Science.gov

Sample records for adhesive applying uniform

  1. Uniform insulation applied-B ion diode

    DOEpatents

    Seidel, David B.; Slutz, Stephen A.

    1988-01-01

    An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

  2. Electrostatic adhesion of multiple non-uniformly charged dielectric particles

    NASA Astrophysics Data System (ADS)

    Kemp, B. A.; Whitney, J. G.

    2013-01-01

    Charged particle adhesion measurements can be as much as one order of magnitude higher than theoretical calculations. This discrepancy has ignited a debate as to the nature of the physics occurring with microscopic particle adhesion. Attempts to bring calculations closer to measured results have produced models that include multiple particle interactions, dielectric polarization, and non-uniform charge. Individually, each of these models can only produce a 2× to 5× enhancement in predicted adhesion force over simple Coulombic attraction. In this correspondence, an analytical model of electrostatic particle forces is developed, which allows for independent assignment of dielectric constant and non-uniform surface charge distribution to an arbitrary number of particles. Because the model can include an image plane, it is ideal for electrostatic adhesion calculations. Application to a monolayer of printed toner particles predicts nearly an order of magnitude increase in adhesion force over Coulombic attraction. These results are the first analytical results to place predictions of charged particle adhesion on the same order of magnitude with measurements.

  3. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance.

    PubMed

    Martinez, Jessica S; Schlenoff, Joseph B; Keller, Thomas C S

    2016-08-01

    Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion and migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as 'leader' cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as 'follower' cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all surfaces

  4. 7 CFR 1783.2 - What Uniform Federal Assistance Provisions apply to the Revolving Fund Program?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... provisions that apply to all grants made by USDA and that are set forth in 7 CFR Part 3015—Uniform Federal... all grants made by USDA to non-profit organizations and that are set forth in 7 CFR Part 3019—Uniform... FINANCING WATER AND WASTEWATER PROJECTS (REVOLVING FUND PROGRAM) General § 1783.2 What Uniform...

  5. 7 CFR 1783.2 - What Uniform Federal Assistance Provisions apply to the Revolving Fund Program?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... provisions that apply to all grants made by USDA and that are set forth in 7 CFR Part 3015—Uniform Federal... all grants made by USDA to non-profit organizations and that are set forth in 7 CFR Part 3019—Uniform... FINANCING WATER AND WASTEWATER PROJECTS (REVOLVING FUND PROGRAM) General § 1783.2 What Uniform...

  6. 7 CFR 1783.2 - What Uniform Federal Assistance Provisions apply to the Revolving Fund Program?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... provisions that apply to all grants made by USDA and that are set forth in 7 CFR Part 3015—Uniform Federal... all grants made by USDA to non-profit organizations and that are set forth in 7 CFR Part 3019—Uniform... FINANCING WATER AND WASTEWATER PROJECTS (REVOLVING FUND PROGRAM) General § 1783.2 What Uniform...

  7. 7 CFR 1783.2 - What Uniform Federal Assistance Provisions apply to the Revolving Fund Program?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... provisions that apply to all grants made by USDA and that are set forth in 7 CFR Part 3015—Uniform Federal... all grants made by USDA to non-profit organizations and that are set forth in 7 CFR Part 3019—Uniform... FINANCING WATER AND WASTEWATER PROJECTS (REVOLVING FUND PROGRAM) General § 1783.2 What Uniform...

  8. 7 CFR 1783.2 - What Uniform Federal Assistance Provisions apply to the Revolving Fund Program?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... provisions that apply to all grants made by USDA and that are set forth in 7 CFR Part 3015—Uniform Federal... all grants made by USDA to non-profit organizations and that are set forth in 7 CFR Part 3019—Uniform... FINANCING WATER AND WASTEWATER PROJECTS (REVOLVING FUND PROGRAM) General § 1783.2 What Uniform...

  9. Non-uniform breaking of molecular bonds, peripheral morphology and releasable adhesion by elastic anisotropy in bio-adhesive contacts

    PubMed Central

    Liu, Yan; Gao, Yanfei

    2015-01-01

    Biological adhesive contacts are usually of hierarchical structures, such as the clustering of hundreds of sub-micrometre spatulae on keratinous hairs of gecko feet, or the clustering of molecular bonds into focal contacts in cell adhesion. When separating these interfaces, releasable adhesion can be accomplished by asymmetric alignment of the lowest scale discrete bonds (such as the inclined spatula that leads to different peeling force when loading in different directions) or by elastic anisotropy. However, only two-dimensional contact has been analysed for the latter method (Chen & Gao 2007 J. Mech. Phys. Solids 55, 1001–1015 (doi:10.1016/j.jmps.2006.10.008)). Important questions such as the three-dimensional contact morphology, the maximum to minimum pull-off force ratio and the tunability of releasable adhesion cannot be answered. In this work, we developed a three-dimensional cohesive interface model with fictitious viscosity that is capable of simulating the de-adhesion instability and the peripheral morphology before and after the onset of instability. The two-dimensional prediction is found to significantly overestimate the maximum to minimum pull-off force ratio. Based on an interface fracture mechanics analysis, we conclude that (i) the maximum and minimum pull-off forces correspond to the largest and smallest contact stiffness, i.e. ‘stiff-adhere and compliant-release’, (ii) the fracture toughness is sensitive to the crack morphology and the initial contact shape can be designed to attain a significantly higher maximum-to-minimum pull-off force ratio than a circular contact, and (iii) since the adhesion is accomplished by clustering of discrete bonds or called bridged crack in terms of fracture mechanics terminology, the above conclusions can only be achieved when the bridging zone is significantly smaller than the contact size. This adhesion-fracture analogy study leads to mechanistic predictions that can be readily used to design biomimetics and

  10. External Horizontally Uniform Magnetic Field Applied to Steel Solidification

    NASA Astrophysics Data System (ADS)

    Mechighel, Farid; Kadja, Mahfoud

    Based on continuum model, a mathematical model for convection flow during directional solidification of steel, Fe-0.42wt%C, in an applied magnetic field is presented. The model includes mass, momentum, energy, species and electrical potential conservation equations. The geometry under study is rectangular. The permeability in the mushy zone is treated by means of the Blake-Kozeny equation. The system of equation has been discretized by means of Finite volume method. For solution of discretized equations SIMPLER Algorithm is used. The results show the strong effect of the magnetic field on the solidification process.

  11. Adhesion

    MedlinePlus

    ... adhesions Ovarian cyst References Munireddy S, Kavalukas SL, Barbul A. Intra-abdominal healing: gastrointestinal tract and adhesions. Surg Clin N Am Kulaylat MN, Dayton, MT. Surgical complications. In: Townsend CM Jr, Beauchamp RD, Evers BM, Mattox KL, ...

  12. Adhesion of voids to bimetal interfaces with non-uniform energies

    NASA Astrophysics Data System (ADS)

    Zheng, Shijian; Shao, Shuai; Zhang, Jian; Wang, Yongqiang; Demkowicz, Michael J.; Beyerlein, Irene J.; Mara, Nathan A.

    2015-10-01

    Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore, because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. This work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.

  13. Adhesion of voids to bimetal interfaces with non-uniform energies

    DOE PAGESBeta

    Zheng, Shijian; Shao, Shuai; Zhang, Jian; Wang, Yongqiang; Demkowicz, Michael J.; Beyerlein, Irene J.; Mara, Nathan A.

    2015-10-21

    Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore,more » because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. Ultimately, this work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.« less

  14. Adhesion of voids to bimetal interfaces with non-uniform energies

    SciTech Connect

    Zheng, Shijian; Shao, Shuai; Zhang, Jian; Wang, Yongqiang; Demkowicz, Michael J.; Beyerlein, Irene J.; Mara, Nathan A.

    2015-10-21

    Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore, because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. Ultimately, this work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.

  15. Adhesion of voids to bimetal interfaces with non-uniform energies

    PubMed Central

    Zheng, Shijian; Shao, Shuai; Zhang, Jian; Wang, Yongqiang; Demkowicz, Michael J.; Beyerlein, Irene J.; Mara, Nathan A.

    2015-01-01

    Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore, because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. This work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces. PMID:26486278

  16. Comparison of Uniform and Non-uniform Water Flux Density Approaches Applied on a Mathematical Model of Heat Transfer and Solidification for a Continuous Casting of Round Billets

    NASA Astrophysics Data System (ADS)

    Assuncao, Charles Sostenes; Tavares, Roberto Parreiras; Oliveira, Guilherme; Pereira, Luiz Carlos

    2015-02-01

    In the present work, the water flux densities of nozzles with flat jet and full cone jet were experimentally measured using an apparatus in industrial scale that reproduces the secondary cooling of the continuous casting of round billets of Vallourec Tubos do Brasil. A mathematical function was defined to express the water flux density in both longitudinal and angular directions of the strand. A mathematical model for heat transfer and solidification for the continuous casting of round billets was developed applying the experimental water flux density profile, establishing a non-uniform water distribution approach. The mathematical model was validated by experimental measurements of the billet superficial temperature, performed at the industrial plant. The results of the mathematical model using both uniform and non-uniform water flux density approaches were compared. The non-uniform water distribution approach enabled to identify important variations of the heat transfer coefficients and the billet temperatures, especially in the first cooling zones where the steel temperature is higher, and to assess more accurately the local effects of the water distribution on the thermal behavior of the strand. The non-uniform water flux density approach applied to the mathematical model was a useful and more accurate tool to improve the comprehension of the thermal behavior of the steel along the secondary cooling.

  17. Applying simulation model to uniform field space charge distribution measurements by the PEA method

    SciTech Connect

    Liu, Y.; Salama, M.M.A.

    1996-12-31

    Signals measured under uniform fields by the Pulsed Electroacoustic (PEA) method have been processed by the deconvolution procedure to obtain space charge distributions since 1988. To simplify data processing, a direct method has been proposed recently in which the deconvolution is eliminated. However, the surface charge cannot be represented well by the method because the surface charge has a bandwidth being from zero to infinity. The bandwidth of the charge distribution must be much narrower than the bandwidths of the PEA system transfer function in order to apply the direct method properly. When surface charges can not be distinguished from space charge distributions, the accuracy and the resolution of the obtained space charge distributions decrease. To overcome this difficulty a simulation model is therefore proposed. This paper shows their attempts to apply the simulation model to obtain space charge distributions under plane-plane electrode configurations. Due to the page limitation for the paper, the charge distribution originated by the simulation model is compared to that obtained by the direct method with a set of simulated signals.

  18. The influence of carrier roughness on adhesion, content uniformity and the in vitro deposition of terbutaline sulphate from dry powder inhalers.

    PubMed

    Flament, Marie-Pierre; Leterme, Pierre; Gayot, Anne

    2004-05-01

    The aim of this study was to establish a correlation between carrier characteristics and the dispersibility of drug from the blend. The influence of the roughness of a commonly used carrier material, lactose monohydrate, on the adhesion, dose uniformity, and aerodynamic properties of a model drug, terbutaline sulphate was investigated. Evaluation of adhesion was carried out with a mechanical sieve and an Alpine air-jet sieve. For the characterisation of lactose roughness, we used image analysis software. Aerodynamic evaluation of fine particle dose and emitted dose was obtained using a twin stage impinger. The study with the mechanical sieve demonstrated that at least 60% of drug adheres to lactose. The Alpine air-jet sieve assays showed there was a correlation between drug separation from a carrier by sieving and that obtained from longer in vitro deposition studies. Adhesion, blend homogeneity and stability are related to the surface roughness of the lactose used as carrier. There is a linear relationship between the parameters "fine particle fraction" and "roughness". A compromise between homogeneity and drug liberation must be found: a certain roughness is necessary to allow for drug adhesion and blend homogeneity, but if too high it will prevent drug liberation after inhalation. PMID:15081150

  19. Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells.

    PubMed

    Koyama, Sumihiro; Tsubouchi, Taishi; Usui, Keiko; Uematsu, Katsuyuki; Tame, Akihiro; Nogi, Yuichi; Ohta, Yukari; Hatada, Yuji; Kato, Chiaki; Miwa, Tetsuya; Toyofuku, Takashi; Nagahama, Takehiko; Konishi, Masaaki; Nagano, Yuriko; Abe, Fumiyoshi

    2015-09-01

    The purpose of this study was to develop novel methods for attachment and cultivation of specifically positioned single yeast cells on a microelectrode surface with the application of a weak electrical potential. Saccharomyces cerevisiae diploid strains attached to an indium tin oxide/glass (ITO) electrode to which a negative potential between -0.2 and -0.4 V vs. Ag/AgCl was applied, while they did not adhere to a gallium-doped zinc oxide/glass electrode surface. The yeast cells attached to the negative potential-applied ITO electrodes showed normal cell proliferation. We found that the flocculin FLO10 gene-disrupted diploid BY4743 mutant strain (flo10Δ /flo10Δ) almost completely lost the ability to adhere to the negative potential-applied ITO electrode. Our results indicate that the mechanisms of diploid BY4743 S. cerevisiae adhesion involve interaction between the negative potential-applied ITO electrode and the Flo10 protein on the cell wall surface. A combination of micropatterning techniques of living single yeast cell on the ITO electrode and omics technologies holds potential of novel, highly parallelized, microchip-based single-cell analysis that will contribute to new screening concepts and applications. PMID:26187908

  20. Involvement of flocculin in negative potential-applied ITO electrode adhesion of yeast cells

    PubMed Central

    Koyama, Sumihiro; Tsubouchi, Taishi; Usui, Keiko; Uematsu, Katsuyuki; Tame, Akihiro; Nogi, Yuichi; Ohta, Yukari; Hatada, Yuji; Kato, Chiaki; Miwa, Tetsuya; Toyofuku, Takashi; Nagahama, Takehiko; Konishi, Masaaki; Nagano, Yuriko; Abe, Fumiyoshi

    2015-01-01

    The purpose of this study was to develop novel methods for attachment and cultivation of specifically positioned single yeast cells on a microelectrode surface with the application of a weak electrical potential. Saccharomyces cerevisiae diploid strains attached to an indium tin oxide/glass (ITO) electrode to which a negative potential between −0.2 and −0.4 V vs. Ag/AgCl was applied, while they did not adhere to a gallium-doped zinc oxide/glass electrode surface. The yeast cells attached to the negative potential-applied ITO electrodes showed normal cell proliferation. We found that the flocculin FLO10 gene-disrupted diploid BY4743 mutant strain (flo10Δ /flo10Δ) almost completely lost the ability to adhere to the negative potential-applied ITO electrode. Our results indicate that the mechanisms of diploid BY4743 S. cerevisiae adhesion involve interaction between the negative potential-applied ITO electrode and the Flo10 protein on the cell wall surface. A combination of micropatterning techniques of living single yeast cell on the ITO electrode and omics technologies holds potential of novel, highly parallelized, microchip-based single-cell analysis that will contribute to new screening concepts and applications. PMID:26187908

  1. Applying the uniform resampling (URS) algorithm to a lissajous trajectory: fast image reconstruction with optimal gridding.

    PubMed

    Moriguchi, H; Wendt, M; Duerk, J L

    2000-11-01

    Various kinds of nonrectilinear Cartesian k-space trajectories have been studied, such as spiral, circular, and rosette trajectories. Although the nonrectilinear Cartesian sampling techniques generally have the advantage of fast data acquisition, the gridding process prior to 2D-FFT image reconstruction usually requires a number of additional calculations, thus necessitating an increase in the computation time. Further, the reconstructed image often exhibits artifacts resulting from both the k-space sampling pattern and the gridding procedure. To date, it has been demonstrated in only a few studies that the special geometric sampling patterns of certain specific trajectories facilitate fast image reconstruction. In other words, the inherent link among the trajectory, the sampling scheme, and the associated complexity of the regridding/reconstruction process has been investigated to only a limited extent. In this study, it is demonstrated that a Lissajous trajectory has the special geometric characteristics necessary for rapid reconstruction of nonrectilinear Cartesian k-space trajectories with constant sampling time intervals. Because of the applicability of a uniform resampling (URS) algorithm, a high-quality reconstructed image is obtained in a short reconstruction time when compared to other gridding algorithms. PMID:11064412

  2. Weibull analysis applied to the pull adhesion test and fracture of a metal-ceramic interface

    SciTech Connect

    Erck, R.A.; Nichols, F.A.; Schult, D.L.

    1992-11-01

    Various adhesion tests have been developed to measure the mechanical bonding of thin coatings deposited on substrates. In the pull test, pins that have been bonded to the coating under test are pulled with increasing force normal to the coating until the coating is pulled from the substrate. For many systems, large scatter in the data is often observed due to uncontrolled defects in the interface and the brittle nature of the pull test. In this study, the applicability of Weibull statistics to the analysis of adhesion of Ag films to vacuum sputter-cleaned zirconia was examined. Data were obtained for smooth and rough substrates for various levels of adhesion. A good fit of the data to the Weibull distribution was observed. The Weibull modulus was found to depend on the roughness of the substrate, but was insensitive to the adhesion strength.

  3. Using scratch testing to measure the adhesion strength of calcium phosphate coatings applied to poly(carbonate urethane) substrates.

    PubMed

    Barnes, Dunstan; Johnson, Scott; Snell, Robert; Best, Serena

    2012-02-01

    Bioactive coatings are applied to components of modern orthopædic implants to improve the host tissue response to the implants. Such coatings cannot be applied to polymeric implants by high-temperature techniques, because the use of high temperatures may critically degrade the polymer substrate. Regardless of the coating technique that is used, the coating must be sufficiently well adhered to the underlying substrate to provide any practical benefit. This paper investigates the use of scratch testing to measure the adhesion strength of calcium phosphate (CaP) coatings that were applied to a poly(carbonate urethane) (PCU) substrate by an aqueous process at temperatures of 19, 28, 37, and 50 °C. This work represents the first time that scratch testing analysis has been used to study CaP coatings deposited by an aqueous, low-temperature process on to a polymer substrate. Scratch testing was shown to be a useful technique for obtaining comparative, rather than absolute, values of adhesion strength for hard coatings formed on a compliant substrate. Generally, the coating temperature was not found to influence the CaP-PCU adhesion strength. Although CaP coatings formed at 19 °C exhibited considerably lower adhesion strengths than CaP coatings formed at 28, 37, and 50 °C, this finding was attributable to the inconsistency of CaP coatings formed on the PCU substrates at 19 °C. The coating-substrate adhesion strength was measured for CaP coatings of four different coating ages (0, 1, 2, and 3 years). CaP coatings that were aged for 0, 1, or 2 years exhibited similar coating-substrate adhesion strengths to each other. In contrast, CaP coatings that were aged for 3 years demonstrated considerably lower coating-substrate adhesion strengths. The observed reduction in adhesion strength with age was thought to be attributable to suspected "drying out" of the CaP coatings. PMID:22301182

  4. Evaluation of Biocompatibility of an Etch-and-Rinse Adhesive System Based in Tertiary Butanol Applied in Deep Cavity

    PubMed Central

    Alves, Gilvanely Cardoso; Sobral, Ana Paula Veras

    2015-01-01

    The aim of this study was to evaluate biocompatibility of an etch-and-rinse adhesive system based in tertiary butanol applied in deep cavity human teeth with approximately 1 mm of remaining dentin by observing histological changes of the pulp tissue of humans at intervals of 01, 07, 14 and 21 days. Twenty third molars with indication for xtraction from patients of both sexes, presenting no systemic alterations were used. Class I cavity was made deeper and then, XP BOND adhesive system and resin Filtek Z250 were applied. The sample was divided into four groups according to the time intervals between the application of adhesive system and extraction. Morphologic criteria analysed considered the presence of hyperemia, type of inflammatory cell response, organization of odontoblast cells layer, organization of pulp tissue and the presence or absence of bacteria. Data were submitted to Fisher Exact Test p> 0.05. We observed mild inflammatory infiltrate, preserved pulp tissue morphology, disorganization of the odontoblast layer in most specimens, as well as absence of bacteria at the intervals of 01, 07, 14 and 21 days. In some cases there was pulp hyperemia. The etchand- rinse adhesive system based in tertiary butanol showed satisfactory behavior in the conditions studied. PMID:26140062

  5. Evaluation of Biocompatibility of an Etch-and-Rinse Adhesive System Based in Tertiary Butanol Applied in Deep Cavity.

    PubMed

    Alves, Gilvanely Cardoso; Sobral, Ana Paula Veras

    2015-01-01

    The aim of this study was to evaluate biocompatibility of an etch-and-rinse adhesive system based in tertiary butanol applied in deep cavity human teeth with approximately 1 mm of remaining dentin by observing histological changes of the pulp tissue of humans at intervals of 01, 07, 14 and 21 days. Twenty third molars with indication for xtraction from patients of both sexes, presenting no systemic alterations were used. Class I cavity was made deeper and then, XP BOND adhesive system and resin Filtek Z250 were applied. The sample was divided into four groups according to the time intervals between the application of adhesive system and extraction. Morphologic criteria analysed considered the presence of hyperemia, type of inflammatory cell response, organization of odontoblast cells layer, organization of pulp tissue and the presence or absence of bacteria. Data were submitted to Fisher Exact Test p> 0.05. We observed mild inflammatory infiltrate, preserved pulp tissue morphology, disorganization of the odontoblast layer in most specimens, as well as absence of bacteria at the intervals of 01, 07, 14 and 21 days. In some cases there was pulp hyperemia. The etchand- rinse adhesive system based in tertiary butanol showed satisfactory behavior in the conditions studied. PMID:26140062

  6. Effect of etch-and-rinse and self-etching adhesive systems on hardness uniformity of resin cements after glass fiber post cementation

    PubMed Central

    Grande da Cruz, Fernanda Zander; Grande, Christiana Zander; Roderjan, Douglas Augusto; Galvão Arrais, César Augusto; Bührer Samra, Adriana Postiglione; Calixto, Abraham Lincoln

    2012-01-01

    Objective To evaluate the effects of etch-and-rinse and self-etching adhesive systems on Vickers hardness (VHN) uniformity of dual-cured resin cements after fiber post cementation. Methods: Fifty glass fiber posts were cemented into bovine roots using the following cementing systems: Prime&Bond 2.1 Dual Cure and Enforce with light-activation (PBDC-LCEN); Prime&Bond 2.1 and Enforce with light-activation (PB-CLEN); Prime&Bond 2.1 Dual Cure and Enforce without light exposure (PBDC-SCEN); ED Primer and Panavia 21 (ED-SCPN); and Clearfil SE Bond and Panavia 21 (CF-SCPN). The roots were stored in distilled water for 72 h and transversely sectioned into thirds (coronal, medium, and apical). The VHN values of the resin cement layers were measured close to the post and to the dentin wall on the transversely sectioned flat surfaces. The results were analyzed by three-way repeated measures analysis of variance (ANOVA) and Tukey’s post-hoc test (pre-set alpha of 5%). Results: Most resin cements presented higher VHN values near the post than near the dentin wall. The ED-SCPN group showed the highest VHN values regardless of the root third, while the self-cured group PBDC-SCEN exhibited the lowest values. The resin cements from the light-activated groups PBDC-LCEN and PB-LCEN showed lower VHN values at the apical third than at the coronal third. The VHN values were not influenced by the root third in self-cured groups PBDC-SCEN, ED-SCPN, and ED-SCPN. Conclusion: Depending on the product, bonding agents might promote changes in hardness uniformity of resin cements after post cementation. PMID:22904652

  7. Frictional behavior and adhesion of Ag and Au films applied to aluminum oxide by oxygen-ion assisted Screen Cage Ion Plating (SCIP)

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis; Sliney, Harold E.

