexpressing DR-nm23 exhibited some characteristics of differentiated cells (increased vimentin and collagen type IV expression) even in the absence of differentiation-inducing conditions. Compared with control cells, DR-nm23-transfected cells exposed to differentiation-inducing conditions showed a greater degree of growth arrest (SK-N-SH cells) and greater increases in integrin protein expression, especially of integrin beta1 (N1E-115 cells). DR-nm23-transfected N1E-115 cells also showed a marked increase in adhesion to collagen type I-coated tissue culture plates that was inhibited by preincubation with an anti-integrin beta1 antibody. DR-nm23 gene expression appears to be associated with differentiation in neuroblastoma cells and may affect cellular adhesion through regulation of integrin protein expression.

  19. Glycosyltransferases as marker genes for the quantitative polymerase chain reaction-based detection of circulating tumour cells from blood samples of patients with breast cancer undergoing adjuvant therapy.

    PubMed

    Kölbl, Alexandra C; Hiller, Roman A; Ilmer, Mathias; Liesche, Friederike; Heublein, Sabine; Schröder, Lennard; Hutter, Stefan; Friese, Klaus; Jeschke, Udo; Andergassen, Ulrich

    2015-08-01

    Altered glycosylation is a predominant feature of tumour cells; it serves for cell adhesion and detachment, respectively, and facilitates the immune escape of these cells. Therefore changes in the expression of glycosyltransferase genes could help to identify circulating tumour cells (CTCs) in the blood samples of cancer patients using a quantitative polymerase chain reaction (PCR) approach. Blood samples of healthy donors were inoculated with certain numbers of established breast cancer cell line cells, thus creating a model system. These samples were analysed by quantitative PCR for the expression of six different glycosyltransferase genes. The three genes with the best results in the model system were consecutively applied to samples from adjuvant breast cancer patients and of healthy donors. FUT3 and GALNT6 showed the highest increase in relative expression, while GALNT6 and ST3GAL3 were the first to reach statistically significant different ∆CT-values comparing the sample with and without addition of tumour cells. These three genes were applied to patient samples, but did not show any significant results that may suggest the presence of CTCs in the blood. Although the relative expression of some of the glycosyltransferase genes exhibited reasonable results in the model system, their application to breast cancer patient samples will have to be further improved, e.g. by co-analysis of patient blood samples by gold-standard methods.

  20. Retinal expression of Wnt-pathway mediated genes in low-density lipoprotein receptor-related protein 5 (Lrp5) knockout mice.

    PubMed

    Chen, Jing; Stahl, Andreas; Krah, Nathan M; Seaward, Molly R; Joyal, Jean-Sebastian; Juan, Aimee M; Hatton, Colman J; Aderman, Christopher M; Dennison, Roberta J; Willett, Keirnan L; Sapieha, Przemyslaw; Smith, Lois E H

    2012-01-01

    Mutations in low-density lipoprotein receptor-related protein 5 (Lrp5) impair retinal angiogenesis in patients with familial exudative vitreoretinopathy (FEVR), a rare type of blinding vascular eye disease. The defective retinal vasculature phenotype in human FEVR patients is recapitulated in Lrp5 knockout (Lrp5(-/-)) mouse with delayed and incomplete development of retinal vessels. In this study we examined gene expression changes in the developing Lrp5(-/-) mouse retina to gain insight into the molecular mechanisms that underlie the pathology of FEVR in humans. Gene expression levels were assessed with an Illumina microarray on total RNA from Lrp5(-/-) and WT retinas isolated on postnatal day (P) 8. Regulated genes were confirmed using RT-qPCR analysis. Consistent with a role in vascular development, we identified expression changes in genes involved in cell-cell adhesion, blood vessel morphogenesis and membrane transport in Lrp5(-/-) retina compared to WT retina. In particular, tight junction protein claudin5 and amino acid transporter slc38a5 are both highly down-regulated in Lrp5(-/-) retina. Similarly, several Wnt ligands including Wnt7b show decreased expression levels. Plasmalemma vesicle associated protein (plvap), an endothelial permeability marker, in contrast, is up-regulated consistent with increased permeability in Lrp5(-/-) retinas. Together these data suggest that Lrp5 regulates multiple groups of genes that influence retinal angiogenesis and may contribute to the pathogenesis of FEVR.

  1. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion

    PubMed Central

    Nishitani, Wagner Shin; Alencar, Adriano Mesquita; Wang, Yingxiao

    2015-01-01

    A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs) in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7) expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount) and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment) and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion. PMID:25946314

  2. Effects of membrane deformability and bond formation/dissociation rates on adhesion dynamics of a spherical capsule in shear flow.

    PubMed

    Zhang, Ziying; Du, Jun; Wei, Zhengying; Wang, Zhen; Li, Minghui

    2018-02-01

    Cellular adhesion plays a critical role in biological systems and biomedical applications. Cell deformation and biophysical properties of adhesion molecules are of significance for the adhesion behavior. In the present work, dynamic adhesion of a deformable capsule to a planar substrate, in a linear shear flow, is numerically simulated to investigate the combined influence of membrane deformability (quantified by the capillary number) and bond formation/dissociation rates on the adhesion behavior. The computational model is based on the immersed boundary-lattice Boltzmann method for the capsule-fluid interaction and a probabilistic adhesion model for the capsule-substrate interaction. Three distinct adhesion states, detachment, rolling adhesion and firm adhesion, are identified and presented in a state diagram as a function of capillary number and bond dissociation rate. The impact of bond formation rate on the state diagram is further investigated. Results show that the critical bond dissociation rate for the transition of rolling or firm adhesion to detachment is strongly related to the capsule deformability. At the rolling-adhesion state, smaller off rates are needed for larger capillary number to increase the rolling velocity and detach the capsule. In contrast, the critical off rate for firm-to-detach transition slightly increases with the capillary number. With smaller on rate, the effect of capsule deformability on the critical off rates is more pronounced and capsules with moderate deformability are prone to detach by the shear flow. Further increasing of on rate leads to large expansion of both rolling-adhesion and firm-adhesion regions. Even capsules with relatively large deformability can maintain stable rolling adhesion at certain off rate.

  3. Adhesion and invasion of Clostridium perfringens type A into epithelial cells.

    PubMed

    Llanco, Luis A; Nakano, Viviane; Moraes, Claudia T P de; Piazza, Roxane M F; Avila-Campos, Mario J

    Clostridium perfringens is the causative agent for necrotic enteritis. It secretes the major virulence factors, and α- and NetB-toxins that are responsible for intestinal lesions. The TpeL toxin affects cell morphology by producing myonecrosis, but its role in the pathogenesis of necrotic enteritis is unclear. In this study, the presence of netB and tpeL genes in C. perfringens type A strains isolated from chickens with necrotic enteritis, their cytotoxic effects and role in adhesion and invasion of epithelial cells were evaluated. Six (27.3%) of the 22 C. perfringens type A strains were harboring the tpeL gene and produced morphological alterations in Vero cells after 6h of incubation. Strains tpeL (-) induced strong cell rounding after 6h of incubation and produced cell enlargement. None of the 22 strains harbored netB gene. All the six tpeL (+) gene strains were able to adhere to HEp-2 cells; however, only four of them (66.6%) were invasive. Thus, these results suggest that the presence of tpeL gene or TpeL toxin might be required for the adherence of bacteria to HEp-2 cells; however, it could not have any role in the invasion process. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  4. Molecular Profiling of Glatiramer Acetate Early Treatment Effects in Multiple Sclerosis

    PubMed Central

    Achiron, Anat; Feldman, Anna; Gurevich, Michael

    2009-01-01

    Background: Glatiramer acetate (GA, Copaxone®) has beneficial effects on the clinical course of relapsing-remitting multiple sclerosis (RRMS). However, the exact molecular mechanisms of GA effects are only partially understood. Objective: To characterized GA molecular effects in RRMS patients within 3 months of treatment by microarray profiling of peripheral blood mononuclear cells (PBMC). Methods: Gene-expression profiles were determined in RRMS patients before and at 3 months after initiation of GA treatment using Affimetrix (U133A-2) microarrays containing 14,500 well-characterized human genes. Most informative genes (MIGs) of GA-induced biological convergent pathways operating in RRMS were constructed using gene functional annotation, enrichment analysis and pathway reconstruction bioinformatic softwares. Verification at the mRNA and protein level was performed by qRT-PCR and FACS. Results: GA induced a specific gene expression molecular signature that included altered expression of 480 genes within 3 months of treatment; 262 genes were up-regulated, and 218 genes were down-regulated. The main convergent mechanisms of GA effects were related to antigen-activated apoptosis, inflammation, adhesion, and MHC class-I antigen presentation. Conclusions: Our findings demonstrate that GA treatment induces alternations of immunomodulatory gene expression patterns that are important for suppression of disease activity already at three months of treatment and can be used as molecular markers of GA activity. PMID:19893201

  5. Vaginal Gene Expression During Treatment With Aromatase Inhibitors.

    PubMed

    Kallak, Theodora Kunovac; Baumgart, Juliane; Nilsson, Kerstin; Åkerud, Helena; Poromaa, Inger Sundström; Stavreus-Evers, Anneli

    2015-12-01

    Aromatase inhibitor (AI) treatment suppresses estrogen biosynthesis and causes genitourinary symptoms of menopause such as vaginal symptoms, ultimately affecting the quality of life for many postmenopausal women with breast cancer. Thus, the aim of this study was to examine vaginal gene expression in women during treatment with AIs compared with estrogen-treated women. The secondary aim was to study the presence and localization of vaginal aromatase. Vaginal biopsies were collected from postmenopausal women treated with AIs and from age-matched control women treated with vaginal estrogen therapy. Differential gene expression was studied with the Affymetrix Gene Chip Gene 1.0 ST Array (Affymetrix Inc, Santa Clara, CA) system, Ingenuity pathway analysis, quantitative real-time polymerase chain reaction, and immunohistochemistry. The expression of 279 genes differed between the 2 groups; AI-treated women had low expression of genes involved in cell differentiation, proliferation, and cell adhesion. Some differentially expressed genes were found to interact indirectly with the estrogen receptor alpha. In addition, aromatase protein staining was evident in the basal and the intermediate vaginal epithelium layers, and also in stromal cells with a slightly stronger staining intensity found in AI-treated women. In this study, we demonstrated that genes involved in cell differentiation, proliferation, and cell adhesion are differentially expressed in AI-treated women. The expression of vaginal aromatase suggests that this could be the result of local and systemic inhibition of aromatase. Our results emphasize the role of estrogen for vaginal cell differentiation and proliferation and future drug candidates should be aimed at improving cell differentiation and proliferation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Long-range RNA pairings contribute to mutually exclusive splicing

    PubMed Central

    Yue, Yuan; Yang, Yun; Dai, Lanzhi; Cao, Guozheng; Chen, Ran; Hong, Weiling; Liu, Baoping; Shi, Yang; Meng, Yijun; Shi, Feng; Xiao, Mu; Jin, Yongfeng

    2016-01-01

    Mutually exclusive splicing is an important means of increasing the protein repertoire, by which the Down's syndrome cell adhesion molecule (Dscam) gene potentially generates 38,016 different isoforms in Drosophila melanogaster. However, the regulatory mechanisms remain obscure due to the complexity of the Dscam exon cluster. Here, we reveal a molecular model for the regulation of the mutually exclusive splicing of the serpent pre-mRNA based on competition between upstream and downstream RNA pairings. Such dual RNA pairings confer fine tuning of the inclusion of alternative exons. Moreover, we demonstrate that the splicing outcome of alternative exons is mediated in relative pairing strength-correlated mode. Combined comparative genomics analysis and experimental evidence revealed similar bidirectional structural architectures in exon clusters 4 and 9 of the Dscam gene. Our findings provide a novel mechanistic framework for the regulation of mutually exclusive splicing and may offer potentially applicable insights into long-range RNA–RNA interactions in gene regulatory networks. PMID:26554032

  7. Long-range RNA pairings contribute to mutually exclusive splicing.

    PubMed

    Yue, Yuan; Yang, Yun; Dai, Lanzhi; Cao, Guozheng; Chen, Ran; Hong, Weiling; Liu, Baoping; Shi, Yang; Meng, Yijun; Shi, Feng; Xiao, Mu; Jin, Yongfeng

    2016-01-01

    Mutually exclusive splicing is an important means of increasing the protein repertoire, by which the Down's syndrome cell adhesion molecule (Dscam) gene potentially generates 38,016 different isoforms in Drosophila melanogaster. However, the regulatory mechanisms remain obscure due to the complexity of the Dscam exon cluster. Here, we reveal a molecular model for the regulation of the mutually exclusive splicing of the serpent pre-mRNA based on competition between upstream and downstream RNA pairings. Such dual RNA pairings confer fine tuning of the inclusion of alternative exons. Moreover, we demonstrate that the splicing outcome of alternative exons is mediated in relative pairing strength-correlated mode. Combined comparative genomics analysis and experimental evidence revealed similar bidirectional structural architectures in exon clusters 4 and 9 of the Dscam gene. Our findings provide a novel mechanistic framework for the regulation of mutually exclusive splicing and may offer potentially applicable insights into long-range RNA-RNA interactions in gene regulatory networks. © 2015 Yue et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  8. Aberrant methylation patterns affect the molecular pathogenesis of rheumatoid arthritis.

    PubMed

    Lin, Yang; Luo, Zhengqiang

    2017-05-01

    This study aims to investigate DNA methylation signatures in fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA), and to explore the relationship with transcription factors (TFs) that help to distinguish RA from osteoarthritis (OA). Microarray dataset of GSE46346, including six FLS samples from patients with RA and five FLS samples from patients with OA, was downloaded from the Gene Expression Omnibus database. RA and OA samples were screened for differentially methylated loci (DMLs). The corresponding differentially methylated genes (DMGs) were identified, followed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analysis. A transcriptional regulatory network was built with TFs and their corresponding DMGs. Overall, 280 hypomethylated loci and 561 hypermethylated loci were screened. Genes containing hypermethylated loci were enriched in pathways in cancer, ECM-receptor interaction, focal adhesion and neurotrophin signaling pathways. Genes containing hypomethylated loci were enriched in the neurotrophin signaling pathway. Moreover, we found that CCCTC-binding factor (CTCF), Yin Yang 1 (YY1), v-myc avian myelocytomatosis viral oncogene homolog (c-MYC), and early growth response 1 (EGR1) were important TFs in the transcriptional regulatory network. Therefore, DMGs might participate in the neurotrophin signaling pathway, pathways in cancer, ECM-receptor interaction and focal adhesion pathways in RA. Furthermore, CTCF, c-MYC, YY1, and EGR1 may play important roles in RA through regulating DMGs. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives.

    PubMed

    Barras, Alexandre; Martin, Fernando Ariel; Bande, Omprakash; Baumann, Jean-Sébastien; Ghigo, Jean-Marc; Boukherroub, Rabah; Beloin, Christophe; Siriwardena, Aloysius; Szunerits, Sabine

    2013-03-21

    Bacterial attachment and subsequent biofilm formation on biotic surfaces or medical devices is an increasing source of infections in clinical settings. A large proportion of these biofilm-related infections are caused by Escherichia coli, a major nosocomial pathogen, in which the major adhesion factor is the FimH adhesin located at the tip of type 1 fimbriae. Inhibition of FimH-mediated adhesion has been identified as an efficient antibiotic-alternative strategy to potentially reduce E. coli-related infections. In this article we demonstrate that nanodiamond particles, covently modified with mannose moieties by a "click" chemistry approach, are able to efficiently inhibit E. coli type 1 fimbriae-mediated adhesion to eukaryotic cells with relative inhibitory potency (RIP) of as high as 9259 (bladder cell adhesion assay), which is unprecedented when compared with RIP values previously reported for alternate multivalent mannose-functionalized nanostructures designed to inhibit E. coli adhesion. Also remarkable is that these novel mannose-modified NDs reduce E. coli biofilm formation, a property previously not observed for multivalent glyco-nanoparticles and rarely demonstrated for other multivalent or monovalent mannose glycans. This work sets the stage for the further evaluation of these novel NDs as an anti-adhesive therapeutic strategy against E. coli-derived infections.

  10. Differences in otosclerotic and normal human stapedial osteoblast properties are normalized by alendronate in vitro.

    PubMed

    Gronowicz, Gloria; Richardson, Yvonne L; Flynn, John; Kveton, John; Eisen, Marc; Leonard, Gerald; Aronow, Michael; Rodner, Craig; Parham, Kourosh

    2014-10-01

    Identify and compare phenotypic properties of osteoblasts from patients with otosclerosis (OSO), normal bones (HOB), and normal stapes (NSO) to determine a possible cause for OSO hypermineralization and assess any effects of the bisphosphonate, alendronate. OSO (n = 11), NSO (n = 4), and HOB (n = 13) cultures were assayed for proliferation, adhesion, mineralization, and gene expression with and without 10(-10)M-10(-8)M alendronate. Academic hospital. Cultures were matched for age, sex, and passage number. Cell attachment and proliferation + alendronate were determined by Coulter counting cells and assaying tritiated thymidine uptake, respectively. At 7, 14, and 21 days of culture + alendronate, calcium content and gene expression by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were determined. OSO had significantly more cells adhere but less proliferation than NSO or HOB. Calcification was significantly increased in OSO compared to HOB and NSO. NSO and HOB had similar cell adhesion and proliferation rates. A dose-dependent effect of alendronate on OSO adhesion, proliferation, and mineralization was found, resulting in levels equal to NSO and HOB. All cultures expressed osteoblast-specific genes such as RUNX2, alkaline phosphatase, type I collagen, and osteocalcin. However, osteopontin was dramatically reduced, 9.4-fold at 14 days, in OSO compared to NSO. Receptor activator of nuclear factor κB ligand/osteoprotegerin (RANKL/OPG), important in bone resorption, was elevated in OSO with decreased levels of OPG levels. Alendronate had little effect on gene expression in HOB but in OSO increased osteopontin levels and decreased RANKL/OPG. OSO cultures displayed properties of hypermineralization due to decreased osteopontin (OPN) and also had increased RANKL/OPG, which were normalized by alendronate. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  11. Biological Activity of Polynesian Calophyllum inophyllum Oil Extract on Human Skin Cells.

    PubMed

    Ansel, Jean-Luc; Lupo, Elise; Mijouin, Lily; Guillot, Samuel; Butaud, Jean-François; Ho, Raimana; Lecellier, Gaël; Raharivelomanana, Phila; Pichon, Chantal

    2016-07-01

    Oil from the nuts of Calophyllum inophyllum, locally called "Tamanu oil" in French Polynesia, was traditionally used for wound healing and to cure various skin problems and ailments. The skin-active effect of "Tamanu oil emulsion" was investigated on human skin cells (keratinocytes and dermal fibroblasts) and showed cell proliferation, glycosaminoglycan and collagen production, and wound healing activity. Transcriptomic analysis of the treated cells revealed gene expression modulation including genes involved in the metabolic process implied in O-glycan biosynthesis, cell adhesion, and cell proliferation. The presence of neoflavonoids as bioactive constituents in Tamanu oil emulsion may contribute to these biological activities. Altogether, consistent data related to targeted histological and cellular functions brought new highlights on the mechanisms involved in these biological processes induced by Tamanu oil effects in skin cells. Georg Thieme Verlag KG Stuttgart · New York.

  12. Integrated Molecular Profiling of Human Gastric Cancer Identifies DDR2 as a Potential Regulator of Peritoneal Dissemination.

    PubMed

    Kurashige, Junji; Hasegawa, Takanori; Niida, Atsushi; Sugimachi, Keishi; Deng, Niantao; Mima, Kosuke; Uchi, Ryutaro; Sawada, Genta; Takahashi, Yusuke; Eguchi, Hidetoshi; Inomata, Masashi; Kitano, Seigo; Fukagawa, Takeo; Sasako, Mitsuru; Sasaki, Hiroki; Sasaki, Shin; Mori, Masaki; Yanagihara, Kazuyoshi; Baba, Hideo; Miyano, Satoru; Tan, Patrick; Mimori, Koshi

    2016-03-03

    Peritoneal dissemination is the most frequent, incurable metastasis occurring in patients with advanced gastric cancer (GC). However, molecular mechanisms driving peritoneal dissemination still remain poorly understood. Here, we aimed to provide novel insights into the molecular mechanisms that drive the peritoneal dissemination of GC. We performed combined expression analysis with in vivo-selected metastatic cell lines and samples from 200 GC patients to identify driver genes of peritoneal dissemination. The driver-gene functions associated with GC dissemination were examined using a mouse xenograft model. We identified a peritoneal dissemination-associated expression signature, whose profile correlated with those of genes related to development, focal adhesion, and the extracellular matrix. Among the genes comprising the expression signature, we identified that discoidin-domain receptor 2 (DDR2) as a potential regulator of peritoneal dissemination. The DDR2 was upregulated by the loss of DNA methylation and that DDR2 knockdown reduced peritoneal metastasis in a xenograft model. Dasatinib, an inhibitor of the DDR2 signaling pathway, effectively suppressed peritoneal dissemination. DDR2 was identified as a driver gene for GC dissemination from the combined expression signature and can potentially serve as a novel therapeutic target for inhibiting GC peritoneal dissemination.

  13. E-selectin ligand-1 controls circulating prostate cancer cell rolling/adhesion and metastasis

    PubMed Central

    Yasmin-Karim, Sayeda; King, Michael R.; Messing, Edward M.; Lee, Yi-Fen

    2014-01-01

    Circulating prostate cancer (PCa) cells preferentially roll and adhere on bone marrow vascular endothelial cells, where abundant E-selectin and stromal cell-derived factor 1 (SDF-1) are expressed, subsequently initiating a cascade of activation events that eventually lead to the development of metastases. To elucidate the roles of circulating PCa cells' rolling and adhesion behaviors in cancer metastases, we applied a dynamic cylindrical flow-based microchannel device that is coated with E-selectin and SDF-1, mimicking capillary endothelium. Using this device we captured a small fraction of rolling PCa cells. These rolling cells display higher static adhesion ability, more aggressive cancer phenotypes and stem-like properties. Importantly, mice received rolling PCa cells, but not floating PCa cells, developed cancer metastases. Genes coding for E-selectin ligands and genes associated with cancer stem cells and metastasis were elevated in rolling PCa cells. Knock down of E-selectin ligand 1(ESL-1), significantly impaired PCa cells' rolling capacity and reduced cancer aggressiveness. Moreover, ESL-1 activates RAS and MAP kinase signal cascade, consequently inducing the downstream targets. In summary, circulating PCa cells' rolling capacity contributes to PCa metastasis, and that is in part controlled by ESL-1. PMID:25301730

  14. Alterations in CDH15 and KIRREL3 in Patients with Mild to Severe Intellectual Disability

    PubMed Central

    Bhalla, Kavita; Luo, Yue; Buchan, Tim; Beachem, Michael A.; Guzauskas, Gregory F.; Ladd, Sydney; Bratcher, Shelly J.; Schroer, Richard J.; Balsamo, Janne; DuPont, Barbara R.; Lilien, Jack; Srivastava, Anand K.

    2008-01-01

    Cell-adhesion molecules play critical roles in brain development, as well as maintaining synaptic structure, function, and plasticity. Here we have found the disruption of two genes encoding putative cell-adhesion molecules, CDH15 (cadherin superfamily) and KIRREL3 (immunoglobulin superfamily), by a chromosomal translocation t(11;16) in a female patient with intellectual disability (ID). We screened coding regions of these two genes in a cohort of patients with ID and controls and identified four nonsynonymous CDH15 variants and three nonsynonymous KIRREL3 variants that appear rare and unique to ID. These variations altered highly conserved residues and were absent in more than 600 unrelated patients with ID and 800 control individuals. Furthermore, in vivo expression studies showed that three of the CDH15 variations adversely altered its ability to mediate cell-cell adhesion. We also show that in neuronal cells, human KIRREL3 colocalizes and interacts with the synaptic scaffolding protein, CASK, recently implicated in X-linked brain malformation and ID. Taken together, our data suggest that alterations in CDH15 and KIRREL3, either alone or in combination with other factors, could play a role in phenotypic expression of ID in some patients. PMID:19012874

  15. Characterization of the phosphate-specific transport system in Cronobacter sakazakii BAA-894.

    PubMed

    Liang, X; Hu, X; Wang, X; Wang, J; Fang, Y; Li, Y

    2017-09-01

    Characterize the phosphate-specific transport system in Cronobacter sakazakii BAA-894. The genes relevant to phosphate transfer in C. sakazakii BAA-894 were determined by using sequence alignment to the corresponding genes in Escherichia coli. Then, the determined pst operon in C. sakazakii BAA-894 was deleted using the lambda Red recombination system. Using the wild type C. sakazakii BAA-894 as a control, the membrane permeability, auto-aggregation, exopolysaccharide biosynthesis, biofilm formation, and adhesion ability of the mutant ▵pst grown in media containing high or low concentrations of phosphate were investigated; stronger auto-aggregation, less biofilm formation and higher adhesion ability were observed in ▵pst cells grown in low phosphate media. Transcriptome analysis showed that phosphate availability has a global influence to C. sakazakii BAA-894 and ▵pst cells. Phosphorus availability is important for C. sakazakii in many ways including biofilm formation and adhesion ability. This study demonstrates that phosphate availability has a global influence to C. sakazakii, expends our understanding to the phosphate transfer in C. sakazakii, and is helpful for revealing the survival mechanism of C. sakazakii under stress conditions. © 2017 The Society for Applied Microbiology.

  16. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions

    NASA Technical Reports Server (NTRS)

    Chicurel, M. E.; Singer, R. H.; Meyer, C. J.; Ingber, D. E.

    1998-01-01

    The extracellular matrix (ECM) activates signalling pathways that control cell behaviour by binding to cell-surface integrin receptors and inducing the formation of focal adhesion complexes (FACs). In addition to clustered integrins, FACs contain proteins that mechanically couple the integrins to the cytoskeleton and to immobilized signal-transducing molecules. Cell adhesion to the ECM also induces a rapid increase in the translation of preexisting messenger RNAs. Gene expression can be controlled locally by targeting mRNAs to specialized cytoskeletal domains. Here we investigate whether cell binding to the ECM promotes formation of a cytoskeletal microcompartment specialized for translational control at the site of integrin binding. High-resolution in situ hybridization revealed that mRNA and ribosomes rapidly and specifically localized to FACs that form when cells bind to ECM-coated microbeads. Relocation of these protein synthesis components to the FAC depended on the ability of integrins to mechanically couple the ECM to the contractile cytoskeleton and on associated tension-moulding of the actin lattice. Our results suggest a new type of gene regulation by integrins and by mechanical stress which may involve translation of mRNAs into proteins near the sites of signal reception.

  17. Le(x) glycan mediates homotypic adhesion of embryonal cells independently from E-cadherin: a preliminary note.

    PubMed

    Handa, Kazuko; Takatani-Nakase, Tomoka; Larue, Lionel; Stemmler, Marc P; Kemler, Rolf; Hakomori, Sen-itiroh

    2007-06-22

    Le(x) glycan and E-cadherin (Ecad) are co-expressed at embryonal stem (ES) cells and embryonal carcinoma (EC) cells. While the structure and function of Ecad mediating homotypic adhesion of these cells have been well established, evidence that Le(x) glycan also mediates such adhesion is weak, despite the fact that Le(x) oligosaccharide inhibits the compaction process. To provide stronger evidence, we knocked out Ecad gene in EC and ES cells to establish F9 Ecad (-/-) and D3M Ecad (-/-) cells, which highly express Le(x) glycan but do not express Ecad at all. Both F9 Ecad (-/-) and D3M Ecad (-/-) cells displayed strong autoaggregation in the presence of Ca(2+), while PYS-2 cells, which express trace amount of Ecad and undetectable level of Le(x) glycan, did not display autoaggregation. In addition, F9 Ecad (-/-) and D3M Ecad (-/-) cells displayed strong adhesion to plates coated with Le(x) glycosphingolipid (III(3)FucnLc4Cer), in dose-dependent manner, in the presence of Ca(2+). Thus, ES or EC cells display autoaggregation and strong adhesion to Le(x)-coated plates in the absence of Ecad, further supporting the notion of Le(x) self-recognition (i.e., Le(x)-to-Le(x) interaction) in cell adhesion.

  18. Adhesion of Escherichia coli onto quartz, hematite and corundum: extended DLVO theory and flotation behavior.

    PubMed

    Farahat, Mohsen; Hirajima, Tsuyoshi; Sasaki, Keiko; Doi, Katsumi

    2009-11-01

    The adhesion of Escherichia coli onto quartz, hematite and corundum was experimentally investigated. A strain of E. coli was used that had the genes for expressing protein for silica precipitation. The maximum cell adhesion was observed at pH <4.3 for quartz and at pH 4.5-8.5 for corundum. For hematite, cell adhesion remained low at all pH values. The microbe-mineral adhesion was assessed by the extended DLVO theory approach. The essential parameters for calculation of microbe-mineral interaction energy (Hamaker constants and acid-base components) were experimentally determined. The extended DLVO approach could be used to explain the results of the adhesion experiments. The effect of E. coli on the floatability of three oxide minerals was determined and the results showed that E. coli can act as a selective collector for quartz at acidic pH values, with 90% of the quartz floated at 1.5 x 10(9)cells/ml. However, only 9% hematite and 30% corundum could be floated under similar conditions. By using E. coli and no reagents, it was possible to separate quartz from a hematite-quartz mixture with Newton's efficiency of 0.70. Removal of quartz from the corundum mixture was achieved by E. coli with Newton's efficiency of 0.62.