    1994-01-01

    A modified dc-diode ion plating system, by utilizing a metallic screen cage as a cathode, is introduced for coating nonconductors such as ceramics. Screen cage ion plating (SCIP) is used to apply Ag and Au lubricating films on aluminum oxide surfaces. This process has excellent ability to coat around corners to produce three-dimensional coverage of the substrate. A dramatic increase in adhesion is achieved when plating is performed in a reactive 50 percent O2 - 50 percent Ar glow discharge compared to the adhesion when plating is performed in 100 percent Ar. The presence of oxygen ion assistance contributes to the excellent adhesion as measured in a pull-type adhesion tester. The Ag and Au film adhesion is significantly increased (less than 70MPa) and generally exceeds the cohesion of the substrate such that portions of the alumina are pulled out.

  8. Adhesion hysteresis of silane coated microcantilevers

    SciTech Connect

    DE BOER,MAARTEN P.; KNAPP,JAMES A.; MICHALSKE,TERRY A.; SRINIVASAN,U.; MABOUDIAN,R.

    2000-04-17

    The authors have developed a new experimental approach for measuring hysteresis in the adhesion between micromachined surfaces. By accurately modeling the deformations in cantilever beams that are subject to combined interfacial adhesion and applied electrostatic forces, they determine adhesion energies for advancing and receding contacts. They draw on this new method to examine adhesion hysteresis for silane coated micromachined structures and found significant hysteresis for surfaces that were exposed to high relative humidity (RH) conditions. Atomic force microscopy studies of these surfaces showed spontaneous formation of agglomerates that they interpreted as silages that have irreversibly transformed from uniform surface layers at low RH to isolated vesicles at high RH. They used contact deformation models to show that the compliance of these vesicles could reasonably account for the adhesion hysteresis that develops at high RH as the surfaces are forced into contact by an externally applied load.

  9. Conditional ɛ-uniform boundedness of Galerkin projectors and convergence of an adaptive mesh method as applied to singularly perturbed boundary value problems

    NASA Astrophysics Data System (ADS)

    Blatov, I. A.; Dobrobog, N. V.; Kitaeva, E. V.

    2016-07-01

    The Galerkin finite element method is applied to nonself-adjoint singularly perturbed boundary value problems on Shishkin meshes. The Galerkin projection method is used to obtain conditionally ɛ-uniform a priori error estimates and to prove the convergence of a sequence of meshes in the case of an unknown boundary layer edge.

  10. Ray-tracing WKB analysis of Whistler waves in non-uniform magnetic fields applied to space thrusters

    NASA Astrophysics Data System (ADS)

    Cardinali, A.; Melazzi, D.; Manente, M.; Pavarin, D.

    2014-02-01

    Radiofrequency magnetized cylindrical plasma sources are proposed for the development of space thrusters, whose thrust efficiency and specific impulse depend on the power coupled into the plasma. At this stage of research, emphasis has been on the absorption of Whistler wave energy by non-uniform plasmas but not much on the role played by the magneto-static confinement field, considered uniform, constant and aligned with the axis of the source. We present RAYWh (RAY-tracing Whistler), a three-dimensional (3D) ray-tracing solver for electromagnetic propagation and power deposition in cylindrical plasma sources for space plasma thrusters, where actual magnetic confinement configurations along with plasma density profiles are included. The propagation and absorption of Whistler waves are investigated by solving the 3D Maxwell-Vlasov model equations by a Wentzel-Kramers-Brillouin (WKB) asymptotic expansion. The reduced set of equations for the wave phase and for the square amplitude of the electric field is solved numerically by means of a modified Runge-Kutta algorithm. Unexpected cut-offs, resonances, radial reflections, mode conversions and power deposition profile of the excited waves are found, when realistic confinement magnetic fields are considered. An analysis of the influence of axial wavenumbers and the axial length of the system on the power deposition is presented.

  11. Testing the Pareto against the lognormal distributions with the uniformly most powerful unbiased test applied to the distribution of cities.

    PubMed

    Malevergne, Yannick; Pisarenko, Vladilen; Sornette, Didier

    2011-03-01

    Fat-tail distributions of sizes abound in natural, physical, economic, and social systems. The lognormal and the power laws have historically competed for recognition with sometimes closely related generating processes and hard-to-distinguish tail properties. This state-of-affair is illustrated with the debate between Eeckhout [Amer. Econ. Rev. 94, 1429 (2004)] and Levy [Amer. Econ. Rev. 99, 1672 (2009)] on the validity of Zipf's law for US city sizes. By using a uniformly most powerful unbiased (UMPU) test between the lognormal and the power-laws, we show that conclusive results can be achieved to end this debate. We advocate the UMPU test as a systematic tool to address similar controversies in the literature of many disciplines involving power laws, scaling, "fat" or "heavy" tails. In order to demonstrate that our procedure works for data sets other than the US city size distribution, we also briefly present the results obtained for the power-law tail of the distribution of personal identity (ID) losses, which constitute one of the major emergent risks at the interface between cyberspace and reality. PMID:21517562

  12. Testing the Pareto against the lognormal distributions with the uniformly most powerful unbiased test applied to the distribution of cities

    NASA Astrophysics Data System (ADS)

    Malevergne, Yannick; Pisarenko, Vladilen; Sornette, Didier

    2011-03-01

    Fat-tail distributions of sizes abound in natural, physical, economic, and social systems. The lognormal and the power laws have historically competed for recognition with sometimes closely related generating processes and hard-to-distinguish tail properties. This state-of-affair is illustrated with the debate between Eeckhout [Amer. Econ. Rev.SCIEAS0002-828210.1257/0002828043052303 94, 1429 (2004)] and Levy [Amer. Econ. Rev.SCIEAS0002-828210.1257/aer.99.4.1672 99, 1672 (2009)] on the validity of Zipf’s law for US city sizes. By using a uniformly most powerful unbiased (UMPU) test between the lognormal and the power-laws, we show that conclusive results can be achieved to end this debate. We advocate the UMPU test as a systematic tool to address similar controversies in the literature of many disciplines involving power laws, scaling, “fat” or “heavy” tails. In order to demonstrate that our procedure works for data sets other than the US city size distribution, we also briefly present the results obtained for the power-law tail of the distribution of personal identity (ID) losses, which constitute one of the major emergent risks at the interface between cyberspace and reality.

  13. Field-controlled adhesion in confined magnetorheological fluids.

    PubMed

    Lira, Sérgio A; Miranda, José A

    2009-10-01

    The study of reversible, functional, and controllable adhesives is a matter of considerable practical interest, and academic research. We report the adhesive response of a magnetorheological fluid confined between two parallel plates under a probe-tack test, when it is subjected to an applied magnetic field. Our analytical approach is based on a Darcy-like law formulation which considers a magnetic field-dependent yield stress behavior. The adhesion force is calculated in closed form for two different configurations produced by a Helmholtz coils setup: uniform perpendicular, and nonuniform radial magnetic fields. In both cases, we verify that adhesion force is hugely increased as a result of the field-dependent nature of the yield stress. This provides a versatile way to obtain a shear resistant, tough structural adhesive through magnetic means. PMID:19905442

  14. Using Adhesive Patterning to Construct 3D Paper Microfluidic Devices.

    PubMed

    Kalish, Brent; Tsutsui, Hideaki

    2016-01-01

    We demonstrate the use of patterned aerosol adhesives to construct both planar and nonplanar 3D paper microfluidic devices. By spraying an aerosol adhesive through a metal stencil, the overall amount of adhesive used in assembling paper microfluidic devices can be significantly reduced. We show on a simple 4-layer planar paper microfluidic device that the optimal adhesive application technique and device construction style depends heavily on desired performance characteristics. By moderately increasing the overall area of a device, it is possible to dramatically decrease the wicking time and increase device success rates while also reducing the amount of adhesive required to keep the device together. Such adhesive application also causes the adhesive to form semi-permanent bonds instead of permanent bonds between paper layers, enabling single-use devices to be non-destructively disassembled after use. Nonplanar 3D origami devices also benefit from the semi-permanent bonds during folding, as it reduces the likelihood that unrelated faces may accidently stick together. Like planar devices, nonplanar structures see reduced wicking times with patterned adhesive application vs uniformly applied adhesive. PMID:27077551

  15. Pulsed-coil magnet systems for applying uniform 10–30 T fields to centimeter-scale targets on Sandia's Z facility

    SciTech Connect

    Rovang, D. C. Lamppa, D. C.; Cuneo, M. E.; Owen, A. C.; McKenney, J.; Johnson, D. W.; Radovich, S.; Kaye, R. J.; McBride, R. D.; Alexander, C. S.; Awe, T. J.; Slutz, S. A.; Sefkow, A. B.; Haill, T. A.; Jones, P. A.; Argo, J. W.; Dalton, D. G.; Robertson, G. K.; Waisman, E. M.; Sinars, D. B.; and others

    2014-12-15

    Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10–30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1–3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2–7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.

  16. Pulsed-coil magnet systems for applying uniform 10-30 T fields to centimeter-scale targets on Sandia's Z facility

    NASA Astrophysics Data System (ADS)

    Rovang, D. C.; Lamppa, D. C.; Cuneo, M. E.; Owen, A. C.; McKenney, J.; Johnson, D. W.; Radovich, S.; Kaye, R. J.; McBride, R. D.; Alexander, C. S.; Awe, T. J.; Slutz, S. A.; Sefkow, A. B.; Haill, T. A.; Jones, P. A.; Argo, J. W.; Dalton, D. G.; Robertson, G. K.; Waisman, E. M.; Sinars, D. B.; Meissner, J.; Milhous, M.; Nguyen, D. N.; Mielke, C. H.

    2014-12-01

    Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10-30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1-3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2-7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.

  17. Resistance heating releases structural adhesive

    NASA Technical Reports Server (NTRS)

    Glemser, N. N.

    1967-01-01

    Composite adhesive package bonds components together for testing and enables separation when testing is completed. The composite of adhesives, insulation and a heating element separate easily when an electrical current is applied.

  18. Stickiness--some fundamentals of adhesion.

    PubMed

    Gay, Cyprien

    2002-12-01

    We review some adhesion mechanisms that have been understood in the field of synthetic adhesives, and more precisely for adhesives that adhere instantaneously (a property named tackiness) and whose adhesive strength usually depends on the applied pressure (pressure-sensitive adhesives). The discussion includes effects of surface roughness, elasticity, cavitation, viscous and elastic fingering, substrate flexibility. PMID:21680396

  19. [Establishment of a uniform common data set for pediatric oncology. Applied Informatics Study Group of the GPOH (Society of Pediatric Oncology and Hematology)].

    PubMed

    Sauter, S; Kaatsch, P; Creutzig, U; Michaelis, J

    1994-01-01

    Large multicenter trials have made a major contribution to the improvement of treatment results in childhood malignancies. Coordination and central documentation ensure the quality of treatment and permit clinical and scientific investigations. This kind of cooperation requires a vast amount of documentation, which by itself has become a critical factor in answering important medical questions. The problems result from non-standardized documentation systems in different studies, from insufficient integration of clinical work and documentation and from a lack of application of modern computer based data management systems. The working group "Applied Informatics" of the German "Gesellschaft für Pädiatrische Onkologie und Hämatologie (GPOH)" has started a project to create an uniform basic data set for the German pediatric oncology group. Relevant initial diagnostic data, information about planned and realized treatment as well as data concerning negative event had to be standardized. A minimal common data set with a substantially reduced documentation, which is applicable for all patients and trials, would have failed to fulfil the clinical as well as the research needs. The data set presented here is a detailed information structure introduced as a basic tool for the improvement of data management in the German pediatric oncology group. This first version of the basic data set will need further development, since some of the problems still need to be resolved and the requirements for such data pools are changing. Based on this data set new computer software and clinical information systems have to be developed to enable documentation and processing of all clinical and study related data. PMID:7967429

  20. 25 CFR 10.6 - How is the BIA assured that the policies and standards are being applied uniformly and facilities...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER INDIAN COUNTRY DETENTION FACILITIES AND PROGRAMS...-mandatory detention standards and will document progress on uniform reporting. The BIA Office of Law Enforcement Services will conduct periodic operational evaluations for oversight....

  1. 25 CFR 10.6 - How is the BIA assured that the policies and standards are being applied uniformly and facilities...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER INDIAN COUNTRY DETENTION FACILITIES AND...-mandatory detention standards and will document progress on uniform reporting. The BIA Office of Law Enforcement Services will conduct periodic operational evaluations for oversight....

  2. 25 CFR 10.6 - How is the BIA assured that the policies and standards are being applied uniformly and facilities...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER INDIAN COUNTRY DETENTION FACILITIES AND...-mandatory detention standards and will document progress on uniform reporting. The BIA Office of Law Enforcement Services will conduct periodic operational evaluations for oversight....

  3. 25 CFR 10.6 - How is the BIA assured that the policies and standards are being applied uniformly and facilities...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER INDIAN COUNTRY DETENTION FACILITIES AND...-mandatory detention standards and will document progress on uniform reporting. The BIA Office of Law Enforcement Services will conduct periodic operational evaluations for oversight....

  4. 25 CFR 10.6 - How is the BIA assured that the policies and standards are being applied uniformly and facilities...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER INDIAN COUNTRY DETENTION FACILITIES AND...-mandatory detention standards and will document progress on uniform reporting. The BIA Office of Law Enforcement Services will conduct periodic operational evaluations for oversight....

  5. Abdominal Adhesions

    MedlinePlus

    ... Abdominal Adhesions 1 Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. Journal of Surgical Research. 2011;165(1):91– ... are abdominal adhesions and intestinal obstructions ... generally do not require treatment. Surgery is the only way to treat abdominal ...

  6. A life cycle cost economics model for automation projects with uniformly varying operating costs. [applied to Deep Space Network and Air Force Systems Command

    NASA Technical Reports Server (NTRS)

    Remer, D. S.

    1977-01-01

    The described mathematical model calculates life-cycle costs for projects with operating costs increasing or decreasing linearly with time. The cost factors involved in the life-cycle cost are considered, and the errors resulting from the assumption of constant rather than uniformly varying operating costs are examined. Parameters in the study range from 2 to 30 years, for project life; 0 to 15% per year, for interest rate; and 5 to 90% of the initial operating cost, for the operating cost gradient. A numerical example is presented.

  7. Uniform Federal Accessibility Standards.

    ERIC Educational Resources Information Center

    Department of Housing and Urban Development, Washington, DC.

    The document presents uniform standards for facility accessibility by physically handicapped persons for Federal and federally funded facilities. The standards are to be applied during the design, construction, and alteration of buildings and facilities to the extent required by the Architectural Barriers Act of 1968, as amended. Technical…

  8. Switchable bio-inspired adhesives

    NASA Astrophysics Data System (ADS)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  9. Environmentally compliant adhesive joining technology

    SciTech Connect

    Tira, J.S.

    1996-08-01

    Adhesive joining offers one method of assembling products. Advantages of adhesive joining/assembly include distribution of applied forces, lighter weight, appealing appearance, etc. Selecting environmentally safe adhesive materials and accompanying processes is paramount in today`s business climate if a company wants to be environmentally conscious and stay in business. Four areas of adhesive joining (adhesive formulation and selection, surface preparation, adhesive bonding process, waste and pollution generation/cleanup/management) all need to be carefully evaluated before adhesive joining is selected for commercial as well as military products. Designing for six sigma quality must also be addressed in today`s global economy. This requires material suppliers and product manufacturers to work even closer together.

  10. Abdominal Adhesions

    MedlinePlus

    ... Adhesions 1 Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. Journal of Surgical Research. 2011;165(1):91–111. Seek Help for ... and how to participate, visit the NIH Clinical Research Trials and You website ... Foundation for Functional Gastrointestinal Disorders 700 West Virginia ...

  11. Timer cover adhesive optimization

    SciTech Connect

    Carleton, J.J. II.

    1992-03-17

    The implementation of PROCODE as the data acquisition system for processing timers has required some modifications to the method of identifying timer assemblies. PROCODE requires machine-readable labelling of the assemblies. This report describes a series of experiments to find an adhesive that would keep labels attached to timers regardless of the condition of their surface when the label was applied and regardless of the heat, vibration, and shock they endured afterwards. The effect of the variation of these experimental factors on the performance of the adhesive was determined by using a Taguchi experimental design.

  12. Mechanical principle of enhancing cell-substrate adhesion via pre-tension in the cytoskeleton.

    PubMed

    Chen, Bin; Gao, Huajian

    2010-05-19

    Motivated by our earlier study on the effect of pre-tension in gecko adhesion, here we investigate whether and how pre-tension in cytoskeleton influences cell adhesion by developing a stochastic-elasticity model of a stress fiber attached on a rigid substrate via molecular bonds. By comparing the variations in adhesion lifetime and observing the sequences of bond breaking with and without pre-tension in the stress fiber under the same applied force, we demonstrate that the effect of pre-tension is to shift the interfacial failure mode from cracklike propagation toward uniform bond failure within the contact region, thereby greatly increasing the adhesion lifetime. Since stress fibers are the primary load-bearing components of cells, as well as the basic functional units of cytoskeleton that facilitate cell adhesion, this study suggests a feasible mechanism by which cell adhesion could be actively controlled via cytoskeletal contractility and proposes that pre-tension may be a general principle in biological adhesion. PMID:20483323

  13. Polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, D. J.; Bell, V. L.; Saintclair, T. L. (Inventor)

    1974-01-01

    A process of preparing aromatic polyamide-acids for use as adhesives is described. An equimolar quantity of an aromatic dianhydride is added to a stirred solution of an aromatic diamine in a water or alcohol-miscible ether solvent to obtain a viscous polymer solution. The polymeric-acid intermediate polymer does not become insoluble but directly forms a smooth viscous polymer solution. These polyamic-acid polymers are converted, by heating in the range of 200-300 C and with pressure, to form polyimides with excellent adhesive properties.

  14. JKR adhesion in cylindrical contacts

    NASA Astrophysics Data System (ADS)

    Sundaram, Narayan; Farris, T. N.; Chandrasekar, S.

    2012-01-01

    Planar JKR adhesive solutions use the half-plane assumption and do not permit calculation of indenter approach or visualization of adhesive force-displacement curves unless the contact is periodic. By considering a conforming cylindrical contact and using an arc crack analogy, we obtain closed-form indenter approach and load-contact size relations for a planar adhesive problem. The contact pressure distribution is also obtained in closed-form. The solutions reduce to known cases in both the adhesion-free and small-contact solution ( Barquins, 1988) limits. The cylindrical system shows two distinct regimes of adhesive behavior; in particular, contact sizes exceeding the critical (maximum) size seen in adhesionless contacts are possible. The effects of contact confinement on adhesive behavior are investigated. Some special cases are considered, including contact with an initial neat-fit and the detachment of a rubbery cylinder from a rigid cradle. A comparison of the cylindrical solution with the half-plane adhesive solution is carried out, and it indicates that the latter typically underestimates the adherence force. The cylindrical adhesive system is novel in that it possesses stable contact states that may not be attained even on applying an infinite load in the absence of adhesion.

  15. Uniform acceleration in general relativity

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Scarr, Tzvi

    2015-10-01

    We extend de la Fuente and Romero's (Gen Relativ Gravit 47:33, 2015) defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.

  16. Use of Spray Adhesives for the Manufacture of 3-D Capillary Origami Microstructures

    NASA Astrophysics Data System (ADS)

    de Los Reyes, Mithi

    2011-10-01

    The method of ``capillary origami''---using the surface tension of an evaporating water droplet to fold a flexible membrane into a 3-D polyhedron, as investigated by Py et al.---has shown promise as a way to create fully 3-D microstructures. However, the origami re-opens past a critical evaporation point, and previous attempts to prevent this re-opening have proven to be expensive and time-consuming. We therefore investigated the use of various spray adhesives in keeping these origami microstructures closed. Three characteristics were measured: efficiency, tackiness, and strength of the adhesive. Measurements of these three characteristics point to 3M Super 77 Spray Adhesive as an optimal adhesive for spraying microstructures. Furthermore, we designed a new method to measure adhesive strength by using an analytical balance to measure force applied by a micrometer to a microstructure. We also developed novel procedures to create uniformly-sized microstructures and to accelerate the folding process, all of which improve upon the original capillary origami method. These novel procedures, combined with measurements that indicate 3M Super 77 as an optimum adhesive, suggest a potential method for the mass-production of truly 3-D microstructures. Py, Charlotte, et al. ``Capillary origami: Spontaneous wrapping of a droplet with an elastic sheet.'' Physical Review Letters. 98.156103 (2007)

  17. Coating Reduces Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  18. Charge contribution to patch-charged microparticle adhesion

    NASA Astrophysics Data System (ADS)

    Vallabh, Chaitanya Krishna Prasad; Vahdat, Armin Saeedi; Cetinkaya, Cetin

    2014-11-01

    Microparticle adhesion influenced by electrostatic charge has been a significant research interest for over past three decades or so in a wide spectrum of areas of interest from manufacturing (electrophotography, powder technology, metallurgy, and semi-conductor manufacturing) to natural phenomena (desert sandstorms and northern lights (auroras)). However, over the years, as a result of the strong discrepancies between the experimental adhesion measurements data and theoretical predictions, some key issues regarding the contributors of adhesion forces in charged microparticles and the nature of surface charge distribution still remain unresolved. In the current work, a non-contact ultrasonic approach is presented and employed for understanding the nature of charge distribution on a single microparticle and determining the effect of electrostatic charge on its adhesion in a non-invasive manner. From the vibrational spectra of the charged particle response to the ultrasonic substrate oscillations under various electrostatic loading conditions, three distinct shifting patterns of vibrational (rocking) resonance frequencies are observed for each level of applied substrate surface voltage, implying an un-symmetric force field on the particle, thus depicting non-uniform non-symmetric surface charge distribution on its surface. Also, a simple mathematical model was presented and employed for predicting the equivalent bulk charge on a single microparticle (toner) from resonance frequency shifts. In summary, it is found that the charge levels reported here are consistent with the previously published data, and it is demonstrated that, in a non-invasive manner, non-uniform charge distribution on a single microparticle can be observed and its total charge can be predicted.

  19. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-09-08

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  20. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Paulauskas, Felix L.; Fathi, Zakaryae; Wei, Jianghua

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  1. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-08-25

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  2. Do School Uniforms Fit?

    ERIC Educational Resources Information Center

    White, Kerry A.

    2000-01-01

    In 1994, Long Beach (California) Unified School District began requiring uniforms in all elementary and middle schools. Now, half of all urban school systems and many suburban schools have uniform policies. Research on uniforms' effectiveness is mixed. Tightened dress codes may be just as effective and less litigious. (MLH)

  3. School Uniforms Redux.

    ERIC Educational Resources Information Center

    Dowling-Sendor, Benjamin

    2002-01-01

    Reviews a recent decision in "Littlefield" by the 5th Circuit upholding a school uniform policy. Advises board member who wish to adopt a school uniform policy to solicit input from parents and students, research the experiences of other school districts with uniform policies, and articulate the interests they wish to promote through uniform…

  4. Mandatory School Uniforms.

    ERIC Educational Resources Information Center

    Cohn, Carl A.

    1996-01-01

    Shortly after implementing a mandatory school uniform policy, the Long Beach (California) Public Schools can boast 99% compliance and a substantial reduction in school crime. The uniforms can't be confused with gang colors, save parents money, and help identify outsiders. A sidebar lists ingredients for a mandatory uniform policy. (MLH)

  5. Human climbing with efficiently scaled gecko-inspired dry adhesives

    PubMed Central

    Hawkes, Elliot W.; Eason, Eric V.; Christensen, David L.; Cutkosky, Mark R.

    2015-01-01

    Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A−1/4. We present a mechanical concept which improves upon the gecko's non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A−1/50. Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm2 of adhesive per hand. PMID:25411404

  6. Assessment of starch-based wood adhesive quality by confocal Raman microscopic detection of reaction homogeneity.

    PubMed

    Wang, Panjun; Cheng, Li; Gu, Zhengbiao; Li, Zhaofeng; Hong, Yan

    2015-10-20

    Confocal Raman microscopy (CRM) was used to detect the reaction homogeneity of vinyl acetate grafted on starch granules and help to assess the quality of high solid content starch-based wood adhesive (HSSWA). Primarily, four experimental starch samples were investigated, and by analysis of band area ratio (carbonyl/carbohydrate) of each granule, information about reaction homogeneity was collected. The results showed that reaction extent and homogeneity were inconsistent for samples with different G values, and the distribution of ester groups on blend samples was much less uniform than grafted starch samples with the same G value, confirming that CRM was useful for determining the homogeneity of chemical modification. Afterwards, the technique was applied to research HSSWA prepared by two-stage seeded polymerization and traditional process. The distribution of ester groups was more uniform among starch granules prepared by former method, resulted in adhesive with much better performance, indicating that uniformity of polymerization was an important factor related to properties of starch-based wood adhesive. PMID:26256162

  7. 48 CFR 14.201-1 - Uniform contract format.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... uniform contract format applies shall include Parts I, II, III, and IV. If any section of the uniform... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Uniform contract format... CONTRACTING METHODS AND CONTRACT TYPES SEALED BIDDING Solicitation of Bids 14.201-1 Uniform contract...

  8. Adhesion mechanism of a gecko-inspired oblique structure with an adhesive tip for asymmetric detachment

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Yu; Takahashi, Kunio; Sato, Chiaki

    2015-12-01

    An adhesion model of an oblique structure with an adhesive tip is proposed by considering a limiting stress for adhesion to describe the detachment mechanism of gecko foot hairs. When a force is applied to the root of the oblique structure, normal and shear stresses are generated at contact and the adhesive tip is detached from the surface when reaching the limiting stress. An adhesion criterion that considers both the normal and shear stresses is introduced, and the asymmetric detachment of the oblique structure is theoretically investigated. In addition, oblique beam array structures are manufactured, and an inclination effect of the structure on the asymmetric detachment is experimentally verified.

  9. Uniform Media Effects and Uniform Audience Responses.

    ERIC Educational Resources Information Center

    Perry, David K.

    The idea that mass communication effects may decrease diversity among people or societies exposed to it arises constantly. However, discussions of mass media effects do not highlight differences between mass communications that "affect" people uniformly and messages that members of audiences "respond to" in similar ways. A number of modern…

  10. Fibrillar Adhesive for Climbing Robots

    NASA Technical Reports Server (NTRS)

    Pamess, Aaron; White, Victor E.

    2013-01-01

    A climbing robot needs to use its adhesive patches over and over again as it scales a slope. Replacing the adhesive at each step is generally impractical. If the adhesive or attachment mechanism cannot be used repeatedly, then the robot must carry an extra load of this adhesive to apply a fresh layer with each move. Common failure modes include tearing, contamination by dirt, plastic deformation of fibers, and damage from loading/ unloading. A gecko-like fibrillar adhesive has been developed that has been shown useful for climbing robots, and may later prove useful for grasping, anchoring, and medical applications. The material consists of a hierarchical fibrillar structure that currently contains two levels, but may be extended to three or four levels in continuing work. The contacting level has tens of thousands of microscopic fibers made from a rubberlike material that bend over and create intimate contact with a surface to achieve maximum van der Waals forces. By maximizing the real area of contact that these fibers make and minimizing the bending energy necessary to achieve that contact, the net amount of adhesion has been improved dramatically.

  11. Optimizing ultrasonic imaging for adhesively bonded plates

    SciTech Connect

    Conboy, Mike; Hart, Scot; Harris-Weiel, David; Meyer, R. L.; Claytor, T. N.

    2004-01-01

    Bonded materials are used in many critical applications, making it important to determine the state of the adhesive during service or aging. It is also of importance, in many cases, to determine if the adhesive has uniformly and completely covered the area to be joined. Through dual transducer scanning, focused and unfocused transducers, and immersion scanning, the uniformity and adherence of a visco-elastic material can be evaluated. In this report, ultrasonic scanning parameters will be optimized experimentally with guidance from simulation tools including Wave 2000 pro and Imagine 3D. We explored optimizing the contrast ratio by varying the interrogation frequency and also by adjusting the distance between the transducer and bond line. An improvement in contrast should also increase the ability to detect differences in compositions and viscosity of the bonded layer. By maximizing the contrast the quality of the visco-elastic bond can be determined, and imperfections detected before adhesive failure.

  12. Structural adhesives for missile external protection material

    NASA Astrophysics Data System (ADS)

    Banta, F. L.; Garzolini, J. A.

    1981-07-01

    Two basic rubber materials are examined as possible external substrate protection materials (EPM) for missiles. The analysis provided a data base for selection of the optimum adhesives which are compatible with the substrate, loads applied and predicted bondline temperatures. Under the test conditions, EA934/NA was found to be the optimum adhesive to bond VAMAC 2273 and/or NBR/EPDM 9969A to aluminum substrate. The optimum adhesive for composite structures was EA956. Both of these adhesives are two-part epoxy systems with a pot life of approximately two hours. Further research is suggested on field repair criteria, nuclear hardness and survivability effects on bondline, and ageing effects.

  13. Electrode structure for uniform corona discharge

    NASA Technical Reports Server (NTRS)

    Gange, R. A.; Steinmetz, C. C.

    1976-01-01

    Single corona-discharge needle is used to apply uniform charge to thermoplastic medium in holograph-storage system. Needle is connected to flat transparent electrode that is parallel to thermoplastic.

  14. Adhesive curing through low-voltage activation

    PubMed Central

    Ping, Jianfeng; Gao, Feng; Chen, Jian Lin; Webster, Richard D.; Steele, Terry W. J.

    2015-01-01

    Instant curing adhesives typically fall within three categories, being activated by either light (photocuring), heat (thermocuring) or chemical means. These curing strategies limit applications to specific substrates and can only be activated under certain conditions. Here we present the development of an instant curing adhesive through low-voltage activation. The electrocuring adhesive is synthesized by grafting carbene precursors on polyamidoamine dendrimers and dissolving in aqueous solvents to form viscous gels. The electrocuring adhesives are activated at −2 V versus Ag/AgCl, allowing tunable crosslinking within the dendrimer matrix and on both electrode surfaces. As the applied voltage discontinued, crosslinking immediately terminated. Thus, crosslinking initiation and propagation are observed to be voltage and time dependent, enabling tuning of both material properties and adhesive strength. The electrocuring adhesive has immediate implications in manufacturing and development of implantable bioadhesives. PMID:26282730

  15. Adhesion and wear resistance of materials

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1986-01-01

    Recent studies into the nature of bonding at the interface between two solids in contact or a solid and deposited film have provided a better understanding of those properties important to the adhesive wear resistance of materials. Analytical and experimental progress are reviewed. For simple metal systems the adhesive bond forces are related to electronic wave function overlap. With metals in contact with nonmetals, molecular-orbital energy, and density of states, respectively can provide insight into adhesion and wear. Experimental results are presented which correlate adhesive forces measured between solids and the electronic surface structures. Orientation, surface reconstruction, surface segregation, adsorption are all shown to influence adhesive interfacial strength. The interrelationship between adhesion and the wear of the various materials as well as the life of coatings applied to substrates are discussed. Metallic systems addressed include simple metals and alloys and these materials in contact with themselves, both oxide and nonoxide ceramics, diamond, polymers, and inorganic coating compounds, h as diamondlike carbon.

  16. School Uniforms. Research Brief

    ERIC Educational Resources Information Center

    Walker, Karen

    2007-01-01

    Does clothing make the person or does the person make the clothing? How does what attire a student wears to school affect their academic achievement? In 1996, President Clinton cited examples of school violence and discipline issues that might have been avoided had the students been wearing uniforms ("School uniforms: Prevention or suppression?").…

  17. Manual on School Uniforms.

    ERIC Educational Resources Information Center

    Department of Justice, Washington, DC.

    In response to growing levels of violence in American schools, many communities are deciding to adopt school-uniform policies as part of an overall program to improve school safety and discipline. This document provides the following guidelines for parents, teachers, and school leaders who may consider adopting a school-uniform policy: (1) Get…

  18. Uniform magnesium oxide adsorbents

    NASA Technical Reports Server (NTRS)

    Dash, J. G.; Ecke, R.; Stoltenberg, J.; Vilches, O. E.; Whittemore, O. J., Jr.

    1978-01-01

    Kr adsorption on MgO is used to characterize the surface uniformity of MgO smoke and thermally decomposed Mg(OH)2. It is found that initially heterogeneous samples develop progressively sharper stepwise isotherms with increasingly-high-temperature heat treatment, apparently due to the removal of imperfections and high-energy facets, leaving surfaces of highly uniform (100) planes.

  19. Dress Codes and Uniforms.

    ERIC Educational Resources Information Center

    Lumsden, Linda; Miller, Gabriel

    2002-01-01

    Students do not always make choices that adults agree with in their choice of school dress. Dress-code issues are explored in this Research Roundup, and guidance is offered to principals seeking to maintain a positive school climate. In "Do School Uniforms Fit?" Kerry White discusses arguments for and against school uniforms and summarizes the…

  20. Adhesive strength of autologous fibrin glue.

    PubMed

    Yoshida, H; Hirozane, K; Kamiya, A

    2000-03-01

    To establish an easy and rapid method for measuring the adhesive strength of fibrin glue and to clarify the factor(s) most affecting the strength, a study was made on the effect of the concentration of plasma components on the strength of cryoprecipitate (Cryo) prepared from a subject's own autologous plasma to be used as fibrin glue. The adhesive strength of the Cryo was measured with various supporting materials instead of animal skin using a tester of tension and compression. The results were as follows: (1) the strength of Cryo applied to ground flat glass (4 cm2) was significantly greater than that applied to clear glass, clear plastic, or smooth and flat wood chips; (2) the adhesive strength of Cryo depended on the concentration of thrombin with the optimal concentration being 50 units/ml; (3) the concentration of CaCl2 did not affect the adhesive strength of Cryo; (4) the adhesive reaction was dependent on the temperature and the adhesive strength more quickly reached a steady state at 37 degrees C than at lower temperature; (5) the adhesive strength was correlated well with the total concentration of fibrinogen and fibronectin. These results indicate that the adhesive strength of Cryo can be easily and quickly evaluated using a tester and ground glass with thrombin at 50 units/ml, and that the adhesive strength of Cryo can be predicted from the total concentration of fibrinogen and fibronectin. PMID:10726885

  1. Photoresist substrate having robust adhesion

    DOEpatents

    Dentinger, Paul M.

    2005-07-26

    A substrate material for LIGA applications w hose general composition is Ti/Cu/Ti/SiO.sub.2. The SiO.sub.2 is preferably applied to the Ti/Cu/Ti wafer as a sputtered coating, typically about 100 nm thick. This substrate composition provides improved adhesion for epoxy-based photoresist materials, and particularly the photoresist material SU-8.

  2. Thermal Characterization of Adhesive

    NASA Technical Reports Server (NTRS)

    Spomer, Ken A.

    1999-01-01

    The current Space Shuttle Reusable Solid Rocket Motor (RSRM) nozzle adhesive bond system is being replaced due to obsolescence. Down-selection and performance testing of the structural adhesives resulted in the selection of two candidate replacement adhesives, Resin Technology Group's Tiga 321 and 3M's EC2615XLW. This paper describes rocket motor testing of these two adhesives. Four forty-pound charge motors were fabricated in configurations that would allow side by side comparison testing of the candidate replacement adhesives and the current RSRM adhesives. The motors provided an environment where the thermal performance of adhesives in flame surface bondlines was compared. Results of the FPC testing show that: 1) The phenolic char depths on radial bond lines is approximately the same and vary depending on the position in the blast tube regardless of which adhesive was used; 2) The adhesive char depth of the candidate replacement adhesives is less than the char depth of the current adhesives; 3) The heat-affected depth of the candidate replacement adhesives is less than the heat-affected depth of the current adhesives; and 4) The ablation rates for both replacement adhesives are slower than that of the current adhesives.

  3. Sundew adhesive: a naturally occurring hydrogel

    PubMed Central

    Huang, Yujian; Wang, Yongzhong; Sun, Leming; Agrawal, Richa; Zhang, Mingjun

    2015-01-01

    Bioadhesives have drawn increasing interest in recent years, owing to their eco-friendly, biocompatible and biodegradable nature. As a typical bioadhesive, sticky exudate observed on the stalked glands of sundew plants aids in the capture of insects and this viscoelastic adhesive has triggered extensive interests in revealing the implied adhesion mechanisms. Despite the significant progress that has been made, the structural traits of the sundew adhesive, especially the morphological characteristics in nanoscale, which may give rise to the viscous and elastic properties of this mucilage, remain unclear. Here, we show that the sundew adhesive is a naturally occurring hydrogel, consisting of nano-network architectures assembled with polysaccharides. The assembly process of the polysaccharides in this hydrogel is proposed to be driven by electrostatic interactions mediated with divalent cations. Negatively charged nanoparticles, with an average diameter of 231.9 ± 14.8 nm, are also obtained from this hydrogel and these nanoparticles are presumed to exert vital roles in the assembly of the nano-networks. Further characterization via atomic force microscopy indicates that the stretching deformation of the sundew adhesive is associated with the flexibility of its fibrous architectures. It is also observed that the adhesion strength of the sundew adhesive is susceptible to low temperatures. Both elasticity and adhesion strength of the sundew adhesive reduce in response to lowering the ambient temperature. The feasibility of applying sundew adhesive for tissue engineering is subsequently explored in this study. Results show that the fibrous scaffolds obtained from sundew adhesive are capable of increasing the adhesion of multiple types of cells, including fibroblast cells and smooth muscle cells, a property that results from the enhanced adsorption of serum proteins. In addition, in light of the weak cytotoxic activity exhibited by these scaffolds towards a variety of

  4. Sundew adhesive: a naturally occurring hydrogel.

    PubMed

    Huang, Yujian; Wang, Yongzhong; Sun, Leming; Agrawal, Richa; Zhang, Mingjun

    2015-06-01

    Bioadhesives have drawn increasing interest in recent years, owing to their eco-friendly, biocompatible and biodegradable nature. As a typical bioadhesive, sticky exudate observed on the stalked glands of sundew plants aids in the capture of insects and this viscoelastic adhesive has triggered extensive interests in revealing the implied adhesion mechanisms. Despite the significant progress that has been made, the structural traits of the sundew adhesive, especially the morphological characteristics in nanoscale, which may give rise to the viscous and elastic properties of this mucilage, remain unclear. Here, we show that the sundew adhesive is a naturally occurring hydrogel, consisting of nano-network architectures assembled with polysaccharides. The assembly process of the polysaccharides in this hydrogel is proposed to be driven by electrostatic interactions mediated with divalent cations. Negatively charged nanoparticles, with an average diameter of 231.9 ± 14.8 nm, are also obtained from this hydrogel and these nanoparticles are presumed to exert vital roles in the assembly of the nano-networks. Further characterization via atomic force microscopy indicates that the stretching deformation of the sundew adhesive is associated with the flexibility of its fibrous architectures. It is also observed that the adhesion strength of the sundew adhesive is susceptible to low temperatures. Both elasticity and adhesion strength of the sundew adhesive reduce in response to lowering the ambient temperature. The feasibility of applying sundew adhesive for tissue engineering is subsequently explored in this study. Results show that the fibrous scaffolds obtained from sundew adhesive are capable of increasing the adhesion of multiple types of cells, including fibroblast cells and smooth muscle cells, a property that results from the enhanced adsorption of serum proteins. In addition, in light of the weak cytotoxic activity exhibited by these scaffolds towards a variety of

  5. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  6. Morphological and Chemical Characterization of Bonding Hydrophobic Adhesive to Dentin Using Ethanol Wet Bonding Technique

    PubMed Central

    Shin, T. Phillip; Yao, Xiaomei; Huenergardt, Robin; Walker, Mary P; Wang, Yong

    2009-01-01

    Objective BisGMA, a widely used component in dentin adhesive has very good mechanical properties after curing, but is relatively hydrophobic and thus, does not adequately infiltrate the water wet demineralized dentin collagen. Developing techniques that would lead to optimum infiltration of the hydrophobic component into the demineralized dentin matrix is very important. The purpose of this study was to evaluate interfacial morphological and chemical characteristics of the resultant adhesive-dentin interface when the ethanol wet bonding technique is used with hydrophobic adhesives. Materials and methods The occlusal one-third of the crown was removed from six unerupted human third molars; a uniform smear layer was created with 600 grit SiC. The dentin surface was etched with 35% phosphoric acid for 15 seconds before applying BisGMA/HEMA model adhesive using either water wet or ethanol wet bonding technique. Five-micro-thick sections of adhesive/dentin interface specimens were cut and stained with Goldner’s trichrome for light microscopy. Companion slabs were analyzed with SEM and micro-Raman spectroscopy. Results The presence of ethanol in the demineralized dentin increased adhesive collagen encapsulation as indicated by trichrome staining. The SEM results confirmed that the ethanol wet bonding improved the quality of the interface. Micro-Raman spectral analysis of the dentin/adhesive interface indicated there was a gradual decrease in penetration of BisGMA component for specimens using water wet bonding, while relatively homogeneous distribution of the hydrophobic BisGMA component was noted in the interface with ethanol wet bonding. Significance Wet bonding with ethanol instead of water permits better BisGMA infiltration improving the quality of interface. We speculate that the higher infiltration of hydrophobic BisGMA and better collagen encapsulation observed from the specimens using ethanol wet bonding would lead to more durable bonds because of improved

  7. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  8. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  9. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  10. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  11. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  12. Understanding Marine Mussel Adhesion

    SciTech Connect

    H. G. Silverman; F. F. Roberto

    2007-12-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are waterimpervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion.