  19. Use of methylene blue in the prevention of recurrent intra-abdominal postoperative adhesions.

    PubMed

    Neagoe, Octavian C; Ionica, Mihaela; Mazilu, Octavian

    2018-01-01

    Objective To evaluate the efficacy of methylene blue in preventing recurrent symptomatic postoperative adhesions. Methods Patients with a history of >2 surgeries for intra-abdominal adhesion-related complications were selected for this study. Adhesiolysis surgery was subsequently performed using administration of 1% methylene blue. The follow-up period was 28.5 ± 11.1 months. Results Data were available from 20 patients (seven men and 13 women) whose mean ± SD age was 51.2 ± 11.4 years. Adhesions took longer to become symptomatic after the first abdominal surgery when the initial pathology was malignant compared with benign. However, the recurrence of adhesions after a previous adhesiolysis surgery had a similar time onset regardless of the initial disease. Following adhesiolysis surgery with methylene blue, the majority of patients did not present with symptoms associated with adhesion complications (i.e., chronic abdominal pain, bowel obstruction) for the length of the follow-up period. Conclusions The use of methylene blue during adhesiolysis surgery appears to reduce the recurrence of adhesion-related symptoms, suggesting a beneficial effect in the prevention of adhesion formation.

  20. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism

    PubMed Central

    Jamain, Stéphane; Quach, Hélène; Betancur, Catalina; Råstam, Maria; Colineaux, Catherine; Gillberg, I Carina; Söderström, Henrik; Giros, Bruno; Leboyer, Marion; Gillberg, Christopher; Bourgeron, Thomas

    2003-01-01

    Many studies have supported a genetic aetiology for autism. Here we report mutations in two X-linked genes, neuroligins NLGN3 and NLGN4, in siblings with autism spectrum disorders. These mutations affect cell adhesion molecules localised at the synapse and suggest that a defect of synaptogenesis may predispose to autism. PMID:12669065

  1. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism.

    PubMed

    Jamain, Stéphane; Quach, Hélène; Betancur, Catalina; Råstam, Maria; Colineaux, Catherine; Gillberg, I Carina; Soderstrom, Henrik; Giros, Bruno; Leboyer, Marion; Gillberg, Christopher; Bourgeron, Thomas

    2003-05-01

    Many studies have supported a genetic etiology for autism. Here we report mutations in two X-linked genes encoding neuroligins NLGN3 and NLGN4 in siblings with autism-spectrum disorders. These mutations affect cell-adhesion molecules localized at the synapse and suggest that a defect of synaptogenesis may predispose to autism.

  2. The L1-type cell adhesion molecule neuroglian influences the stability of neural ankyrin in the Drosophila embryo but not its axonal localization.

    PubMed

    Bouley, M; Tian, M Z; Paisley, K; Shen, Y C; Malhotra, J D; Hortsch, M

    2000-06-15

    Ankyrins are linker proteins, which connect various membrane proteins, including members of the L1 family of neural cell adhesion molecules, with the submembranous actin-spectrin skeleton. Here we report the cloning and characterization of a second, novel Drosophila ankyrin gene (Dank2) that appears to be the result of a gene duplication event during arthropod evolution. The Drosophila L1-type protein neuroglian interacts with products from both Drosophila ankyrin genes. Whereas the previously described ankyrin gene is ubiquitously expressed during embryogenesis, the expression of Dank2 is restricted to the nervous system in the Drosophila embryo. The absence of neuroglian protein in a neuroglian null mutant line causes decreased levels of Dank2 protein in most neuronal cells. This suggests that neuroglian is important for the stability of Dank2 protein. However, neuroglian is not required for Dank2 axonal localization. In temperature-sensitive neuroglian mutants in which neuroglian protein is mislocated at the restrictive temperature to an intracellular location in the neuronal soma, Dank2 protein can still be detected along embryonic nerve tracts.

  3. An Ultrasonic Technique to Determine the Residual Strength of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Achenbach, J. D.; Tang, Z.

    1999-01-01

    In this work, ultrasonic techniques to nondestructively evaluate adhesive bond degradation have been studied. The key to the present approach is the introduction of an external factor which pulls the adhesive bond in the nonlinear range, simultaneously with the application of an ultrasonic technique. With the aid of an external static tensile loading, a superimposed longitudinal wave has.been used to obtain the slopes of the stress-strain curve of an adhesive bond at a series of load levels. The critical load, at which a reduction of the slope is detected by the superimposed longitudinal wave, is an indication of the onset of nonlinear behavior of the adhesive bond, and therefore of bond degradation. This approach has been applied to the detection of adhesive bond degradation induced by cyclic fatigue loading. Analogously to the longitudinal wave case, a superimposed shear wave has been used to obtain the effective shear modulus of adhesive layers at different shear load levels. The onset of the nonlinear behavior of an adhesive bond under shear loading has been detected by the use of a superimposed shear wave. Experiments show that a longitudinal wave can also detect the nonlinear behavior when an adhesive bond is subjected to shear loading. An optimal combination of ultrasonic testing and mechanical loading methods for the detection of degradation related nonlinear behavior of adhesive bonds has been discussed. For the purpose of a practical application, an ultrasonic technique that uses a temperature increase as an alternative to static loading has also been investigated. A general strain-temperature correspondence principle that relates a mechanical strain to a temperature has been presented. Explicit strain-temperature correspondence relations for both the tension and shear cases have been derived. An important parameter which quantifies the relation between the wave velocity and temperature has been defined. This parameter, which is indicative of adhesive bond nonlinearity and which can be conveniently obtained by an ultrasonic measurement, has been used as an indication of adhesive bond degradation. Experimental results have shown that the temperature increase method is a convenient and productive alternative to static loading. A technique which uses the reflected waveform data to obtain the fundamental ultrasonic parameters (transit time, reflection coefficient and attenuation coefficient) of an adhesive bond has also been presented.

  4. The Synaptic Cell Adhesion Molecule, SynCAM1, Mediates Astrocyte-to-Astrocyte and Astrocyte-to-GnRH Neuron Adhesiveness in the Mouse Hypothalamus

    PubMed Central

    Sandau, Ursula S.; Mungenast, Alison E.; McCarthy, Jack; Biederer, Thomas; Corfas, Gabriel

    2011-01-01

    We previously identified synaptic cell adhesion molecule 1 (SynCAM1) as a component of a genetic network involved in the hypothalamic control of female puberty. Although it is well established that SynCAM1 is a synaptic adhesion molecule, its contribution to hypothalamic function is unknown. Here we show that, in addition to the expected neuronal localization illustrated by its presence in GnRH neurons, SynCAM1 is expressed in hypothalamic astrocytes. Cell adhesion assays indicated that SynCAM is recognized by both GnRH neurons and astrocytes as an adhesive partner and promotes cell-cell adhesiveness via homophilic, extracellular domain-mediated interactions. Alternative splicing of the SynCAM1 primary mRNA transcript yields four mRNAs encoding membrane-spanning SynCAM1 isoforms. Variants 1 and 4 are predicted to be both N and O glycosylated. Hypothalamic astrocytes and GnRH-producing GT1-7 cells express mainly isoform 4 mRNA, and sequential N- and O-deglycosylation of proteins extracted from these cells yields progressively smaller SynCAM1 species, indicating that isoform 4 is the predominant SynCAM1 variant expressed in astrocytes and GT1-7 cells. Neither cell type expresses the products of two other SynCAM genes (SynCAM2 and SynCAM3), suggesting that SynCAM-mediated astrocyte-astrocyte and astrocyte-GnRH neuron adhesiveness is mostly mediated by SynCAM1 homophilic interactions. When erbB4 receptor function is disrupted in astrocytes, via transgenic expression of a dominant-negative erbB4 receptor form, SynCAM1-mediated adhesiveness is severely compromised. Conversely, SynCAM1 adhesive behavior is rapidly, but transiently, enhanced in astrocytes by ligand-dependent activation of erbB4 receptors, suggesting that erbB4-mediated events affecting SynCAM1 function contribute to regulate astrocyte adhesive communication. PMID:21486931

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garige, Mamatha; Walters, Eric, E-mail: ewalters@howard.edu

    The molecular basis for nutraceutical properties of the polyphenol curcumin (Curcuma longa, Turmeric) is complex, affecting multiple factors that regulate cell signaling and homeostasis. Here, we report the effect of curcumin on cellular and developmental mechanisms in the eukaryotic model, Dictyostelium discoideum. Dictyostelium proliferation was inhibited in the presence of curcumin, which also suppressed the prestarvation marker, discoidin I, members of the yakA-mediated developmental signaling pathway, and expression of the extracellular matrix/cell adhesion proteins (DdCAD and csA). This resulted in delayed chemotaxis, adhesion, and development of the organism. In contrast to the inhibitory effects on developmental genes, curcumin induced gstAmore » gene expression, overall GST activity, and generated production of reactive oxygen species. These studies expand our knowledge of developmental and biochemical signaling influenced by curcumin, and lends greater consideration of GST enzyme function in eukaryotic cell signaling, development, and differentiation.« less

  6. Adhesion mechanisms on solar glass: Effects of relative humidity, surface roughness, and particle shape and size

    DOE PAGES

    Moutinho, Helio R.; Jiang, Cun -Sheng; To, Bobby; ...

    2017-07-27

    To better understand and quantify soiling rates on solar panels, we are investigating the adhesion mechanisms between dust particles and solar glass. In this work, we report on two of the fundamental adhesion mechanisms: van der Waals and capillary adhesion forces. The adhesion was determined using force versus distance (F-z) measurements performed with an atomic force microscope (AFM). To emulate dust interacting with the front surface of a solar panel, we measured how oxidized AFM tips, SiO 2 glass spheres, and real dust particles adhered to actual solar glass. The van der Waals forces were evaluated by measurements performed withmore » zero relative humidity in a glove box, and the capillary forces were measured in a stable environment created inside the AFM enclosure with relative humidity values ranging from 18% to 80%. To simulate topographic features of the solar panels caused by factors such as cleaning and abrasion, we induced different degrees of surface roughness in the solar glass. As a result, we were able to 1) identify and quantify both the van der Waals and capillary forces, 2) establish the effects of surface roughness, relative humidity, and particle size on the adhesion mechanisms, and 3) compare adhesion forces between well-controlled particles (AFM tips and glass spheres) and real dust particles.« less

  7. A Rho-associated coiled-coil containing kinases (ROCK) inhibitor, Y-27632, enhances adhesion, viability and differentiation of human term placenta-derived trophoblasts in vitro

    PubMed Central

    Okada, Naoko; Morita, Hideaki; Hara, Mariko; Tamari, Masato; Orimo, Keisuke; Matsuda, Go; Imadome, Ken-Ichi; Matsuda, Akio; Nagamatsu, Takeshi; Fujieda, Mikiya; Sago, Haruhiko; Saito, Hirohisa; Matsumoto, Kenji

    2017-01-01

    Although human term placenta-derived primary cytotrophoblasts (pCTBs) represent a good human syncytiotrophoblast (STB) model, in vitro culture of pCTBs is not always easily accomplished. Y-27632, a specific inhibitor of Rho-associated coiled-coil containing kinases (ROCK), reportedly prevented apoptosis and improved cell-to-substrate adhesion and culture stability of dissociated cultured human embryonic stem cells and human corneal endothelial cells. The Rho kinase pathway regulates various kinds of cell behavior, some of which are involved in pCTB adhesion and differentiation. In this study, we examined Y-27632’s potential for enhancing pCTB adhesion, viability and differentiation. pCTBs were isolated from term, uncomplicated placentas by trypsin–DNase I–Dispase II treatment and purified by HLA class I-positive cell depletion. Purified pCTBs were cultured on uncoated plates in the presence of epidermal growth factor (10 ng/ml) and various concentrations of Y-27632. pCTB adhesion to the plates was evaluated by phase-contrast imaging, viability was measured by WST-8 assay, and differentiation was evaluated by immunofluorescence staining, expression of fusogenic genes and hCG-β production. Ras-related C3 botulinum toxin substrate 1 (Rac1; one of the effector proteins of the Rho family) and protein kinase A (PKA) involvement was evaluated by using their specific inhibitors, NSC-23766 and H-89. We found that Y-27632 treatment significantly enhanced pCTB adhesion to plates, viability, cell-to-cell fusion and hCG-β production, but showed no effects on pCTB proliferation or apoptosis. Furthermore, NSC-23766 and H-89 each blocked the effects of Y-27632, suggesting that Y-27632 significantly enhanced pCTB differentiation via Rac1 and PKA activation. Our findings suggest that Rac1 and PKA may be interactively involved in CTB differentiation, and addition of Y-27632 to cultures may be an effective method for creating a stable culture model for studying CTB and STB biology in vitro. PMID:28542501

  8. Mucin- and carbohydrate-stimulated adhesion and subproteome changes of the probiotic bacterium Lactobacillus acidophilus NCFM.

    PubMed

    Celebioglu, Hasan Ufuk; Olesen, Sita Vaag; Prehn, Kennie; Lahtinen, Sampo J; Brix, Susanne; Abou Hachem, Maher; Svensson, Birte

    2017-06-23

    Adhesion to intestinal mucosa is a crucial property for probiotic bacteria. Adhesion is thought to increase host-bacterial interactions, thus potentially enabling health benefits to the host. Molecular events connected with adhesion and surface proteome changes were investigated for the probiotic Lactobacillus acidophilus NCFM cultured with established or emerging prebiotic carbohydrates as carbon source and in the presence of mucin, the glycoprotein of the epithelial mucus layer. Variation in adhesion to HT29-cells and mucin was associated with carbon source and mucin-induced subproteome abundancy differences. Specifically, while growth on fructooligosaccharides (FOS) only stimulated adhesion to intestinal HT-29 cells, cellobiose and polydextrose in addition increased adhesion to mucin. Adhesion to HT-29 cells increased by about 2-fold for bacteria grown on mucin-supplemented glucose. Comparative 2DE-MS surface proteome analysis showed different proteins in energy metabolism appearing on the surface, suggesting they exert moonlighting functions. Mucin-supplemented bacteria had relative abundance of pyruvate kinase and fructose-bisphosphate aldolase increased by about 2-fold while six spots with 3.2-2.1 fold reduced relative abundance comprised elongation factor G, phosphoglycerate kinase, BipAEFTU family GTP-binding protein, ribonucleoside triphosphate reductase, adenylosuccinate synthetase, 30S ribosomal protein S1, and manganese-dependent inorganic pyrophosphatase. Surface proteome of cellobiose- compared to glucose-grown L. acidophilus NCFM had phosphate starvation inducible protein stress-related, thermostable pullulanase, and elongation factor G increasing 4.4-2.4 fold, while GAPDH, elongation factor Ts, and pyruvate kinase were reduced by 2.0-1.5 fold in relative abundance. Addition of recombinant L. acidophilus NCFM elongation factor G and pyruvate kinase to a coated mucin layer significantly suppressed subsequent adhesion of the bacterium. Human diet is important for intestinal health and food components, especially non-digestible carbohydrates can beneficially modify the microbiota. In the present study, effects of emerging and established prebiotic carbohydrates on the probiotic potential of Lactobacillus acidophilus NCFM were investigated by testing adhesion to a mucin layer and intestinal cells, and comparing this with changes in abundancy of surface proteins thought to be important for host interactions. Increased adhesion was observed following culturing of the bacterium with fructooligosaccharides, cellobiose or polydextrose, as well as mucin-supplemented glucose as carbon source. Enhanced adhesion ability can prolong bacterial residence in GIT yielding positive health effects. Higher relative abundance of certain surface proteins under various conditions (i.e. grown on cellobiose or mucin-supplemented glucose) suggested involvement of these proteins in adhesion, as confirmed by competition in case of two recombinantly produced moonlighting proteins. Combination of Lactobacillus acidophilus NCFM with different carbohydrates revealed potential bacterial determinants of synbiotic interactions, including stimulation of adhesion. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1

    PubMed Central

    Khare, Vineeta; Lyakhovich, Alex; Dammann, Kyle; Lang, Michaela; Borgmann, Melanie; Tichy, Boris; Pospisilova, Sarka; Luciani, Gloria; Campregher, Christoph; Evstatiev, Rayko; Pflueger, Maren; Hundsberger, Harald; Gasche, Christoph

    2013-01-01

    Mesalamine (5-ASA) is widely used for the treatment of ulcerative colitis, a remitting condition characterized by chronic inflammation of the colon. Knowledge about the molecular and cellular targets of 5-ASA is limited and a clear understanding of its activity in intestinal homeostasis and interference with neoplastic progression is lacking. We sought to identify molecular pathways interfered by 5-ASA, using CRC cell lines with different genetic background. Microarray was performed for gene expression profile of 5-ASA-treated and untreated cells (HCT116 and HT29). Filtering and analysis of data identified three oncogenic pathways interfered by 5-ASA: MAPK/ERK pathway, cell adhesion and β-catenin/Wnt signaling. PAK1 emerged as a consensus target of 5-ASA, orchestrating these pathways. We further investigated the effect of 5-ASA on cell adhesion. 5-ASA increased cell adhesion which was measured by cell adhesion assay and transcellular-resistance measurement. Moreover, 5-ASA treatment restored membranous expression of adhesion molecules E-cadherin and β-catenin. Role of PAK1 as a mediator of mesalamine activity was validated in vitro and in vivo. Inhibition of PAK1 by RNA interference also increased cell adhesion. PAK1 expression was elevated in APCmin polyps and 5-ASA treatment reduced its expression. Our data demonstrates novel pharmacological mechanism of mesalamine in modulation of cell adhesion and role of PAK1 in APCmin polyposis. We propose that inhibition of PAK1 expression by 5-ASA can impede with neoplastic progression in colorectal carcinogenesis. The mechanism of PAK1 inhibition and induction of membranous translocation of adhesion proteins by 5-ASA might be independent of its known anti-inflammatory action. PMID:23146664

  10. Mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1.

    PubMed

    Khare, Vineeta; Lyakhovich, Alex; Dammann, Kyle; Lang, Michaela; Borgmann, Melanie; Tichy, Boris; Pospisilova, Sarka; Luciani, Gloria; Campregher, Christoph; Evstatiev, Rayko; Pflueger, Maren; Hundsberger, Harald; Gasche, Christoph

    2013-01-15

    Mesalamine (5-ASA) is widely used for the treatment of ulcerative colitis, a remitting condition characterized by chronic inflammation of the colon. Knowledge about the molecular and cellular targets of 5-ASA is limited and a clear understanding of its activity in intestinal homeostasis and interference with neoplastic progression is lacking. We sought to identify molecular pathways interfered by 5-ASA, using CRC cell lines with different genetic background. Microarray was performed for gene expression profile of 5-ASA-treated and untreated cells (HCT116 and HT29). Filtering and analysis of data identified three oncogenic pathways interfered by 5-ASA: MAPK/ERK pathway, cell adhesion and β-catenin/Wnt signaling. PAK1 emerged as a consensus target of 5-ASA, orchestrating these pathways. We further investigated the effect of 5-ASA on cell adhesion. 5-ASA increased cell adhesion which was measured by cell adhesion assay and transcellular-resistance measurement. Moreover, 5-ASA treatment restored membranous expression of adhesion molecules E-cadherin and β-catenin. Role of PAK1 as a mediator of mesalamine activity was validated in vitro and in vivo. Inhibition of PAK1 by RNA interference also increased cell adhesion. PAK1 expression was elevated in APC(min) polyps and 5-ASA treatment reduced its expression. Our data demonstrates novel pharmacological mechanism of mesalamine in modulation of cell adhesion and role of PAK1 in APC(min) polyposis. We propose that inhibition of PAK1 expression by 5-ASA can impede with neoplastic progression in colorectal carcinogenesis. The mechanism of PAK1 inhibition and induction of membranous translocation of adhesion proteins by 5-ASA might be independent of its known anti-inflammatory action. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Tumor necrosis factor alpha (TNF-alpha)-induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55

    PubMed Central

    1993-01-01

    Tumor necrosis factor alpha (TNF-alpha) is a pleiotropic cytokine triggering cell responses through two distinct membrane receptors. Stimulation of leukocyte adhesion to the endothelium is one of the many TNF-alpha activities and is explained by the upregulation of adhesion molecules on the endothelial cell surface. Human umbilical vein endothelial cells (HUVEC) were isolated, cultured, and demonstrated to express both TNF receptor types, TNF-R55 and TNF-R75. Cell adhesion to HUVEC was studied using the HL60, U937, and MOLT-4 cell lines. HUVEC were activated by either TNF-alpha, binding to both TNF-R55 and TNF- R75, and by receptor type-specific agonists, binding exclusively to TNF- R55 or to TNF-R75. The TNF-alpha-induced cell adhesion to HUVEC was found to be controlled almost exclusively by TNF-R55. This finding correlated with the exclusive activity of TNF-R55 in the TNF-alpha- dependent regulation of the expression of the intercellular adhesion molecule type 1 (ICAM-1), E-selectin, and vascular cell adhesion molecule type 1 (VCAM-1). The CD44 adhesion molecule in HUVEC was also found to be upregulated through TNF-R55. However, both TNF-R55 and TNF- R75 upregulate alpha 2 integrin expression in HUVEC. The predominant role of TNF-R55 in TNF-alpha-induced adhesion in HUVEC may correlate with its specific control of NF-kappa B activation, since kappa B elements are known to be present in ICAM-1, E-selectin, and VCAM-1 gene regulatory sequences. PMID:8386742

  12. Glucocorticoid-induced tumor necrosis factor receptor family-related ligand triggering upregulates vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 and promotes leukocyte adhesion.

    PubMed

    Lacal, Pedro Miguel; Petrillo, Maria Grazia; Ruffini, Federica; Muzi, Alessia; Bianchini, Rodolfo; Ronchetti, Simona; Migliorati, Graziella; Riccardi, Carlo; Graziani, Grazia; Nocentini, Giuseppe

    2013-10-01

    The interaction of glucocorticoid-induced tumor necrosis factor receptor-family related (GITR) protein with its ligand (GITRL) modulates different functions, including immune/inflammatory response. These effects are consequent to intracellular signals activated by both GITR and GITRL. Previous results have suggested that lack of GITR expression in GITR(-/-) mice decreases the number of leukocytes within inflamed tissues. We performed experiments to analyze whether the GITRL/GITR system modulates leukocyte adhesion and extravasation. For that purpose, we first evaluated the capability of murine splenocytes to adhere to endothelial cells (EC). Our results indicated that adhesion of GITR(-/-) splenocytes to EC was reduced as compared with wild-type cells, suggesting that GITR plays a role in adhesion and that this effect may be due to GITRL-GITR interaction. Moreover, adhesion was increased when EC were pretreated with an agonist GITR-Fc fusion protein, thus indicating that triggering of GITRL plays a role in adhesion by EC regulation. In a human in vitro model, the adhesion to human EC of HL-60 cells differentiated toward the monocytic lineage was increased by EC pretreatment with agonist GITR-Fc. Conversely, antagonistic anti-GITR and anti-GITRL Ab decreased adhesion, thus further indicating that GITRL triggering increases the EC capability to support leukocyte adhesion. EC treatment with GITR-Fc favored extravasation, as demonstrated by a transmigration assay. Notably, GITRL triggering increased intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression and anti-ICAM-1 and anti-VCAM-1 Abs reversed GITR-Fc effects. Our study demonstrates that GITRL triggering in EC increases leukocyte adhesion and transmigration, suggesting new anti-inflammatory therapeutic approaches based on inhibition of GITRL-GITR interaction.

  13. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawal, Akeem O.; Zhang, Min; Dittmar, Michael

    Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4 h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNAmore » or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25 μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM. - Highlights: • We examined the role of HO-1 expression on diesel exhaust particle (DEP) in endothelial cells. • DEPs exert cytotoxic and inflammatory effects on human microvascular endothelial cells (HMECs). • DEPs induce HO-1 expression in HMECs. • HO-1 protects against the oxidative stress induced by DEps. • HO-1 attenuates the proinflammatory effects induced by DEPs.« less

  14. The calcineruin inhibitor cyclosporine a synergistically enhances the susceptibility of Candida albicans biofilms to fluconazole by multiple mechanisms.

    PubMed

    Jia, Wei; Zhang, Haiyun; Li, Caiyun; Li, Gang; Liu, Xiaoming; Wei, Jun

    2016-06-18

    Biofilms produced by Candida albicans (C. albicans) are intrinsically resistant to fungicidal agents, which are a main cause of the pathogenesis of catheter infections. Several lines of evidence have demonstrated that calcineurin inhibitor FK506 or cyclosporine A (CsA) can remarkably enhance the antifungal activity of fluconazole (FLC) against biofilm-producing C. albicans strain infections. The aim of present study is thus to interrogate the mechanism underpinning the synergistic effect of FLC and calcineurin inhibitors. Twenty four clinical C. albicans strains isolated from bloodstream showed a distinct capacity of biofilm formation. A combination of calcineurin inhibitor CsA and FLC exhibited a dose-dependent synergistic antifungal effect on the growth and biofilm formation of C. albicans isolates as determined by a XTT assay and fluorescent microscopy assay. The synergistic effect was accompanied with a significantly down-regulated expression of adhesion-related genes ALS3, hypha-related genes HWP1, ABC transporter drug-resistant genes CDR1 and MDR1, and FLC targeting gene, encoding sterol 14alpha-demethylase (ERG11) in clinical C. albicans isolates. Furthermore, an addition of CsA significantly reduced the cellular surface hydrophobicity but increased intracellular calcium concentration as determined by a flow cytometry assay (p < 0.05). The results presented in this report demonstrated that the synergistic effect of CsA and FLC on inhibited C. albicans biofilm formation and enhanced susceptibility to FLC was in part through a mechanism involved in suppressing the expression of biofilm related and drug-resistant genes, and reducing cellular surface hydrophobicity, as well as evoking intracellular calcium concentration.

  15. Identification of accessory genome regions in poultry Clostridium perfringens isolates carrying the netB plasmid.

    PubMed

    Lepp, D; Gong, J; Songer, J G; Boerlin, P; Parreira, V R; Prescott, J F

    2013-03-01

    Necrotic enteritis (NE) is an economically important disease of poultry caused by certain Clostridium perfringens type A strains. NE pathogenesis involves the NetB toxin, which is encoded on a large conjugative plasmid within a 42-kb pathogenicity locus. Recent multilocus sequence type (MLST) studies have identified two predominant NE-associated clonal groups, suggesting that host genes are also involved in NE pathogenesis. We used microarray comparative genomic hybridization (CGH) to assess the gene content of 54 poultry isolates from birds that were healthy or that suffered from NE. A total of 400 genes were variably present among the poultry isolates and nine nonpoultry strains, many of which had putative functions related to nutrient uptake and metabolism and cell wall and capsule biosynthesis. The variable genes were organized into 142 genomic regions, 49 of which contained genes significantly associated with netB-positive isolates. These regions included three previously identified NE-associated loci as well as several apparent fitness-related loci, such as a carbohydrate ABC transporter, a ferric-iron siderophore uptake system, and an adhesion locus. Additional loci were related to plasmid maintenance. Cluster analysis of the CGH data grouped all of the netB-positive poultry isolates into two major groups, separated according to two prevalent clonal groups based on MLST analysis. This study identifies chromosomal loci associated with netB-positive poultry strains, suggesting that the chromosomal background can confer a selective advantage to NE-causing strains, possibly through mechanisms involving iron acquisition, carbohydrate metabolism, and plasmid maintenance.