  13. Understanding marine mussel adhesion.

    PubMed

    Silverman, Heather G; Roberto, Francisco F

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  14. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  15. On the characterization of medicated plasters containing NSAIDs according to novel indications of USP and EMA: adhesive property and in vitro skin permeation studies.

    PubMed

    Cilurzo, Francesco; Gennari, Chiara G M; Selmin, Francesca; Franzé, Silvia; Musazzi, Umberto M; Minghetti, Paola

    2015-02-01

    Abstract This work aims to establish if the assays recently introduced by EMA (Guideline on quality of transdermal patches-draft) and USP (Specific tests for transdermal delivery systems) to characterize transdermal patches (TP) are suitable for medicated plasters (MP). Six approved MP differing for type and characteristics of adhesive and backing layer were selected and characterized in terms of adhesive performances by tack, shear adhesion, peel adhesion and release liner removal tests and in vitro skin permeation. As far as the adhesive properties are concerned, the major drawback is related to the measurement of shear adhesion of MP made of an adhesive hydrogel and/or a stretchable backing layer which could be solved by reducing the applied load. Moreover, a concern on the mass balance prescribed by EMA draft for the acceptance of the results of in vitro penetration studies remains. Indeed, the acceptance range is narrow than that reported by Ph. Eur. requirement for uniformity of content. Finally, a novel calculation for evaluating the in vitro efficiency of MP in releasing the loaded drug through the skin was proposed. PMID:24164486

  16. High performance Cu adhesion coating

    SciTech Connect

    Lee, K.W.; Viehbeck, A.; Chen, W.R.; Ree, M.

    1996-12-31

    Poly(arylene ether benzimidazole) (PAEBI) is a high performance thermoplastic polymer with imidazole functional groups forming the polymer backbone structure. It is proposed that upon coating PAEBI onto a copper surface the imidazole groups of PAEBI form a bond with or chelate to the copper surface resulting in strong adhesion between the copper and polymer. Adhesion of PAEBI to other polymers such as poly(biphenyl dianhydride-p-phenylene diamine) (BPDA-PDA) polyimide is also quite good and stable. The resulting locus of failure as studied by XPS and IR indicates that PAEBI gives strong cohesive adhesion to copper. Due to its good adhesion and mechanical properties, PAEBI can be used in fabricating thin film semiconductor packages such as multichip module dielectric (MCM-D) structures. In these applications, a thin PAEBI coating is applied directly to a wiring layer for enhancing adhesion to both the copper wiring and the polymer dielectric surface. In addition, a thin layer of PAEBI can also function as a protection layer for the copper wiring, eliminating the need for Cr or Ni barrier metallurgies and thus significantly reducing the number of process steps.

  17. On the mechanism of adhesion in biological systems

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.

    2003-04-01

    I study adhesion relevant to biological systems, e.g., flies, crickets and lizards, where the adhesive microstructures consist of arrays of thin fibers. The effective elastic modulus of the fiber arrays can be very small which is of fundamental importance for adhesion on smooth and rough substrates. I study how the adhesion depend on the substrate roughness amplitude and apply the theoretical results to lizards.

  18. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  19. Radially uniform electron source

    NASA Technical Reports Server (NTRS)

    Mccomas, D.; Bame, S. J.

    1982-01-01

    A thermionic electron source capable of producing uniform count rates in a number of channel electron multipliers simultaneously was required for conditioning multipliers for an extended space mission. It was found that a straight tungsten filament in the center of a cylindrically symmetric geometry surrounded by an array of multipliers emits a radially asymmetric distribution of electrons that changes with time. A source was developed which successfully produces a time-independent radially uniform distribution of electrons by moving the filament out of the direct line of sight and replacing it with a centrally located electron 'cloud.'

  20. Uniform-droplet spray forming

    SciTech Connect

    Blue, C.A.; Sikka, V.K.; Chun, Jung-Hoon; Ando, T.

    1997-04-01

    The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets that can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.

  1. Method of measuring metal coating adhesion

    DOEpatents

    Roper, John R.

    1985-01-01

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  2. Method of measuring metal coating adhesion

    DOEpatents

    Roper, J.R.

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  3. Molecular Adhesion between Cartilage Extracellular Matrix Macromolecules

    PubMed Central

    2015-01-01

    In this study, we investigated the molecular adhesion between the major constituents of cartilage extracellular matrix, namely, the highly negatively charged proteoglycan aggrecan and the type II/IX/XI fibrillar collagen network, in simulated physiological conditions. Colloidal force spectroscopy was applied to measure the maximum adhesion force and total adhesion energy between aggrecan end-attached spherical tips (end radius R ≈ 2.5 μm) and trypsin-treated cartilage disks with undamaged collagen networks. Studies were carried out in various aqueous solutions to reveal the physical factors that govern aggrecan–collagen adhesion. Increasing both ionic strength and [Ca2+] significantly increased adhesion, highlighting the importance of electrostatic repulsion and Ca2+-mediated ion bridging effects. In addition, we probed how partial enzymatic degradation of the collagen network, which simulates osteoarthritic conditions, affects the aggrecan–collagen interactions. Interestingly, we found a significant increase in aggrecan–collagen adhesion even when there were no detectable changes at the macro- or microscales. It is hypothesized that the aggrecan–collagen adhesion, together with aggrecan–aggrecan self-adhesion, works synergistically to determine the local molecular deformability and energy dissipation of the cartilage matrix, in turn, affecting its macroscopic tissue properties. PMID:24491174

  4. Custom uniform source system

    NASA Technical Reports Server (NTRS)

    Balcom, John L.

    1994-01-01

    The purpose and scope of this final report is to provide information on the Custom Uniform Source System (CSTM-USS-4000). The report includes documentation and summaries of the results for the work performed under the contract. The Annex contain laboratory test findings, photographs, and drawings of the sphere system.

  5. Uniform random number generators

    NASA Technical Reports Server (NTRS)

    Farr, W. R.

    1971-01-01

    Methods are presented for the generation of random numbers with uniform and normal distributions. Subprogram listings of Fortran generators for the Univac 1108, SDS 930, and CDC 3200 digital computers are also included. The generators are of the mixed multiplicative type, and the mathematical method employed is that of Marsaglia and Bray.

  6. A Single-Lap Joint Adhesive Bonding Optimization Method Using Gradient and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Finckenor, Jeffrey L.

    1999-01-01

    A natural process for any engineer, scientist, educator, etc. is to seek the most efficient method for accomplishing a given task. In the case of structural design, an area that has a significant impact on the structural efficiency is joint design. Unless the structure is machined from a solid block of material, the individual components which compose the overall structure must be joined together. The method for joining a structure varies depending on the applied loads, material, assembly and disassembly requirements, service life, environment, etc. Using both metallic and fiber reinforced plastic materials limits the user to two methods or a combination of these methods for joining the components into one structure. The first is mechanical fastening and the second is adhesive bonding. Mechanical fastening is by far the most popular joining technique; however, in terms of structural efficiency, adhesive bonding provides a superior joint since the load is distributed uniformly across the joint. The purpose of this paper is to develop a method for optimizing single-lap joint adhesive bonded structures using both gradient and genetic algorithms and comparing the solution process for each method. The goal of the single-lap joint optimization is to find the most efficient structure that meets the imposed requirements while still remaining as lightweight, economical, and reliable as possible. For the single-lap joint, an optimum joint is determined by minimizing the weight of the overall joint based on constraints from adhesive strengths as well as empirically derived rules. The analytical solution of the sin-le-lap joint is determined using the classical Goland-Reissner technique for case 2 type adhesive joints. Joint weight minimization is achieved using a commercially available routine, Design Optimization Tool (DOT), for the gradient solution while an author developed method is used for the genetic algorithm solution. Results illustrate the critical design variables

  7. Weld bonding of titanium with polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Sheppard, C. H.; Orell, M. K.

    1975-01-01

    A conductive adhesive primer and a capillary flow adhesive were developed for weld bonding titanium alloy joints. Both formulations contained ingredients considered to be non-carcinogenic. Lap-shear joint test specimens and stringer-stiffened panels were weld bonded using a capillary flow process to apply the adhesive. Static property information was generated for weld bonded joints over the temperature range of 219K (-65 F) to 561K (550 F). The capillary flow process was demonstrated to produce weld bonded joints of equal strength to the weld through weld bonding process developed previously.

  8. The effect of bending on the stresses in adhesive joints

    NASA Technical Reports Server (NTRS)

    Yuceoglu, U.; Updike, D. P.

    1975-01-01

    The problem of stress distribution in adhesive joints where two orthotropic plates are bonded through a flexible adhesive layer is analyzed. It is shown that the effect of bending of the adherends on the stresses in the adhesive layer is very significant. The transverse shear deformations of the adherends appear to have little influence on the adhesive layer stresses. The maximum transverse normal stress in the adhesive is shown to be larger than the maximum longitudinal shear stress. The method of solution is applied to several examples of specific joint geometries and material combinations, and is proven to be applicable to other related problems.

  9. Adhesion and Thin-Film Module Reliability

    SciTech Connect

    McMahon, T. J.; Jorgenson, G. J.

    2006-01-01

    Among the infrequently measured but essential properties for thin-film (T-F) module reliability are the interlayer adhesion and cohesion within a layer. These can be cell contact layers to glass, contact layers to the semiconductor, encapsulant to cell, glass, or backsheet, etc. We use an Instron mechanical testing unit to measure peel strengths at 90deg or 180deg and, in some cases, a scratch and tape pull test to evaluate inter-cell layer adhesion strengths. We present peel strength data for test specimens laminated from the three T-F technologies, before and after damp heat, and in one instance at elevated temperatures. On laminated T-F cell samples, failure can occur uniformly at any one of the many interfaces, or non-uniformly across the peel area at more than one interface. Some peel strengths are Lt1 N/mm. This is far below the normal ethylene vinyl acetate/glass interface values of >10 N/mm. We measure a wide range of adhesion strengths and suggest that adhesion measured under higher temperature and relative humidity conditions is more relevant for module reliability.

  10. Composites with improved fiber-resin interfacial adhesion

    NASA Technical Reports Server (NTRS)

    Cizmecioglu, Muzaffer (Inventor)

    1989-01-01

    The adhesion of fiber reinforcement such as high modulus graphite to a matrix resin such as polycarbonate is greatly enhanced by applying a very thin layer, suitably from 50 Angstroms to below 1000 Angstroms, to the surface of the fiber such as by immersing the fiber in a dilute solution of the matrix resin in a volatile solvent followed by draining to remove excess solution and air drying to remove the solvent. The thin layer wets the fiber surface. The very dilute solution of matrix resin is able to impregnate multifilament fibers and the solution evenly flows onto the surface of the fibers. A thin uniform layer is formed on the surface of the fiber after removal of the solvent. The matrix resin coated fiber is completely wetted by the matrix resin during formation of the composite. Increased adhesion of the resin to the fibers is observed at fracture. At least 65 percent of the surface of the graphite fiber is covered with polycarbonate resin at fracture whereas uncoated fibers have very little matrix resin adhering to their surfaces at fracture and epoxy sized graphite fibers exhibit only slightly higher coverage with matrix resin at fracture. Flexural modulus of the composite containing matrix resin coated fibers is increased by 50 percent and flexural strength by 37 percent as compared to composites made with unsized fibers.

  11. Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces.

    PubMed

    Lee, Hyungoo; Bhushan, Bharat

    2012-04-15

    The mechanics of fibrillar adhesive surfaces of biological systems such as a Lotus leaf and a gecko are widely studied due to their unique surface properties. The Lotus leaf is a model for superhydrophobic surfaces, self-cleaning properties, and low adhesion. Gecko feet have high adhesion due to the high micro/nanofibrillar hierarchical structures. A nanostructured surface may exhibit low adhesion or high adhesion depending upon fibrillar density, and it presents the possibility of realizing eco-friendly surface structures with desirable adhesion. The current research, for the first time uses a patterning technique to fabricate smart adhesion surfaces: single- and two-level hierarchical synthetic adhesive structure surfaces with various fibrillar densities and diameters that allows the observation of either the Lotus or gecko adhesion effects. Contact angles of the fabricated structured samples were measured to characterize their wettability, and contamination experiments were performed to study for self-cleaning ability. A conventional and a glass ball attached to an atomic force microscope (AFM) tip were used to obtain the adhesive forces via force-distance curves to study scale effect. A further increase of the adhesive forces on the samples was achieved by applying an adhesive to the surfaces. PMID:22285098

  12. Reversible Thermoset Adhesives

    NASA Technical Reports Server (NTRS)

    Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)

    2016-01-01

    Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.

  13. Adhesion at metal interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1991-01-01

    A basic adhesion process is defined, the theory of the properties influencing metallic adhesion is outlined, and theoretical approaches to the interface problem are presented, with emphasis on first-principle calculations as well as jellium-model calculations. The computation of the energies of adhesion as a function of the interfacial separation is performed; fully three-dimensional calculations are presented, and universality in the shapes of the binding energy curves is considered. An embedded-atom method and equivalent-crystal theory are covered in the framework of issues involved in practical adhesion.

  14. Quantifying adhesion energy of mechanical coatings at atomistic scale

    NASA Astrophysics Data System (ADS)

    Yin, Deqiang; Peng, Xianghe; Qin, Yi; Feng, Jiling; Wang, Zhongchang

    2011-12-01

    Coatings of transition metal compounds find widespread technological applications where adhesion is known to influence or control functionality. Here, we, by first-principles calculations, propose a new way to assess adhesion in coatings and apply it to analyze the TiN coating. We find that the calculated adhesion energies of both the (1 1 1) and (0 0 1) orientations are small under no residual stress, yet increase linearly once the stress is imposed, suggesting that the residual stress is key to affecting adhesion. The strengthened adhesion is found to be attributed to the stress-induced shrinkage of neighbouring bonds, which results in stronger interactions between bonds in TiN coatings. Further finite elements simulation (FEM) based on calculated adhesion energy reproduces well the initial cracking process observed in nano-indentation experiments, thereby validating the application of this approach in quantifying adhesion energy of surface coating systems.

  15. Shear Strength of Conductive Adhesive Joints on Rigid and Flexible Substrates Depending on Adhesive Quantity

    NASA Astrophysics Data System (ADS)

    Hirman, Martin; Steiner, Frantisek

    2016-05-01

    This article deals with the impact of electrically conductive adhesive quantity on the shear strength of joints glued by adhesives "EPO-TEKⓇ H20S" and "MG8331S" on three types of substrates (FR-4, MELINEXⓇST504, DuPont™ PyraluxⓇAC). These joints were made by gluing chip resistors 1206, 0805 and 0603, with two curing profiles for each adhesive. Different thicknesses of stencil and reductions in the size of the hole in stencils were used for this experiment. These differences have an effect on the quantity of conductive adhesives which must be used on the samples. Samples were measured after the curing process by using a shear strength test applied by the device LabTest 3.030. This article presents the effects of different curing profiles, various types of substrates, and different quantities of adhesives on the mechanical strength of the joint.

  16. The effect of polyethylene glycol adhesion barrier (Spray Gel) on preventing peritoneal adhesions.

    PubMed

    Dasiran, F; Eryilmaz, R; Isik, A; Okan, I; Somay, A; Sahin, M

    2015-01-01

    The prominent cells in the late phase of wound healing during proliferation and matrix deposition are fibroblasts. Foreign materials in the operation site like prosthesis prolong the inflammation and induce fibroblast proliferation (8). 3 different prostheses used in this study induced chronic inflammation and fibrosis and provided an effective repair. Dense and thick adhesions due to fibrosis also induced strong adhesions to omentum and small intestine if only polypropylene mesh used for hernia repair. However, there was no difference between SprayGel treated polypropylene mesh and Sepramesh when compared for fibrosis. It also prevents the intraabdominal adhesion formation. It is nontoxic, sticky adherent, non- immigrant and easy to use both in open and laparoscopic surgeries. This experimental study revealed that polyethyleneglycol applied polypropylene mesh accomplishes hernia repair with significantly less adhesion formation than polypropylene mesh alone while securing a remarkable economy than adhesion barrier coated dual meshes (Tab. 6, Fig. 7, Ref. 23). Text in PDF www.elis.sk. PMID:26084740

  17. Peritoneal adhesions after laparoscopic gastrointestinal surgery

    PubMed Central

    Mais, Valerio

    2014-01-01

    Although laparoscopy has the potential to reduce peritoneal trauma and post-operative peritoneal adhesion formation, only one randomized controlled trial and a few comparative retrospective clinical studies have addressed this issue. Laparoscopy reduces de novo adhesion formation but has no efficacy in reducing adhesion reformation after adhesiolysis. Moreover, several studies have suggested that the reduction of de novo post-operative adhesions does not seem to have a significant clinical impact. Experimental data in animal models have suggested that CO2 pneumoperitoneum can cause acute peritoneal inflammation during laparoscopy depending on the insufflation pressure and the surgery duration. Broad peritoneal cavity protection by the insufflation of a low-temperature humidified gas mixture of CO2, N2O and O2 seems to represent the best approach for reducing peritoneal inflammation due to pneumoperitoneum. However, these experimental data have not had a significant impact on the modification of laparoscopic instrumentation. In contrast, surgeons should train themselves to perform laparoscopy quickly, and they should complete their learning curves before testing chemical anti-adhesive agents and anti-adhesion barriers. Chemical anti-adhesive agents have the potential to exert broad peritoneal cavity protection against adhesion formation, but when these agents are used alone, the concentrations needed to prevent adhesions are too high and could cause major post-operative side effects. Anti-adhesion barriers have been used mainly in open surgery, but some clinical data from laparoscopic surgeries are already available. Sprays, gels, and fluid barriers are easier to apply in laparoscopic surgery than solid barriers. Results have been encouraging with solid barriers, spray barriers, and gel barriers, but they have been ambiguous with fluid barriers. Moreover, when barriers have been used alone, the maximum protection against adhesion formation has been no greater than

  18. Bacterial Adhesion at Synthetic Surfaces

    PubMed Central

    Cunliffe, D.; Smart, C. A.; Alexander, C.; Vulfson, E. N.

    1999-01-01

    A systematic investigation into the effect of surface chemistry on bacterial adhesion was carried out. In particular, a number of physicochemical factors important in defining the surface at the molecular level were assessed for their effect on the adhesion of Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus, and Escherichia coli. The primary experiments involved the grafting of groups varying in hydrophilicity, hydrophobicity, chain length, and chemical functionality onto glass substrates such that the surfaces were homogeneous and densely packed with functional groups. All of the surfaces were found to be chemically well defined, and their measured surface energies varied from 15 to 41 mJ · m−2. Protein adsorption experiments were performed with 3H-labelled bovine serum albumin and cytochrome c prior to bacterial attachment studies. Hydrophilic uncharged surfaces showed the greatest resistance to protein adsorption; however, our studies also showed that the effectiveness of poly(ethyleneoxide) (PEO) polymers was not simply a result of its hydrophilicity and molecular weight alone. The adsorption of the two proteins approximately correlated with short-term cell adhesion, and bacterial attachment for L. monocytogenes and E. coli also correlated with the chemistry of the underlying substrate. However, for S. aureus and S. typhimurium a different pattern of attachment occurred, suggesting a dissimilar mechanism of cell attachment, although high-molecular-weight PEO was still the least-cell-adsorbing surface. The implications of this for in vivo attachment of cells suggest that hydrophilic passivating groups may be the best method for preventing cell adsorption to synthetic substrates provided they can be grafted uniformly and in sufficient density at the surface. PMID:10543814

  19. Adhesion of colloidal particles on modified electrodes.

    PubMed

    Kuznetsov, Volodymyr; Papastavrou, Georg

    2012-12-01

    The adhesion between colloidal silica particles and modified electrodes has been studied by direct force measurements with the colloidal probe technique based on the atomic force microscope (AFM). The combination of potentiostatic control of gold electrodes and chemical modification of their surface with self-assembled monolayers (SAMs) allows for the decoupling of forces due to the electrical double layers and functional groups at the solid/liquid interface. Adhesion on such electrodes can be tuned over a large range using the externally applied potential and the aqueous solution's ionic strength. By utilizing cantilevers with a high force constant, it is possible to separate the various contributions to adhesion in an unambiguous manner. These contributions comprise diffuse-layer overlap, van der Waals forces, solvent exclusion, and electrocapillarity. A quantitative description of the observed adhesion forces is obtained by taking into account the surface roughness of the silica particle. The main component of the adhesion forces originates from the overlap of the electrical double layers, which is tuned by the external potential. By contrast, effects due to electrocapillarity are of only minor importance. Based on our quantitative analysis, a new approach is proposed that allows tuning of the adhesion force as a function of the externally applied potential. We expect this approach to have important applications for the design of microelectromechanical systems (MEMS), the development of electrochemical sensors, and the application of micro- and nanomanipulation. PMID:23072548

  20. NASA Uniform Files Index

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This handbook is a guide for the use of all personnel engaged in handling NASA files. It is issued in accordance with the regulations of the National Archives and Records Administration, in the Code of Federal Regulations Title 36, Part 1224, Files Management; and the Federal Information Resources Management Regulation, Subpart 201-45.108, Files Management. It is intended to provide a standardized classification and filing scheme to achieve maximum uniformity and ease in maintaining and using agency records. It is a framework for consistent organization of information in an arrangement that will be useful to current and future researchers. The NASA Uniform Files Index coding structure is composed of the subject classification table used for NASA management directives and the subject groups in the NASA scientific and technical information system. It is designed to correlate files throughout NASA and it is anticipated that it may be useful with automated filing systems. It is expected that in the conversion of current files to this arrangement it will be necessary to add tertiary subjects and make further subdivisions under the existing categories. Established primary and secondary subject categories may not be changed arbitrarily. Proposals for additional subject categories of NASA-wide applicability, and suggestions for improvement in this handbook, should be addressed to the Records Program Manager at the pertinent installation who will forward it to the NASA Records Management Office, Code NTR, for approval. This handbook is issued in loose-leaf form and will be revised by page changes.

  1. Postoperative Peritoneal Adhesions

    PubMed Central

    Ryan, Graeme B.; Grobéty, Jocelyne; Majno, Guido

    1971-01-01

    This paper describes an experimental model of peritoneal adhesions, in the rat, based on two relatively minor accidents that may occur during abdominal surgery in man: drying of the serosa, and bleeding. Drying alone had little effect; drying plus bleeding consistently produced adhesions to the dried area. Fresh blood alone produced adhesions between the three membranous structures [omentum and pelvic fat bodies (PFBs)]. The formation of persistent adhesions required whole blood. Preformed clots above a critical size induced adhesions even without previous serosal injury; they were usually captured by the omentum and PFBs. If all three membranous structures were excised, the clots caused visceral adhesions. The protective role of the omentum, its structure, and the mechanism of omental adhesions, are discussed. These findings are relevant to the pathogenesis of post-operative adhesions in man. ImagesFig 3Fig 4Fig 5Fig 6Fig 7Fig 12Fig 13Fig 1Fig 2Fig 14Fig 15Fig 8Fig 9Fig 10Fig 11 PMID:5315369

  2. Assay of Adhesion Under Shear Stress for the Study of T Lymphocyte-Adhesion Molecule Interactions.

    PubMed

    Strazza, Marianne; Azoulay-Alfaguter, Inbar; Peled, Michael; Mor, Adam

    2016-01-01

    Overall, T cell adhesion is a critical component of function, contributing to the distinct processes of cellular recruitment to sites of inflammation and interaction with antigen presenting cells (APC) in the formation of immunological synapses. These two contexts of T cell adhesion differ in that T cell-APC interactions can be considered static, while T cell-blood vessel interactions are challenged by the shear stress generated by circulation itself. T cell-APC interactions are classified as static in that the two cellular partners are static relative to each other. Usually, this interaction occurs within the lymph nodes. As a T cell interacts with the blood vessel wall, the cells arrest and must resist the generated shear stress.(1,2) These differences highlight the need to better understand static adhesion and adhesion under flow conditions as two distinct regulatory processes. The regulation of T cell adhesion can be most succinctly described as controlling the affinity state of integrin molecules expressed on the cell surface, and thereby regulating the interaction of integrins with the adhesion molecule ligands expressed on the surface of the interacting cell. Our current understanding of the regulation of integrin affinity states comes from often simplistic in vitro model systems. The assay of adhesion using flow conditions described here allows for the visualization and accurate quantification of T cell-epithelial cell interactions in real time following a stimulus. An adhesion under flow assay can be applied to studies of adhesion signaling within T cells following treatment with inhibitory or stimulatory substances. Additionally, this assay can be expanded beyond T cell signaling to any adhesive leukocyte population and any integrin-adhesion molecule pair. PMID:27404581

  3. Temperature Distribution in a Uniformly Moving Medium

    ERIC Educational Resources Information Center

    Mitchell, Joseph D.; Petrov, Nikola P.

    2009-01-01

    We apply several physical ideas to determine the steady temperature distribution in a medium moving with uniform velocity between two infinite parallel plates. We compute it in the coordinate frame moving with the medium by integration over the "past" to account for the influence of an infinite set of instantaneous point sources of heat in past…

  4. Content uniformity and assay requirements in current regulations.

    PubMed

    Bánfai, Balázs; Ganzler, Katalin; Kemény, Sándor

    2007-07-13

    The acceptance of a tablet batch is based both on the content uniformity test and on the assay. It is shown that these two characteristics are not independent, and the acceptance criteria for them are not even consistent. For content uniformity range three methods of calculation are compared: the present European Pharmacopoeia method, a tolerance range method with improved k tolerance factor and a one-way random effects analysis of variance model. To resolve the inconsistency several options are discussed: applying the holistic content uniformity range alone; using content uniformity standard deviation and assay mean simultaneously or applying a criterion based on Taguchi's quadratic loss function. PMID:17109871

  5. Uniform quantized electron gas.

    PubMed

    Høye, Johan S; Lomba, Enrique

    2016-10-19

    In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T  =  0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies. PMID:27546166

  6. Should School Nurses Wear Uniforms?

    ERIC Educational Resources Information Center

    Journal of School Health, 2001

    2001-01-01

    This 1958 paper questions whether school nurses should wear uniforms (specifically, white uniforms). It concludes that white uniforms are often associated with the treatment of ill people, and since many people have a fear reaction to them, they are not necessary and are even undesirable. Since school nurses are school staff members, they should…

  7. Cytotoxicity of denture adhesives.

    PubMed

    de Gomes, Pedro Sousa; Figueiral, Maria Helena; Fernandes, Maria Helena R; Scully, Crispian

    2011-12-01

    Ten commercially available denture adhesives, nine soluble formulations (six creams, three powders) and one insoluble product (pad), were analyzed regarding the cytotoxicity profile in direct and indirect assays using L929 fibroblast cells. In the direct assay, fibroblasts were seeded over the surface of a thick adhesive gel (5%, creams; 2.5%, powders and pad). In the indirect assay, cells were cultured in the presence of adhesive extracts prepared in static and dynamic conditions (0.5-2%, creams; 0.25-1%, powders and pad). Cell toxicity was assessed for cell viability/proliferation (MTT assay) and cell morphology (observation of the F-actin cytoskeleton organization by confocal laser scanning microscopy). Direct contact of the L929 fibroblasts with the thick adhesive gels caused no, or only a slight, decrease in cell viability/proliferation. The adhesive extracts (especially those prepared in dynamic conditions) caused significantly higher growth inhibition of fibroblasts and, in addition, caused dose- and time-dependent effects, throughout the 6-72 h exposure time. Also, dose-dependent effects on cell morphology, with evident disruption of the F-actin cytoskeleton organization, were seen in the presence of most adhesives. In conclusion, the adhesives possessed different degrees of cytotoxicity, but similar dose- and time-dependent biological profiles. PMID:20844908

  8. Shuttle active thermal control system development testing. Volume 7: Improved radiator coating adhesive tests

    NASA Technical Reports Server (NTRS)

    Reed, M. W.

    1973-01-01

    Silver/Teflon thermal control coatings have been tested on a modular radiator system projected for use on the space shuttle. Seven candidate adhesives have been evaluated in a thermal vacuum test on radiator panels similar to the anticipated flight hardware configuration. Several classes of adhesives based on polyester, silicone, and urethane resin systems were tested. These included contact adhesives, heat cured adhesives, heat and pressure cured adhesives, pressure sensitive adhesives, and two part paint on or spray on adhesives. The coatings attached with four of the adhesives, two silicones and two urethanes, had no changes develop during the thermal vacuum test. The two silicone adhesives, both of which were applied to the silver/Teflon as transfer laminates to form a tape, offered the most promise based on application process and thermal performance. Each of the successful silicone adhesives required a heat and pressure cure to adhere during the cryogenic temperature excursion of the thermal-vacuum test.

  9. Characterization of silver nanoparticle-infused tissue adhesive for ophthalmic use

    NASA Astrophysics Data System (ADS)

    Yee, William

    This research examined if the infusion of silver nanoparticles into a 2-octyl cyanoacrylate tissue adhesive alters the antibacterial effectiveness and mechanical properties of the adhesive. Silver nanoparticle size and concentration combinations were varied to determine the effects of these factors. Uniform distribution of the silver nanoparticles was achieved before proceeding to testing. Antibacterial effectiveness of the composite adhesive was determined via the Kirby-Bauer disk diffusion susceptibility test and by CFU counting. Doping the adhesive with silver nanoparticles resulted in an order of magnitude reduction in bacterial growth. The greatest antibacterial effect came from imbuing 10 microg/mL of 4 nm silver nanoparticles into the tissue adhesive. Despite the noticeable reduction of bacterial growth for the doped adhesives, the difference among the varying silver nanoparticle size and concentration combinations was minimal. The breaking strength of the adhesive increased when silver nanoparticles were added. The adhesive strength of the composite adhesive attached to an incised porcine sclera was also greater than the unaltered adhesive. The greatest breaking load and adhesive force was the 10 microg/mL of 10 nm silver nanoparticle-doped adhesive. The increased mechanical strength of the doped adhesive expands the possible applications of treatment on different areas of the body.

  10. Focal adhesions in osteoneogenesis

    PubMed Central

    Biggs, M.J.P; Dalby, M.J

    2010-01-01

    As materials technology and the field of tissue engineering advances, the role of cellular adhesive mechanisms, in particular the interactions with implantable devices, becomes more relevant in both research and clinical practice. A key tenet of medical device technology is to use the exquisite ability of biological systems to respond to the material surface or chemical stimuli in order to help develop next-generation biomaterials. The focus of this review is on recent studies and developments concerning focal adhesion formation in osteoneogenesis, with an emphasis on the influence of synthetic constructs on integrin mediated cellular adhesion and function. PMID:21287830

  11. Cell adhesion force microscopy

    PubMed Central

    Sagvolden, G.; Giaever, I.; Pettersen, E. O.; Feder, J.

    1999-01-01

    The adhesion forces of cervical carcinoma cells in tissue culture were measured by using the manipulation force microscope, a novel atomic force microscope. The forces were studied as a function of time and temperature for cells cultured on hydrophilic and hydrophobic polystyrene substrates with preadsorbed proteins. The cells attached faster and stronger at 37°C than at 23°C and better on hydrophilic than on hydrophobic substrates, even though proteins adsorb much better to the hydrophobic substrates. Because cell adhesion serves to control several stages in the cell cycle, we anticipate that the manipulation force microscope can help clarify some cell-adhesion related issues. PMID:9892657

  12. Adhesive Contact Sweeper

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.

    1993-01-01

    Adhesive contact sweeper removes hair and particles vacuum cleaner leaves behind, without stirring up dust. Also cleans loose rugs. Sweeper holds commercially available spools of inverted adhesive tape. Suitable for use in environments in which air kept free of dust; optics laboratories, computer rooms, and areas inhabited by people allergic to dust. For carpets, best used in tandem with vacuum cleaner; first pass with vacuum cleaner removes coarse particles, and second pass with sweeper extracts fine particles. This practice extends useful life of adhesive spools.

  13. Polymer nanocarriers for dentin adhesion.

    PubMed

    Osorio, R; Osorio, E; Medina-Castillo, A L; Toledano, M

    2014-12-01

    To obtain more durable adhesion to dentin, and to protect collagen fibrils of the dentin matrix from degradation, calcium- and phosphate-releasing particles have been incorporated into the dental adhesive procedure. The aim of the present study was to incorporate zinc-loaded polymeric nanocarriers into a dental adhesive system to facilitate inhibition of matrix metalloproteinases (MMPs)-mediated collagen degradation and to provide calcium ions for mineral deposition within the resin-dentin bonded interface. PolymP- N : Active nanoparticles (nanoMyP) were zinc-loaded through 30-minute ZnCl2 immersion and tested for bioactivity by means of 7 days' immersion in simulated body fluid solution (the Kokubo test). Zinc-loading and calcium phosphate depositions were examined by scanning and transmission electron microscopy, elemental analysis, and x-ray diffraction. Nanoparticles in ethanol solution infiltrated into phosphoric-acid-etched human dentin and Single Bond (3M/ESPE) were applied to determine whether the nanoparticles interfered with bonding. Debonded sticks were analyzed by scanning electron microscopy. A metalloproteinase collagen degradation assay was also performed in resin-infiltrated dentin with and without nanoparticles, measuring C-terminal telopeptide of type I collagen (ICTP) concentration in supernatants, after 4 wk of immersion in artificial saliva. Numerical data were analyzed by analysis of variance (ANOVA) and Student-Newman-Keuls multiple comparisons tests (p < .05). Nanoparticles were effectively zinc-loaded and were shown to have a chelating effect, retaining calcium regardless of zinc incorporation. Nanoparticles failed to infiltrate demineralized intertubular dentin and remained on top of the hybrid layer, without altering bond strength. Calcium and phosphorus were found covering nanoparticles at the hybrid layer, after 24 h. Nanoparticle application in etched dentin also reduced MMP-mediated collagen degradation. Tested nanoparticles may be

  14. Polymer Nanocarriers for Dentin Adhesion

    PubMed Central

    Osorio, R.; Osorio, E.; Medina-Castillo, A.L.; Toledano, M.

    2014-01-01

    To obtain more durable adhesion to dentin, and to protect collagen fibrils of the dentin matrix from degradation, calcium- and phosphate-releasing particles have been incorporated into the dental adhesive procedure. The aim of the present study was to incorporate zinc-loaded polymeric nanocarriers into a dental adhesive system to facilitate inhibition of matrix metalloproteinases (MMPs)-mediated collagen degradation and to provide calcium ions for mineral deposition within the resin-dentin bonded interface. PolymP-nActive nanoparticles (nanoMyP) were zinc-loaded through 30-minute ZnCl2 immersion and tested for bioactivity by means of 7 days’ immersion in simulated body fluid solution (the Kokubo test). Zinc-loading and calcium phosphate depositions were examined by scanning and transmission electron microscopy, elemental analysis, and x-ray diffraction. Nanoparticles in ethanol solution infiltrated into phosphoric-acid-etched human dentin and Single Bond (3M/ESPE) were applied to determine whether the nanoparticles interfered with bonding. Debonded sticks were analyzed by scanning electron microscopy. A metalloproteinase collagen degradation assay was also performed in resin-infiltrated dentin with and without nanoparticles, measuring C-terminal telopeptide of type I collagen (ICTP) concentration in supernatants, after 4 wk of immersion in artificial saliva. Numerical data were analyzed by analysis of variance (ANOVA) and Student-Newman-Keuls multiple comparisons tests (p < .05). Nanoparticles were effectively zinc-loaded and were shown to have a chelating effect, retaining calcium regardless of zinc incorporation. Nanoparticles failed to infiltrate demineralized intertubular dentin and remained on top of the hybrid layer, without altering bond strength. Calcium and phosphorus were found covering nanoparticles at the hybrid layer, after 24 h. Nanoparticle application in etched dentin also reduced MMP-mediated collagen degradation. Tested nanoparticles may be

  15. 40 CFR Appendix A to Subpart Pppp... - Determination of Weight Volatile Matter Content and Weight Solids Content of Reactive Adhesives

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Content and Weight Solids Content of Reactive Adhesives A Appendix A to Subpart PPPP of Part 63 Protection... Reactive Adhesives 1.0Applicability and Principle 1.1Applicability: This method applies to the... reactive adhesives. Reactive adhesives are composed, in large part, of monomers that react during...

  16. 40 CFR Appendix A to Subpart Pppp... - Determination of Weight Volatile Matter Content and Weight Solids Content of Reactive Adhesives

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Content and Weight Solids Content of Reactive Adhesives A Appendix A to Subpart PPPP of Part 63 Protection... Reactive Adhesives 1.0Applicability and Principle 1.1Applicability: This method applies to the... reactive adhesives. Reactive adhesives are composed, in large part, of monomers that react during...

  17. Relationships between water wettability and ice adhesion.

    PubMed

    Meuler, Adam J; Smith, J David; Varanasi, Kripa K; Mabry, Joseph M; McKinley, Gareth H; Cohen, Robert E

    2010-11-01

    Ice formation and accretion may hinder the operation of many systems critical to national infrastructure, including airplanes, power lines, windmills, ships, and telecommunications equipment. Yet despite the pervasiveness of the icing problem, the fundamentals of ice adhesion have received relatively little attention in the scientific literature and it is not widely understood which attributes must be tuned to systematically design "icephobic" surfaces that are resistant to icing. Here we probe the relationships between advancing/receding water contact angles and the strength of ice adhesion to bare steel and twenty-one different test coatings (∼200-300 nm thick) applied to the nominally smooth steel discs. Contact angles are measured using a commercially available goniometer, whereas the average strengths of ice adhesion are evaluated with a custom-built laboratory-scale adhesion apparatus. The coatings investigated comprise commercially available polymers and fluorinated polyhedral oligomeric silsesquioxane (fluorodecyl POSS), a low-surface-energy additive known to enhance liquid repellency. Ice adhesion strength correlates strongly with the practical work of adhesion required to remove a liquid water drop from each test surface (i.e., with the quantity [1 + cos θ(rec)]), and the average strength of ice adhesion was reduced by as much as a factor of 4.2 when bare steel discs were coated with fluorodecyl POSS-containing materials. We argue that any further appreciable reduction in ice adhesion strength will require textured surfaces, as no known materials exhibit receding water contact angles on smooth/flat surfaces that are significantly above those reported here (i.e., the values of [1 + cos θ(rec)] reported here have essentially reached a minimum for known materials). PMID:20949900

  18. A non-local evolution equation model of cell–cell adhesion in higher dimensional space

    PubMed Central

    Dyson, Janet; Gourley, Stephen A.; Webb, Glenn F.

    2013-01-01

    A model for cell–cell adhesion, based on an equation originally proposed by Armstrong et al. [A continuum approach to modelling cell–cell adhesion, J. Theor. Biol. 243 (2006), pp. 98–113], is considered. The model consists of a nonlinear partial differential equation for the cell density in an N-dimensional infinite domain. It has a non-local flux term which models the component of cell motion attributable to cells having formed bonds with other nearby cells. Using the theory of fractional powers of analytic semigroup generators and working in spaces with bounded uniformly continuous derivatives, the local existence of classical solutions is proved. Positivity and boundedness of solutions is then established, leading to global existence of solutions. Finally, the asymptotic behaviour of solutions about the spatially uniform state is considered. The model is illustrated by simulations that can be applied to in vitro wound closure experiments. AMS Classifications: 35A01; 35B09; 35B40; 35K57; 92C17 PMID:23289870

  19. Optical adhesive property study

    SciTech Connect

    Sundvold, P.D.

    1996-01-01

    Tests were performed to characterize the mechanical and thermal properties of selected optical adhesives to identify the most likely candidate which could survive the operating environment of the Direct Optical Initiation (DOI) program. The DOI system consists of a high power laser and an optical module used to split the beam into a number of channels to initiate the system. The DOI requirements are for a high shock environment which current military optical systems do not operate. Five candidate adhesives were selected and evaluated using standardized test methods to determine the adhesives` physical properties. EC2216, manufactured by 3M, was selected as the baseline candidate adhesive based on the test results of the physical properties.