  16. Delineation of the Species Haemophilus influenzae by Phenotype, Multilocus Sequence Phylogeny, and Detection of Marker Genes▿ †

    PubMed Central

    Nørskov-Lauritsen, Niels; Overballe, Merete D.; Kilian, Mogens

    2009-01-01

    To obtain more information on the much-debated definition of prokaryotic species, we investigated the borders of Haemophilus influenzae by comparative analysis of H. influenzae reference strains with closely related bacteria including strains assigned to Haemophilus haemolyticus, cryptic genospecies biotype IV, and the never formally validated species “Haemophilus intermedius”. Multilocus sequence phylogeny based on six housekeeping genes separated a cluster encompassing the type and the reference strains of H. influenzae from 31 more distantly related strains. Comparison of 16S rRNA gene sequences supported this delineation but was obscured by a conspicuously high number of polymorphic sites in many of the strains that did not belong to the core group of H. influenzae strains. The division was corroborated by the differential presence of genes encoding H. influenzae adhesion and penetration protein, fuculokinase, and Cu,Zn-superoxide dismutase, whereas immunoglobulin A1 protease activity or the presence of the iga gene was of limited discriminatory value. The existence of porphyrin-synthesizing strains (“H. intermedius”) closely related to H. influenzae was confirmed. Several chromosomally encoded hemin biosynthesis genes were identified, and sequence analysis showed these genes to represent an ancestral genotype rather than recent transfers from, e.g., Haemophilus parainfluenzae. Strains previously assigned to H. haemolyticus formed several separate lineages within a distinct but deeply branching cluster, intermingled with strains of “H. intermedius” and cryptic genospecies biotype IV. Although H. influenzae is phenotypically more homogenous than some other Haemophilus species, the genetic diversity and multicluster structure of strains traditionally associated with H. influenzae make it difficult to define the natural borders of that species. PMID:19060144

  17. Implementation of a novel in vitro model of infection of reconstituted human epithelium for expression of virulence genes in methicillin-resistant Staphylococcus aureus strains isolated from catheter-related infections in Mexico

    PubMed Central

    2014-01-01

    Background Methicillin-resistant Staphylococcus aureus (MRSA) are clinically relevant pathogens that cause severe catheter-related nosocomial infections driven by several virulence factors. Methods We implemented a novel model of infection in vitro of reconstituted human epithelium (RHE) to analyze the expression patterns of virulence genes in 21 MRSA strains isolated from catheter-related infections in Mexican patients undergoing haemodialysis. We also determined the phenotypic and genotypic co-occurrence of antibiotic- and disinfectant-resistance traits in the S. aureus strains, which were also analysed by pulsed-field-gel electrophoresis (PFGE). Results In this study, MRSA strains isolated from haemodialysis catheter-related infections expressed virulence markers that mediate adhesion to, and invasion of, RHE. The most frequent pattern of expression (present in 47.6% of the strains) was as follows: fnbA, fnbB, spa, clfA, clfB, cna, bbp, ebps, eap, sdrC, sdrD, sdrE, efb, icaA, and agr. Seventy-one percent of the strains harboured the antibiotic- and disinfectant-resistance genes ermA, ermB, tet(M), tet(K), blaZ, qacA, qacB, and qacC. PFGE of the isolated MRSA revealed three identical strains and two pairs of identical strains. The strains with identical PFGE patterns showed the same phenotypes and genotypes, including the same spa type (t895), suggesting hospital personnel manipulating the haemodialysis equipment could be the source of catheter contamination. Conclusion These findings help define the prevalence of MRSA virulence factors in catheter-related infections. Some of the products of the expressed genes that we detected in this work may serve as potential antigens for inclusion in a vaccine for the prevention of MRSA-catheter-related infections. PMID:24405688

  18. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency.

    PubMed

    Yeh, Hsiang-Yuan; Cheng, Shih-Wu; Lin, Yu-Chun; Yeh, Cheng-Yu; Lin, Shih-Fang; Soo, Von-Wun

    2009-12-21

    Prostate cancer is a world wide leading cancer and it is characterized by its aggressive metastasis. According to the clinical heterogeneity, prostate cancer displays different stages and grades related to the aggressive metastasis disease. Although numerous studies used microarray analysis and traditional clustering method to identify the individual genes during the disease processes, the important gene regulations remain unclear. We present a computational method for inferring genetic regulatory networks from micorarray data automatically with transcription factor analysis and conditional independence testing to explore the potential significant gene regulatory networks that are correlated with cancer, tumor grade and stage in the prostate cancer. To deal with missing values in microarray data, we used a K-nearest-neighbors (KNN) algorithm to determine the precise expression values. We applied web services technology to wrap the bioinformatics toolkits and databases to automatically extract the promoter regions of DNA sequences and predicted the transcription factors that regulate the gene expressions. We adopt the microarray datasets consists of 62 primary tumors, 41 normal prostate tissues from Stanford Microarray Database (SMD) as a target dataset to evaluate our method. The predicted results showed that the possible biomarker genes related to cancer and denoted the androgen functions and processes may be in the development of the prostate cancer and promote the cell death in cell cycle. Our predicted results showed that sub-networks of genes SREBF1, STAT6 and PBX1 are strongly related to a high extent while ETS transcription factors ELK1, JUN and EGR2 are related to a low extent. Gene SLC22A3 may explain clinically the differentiation associated with the high grade cancer compared with low grade cancer. Enhancer of Zeste Homolg 2 (EZH2) regulated by RUNX1 and STAT3 is correlated to the pathological stage. We provide a computational framework to reconstruct the genetic regulatory network from the microarray data using biological knowledge and constraint-based inferences. Our method is helpful in verifying possible interaction relations in gene regulatory networks and filtering out incorrect relations inferred by imperfect methods. We predicted not only individual gene related to cancer but also discovered significant gene regulation networks. Our method is also validated in several enriched published papers and databases and the significant gene regulatory networks perform critical biological functions and processes including cell adhesion molecules, androgen and estrogen metabolism, smooth muscle contraction, and GO-annotated processes. Those significant gene regulations and the critical concept of tumor progression are useful to understand cancer biology and disease treatment.

  19. Ankyrin-binding activity of nervous system cell adhesion molecules expressed in adult brain.

    PubMed

    Davis, J Q; Bennett, V

    1993-01-01

    A family of ankyrin-binding glycoproteins have been identified in adult rat brain that include alternatively spliced products of the same pre-mRNA. A composite sequence of ankyrin-binding glycoprotein (ABGP) shares 72% amino acid sequence identity with chicken neurofascin, a membrane-spanning neural cell adhesion molecule in the Ig super-family expressed in embryonic brain. ABGP polypeptides and ankyrin associate as pure proteins in a 1:1 molar stoichiometry at a site located in the predicted cytoplasmic domain. ABGP polypeptides are expressed late in postnatal development to approximately the same levels as ankyrin, and comprise a significant fraction of brain membrane proteins. Immunofluorescence studies have shown that ABGP polypeptides are co-localized with ankyrinB. Major differences in developmental expression have been reported for neurofascin in embryos compared with the late postnatal expression of ABGP, suggesting that ABGP and neurofascin represent products of gene duplication events that have subsequently evolved in parallel with distinct roles. Predicted cytoplasmic domains of rat ABGP and chicken neurofascin are nearly identical to each other and closely related to a group of nervous system cell adhesion molecules with variable extracellular domains, including L1, Nr-CAM and Ng-CAM of vertebrates, and neuroglian of Drosophila. A hypothesis to be evaluated is that ankyrin-binding activity is shared by all of these proteins.

  20. Inhibitory effect of indigo naturalis on tumor necrosis factor-α-induced vascular cell adhesion molecule-1 expression in human umbilical vein endothelial cells.

    PubMed

    Chang, Hsin-Ning; Pang, Jong-Hwei Su; Yang, Sien-Hung; Hung, Chi-Feng; Chiang, Chi-Hsin; Lin, Tung-Yi; Lin, Yin-Ku

    2010-09-14

    The use of indigo naturalis to treat psoriasis has proved effective in our previous clinical studies. The present study was designed to examine the anti-inflammatory effect of indigo naturalis in primary cultured human umbilical vein endothelial cells (HUVECs). Pretreatment of cells with indigo naturalis extract attenuated TNF-α-induced increase in Jurkat T cell adhesion to HUVECs as well as decreased the protein and messenger (m)RNA expression levels of vascular cell adhesion molecule-1 (VCAM-1) on HUVECs. Indigo naturalis extract also inhibited the protein expression of activator protein-1 (AP-1)/c-Jun, a critical transcription factor for the activation of VCAM-1 gene expression. Since the reduction of lymphocyte adhesion to vascular cells by indigo naturalis extract could subsequently reduce the inflammatory reactions caused by lymphocyte infiltration in the epidermal layer and help to improve psoriasis, this study provides a potential mechanism for the anti-inflammatory therapeutic effect of indigo naturalis extract in psoriasis.

  1. The ST131 Escherichia coli H22 subclone from human intestinal microbiota: Comparison of genomic and phenotypic traits with those of the globally successful H30 subclone.

    PubMed

    Nicolas-Chanoine, Marie-Hélène; Petitjean, Marie; Mora, Azucena; Mayer, Noémie; Lavigne, Jean-Philippe; Boulet, Olivier; Leflon-Guibout, Véronique; Blanco, Jorge; Hocquet, Didier

    2017-03-27

    In 2006, we found healthy subjects carrying ST131 Escherichia coli in their intestinal microbiota consisting of two populations: a subdominant population of fluoroquinolone-resistant E. coli belonging to subclone H30 (H30-R or subclade C1), the current worldwide dominant ST131 subclone, and a dominant E. coli population composed of antibiotic-susceptible E. coli belonging to subclone H22 (clade B), the precursor of subclone H30. We sequenced the whole genome of fecal H22 strain S250, compared it to the genomes of ExPEC ST131 H30-Rx strain JJ1886 and commensal ST131 H41 strain SE15, sought the H22-H30 genomic differences in our fecal strains and assessed their phenotypic consequences. We detected 173 genes found in the Virulence Factor Database, of which 148 were shared by the three ST131 genomes, whereas some were genome-specific, notably those allowing determination of virotype (D for S250 and C for JJ1886). We found three sequences of the FimH site involved in adhesion: two in S250 and SE15 close and identical, respectively, to that previously reported to confer strong intestinal adhesion, and one in JJ1886, corresponding to that commonly present in uropathogenic E. coli. Among the genes involved in sugar metabolism, one encoding a gluconate kinase lacked in S250 and JJ1886. Although this gene was also absent in both our fecal H22 and H30-R strains, H22 strains showed a higher capacity to grow in minimal medium with gluconate. Among the genes involved in gluconate metabolism, only the ghrB gene differed between S250/H22 and JJ1886/H30-R strains, resulting in different gluconate reductases. Of the genes involved in biofilm formation, two were absent in the three genomes and one, fimB, in the JJ1886 genome. Our fecal H30-R strains lacking intact fimB displayed delayed biofilm formation relative to our fecal H22 strains. The H22 strains differed by subclade B type and plasmid content, whereas the H30-R strains were identical. Phenotypic analysis of our fecal strains based on observed genomic differences between S250 and JJ1886 strains suggests the presence of traits related to bacterial commensalism in our H22 strains and traits commonly found in uropathogenic E. coli in our H30-R strains.

  2. Endothelial Activation by Platelets from Sickle Cell Anemia Patients

    PubMed Central

    Proença-Ferreira, Renata; Brugnerotto, Ana Flávia; Garrido, Vanessa Tonin; Dominical, Venina Marcela; Vital, Daiana Morelli; Ribeiro, Marilene de Fátima Reis; dos Santos, Melissa Ercolin; Traina, Fabíola; Olalla-Saad, Sara T.; Costa, Fernando Ferreira; Conran, Nicola

    2014-01-01

    Sickle cell anemia (SCA) is associated with a hypercoagulable state. Increased platelet activation is reported in SCA and SCA platelets may present augmented adhesion to the vascular endothelium, potentially contributing to the vaso-occlusive process. We sought to observe the effects of platelets (PLTs) from healthy control (CON) individuals and SCA individuals on endothelial activation, in vitro. Human umbilical vein endothelial cells (HUVEC) were cultured, in the presence, or not, of washed PLTs from CON or steady-state SCA individuals. Supernatants were reserved for cytokine quantification, and endothelial adhesion molecules (EAM) were analyzed by flow cytometry; gene expressions of ICAM1 and genes of the NF-κB pathway were analyzed by qPCR. SCA PLTs were found to be more inflammatory, displaying increased adhesive properties, an increased production of IL-1β and a tendency towards elevated expressions of P-selectin and activated αIIbβ3. Following culture in the presence of SCA PLTs, HUVEC presented significant augmentations in the expressions of the EAM, ICAM-1 and E-selectin, as well as increased IL-8 production and increased ICAM1 and NFKB1 (encodes p50 subunit of NF-κB) gene expressions. Interestingly, transwell inserts abolished the effects of SCA PLTs on EAM expression. Furthermore, an inhibitor of the NF-κB pathway, BAY 11-7082, also prevented the induction of EAM expression on the HUVEC surface by SCA PLTs. In conclusion, we find further evidence to indicate that platelets circulate in an activated state in sickle cell disease and are capable of stimulating endothelial cell activation. This effect appears to be mediated by direct contact, or even adhesion, between the platelets and endothelial cells and via NFκB-dependent signaling. As such, activated platelets in SCD may contribute to endothelial activation and, therefore, to the vaso-occlusive process. Results provide further evidence to support the use of anti-platelet approaches in association with other therapies for SCD. PMID:24551209

  3. Heterogeneity of circulating epithelial tumour cells from individual patients with respect to expression profiles and clonal growth (sphere formation) in breast cancer.

    PubMed

    Pizon, M; Zimon, D; Carl, S; Pachmann, U; Pachmann, K; Camara, O

    2013-01-01

    The detection of tumour cells circulating in the peripheral blood of patients with breast cancer is a sign that cells have been able to leave the primary tumour and survive in the circulation. However, in order to form metastases, they require additional properties such as the ability to adhere, self-renew, and grow. Here we present data that a variable fraction among the circulating tumour cells detected by the Maintrac(®) approach expresses mRNA of the stem cell gene NANOG and of the adhesion molecule vimentin and is capable of forming tumour spheres, a property ascribed to tumour-initiating cells (TICs). Between ten and 50 circulating epithelial antigen-positive cells detected by the Maintrac approach were selected randomly from each of 20 patients with breast cancer before and after surgery and were isolated using automated capillary aspiration and deposited individually onto slides for expression profiling. In addition, the circulating tumour cells were cultured without isolation among the white blood cells from 39 patients with breast cancer in different stages of disease using culture methods favouring growth of epithelial cells. Although no epithelial cell adhesion molecule (EpCAM)-positive cells expressing stem cell genes or the adhesion molecule vimentin was detected before surgery, 10%-20% of the cells were found to be positive for mRNA of these genes after surgery. Tumour spheres from circulating cells of 39 patients with different stages of breast cancer were grown without previous isolation in a fraction increasing with the aggressivity of the tumour. Here we show that among the peripherally circulating tumour cells, a variable fraction is able to express stem cell and adhesion properties and can be grown into tumour spheres, a property ascribed to cells capable of initiating tumours and metastases.

  4. Effects of strain and age on hepatic gene expression profiles in murine models of HFE-associated hereditary hemochromatosis.

    PubMed

    Lee, Seung-Min; Loguinov, Alexandre; Fleming, Robert E; Vulpe, Christopher D

    2015-01-01

    Hereditary hemochromatosis is an iron overload disorder most commonly caused by a defect in the HFE gene. While the genetic defect is highly prevalent, the majority of individuals do not develop clinically significant iron overload, suggesting the importance of genetic modifiers. Murine hfe knockout models have demonstrated that strain background has a strong effect on the severity of iron loading. We noted that hepatic iron loading in hfe-/- mice occurs primarily over the first postnatal weeks (loading phase) followed by a timeframe of relatively static iron concentrations (plateau phase). We thus evaluated the effects of background strain and of age on hepatic gene expression in Hfe knockout mice (hfe-/-). Hepatic gene expression profiles were examined using cDNA microarrays in 4- and 8-week-old hfe-/- and wild-type mice on two different genetic backgrounds, C57BL/6J (C57) and AKR/J (AKR). Genes differentially regulated in all hfe-/- mice groups, compared with wild-type mice, including those involved in cell survival, stress and damage responses and lipid metabolism. AKR strain-specific changes in lipid metabolism genes and C57 strain-specific changes in cell adhesion and extracellular matrix protein genes were detected in hfe-/- mice. Mouse strain and age are each significantly associated with hepatic gene expression profiles in hfe-/- mice. These affects may underlie or reflect differences in iron loading in these mice.

  5. Concurrent Host-Pathogen Transcriptional Responses in a Clostridium perfringens Murine Myonecrosis Infection

    PubMed Central

    2018-01-01

    ABSTRACT To obtain an insight into host-pathogen interactions in clostridial myonecrosis, we carried out comparative transcriptome analysis of both the bacterium and the host in a murine Clostridium perfringens infection model, which is the first time that such an investigation has been conducted. Analysis of the host transcriptome from infected muscle tissues indicated that many genes were upregulated compared to the results seen with mock-infected mice. These genes were enriched for host defense pathways, including Toll-like receptor (TLR) and Nod-like receptor (NLR) signaling components. Real-time PCR confirmed that host TLR2 and NLRP3 inflammasome genes were induced in response to C. perfringens infection. Comparison of the transcriptome of C. perfringens cells from the infected tissues with that from broth cultures showed that host selective pressure induced a global change in C. perfringens gene expression. A total of 33% (923) of C. perfringens genes were differentially regulated, including 10 potential virulence genes that were upregulated relative to their expression in vitro. These genes encoded putative proteins that may be involved in the synthesis of cell wall-associated macromolecules, in adhesion to host cells, or in protection from host cationic antimicrobial peptides. This report presents the first successful expression profiling of coregulated transcriptomes of bacterial and host genes during a clostridial myonecrosis infection and provides new insights into disease pathogenesis and host-pathogen interactions. PMID:29588405

  6. Differential Expression of Adhesion-Related Proteins and MAPK Pathways Lead to Suitable Osteoblast Differentiation of Human Mesenchymal Stem Cells Subpopulations.

    PubMed

    Leyva-Leyva, Margarita; López-Díaz, Annia; Barrera, Lourdes; Camacho-Morales, Alberto; Hernandez-Aguilar, Felipe; Carrillo-Casas, Erika M; Arriaga-Pizano, Lourdes; Calderón-Pérez, Jaime; García-Álvarez, Jorge; Orozco-Hoyuela, Gabriel; Piña-Barba, Cristina; Rojas-Martínez, Augusto; Romero-Díaz, Víktor; Lara-Arias, Jorge; Rivera-Bolaños, Nancy; López-Camarillo, César; Moncada-Saucedo, Nidia; Galván-De los Santos, Alejandra; Meza-Urzúa, Fátima; Villarreal-Gómez, Luis; Fuentes-Mera, Lizeth

    2015-11-01

    Cellular adhesion enables communication between cells and their environment. Adhesion can be achieved throughout focal adhesions and its components influence osteoblast differentiation of human mesenchymal stem cells (hMSCs). Because cell adhesion and osteoblast differentiation are closely related, this article aimed to analyze the expression profiles of adhesion-related proteins during osteoblastic differentiation of two hMSCs subpopulations (CD105(+) and CD105(-)) and propose a strategy for assembling bone grafts based on its adhesion ability. In vitro experiments of osteogenic differentiation in CD105(-) cells showed superior adhesion efficiency and 2-fold increase of α-actinin expression compared with CD105(+) cells at the maturation stage. Interestingly, levels of activated β1-integrin increased in CD105(-) cells during the process. Additionally, the CD105(-) subpopulation showed 3-fold increase of phosphorylated FAK(Y397) compared to CD105(+) cells. Results also indicate that ERK1/2 was activated during CD105(-) bone differentiation and participation of mitogen-activated protein kinase (MAPK)-p38 in CD105(+) differentiation through a focal adhesion kinase (FAK)-independent pathway. In vivo trial demonstrated that grafts containing CD105(-) showed osteocytes embedded in a mineralized matrix, promoted adequate graft integration, increased host vascular infiltration, and efficient intramembranous repairing. In contrast, grafts containing CD105(+) showed deficient endochondral ossification and fibrocartilaginous tissue. Based on the expression of α-actinin, FAKy,(397) and ERK1/2 activation, we define maturation stage as critical for bone graft assembling. By in vitro assays, CD105(-) subpopulation showed superior adhesion efficiency compared to CD105(+) cells. Considering in vitro and in vivo assays, this study suggests that integration of a scaffold with CD105(-) subpopulation at the maturation stage represents an attractive strategy for clinical use in orthopedic bioengineering.

  7. Combinatorial materials research applied to the development of new surface coatings VII: An automated system for adhesion testing

    NASA Astrophysics Data System (ADS)

    Chisholm, Bret J.; Webster, Dean C.; Bennett, James C.; Berry, Missy; Christianson, David; Kim, Jongsoo; Mayo, Bret; Gubbins, Nathan

    2007-07-01

    An automated, high-throughput adhesion workflow that enables pseudobarnacle adhesion and coating/substrate adhesion to be measured on coating patches arranged in an array format on 4×8in.2 panels was developed. The adhesion workflow consists of the following process steps: (1) application of an adhesive to the coating array; (2) insertion of panels into a clamping device; (3) insertion of aluminum studs into the clamping device and onto coating surfaces, aligned with the adhesive; (4) curing of the adhesive; and (5) automated removal of the aluminum studs. Validation experiments comparing data generated using the automated, high-throughput workflow to data obtained using conventional, manual methods showed that the automated system allows for accurate ranking of relative coating adhesion performance.

  8. Molecular cloning, gene expression analysis, and recombinant protein expression of novel silk proteins from larvae of a retreat-maker caddisfly, Stenopsyche marmorata.

    PubMed

    Bai, Xue; Sakaguchi, Mayo; Yamaguchi, Yuko; Ishihara, Shiori; Tsukada, Masuhiro; Hirabayashi, Kimio; Ohkawa, Kousaku; Nomura, Takaomi; Arai, Ryoichi

    2015-08-28

    Retreat-maker larvae of Stenopsyche marmorata, one of the major caddisfly species in Japan, produce silk threads and adhesives to build food capture nets and protective nests in water. Research on these underwater adhesive silk proteins potentially leads to the development of new functional biofiber materials. Recently, we identified four major S. marmorata silk proteins (Smsps), Smsp-1, Smsp-2, Smsp-3, and Smsp-4 from silk glands of S. marmorata larvae. In this study, we cloned full-length cDNAs of Smsp-2, Smsp-3, and Smsp-4 from the cDNA library of the S. marmorata silk glands to reveal the primary sequences of Smsps. Homology search results of the deduced amino acid sequences indicate that Smsp-2 and Smsp-4 are novel proteins. The Smsp-2 sequence [167 amino acids (aa)] has an array of GYD-rich repeat motifs and two (SX)4E motifs. The Smsp-4 sequence (132 aa) contains a number of GW-rich repeat motifs and three (SX)4E motifs. The Smsp-3 sequence (248 aa) exhibits high homology with fibroin light chain of other caddisflies. Gene expression analysis of Smsps by real-time PCR suggested that the gene expression of Smsp-1 and Smsp-3 was relatively stable throughout the year, whereas that of Smsp-2 and Smsp-4 varied seasonally. Furthermore, Smsps recombinant protein expression was successfully performed in Escherichia coli. The study provides new molecular insights into caddisfly aquatic silk and its potential for future applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Ricin-B-lectin enhances microsporidia Nosema bombycis infection in BmN cells from silkworm Bombyx mori.

    PubMed

    Liu, Han; Li, Mingqian; Cai, Shunfeng; He, Xinyi; Shao, Yongqi; Lu, Xingmeng

    2016-11-01

    Nosema bombycis is an obligate intracellular parasitic fungus that utilizes a distinctive mechanism to infect Bombyx mori Spore germination can be used for host cell invasion; however, the detailed mechanism remains to be elucidated. The ricin-B-lectin (RBL) gene is significantly differentially regulated after N. bombycis spore germination, and NbRBL might play roles in spore germination and infection. In this study, the biological function of NbRBL was examined. Protein sequence analysis showed that NbRBL is a secreted protein that attaches to carbohydrates. The relative expression level of the NbRBL gene was low during the first 30 h post-infection (hpi) in BmN cells, and high expression was detected from 42 hpi. Gene cloning, prokaryotic expression, and antibody preparation for NbRBL were performed. NbRBL was detected in total and secreted proteins using western blot analysis. Subcellular localization analysis showed that NbRBL is an intracellular protein. Spore adherence and infection assays showed that NbRBL could enhance spore adhesion to BmN cells; the proliferative activities of BmN cells incubated with anti-NbRBL were higher than those in negative control groups after N. bombycis infection; and the treatment groups showed less damage from spore invasion. We therefore, propose that NbRBL is released during spore germination, enhances spore adhesion to BmN cells, and contributes to spore invasion. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. A secretome analysis reveals that PPARα is upregulated by fractionated-dose γ-irradiation in three-dimensional keratinocyte cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeeyong; Kim, Hyun-Ji; Yi, Jae Youn, E-mail: yjy_71@kcch.re.kr

    Studies have shown that γ-irradiation induces various biological responses, including oxidative stress and apoptosis, as well as cellular repair and immune system responses. However, most such studies have been performed using traditional two-dimensional cell culture systems, which are limited in their ability to faithfully represent in vivo conditions. A three-dimensional (3D) environment composed of properly interconnected and differentiated cells that allow communication and cooperation among cells via secreted molecules would be expected to more accurately reflect cellular responses. Here, we investigated γ-irradiation–induced changes in the secretome of 3D-cultured keratinocytes. An analysis of keratinocyte secretome profiles following fractionated-dose γ-irradiation revealed changes inmore » genes involved in cell adhesion, angiogenesis, and the immune system. Notably, peroxisome proliferator-activated receptor-α (PPARα) was upregulated in response to fractionated-dose γ-irradiation. This upregulation was associated with an increase in the transcription of known PPARα target genes in secretome, including angiopoietin-like protein 4, dermokine and kallikrein-related peptide 12, which were differentially regulated by fractionated-dose γ-irradiation. Collectively, our data imply a mechanism linking γ-irradiation and secretome changes, and suggest that these changes could play a significant role in the coordinated cellular responses to harmful ionizing radiation, such as those associated with radiation therapy. This extension of our understanding of γ-irradiation-induced secretome changes has the potential to improve radiation therapy strategies. - Highlights: • γ-irradiation induced changes of cell adhesion, angiogenesis, and immune system in secretome of 3D-cultured keratinocytes. • Peroxisome proliferator-activated receptor-α (PPARα) was upregulated in response to fractionated-dose γ-irradiation. • The known PPARα target genes were differentially regulated by fractionated-dose γ-irradiation.« less

  11. Stresses in adhesively bonded joints - A closed-form solution

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1981-01-01

    The general plane strain problem of adhesively bonded structures consisting of two different, orthotropic adherends is considered, under the assumption that adherend thicknesses are constant and small in relation to the lateral dimensions of the bonded region, so that they may be treated as plates. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form, with a single lap joint and a stiffened plate under various loading conditions being considered as examples. It is found that the plate theory used in the analysis not only predicts the correct trend for adhesive stresses but gives surprisingly accurate results, the solution being obtained by assuming linear stress-strain relations for the adhesive.

  12. A new gene for asthma: would you ADAM and Eve it?

    PubMed

    Cookson, William

    2003-04-01

    Recently, a novel gene was reported to underlie asthma. Linkage to the short arm of chromosome 20 in a genome screen was followed by positive tests of association that centre on the gene for a membrane-anchored zinc-dependent metalloproteinase known as ADAM33. The domain structure of the ADAM33 protein gives capabilities of proteolysis, adhesion, cell fusion and intracellular signalling. Although its function is at present unknown, these potential actions of ADAM33 provide many possibilities for further research.

  13. Comprehensive evaluation of gene expression signatures in response to electroacupuncture stimulation at Zusanli (ST36) acupoint by transcriptomic analysis.

    PubMed

    Wu, Jing-Shan; Lo, Hsin-Yi; Li, Chia-Cheng; Chen, Feng-Yuan; Hsiang, Chien-Yun; Ho, Tin-Yun

    2017-08-15

    Electroacupuncture (EA) has been applied to treat and prevent diseases for years. However, molecular events happened in both the acupunctured site and the internal organs after EA stimulation have not been clarified. Here we applied transcriptomic analysis to explore the gene expression signatures after EA stimulation. Mice were applied EA stimulation at ST36 for 15 min and nine tissues were collected three hours later for microarray analysis. We found that EA affected the expression of genes not only in the acupunctured site but also in the internal organs. EA commonly affected biological networks involved in cytoskeleton and cell adhesion, and also regulated unique process networks in specific organs, such as γ-aminobutyric acid-ergic neurotransmission in brain and inflammation process in lung. In addition, EA affected the expression of genes related to various diseases, such as neurodegenerative diseases in brain and obstructive pulmonary diseases in lung. This report applied, for the first time, a global comprehensive genome-wide approach to analyze the gene expression profiling of acupunctured site and internal organs after EA stimulation. The connection between gene expression signatures, biological processes, and diseases might provide a basis for prediction and explanation on the therapeutic potentials of acupuncture in organs.

  14. A Critical Role of Platelet Adhesion in the Initiation of Atherosclerotic Lesion Formation

    PubMed Central

    Massberg, Steffen; Brand, Korbinian; Grüner, Sabine; Page, Sharon; Müller, Elke; Müller, Iris; Bergmeier, Wolfgang; Richter, Thomas; Lorenz, Michael; Konrad, Ildiko; Nieswandt, Bernhard; Gawaz, Meinrad

    2002-01-01

    The contribution of platelets to the process of atherosclerosis remains unclear. Here, we show in vivo that platelets adhere to the vascular endothelium of the carotid artery in ApoE − / − mice before the development of manifest atherosclerotic lesions. Platelet–endothelial cell interaction involved both platelet glycoprotein (GP)Ibα and GPIIb-IIIa. Platelet adhesion to the endothelium coincides with inflammatory gene expression and preceded atherosclerotic plaque invasion by leukocytes. Prolonged blockade of platelet adhesion in ApoE − / − mice profoundly reduced leukocyte accumulation in the arterial intima and attenuated atherosclerotic lesion formation in the carotid artery bifurcation, the aortic sinus, and the coronary arteries. These findings establish the platelet as a major player in initiation of the atherogenetic process. PMID:12370251

  15. Differential stress responses among newly received calves: variations in reductant capacity and Hsp gene expression

    PubMed Central

    Eitam, Harel; Vaya, Jacob; Brosh, Arieh; Orlov, Ala; Khatib, Soliman; Izhaki, Ido

    2010-01-01

    Bovine respiratory disease complex (BRD), a major economic concern to the beef cattle industry all over the world, is triggered by physical, biological and psychological stresses. It is becoming noticeable that the key to reducing BRD appears to be centered at reducing the response to stress. The aims of the present study were to detect individual variations in the stress response of newly received young calves through their leukocyte heat shock protein (Hsp) response, selected neutrophil-related gene expression and oxidative stress, and relate them to pulmonary adhesions at slaughter, an indicative sign of clinical and subclinical episodes of BRD at an early age. Differential expression patterns of Hsp60 and Hsp70A1A were revealed in newly received calves 1 h, 5 h and 1 day after arrival, distinguishing between stress-responsive and non-stress-responsive individuals. Plasma cortisol was also indicative of stress-responsive and non-stress-responsive individuals, 1 h and 5 h after arrival. At the longer term, β-glycan levels were highest 7 days after arrival and significantly correlated with an adhesion-free phenotype at slaughter. Oxidative stress responses, measured through the oxidation products of the exogenous linoleoyl tyrosine (LT) marker, revealed that hydroperoxidation and epoxidation of membranes may readily occur. Based on the LT oxidation products and levels of β-glycan, we present a discriminant analysis model, according to which vulnerable individuals may be predicted at near 100% probability 7 days after arrival. Since clinical signs of BRD may often go undetected in feedlot calves, such a model, after its examination in large-scale experiments, may be a reliable tool for an early prediction of subclinical signs of BRD. PMID:20401744

  16. Reciprocal interaction between dental alloy biocorrosion and Streptococcus mutans virulent gene expression.

    PubMed

    Zhang, Songmei; Qiu, Jing; Ren, Yanfang; Yu, Weiqiang; Zhang, Fuqiang; Liu, Xiuxin

    2016-04-01

    Corrosion of dental alloys is a major concern in dental restorations. Streptococcus mutans reduces the pH in oral cavity and induces demineralization of the enamel as well as corrosion of restorative dental materials. The rough surfaces of dental alloys induced by corrosion enhance the subsequent accumulation of plaque. In this study, the corrosion process of nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloys in a nutrient-rich medium containing S. mutans was studied using inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test. Our results showed that the release of Ni and Co ions increased, particularly after incubation for 3 days. The electrochemical corrosion results showed a significant decrease in the corrosion resistance (Rp) value after the alloys were immersed in the media containing S. mutans for 3 days. Correspondingly, XPS revealed a reduction in the relative dominance of Ni, Co, and Cr in the surface oxides after the alloys were immersed in the S. mutans culture. After removal of the biofilm, the pre-corroded alloys were re-incubated in S. mutans medium, and the expressions of genes associated with the adhesion and acidogenesis of S. mutans, including gtfBCD, gbpB, fif and ldh, were evaluated by detecting the mRNA levels using real-time reverse transcription polymerase chain reaction (RT-PCR). We found that the gtfBCD, gbpB, ftf and Idh expression of S. mutans were noticeably increased after incubation with pre-corroded alloys for 24 h. This study demonstrated that S. mutans enhanced the corrosion behavior of the dental alloys, on the other hand, the presence of corroded alloy surfaces up-regulated the virulent gene expression in S. mutans. Compared with smooth surfaces, the rough corroded surfaces of dental alloys accelerated the bacteria-adhesion and corrosion process by changing the virulence gene expression of S. mutans.

  17. Developmental Exposure to Diethylstilbestrol Alters Uterine Gene Expression That May Be Associated With Uterine Neoplasia Later in Life

    PubMed Central

    Newbold, Retha R.; Jefferson, Wendy N.; Grissom, Sherry F.; Padilla-Banks, Elizabeth; Snyder, Ryan J.; Lobenhofer, Edward K.

    2008-01-01

    Previously, we described a mouse model where the well-known reproductive carcinogen with estrogenic activity, diethylstilbestrol (DES), caused uterine adenocarcinoma following neonatal treatment. Tumor incidence was dose-dependent reaching >90% by 18 mo following neonatal treatment with 1000 μg/kg/d of DES. These tumors followed the initiation/promotion model of hormonal carcinogenesis with developmental exposure as initiator, and exposure to ovarian hormones at puberty as the promoter. To identify molecular pathways involved in DES-initiation events, uterine gene expression profiles were examined in prepubertal mice exposed to DES (1, 10, or 1000 μg/kg/d) on days 1–5 and compared to controls. Of more than 20 000 transcripts, approximately 3% were differentially expressed in at least one DES treatment group compared to controls; some transcripts demonstrated dose–responsiveness. Assessment of gene ontology annotation revealed alterations in genes associated with cell growth, differentiation, and adhesion. When expression profiles were compared to published studies of uteri from 5-d-old DES-treated mice, or adult mice treated with 17β estradiol, similarities were seen suggesting persistent differential expression of estrogen responsive genes following developmental DES exposure. Moreover, several altered genes were identified in human uterine adenocarcinomas. Four altered genes [lactotransferrin (Ltf), transforming growth factor beta inducible (Tgfb1), cyclin D1 (Ccnd1), and secreted frizzled-related protein 4 (Sfrp4)], selected for real-time RT-PCR analysis, correlated well with the directionality of the microarray data. These data suggested altered gene expression profiles observed 2 wk after treatment ceased, were established at the time of developmental exposure and maybe related to the initiation events resulting in carcinogenesis. PMID:17394237

  18. Developmental exposure to diethylstilbestrol alters uterine gene expression that may be associated with uterine neoplasia later in life.

    PubMed

    Newbold, Retha R; Jefferson, Wendy N; Grissom, Sherry F; Padilla-Banks, Elizabeth; Snyder, Ryan J; Lobenhofer, Edward K

    2007-09-01

    Previously, we described a mouse model where the well-known reproductive carcinogen with estrogenic activity, diethylstilbestrol (DES), caused uterine adenocarcinoma following neonatal treatment. Tumor incidence was dose-dependent reaching >90% by 18 mo following neonatal treatment with 1000 microg/kg/d of DES. These tumors followed the initiation/promotion model of hormonal carcinogenesis with developmental exposure as initiator, and exposure to ovarian hormones at puberty as the promoter. To identify molecular pathways involved in DES-initiation events, uterine gene expression profiles were examined in prepubertal mice exposed to DES (1, 10, or 1000 microg/kg/d) on days 1-5 and compared to controls. Of more than 20 000 transcripts, approximately 3% were differentially expressed in at least one DES treatment group compared to controls; some transcripts demonstrated dose-responsiveness. Assessment of gene ontology annotation revealed alterations in genes associated with cell growth, differentiation, and adhesion. When expression profiles were compared to published studies of uteri from 5-d-old DES-treated mice, or adult mice treated with 17beta estradiol, similarities were seen suggesting persistent differential expression of estrogen responsive genes following developmental DES exposure. Moreover, several altered genes were identified in human uterine adenocarcinomas. Four altered genes [lactotransferrin (Ltf), transforming growth factor beta inducible (Tgfb1), cyclin D1 (Ccnd1), and secreted frizzled-related protein 4 (Sfrp4)], selected for real-time RT-PCR analysis, correlated well with the directionality of the microarray data. These data suggested altered gene expression profiles observed 2 wk after treatment ceased, were established at the time of developmental exposure and maybe related to the initiation events resulting in carcinogenesis. (c) 2007 Wiley-Liss, Inc.

  19. Epigenetics insights into chronic pain: DNA hypomethylation in fibromyalgia-a controlled pilot-study.

    PubMed

    Ciampi de Andrade, Daniel; Maschietto, Mariana; Galhardoni, Ricardo; Gouveia, Gisele; Chile, Thais; Victorino Krepischi, Ana C; Dale, Camila S; Brunoni, André R; Parravano, Daniella C; Cueva Moscoso, Ana S; Raicher, Irina; Kaziyama, Helena H S; Teixeira, Manoel J; Brentani, Helena P

    2017-08-01

    To evaluate changes in DNA methylation profiles in patients with fibromyalgia (FM) compared to matched healthy controls (HCs). All individuals underwent full clinical and neurophysiological assessment by cortical excitability (CE) parameters measured by transcranial magnetic stimulation. DNA from the peripheral blood of patients with FM (n = 24) and HC (n = 24) were assessed using the Illumina-HumanMethylation450 BeadChips. We identified 1610 differentially methylated positions (DMPs) in patients with FM displaying a nonrandom distribution in regions of the genome. Sixty-nine percent of DMP in FM were hypomethylated compared to HC. Differentially methylated positions were enriched in 5 genomic regions (1p34; 6p21; 10q26; 17q25; 19q13). The functional characterization of 960 genes related to DMPs revealed an enrichment for MAPK signaling pathway (n = 18 genes), regulation of actin cytoskeleton (n = 15 genes), and focal adhesion (n = 13 genes). A gene-gene interaction network enrichment analysis revealed the participation of DNA repair pathways, mitochondria-related processes, and synaptic signaling. Even though DNA was extracted from peripheral blood, this set of genes was enriched for disorders such as schizophrenia, mood disorders, bulimia, hyperphagia, and obesity. Remarkably, the hierarchical clusterization based on the methylation levels of the 1610 DMPs showed an association with neurophysiological measurements of CE in FM and HC. Fibromyalgia has a hypomethylation DNA pattern, which is enriched in genes implicated in stress response and DNA repair/free radical clearance. These changes occurred parallel to changes in CE parameters. New epigenetic insights into the pathophysiology of FM may provide the basis for the development of biomarkers of this disorder.

  20. The Cellular Form of Human Fibronectin as an Adhesion Target for the S Fimbriae of Meningitis-Associated Escherichia coli

    PubMed Central

    Sarén, Anne; Virkola, Ritva; Hacker, Jörg; Korhonen, Timo K.

    1999-01-01

    The adhesion of the S fimbriae of meningitis-associated Escherichia coli O18ac:K1:H7 to the cellular and the plasma forms of human fibronectin was studied. E. coli HB101(pAZZ50) expressing the complete S-fimbria II gene cluster of E. coli O18 adhered to cellular fibronectin (cFn) on glass but not to plasma fibronectin (pFn). Adhesion to cFn was specifically inhibited by neuraminidase treatment of cFn as well as by incubation of the bacteria with sialyl-α2-3-lactose, a receptor analog of the S fimbriae. No significant adhesion to cFn or pFn was detected with E. coli HB101(pAZZ50-67) expressing S fimbriae lacking the SfaS lectin subunit. Strain HB101(pAZZ50) also adhered to a human fibroblast cell culture known to be rich in cFn, and the adhesion was specifically inhibited in the presence of polyclonal antibodies to cFn. The results show that the SfaS lectin of the S fimbriae mediates the adherence of meningitis-associated E. coli to sialyl oligosaccharide chains of cFn. PMID:10225941

  1. Mycobacterium tuberculosis Pili promote adhesion to and invasion of THP-1 macrophages.

    PubMed

    Ramsugit, Saiyur; Pillay, Manormoney

    2014-01-01

    Central to the paradigm of the pathogenesis of Mycobacterium tuberculosis is its ability to attach to, enter, and subsequently survive in host macrophages. However, little is known regarding the bacterial adhesins and invasins involved in this interaction with host macrophages. Pili are cell-surface structures produced by certain bacteria and have been implicated in adhesion to and invasion of phagocytes in several species. M. tuberculosis pili (MTP) are encoded by the Rv3312A (mtp) gene. In the present study, we assessed the ability of a Δmtp mutant and an mtp-complemented clinical strain to adhere to and invade THP-1 macrophages in comparison with the parental strain by determining colony-forming units. Both adhesion to and invasion of macrophages, although not reaching significance, were markedly reduced by 42.16% (P = 0.107) and 69.02% (P = 0.052), respectively, in the pili-deficient Δmtp mutant as compared with the wild-type. The pili-overexpressing complemented strain showed significantly higher levels of THP-1 macrophage adhesion (P = 0.000) and invasion (P = 0.040) than the mutant. We, thus, identified a novel adhesin and invasin of M. tuberculosis involved in adhesion to and invasion of macrophages.

  2. Carriage of adhesive Escherichia coli after restorative proctocolectomy and pouch anal anastomosis: relation with functional outcome and inflammation.

    PubMed Central

    Lobo, A J; Sagar, P M; Rothwell, J; Quirke, P; Godwin, P; Johnston, D; Axon, A T

    1993-01-01

    Restorative proctocolectomy with pelvic ileal reservoir is a well accepted option for the surgical treatment of ulcerative colitis. Acute pouchitis is a common complication and resembles acute ulcerative colitis. Patients with ulcerative colitis carry Escherichia coli that adhere to epithelial cells and thus this study examined whether acute pouchitis is associated with the carriage of adhesive E coli. E coli isolated from stool samples from 24 patients (median age 34 years, range 16-64; 13 men, 11 women) who had had restorative proctocolectomy with pelvic ileal reservoir were examined by means of the buccal epithelial cell adhesion assay. Patients were studied at a median of 12 months (range 7-21) after operation. Eight of 24 patients had acute pouchitis at the time of study. Adhesive E coli were detected in nine of 24 patients with a pelvic ileal reservoir compared with none of 12 controls (p < 0.05). The buccal epithelial cell adhesion index was inversely related to the degree of acute pouchitis (rs = 0.46, p = 0.024) and to the functional outcome (rs = -0.49, p = 0.022). Carriage of adhesive E coli was not related to the design of the reservoir. By contrast with ulcerative colitis, acute pouchitis is not associated with the carriage of adhesive E coli. PMID:8244105

  3. The TGF-beta-induced gene product, betaig-h3: its biological implications in peritoneal dialysis.

    PubMed

    Park, Sun-Hee; Choi, Soon-Youn; Kim, Mi-Hyung; Oh, Eun-Joo; Ryu, Hye Myung; Kim, Chan-Duck; Kim, In-San; Kim, Yong-Lim

    2008-01-01

    TGF-beta is involved in peritoneal changes during long-term peritoneal dialysis (PD). TGF-beta induces betaig-h3 in several cell lines, and betaig-h3 may be a marker for biologically active TGF-beta. However, no study has reported induction of betaig-h3 in human peritoneal mesothelial cells (HPMCs) or its involvement in PD-related peritoneal membrane changes. We used cultured HPMCs to investigate the biological roles of betaig-h3 during mesothelial cell injury and repair, employing the adhesion, spreading, scratching and cell migration assays. Changes in betaig-h3 expression after high glucose exposure in vivo were also evaluated using an animal chronic PD model. In vitro, TGF-beta1 induced betaig-h3 in cultured HPMCs, and betaig-h3-mediated mesothelial cell adhesion occurred via alphavbeta3 integrin. betaig-h3 enhanced mesothelial cell adhesion and migration and, in part, wound healing during mesothelial cell injury. The animal study demonstrated that compared to the control group, betaig-h3 concentrations in the dialysate effluent increased in the dialysis group with alterations in peritoneal structure and function during PD, and betaig-h3 positively correlated with peritoneal solute transport. Immunohistochemical and immunoblotting results showed that betaig-h3 localizes in the mesothelium and submesothelial matrix of the parietal peritoneum, and in the vascular endothelium of omentum. betaig-h3 protein expression was higher in the dialysis group. In vitro, betaig-h3 induced by TGF-beta1 in HPMCs improved adhesion and migration of HPMCs during wound healing. In the chronic infusion model of PD, betaig-h3 played a role in the functional deterioration of the peritoneal membrane, which is associated with fibrosis.

  4. Molecular Basis for Strain Variation in the Saccharomyces cerevisiae Adhesin Flo11p

    PubMed Central

    Li, Li; Lipke, Peter N.; Dranginis, Anne M.

    2016-01-01

    ABSTRACT FLO11 encodes a yeast cell wall flocculin that mediates a variety of adhesive phenotypes in Saccharomyces cerevisiae. Flo11p is implicated in many developmental processes, including flocculation, formation of pseudohyphae, agar invasion, and formation of microbial mats and biofilms. However, Flo11p mediates different processes in different yeast strains. To investigate the mechanisms by which FLO11 determines these differences in colony morphology, flocculation, and invasion, we studied gene structure, function, and expression levels. Nonflocculent Saccharomyces cerevisiae Σ1278b cells exhibited significantly higher FLO11 mRNA expression, especially in the stationary phase, than highly flocculent S. cerevisiae var. diastaticus. The two strains varied in cell surface hydrophobicity, and Flo11p contributed significantly to surface hydrophobicity in S. cerevisiae var. diastaticus but not in strain Σ1278b. Sequencing of the FLO11 gene in S. cerevisiae var. diastaticus revealed strain-specific differences, including a 15-amino-acid insertion in the adhesion domain. Flo11p adhesion domains from strain Σ1278b and S. cerevisiae var. diastaticus were expressed and used to coat magnetic beads. The adhesion domain from each strain bound preferentially to homologous cells, and the preferences were independent of the cells in which the adhesion domains were produced. These results are consistent with the idea that strain-specific variations in the amino acid sequences in the adhesion domains cause different Flo11p flocculation activities. The results also imply that strain-specific differences in expression levels, posttranslational modifications, and allelic differences outside the adhesion domains have little effect on flocculation. IMPORTANCE As a nonmotile organism, Saccharomyces cerevisiae employs the cell surface flocculin Flo11/Muc1 as an important means of adapting to environmental change. However, there is a great deal of strain variation in the expression of Flo11-dependent phenotypes, including flocculation. In this study, we investigated the molecular basis of this strain-specific phenotypic variability. Our data indicate that strain-specific differences in the level of flocculation result from significant sequence differences in the FLO11 alleles and do not depend on quantitative differences in FLO11 expression or on surface hydrophobicity. We further have shown that beads coated with amino-terminal domain peptide bind preferentially to homologous cells. These data show that variability in the structure of the Flo11 adhesion domain may thus be an important determinant of membership in microbial communities and hence may drive selection and evolution. PMID:27547826

  5. High-throughput sequencing identification and characterization of potentially adhesion-related small RNAs in Streptococcus mutans.

    PubMed

    Zhu, Wenhui; Liu, Shanshan; Liu, Jia; Zhou, Yan; Lin, Huancai

    2018-05-01

    Adherence capacity is one of the principal virulence factors of Streptococcus mutans, and adhesion virulence factors are controlled by small RNAs (sRNAs) at the post-transcriptional level in various bacteria. Here, we aimed to identify and decipher putative adhesion-related sRNAs in clinical strains of S. mutans. RNA deep-sequencing was performed to identify potential sRNAs under different adhesion conditions. The expression of sRNAs was analysed by quantitative real-time PCR (qRT-PCR), and bioinformatic methods were used to predict the functional characteristics of sRNAs. A total of 736 differentially expressed candidate sRNAs were predicted, and these included 352 sRNAs located on the antisense to mRNA (AM) and 384 sRNAs in intergenic regions (IGRs). The top 7 differentially expressed sRNAs were successfully validated by qRT-PCR in UA159, and 2 of these were further confirmed in 100 clinical isolates. Moreover, the sequences of two sRNAs were conserved in other Streptococcus species, indicating a conserved role in such closely related species. A good correlation between the expression of sRNAs and the adhesion of 100 clinical strains was observed, which, combined with GO and KEGG, provides a perspective for the comprehension of sRNA function annotation. This study revealed a multitude of novel putative adhesion-related sRNAs in S. mutans and contributed to a better understanding of information concerning the transcriptional regulation of adhesion in S. mutans.

  6. Expression of adhesion and extracellular matrix genes in human blastocysts upon attachment in a 2D co-culture system.

    PubMed

    Aberkane, A; Essahib, W; Spits, C; De Paepe, C; Sermon, K; Adriaenssens, T; Mackens, S; Tournaye, H; Brosens, J J; Van de, Velde H

    2018-05-26

    What are the changes in human embryos, in terms of morphology and gene expression, upon attachment to endometrial epithelial cells? Apposition and adhesion of human blastocysts to endometrial epithelial cells are predominantly initiated at the embryonic pole and these steps are associated with changes in expression of adhesion and extracellular matrix (ECM) genes in the embryo. Both human and murine embryos have been co-cultured with Ishikawa cells, although embryonic gene expression associated with attachment has not yet been investigated in an in-vitro implantation model. Vitrified human blastocysts were warmed and co-cultured for up to 48 h with Ishikawa cells, a model cell line for receptive endometrial epithelium. Six-days post fertilisation (6dpf) human embryos were co-cultured with Ishikawa cells for 12 h, 24 h (7dpf) or 48 h (8dpf) and attachment rate and morphological development investigated. Expression of 84 adhesion and ECM genes was analysed by quantitative PCR. Immunofluorescence microscopy was used to assess the expression of three informative genes at the protein level. Data are reported on 115 human embryos. Mann-Whitney U was used for statistical analysis between two groups, with P < 0.05 considered significant. The majority of embryos attached to Ishikawa cells at the level of the polar trophectoderm; 41% of co-cultured embryos were loosely attached after 12 h and 86% firmly attached after 24 h. Outgrowth of hCG-positive embryonic cells at 8dpf indicated differentiation of trophectoderm into invasive syncytiotrophoblast. Gene expression analysis was performed on loosely attached and unattached embryos co-cultured with Ishikawa cells for 12 h. In contrast to unattached embryos, loosely attached embryos expressed THBS1, TNC, COL12A1, CTNND2, ITGA3, ITGAV, and LAMA3 and had significantly higher CD44 and TIMP1 transcript levels (P = 0.014 and P = 0.029, respectively). LAMA3, THBS1 and TNC expression was validated at the protein level in firmly attached 7dpf embryos. Thrombospondin 1 (THBS1) resided in the cytoplasm of embryonic cells whereas laminin subunit alpha 3 (LAMA3) and tenascin C (TNC) were expressed on the cell surface of trophectoderm cells. Incubation with a neutralizing TNC antibody did not affect the rate of embryo attachment or hCG secretion. None. This in-vitro study made use of an endometrial adenocarcinoma cell line to mimic receptive luminal epithelium. Also, the number of embryos was limited. Contamination of recovered embryos with Ishikawa cells was unlikely based on their differential gene expression profiles. Taken together, we provide a 'proof of concept' that initiation of the implantation process coincides with the induction of specific embryonic genes. Genome-wide expression profiling of a larger sample set may provide insights into the molecular embryonic pathways underlying successful or failed implantation. A.A. was supported by a grant from the "Instituut voor Innovatie door Wetenschap en Technologie" (IWT, 121716, Flanders, Belgium). This work was supported by the "Wetenschappelijk Fonds Willy Gepts" (WFWG G142 and G170, Universitair Ziekenhuis Brussel). The authors declare no conflict of interest.

  7. AmpA protein functions by different mechanisms to influence early cell type specification and to modulate cell adhesion and actin polymerization in Dictyostelium discoideum

    PubMed Central

    Cost, Hoa N.; Noratel, Elizabeth F.; Blumberg, Daphne D.

    2013-01-01

    The Dictyostelium discoideum ampA gene encodes a multifunctional regulator protein that modulates cell–cell and cell–substrate adhesions and actin polymerization during growth and is necessary for correct cell type specification and patterning during development. Insertional inactivation of the ampA gene results in defects that define two distinct roles for the ampA gene during development. AmpA is necessary in a non-cell autonomous manner to prevent premature expression of a prespore gene marker. It is also necessary in a cell autonomous manner for the anterior like cells, which express the ampA gene, to migrate to the upper cup during culmination. It is also necessary to prevent excessive cell–cell agglutination when cells are developed in a submerged suspension culture. Here, we demonstrate that a supernatant source of AmpA protein, added extracellularly, can prevent the premature mis-expression of the prespore marker. Synthetic oligopeptides are used to identify the domain of the AmpA protein that is important for preventing cells from mis-expressing the prespore gene. We further demonstrate that a factor capable of inducing additional cells to express the prespore gene marker accumulates extracellularly in the absence of AmpA protein. While the secreted AmpA acts extracellularly to suppress prespore gene expression, the effects of AmpA on cell agglutination and on actin polymerization in growing cells are not due to an extracellular role of secreted AmpA protein. Rather, these effects appear to reflect a distinct cell autonomous role of the ampA gene. Finally, we show that secretion of AmpA protein is brought about by elevating the levels of expression of ampA so that the protein accumulates to an excessive level. PMID:23911723

  8. [Correspondence between advances of dental composites and adhesives and clinical guidelines for direct restorations].

    PubMed

    Wang, X Y; Yue, L

    2018-06-09

    The longevity of direct adhesive restoration is related to the restorative materials, the patient and the professional. On one hand, dental composites/adhesives have been modified and developed to fulfill the criteria for clinical application. On the other hand, the clinical guidelines for adhesive restorations have been released and updated accordingly, which would prolong the longevity of restorations. In this commentary, the removal of carious tissues, interface preparation for bonding and application of adhesives are emphasized. The administrative measures for registration and clinical evaluation criteria for adhesive restorative material are also introduced.

  9. Adhesion and invasion to epithelial cells and motility of extended-spectrum β-lactamase-producing Escherichia coli reveal ST131 superiority: a comparative in vitro study of extraintestinal pathogenic E. coli lineages.

    PubMed

    Kondratyeva, Kira; Wollman, Ayala; Gerlitz, Gabi; Navon-Venezia, Shiri

    2017-09-01

    Extended-spectrum β-lactamase (ESBL)-producing extraintestinal pathogenic Escherichia coli (ExPEC) sequence type ST131 is pandemic, and it is the major contributor to antibiotic resistance in E. coli. Despite its epidemiological superiority, the physiological reasons that decipher its success remain elusive. We aimed to compare the adhesion, invasion and motility potential of ST131 versus other E. coli lineages. In this in vitro comparative study, 14 ESBL-producing ExPEC community-onset bacteremia isolates were chosen from a reported clinical collection (Karfunkel D, Carmeli Y, Chmelnitsky I, Kotlovsky T, Navon-Venezia S. Eur J Clin Microbiol Infect Dis 2013;32:513-521). Isolates were divided into two groups, ST131 (n=7) and 'non-ST131', sporadic sequence types (STs) (n=7). Virulence and adhesion genes were screened by PCR in all isolates. Virotyping and serotyping were performed for ST131 isolates. Adhesion and invasion to Caco-2 epithelial cells, and motility on semi-solid agar were quantified and compared between the two groups. Fluorescence microscopy using anti-LPS E. coli antibodies was used for visualization and confirmation of adhesion and invasion. ST131 isolates belonged to the O25b:H4-B2 subclone. Two ST131 virotypes were found, A (two blaCTX-M-15 H30-Rx) and C (two blaCTX-M-15 H30-Rx and three blaCTX-M-14 H30 isolates). The average number of adhesion and virulence genes carried by ExPEC ST131 isolates and non-ST131 isolates was 5.3 and 3.7, respectively (P<0.05). Group analysis showed that ST131 surpassed non-ST131 lineages in all three physiological properties: adherence (17.1 vs 13.1 %, P<0.001), invasion (0.4 vs 0.17 %, P<0.01), and swarming motility on all media tested (P<0.05). This study demonstrates ST131 superiority that may explain its improved gut-colonization and dissemination capabilities within the host. These insights are an important step in our understanding of ST131 epidemiological success.