  20. Adhesives for Aerospace

    NASA Technical Reports Server (NTRS)

    Meade, L. E.

    1985-01-01

    The industry is hereby challenged to integrate adhesive technology with the total structure requirements in light of today's drive into automation/mechanization. The state of the art of adhesive technology is fairly well meeting the needs of the structural designers, the processing engineer, and the inspector, each on an individual basis. The total integration of these needs into the factory of the future is the next collective hurdle to be achieved. Improved processing parameters to fit the needs of automation/mechanization will necessitate some changes in the adhesive forms, formulations, and chemistries. Adhesives have, for the most part, kept up with the needs of the aerospace industry, normally leading the rest of the industry in developments. The wants of the aerospace industry still present a challenge to encompass all elements, achieving a totally integrated joined and sealed structural system. Better toughness with hot-wet strength improvements is desired. Lower cure temperatures, longer out times, and improved corrosion inhibition are desired.

  1. Adhesion of Lunar Dust

    NASA Astrophysics Data System (ADS)

    Walton, Otis R.

    2007-04-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  2. Adhesion of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.

    2007-01-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  3. Leucocyte cellular adhesion molecules.

    PubMed

    Yong, K; Khwaja, A

    1990-12-01

    Leucocytes express adhesion promoting receptors which mediate cell-cell and cell-matrix interactions. These adhesive interactions are crucial to the regulation of haemopoiesis and thymocyte maturation, the direction and control of leucocyte traffic and migration through tissues, and in the development of immune and non-immune inflammatory responses. Several families of adhesion receptors have been identified (Table). The leucocyte integrin family comprises 3 alpha beta heterodimeric membrane glycoproteins which share a common beta subunit, designated CD18. The alpha subunits of each of the 3 members, lymphocyte function associated antigen-1 (LFA-1), macrophage antigen-1 (Mac-1) and p150,95 are designated CD11a, b and c respectively. These adhesion molecules play a critical part in the immune and inflammatory responses of leucocytes. The leucocyte integrin family is, in turn, part of the integrin superfamily, members of which are evolutionally, structurally and functionally related. Another Integrin subfamily found on leucocytes is the VLA group, so-called because the 'very late activation antigens' VLA-1 and VLA-2 were originally found to appear late in T-cell activation. Members of this family function mainly as extracellular matrix adhesion receptors and are found both on haemopoietic and non-haemopoietic cells. They play a part in diverse cellular functions including tissue organisation, lymphocyte recirculation and T-cell immune responses. A third integrin subfamily, the cytoadhesins, are receptors on platelets and endothelial cells which bind extracellular matrix proteins. A second family of adhesion receptors is the immunoglobulin superfamily, members of which include CD2, LFA-3 and ICAM-1, which participate in T-cell adhesive interactions, and the antigen-specific receptors of T and B cells, CD4, CD8 and the MHC Class I and II molecules. A recently recognised family of adhesion receptors is the selectins, characterised by a common lectin domain. Leucocyte

  4. High temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, Terry L.

    1991-01-01

    The aerospace and electronics industries have an ever increasing need for higher performance materials. In recent years, linear aromatic polyimides have been proven to be a superior class of materials for various applications in these industries. The use of this class of polymers as adhesives is continuing to increase. Several NASA Langley developed polyimides show considerable promise as adhesives because of their high glass transition temperatures, thermal stability, resistance to solvents/water, and their potential for cost effective manufacture.

  5. Fast-Acting Rubber-To-Coated-Aluminum Adhesive

    NASA Technical Reports Server (NTRS)

    Comer, Dawn A.; Novak, Howard; Vazquez, Mark

    1991-01-01

    Cyanoacrylate adhesive used to join rubber to coated aluminum easier to apply and more effective. One-part material applied in single coat to aluminum treated previously with epoxy primer and top coat. Parts mated as soon as adhesive applied; no drying necessary. Sets in 5 minutes. Optionally, accelerator brushed onto aluminum to reduce setting time to 30 seconds. Clamping parts together unnecessary. Adhesive comes in four formulations, all based on ethyl cyanoacrylate with various amounts of ethylene copolymer rubber, poly(methyl methacrylate), silicon dioxide, hydroquinone, and phthalic anhydride.

  6. Stress analysis of adhesive bonded stiffener plates and double joints

    NASA Technical Reports Server (NTRS)

    Yuceoglu, U.; Updike, D. P.

    1975-01-01

    The general problem of adhesive bonded stiffener plates and double joints of dissimilar orthotropic adherends with transverse shear deformations are analyzed. Adhesive layers are assumed to be of an isotropic, elastic and relatively flexible material. It is shown that the stress distributions in the adhesive layers are very much dependent on the bending deformations in adherends. Also, it is found that, in the adhesive layer, maximum transverse normal stress is, in many cases, larger than the longitudinal shear stress and that both occur at the edge of the joint. The general method of solution developed is applied to several practical examples.

  7. Time-temperature effect in adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    The viscoelastic analysis of an adhesively bonded lap joint was reconsidered. The adherends are approximated by essentially Reissner plates and the adhesive is linearly viscoelastic. The hereditary integrals are used to model the adhesive. A linear integral differential equations system for the shear and the tensile stress in the adhesive is applied. The equations have constant coefficients and are solved by using Laplace transforms. It is shown that if the temperature variation in time can be approximated by a piecewise constant function, then the method of Laplace transforms can be used to solve the problem. A numerical example is given for a single lap joint under various loading conditions.

  8. New Technique for Evaluating Adhesion Properties between Soft Materials

    NASA Astrophysics Data System (ADS)

    Sato, Takaya; Goto, Motoaki; Nakano, Ken; Suzuki, Atsushi

    2005-11-01

    A new, simple apparatus for measuring the surface adhesion properties of soft materials was designed, where the adhesion force of a point contact between soft materials and the total energy required to separate the contact can be measured using the springs of phosphor-bronze thin plates with strain gauges. The adhesion between swollen hydrogels was studied here by this simple technique in air at room temperature. The gels used in the present preliminary experiments were poly(sodium acrylate) hydrogels physically cross-linked by aluminum ions. The adhesion force and the separation energy showed a power-law increase with separation velocity. The apparatus was applied to evaluate the adhesion properties of seven anti-inflammatory analgesic cataplasms on the market. It was found that the easiness to separate (rank of adhesion force and the separation energy) was consistent with the results of those obtained by organoleptic evaluations.

  9. Ultrasonic Evaluation of Thermal Degradation in Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Mal, Ajit K.; Bar-Cohen, Yoseph

    1994-01-01

    The critical role played by adhesive bonds in lap joints is well known. A good knowledge of the mechanical properties of adhesive bonds in lap joints is a prerequisite to the design and reliable prediction of the performance of these bonded structures. Furthermore, the lap joint may be subject to high-temperature environments in service. Early detection of the degree of thermal degradation in adhesive bonds is required under these circumstances. A variety of ultrasonic nondestructive evaluation (NDE) techniques can be used to determine the thickness and the elastic moduli of adhesively bonded joints. In this paper we apply a previously developed technique based on the leaky Lamb wave (LLW) experiment to investigate the possibility of characterizing the thermal degradation of adhesive bonds in lap joints. The degradation of the adhesive bonds is determined through comparison between experimental data and theoretical calculations.

  10. Sinter of uniform, predictable, blemish-free nickel plaque for large aerospace nickel cadmium cells

    NASA Technical Reports Server (NTRS)

    Seiger, H. N.

    1975-01-01

    A series of nickel slurry compositions were tested. Important slurry parameters were found to be the nature of the binder, a pore former and the method of mixing. A slow roll mixing which is non-turbulent successfully eliminated entrapped air so that bubbles and pockets were avoided in the sinter. A slurry applicator was developed which enabled an equal quantity of slurry to be applied to both sides of the grid. Sintering in a furnace having a graded atmosphere characteristic, ranging from oxidizing to strongly reducing, improved adhesion of porous sinter to grid and resulted in a uniform welding of nickel particles to each other throughout the plaque. Sintering was carried out in a horizontal furnace having three heating zones and 16 heating control circuits. Tests used for plaque evaluation include (1) appearance, (2) grid location and adhesion, (3) mechanical strength, (4) thickness, (5) weight per unit area, (6) void volume per unit area, (7) surface area and (8) electrical resistance. Plaque material was impregnated using Heliotek proprietary processes and 100 AH cells were fabricated.

  11. Cure-rate data for silicone adhesive

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C.; Fisher, A.

    1978-01-01

    Report describes work with concentrations down to 0.07 percent and is useful when applying adhesives in terrestrial and space applications. Cured Silicone retains low-outgassing properties as well as its snap, elongation, and resilience. Tests for hardness of silicone material also showed good results. No gross hysteresis observable on recovery from stretching nor was there any decrease in hardness.

  12. UNIFORMLY MOST POWERFUL BAYESIAN TESTS

    PubMed Central

    Johnson, Valen E.

    2014-01-01

    Uniformly most powerful tests are statistical hypothesis tests that provide the greatest power against a fixed null hypothesis among all tests of a given size. In this article, the notion of uniformly most powerful tests is extended to the Bayesian setting by defining uniformly most powerful Bayesian tests to be tests that maximize the probability that the Bayes factor, in favor of the alternative hypothesis, exceeds a specified threshold. Like their classical counterpart, uniformly most powerful Bayesian tests are most easily defined in one-parameter exponential family models, although extensions outside of this class are possible. The connection between uniformly most powerful tests and uniformly most powerful Bayesian tests can be used to provide an approximate calibration between p-values and Bayes factors. Finally, issues regarding the strong dependence of resulting Bayes factors and p-values on sample size are discussed. PMID:24659829

  13. 24 CFR 972.118 - Applicability of Uniform Relocation Act.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false Applicability of Uniform Relocation... Housing Developments Required Conversion Process § 972.118 Applicability of Uniform Relocation Act. To the... regulations issued by the Department of Transportation at 49 CFR part 24, apply. Identifying...

  14. Image Correlation Microscopy for Uniform Illumination

    PubMed Central

    Gaborski, Thomas R.; Sealander, Michael N.; Ehrenberg, Morton; Waugh, Richard E.; McGrath, James L.

    2011-01-01

    Image cross-correlation microscopy (ICM) is a technique that quantifies the motion of fluorescent features in an image by measuring the temporal autocorrelation function decay in a time-lapse image sequence. ICM has traditionally employed laser-scanning microscopes because the technique emerged as an extension of laser-based fluorescence correlation spectroscopy (FCS). In this work, we show that image correlation can also be used to measure fluorescence dynamics in uniform illumination or wide-field imaging systems and we call our new approach uniform illumination image correlation microscopy (UI-ICM). Wide-field microscopy is not only a simpler, less expensive imaging modality, but it offers the capability of greater temporal resolution over laser-scanning systems. In traditional laser-scanning ICM, lateral mobility is calculated from the temporal de-correlation of an image, where the characteristic length is the illuminating laser beam width. In wide-field microscopy, the diffusion length is defined by the feature size using the spatial autocorrelation function (SACF). Correlation function decay in time occurs as an object diffuses from its original position. We show that theoretical and simulated comparisons between Gaussian and uniform features indicate the temporal autocorrelation function (TACF) depends strongly on particle size and not particle shape. In this report, we establish the relationships between the SACF feature size, TACF characteristic time and the diffusion coefficient for UI-ICM using analytical, Monte-Carlo and experimental validation with particle tracking algorithms. Additionally, we demonstrate UI-ICM analysis of adhesion molecule domain aggregation and diffusion on the surface of human neutrophils. PMID:20055917

  15. Dual-axis MEMS force sensors for gecko adhesion studies

    NASA Astrophysics Data System (ADS)

    Hill, Ginel Corina

    Dual-axis piezoresistive microelectromechanical systems (MEMS) force sensors were used to investigate the effects of orientation angle on the adhesion of gecko hairs, called setae. These hairs are part of a fantastic, robust dry adhesive. Their adhesion is highly angle-dependent, with both the "pitch" and "roll" orientation angles playing a role. This anisotropy in adhesion properties is critical for locomotion, as it enables detachment of the gecko's foot with limited pull-off force. Many synthetic mimics of the gecko adhesive are isotropic. This work on the anisotropy of natural setae will inform future work on synthetic dry adhesives. A dual-axis microscale force sensor was needed to study single seta adhesive forces, which are stronger parallel to a substrate than perpendicular. Piezoresistive silicon cantilevers that separately detect lateral and normal forces applied at the tip were used. The fabrication process and rigorous characterization of new devices are reported. A novel calibration method was developed that uses resonant frequency measurements in concert with finite element models to correct for the expected variability of critical dimensions. These corrected models were used to predict the stiffnesses of each cantilever, and thus improve the accuracy of force measurements made with these sensors. This calibration technique was also validated by direct measurement of the dual-axis cantilever stiffnesses using a reference cantilever. The adhesion force of a single gecko seta is dramatically enhanced by proper orientation. The dual-axis cantilevers were used to measure two components of force between a substrate and a Gekko gecko seta. Lateral adhesion was highest with the stalk oriented parallel to the surface at 0° pitch. Adhesion decreased smoothly as the pitch angle of the stalk was increased, until detachment or no adhesion occurred at approximately 30°. To display enhanced adhesion, the splayed tuft at the end of the seta needed to be only

  16. Vertical uniformity of cells and nuclei in epithelial monolayers.

    PubMed

    Neelam, Srujana; Hayes, Peter Robert; Zhang, Qiao; Dickinson, Richard B; Lele, Tanmay P

    2016-01-01

    Morphological variability in cytoskeletal organization, organelle position and cell boundaries is a common feature of cultured cells. Remarkable uniformity and reproducibility in structure can be accomplished by providing cells with defined geometric cues. Cells in tissues can also self-organize in the absence of directing extracellular cues; however the mechanical principles for such self-organization are not understood. We report that unlike horizontal shapes, the vertical shapes of the cell and nucleus in the z-dimension are uniform in cells in cultured monolayers compared to isolated cells. Apical surfaces of cells and their nuclei in monolayers were flat and heights were uniform. In contrast, isolated cells, or cells with disrupted cell-cell adhesions had nuclei with curved apical surfaces and variable heights. Isolated cells cultured within micron-sized square wells displayed flat cell and nuclear shapes similar to cells in monolayers. Local disruption of nuclear-cytoskeletal linkages resulted in spatial variation in vertical uniformity. These results suggest that competition between cell-cell pulling forces that expand and shorten the vertical cell cross-section, thereby widening and flattening the nucleus, and the resistance of the nucleus to further flattening results in uniform cell and nuclear cross-sections. Our results reveal the mechanical principles of self-organized vertical uniformity in cell monolayers. PMID:26795751

  17. Vertical uniformity of cells and nuclei in epithelial monolayers

    PubMed Central

    Neelam, Srujana; Hayes, Peter Robert; Zhang, Qiao; Dickinson, Richard B.; Lele, Tanmay P.

    2016-01-01

    Morphological variability in cytoskeletal organization, organelle position and cell boundaries is a common feature of cultured cells. Remarkable uniformity and reproducibility in structure can be accomplished by providing cells with defined geometric cues. Cells in tissues can also self-organize in the absence of directing extracellular cues; however the mechanical principles for such self-organization are not understood. We report that unlike horizontal shapes, the vertical shapes of the cell and nucleus in the z-dimension are uniform in cells in cultured monolayers compared to isolated cells. Apical surfaces of cells and their nuclei in monolayers were flat and heights were uniform. In contrast, isolated cells, or cells with disrupted cell-cell adhesions had nuclei with curved apical surfaces and variable heights. Isolated cells cultured within micron-sized square wells displayed flat cell and nuclear shapes similar to cells in monolayers. Local disruption of nuclear-cytoskeletal linkages resulted in spatial variation in vertical uniformity. These results suggest that competition between cell-cell pulling forces that expand and shorten the vertical cell cross-section, thereby widening and flattening the nucleus, and the resistance of the nucleus to further flattening results in uniform cell and nuclear cross-sections. Our results reveal the mechanical principles of self-organized vertical uniformity in cell monolayers. PMID:26795751

  18. Urethane/Silicone Adhesives for Bonding Flexing Metal Parts

    NASA Technical Reports Server (NTRS)

    Edwards, Paul D.

    2004-01-01

    adhesive is supplied in a two-part form, comprising a resin and a hardener that must be mixed. The resulting urethane adhesive has a working time of 3 to 5 minutes. To prepare the urethane/silicone blend, one must quickly add the silicone to the urethane adhesive and mix it in thoroughly within the working time of the urethane. Once the urethane/silicone blend has been mixed and applied to the bond surfaces, it takes about 2 hours for the adhesive to cure under pressure. However, it takes about 24 hours for the adhesive to reach full strength.

  19. Flexibilized copolyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St.clair, Terry L.

    1988-01-01

    Two copolyimides, LARC-STPI and STPI-LARC-2, with flexible backbones were processed and characterized as adhesives. The processability and adhesive properties were compared to those of a commercially available form of LARC-TPI. Lap shear specimens were fabricated using adhesive tape prepared from each of the three polymers. Lap shear tests were performed at room temperature, 177 C, and 204 C before and after exposure to water-boil and to thermal aging at 204 C for up to 1000 hours. The three adhesive systems possess exceptional lap shear strengths at room temperature and elevated temperatures both before and after thermal exposure. LARC-STPI, because of its high glass transition temperature provided high lap shear strengths up to 260 C. After water-boil, LARC-TPI exhibited the highest lap shear strengths at room temperature and 177 C, whereas the LARC-STPI retained a higher percentage of its original strength when tested at 204 C. These flexible thermoplastic copolyimides show considerable potential as adhesives based on this study and because of the ease of preparation with low cost, commercially available materials.

  20. Platelet Adhesion under Flow

    PubMed Central

    Ruggeri, Zaverio M.

    2011-01-01

    Platelet adhesive mechanisms play a well-defined role in hemostasis and thrombosis, but evidence continues to emerge for a relevant contribution to other pathophysiological processes including inflammation, immune-mediated responses to microbial and viral pathogens, and cancer metastasis. Hemostasis and thrombosis are related aspects of the response to vascular injury, but the former protects from bleeding after trauma while the latter is a disease mechanism. In either situation, adhesive interactions mediated by specific membrane receptors support the initial attachment of single platelets to cellular and extracellular matrix constituents of the vessel wall and tissues. In the subsequent steps of thrombus growth and stabilization, adhesive interactions mediate platelet to platelet cohesion (aggregation) and anchoring to the fibrin clot. A key functional aspect of platelets is their ability to circulate in a quiescent state surveying the integrity of the inner vascular surface, coupled to a prompt reaction wherever alterations are detected. In many respects, therefore, platelet adhesion to vascular wall structures, to one another or to other blood cells are facets of the same fundamental biological process. The adaptation of platelet adhesive functions to the effects of blood flow is the main focus of this review. PMID:19191170

  1. Epithelial Cell Adhesion Molecule

    PubMed Central

    Trzpis, Monika; McLaughlin, Pamela M.J.; de Leij, Lou M.F.H.; Harmsen, Martin C.

    2007-01-01

    The epithelial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of ∼40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally lower level than carcinoma cells. In early studies, EpCAM was proposed to be a cell-cell adhesion molecule. However, recent insights revealed a more versatile role for EpCAM that is not limited only to cell adhesion but includes diverse processes such as signaling, cell migration, proliferation, and differentiation. Cell surface expression of EpCAM may actually prevent cell-cell adhesion. Here, we provide a comprehensive review of the current knowledge on EpCAM biology in relation to other cell adhesion molecules. We discuss the implications of the newly identified functions of EpCAM in view of its prognostic relevance in carcinoma, inflammatory pathophysiology, and tissue development and regeneration as well as its role in normal epithelial homeostasis. PMID:17600130

  2. Contribution from pressure-sensitive adhesives

    NASA Astrophysics Data System (ADS)

    Cunningham, Gilbert

    1996-03-01

    containers where the content can be easily seen without interference and where wording or symbols can be read through the container. You see this increasingly with pharmaceuticals, cosmetics and toiletries, even bottled beer. Achieving transparency is one thing but this property must be combined with all the physical properties required of the pressure sensitive adhesive. First there is the question of permanence, re-positionability and removability and the degree to which these features are required. Secondly many complications arise from the range of materials to which the adhesive must be anchored and the range to which it will be applied and must bond. Obviously these surfaces vary from those with the highest surface energy (polycarbonate for example) to those apolar surfaces engineered for minimum attraction (PTFE -- 'Teflon' for example).

  3. School Uniforms: Esprit de Corps.

    ERIC Educational Resources Information Center

    Ryan, Rosemary P.; Ryan, Thomas E.