  10. Development and characterization of a hydrogen peroxide-resistant cholangiocyte cell line: A novel model of oxidative stress-related cholangiocarcinoma genesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanan, Raynoo; Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002; Techasen, Anchalee

    Oxidative stress is a cause of inflammation–related diseases, including cancers. Cholangiocarcinoma is a liver cancer with bile duct epithelial cell phenotypes. Our previous studies in animal and human models indicated that oxidative stress is a major cause of cholangiocarcinoma development. Hydrogen peroxide (H{sub 2}O{sub 2}) can generate hydroxyl radicals, which damage lipids, proteins, and nucleic acids, leading to cell death. However, some cells can survive by adapting to oxidative stress conditions, and selective clonal expansion of these resistant cells would be involved in oxidative stress-related carcinogenesis. The present study aimed to establish H{sub 2}O{sub 2}-resistant cell line from an immortal cholangiocytemore » cell line (MMNK1) by chronic treatment with low-concentration H{sub 2}O{sub 2} (25 μM). After 72 days of induction, H{sub 2}O{sub 2}-resistant cell lines (ox-MMNK1-L) were obtained. The ox-MMNK1-L cell line showed H{sub 2}O{sub 2}-resistant properties, increasing the expression of the anti-oxidant genes catalase (CAT), superoxide dismutase-1 (SOD1), superoxide dismutase-2 (SOD2), and superoxide dismutase-3 (SOD3) and the enzyme activities of CAT and intracellular SODs. Furthermore, the resistant cells showed increased expression levels of an epigenetics-related gene, DNA methyltransferase-1 (DNMT1), when compared to the parental cells. Interestingly, the ox-MMNK1-L cell line had a significantly higher cell proliferation rate than the MMNK1 normal cell line. Moreover, ox-MMNK1-L cells showed pseudopodia formation and the loss of cell-to-cell adhesion (multi-layers) under additional oxidative stress (100 μM H{sub 2}O{sub 2}). These findings suggest that H{sub 2}O{sub 2}-resistant cells can be used as a model of oxidative stress-related cholangiocarcinoma genesis through molecular changes such as alteration of gene expression and epigenetic changes. - Highlights: • An H{sub 2}O{sub 2}-resistant ox-MMNK1-L cells was established from immortalized cholangiocytes. • The resistance was acquired by daily treatment of low H{sub 2}O{sub 2} (25 μM) for 15 passages. • The cells highly expressed catalase, SODs and DNMT1 with rapid cell proliferation. • Pseudopodia and the loss of cell-to-cell adhesion appeared by 100 μM H{sub 2}O{sub 2} treatment. • The resistant cells can be used as a model of oxidative stress-related carcinogenesis.« less

  11. Expression profiles of mRNA and long noncoding RNA in the ovaries of letrozole-induced polycystic ovary syndrome rat model through deep sequencing.

    PubMed

    Fu, Lu-Lu; Xu, Ying; Li, Dan-Dan; Dai, Xiao-Wei; Xu, Xin; Zhang, Jing-Shun; Ming, Hao; Zhang, Xue-Ying; Zhang, Guo-Qing; Ma, Ya-Lan; Zheng, Lian-Wen

    2018-05-30

    Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in reproductive-aged women. However, the exact pathophysiology of PCOS remains largely unclear. We performed deep sequencing to investigate the mRNA and long noncoding RNA (lncRNA) expression profiles in the ovarian tissues of letrozole-induced PCOS rat model and control rats. A total of 2147 mRNAs and 158 lncRNAs were differentially expressed between the PCOS models and control. Gene ontology analysis indicated that differentially expressed mRNAs were associated with biological adhesion, reproduction, and metabolic process. Pathway analysis results indicated that these aberrantly expressed mRNAs were related to several specific signaling pathways, including insulin resistance, steroid hormone biosynthesis, PPAR signaling pathway, cell adhesion molecules, autoimmune thyroid disease, and AMPK signaling pathway. The relative expression levels of mRNAs and lncRNAs were validated through qRT-PCR. LncRNA-miRNA-mRNA network was constructed to explore ceRNAs involved in the PCOS model and were also verified by qRTPCR experiment. These findings may provide insight into the pathogenesis of PCOS and clues to find key diagnostic and therapeutic roles of lncRNA in PCOS. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Direct Interactions with the Integrin β1 Cytoplasmic Tail Activate the Abl2/Arg Kinase*

    PubMed Central

    Simpson, Mark A.; Bradley, William D.; Harburger, David; Parsons, Maddy; Calderwood, David A.; Koleske, Anthony J.

    2015-01-01

    Integrins are heterodimeric α/β extracellular matrix adhesion receptors that couple physically to the actin cytoskeleton and regulate kinase signaling pathways to control cytoskeletal remodeling and adhesion complex formation and disassembly. β1 integrins signal through the Abl2/Arg (Abl-related gene) nonreceptor tyrosine kinase to control fibroblast cell motility, neuronal dendrite morphogenesis and stability, and cancer cell invasiveness, but the molecular mechanisms by which integrin β1 activates Arg are unknown. We report here that the Arg kinase domain interacts directly with a lysine-rich membrane-proximal segment in the integrin β1 cytoplasmic tail, that Arg phosphorylates the membrane-proximal Tyr-783 in the β1 tail, and that the Arg Src homology domain then engages this phosphorylated region in the tail. We show that these interactions mediate direct binding between integrin β1 and Arg in vitro and in cells and activate Arg kinase activity. These findings provide a model for understanding how β1-containing integrins interact with and activate Abl family kinases. PMID:25694433

  13. Comparative Analysis of the Complete Genome of Lactobacillus plantarum GB-LP2 and Potential Candidate Genes for Host Immune System Enhancement.

    PubMed

    Kwak, Woori; Kim, Kwondo; Lee, Chul; Lee, Chanho; Kang, Jungsun; Cho, Kyungjin; Yoon, Sook Hee; Kang, Dae-Kyung; Kim, Heebal; Heo, Jaeyoung; Cho, Seoae

    2016-04-28

    Acute respiratory virus infectious diseases are a growing health problem, particularly among children and the elderly. Much effort has been made to develop probiotics that prevent influenza virus infections by enhancing innate immunity in the respiratory tract until vaccines are available. Lactobacillus plantarum GB-LP2, isolated from a traditional Korean fermented vegetable, has exhibited preventive effects on influenza virus infection in mice. To identify the molecular basis of this strain, we conducted a whole-genome assembly study. The single circular DNA chromosome of 3,284,304 bp was completely assembled and 3,250 proteinencoding genes were predicted. Evolutionarily accelerated genes related to the phenotypic trait of anti-infective activities for influenza virus were identified. These genes encode three integral membrane proteins, a teichoic acid export ATP-binding protein and a glucosamine - fructose-6-phosphate aminotransferase involved in host innate immunity, the nonspecific DNA-binding protein Dps, which protects bacteria from oxidative damage, and the response regulator of the three-component quorum-sensing regulatory system, which is related to the capacity of adhesion to the surface of the respiratory tract and competition with pathogens. This is the first study to identify the genetic backgrounds of the antiviral activity in L. plantarum strains. These findings provide insight into the anti-infective activities of L. plantarum and the development of preventive probiotics.

  14. Investigation of genes coding for inflammatory components in Parkinson's disease.

    PubMed

    Håkansson, Anna; Westberg, Lars; Nilsson, Staffan; Buervenich, Silvia; Carmine, Andrea; Holmberg, Björn; Sydow, Olof; Olson, Lars; Johnels, Bo; Eriksson, Elias; Nissbrandt, Hans

    2005-05-01

    Several findings obtained recently indicate that inflammation may contribute to the pathogenesis in Parkinson's disease (PD). Genetic variants of genes coding for components involved in immune reactions in the brain might therefore influence the risk of developing PD or the age of disease onset. Five single nucleotide polymorphisms (SNPs) in the genes coding for interferon-gamma (IFN-gamma; T874A in intron 1), interferon-gamma receptor 2 (IFN-gamma R2; Gln64Arg), interleukin-10 (IL-10; G1082A in the promoter region), platelet-activating factor acetylhydrolase (PAF-AH; Val379Ala), and intercellular adhesion molecule 1 (ICAM-1; Lys469Glu) were genotyped, using pyrosequencing, in 265 patients with PD and 308 controls. None of the investigated SNPs was found to be associated with PD; however, the G1082A polymorphism in the IL-10 gene promoter was found to be related to the age of disease onset. Linear regression showed a significantly earlier onset with more A-alleles (P = 0.0095; after Bonferroni correction, P = 0.048), resulting in a 5-year delayed age of onset of the disease for individuals having two G-alleles compared with individuals having two A-alleles. The results indicate that the IL-10 G1082A SNP could possibly be related to the age of onset of PD. Copyright 2005 Movement Disorder Society.

  15. Effects of iron ions, protons and X rays on human lens cell differentiation.

    PubMed

    Chang, P Y; Bjornstad, K A; Rosen, C J; McNamara, M P; Mancini, R; Goldstein, L E; Chylack, L T; Blakely, E A

    2005-10-01

    We have investigated molecular changes in cultured differentiating human lens epithelial cells exposed to high-energy accelerated iron-ion beams as well as to protons and X rays. In this paper, we present results on the effects of radiation on gene families that include or are related to DNA damage, cell cycle regulators, cell adhesion molecules, and cell cytoskeletal function. A limited microarray survey with a panel of cell cycle-regulated genes illustrates that irradiation with protons altered the gene expression pattern of human lens epithelial cells. A focus of our work is CDKN1A (p21(CIP1/WAF1)), a protein that we demonstrate here has a role in several pathways functionally related to LET-responsive radiation damage. We quantitatively assessed RNA and protein expression in a time course before and after single 4-Gy radiation doses and demonstrated that transcription and translation of CDKN1A are both temporally regulated after exposure. Furthermore, we show qualitative differences in the distribution of CDKN1A immunofluorescence signals after exposure to X rays, protons or iron ions, suggesting that LET effects likely play a role in the misregulation of gene function in these cells. A model of molecular and cellular events is proposed to account for precataractous changes in the human lens after exposure to low- or high-LET radiations.

  16. Screening host proteins required for bacterial adherence after H9N2 virus infection.

    PubMed

    Ma, Li-Li; Sun, Zhen-Hong; Xu, Yu-Lin; Wang, Shu-Juan; Wang, Hui-Ning; Zhang, Hao; Hu, Li-Ping; Sun, Xiao-Mei; Zhu, Lin; Shang, Hong-Qi; Zhu, Rui-Liang; Wei, Kai

    2018-01-01

    H9N2 subtype low pathogenic avian influenza virus (LPAIV) is distributed worldwide and causes great economic losses in the poultry industry, especially when complicated with other bacterial infections. Tissue damages caused by virus infection provide an opportunity for bacteria invasion, but this mechanism is not sufficient for low pathogenic strains. Moreover, although H9N2 virus infection was demonstrated to promote bacterial infection in several studies, its mechanism remained unclear. In this study, infection experiments in vivo and in vitro demonstrated that the adhesion of Escherichia coli (E. coli) to host cells significantly increased after H9N2 virus infection, and this increase was not caused by pathological damages. Subsequently, we constructed a late chicken embryo infection model and used proteomics techniques to analyze the expression of proteins associated with bacterial adhesion after H9N2 virus infection. A total of 279 significantly differential expressed proteins were detected through isobaric tags for relative and absolute quantitation (iTRAQ) coupled with nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) analysis. The results of Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that differentially expressed proteins were enriched in host innate immunity; cell proliferation, differentiation, and apoptosis; and pathogenicity-related signaling pathways. Finally, we screened out several proteins, such as TGF-β1, integrins, cortactin, E-cadherin, vinculin, and fibromodulin, which were probably associated with bacterial adhesion. The study analyzed the mechanism of secondary bacterial infection induced by H9N2 virus infection from a novel perspective, which provided theoretical and data support for investigating the synergistic infection mechanism between the H9N2 virus and bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Identification of differentially expressed genes and pathways for intramuscular fat deposition in pectoralis major tissues of fast-and slow-growing chickens

    PubMed Central

    2012-01-01

    Background Intramuscular fat (IMF) is one of the important factors influencing meat quality, however, for chickens, the molecular regulatory mechanisms underlying this trait have not yet been determined. In this study, a systematic identification of candidate genes and new pathways related to IMF deposition in chicken breast tissue has been made using gene expression profiles of two distinct breeds: Beijing-you (BJY), a slow-growing Chinese breed possessing high meat quality and Arbor Acres (AA), a commercial fast-growing broiler line. Results Agilent cDNA microarray analyses were conducted to determine gene expression profiles of breast muscle sampled at different developmental stages of BJY and AA chickens. Relative to d 1 when there is no detectable IMF, breast muscle at d 21, d 42, d 90 and d 120 (only for BJY) contained 1310 differentially expressed genes (DEGs) in BJY and 1080 DEGs in AA. Of these, 34–70 DEGs related to lipid metabolism or muscle development processes were examined further in each breed based on Gene Ontology (GO) analysis. The expression of several DEGs was correlated, positively or negatively, with the changing patterns of lipid content or breast weight across the ages sampled, indicating that those genes may play key roles in these developmental processes. In addition, based on KEGG pathway analysis of DEGs in both BJY and AA chickens, it was found that in addition to pathways affecting lipid metabolism (pathways for MAPK & PPAR signaling), cell junction-related pathways (tight junction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton), which play a prominent role in maintaining the integrity of tissues, could contribute to the IMF deposition. Conclusion The results of this study identified potential candidate genes associated with chicken IMF deposition and imply that IMF deposition in chicken breast muscle is regulated and mediated not only by genes and pathways related to lipid metabolism and muscle development, but also by others involved in cell junctions. These findings establish the groundwork and provide new clues for deciphering the molecular mechanisms underlying IMF deposition in poultry. Further studies at the translational and posttranslational level are now required to validate the genes and pathways identified here. PMID:22646994

  18. Probiotic properties of lactic acid bacteria isolated from water-buffalo mozzarella cheese.

    PubMed

    Jeronymo-Ceneviva, Ana Beatriz; de Paula, Aline Teodoro; Silva, Luana Faria; Todorov, Svetoslav Dimitrov; Franco, Bernadette Dora G Mello; Penna, Ana Lúcia B

    2014-12-01

    This study evaluated the probiotic properties (stability at different pH values and bile salt concentration, auto-aggregation and co-aggregation, survival in the presence of antibiotics and commercial drugs, study of β-galactosidase production, evaluation of the presence of genes encoding MapA and Mub adhesion proteins and EF-Tu elongation factor, and the presence of genes encoding virulence factor) of four LAB strains (Lactobacillus casei SJRP35, Leuconostoc citreum SJRP44, Lactobacillus delbrueckii subsp. bulgaricus SJRP57 and Leuconostoc mesenteroides subsp. mesenteroides SJRP58) which produced antimicrobial substances (antimicrobial peptides). The strains survived the simulated GIT modeled in MRS broth, whole and skim milk. In addition, auto-aggregation and the cell surface hydrophobicity of all strains were high, and various degrees of co-aggregation were observed with indicator strains. All strains presented low resistance to several antibiotics and survived in the presence of commercial drugs. Only the strain SJRP44 did not produce the β-galactosidase enzyme. Moreover, the strain SJRP57 did not show the presence of any genes encoding virulence factors; however, the strain SJRP35 presented vancomycin resistance and adhesion of collagen genes, the strain SJRP44 harbored the ornithine decarboxylase gene and the strain SJRP58 generated positive results for aggregation substance and histidine decarboxylase genes. In conclusion, the strain SJRP57 was considered the best candidate as probiotic cultures for further in vivo studies and functional food products development.

  19. Activation of endothelial-leukocyte adhesion molecule 1 (ELAM-1) gene transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, K.F.; Tarr, P.I.; Bomsztyk, K.

    1991-08-01

    Leukocyte adherence to endothelium is in part mediated by the transient expression of endothelial-leukocyte adhesion molecule 1 (ELAM-1) on endothelial surfaces stimulated by tumor necrosis factor {alpha} (TNF), interleukin (IL) 1, or bacterial lipopolysaccharide (LPS). The intracellular factors controlling induction of ELAM-1 mRNA and protein are unknown. In nuclear runoff experiments with cultured human umbilical vein endothelial cells (HUVEC), the authors demonstrate that transcriptional activation of the ELAM-1 gene occurs following stimulation with TNF. Sequence analysis of the 5{prime} flanking region of the ELAM-1 gene reveals consensus DNA-binding sequences for two known transcription factors, NF-{kappa}B and AP-1. Gel mobility shiftmore » assays demonstrate that TNF, IL-1, or LPS induces activation of NF-{kappa}B-like DNA binding activity in HUVEC. Phorbol 12-myristate 13-acetate, a known activator of protein kinase C (PKC), weakly induces NF-{kappa}B-like activity, ELAM-1 mRNA, and ELAM-1 surface expression in HUVEC. However, TNF, IL-1, and LPS do not activate PKC in HUVEC at doses that strongly induce NF-{kappa}B-like protein activation and ELAM-1 gene expression. PKC blockade with H7 does not inhibit activation of these NF-kB-like proteins but does inhibit ELAM-1 gene transcription. They conclude that PKC-independent activation of NF-{kappa}B in HUVEC with TNF, IL-1, or LPS is associated with, but not sufficient for, activation of ELAM-1 gene transcription.« less

  20. Whole-genome expression analyses of type 2 diabetes in human skin reveal altered immune function and burden of infection.

    PubMed

    Wu, Chun; Chen, Xiaopan; Shu, Jing; Lee, Chun-Ting

    2017-05-23

    Skin disorders are among most common complications associated with type 2 diabetes mellitus (T2DM). Although T2DM patients are known to have increased risk of infections and other T2DM-related skin disorders, their molecular mechanisms are largely unknown. This study aims to identify dysregulated genes and gene networks that are associated with T2DM in human skin. We compared the expression profiles of 56,318 transcribed genes on 74 T2DM cases and 148 gender- age-, and race-matched non-diabetes controls from the Genotype-Tissue Expression (GTEx) database. RNA-Sequencing data indicates that diabetic skin is characterized by increased expression of genes that are related to immune responses (CCL20, CXCL9, CXCL10, CXCL11, CXCL13, and CCL18), JAK/STAT signaling pathway (JAK3, STAT1, and STAT2), tumor necrosis factor superfamily (TNFSF10 and TNFSF15), and infectious disease pathways (OAS1, OAS2, OAS3, and IFIH1). Genes in cell adhesion molecules pathway (NCAM1 and L1CAM) and collagen family (PCOLCE2 and COL9A3) are downregulated, suggesting structural changes in the skin of T2DM. For the first time, to the best of our knowledge, this pioneer analytic study reports comprehensive unbiased gene expression changes and dysregulated pathways in the non-diseased skin of T2DM patients. This comprehensive understanding derived from whole-genome expression profiles could advance our knowledge in determining molecular targets for the prevention and treatment of T2DM-associated skin disorders.

  1. Neurofibromatosis type 2.

    PubMed

    Evans, D G; Sainio, M; Baser, M E

    2000-12-01

    Neurofibromatosis type 2 is an often devastating autosomal dominant disorder which, until relatively recently, was confused with its more common namesake neurofibromatosis type 1. Subjects who inherit a mutated allele of the NF2 gene inevitably develop schwannomas, affecting particularly the superior vestibular branch of the 8th cranial nerve, usually bilaterally. Meningiomas and other benign central nervous system tumours such as ependymomas are other common features. Much of the morbidity from these tumours results from their treatment. It is now possible to identify the NF2 mutation in most families, although about 20% of apparently sporadic cases are actually mosaic for their mutation. As a classical tumour suppressor, inactivation of the NF2 gene product, merlin/schwannomin, leads to the development of both NF2 associated and sporadic tumours. Merlin/schwannomin associates with proteins at the cell cytoskeleton near the plasma membrane and it inhibits cell proliferation, adhesion, and migration.

  2. EDTA conditioning of dentine promotes adhesion, migration and differentiation of dental pulp stem cells.

    PubMed

    Galler, K M; Widbiller, M; Buchalla, W; Eidt, A; Hiller, K-A; Hoffer, P C; Schmalz, G

    2016-06-01

    To evaluate the effect of dentine conditioning on migration, adhesion and differentiation of dental pulp stem cells. Dentine discs prepared from extracted human molars were pre-treated with EDTA (10%), NaOCl (5.25%) or H2 O. Migration of dental pulp stem cells towards pre-treated dentine after 24 and 48 h was assessed in a modified Boyden chamber assay. Cell adhesion was evaluated indirectly by measuring cell viability. Expression of mineralization-associated genes (COL1A1, ALP, BSP, DSPP, RUNX2) in cells cultured on pre-treated dentine for 7 days was determined by RT-qPCR. Nonparametric statistical analysis was performed for cell migration and cell viability data to compare different groups and time-points (Mann-Whitney U-test, α = 0.05). Treatment of dentine with H2 O or EDTA allowed for cell attachment, which was prohibited by NaOCl with statistical significance (P = 0.000). Furthermore, EDTA conditioning induced cell migration towards dentine. The expression of mineralization-associated genes was increased in dental pulp cells cultured on dentine after EDTA conditioning compared to H2 O-pre-treated dentine discs. EDTA conditioning of dentine promoted the adhesion, migration and differentiation of dental pulp stem cells towards or onto dentine. A pre-treatment with EDTA as the final step of an irrigation protocol for regenerative endodontic procedures has the potential to act favourably on new tissue formation within the root canal. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  3. Novel molecular insights into RhoA GTPase-induced resistance to aqueous humor outflow through the trabecular meshwork

    PubMed Central

    Zhang, Min; Maddala, Rupalatha; Rao, Ponugoti Vasantha

    2008-01-01

    Impaired drainage of aqueous humor through the trabecular meshwork (TM) culminating in increased intraocular pressure is a major risk factor for glaucoma, a leading cause of blindness worldwide. Regulation of aqueous humor drainage through the TM, however, is poorly understood. The role of RhoA GTPase-mediated actomyosin organization, cell adhesive interactions, and gene expression in regulation of aqueous humor outflow was investigated using adenoviral vector-driven expression of constitutively active mutant of RhoA (RhoAV14). Organ-cultured anterior segments from porcine eyes expressing RhoAV14 exhibited significant reduction of aqueous humor outflow. Cultured TM cells expressing RhoAV14 exhibited a pronounced contractile morphology, increased actin stress fibers, and focal adhesions and increased levels of phosphorylated myosin light chain (MLC), collagen IV, fibronectin, and laminin. cDNA microarray analysis of RNA extracted from RhoAV14-expressing human TM cells revealed a significant increase in the expression of genes encoding extracellular matrix (ECM) proteins, cytokines, integrins, cytoskeletal proteins, and signaling proteins. Conversely, various ECM proteins stimulated robust increases in phosphorylation of MLC, paxillin, and focal adhesion kinase and activated Rho GTPase and actin stress fiber formation in TM cells, indicating a potential regulatory feedback interaction between ECM-induced mechanical strain and Rho GTPase-induced isometric tension in TM cells. Collectively, these data demonstrate that sustained activation of Rho GTPase signaling in the aqueous humor outflow pathway increases resistance to aqueous humor outflow through the trabecular pathway by influencing the actomyosin assembly, cell adhesive interactions, and the expression of ECM proteins and cytokines in TM cells. PMID:18799648

  4. Dependence of corneal keratocyte adhesion, spreading, and integrin β1 expression on deacetylated chitosan coating.

    PubMed

    Sun, Chi-Chin; Chou, Shih-Feng; Lai, Jui-Yang; Cho, Ching-Hsien; Lee, Chih-Hung

    2016-06-01

    This study reports, for the first time, the regulation of corneal keratocyte adhesion, spreading, morphology, and integrin gene expression on chitosan coating due to the effects of deacetylation. The degree of deacetylation (DD) in chitosan materials was confirmed by elemental analysis, gel permeation chromatography, and Fourier transform infrared spectroscopy. In this study, chitosan samples with the same molecular weight level but varying DD (74.1 ± 0.5%, 84.4 ± 0.7%, and 94.2 ± 0.5%) were obtained by heat-alkaline treatment under a nitrogen atmosphere. For higher DD groups, the biopolymer carried abundant amino groups since the deacetylation process removed larger amount of acetyl groups from the chitosan molecules. Results showed that the mechanical stability and crystallinity of the chitosan coatings significantly increased with increasing DD value. Fibronectin adsorption, keratocyte adhesion, and cell spreading exhibited a positive correlation with DD due to the chemical functionality of polysaccharides (bearing acetyl and amino groups) and increase of substrate stiffness and crystallinity. In particular, when adhered to chitosan coatings with a DD value of 74.1%, the keratocytes appeared to be fibroblastic, elongated, and spindle shape, indicating a loss of their characteristic dendritic morphology. Furthermore, the gene expression of integrin β1 (i.e., a cell-matrix adhesion molecule) was significantly up-regulated on the chitosan coatings with higher DD, which supports favorable attachment of corneal keratocytes. Our findings suggest that DD-mediated physicochemical properties of chitosan coatings greatly affect cell-substrate crosstalk during corneal keratocyte cultivation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. F4+ enterotoxigenic Escherichia coli (ETEC) adhesion mediated by the major fimbrial subunit FaeG.

    PubMed

    Xia, Pengpeng; Song, Yujie; Zou, Yajie; Yang, Ying; Zhu, Guoqiang

    2015-09-01

    The FaeG subunit is the major constituent of F4(+) fimbriae, associated with glycoprotein and/or glycolipid receptor recognition and majorly contributes to the pathogen attachment to the host cells. To investigate the key factor involved in the fimbrial binding of F4(+) Escherichia coli, both the recombinant E. coli SE5000 strains carrying the fae operon gene clusters that express the different types of fimbriae in vitro, named as rF4ab, rF4ac, and rF4ad, respectively, corresponding to the fimbrial types F4ab, F4ac, and F4ad, and the three isogenic in-frame faeG gene deletion mutants were constructed. The adhesion assays and adhesion inhibition assays showed that ΔfaeG mutants had a significant reduction in the binding to porcine brush border as well as the intestinal epithelial cell lines, while the complemented strain ΔfaeG/pfaeG restored the adhesion function. The recombinant bacterial strains rF4ab, rF4ac, and rF4ad have the same binding property as wild-type F4(+) E. coli strains do and improvement in terms of binding to porcine brush border and the intestinal epithelial cells, and the adherence was blocked by the monoclonal antibody anti-F4 fimbriae. These data demonstrate that the fimbrial binding of F4(+) E. coli is directly mediated by the major FaeG subunit. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A 3'-untranslated region (3'UTR) induces organ adhesion by regulating miR-199a* functions.

    PubMed

    Lee, Daniel Y; Shatseva, Tatiana; Jeyapalan, Zina; Du, William W; Deng, Zhaoqun; Yang, Burton B

    2009-01-01

    Mature microRNAs (miRNAs) are single-stranded RNAs of 18-24 nucleotides that repress post-transcriptional gene expression. However, it is unknown whether the functions of mature miRNAs can be regulated. Here we report that expression of versican 3'UTR induces organ adhesion in transgenic mice by modulating miR-199a* activities. The study was initiated by the hypothesis that the non-coding 3'UTR plays a role in the regulation of miRNA function. Transgenic mice expressing a construct harboring the 3'UTR of versican exhibits the adhesion of organs. Computational analysis indicated that a large number of microRNAs could bind to this fragment potentially including miR-199a*. Expression of versican and fibronectin, two targets of miR-199a*, are up-regulated in transgenic mice, suggesting that the 3'UTR binds and modulates miR-199a* activities, freeing mRNAs of versican and fibronectin from being repressed by miR-199a*. Confirmation of the binding was performed by PCR using mature miR-199a* as a primer and the targeting was performed by luciferase assays. Enhanced adhesion by expression of the 3'UTR was confirmed by in vitro assays. Our results demonstrated that upon arrival in cytoplasm, miRNA activities can be modulated locally by the 3'UTR. Our assay may be developed as sophisticated approaches for studying the mutual regulation of miRNAs and mRNAs in vitro and in vivo. We anticipate that expression of the 3'UTR may be an approach in the development of gene therapy.

  7. Global map of physical interactions among differentially expressed genes in multiple sclerosis relapses and remissions.

    PubMed

    Tuller, Tamir; Atar, Shimshi; Ruppin, Eytan; Gurevich, Michael; Achiron, Anat

    2011-09-15

    Multiple sclerosis (MS) is a central nervous system autoimmune inflammatory T-cell-mediated disease with a relapsing-remitting course in the majority of patients. In this study, we performed a high-resolution systems biology analysis of gene expression and physical interactions in MS relapse and remission. To this end, we integrated 164 large-scale measurements of gene expression in peripheral blood mononuclear cells of MS patients in relapse or remission and healthy subjects, with large-scale information about the physical interactions between these genes obtained from public databases. These data were analyzed with a variety of computational methods. We find that there is a clear and significant global network-level signal that is related to the changes in gene expression of MS patients in comparison to healthy subjects. However, despite the clear differences in the clinical symptoms of MS patients in relapse versus remission, the network level signal is weaker when comparing patients in these two stages of the disease. This result suggests that most of the genes have relatively similar expression levels in the two stages of the disease. In accordance with previous studies, we found that the pathways related to regulation of cell death, chemotaxis and inflammatory response are differentially expressed in the disease in comparison to healthy subjects, while pathways related to cell adhesion, cell migration and cell-cell signaling are activated in relapse in comparison to remission. However, the current study includes a detailed report of the exact set of genes involved in these pathways and the interactions between them. For example, we found that the genes TP53 and IL1 are 'network-hub' that interacts with many of the differentially expressed genes in MS patients versus healthy subjects, and the epidermal growth factor receptor is a 'network-hub' in the case of MS patients with relapse versus remission. The statistical approaches employed in this study enabled us to report new sets of genes that according to their gene expression and physical interactions are predicted to be differentially expressed in MS versus healthy subjects, and in MS patients in relapse versus remission. Some of these genes may be useful biomarkers for diagnosing MS and predicting relapses in MS patients.

  8. Topographical cues of direct metal laser sintering titanium surfaces facilitate osteogenic differentiation of bone marrow mesenchymal stem cells through epigenetic regulation.