    1998-01-01

    The benefits of school uniforms far outweigh their short-term costs. School uniforms not only keep students safe, but they increase their self-esteem, promote a more positive attitude toward school, lead to improved student behavior, and help blur social-class distinctions. Students are allowed to wear their own political or religious messages,…

  4. Uniform Continuity on Unbounded Intervals

    ERIC Educational Resources Information Center

    Pouso, Rodrigo Lopez

    2008-01-01

    We present a teaching approach to uniform continuity on unbounded intervals which, hopefully, may help to meet the following pedagogical objectives: (i) To provide students with efficient and simple criteria to decide whether a continuous function is also uniformly continuous; and (ii) To provide students with skill to recognize graphically…

  5. Perceptual uniformity of commonly used color spaces

    NASA Astrophysics Data System (ADS)

    Avanaki, Ali; Espig, Kathryn; Kimpe, Tom; Xthona, Albert; Marchessoux, Cedric; Rostang, Johan; Piepers, Bastian

    2014-03-01

    Use of color images in medical imaging has increased significantly the last few years. Color information is essential for applications such as ophthalmology, dermatology and clinical photography. Use of color at least brings benefits for other applications such as endoscopy, laparoscopy and digital pathology. Remarkably, as of today, there is no agreed standard on how color information needs to be visualized for medical applications. This lack of standardization results in large variability of how color images are visualized and it makes quality assurance a challenge. For this reason FDA and ICC recently organized a joint summit on color in medical imaging (CMI). At this summit, one of the suggestions was that modalities such as digital pathology could benefit from using a perceptually uniform color space (T. Kimpe, "Color Behavior of Medical Displays," CMI presentation, May 2013). Perceptually uniform spaces have already been used for many years in the radiology community where the DICOM GSDF standard provides linearity in luminance but not in color behavior. In this paper we quantify perceptual uniformity, using CIE's ΔE2000 as a color distance metric, of several color spaces that are typically used for medical applications. We applied our method to theoretical color spaces Gamma 1.8, 2.0, & 2.2, standard sRGB, and DICOM (correction LUT for gray applied to all primaries). In addition, we also measured color spaces (i.e., native behavior) of a high-end medical display (Barco Coronis Fusion 6MP DL, MDCC-6130), and a consumer display (Dell 1907FP). Our results indicate that sRGB & the native color space on the Barco Coronis Fusion exhibit the least non-uniformity within their group. However, the remaining degree of perceptual non-uniformity is still significant and there is room for improvement.

  6. Modified Surface Having Low Adhesion Properties to Mitigate Insect Residue Adhesion

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J., Jr. (Inventor); Smith, Joseph G., Jr. (Inventor); Siochi, Emilie J. (Inventor); Penner, Ronald K. (Inventor)

    2016-01-01

    A process to modify a surface to provide reduced adhesion surface properties to mitigate insect residue adhesion. The surface may include the surface of an article including an aircraft, an automobile, a marine vessel, all-terrain vehicle, wind turbine, helmet, etc. The process includes topographically and chemically modifying the surface by applying a coating comprising a particulate matter, or by applying a coating and also topographically modifying the surface by various methods, including but not limited to, lithographic patterning, laser ablation and chemical etching, physical vapor phase deposition, chemical vapor phase deposition, crystal growth, electrochemical deposition, spin casting, and film casting.

  7. Protein mediated membrane adhesion

    NASA Astrophysics Data System (ADS)

    Carlson, Andreas; Mahadevan, L.

    2015-05-01

    Adhesion in the context of mechanical attachment, signaling, and movement in cellular dynamics is mediated by the kinetic interactions between membrane-embedded proteins in an aqueous environment. Here, we present a minimal theoretical framework for the dynamics of membrane adhesion that accounts for the kinetics of protein binding, the elastic deformation of the membrane, and the hydrodynamics of squeeze flow in the membrane gap. We analyze the resulting equations using scaling estimates to characterize the spatiotemporal features of the adhesive patterning and corroborate them using numerical simulations. In addition to characterizing aspects of cellular dynamics, our results might also be applicable to a range of phenomena in physical chemistry and materials science where flow, deformation, and kinetics are coupled to each other in slender geometries.

  8. Adhesive particle shielding

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John; Walton, Christopher; Folta, James

    2009-01-06

    An efficient device for capturing fast moving particles has an adhesive particle shield that includes (i) a mounting panel and (ii) a film that is attached to the mounting panel wherein the outer surface of the film has an adhesive coating disposed thereon to capture particles contacting the outer surface. The shield can be employed to maintain a substantially particle free environment such as in photolithographic systems having critical surfaces, such as wafers, masks, and optics and in the tools used to make these components, that are sensitive to particle contamination. The shield can be portable to be positioned in hard-to-reach areas of a photolithography machine. The adhesive particle shield can incorporate cooling means to attract particles via the thermophoresis effect.

  9. Coatings for rubber bonding and paint adhesion

    NASA Astrophysics Data System (ADS)

    Boulos, M. S.; Petschel, M.

    1997-08-01

    Conversion coatings form an important base for the adhesion of paint to metal substrates and for the bonding of rubber to metal parts. Four types of conversion coatings were assessed as base treatments for the bonding of rubber to steel and for the corrosion protection of metal substrates under paint: amorphous iron phosphate, heavy zinc phosphate, and three types of modified zinc phosphates that utilized one or more metal cations in addition to zinc. When applied, these conversion coatings formed a thin film over the metal substrate that was characterized by scanning electron microscopy, x-ray diffraction, and chemical methods. The performance of the coatings was assessed using physical methods such as dry adhesion, conical mandrel, impact, and stress adhesion for the rubber-bonded parts, and by corrosion resistance methods such as humidity, salt spray, and cyclic corrosion. Coating characterization and performance were correlated.

  10. Natural Underwater Adhesives

    PubMed Central

    Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

    2011-01-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent

  11. Formation of tunable graphene oxide coating with high adhesion.

    PubMed

    Lin, Liangxu; Wu, Huaping; Green, Stephen J; Crompton, Joanna; Zhang, Shaowei; Horsell, David W

    2016-02-10

    Graphene oxide (GO) can be applied as a coating on metals, but few of these coatings have an adhesion suitable for practical applications. We demonstrate here how to form a GO coating on metals with a high adhesion (∼10.6 MPa) and tuneable surface, which can be further applied using similar/modified techniques for special applications (e.g. anti-corrosion and anti-biofouling). PMID:26814138

  12. Elastomer toughened polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L. (Inventor)

    1983-01-01

    A rubber-toughened addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state, and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride was mixed, and utilizing solvent or mixture of solvents for the reaction.

  13. Metallic Adhesion and Bonding

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1984-01-01

    Although metallic adhesion has played a central part in much tribological speculation, few quantitative theoretical calculations are available. This is in part because of the difficulties involved in such calculations and in part because the theoretical physics community is not particularly involved with tribology. The calculations currently involved in metallic adhesion are summarized and shown that these can be generalized into a scaled universal relationship. Relationships exist to other types of covalent bonding, such as cohesive, chemisorptive, and molecular bonding. A simple relationship between surface energy and cohesive energy is offered.

  14. Thermodynamics of capillary adhesion between rough surfaces.

    PubMed

    de Boer, M P; de Boer, P C T

    2007-07-01

    According to the Dupré equation, the work of adhesion is equal to the surface energy difference in the separated versus the joined materials minus an interfacial energy term. However, if a liquid is at the interface between two solid materials, evaporation or condensation takes place under equilibrium conditions. The resulting matter exchange is accompanied by heat flow, and can reduce or increase the work of adhesion. Accounting for the energies requires an open-system control volume analysis based on the first law of thermodynamics. Depending on whether evaporation or condensation occurs during separation, a work term that is negative or positive must be added to the surface energy term to calculate the work of adhesion. We develop and apply this energy balance to several different interface geometries and compare the work of adhesion to the surface energy created. The model geometries include a sphere on a flat with limiting approximations and also with an exact solution, a circular disc, and a combination of these representing a rough interface. For the sphere on a flat, the work of adhesion is one half the surface energy created if equilibrium is maintained during the pull-off process. PMID:17368659

  15. Adhesive curing options for photonic packaging

    NASA Astrophysics Data System (ADS)

    Martin, Steven C.; Hubert, Manfred; Tam, Robin

    2002-06-01

    Varying the intensity of illumination used to cure photoactivated adhesives has been applied in medical and dental applications to improve the performance of polymer materials. For example, it has been observed that dental polymer composite materials express reduced shrinkage, important for durability of non-amalgam restorations, by introducing a phased time-intensity cure schedule. This work identified that curing conditions could influence the final properties of materials, and suggested the possibility of extending the characteristics that could be influenced beyond shrinkage to humidity resistance, Tg, outgassing and other important material properties. Obviously, these results have important ramifications for the photonic industry, with current efforts focused on improved manufacturing techniques. Improvement in low cost packaging solutions, including adhesives, will have to be made to bring the component cost down to address the needs of Metro and similar markets. However, there are perceived problems with the widespread use of adhesives, the most prevalent of these involving long term durability of the bond. Devices are typically aligned to sub-micron precision using active feedback and then must be locked in position to maintain performance. In contrast to traditional fastening methods, adhesive bonding is a highly attractive option due to the ease of deployment, lower equipment costs, and improved flexibility. Moreover, using methods analogous to those employed in dental applications, materials properties of photonic adhesives may be tailored using a programmed cure approach.

  16. The differential adhesion hypothesis: a direct evaluation.

    PubMed

    Foty, Ramsey A; Steinberg, Malcolm S

    2005-02-01

    The differential adhesion hypothesis (DAH), advanced in the 1960s, proposed that the liquid-like tissue-spreading and cell segregation phenomena of development arise from tissue surface tensions that in turn arise from differences in intercellular adhesiveness. Our earlier measurements of liquid-like cell aggregate surface tensions have shown that, without exception, a cell aggregate of lower surface tension tends to envelop one of higher surface tension to which it adheres. We here measure the surface tensions of L cell aggregates transfected to express N-, P- or E-cadherin in varied, measured amounts. We report that in these aggregates, in which cadherins are essentially the only cell-cell adhesion molecules, the aggregate surface tensions are a direct, linear function of cadherin expression level. Taken together with our earlier results, the conclusion follows that the liquid-like morphogenetic cell and tissue rearrangements of cell sorting, tissue spreading and segregation represent self-assembly processes guided by the diminution of adhesive-free energy as cells tend to maximize their mutual binding. This conclusion relates to the physics governing these morphogenetic phenomena and applies independently of issues such as the specificities of intercellular adhesives. PMID:15649477

  17. Characterizing cell adhesion by using micropipette aspiration.

    PubMed

    Hogan, Brenna; Babataheri, Avin; Hwang, Yongyun; Barakat, Abdul I; Husson, Julien

    2015-07-21

    We have developed a technique to directly quantify cell-substrate adhesion force using micropipette aspiration. The micropipette is positioned perpendicular to the surface of an adherent cell and a constant-rate aspiration pressure is applied. Since the micropipette diameter and the aspiration pressure are our control parameters, we have direct knowledge of the aspiration force, whereas the cell behavior is monitored either in brightfield or interference reflection microscopy. This setup thus allows us to explore a range of geometric parameters, such as projected cell area, adhesion area, or pipette size, as well as dynamical parameters such as the loading rate. We find that cell detachment is a well-defined event occurring at a critical aspiration pressure, and that the detachment force scales with the cell adhesion area (for a given micropipette diameter and loading rate), which defines a critical stress. Taking into account the cell adhesion area, intrinsic parameters of the adhesion bonds, and the loading rate, a minimal model provides an expression for the critical stress that helps rationalize our experimental results. PMID:26200857

  18. Characterizing Cell Adhesion by Using Micropipette Aspiration

    PubMed Central

    Hogan, Brenna; Babataheri, Avin; Hwang, Yongyun; Barakat, Abdul I.; Husson, Julien

    2015-01-01

    We have developed a technique to directly quantify cell-substrate adhesion force using micropipette aspiration. The micropipette is positioned perpendicular to the surface of an adherent cell and a constant-rate aspiration pressure is applied. Since the micropipette diameter and the aspiration pressure are our control parameters, we have direct knowledge of the aspiration force, whereas the cell behavior is monitored either in brightfield or interference reflection microscopy. This setup thus allows us to explore a range of geometric parameters, such as projected cell area, adhesion area, or pipette size, as well as dynamical parameters such as the loading rate. We find that cell detachment is a well-defined event occurring at a critical aspiration pressure, and that the detachment force scales with the cell adhesion area (for a given micropipette diameter and loading rate), which defines a critical stress. Taking into account the cell adhesion area, intrinsic parameters of the adhesion bonds, and the loading rate, a minimal model provides an expression for the critical stress that helps rationalize our experimental results. PMID:26200857

  19. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    NASA Astrophysics Data System (ADS)

    Jannat, Risat A.; Robbins, Gregory P.; Ricart, Brendon G.; Dembo, Micah; Hammer, Daniel A.

    2010-05-01

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the KD of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against β2-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  20. High-Temperature Adhesive Strain Gage Developed

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.

    1997-01-01

    Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.

  1. Passively stuck: death does not affect gecko adhesion strength.

    PubMed

    Stewart, William J; Higham, Timothy E

    2014-12-01

    Many geckos use adhesive toe pads on the bottom of their digits to attach to surfaces with remarkable strength. Although gecko adhesion has been studied for hundreds of years, gaps exist in our understanding at the whole-animal level. It remains unclear whether the strength and maintenance of adhesion are determined by the animal or are passively intrinsic to the system. Here we show, for the first time, that strong adhesion is produced passively at the whole-animal level. Experiments on both live and recently euthanized tokay geckos (Gekko gecko) revealed that death does not affect the dynamic adhesive force or motion of a gecko foot when pulled along a vertical surface. Using a novel device that applied repeatable and steady-increasing pulling forces to the foot in shear, we found that the adhesive force was similarly high and variable when the animal was alive (mean ± s.d. = 5.4 ± 1.7 N) and within 30 min after death (5.4 ± 2.1 N). However, kinematic analyses showed that live geckos are able to control the degree of toe pad engagement and can rapidly stop strong adhesion by hyperextending the toes. This study offers the first assessment of whole-animal adhesive force under extremely controlled conditions. Our findings reveal that dead geckos maintain the ability to adhere with the same force as living animals, disproving that strong adhesion requires active control. PMID:25472940

  2. Downsampling Non-Uniformly Sampled Data

    NASA Astrophysics Data System (ADS)

    Eng, Frida; Gustafsson, Fredrik

    2007-12-01

    Decimating a uniformly sampled signal a factor D involves low-pass antialias filtering with normalized cutoff frequency 1/ D followed by picking out every D th sample. Alternatively, decimation can be done in the frequency domain using the fast Fourier transform (FFT) algorithm, after zero-padding the signal and truncating the FFT. We outline three approaches to decimate non-uniformly sampled signals, which are all based on interpolation. The interpolation is done in different domains, and the inter-sample behavior does not need to be known. The first one interpolates the signal to a uniformly sampling, after which standard decimation can be applied. The second one interpolates a continuous-time convolution integral, that implements the antialias filter, after which every D th sample can be picked out. The third frequency domain approach computes an approximate Fourier transform, after which truncation and IFFT give the desired result. Simulations indicate that the second approach is particularly useful. A thorough analysis is therefore performed for this case, using the assumption that the non-uniformly distributed sampling instants are generated by a stochastic process.

  3. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  4. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    PubMed Central

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  5. Polymer adhesion at surfaces: biological adhesive proteins and their synthetic mimics

    NASA Astrophysics Data System (ADS)

    Messersmith, Phillip

    2008-03-01

    Mussels are famous for their ability to permanently adhere to a wide variety of wet surfaces, such as rocks, metal and polymer ship hulls, and wood structures. They accomplish this through specialized proteins collectively referred to as mussel adhesive proteins (MAPs). The biophysical aspects of MAP adhesion is being revealed through the use of single molecule force measurements. The results provide insight into the adhesive roles of key amino acids found in these proteins, including the magnitude of adhesive forces, cooperative effects, and their self-healing properties. This molecular-level information is being incorporated into designs of biomimetic polymer coatings for a variety of applications. Our biomimetic approach to polymer design will be illustrated by a few examples where adhesive constituents found in MAPs are exploited to make wet-adhesive polymer coatings. In addition, small molecule analogs of MAPs can be used to apply thin functional films onto virtually any material surface using a facile approach. These coatings have a variety of potential uses in microelectronics, water treatment, prevention of environmental biofouling, and for control of biointerfacial phenomena at the surfaces of medical/diagnostic devices.

  6. Humidity-enhanced wet adhesion on insect-inspired fibrillar adhesive pads

    PubMed Central

    Xue, Longjian; Kovalev, Alexander; Eichler-Volf, Anna; Steinhart, Martin; Gorb, Stanislav N.

    2015-01-01

    Many insect species reversibly adhere to surfaces by combining contact splitting (contact formation via fibrillar contact elements) and wet adhesion (supply of liquid secretion via pores in the insects’ feet). Here, we fabricate insect-inspired fibrillar pads for wet adhesion containing continuous pore systems through which liquid is supplied to the contact interfaces. Synergistic interaction of capillarity and humidity-induced pad softening increases the pull-off force and the work of adhesion by two orders of magnitude. This increase and the independence of pull-off force on the applied load are caused by the capillarity-supported formation of solid–solid contact between pad and the surface. Solid–solid contact dominates adhesion at high humidity and capillarity at low humidity. At low humidity, the work of adhesion strongly depends on the amount of liquid deposited on the surface and, therefore, on contact duration. These results may pave the way for the design of insect-inspired adhesive pads. PMID:25791574

  7. Logical optimization for database uniformization

    NASA Technical Reports Server (NTRS)

    Grant, J.

    1984-01-01

    Data base uniformization refers to the building of a common user interface facility to support uniform access to any or all of a collection of distributed heterogeneous data bases. Such a system should enable a user, situated anywhere along a set of distributed data bases, to access all of the information in the data bases without having to learn the various data manipulation languages. Furthermore, such a system should leave intact the component data bases, and in particular, their already existing software. A survey of various aspects of the data bases uniformization problem and a proposed solution are presented.

  8. Wood Composite Adhesives

    NASA Astrophysics Data System (ADS)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  9. Adept Adhesion Reduction Solution

    MedlinePlus

    ... icodextrin. The fluid is used during or after laparoscopic gynecological surgery to separate and protect tissues and decrease the number of new adhesions after surgery. Adept® is supplied sterile, in a single-use bag. How does it work? During surgery, ...

  10. Adhesion molecules and receptors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adhesion molecules are necessary for leukocyte trafficking and differentiation. They serve to initiate cell-cell interactions under conditions of shear, and they sustain the cell-cell and cell-matrix interactions needed for cellular locomotion. They also can serve directly as signaling molecules act...

  11. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  12. Adhesion testing of aircraft tires

    NASA Technical Reports Server (NTRS)

    Bobo, S. N.

    1983-01-01

    Adhesion testing appeared to offer a less burdensome alternative to replace some of the dynamometer tests. Accordingly, test results and data were requested from retreaders who had used adhesion testing.

  13. 3-D foam adhesive deposition

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.; Salmassy, O. K.

    1976-01-01

    Bonding method, which reduces amount and weight of adhesive, is applicable to foam-filled honeycomb constructions. Novel features of process include temperature-viscosity control and removal of excess adhesive by transfer to cellophane film.

  14. Non-Uniform Thickness Electroactive Device

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor)

    2006-01-01

    An electroactive device comprises at least two layers of material, wherein at least one layer is an electroactive material and wherein at least one layer is of non-uniform thickness. The device can be produced in various sizes, ranging from large structural actuators to microscale or nanoscale devices. The applied voltage to the device in combination with the non-uniform thickness of at least one of the layers (electroactive and/or non-electroactive) controls the contour of the actuated device. The effective electric field is a mathematical function of the local layer thickness. Therefore, the local strain and the local bending/ torsion curvature are also a mathematical function of the local thickness. Hence the thinnest portion of the actuator offers the largest bending and/or torsion response. Tailoring of the layer thicknesses can enable complex motions to be achieved.

  15. Intrinsic Surface-Drying Properties of Bio-adhesive Proteins

    PubMed Central

    Akdogan, Yasar; Wei, Wei; Huang, Kuo-Ying; Kageyama, Yoshiyuki; Danner, Eric W.; Miller, Dusty R.; Martinez Rodriguez, Nadine R.; Herbert Waite, J.