    PubMed

    Zheng, Guoying; Guan, Binbin; Hu, Penghui; Qi, Xingying; Wang, Pingting; Kong, Yu; Liu, Zihao; Gao, Ping; Li, Rui; Zhang, Xu; Wu, Xudong; Sui, Lei

    2018-04-27

    To investigate the role of hierarchical micro/nanoscale topography of direct metal laser sintering (DMLS) titanium surfaces in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), as well as the possible underlying epigenetic mechanism. Three groups of titanium specimens were prepared, including DMLS group, sandblasted, large-grit, acid-etched (SLA) group and smooth titanium (Ti) group. BMSCs were cultured on discs followed by surface characterization. Cell adhesion and proliferation were examined by SEM and CCK-8 assay, while osteogenic-related gene expression was detected by real-time RT-PCR. Immunofluorescence, western blotting and in vivo study were also performed to evaluate the potential for osteogenic induction of materials. In addition, to investigate the underlying epigenetic mechanisms, immunofluorescence and western blotting were performed to evaluate the global level of H3K4me3 during osteogenesis. The H3K4me3 and H3K27me3 levels at the promoter area of the osteogenic gene Runx2 were detected by ChIP assay. The DMLS surface exhibits greater protein adsorption ability and shows better cell adhesion performance than SLA and Ti surfaces. Moreover, both in vitro and in vivo studies demonstrated that the DMLS surface is more favourable for the osteogenic differentiation of BMSCs than SLA and Ti surfaces. Accordingly, osteogenesis-associated gene expression in BMSCs is efficiently induced by a rapid H3K27 demethylation and increase in H3K4me3 levels at gene promoters upon osteogenic differentiation on DMLS titanium surface. Topographical cues of DMLS surfaces have greater potential for the induction of osteogenic differentiation of BMSCs than SLA and Ti surfaces both in vitro and in vivo. A potential epigenetic mechanism is that the appropriate topography allows rapid H3K27 demethylation and an increased H3K4me3 level at the promoter region of osteogenesis-associated genes during the osteogenic differentiation of BMSCs. © 2018 John Wiley & Sons Ltd.

  9. Recurrent Targeted Genes of Hepatitis B Virus in the Liver Cancer Genomes Identified by a Next-Generation Sequencing–Based Approach

    PubMed Central

    Ding, Dong; Lou, Xiaoyan; Hua, Dasong; Yu, Wei; Li, Lisha; Wang, Jun; Gao, Feng; Zhao, Na; Ren, Guoping; Li, Lanjuan; Lin, Biaoyang

    2012-01-01

    Integration of the viral DNA into host chromosomes was found in most of the hepatitis B virus (HBV)–related hepatocellular carcinomas (HCCs). Here we devised a massive anchored parallel sequencing (MAPS) method using next-generation sequencing to isolate and sequence HBV integrants. Applying MAPS to 40 pairs of HBV–related HCC tissues (cancer and adjacent tissues), we identified 296 HBV integration events corresponding to 286 unique integration sites (UISs) with precise HBV–Human DNA junctions. HBV integration favored chromosome 17 and preferentially integrated into human transcript units. HBV targeted genes were enriched in GO terms: cAMP metabolic processes, T cell differentiation and activation, TGF beta receptor pathway, ncRNA catabolic process, and dsRNA fragmentation and cellular response to dsRNA. The HBV targeted genes include 7 genes (PTPRJ, CNTN6, IL12B, MYOM1, FNDC3B, LRFN2, FN1) containing IPR003961 (Fibronectin, type III domain), 7 genes (NRG3, MASP2, NELL1, LRP1B, ADAM21, NRXN1, FN1) containing IPR013032 (EGF-like region, conserved site), and three genes (PDE7A, PDE4B, PDE11A) containing IPR002073 (3′, 5′-cyclic-nucleotide phosphodiesterase). Enriched pathways include hsa04512 (ECM-receptor interaction), hsa04510 (Focal adhesion), and hsa04012 (ErbB signaling pathway). Fewer integration events were found in cancers compared to cancer-adjacent tissues, suggesting a clonal expansion model in HCC development. Finally, we identified 8 genes that were recurrent target genes by HBV integration including fibronectin 1 (FN1) and telomerase reverse transcriptase (TERT1), two known recurrent target genes, and additional novel target genes such as SMAD family member 5 (SMAD5), phosphatase and actin regulator 4 (PHACTR4), and RNA binding protein fox-1 homolog (C. elegans) 1 (RBFOX1). Integrating analysis with recently published whole-genome sequencing analysis, we identified 14 additional recurrent HBV target genes, greatly expanding the HBV recurrent target list. This global survey of HBV integration events, together with recently published whole-genome sequencing analyses, furthered our understanding of the HBV–related HCC. PMID:23236287

  10. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacapala-Gómez, Ana Elvira, E-mail: zak_ana@yahoo.com.mx; Del Moral-Hernández, Oscar, E-mail: odelmoralh@gmail.com; Villegas-Sepúlveda, Nicolás, E-mail: nvillega@cinvestav.mx

    We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such asmore » adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants. - Highlights: • Amino acid changes in HPV16 E6 variants modulate the transciption of specific genes. • This is the first comparison of global gene expression profile of HPV 16 E6 variants. • Each HPV 16 E6 variant appears to have its own molecular signature.« less

  11. Target gene screening and evaluation of prognostic values in non-small cell lung cancers by bioinformatics analysis.

    PubMed

    Piao, Junjie; Sun, Jie; Yang, Yang; Jin, Tiefeng; Chen, Liyan; Lin, Zhenhua

    2018-03-20

    Non-small cell lung cancer (NSCLC) is the major leading cause of cancer-related deaths worldwide. This study aims to explore molecular mechanism of NSCLC. Microarray dataset was obtained from the Gene Expression Omnibus (GEO) database, and analyzed by using GEO2R. Functional and pathway enrichment analysis were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Then, STRING, Cytoscape and MCODE were applied to construct the Protein-protein interaction (PPI) network and screen hub genes. Following, overall survival (OS) analysis of hub genes was performed by using the Kaplan-Meier plotter online tool. Moreover, miRecords was also applied to predict the targets of the differentially expressed microRNAs (DEMs). A total of 228 DEGs were identified, and they were mainly enriched in the terms of cell adhesion molecules, leukocyte transendothelial migration and ECM-receptor interaction. A PPI network was constructed, and 16 hub genes were identified, including TEK, ANGPT1, MMP9, VWF, CDH5, EDN1, ESAM, CCNE1, CDC45, PRC1, CCNB2, AURKA, MELK, CDC20, TOP2A and PTTG1. Among the genes, expressions of 14 hub genes were associated with prognosis of NSCLC patients. Additionally, a total of 11 DEMs were also identified. Our results provide some potential underlying biomarkers for NSCLC. Further studies are required to elucidate the pathogenesis of NSCLC. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Regulation of T-lymphocyte motility, adhesion and de-adhesion by a cell surface mechanism directed by low density lipoprotein receptor-related protein 1 and endogenous thrombospondin-1.

    PubMed

    Talme, Toomas; Bergdahl, Eva; Sundqvist, Karl-Gösta

    2014-06-01

    T lymphocytes are highly motile and constantly reposition themselves between a free-floating vascular state, transient adhesion and migration in tissues. The regulation behind this unique dynamic behaviour remains unclear. Here we show that T cells have a cell surface mechanism for integrated regulation of motility and adhesion and that integrin ligands and CXCL12/SDF-1 influence motility and adhesion through this mechanism. Targeting cell surface-expressed low-density lipoprotein receptor-related protein 1 (LRP1) with an antibody, or blocking transport of LRP1 to the cell surface, perturbed the cell surface distribution of endogenous thrombospondin-1 (TSP-1) while inhibiting motility and potentiating cytoplasmic spreading on intercellular adhesion molecule 1 (ICAM-1) and fibronectin. Integrin ligands and CXCL12 stimulated motility and enhanced cell surface expression of LRP1, intact TSP-1 and a 130,000 MW TSP-1 fragment while preventing formation of a de-adhesion-coupled 110 000 MW TSP-1 fragment. The appearance of the 130 000 MW TSP-1 fragment was inhibited by the antibody that targeted LRP1 expression, inhibited motility and enhanced spreading. The TSP-1 binding site in the LRP1-associated protein, calreticulin, stimulated adhesion to ICAM-1 through intact TSP-1 and CD47. Shear flow enhanced cell surface expression of intact TSP-1. Hence, chemokines and integrin ligands up-regulate a dominant motogenic pathway through LRP1 and TSP-1 cleavage and activate an associated adhesion pathway through the LRP1-calreticulin complex, intact TSP-1 and CD47. This regulation of T-cell motility and adhesion makes pro-adhesive stimuli favour motile responses, which may explain why T cells prioritize movement before permanent adhesion.

  13. The role of adhesive materials and oral biofilm in the failure of adhesive resin restorations.

    PubMed

    Pinna, Roberto; Usai, Paolo; Filigheddu, Enrica; Garcia-Godoy, Franklin; Milia, Egle

    2017-10-01

    To critically discuss adhesive materials and oral cariogenic biofilm in terms of their potential relevance to the failures of adhesive restorations in the oral environment. The literature regarding adhesive restoration failures was reviewed with particular emphasis on the chemistry of adhesive resins, weakness in dentin bonding, water fluids, cariogenic oral biofilm and the relations that influence failures. Particular attention was paid to evidence derived from clinical studies. There was much evidence that polymerization shrinkage is one of the main drawbacks of composite formulations. Stress results in debonding and marginal leakage into gaps with deleterious effects in bond strength, mechanical properties and the whole stability of restorations. Changes in resins permit passage of fluids and salivary proteins with a biological breakdown of the restorations. Esterases enzymes in human saliva catalyze exposed ester groups in composite producing monomer by-products, which can favor biofilm accumulation and secondary caries. Adhesive systems may not produce a dense hybrid layer in dentin. Very often this is related to the high viscous solubility and low wettability in dentin of the hydrophobic BisGMA monomer. Thus, dentin hybrid layer may suffer from hydrolysis using both the Etch&Rinse and Self-Etching adhesive systems. In addition, exposed and non-resin enveloped collagen fibers may be degraded by activation of the host-derived matrix metalloproteinase. Plaque accumulation is significantly influenced by the surface properties of the restorations. Biofilm at the contraction gap has demonstrated increased growth of Streptococcus mutans motivated by the chemical hydrolysis of the adhesive monomers at the margins. Streptococcus mutans is able to utilize some polysaccharides from the biofilm to increase the amount of acid in dental plaque with an increase in virulence and destruction of restorations. Stability of resin restorations in the oral environment is highly dependent on the structure of the monomers used in composite and adhesive systems. Still, the issues related to microleakage of fluids into the gap and bacteria leaching from the surface of composites represent the main causes of failure of adhesive restorations. Modifications of adhesive materials are necessary to address their instability in the oral environment.

  14. The expression dynamics of mechanosensitive genes in extra-embryonic vasculature after heart starts to beat in chick embryo.

    PubMed

    Rajendran, Saranya; Sundaresan, Lakshmikirupa; Rajendran, Krithika; Selvaraj, Monica; Gupta, Ravi; Chatterjee, Suvro

    2016-02-11

    Fluid flow plays an important role in vascular development. However, the detailed mechanisms, particularly the link between flow and modulation of gene expression during vascular development, remain unexplored. In chick embryo, the key events of vascular development from initiation of heart beat to establishment of effective blood flow occur between the stages HH10 and HH13. Therefore, we propose a novel in vivo model to study the flow experienced by developing endothelium. Using this model, we aimed to capture the transcriptome dynamics of the pre- and post-flow conditions. RNA was isolated from extra embryonic area vasculosa (EE-AV) pooled from three chick embryos between HH10-HH13 and RNA sequencing was performed. The whole transcriptome sequencing of chick identified up-regulation of some of the previously well-known mechanosensitive genes including NFR2, HAND1, CTGF and KDR. GO analyses of the up-regulated genes revealed enrichment of several biological processes including heart development, extracellular matrix organization, cell-matrix adhesion, cell migration, blood vessel development, patterning of blood vessels, collagen fibril organization. Genes encoding for gap junctions proteins which are involved in vascular remodeling and arterial-venous differentiation, and genes involved in cell-cell adhesion, and ECM interactions were significantly up-regulated. Validation of selected genes through semi quantitative PCR was performed. The study indicates that shear stress plays a major role in development. Through appropriate validation, this platform can serve as an in vivo model to study conditions of disturbed flow in pathology as well as normal flow during development.

  15. The REP2 Repeats of the Genome of Neisseria meningitidis Are Associated with Genes Coordinately Regulated during Bacterial Cell Interaction

    PubMed Central

    Morelle, Sandrine; Carbonnelle, Etienne; Nassif, Xavier

    2003-01-01

    Interaction with host cells is essential in meningococcal pathogenesis especially at the blood-brain barrier. This step is likely to involve a common regulatory pathway allowing coordinate regulation of genes necessary for the interaction with endothelial cells. The analysis of the genomic sequence of Neisseria meningitidis Z2491 revealed the presence of many repeats. One of these, designated REP2, contains a −24/−12 type promoter and a ribosome binding site 5 to 13 bp before an ATG. In addition most of these REP2 sequences are located immediately upstream of an ORF. Among these REP2-associated genes are pilC1 and crgA, described as being involved in steps essential for the interaction of N. meningitidis with host cells. Furthermore, the REP2 sequences located upstream of pilC1 and crgA correspond to the previously identified promoters known to be induced during the initial localized adhesion of N. meningitidis with human cells. This characteristic led us to hypothesize that at least some of the REP2-associated genes were upregulated under the same circumstances as pilC1 and crgA. Quantitative PCR in real time demonstrated that the expression of 14 out of 16 REP2-associated genes were upregulated during the initial localized adhesion of N. meningitidis. Taken together, these data suggest that these repeats control a set of genes necessary for the efficient interaction of this pathogen with host cells. Subsequent mutational analysis was performed to address the role of these genes during meningococcus-cell interaction. PMID:12670987

  16. Down-regulation of E-cadherin and catenins in human pituitary growth hormone-producing adenomas.

    PubMed

    Sano, Toshiaki; Rong, Qian Zhi; Kagawa, Noriko; Yamada, Shozo

    2004-01-01

    Growth hormone (GH)-producing pituitary adenomas can be ultrastructurally divided into two major types: densely granulated and sparsely granulated. The latter type of adenoma characteristically exhibits globular accumulations of cytokeratin filaments known as fibrous bodies, which are immunohistochemically identifiable as juxtanuclear dot-like immunoreactivity. We hypothesize that the formation of fibrous body might be related to dysfunction of adhesion molecules, because of the functional relationship between intermediate filaments and the cadherin-catenin complex and frequent observation of loss of cohesiveness of the adenoma cells. Our recent immunohistochemical study showed that expression of E-cadherin and its undercoat proteins, alpha-, beta- and gamma-catenin, in GH cell adenomas with prominent fibrous bodies was significantly reduced compared with GH cell adenomas without fibrous bodies and the normal adenohypophysial cells. Although no mutation of exon 3 of the beta-catenin gene was found in any GH cell adenomas with fibrous bodies, methylation-specific polymerase chain reaction analysis revealed that the E-cadherin promoter region was methylated in 37.5% of these adenomas, two of which displayed total methylation, but not in GH cell adenomas without fibrous bodies. We conclude that the decreased expression of the E-cadherin-catenin complex and methylation of the E-cadherin gene promoter region are events associated with the formation of fibrous bodies in GH cell adenomas. It remains to be clarified to explain the mechanism by which down-regulation of adhesion molecules is involved in the abnormal assembly of intermediate filaments.

  17. Dietary microbial phytase exerts mixed effects on the gut health of tilapia: a possible reason for the null effect on growth promotion.

    PubMed

    Hu, Jun; Ran, Chao; He, Suxu; Cao, Yanan; Yao, Bin; Ye, Yuantu; Zhang, Xuezhen; Zhou, Zhigang

    2016-06-01

    The present study evaluated the effects of dietary microbial phytase on the growth and gut health of hybrid tilapia (Oreochromis niloticus ♀×Oreochromis aureus ♂), focusing on the effect on intestinal histology, adhesive microbiota and expression of immune-related cytokine genes. Tilapia were fed either control diet or diet supplemented with microbial phytase (1000 U/kg). Each diet was randomly assigned to four groups of fish reared in cages (3×3×2 m). After 12 weeks of feeding, weight gain and feed conversion ratio of tilapia were not significantly improved by dietary microbial phytase supplementation. However, significantly higher level of P content in the scales, tighter and more regular intestinal mucosa folds were observed in the microbial phytase group and the microvilli density was significantly increased. The adhesive gut bacterial communities were strikingly altered by microbial phytase supplementation (0·41

  18. Effect of relative humidity on onset of capillary forces for rough surfaces.

    PubMed

    Zarate, Nyah V; Harrison, Aaron J; Litster, James D; Beaudoin, Stephen P

    2013-12-01

    Atomic force microscopy (AFM) was used to investigate the effect of relative humidity (RH) on the adhesion forces between silicon nitride AFM probes, hydrophilic stainless steel, and hydrophobic Perspex® (polymethylmethacrylate, PMMA). In addition, AFM-based phase contrast imaging was used to quantify the amount and location of adsorbed water present on these substrates at RH levels ranging from 15% to 65% at 22°C. Both the adhesion forces and the quantities of adsorbed moisture were seen to vary with RH, and the nature of this variation depended on the hydrophobicity of the substrate. For the Perspex®, both the adhesion force and the amount of adsorbed moisture were essentially independent of RH. For the stainless steel substrate, adsorbed moisture increased continuously with increasing RH, while the adhesion force rose from a minimum at 15% RH to a broad maximum between 25% and 35% RH. From 35% to 55% RH, the adhesion force dropped continuously to an intermediate level before rising again as 65% RH was approached. The changes in adhesion force with increasing relative humidity in the case of the stainless steel substrate were attributed to a balance of effects associated with adsorbed, sub-continuum water on the cantilever and steel. Hydrogen bonding interactions between these adsorbed water molecules were thought to increase the adhesion force. However, when significant quantities of molecular water adsorbed, these molecules were expect to decrease adhesion by screening the van der Waals interactions between the steel and the cantilever tip, and by increasing the separation distance between these solid surfaces when they were 'in contact'. Finally, the slight increase in adhesion between 55% and 65% RH was attributed to true capillary forces exerted by continuum water on the two solid surfaces. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Phenotypic and genotypic characterisation of multiple antibiotic-resistant Staphylococcus aureus exposed to subinhibitory levels of oxacillin and levofloxacin.

    PubMed

    Jo, Ara; Ahn, Juhee

    2016-07-29

    The emergence and spread of multidrug resistant methicillin-resistant Staphylococcus aureus (MDR-MRSA) has serious health consequences in the presence of sub-MIC antibiotics. Therefore, this study was designed to evaluate β-lactamase activity, efflux activity, biofilm formation, and gene expression pattern in Staphylococcus aureus KACC 10778, S. aureus ATCC 15564, and S. aureus CCARM 3080 exposed to sublethal concentrations of levofloxacin and oxacillin. The decreased MICs were observed in S. aureus KACC and S. aureus ATCC when exposed to levofloxacin and oxacillin, while and S. aureus CCARM remained resistance to streptomycin (512 μg/mL) in the presence of levofloxacin and imipenem (>512 μg/mL) in the presence of oxacillin. The considerable increase in extracellular and membrane-bound β-lactamase activities was observed in S. aureus ATCC exposed to oxacillin (>26 μmol/min/mL). The antibiotic susceptibility of all strains exposed to EPIs (CCCP and PAβN) varied depending on the classes of antibiotics. The relative expression levels of adhesion-related genes (clfA, clfB, fnbA, fnnB, and icaD), efflux-related genes (norB, norC, and qacA/B), and enterotoxin gene (sec) were increased more than 5-fold in S. aureus CCARM. The eno and qacA/B genes were highly overexpressed by more than 12- and 9-folds, respectively, in S. aureus CCARM exposed to levofloxacin. The antibiotic susceptibility, lactamase activity, biofilm-forming ability, efflux activity, and gene expression pattern varied with the intrinsic antibiotic resistance of S. aureus KACC, S. aureus ATCC, and S. aureus CCARM exposed to levofloxacin and oxacillin. This study would provide useful information for better understating of combination therapy related to antibiotic resistance mechanisms and open the door for designing effective antibiotic treatment protocols to prevent excessive use of antibiotics in clinical practice.

  20. Role of flexural stiffness of leukocyte microvilli in adhesion dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Tai-Hsien; Qi, Dewei

    2018-03-01

    Previous work reported that microvillus deformation has an important influence on dynamics of cell adhesion. However, the existing studies were limited to the extensional deformation of microvilli and did not consider the effects of their bending deformation on cell adhesion. This Rapid Communication investigates the effects of flexural stiffness of microvilli on the rolling process related to adhesion of leukocytes by using a lattice-Boltzmann lattice-spring method (LLM) combined with adhesive dynamics (AD) simulations. The simulation results reveal that the flexural stiffness of microvilli and their bending deformation have a profound effect on rolling velocity and adhesive forces. As the flexural stiffness of the microvilli decreases, their bending angles increase, resulting in an increase in the number of receptor-ligand bonds and adhesive bonding force and a decrease in the rolling velocity of leukocytes. The effects of flexural stiffness on deformation and adhesion represent crucial factors involved in cell adhesion.

  1. Exploratory study on the effects of novel diamine curing agents and isocyanate precursors on the properties on new epoxy and urethane adhesives

    NASA Technical Reports Server (NTRS)

    Glasgow, D. G.; Garthwait, C.

    1977-01-01

    Aromatic diamines based on diphenyl sulfone and benzophenone were studied as epoxy adhesive curing agents. Previously found differences in adhesive strengths for meta vs para orientation were not found in these series. The use of aluminum and alumina as fillers in a m,m prime-methylene dianiline-cured epoxy adhesive was not found to be beneficial to adhesive strength. Alumina filled adhesives had much lower strength than unfilled adhesives. The unfilled m,m prime-methylene dianiline-based epoxy adhesive had excellent resistance to moisture relative to a p,p prime-methylene dianiline-based adhesive and maintained good strengths up to 250 F. A glass fiber composite based on a m,m prime-methylene dianiline-cured epoxy appeared to be equivalent to the p,p prime-methylene dianiline-cured epoxy as judged by short beam shear tests.

  2. Lasp1 gene disruption is linked to enhanced cell migration and tumor formation Address for reprint requests and other correspondence: C. S. Chew, Inst. of Molecular Medicine and Genetics, Sanders R&E Bldg., Rm. CB 2803, Medical College of Georgia, Augusta, GA 30912-3175 (e-mail: cchew@mcg.edu).

    PubMed Central

    Zhang, Han; Chen, Xunsheng; Bollag, Wendy B.; Bollag, Roni J.; Sheehan, Daniel J.; Chew, Catherine S.

    2009-01-01

    Lasp1 is an actin-binding, signaling pathway-regulated phosphoprotein that is overexpressed in several cancers. siRNA knockdown in cell lines retards cell migration, suggesting the possibility that Lasp1 upregulation influences cancer metastasis. Herein, we utilized a recently developed gene knockout model to assess the role of Lasp1 in modulating nontransformed cell functions. Wound healing and tumor initiation progressed more rapidly in Lasp1−/− mice compared with Lasp1+/+ controls. Embryonic fibroblasts (MEFs) derived from Lasp1−/− mice also migrated more rapidly in vitro. These MEFs characteristically possessed increased focal adhesion numbers and displayed more rapid attachment compared with wild-type MEFs. Differential microarray analyses revealed alterations in message expression for proteins implicated in cell migration, adhesion, and cytoskeletal organization. Notably, the focal adhesion protein, lipoma preferred partner (LPP), a zyxin family member and putative Lasp1 binding protein, was increased about twofold. Because LPP gene disruption reduces cell migration, we hypothesize that LPP plays a role in enhancing the migratory capacity of Lasp1−/− MEFs, perhaps by modifying the subcellular localization of other motility-associated proteins. The striking contrast in the functional effects of loss of Lasp1 in innate cells compared with cell lines reveals distinct differences in mechanisms of motility and attachment in these models. PMID:19531578

  3. Mutations in spalt cause a severe but reversible neurodegenerative phenotype in the embryonic central nervous system of Drosophila melanogaster.

    PubMed

    Cantera, Rafael; Lüer, Karin; Rusten, Tor Erik; Barrio, Rosa; Kafatos, Fotis C; Technau, Gerhard M

    2002-12-01

    The gene spalt is expressed in the embryonic central nervous system of Drosophila melanogaster but its function in this tissue is still unknown. To investigate this question, we used a combination of techniques to analyse spalt mutant embryos. Electron microscopy showed that in the absence of spalt, the central nervous system cells are separated by enlarged extracellular spaces populated by membranous material at 60% of embryonic development. Surprisingly, the central nervous system from slightly older embryos (80% of development) exhibited almost wild-type morphology. An extensive survey by laser confocal microscopy revealed that the spalt mutant central nervous system has abnormal levels of particular cell adhesion and cytoskeletal proteins. Time-lapse analysis of neuronal differentiation in vitro, lineage analysis and transplantation experiments confirmed that the mutation causes cytoskeletal and adhesion defects. The data indicate that in the central nervous system, spalt operates within a regulatory pathway which influences the expression of the beta-catenin Armadillo, its ligand N-Cadherin, Notch, and the cell adhesion molecules Neuroglian, Fasciclin 2 and Fasciclin 3. Effects on the expression of these genes are persistent but many morphological aspects of the phenotype are transient, leading to the concept of sequential redundancy for stable organisation of the central nervous system.

  4. Nanoporous Monolithic Microsphere Arrays Have Anti-Adhesive Properties Independent of Humidity

    PubMed Central

    Eichler-Volf, Anna; Xue, Longjian; Kovalev, Alexander; Gorb, Elena V.; Gorb, Stanislav N.; Steinhart, Martin

    2016-01-01

    Bioinspired artificial surfaces with tailored adhesive properties have attracted significant interest. While fibrillar adhesive pads mimicking gecko feet are optimized for strong reversible adhesion, monolithic microsphere arrays mimicking the slippery zone of the pitchers of carnivorous plants of the genus Nepenthes show anti-adhesive properties even against tacky counterpart surfaces. In contrast to the influence of topography, the influence of relative humidity (RH) on adhesion has been widely neglected. Some previous works deal with the influence of RH on the adhesive performance of fibrillar adhesive pads. Commonly, humidity-induced softening of the fibrils enhances adhesion. However, little is known on the influence of RH on solid anti-adhesive surfaces. We prepared polymeric nanoporous monolithic microsphere arrays (NMMAs) with microsphere diameters of a few 10 µm to test their anti-adhesive properties at RHs of 2% and 90%. Despite the presence of continuous nanopore systems through which the inner nanopore walls were accessible to humid air, the topography-induced anti-adhesive properties of NMMAs on tacky counterpart surfaces were retained even at RH = 90%. This RH-independent robustness of the anti-adhesive properties of NMMAs significantly contrasts the adhesion enhancement by humidity-induced softening on nanoporous fibrillar adhesive pads made of the same material. PMID:28773497

  5. Impact of vitreomacular adhesion on ranibizumab mono- and combination therapy for neovascular age-related macular degeneration.

    PubMed

    Waldstein, Sebastian M; Ritter, Markus; Simader, Christian; Mayr-Sponer, Ulrike; Kundi, Michael; Schmidt-Erfurth, Ursula

    2014-08-01

    To investigate the influence of vitreomacular adhesion on the efficacy of pro re nata (PRN) ranibizumab monotherapy and verteporfin photodynamic therapy (PDT) combination therapy for neovascular age-related macular degeneration. Post hoc analysis of prospective randomized 12-month multicenter clinical trial data. Total of 255 treatment-naïve patients with subfoveal choroidal neovascularization. Assessment of the vitreomacular interface on monthly optical coherence tomography with division of patients into the following categories according to continuous 1-year grading: posterior vitreous detachment (n=154), dynamic release of vitreomacular adhesion (n=32), stable vitreomacular adhesion (n=51). Mean best-corrected visual acuity (BCVA) letter and central retinal thickness changes at month 12 in the vitreomacular interface groups. Mean BCVA changes at month 12 were +3.5 (posterior vitreous detachment), +4.3 (release of vitreomacular adhesion), and +6.3 (vitreomacular adhesion) in patients receiving monotherapy (P=.767), and +0.1 (posterior vitreous detachment), +6.6 (release of vitreomacular adhesion), and +9.2 (vitreomacular adhesion) in patients receiving combination therapy (P=.009). Mean central retinal thickness changes were -113 μm (posterior vitreous detachment), -89 μm (release of vitreomacular adhesion), and -122 μm (vitreomacular adhesion) in monotherapy (P=.725) and -121 μm (posterior vitreous detachment), -113 μm (release of vitreomacular adhesion), and -113 μm (vitreomacular adhesion) in combination therapy (P=.924). Mean ranibizumab retreatments during 12 months were 4.9 (posterior vitreous detachment), 6.6 (release of vitreomacular adhesion), and 5.3 (vitreomacular adhesion) in monotherapy (P=.018) and 4.7 (posterior vitreous detachment), 5.2 (release of vitreomacular adhesion), and 5.8 (vitreomacular adhesion) in combination therapy (P=.942). This study adds evidence that the vitreomacular interface status impacts functional outcomes and retreatment requirements. Patients with posterior vitreous detachment achieve acceptable results with fewer injections in PRN monotherapy, but lose potential vision gain with PDT. Patients with other vitreomacular interface configurations may potentially achieve optimized vision outcomes by combination of antiangiogenic treatment and vaso-occlusive PDT. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Engineering emergent multicellular behavior through synthetic adhesion

    NASA Astrophysics Data System (ADS)

    Glass, David; Riedel-Kruse, Ingmar

    In over a decade, synthetic biology has developed increasingly robust gene networks within single cells, but constructed very few systems that demonstrate multicellular spatio-temporal dynamics. We are filling this gap in synthetic biology's toolbox by developing an E. coli self-assembly platform based on modular cell-cell adhesion. We developed a system in which adhesive selectivity is provided by a library of outer membrane-displayed peptides with intra-library specificities, while affinity is provided by consistent expression across the entire library. We further provide a biophysical model to help understand the parameter regimes in which this tool can be used to self-assemble into cellular clusters, filaments, or meshes. The combined platform will enable future development of synthetic multicellular systems for use in consortia-based metabolic engineering, in living materials, and in controlled study of minimal multicellular systems. Stanford Bio-X Bowes Fellowship.

  7. Identification of New Factors Modulating Adhesion Abilities of the Pioneer Commensal Bacterium Streptococcus salivarius

    PubMed Central

    Couvigny, Benoit; Kulakauskas, Saulius; Pons, Nicolas; Quinquis, Benoit; Abraham, Anne-Laure; Meylheuc, Thierry; Delorme, Christine; Renault, Pierre; Briandet, Romain; Lapaque, Nicolas; Guédon, Eric

    2018-01-01

    Biofilm formation is crucial for bacterial community development and host colonization by Streptococcus salivarius, a pioneer colonizer and commensal bacterium of the human gastrointestinal tract. This ability to form biofilms depends on bacterial adhesion to host surfaces, and on the intercellular aggregation contributing to biofilm cohesiveness. Many S. salivarius isolates auto-aggregate, an adhesion process mediated by cell surface proteins. To gain an insight into the genetic factors of S. salivarius that dictate host adhesion and biofilm formation, we developed a screening method, based on the differential sedimentation of bacteria in semi-liquid conditions according to their auto-aggregation capacity, which allowed us to identify twelve mutations affecting this auto-aggregation phenotype. Mutations targeted genes encoding (i) extracellular components, including the CshA surface-exposed protein, the extracellular BglB glucan-binding protein, the GtfE, GtfG and GtfH glycosyltransferases and enzymes responsible for synthesis of cell wall polysaccharides (CwpB, CwpK), (ii) proteins responsible for the extracellular localization of proteins, such as structural components of the accessory SecA2Y2 system (Asp1, Asp2, SecA2) and the SrtA sortase, and (iii) the LiaR transcriptional response regulator. These mutations also influenced biofilm architecture, revealing that similar cell-to-cell interactions govern assembly of auto-aggregates and biofilm formation. We found that BglB, CshA, GtfH and LiaR were specifically associated with bacterial auto-aggregation, whereas Asp1, Asp2, CwpB, CwpK, GtfE, GtfG, SecA2 and SrtA also contributed to adhesion to host cells and host-derived components, or to interactions with the human pathogen Fusobacterium nucleatum. Our study demonstrates that our screening method could also be used to identify genes implicated in the bacterial interactions of pathogens or probiotics, for which aggregation is either a virulence trait or an advantageous feature, respectively. PMID:29515553

  8. Identification of adipocyte adhesion molecule (ACAM), a novel CTX gene family, implicated in adipocyte maturation and development of obesity

    PubMed Central

    2004-01-01

    Few cell adhesion molecules have been reported to be expressed in mature adipocytes, and the significance of cell adhesion process in adipocyte biology is also unknown. In the present study, we identified ACAM (adipocyte adhesion molecule), a novel homologue of the CTX (cortical thymocyte marker in Xenopus) gene family. ACAM cDNA was isolated during PCR-based cDNA subtraction, and its mRNA was shown to be up-regulated in WATs (white adipose tissues) of OLETF (Otsuka Long–Evans Tokushima fatty) rats, an animal model for Type II diabetes and obesity. ACAM, 372 amino acids in total, has a signal peptide, V-type (variable) and C2-type (constant) Ig domains, a single transmembrane segment and a cytoplasmic tail. The amino acid sequence in rat is highly homologous to mouse (94%) and human (87%). ACAM mRNA was predominantly expressed in WATs in OLETF rats, and increased with the development of obesity until 30 weeks of age, which is when the peak of body mass is reached. Western blot analysis revealed that ACAM protein, approx. 45 kDa, was associated with plasma membrane fractions of mature adipocytes isolated from mesenteric and subdermal adipose deposits of OLETF rats. Up-regulation of ACAM mRNAs in obesity was also shown in WATs of genetically obese db/db mice, diet-induced obese ICR mice and human obese subjects. In primary cultured mouse and human adipocytes, ACAM mRNA expression was progressively up-regulated during differentiation. Several stably transfected Chinese-hamster ovary K1 cell lines were established, and the quantification of ACAM mRNA and cell aggregation assay revealed that the degree of homophilic aggregation correlated well with ACAM mRNA expression. In summary, ACAM may be the critical adhesion molecule in adipocyte differentiation and development of obesity. PMID:15563274

  9. Reducing Ice Adhesion on Nonsmooth Metallic Surfaces: Wettability and Topography Effects.

    PubMed

    Ling, Edwin Jee Yang; Uong, Victor; Renault-Crispo, Jean-Sébastien; Kietzig, Anne-Marie; Servio, Phillip

    2016-04-06

    The effects of ice formation and accretion on external surfaces range from being mildly annoying to potentially life-threatening. Ice-shedding materials, which lower the adhesion strength of ice to its surface, have recently received renewed research attention as a means to circumvent the problem of icing. In this work, we investigate how surface wettability and surface topography influence the ice adhesion strength on three different surfaces: (i) superhydrophobic laser-inscribed square pillars on copper, (ii) stainless steel 316 Dutch-weave meshes, and (iii) multiwalled carbon nanotube-covered steel meshes. The finest stainless steel mesh displayed the best performance with a 93% decrease in ice adhesion relative to polished stainless steel, while the superhydrophobic square pillars exhibited an increase in ice adhesion by up to 67% relative to polished copper. Comparisons of dynamic contact angles revealed little correlation between surface wettability and ice adhesion. On the other hand, by considering the ice formation process and the fracture mechanics at the ice-substrate interface, we found that two competing mechanisms governing ice adhesion strength arise on nonplanar surfaces: (i) mechanical interlocking of the ice within the surface features that enhances adhesion, and (ii) formation of microcracks that act as interfacial stress concentrators, which reduce adhesion. Our analysis provides insight toward new approaches for the design of ice-releasing materials through the use of surface topographies that promote interfacial crack propagation.

  10. Comparative Genomics and Transcriptomics Analyses Reveal Divergent Lifestyle Features of Nematode Endoparasitic Fungus Hirsutella minnesotensis

    PubMed Central

    Lai, Yiling; Liu, Keke; Zhang, Xinyu; Zhang, Xiaoling; Li, Kuan; Wang, Niuniu; Shu, Chi; Wu, Yunpeng; Wang, Chengshu; Bushley, Kathryn E.; Xiang, Meichun; Liu, Xingzhong

    2014-01-01

    Hirsutella minnesotensis [Ophiocordycipitaceae (Hypocreales, Ascomycota)] is a dominant endoparasitic fungus by using conidia that adhere to and penetrate the secondary stage juveniles of soybean cyst nematode. Its genome was de novo sequenced and compared with five entomopathogenic fungi in the Hypocreales and three nematode-trapping fungi in the Orbiliales (Ascomycota). The genome of H. minnesotensis is 51.4 Mb and encodes 12,702 genes enriched with transposable elements up to 32%. Phylogenomic analysis revealed that H. minnesotensis was diverged from entomopathogenic fungi in Hypocreales. Genome of H. minnesotensis is similar to those of entomopathogenic fungi to have fewer genes encoding lectins for adhesion and glycoside hydrolases for cellulose degradation, but is different from those of nematode-trapping fungi to possess more genes for protein degradation, signal transduction, and secondary metabolism. Those results indicate that H. minnesotensis has evolved different mechanism for nematode endoparasitism compared with nematode-trapping fungi. Transcriptomics analyses for the time-scale parasitism revealed the upregulations of lectins, secreted proteases and the genes for biosynthesis of secondary metabolites that could be putatively involved in host surface adhesion, cuticle degradation, and host manipulation. Genome and transcriptome analyses provided comprehensive understanding of the evolution and lifestyle of nematode endoparasitism. PMID:25359922

  11. Structure and function of the adhesive type IV pilus of Sulfolobus acidocaldarius

    PubMed Central

    Henche, Anna-Lena; Ghosh, Abhrajyoti; Yu, Xiong; Jeske, Torsten; Egelman, Edward; Albers, Sonja-Verena

    2014-01-01

    Archaea display a variety of type IV pili on their surface and employ them in different physiological functions. In the crenarchaeon Sulfolobus acidocaldarius the most abundant surface structure is the aap pilus (archaeal adhesive pilus). The construction of in frame deletions of the aap genes revealed that all the five genes (aapA, aapX, aapE, aapF, aapB) are indispensible for assembly of the pilus and an impact on surface motility and biofilm formation was observed. Our analyses revealed that there exists a regulatory cross-talk between the expression of aap genes and archaella (formerly archaeal flagella) genes during different growth phases. The structure of the aap pilus is entirely different from the known bacterial type IV pili as well as other archaeal type IV pili. An aap pilus displayed 3 stranded helices where there is a rotation per subunit of ~ 138° and a rise per subunit of ~ 5.7 Å. The filaments have a diameter of ~ 110 Å and the resolution was judged to be ~ 9 Å. We concluded that small changes in sequence might be amplified by large changes in higher-order packing. Our finding of an extraordinary stability of aap-pili possibly represents an adaptation to harsh environments that S. acidocaldarius encounters. PMID:23078543

  12. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Feng; Jordan, Ashley; Kluz, Thomas

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealedmore » the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. - Highlights: • We performed SATB2 overexpression in the BEAS-2B cell line. • We performed SATB2 knockdown in a Ni transformed BEAS-2B cell line. • SATB2 induced anchorage-independent growth and increased cell migration. • SATB2 knockdown significantly decreased anchorage-independent growth. • We identified alterations in gene involved in cytoskeleton, cell adhesion.« less

  13. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    PubMed Central

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas S.; Lisby, Michael; Salanti, Ali; Fordyce, Sarah L.; Jespersen, Jakob S.; Carter, Richard; Deitsch, Kirk W.; Theander, Thor G.; Pedersen, Anders Gorm; Arnot, David E.

    2014-01-01

    Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens. PMID:24253306

  14. Influence of cloning by chromatin transfer on placental gene expression at Day 45 of pregnancy in cattle.

    PubMed

    Mesquita, Fernando S; Machado, Sergio A; Drnevich, Jenny; Borowicz, Pawel; Wang, Zhongde; Nowak, Romana A

    2013-01-30

    Poor success rates in somatic cell cloning are often attributed to abnormal early embryonic development as well as late abnormal fetal growth and placental development. Although promising results have been reported following chromatin transfer (CT), a novel cloning method that includes the remodeling of the donor nuclei in vitro prior to their transfer into enucleated oocytes, animals cloned by CT show placental abnormalities similar to those observed following conventional nuclear transfer. We hypothesized that the placental gene expression pattern from cloned fetuses was ontologically related to the frequently observed placental phenotype. The aim of the present study was to compare global gene expression by microarray analysis of Day 44-47 cattle placentas derived from CT cloned fetuses with those derived from in vitro fertilization (i.e. control), and confirm the altered mRNA and protein expression of selected molecules by qRT-PCR and immunohistochemistry, respectively. The differentially expressed genes identified in the present study are known to be involved in a range of activities associated with cell adhesion, cell cycle control, intracellular transport and proteolysis. Specifically, an imprinted gene, involved with cell proliferation and placentomegaly in humans (CDKN1C) and a peptidase that serves as a marker for non-invasive trophoblast cells in human placentas (DPP4), had mRNA and protein altered in CT placentas. It was concluded that the altered pattern of gene expression observed in CT samples may contribute to the abnormal placental development phenotypes commonly identified in cloned offspring, and that expression of imprinted as well as trophoblast invasiveness-related genes is altered in cattle cloned by CT. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. A Novel Predictive Equation for Potential Diagnosis of Cholangiocarcinoma

    PubMed Central

    Kraiklang, Ratthaphol; Pairojkul, Chawalit; Khuntikeo, Narong; Imtawil, Kanokwan; Wongkham, Sopit; Wongkham, Chaisiri

    2014-01-01

    Cholangiocarcinoma (CCA) is the second most common-primary liver cancer. The difficulties in diagnosis limit successful treatment of CCA. At present, histological investigation is the standard diagnosis for CCA. However, there are some poor-defined tumor tissues which cannot be definitively diagnosed by general histopathology. As molecular signatures can define molecular phenotypes related to diagnosis, prognosis, or treatment outcome, and CCA is the second most common cancer found after hepatocellularcarcinoma (HCC), the aim of this study was to develop a predictive model which differentiates CCA from HCC and normal liver tissues. An in-house PCR array containing 176 putative CCA marker genes was tested with the training set tissues of 20 CCA and 10 HCC cases. The molecular signature of CCA revealed the prominent expression of genes involved in cell adhesion and cell movement, whereas HCC showed elevated expression of genes related to cell proliferation/differentiation and metabolisms. A total of 69 genes differentially expressed in CCA and HCC were optimized statistically to formulate a diagnostic equation which distinguished CCA cases from HCC cases. Finally, a four-gene diagnostic equation (CLDN4, HOXB7, TMSB4 and TTR) was formulated and then successfully validated using real-time PCR in an independent testing set of 68 CCA samples and 77 non-CCA controls. Discrimination analysis showed that a combination of these genes could be used as a diagnostic marker for CCA with better diagnostic parameters with high sensitivity and specificity than using a single gene marker or the usual serum markers (CA19-9 and CEA). This new combination marker may help physicians to identify CCA in liver tissues when the histopathology is uncertain. PMID:24586698

  16. Gene Expression Profiling in Limb-Girdle Muscular Dystrophy 2A

    PubMed Central

    Sáenz, Amets; Azpitarte, Margarita; Armañanzas, Rubén; Leturcq, France; Alzualde, Ainhoa; Inza, Iñaki; García-Bragado, Federico; De la Herran, Gaspar; Corcuera, Julián; Cabello, Ana; Navarro, Carmen; De la Torre, Carolina; Gallardo, Eduard; Illa, Isabel; de Munain, Adolfo López

    2008-01-01

    Limb-girdle muscular dystrophy type 2A (LGMD2A) is a recessive genetic disorder caused by mutations in calpain 3 (CAPN3). Calpain 3 plays different roles in muscular cells, but little is known about its functions or in vivo substrates. The aim of this study was to identify the genes showing an altered expression in LGMD2A patients and the possible pathways they are implicated in. Ten muscle samples from LGMD2A patients with in which molecular diagnosis was ascertained were investigated using array technology to analyze gene expression profiling as compared to ten normal muscle samples. Upregulated genes were mostly those related to extracellular matrix (different collagens), cell adhesion (fibronectin), muscle development (myosins and melusin) and signal transduction. It is therefore suggested that different proteins located or participating in the costameric region are implicated in processes regulated by calpain 3 during skeletal muscle development. Genes participating in the ubiquitin proteasome degradation pathway were found to be deregulated in LGMD2A patients, suggesting that regulation of this pathway may be under the control of calpain 3 activity. As frizzled-related protein (FRZB) is upregulated in LGMD2A muscle samples, it could be hypothesized that β-catenin regulation is also altered at the Wnt signaling pathway, leading to an incorrect myogenesis. Conversely, expression of most transcription factor genes was downregulated (MYC, FOS and EGR1). Finally, the upregulation of IL-32 and immunoglobulin genes may induce the eosinophil chemoattraction explaining the inflammatory findings observed in presymptomatic stages. The obtained results try to shed some light on identification of novel therapeutic targets for limb-girdle muscular dystrophies. PMID:19015733

  17. Surface finishing. [for aircraft wings

    NASA Technical Reports Server (NTRS)

    Kinzler, J. A.; Heffernan, J. T.; Fehrenkamp, L. G.; Lee, W. S. (Inventor)

    1977-01-01

    A surface of an article adapted for relative motion with a fluid environment is finished by coating the surface with a fluid adhesive. The adhesive is covered with a sheet of flexible film material under tension, and the adhesive is set while maintaining tension on the film material.

  18. Transcriptome Analysis Revealed Changes of Multiple Genes Involved in Haliotis discus hannai Innate Immunity during Vibrio parahemolyticus Infection.

    PubMed

    Nam, Bo-Hye; Jung, Myunghee; Subramaniyam, Sathiyamoorthy; Yoo, Seung-il; Markkandan, Kesavan; Moon, Ji-Young; Kim, Young-Ok; Kim, Dong-Gyun; An, Cheul Min; Shin, Younhee; Jung, Ho-jin; Park, Jun-hyung

    2016-01-01

    Abalone (Haliotis discus hannai) is one of the most valuable marine aquatic species in Korea, Japan and China. Tremendous exposure to bacterial infection is common in aquaculture environment, especially by Vibrio sp. infections. It's therefore necessary and urgent to understand the mechanism of H. discus hannai host defense against Vibrio parahemolyticus infection. However studies on its immune system are hindered by the lack of genomic resources. In the present study, we sequenced the transcriptome of control and bacterial challenged H. discus hannai tissues. Totally, 138 MB of reference transcriptome were obtained from de novo assembly of 34 GB clean bases from ten different libraries and annotated with the biological terms (GO and KEGG). A total of 10,575 transcripts exhibiting the differentially expression at least one pair of comparison and the functional annotations highlight genes related to immune response, cell adhesion, immune regulators, redox molecules and mitochondrial coding genes. Mostly, these groups of genes were dominated in hemocytes compared to other tissues. This work is a prerequisite for the identification of those physiological traits controlling H. discus hannai ability to survive against Vibrio infection.

  19. Transcriptome Analysis Revealed Changes of Multiple Genes Involved in Haliotis discus hannai Innate Immunity during Vibrio parahemolyticus Infection

    PubMed Central

    Nam, Bo-Hye; Jung, Myunghee; Subramaniyam, Sathiyamoorthy; Yoo, Seung-il; Markkandan, Kesavan; Moon, Ji-Young; Kim, Young-Ok; Kim, Dong-Gyun; An, Cheul Min; Shin, Younhee; Jung, Ho-jin; Park, Jun-hyung

    2016-01-01

    Abalone (Haliotis discus hannai) is one of the most valuable marine aquatic species in Korea, Japan and China. Tremendous exposure to bacterial infection is common in aquaculture environment, especially by Vibrio sp. infections. It’s therefore necessary and urgent to understand the mechanism of H. discus hannai host defense against Vibrio parahemolyticus infection. However studies on its immune system are hindered by the lack of genomic resources. In the present study, we sequenced the transcriptome of control and bacterial challenged H. discus hannai tissues. Totally, 138 MB of reference transcriptome were obtained from de novo assembly of 34 GB clean bases from ten different libraries and annotated with the biological terms (GO and KEGG). A total of 10,575 transcripts exhibiting the differentially expression at least one pair of comparison and the functional annotations highlight genes related to immune response, cell adhesion, immune regulators, redox molecules and mitochondrial coding genes. Mostly, these groups of genes were dominated in hemocytes compared to other tissues. This work is a prerequisite for the identification of those physiological traits controlling H. discus hannai ability to survive against Vibrio infection. PMID:27088873

  20. Gene expression analysis of human adipose tissue-derived stem cells during the initial steps of in vitro osteogenesis.

    PubMed

    Robert, Anny Waloski; Angulski, Addeli Bez Batti; Spangenberg, Lucia; Shigunov, Patrícia; Pereira, Isabela Tiemy; Bettes, Paulo Sergio Loiacono; Naya, Hugo; Correa, Alejandro; Dallagiovanna, Bruno; Stimamiglio, Marco Augusto

    2018-03-16

    Mesenchymal stem cells (MSCs) have been widely studied with regard to their potential use in cell therapy protocols and regenerative medicine. However, a better comprehension about the factors and molecular mechanisms driving cell differentiation is now mandatory to improve our chance to manipulate MSC behavior and to benefit future applications. In this work, we aimed to study gene regulatory networks at an early step of osteogenic differentiation. Therefore, we analyzed both the total mRNA and the mRNA fraction associated with polysomes on human adipose tissue-derived stem cells (hASCs) at 24 h of osteogenesis induction. The RNA-seq results evidenced that hASC fate is not compromised with osteogenesis at this time and that 21 days of continuous cell culture stimuli are necessary for full osteogenic differentiation of hASCs. Furthermore, early stages of osteogenesis induction involved gene regulation that was linked to the management of cell behavior in culture, such as the control of cell adhesion and proliferation. In conclusion, although discrete initial gene regulation related to osteogenesis occur, the first 24 h of induction is not sufficient to trigger and drive in vitro osteogenic differentiation of hASCs.

  1. Targeting Activation of Specific NF-κB Subunits Prevents Stress-Dependent Atherothrombotic Gene Expression

    PubMed Central

    Djuric, Zdenka; Kashif, Muhammed; Fleming, Thomas; Muhammad, Sajjad; Piel, David; von Bauer, Rüdiger; Bea, Florian; Herzig, Stephan; Zeier, Martin; Pizzi, Marina; Isermann, Berend; Hecker, Markus; Schwaninger, Markus; Bierhaus, Angelika; Nawroth, Peter P

    2012-01-01

    Psychosocial stress has been shown to be a contributing factor in the development of atherosclerosis. Although the underlying mechanisms have not been elucidated entirely, it has been shown previously that the transcription factor nuclear factor-κB (NF-κB) is an important component of stress-activated signaling pathway. In this study, we aimed to decipher the mechanisms of stress-induced NF-κB-mediated gene expression, using an in vitro and in vivo model of psychosocial stress. Induction of stress led to NF-κB-dependent expression of proinflammatory (tissue factor, intracellular adhesive molecule 1 [ICAM-1]) and protective genes (manganese superoxide dismutase [MnSOD]) via p50, p65 or cRel. Selective inhibition of the different subunits and the respective kinases showed that inhibition of cRel leads to the reduction of atherosclerotic lesions in apolipoprotein−/− (ApoE−/−) mice via suppression of proinflammatory gene expression. This observation may therefore provide a possible explanation for ineffectiveness of antioxidant therapies and suggests that selective targeting of cRel activation may provide a novel approach for the treatment of stress-related inflammatory vascular disease. PMID:23114885

  2. Evolution of Salmonella-Host Cell Interactions through a Dynamic Bacterial Genome

    PubMed Central

    Ilyas, Bushra; Tsai, Caressa N.; Coombes, Brian K.

    2017-01-01

    Salmonella Typhimurium has a broad arsenal of genes that are tightly regulated and coordinated to facilitate adaptation to the various host environments it colonizes. The genome of Salmonella Typhimurium has undergone multiple gene acquisition events and has accrued changes in non-coding DNA that have undergone selection by regulatory evolution. Together, at least 17 horizontally acquired pathogenicity islands (SPIs), prophage-associated genes, and changes in core genome regulation contribute to the virulence program of Salmonella. Here, we review the latest understanding of these elements and their contributions to pathogenesis, emphasizing the regulatory circuitry that controls niche-specific gene expression. In addition to an overview of the importance of SPI-1 and SPI-2 to host invasion and colonization, we describe the recently characterized contributions of other SPIs, including the antibacterial activity of SPI-6 and adhesion and invasion mediated by SPI-4. We further discuss how these fitness traits have been integrated into the regulatory circuitry of the bacterial cell through cis-regulatory evolution and by a careful balance of silencing and counter-silencing by regulatory proteins. Detailed understanding of regulatory evolution within Salmonella is uncovering novel aspects of infection biology that relate to host-pathogen interactions and evasion of host immunity. PMID:29034217

  3. Influence of adhesion and bacteriocin production by Lactobacillus salivarius on the intestinal epithelial cell transcriptional response.

    PubMed

    O'Callaghan, John; Buttó, Ludovica F; MacSharry, John; Nally, Kenneth; O'Toole, Paul W

    2012-08-01

    Lactobacillus salivarius strain UCC118 is a human intestinal isolate that has been extensively studied for its potential probiotic effects in human and animal models. The objective of this study was to determine the effect of L. salivarius UCC118 on gene expression responses in the Caco-2 cell line to improve understanding of how the strain might modulate intestinal epithelial cell phenotypes. Exposure of Caco-2 cells to UCC118 led to the induction of several human genes (TNFAIP3, NFKBIA, and BIRC3) that are negative regulators of inflammatory signaling pathways. Induction of chemokines (CCL20, CXCL-1, and CXCL-2) with antimicrobial functions was also observed. Disruption of the UCC118 sortase gene srtA causes reduced bacterial adhesion to epithelial cells. Transcription of three mucin genes was reduced significantly when Caco-2 cells were stimulated with the ΔsrtA derivative of UCC118 compared to cells stimulated with the wild type, but there was no significant change in the transcription levels of the anti-inflammatory genes. UCC118 genes that were significantly upregulated upon exposure to Caco-2 cells were identified by bacterial genome microarray and consisted primarily of two groups of genes connected with purine metabolism and the operon for synthesis of the Abp118 bacteriocin. Following incubation with Caco-2 cells, the bacteriocin synthesis genes were transcribed at higher levels in the wild type than in the ΔsrtA derivative. These data indicate that L. salivarius UCC118 influences epithelial cells both through modulation of the inflammatory response and by modulation of intestinal cell mucin production. Sortase-anchored cell surface proteins of L. salivarius UCC118 have a central role in promoting the interaction between the bacterium and epithelial cells.

  4. Transcriptomic profiling of human peritumoral neocortex tissues revealed genes possibly involved in tumor-induced epilepsy.

    PubMed

    Niesen, Charles E; Xu, Jun; Fan, Xuemo; Li, Xiaojin; Wheeler, Christopher J; Mamelak, Adam N; Wang, Charles

    2013-01-01

    The molecular mechanism underlying tumor-induced epileptogenesis is poorly understood. Alterations in the peritumoral microenvironment are believed to play a significant role in inducing epileptogenesis. We hypothesize that the change of gene expression in brain peritumoral tissues may contribute to the increased neuronal excitability and epileptogenesis. To identify the genes possibly involved in tumor-induced epilepsy, a genome-wide gene expression profiling was conducted using Affymetrix HG U133 plus 2.0 arrays and RNAs derived from formalin-fixed paraffin embedded (FFPE) peritumoral cortex tissue slides from 5-seizure vs. 5-non-seizure low grade brain tumor patients. We identified many differentially expressed genes (DEGs). Seven dysregulated genes (i.e., C1QB, CALCRL, CCR1, KAL1, SLC1A2, SSTR1 and TYRO3) were validated by qRT-PCR, which showed a high concordance. Principal Component Analysis (PCA) showed that epilepsy subjects were clustered together tightly (except one sample) and were clearly separated from the non-epilepsy subjects. Molecular functional categorization showed that significant portions of the DEGs functioned as receptor activity, molecular binding including enzyme binding and transcription factor binding. Pathway analysis showed these DEGs were mainly enriched in focal adhesion, ECM-receptor interaction, and cell adhesion molecules pathways. In conclusion, our study showed that dysregulation of gene expression in the peritumoral tissues may be one of the major mechanisms of brain tumor induced-epilepsy. However, due to the small sample size of the present study, further validation study is needed. A deeper characterization on the dysregulated genes involved in brain tumor-induced epilepsy may shed some light on the management of epilepsy due to brain tumors.

  5. Surface and interfacial properties of carbon fibers

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.

    1991-01-01

    The adhesion strength of AS4 fibers to thermoplastic polymers was determined. The specific polymers were polycarbonate, polyphenylene oxide, polyetherimide, polyphenylene oxide blends with polystyrene, and polycarbonate blends with a polycarbonate-polysiloxan copolymer. Data are also included for polysulfone. It was recognized at the outset that an absolute measure of the fiber matrix adhesion would be difficult. However, it is feasible to determine the fiber bond strengths to the thermoplastics relative to the bond strengths of the same fibers to epoxy polymers. It was anticipated, and in fact realized, that the adhesion of AS4 to the thermoplastic polymers was relatively low. Therefore, further objectives of the study were to identify means of increasing fiber/matrix adhesion and to try to determine why the adhesion of AS4 to thermoplastics is significantly less than to epoxy polymers.

  6. Virulence-related genes, adhesion and invasion of some Yersinia enterocolitica-like strains suggests its pathogenic potential.

    PubMed

    Imori, Priscilla F M; Passaglia, Jaqueline; Souza, Roberto A; Rocha, Lenaldo B; Falcão, Juliana P

    2017-03-01

    Yersina enterocolitica-like species have not been extensively studied regarding its pathogenic potential. This work aimed to assess the pathogenic potential of some Y. enterocolitica-like strains by evaluating the presence of virulence-related genes by PCR and their ability to adhere to and invade Caco-2 and HEp-2 cells. A total of 50 Y. frederiksenii, 55 Y. intermedia and 13 Y. kristensenii strains were studied. The strains contained the following genes: Y. frederiksenii, fepA(44%), fes(44%) and ystB(18%); Y. intermedia, ail(53%), fepA (35%), fepD(2%), fes(97%), hreP(2%), ystB(2%) and tccC(35%); Y. kristensenii, ail(62%), ystB(23%), fepA(77%), fepD(54%), fes(54%) and hreP(77%). Generally, the Y. enterocolitica-like strains had a reduced ability to adhere to and invade mammalian cells compared to the highly pathogenic Y. enterocolitica 8081. However, Y. kristensenii FCF410 and Y. frederiksenii FCF461 presented high invasion potentials in Caco-2 cells after five days of pre-incubation increased by 45- and 7.2-fold compared to Y. enterocolitica 8081, respectively; but, the ail gene was not detected in these strains. The presence of virulence-related genes in some of the Y. enterocolitica-like strains indicated their possible pathogenic potential. Moreover, the results suggest the existence of alternative virulence mechanisms and that the pathogenicity of Y. kristensenii and Y. frederiksenii may be strain-dependent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Spectral force analysis using atomic force microscopy reveals the importance of surface heterogeneity in bacterial and colloid adhesion to engineered surfaces.

    PubMed

    Ma, Huilian; Winslow, Charles J; Logan, Bruce E

    2008-04-01

    Coatings developed to reduce biofouling of engineered surfaces do not always perform as expected based on their native properties. One reason is that a relatively small number of highly adhesive sites, or the heterogeneity of the coated surface, may control the overall response of the system to initial bacterial deposition. It is shown here using an approach we call spectral force analysis (SFA), based on force volume imaging of the surface with atomic force microscopy, that the behavior of surfaces and coatings can be better understood relative to bacterial adhesion. The application of vapor deposited TiO(2) metal oxide increased bacterial and colloid adhesion, but coating the surface with silica oxide reduced adhesion in a manner consistent with SFA based on analysis of the "stickiest" sites. Application of a TiO(2)-based paint to a surface produced a relatively non-fouling surface. Addition of a hydrophilic layer coating to this surface should have decreased fouling. However, it was observed that this coating actually increased fouling. Using SFA it was shown that the reason for the increased adhesion of bacteria and particles to the hydrophilic layer was that the surface produced by this coating was highly heterogeneous, resulting in a small number of sites that created a stickier surface. These results show that while it is important to manufacture surfaces with coatings that are relatively non-adhesive to bacteria, it is also essential that these coatings have a highly uniform surface chemistry.

  8. Distinct ontogenic and regional expressions of newly identified Cajal-Retzius cell-specific genes during neocorticogenesis.

    PubMed

    Yamazaki, Hiroshi; Sekiguchi, Mariko; Takamatsu, Masako; Tanabe, Yasuto; Nakanishi, Shigetada

    2004-10-05

    Cajal-Retzius (CR) cells are early-generated transient neurons and are important in the regulation of cortical neuronal migration and cortical laminar formation. Molecular entities characterizing the CR cell identity, however, remain largely elusive. We purified mouse cortical CR cells expressing GFP to homogeneity by fluorescence-activated cell sorting and examined a genome-wide expression profile of cortical CR cells at embryonic and postnatal periods. We identified 49 genes that exceeded hybridization signals by >10-fold in CR cells compared with non-CR cells at embryonic day 13.5, postnatal day 2, or both. Among these CR cell-specific genes, 25 genes, including the CR cell marker genes such as the reelin and calretinin genes, are selectively and highly expressed in both embryonic and postnatal CR cells. These genes, which encode generic properties of CR cell specificity, are eminently characterized as modulatory composites of voltage-dependent calcium channels and sets of functionally related cellular components involved in cell migration, adhesion, and neurite extension. Five genes are highly expressed in CR cells at the early embryonic period and are rapidly down-regulated thereafter. Furthermore, some of these genes have been shown to mark two distinctly different focal regions corresponding to the CR cell origins. At the late prenatal and postnatal periods, 19 genes are selectively up-regulated in CR cells. These genes include functional molecules implicated in synaptic transmission and modulation. CR cells thus strikingly change their cellular phenotypes during cortical development and play a pivotal role in both corticogenesis and cortical circuit maturation.

  9. Gene expression analysis predicts insect venom anaphylaxis in indolent systemic mastocytosis.

    PubMed

    Niedoszytko, M; Bruinenberg, M; van Doormaal, J J; de Monchy, J G R; Nedoszytko, B; Koppelman, G H; Nawijn, M C; Wijmenga, C; Jassem, E; Elberink, J N G Oude

    2011-05-01

    Anaphylaxis to insect venom (Hymenoptera) is most severe in patients with mastocytosis and may even lead to death. However, not all patients with mastocytosis suffer from anaphylaxis. The aim of the study was to analyze differences in gene expression between patients with indolent systemic mastocytosis (ISM) and a history of insect venom anaphylaxis (IVA) compared to those patients without a history of anaphylaxis, and to determine the predictive use of gene expression profiling. Whole-genome gene expression analysis was performed in peripheral blood cells. Twenty-two adults with ISM were included: 12 with a history of IVA and 10 without a history of anaphylaxis of any kind. Significant differences in single gene expression corrected for multiple testing were found for 104 transcripts (P < 0.05). Gene ontology analysis revealed that the differentially expressed genes were involved in pathways responsible for the development of cancer and focal and cell adhesion suggesting that the expression of genes related to the differentiation state of cells is higher in patients with a history of anaphylaxis. Based on the gene expression profiles, a naïve Bayes prediction model was built identifying patients with IVA. In ISM, gene expression profiles are different between patients with a history of IVA and those without. These findings might reflect a more pronounced mast cells dysfunction in patients without a history of anaphylaxis. Gene expression profiling might be a useful tool to predict the risk of anaphylaxis on insect venom in patients with ISM. Prospective studies are needed to substantiate any conclusions. © 2010 John Wiley & Sons A/S.

  10. Streptococcus pyogenes Phospholipase A2 Induces the Expression of Adhesion Molecules on Human Umbilical Vein Endothelial Cells and Aorta of Mice.

    PubMed

    Oda, Masataka; Domon, Hisanori; Kurosawa, Mie; Isono, Toshihito; Maekawa, Tomoki; Yamaguchi, Masaya; Kawabata, Shigetada; Terao, Yutaka

    2017-01-01

    The Streptococcus pyogenes phospholipase A 2 (SlaA) gene is highly conserved in the M3 serotype of group A S. pyogenes , which often involves hypervirulent clones. However, the role of SlaA in S. pyogenes pathogenesis is unclear. Herein, we report that SlaA induces the expression of intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) via the arachidonic acid signaling cascade. Notably, recombinant SlaA induced ICAM1 and VCAM1 expression in human umbilical vein endothelial cells (HUVECs), resulting in enhanced adhesion of human monocytic leukemia (THP-1) cells. However, C134A, a variant enzyme with no enzymatic activity, did not induce such events. In addition, culture supernatants from S. pyogenes SSI-1 enhanced the adhesion of THP-1 cells to HUVECs, but culture supernatants from the Δ slaA isogenic mutant strain had limited effects. Aspirin, a cyclooxygenase 2 inhibitor, prevented the adhesion of THP-1 cells to HUVECs and did not induce ICAM1 and VCAM1 expression in HUVECs treated with SlaA. However, zileuton, a 5-lipoxygenase inhibitor, did not exhibit such effects. Furthermore, pre-administration of aspirin in mice intravenously injected with SlaA attenuated the transcriptional abundance of ICAM1 and VCAM1 in the aorta. These results suggested that SlaA from S. pyogenes stimulates the expression of adhesion molecules in vascular endothelial cells. Thus, SlaA contributes to the inflammation of vascular endothelial cells upon S. pyogenes infection.

  11. Weighted gene co-expression network analysis of expression data of monozygotic twins identifies specific modules and hub genes related to BMI.

    PubMed

    Wang, Weijing; Jiang, Wenjie; Hou, Lin; Duan, Haiping; Wu, Yili; Xu, Chunsheng; Tan, Qihua; Li, Shuxia; Zhang, Dongfeng

    2017-11-13

    The therapeutic management of obesity is challenging, hence further elucidating the underlying mechanisms of obesity development and identifying new diagnostic biomarkers and therapeutic targets are urgent and necessary. Here, we performed differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) to identify significant genes and specific modules related to BMI based on gene expression profile data of 7 discordant monozygotic twins. In the differential gene expression analysis, it appeared that 32 differentially expressed genes (DEGs) were with a trend of up-regulation in twins with higher BMI when compared to their siblings. Categories of positive regulation of nitric-oxide synthase biosynthetic process, positive regulation of NF-kappa B import into nucleus, and peroxidase activity were significantly enriched within GO database and NF-kappa B signaling pathway within KEGG database. DEGs of NAMPT, TLR9, PTGS2, HBD, and PCSK1N might be associated with obesity. In the WGCNA, among the total 20 distinct co-expression modules identified, coral1 module (68 genes) had the strongest positive correlation with BMI (r = 0.56, P = 0.04) and disease status (r = 0.56, P = 0.04). Categories of positive regulation of phospholipase activity, high-density lipoprotein particle clearance, chylomicron remnant clearance, reverse cholesterol transport, intermediate-density lipoprotein particle, chylomicron, low-density lipoprotein particle, very-low-density lipoprotein particle, voltage-gated potassium channel complex, cholesterol transporter activity, and neuropeptide hormone activity were significantly enriched within GO database for this module. And alcoholism and cell adhesion molecules pathways were significantly enriched within KEGG database. Several hub genes, such as GAL, ASB9, NPPB, TBX2, IL17C, APOE, ABCG4, and APOC2 were also identified. The module eigengene of saddlebrown module (212 genes) was also significantly correlated with BMI (r = 0.56, P = 0.04), and hub genes of KCNN1 and AQP10 were differentially expressed. We identified significant genes and specific modules potentially related to BMI based on the gene expression profile data of monozygotic twins. The findings may help further elucidate the underlying mechanisms of obesity development and provide novel insights to research potential gene biomarkers and signaling pathways for obesity treatment. Further analysis and validation of the findings reported here are important and necessary when more sample size is acquired.

  12. E-selectin: sialyl Lewis, a dependent adhesion of colon cancer cells, is inhibited differently by antibodies against E-selectin ligands.

    PubMed

    Srinivas, U; Påhlsson, P; Lundblad, A

    1996-09-01

    Recent studies have demonstrated that selectins, a new family of cell-adhesion molecules with similar domain structures, mediate the adhesion of peripheral blood cells to interleukin-1 (IL-1)-activated endothelium. In the present study the authors evaluated the role of E-selectin-Sialyl Lewis x (SLe(x))/ Sialyl Lewis a (SLe(a)) interaction in mediating in vitro adhesion of two colon cancer cell lines, HT-29 and COLO 201, to human umbilical cord endothelial cells (HUVEC). Colon cancer cell lines had a strong expression of blood group-related carbohydrate epitopes as evaluated by fluorescence-activated cell sorter (FACS) analysis. It was established that adhesion of HT-29 and COLO 201 cells to IL-1 stimulated HUVEC was calcium dependent and could be inhibited by a monoclonal antibody directed against E-selectin. Prior incubation of cells with two different antibodies directed against SLe(x) and antibodies directed against related Lewis epitopes, Le(x) and Le(a), had no significant effect on adhesion. Three antibodies directed against SLe(a) differed in their capacity to inhibit the adhesion of HT-29 and COLO 201 cells to HUVEC. Only one antibody directed against the SLe(a) structure was effective in inhibiting adhesion of both COLO 201 and HT-29 cells. The difference could not be attributed to titre, the type or number of glycoproteins, or to a difference in the amount of SLe(a) present on individual proteins, suggesting that presence and right presentation of SLe(a) epitope might be important for adhesion of colon cancer cells. Finally, in the in vitro system used, adhesion of HT-29 and COLO 201 cells to activated HUVEC is mediated predominantly by E-selectin/SLe(a) interaction. SLe(x) and related epitopes, Le(x) and Le(a), seem to have limited relevance for colon cancer cell recognition of E-selectin.

  13. Effect of micro-nano-hybrid structured hydroxyapatite bioceramics on osteogenic and cementogenic differentiation of human periodontal ligament stem cell via Wnt signaling pathway.

    PubMed

    Mao, Lixia; Liu, Jiaqiang; Zhao, Jinglei; Chang, Jiang; Xia, Lunguo; Jiang, Lingyong; Wang, Xiuhui; Lin, Kaili; Fang, Bing

    2015-01-01

    The surface structure of bioceramic scaffolds is crucial for its bioactivity and osteoinductive ability, and in recent years, human periodontal ligament stem cells have been certified to possess high osteogenic and cementogenic differential ability. In the present study, hydroxyapatite (HA) bioceramics with micro-nano-hybrid surface (mnHA [the hybrid of nanorods and microrods]) were fabricated via hydrothermal reaction of the α-tricalcium phosphate granules as precursors in aqueous solution, and the effects of mnHA on the attachment, proliferation, osteogenic and cementogenic differentiations of human periodontal ligament stem cells as well as the related mechanisms were systematically investigated. The results showed that mnHA bioceramics could promote cell adhesion, proliferation, alkaline phosphatase (ALP) activity, and expression of osteogenic/cementogenic-related markers including runt-related transcription factor 2 (Runx2), ALP, osteocalcin (OCN), cementum attachment protein (CAP), and cementum protein (CEMP) as compared to the HA bioceramics with flat and dense surface. Moreover, mnHA bioceramics stimulated gene expression of low-density lipoprotein receptor-related protein 5 (LRP5) and β-catenin, which are the key genes of canonical Wnt signaling. Moreover, the stimulatory effect on ALP activity and osteogenic and cementogenic gene expression, including that of ALP, OCN, CAP, CEMP, and Runx2 of mnHA bioceramics could be repressed by canonical Wnt signaling inhibitor dickkopf1 (Dkk1). The results suggested that the HA bioceramics with mnHA could act as promising grafts for periodontal tissue regeneration.

  14. Comparing effects of perfusion and hydrostatic pressure on gene profiles of human chondrocyte.

    PubMed

    Zhu, Ge; Mayer-Wagner, Susanne; Schröder, Christian; Woiczinski, Matthias; Blum, Helmut; Lavagi, Ilaria; Krebs, Stefan; Redeker, Julia I; Hölzer, Andreas; Jansson, Volkmar; Betz, Oliver; Müller, Peter E

    2015-09-20

    Hydrostatic pressure and perfusion have been shown to regulate the chondrogenic potential of articular chondrocytes. In order to compare the effects of hydrostatic pressure plus perfusion (HPP) and perfusion (P) we investigated the complete gene expression profiles of human chondrocytes under HPP and P. A simplified bioreactor was constructed to apply loading (0.1 MPa for 2 h) and perfusion (2 ml) through the same piping by pressurizing the medium directly. High-density monolayer cultures of human chondrocytes were exposed to HPP or P for 4 days. Controls (C) were maintained in static cultures. Gene expression was evaluated by sequencing (RNAseq) and quantitative real-time PCR analysis. Both treatments changed gene expression levels of human chondrocytes significantly. Specifically, HPP and P increased COL2A1 expression and decreased COL1A1 and MMP-13 expression. Despite of these similarities, RNAseq revealed a list of cartilage genes including ACAN, ITGA10 and TNC, which were differentially expressed by HPP and P. Of these candidates, adhesion related molecules were found to be upregulated in HPP. Both HPP and P treatment had beneficial effects on chondrocyte differentiation and decreased catabolic enzyme expression. The study provides new insight into how hydrostatic pressure and perfusion enhance cartilage differentiation and inhibit catabolic effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Epithelial response to a high-protein diet in rat colon.

    PubMed

    Beaumont, Martin; Andriamihaja, Mireille; Armand, Lucie; Grauso, Marta; Jaffrézic, Florence; Laloë, Denis; Moroldo, Marco; Davila, Anne-Marie; Tomé, Daniel; Blachier, François; Lan, Annaïg

    2017-01-31

    High-protein diets (HPD) alter the large intestine microbiota composition in association with a metabolic shift towards protein degradation. Some amino acid-derived metabolites produced by the colon bacteria are beneficial for the mucosa while others are deleterious at high concentrations. The aim of the present work was to define the colonic epithelial response to an HPD. Transcriptome profiling was performed on colonocytes of rats fed an HPD or an isocaloric normal-protein diet (NPD) for 2 weeks. The HPD downregulated the expression of genes notably implicated in pathways related to cellular metabolism, NF-κB signaling, DNA repair, glutathione metabolism and cellular adhesion in colonocytes. In contrast, the HPD upregulated the expression of genes related to cell proliferation and chemical barrier function. These changes at the mRNA level in colonocytes were not associated with detrimental effects of the HPD on DNA integrity (comet assay), epithelium renewal (quantification of proliferation and apoptosis markers by immunohistochemistry and western blot) and colonic barrier integrity (Ussing chamber experiments). The modifications of the luminal environment after an HPD were associated with maintenance of the colonic homeostasis that might be the result of adaptive processes in the epithelium related to the observed transcriptional regulations.

  16. MicroRNA-200a/200b Modulate High Glucose-Induced Endothelial Inflammation by Targeting O-linked N-Acetylglucosamine Transferase Expression.

    PubMed

    Lo, Wan-Yu; Yang, Wen-Kai; Peng, Ching-Tien; Pai, Wan-Yu; Wang, Huang-Joe

    2018-01-01

    Background and Aims: Increased O -linked N -acetylglucosamine ( O -GlcNAc) modification of proteins by O -GlcNAc transferase (OGT) is associated with diabetic complications. Furthermore, oxidative stress promotes endothelial inflammation during diabetes. A previous study reported that microRNA-200 (miR-200) family members are sensitive to oxidative stress. In this study, we examined whether miR-200a and miR-200b regulate high-glucose (HG)-induced OGT expression in human aortic endothelial cells (HAECs) and whether miRNA-200a/200b downregulate OGT expression to control HG-induced endothelial inflammation. Methods: HAECs were stimulated with high glucose (25 mM) for 12 and 24 h. Real-time polymerase chain reaction (PCR), western blotting, THP-1 adhesion assay, bioinformatics predication, transfection of miR-200a/200b mimic or inhibitor, luciferase reporter assay, and transfection of siRNA OGT were performed. The aortic endothelium of db/db diabetic mice was evaluated by immunohistochemistry staining. Results: HG upregulated OGT mRNA and protein expression and protein O -GlcNAcylation levels (RL2 antibody) in HAECs, and showed increased intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin gene expression; ICAM-1 expression; and THP-1 adhesion. Bioinformatics analysis revealed homologous sequences between members of the miR-200 family and the 3'-untranslated region (3'-UTR) of OGT mRNA, and real-time PCR analysis confirmed that members of miR-200 family were significantly decreased in HG-stimulated HAECs. This suggests the presence of an impaired feedback restraint on HG-induced endothelial protein O -GlcNAcylation levels because of OGT upregulation. A luciferase reporter assay demonstrated that miR-200a/200b mimics bind to the 3'-UTR of OGT mRNA. Transfection with miR-200a/200b mimics significantly inhibited HG-induced OGT mRNA expression, OGT protein expression; protein O -GlcNAcylation levels; ICAM-1, VCAM-1, and E-selectin gene expression; ICAM-1 expression; and THP-1 adhesion. Additionally, siRNA-mediated OGT depletion reduced HG-induced protein O -GlcNAcylation; ICAM-1, VCAM-1, and E-selectin gene expression; ICAM-1 expression; and THP-1 adhesion, confirming that HG-induced endothelial inflammation is partially mediated via OGT-induced protein O -GlcNAcylation. These results were validated in vivo : tail-vein injection of miR-200a/200b mimics downregulated endothelial OGT and ICAM-1 expression in db/db mice. Conclusion: miR-200a/200b are involved in modulating HG-induced endothelial inflammation by regulating OGT-mediated protein O -GlcNAcylation, suggesting the therapeutic role of miR-200a/200b on vascular complications in diabetes.

  17. Common genetic variants in fatty acid-binding protein-4 (FABP4) and clinical diabetes risk in the Women's Health Initiative Observational Study.

    PubMed

    Chan, Kei-Hang K; Song, Yiqing; Hsu, Yi-Hsiang; You, Nai-Chieh Y; F Tinker, Lesley; Liu, Simin

    2010-09-01

    Adipocypte fatty acid-binding protein-4 (FABP4/adipocyte P2) may play a central role in energy metabolism and inflammation. In animal models, defects of the aP2 gene (aP2(-/-)) partially protected against the development of obesity-related insulin resistance, dyslipidemia, and atherosclerosis. However, it is unclear whether common genetic variation in FABP4 gene contributes to risk of type 2 diabetes (T2D) or diabetes-related metabolic traits in humans. We comprehensively assess the genetic associations of variants in the FABP4 gene with T2D risk and diabetes-associated biomarkers in a prospective study of 1,529 cases and 2,147 controls among postmenopausal women aged 50-79 years who enrolled in the Women's Health Initiative Observational Study (WHI-OS). We selected and genotyped a total of 11 haplotype-tagging single-nucleotide polymorphisms (tSNPs) spanning 41.3 kb across FABP4 in all samples. None of the SNPs and their derived haplotypes showed significant association with T2D risk. There were no significant associations between SNPs and plasma levels of inflammatory and endothelial biomarkers, including C-reactive protein, tumor necrosis factor (TNF), interleukin-6 (IL-6), E-selectin, and intercellular adhesion molecule (ICAM-1). Among African-American women, several SNPs were significantly associated with lower levels of vascular cell adhesion molecule-1 (VCAM-1), especially among those with incident T2D. On average, plasma levels of VCAM-1 were significantly lower among carriers of each minor allele at rs1486004(C/T; -1.08 ng/ml, P = 0.01), rs7017115(A/G; -1.07 ng/ml, P = 0.02), and rs2290201(C/T; -1.12 ng/ml, P = 0.002) as compared with the homozygotes of the common allele, respectively. After adjusting for multiple testing, carriers of the rs2290201 minor allele remained significantly associated with decreasing levels of plasma VCAM-1 in these women (P = 0.02). In conclusion, our finding from a multiethnic cohort of postmenopausal women did not support the notion that common genetic variants in the FABP4 gene may trigger increased risk of T2D. The observed significant association between reduced VCAM-1 levels and FABP4 genotypes in African-American women warrant further confirmation.

  18. Common Genetic Variants in Fatty Acid–Binding Protein-4 (FABP4) and Clinical Diabetes Risk in the Women's Health Initiative Observational study

    PubMed Central

    Chan, Kei-Hang K.; Song, Yiqing; Hsu, Yi-Hsiang; You, Nai-chieh Y.; Tinker, Lesley F.; Liu, Simin

    2011-01-01

    Adipocypte fatty acid–binding protein-4 (FABP4/adipocyte P2) may play a central role in energy metabolism and inflammation. In animal models, defects of the aP2 gene (aP2–/–) partially protected against the development of obesity-related insulin resistance, dyslipidemia, and atherosclerosis. However, it is unclear whether common genetic variation in FABP4 gene contributes to risk of type 2 diabetes (T2D) or diabetes-related metabolic traits in humans. We comprehensively assess the genetic associations of variants in the FABP4 gene with T2D risk and diabetes-associated biomarkers in a prospective study of 1,529 cases and 2,147 controls among postmenopausal women aged 50–79 years who enrolled in the Women's Health Initiative Observational Study (WHI-OS). We selected and genotyped a total of 11 haplotype-tagging single-nucleotide polymorphisms (tSNPs) spanning 41.3 kb across FABP4 in all samples. None of the SNPs and their derived haplotypes showed significant association with T2D risk. There were no significant associations between SNPs and plasma levels of inflammatory and endothelial biomarkers, including C-reactive protein, tumor necrosis factor (TNF), interleukin-6 (IL-6), E-selectin, and intercellular adhesion molecule (ICAM-1). Among African-American women, several SNPs were significantly associated with lower levels of vascular cell adhesion molecule-1 (VCAM-1), especially among those with incident T2D. On average, plasma levels of VCAM-1 were significantly lower among carriers of each minor allele at rs1486004(C/T; −1.08 ng/ml, P = 0.01), rs7017115(A/G; −1.07 ng/ml, P = 0.02), and rs2290201(C/T; −1.12 ng/ml, P = 0.002) as compared with the homozygotes of the common allele, respectively. After adjusting for multiple testing, carriers of the rs2290201 minor allele remained significantly associated with decreasing levels of plasma VCAM-1 in these women (P = 0.02). In conclusion, our finding from a multiethnic cohort of postmenopausal women did not support the notion that common genetic variants in the FABP4 gene may trigger increased risk of T2D. The observed significant association between reduced VCAM-1 levels and FABP4 genotypes in African-American women warrant further confirmation. PMID:20111020

  19. The synovial microenvironment of osteoarthritic joints alters RNA-seq expression profiles of human primary articular chondrocytes

    PubMed Central

    Lewallen, Eric A.; Bonin, Carolina A.; Li, Xin; Smith, Jay; Karperien, Marcel; Larson, A. Noelle; Lewallen, David G.; Cool, Simon M.; Westendorf, Jennifer J.; Krych, Aaron J.; Leontovich, Alexey A.; Im, Hee-Jeong; van Wijnen, Andre J.

    2018-01-01

    Osteoarthritis (OA) is a disabling degenerative joint disease that prompts pain with limited treatment options. To permit early diagnosis and treatment of OA, a high resolution mechanistic understanding of human chondrocytes in normal and diseased states is necessary. In this study, we assessed the biological effects of OA-related changes in the synovial microenvironment on chondrocytes embedded within anatomically intact cartilage from joints with different pathological grades by next generation RNA-sequencing (RNA-seq). We determined the transcriptome of primary articular chondrocytes derived from pristine knees and ankles, as well as from joints affected by OA. The GALAXY bioinformatics platform was used to facilitate biological interpretations. Comparisons of patient samples by k-means, hierarchical clustering and principal component analysis reveal that primary chondrocytes exhibit OA grade-related differences in gene expression, including genes involved in cell-adhesion, ECM production and immune response. We conclude that diseased synovial microenvironments in joints with different histopathological OA grades directly alter gene expression in chondrocytes. One ramification of this finding is that sampling anatomically intact cartilage from OA joints is not an ideal source of healthy chondrocytes, nor should they be used to generate a normal baseline for the molecular characterization of diseased joints. PMID:27378743

  20. Post-operative adhesions after digestive surgery: their incidence and prevention: review of the literature.

    PubMed

    Ouaïssi, M; Gaujoux, S; Veyrie, N; Denève, E; Brigand, C; Castel, B; Duron, J J; Rault, A; Slim, K; Nocca, D

    2012-04-01

    Post-operative adhesions after gastrointestinal surgery are responsible for significant morbidity and constitute an important public health problem. The aim of this study was to review the surgical literature to determine the incidence, consequences and the variety of possible countermeasures to prevent adhesion formation. A systematic review of English and French language surgical literature published between 1995 and 2009 was performed using the keywords "adhesion" and "surgery". Peritoneal adhesions are reported as the cause of 32% of acute intestinal obstruction and 65-75% of all small bowel obstructions. It is estimated that peritoneal adhesions develop after 93-100% of upper abdominal laparotomies and after 67-93% of lower abdominal laparotomies. Nevertheless, only 15-18% of these adhesions require surgical re-intervention. The need for re-intervention for adhesion-related complications varies depending on the initial type of surgery, the postoperative course and the type of incision. The laparoscopic approach appears to decrease the risk of adhesion formation by 45% and the need for adhesion-related re-intervention to 0.8% after appendectomy and to 2.5% after colorectal surgery. At the present time, only one product consisting of hyaluronic acid applied to a layer of carboxymethylcellulose (Seprafilm(®)) has been shown to significantly reduce the incidence of postoperative adhesion formation; but this product is also associated with a significant increase in the incidence of anastomotic leakage when the membrane is applied in direct contact with the anastomosis. The use of this product has not been shown to decrease the risk of re-intervention for bowel obstruction. The prevention of postoperative adhesions is an important public health goal, particularly in light of the frequency of this complication. The routine use of anti-adhesion products is not recommended given the lack of studies with a high level of evidence concerning their efficacy and safety of use. Copyright © 2012. Published by Elsevier Masson SAS.

Top