    2014-01-01

    Sessile marine mussels must “dry” underwater surfaces before adhering to them. Synthetic adhesives have yet to overcome this fundamental challenge. Previous studies of bio-inspired adhesion have largely been performed under applied compressive forces but these are poor predictors of an adhesive’s ability to spontaneously penetrate surface hydration layers. In a force-free approach to measuring molecular-level interaction via the surface water diffusivity, different mussel foot proteins were found to have differential abilities to evict hydration layers from the surfaces—a necessary step for adsorption and adhesion. It was anticipated that Dopa would mediate dehydration given its efficacy forbio-inspired wet adhesion. Instead, hydrophobic side-chains are found to be a critical component in bringing about protein-surface intimacy. This is the first direct measurement of interfacial water dynamics during force-free adsorptive interactions at solid surfaces, and offers guidance for engineering wet adhesives and coatings. PMID:25168789

  16. Stable process for chemically amplified resists using a new adhesion promotor

    NASA Astrophysics Data System (ADS)

    Endo, Masayuki; Kawasaki, Satoko; Katsuyama, Akiko

    1996-06-01

    We have developed a stable process for chemically amplified resists against the airborne contamination using a new adhesion promoter. The new adhesion promoter does not produce ammonia when it decomposes and its trimethylsilyl group adheres to a substrate. We have applied this new adhesion promoter to KrF excimer laser lithography. The excellent 0.30 micrometer pattern profiles were achieved without skin-layer or T-top profiles after leaving the exposed wafer in the atmosphere of the new adhesion promoter for 15 minutes before PEB. We also found that the adhesion strength of the new adhesion promoter to a substrate is as good as the conventional adhesion promotor and obtained large depth of focus latitude using the new adhesion promoter.

  17. Focal Adhesion Kinase-Dependent Regulation of Adhesive Force Involves Vinculin Recruitment to Focal Adhesions

    PubMed Central

    Hanks, Steven K.; García, Andrés J.

    2016-01-01

    Background information Focal adhesion kinase (FAK), an essential non-receptor tyrosine kinase, plays pivotal roles in migratory responses, adhesive signaling, and mechanotransduction. FAK-dependent regulation of cell migration involves focal adhesion turnover dynamics as well as actin cytoskeleton polymerization and lamellipodia protrusion. Whereas roles for FAK in migratory and mechanosensing responses have been established, the contributions of FAK to the generation of adhesive forces are not well understood. Results Using FAK-null cells expressing wild-type and mutant FAK under an inducible tetracycline promoter, we analyzed the role of FAK in the generation of steady-state adhesive forces using micropatterned substrates and a hydrodynamic adhesion assay. FAK expression reduced steady-state strength by 30% compared to FAK-null cells. FAK expression reduced vinculin localization to focal adhesions by 35% independently from changes in integrin binding and localization of talin and paxillin. RNAi knockdown of vinculin abrogated the FAK-dependent differences in adhesive force. FAK-dependent changes in vinculin localization and adhesive force were confirmed in human primary fibroblasts with FAK knocked down by RNAi. The autophosphorylation Y397 and kinase domain Y576/Y577 sites were differentially required for FAK-mediated adhesive responses. Conclusions We demonstrate that FAK reduces steady-state adhesion strength by modulating vinculin recruitment to focal adhesions. These findings provide insights into the role of FAK in mechanical interactions between a cell and the extracellular matrix. PMID:19883375

  18. Adhesion behaviors on superhydrophobic surfaces.

    PubMed

    Zhu, Huan; Guo, Zhiguang; Liu, Weimin

    2014-04-18

    The adhesion behaviors of superhydrophobic surfaces have become an emerging topic to researchers in various fields as a vital step in the interactions between materials and organisms/materials. Controlling the chemical compositions and topological structures via various methods or technologies is essential to fabricate and modulate different adhesion properties, such as low-adhesion, high-adhesion and anisotropic adhesion on superhydrophobic surfaces. We summarize the recent developments in both natural superhydrophobic surfaces and artificial superhydrophobic surfaces with various adhesions and also pay attention to superhydrophobic surfaces switching between low- and high-adhesion. The methods to regulate or translate the adhesion of superhydrophobic surfaces can be considered from two perspectives. One is to control the chemical composition and change the surface geometric structure on the surfaces, respectively or simultaneously. The other is to provide external stimulations to induce transitions, which is the most common method for obtaining switchable adhesions. Additionally, adhesion behaviors on solid-solid interfaces, such as the behaviors of cells, bacteria, biomolecules and icing on superhydrophobic surfaces are also noticeable and controversial. This review is aimed at giving a brief and crucial overview of adhesion behaviors on superhydrophobic surfaces. PMID:24575424

  19. Clinical Recommendation: Labial Adhesions.

    PubMed

    Bacon, Janice L; Romano, Mary E; Quint, Elisabeth H

    2015-10-01

    Labial adhesions, also known as labial agglutination, are a common finding in prepubertal adolescents. They are defined as fusion of the labia minora in the midline or are termed vulvar adhesions when they occur below the labia minora (inner labia). Patients are often asymptomatic but might present with genitourinary complaints. The decision for treatment is based on symptoms. The mainstay of treatment in asymptomatic patients is conservative, with careful attention to vulvar hygiene and reassurance to parents. In symptomatic patients, topical treatment with estrogen and/or steroid cream is often curative. Less often, corrective surgery is necessary. Recurrence is common until a patient goes through puberty. These recommendations are intended for pediatric and gynecologic health care providers who care for pediatric and adolescent girls to facilitate diagnosis and treatment. PMID:26162697

  20. Image coding with uniform and piecewise-uniform vector quantizers.

    PubMed

    Jeong, D G; Gibson, J D

    1995-01-01

    New lattice vector quantizer design procedures for nonuniform sources that yield excellent performance while retaining the structure required for fast quantization are described. Analytical methods for truncating and scaling lattices to be used in vector quantization are given, and an analytical technique for piecewise-linear multidimensional companding is presented. The uniform and piecewise-uniform lattice vector quantizers are then used to quantize the discrete cosine transform coefficients of images, and their objective and subjective performance and complexity are contrasted with other lattice vector quantizers and with LBG training-mode designs. PMID:18289966

  1. Ceramic microstructure and adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When a ceramic is brought into contact with a ceramic, a polymer, or a metal, strong bond forces can develop between the materials. The bonding forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between a ceramic and another solid are discussed from a theoretical consideration of the nature of the surfaces and experimentally by relating bond forces to interface resulting from solid state contact. Surface properties of ceramics correlated with adhesion include, orientation, reconstruction and diffusion as well as the chemistry of the surface specie. Where a ceramic is in contact with a metal their interactive chemistry and bond strength is considered. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structures and crystallographic orientation. Materials examined with respect to interfacial adhesive interactions include silicon carbide, nickel zinc ferrite, manganese zinc ferrite, and aluminum oxide. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  2. Development of phosphorylated adhesives

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Giants, T. W.; Jenkins, R. K.; Campbell, P. L.

    1983-01-01

    The synthesis of epoxy prepolymers containing phosphorus was carried out in such a manner as to provide adhesives containing at least 5 percent of this element. The purpose of this was to impart fire retardant properties to the adhesive. The two epoxy derivatives, bis(4-glycidyl-oxyphenyl)phenylphosphine oxide and bis(4-glycidyl-2-methoxyphenyl)phenylphosphonate, and a curing agent, bis(3-aminophenyl)methylphosphine oxide, were used in conjunction with one another and along with conventional epoxy resins and curing agents to bond Tedlar and Polyphenylethersulfone films to Kerimid-glass syntactic foam-filled honeycomb structures. Elevated temperatures are required to cure the epoxy resins with the phosphorus-contaning diamine; however, when Tedlar is being bonded, lower curing temperatures must be used to avoid shrinkage and the concomitant formation of surface defects. Thus, the phosphorus-containing aromatic amine curing agent cannot be used alone, although it is possible to use it in conjunction with an aliphatic amine which would allow lower cure temperatures to be used. The experimental epoxy resins have not provided adhesive bonds quite as strong as those provided by Epon 828 when compared in peel tests, but the differences are not very significant. It should be noted, if optimum properties are to be realized. In any case the fire retardant characteristics of the neat resin systems obtained are quite pronounced, since in most cases the self-extinguishing properties are evident almost instantly when specimens are removed from a flame.

  3. Collective cell migration induced by mechanical stress and substrate adhesiveness

    NASA Astrophysics Data System (ADS)

    Köpf, Michael H.

    2015-01-01

    Mechanical stress normal to the boundary of a tissue sheet can arise in both constrained as well as unconstrained epithelial layers through pushing and pulling of surrounding tissue and substrate adhesiveness, respectively. A continuum model is used to investigate how such stress influences the epithelial dynamics. Four types of spreading and motility can be identified: a uniformly stretched stationary state, uniform sheet migration, active stress compensation by polarization close to the boundary, and a wormlike progression by deformation waves. Analytical and numerical solutions are presented along with bifurcation diagrams using normal stress and active force as control parameters.

  4. Do adhesive systems leave resin coats on the surfaces of the metal matrix bands? An adhesive remnant characterization.

    PubMed

    Arhun, Neslihan; Cehreli, Sevi Burcak

    2013-01-01

    Reestablishing proximal contacts with composite resins may prove challenging since the applied adhesives may lead to resin coating that produces additional thickness. The aim of this study was to investigate the surface of metal matrix bands after application of adhesive systems and blowing or wiping off the adhesive before polymerization. Seventeen groups of matrix bands were prepared. The remnant particles were characterized by energy dispersive spectrum and scanning electron microscopy. Total etch and two-step self-etch adhesives did not leave any resin residues by wiping and blowing off. All-in-one adhesive revealed resin residues despite wiping off. Prime and Bond NT did not leave any remnant with compomer. Clinicians must be made aware of the consequences of possible adhesive remnants on matrix bands that may lead to a defective definitive restoration. The adhesive resin used for Class II restorations may leave resin coats on metal matrix bands after polymerization, resulting in additional thickness on the metal matrix bands and poor quality of the proximal surface of the definitive restoration when the adhesive system is incorporated in the restoration. PMID:23484179

  5. Uniform lateral load capacity of infilled frames

    SciTech Connect

    Flanagan, R.D.; Bennett, R.M.

    1993-11-11

    Three tests were conducted on 2.4 meter by 2.4 meter steel frames infilled with structural clay tile to determine the behavior and capacity when subjected to uniform lateral loads. An air bag was used to apply the out-of-plane loads. The walls were subjected to increasing load-unload cycles until virtual destruction of the infill. Cracking in the mortar joints occurred early in the tests, and then the primary load resisting mechanism was arching of the infilled panel. Typically, vertical arching occurred until failure of the top and bottom course tiles. Following failure of these courses, horizontal arching developed enabling the walls to maintain stability.

  6. Electrostatic adhesion of polymer particles to a foil electrode

    NASA Astrophysics Data System (ADS)

    Ziteng, Li; Praeger, Matthew; Smallwood, Jeremy; Lewin, Paul

    2015-10-01

    The SPABRINK EU project requires temporary adhesion of coloured solid “ink” particles to a surface, for later recovery and reuse. This is achieved through the use of dielectrophoretic force under the control of a voltage applied to an interdigitated electrode pattern on the polymer foil. One concern is the ability to hold particles under vibration conditions. In this paper we present an experimental study of the adhesion of 50-300 μm polymer particles to an experimental interdigitated electrode structure on flexible polymer foil. Powder loss as a function of calibrated displacement and applied voltage to the electrodes are presented. This is compared with theoretical results obtained by modelling adhesion using Pohl's equation in terms of an “adhesion factor”. Some difficulties in directly comparing experimental and modelling results are discussed.

  7. Processing of materials for uniform field emission

    DOEpatents

    Pam, Lawrence S.; Felter, Thomas E.; Talin, Alec; Ohlberg, Douglas; Fox, Ciaran; Han, Sung

    1999-01-01

    This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/.mu.m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 .mu.m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceeded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material.

  8. Processing of materials for uniform field emission

    DOEpatents

    Pam, L.S.; Felter, T.E.; Talin, A.; Ohlberg, D.; Fox, C.; Han, S.

    1999-01-12

    This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/{micro}m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 {micro}m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material. 2 figs.

  9. Adhesive transfer of thin viscoelastic films.

    PubMed

    Shull, Kenneth R; Martin, Elizabeth F; Drzal, Peter L; Hersam, Mark C; Markowitz, Alison R; McSwain, Rachel L

    2005-01-01

    Micellar suspensions of acrylic diblock copolymers are excellent model materials for studying the adhesive transfer of viscoelastic solids. The micellar structure is maintained in films with a variety of thicknesses, giving films with a well-defined structure and viscoelastic character. Thin films were cast onto elastomeric silicone substrates from micellar suspensions in butanol, and the adhesive interactions between these coated elastomeric substrates and a rigid indenter were quantified. By controlling the adhesive properties of the film/indenter and film/substrate interfaces we were able to obtain very clean transfer of the film from the substrate to the portion of the glass indenter with which the film was in contact. Adhesive failure at the film/substrate interface occurs when the film/indenter interface is able to support an applied energy release rate that is sufficient to result in cavity nucleation at the film/substrate interface. Cavity formation is rapidly followed by delamination of the entire region under the indenter. The final stage in the transfer process involves the failure of the film that bridges the indenter and the elastomeric substrate. This film is remarkably robust and is extended to three times its original width prior to failure. Failure of this film occurs at the periphery of the indenter, giving a transferred film that conforms to the original contact area between the indenter and the coated substrate. PMID:15620300

  10. The present and future of biologically inspired adhesive interfaces and materials.

    PubMed

    Brubaker, Carrie E; Messersmith, Phillip B

    2012-01-31

    The natural world provides many examples of robust, permanent adhesive platforms. Synthetic adhesive interfaces and materials inspired by mussels of genus Mytulis have been extensively applied, and it is expected that characterization and adaptation of several other biological adhesive strategies will follow the Mytilus edulis model. These candidate species will be introduced, along with a discussion of the adhesive behaviors that make them attractive for synthetic adaptation. While significant progress has been made in the development of biologically inspired adhesive interfaces and materials, persistent questions, current challenges, and emergent areas of research will be also be discussed. PMID:22224862

  11. New methods to directly measure adhesive stress and movement on glass

    NASA Astrophysics Data System (ADS)

    Watts, David C.; Marouf, A. S.; Heindl, Detlef

    2002-09-01

    Practical scientific methods have been devised to measure cure-shrinkage phenomena for a small-volume disk geometry of adhesive agents, in liquid or paste form. These can be conducted simply, reproducibly and quickly, typically 5-120 min, once the apparati are set up. Originally utilised to measure shrinkage behavior in photocuring dental adhesives and biomaterials, the measurements may be applied as well to adhesives for fiber optic and optical applications. They are especially suitable for UV and visible-light curing adhesives. The 'bonded-disk' method is used for the measurement of shrinkage-strain kinetics and the Bioman method for shrinkage-stress of adhesives.

  12. Adhesion and Thin-Film Module Reliability: Preprint

    SciTech Connect

    McMahon, T. J.; Jorgensen, G. J.

    2006-05-01

    Among the infrequently measured but essential properties for thin-film (T-F) module reliability are the interlayer adhesion and cohesion within a layer. These can be cell contact layers to glass, contact layers to the semiconductor, encapsulant to cell, glass, or backsheet, etc. We use an Instron mechanical testing unit to measure peel strengths at 90{sup o} or 180{sup o} and, in some cases, a scratch and tape pull test to evaluate inter-cell layer adhesion strengths. We present peel strength data for test specimens laminated from the three T-F technologies, before and after damp heat, and in one instance at elevated temperatures. On laminated T-F cell samples, failure can occur uniformly at any one of the many interfaces, or non-uniformly across the peel area at more than one interface. Some peel strengths are << 1 N/mm. This is far below the normal Instron mechanical testing unit Instron mechanical testing unit; glass interface values of >10 N/mm. We measure a wide range of adhesion strengths and suggest that adhesion measured under higher temperature and relative humidity conditions is more relevant for module reliability.

  13. Removal of adhesive wound dressing and its effects on the stratum corneum of the skin: comparison of eight different adhesive wound dressings.

    PubMed

    Matsumura, Hajime; Imai, Ryutaro; Ahmatjan, Niyaz; Ida, Yukiko; Gondo, Masahide; Shibata, Dai; Wanatabe, Katsueki

    2014-02-01

    In recent years, adhesive wound dressings have been increasingly applied postoperatively because of their ease of use as they can be kept in place without having to cut and apply surgical tapes and they can cover a wound securely. However, if a wound dressing strongly adheres to the wound, a large amount of stratum corneum is removed from the newly formed epithelium or healthy periwound skin. Various types of adhesives are used on adhesive wound dressings and the extent of skin damage depends on how much an adhesive sticks to the wound or skin surface. We quantitatively determined and compared the amount of stratum corneum removed by eight different wound dressings including polyurethane foam using acrylic adhesive, silicone-based adhesive dressing, composite hydrocolloid and self-adhesive polyurethane foam in healthy volunteers. The results showed that wound dressings with silicone adhesive and self-adhesive polyurethane foam removed less stratum corneum, whereas composite hydrocolloid and polyurethane foam using acrylic adhesive removed more stratum corneum. PMID:22883604

  14. Recycle polymer characterization and adhesion modeling

    NASA Astrophysics Data System (ADS)

    Holbery, James David

    Contaminants from paper product producers that adversely affect fiber yield have been collected from mills located in three North American geographic regions. Samples have been fractionated using a modified solvent extraction process and subsequently quantitatively characterized and it was found that agglomerates were comprised of the following: approximately 30% extractable polymeric material, 25--35% fiber, 12--15% inorganic material, 15% non-extractable high molecular-weight polyethylene or cross-linked polymers, and 2--4% starch residue. Three representative polymers, paraffin, low-molecular weight polyethylene, and a commercial hot-melt adhesive were selected for further analysis to model the attractive and repulsive behavior using Scanning Probe Microscopy in an aqueous cell. Scanning force probes were characterized using an original technique utilizing a nano-indentation apparatus that is non-destructive and is accurate to within 10% for probes with force constants as low as 1 N/m. Surface force measurements were performed between a Poly (Styrene/30% Butyl Methacrylate) sphere and substrates produced from paraffin, polyethylene, and a commercial hot-melt adhesive in solutions ranging in NaF ionic concentrations from 0.001M to 1M. Reasonable theoretical agreement with experimental data has been shown between a combined model applying van der Waals force contributions using the Derjaguin approximation and electrostatic contributions as predicted by a Debye-Huckel linearization of the Poisson-Boltzmann equation utilizing Hamaker constants derived from critical surface energies determined from Zisman and Lifshitz-van der Waals energy approaches. This model has been applied to measured data and indicates the strength of adhesion for the hot-melt to be 0.14 nN while that of paraffin is 1.9 nN and polyethylene 2.8 nN. Paraffin and polyethylene are 13.5 and 20 times greater in attraction than the hot-melt adhesive. Hot-melt adhesive repulsion is predicted to be 220

  15. School Uniforms: Guidelines for Principals.

    ERIC Educational Resources Information Center

    Essex, Nathan L.

    2001-01-01

    Principals desiring to develop a school-uniform policy should involve parents, teachers, community leaders, and student representatives; beware restrictions on religious and political expression; provide flexibility and assistance for low-income families; implement a pilot program; align the policy with school-safety issues; and consider legal…

  16. Uniform Peanut Performance Tests 2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Uniform Peanut Performance Tests (UPPT) were established in 1973 through an informal arrangement among cooperating scientists involving seven major peanut-producing states. In 1995, plant material transfer agreements were also accepted among all cooperators in the UPPT. The year 2012 completed...

  17. Optimized Direct-Drive Uniformity

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; McKenty, P. W.; Kessler, T. J.; Forties, R.; Kelly, J. A.; Waxer, L. J.

    2002-11-01

    The means of optimizing direct-drive illumination uniformity in laser fusion implosions will be discussed. To provide the most-uniform drive, the target must be illuminated by smooth single beams, symmetrically placed on target, with the optimum beam shape. On the 60-beam OMEGA laser system these near-optimum, direct-drive illumination conditions have been achieved by smoothing each beam with 1-THz smoothing by spectral dispersion (SSD), which incorporates distributed phase plates (DPP's) and polarization smoothing (PS), and by the modified soccer-ball orientation of the beams. The current beam smoothing provides for unprecedented levels of direct-drive uniformity, approaching σ_rms ˜ 2% up to ℓ = 200 after ˜300 ps. The sensitivity of the illumination to beam shape has been studied, and a new set of DPP's have been designed and are being built to further optimize the uniformity on OMEGA. Also, the sensitivity of the drive to beam balance, beam pointing, and target positioning has been studied both by calculation and by performing target implosions allowing quantitative limits to be placed on all contributors. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  18. Uniform peanut performance test 2013

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, 2 controls and 13 entries were evaluated at 9 locations....

  19. Uniform Peanut Performance Tests 2011

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, there were 2 controls, 3 Florida lines, 3 Georgia lines,...

  20. Uniform peanut performance test 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, 2 controls and 13 entries were evaluated at 9 locations....

  1. Uniform Peanut Performance Tests 2009

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, there were 2 controls, 3 Florida lines, 6 Georgia lines,...

  2. Uniform Peanut Performance Tests 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, there were 2 controls, 3 Florida lines, 7 Georgia lines,...

  3. Uniform Peanut Performance Tests 2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, there were 2 controls, 3 Florida lines, 4 Georgia lines,...

  4. Uniform Peanut Performance Tests 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Uniform Peanut Performance Tests (UPPT) are designed to evaluate the commercial potential of advanced breeding peanut lines not formally released. The tests are performed in ten locations across the peanut production belt. In this study, there were 2 controls, 3 Florida lines, 6 Georgia lines,...

  5. Polyurethane adhesive ingestion.

    PubMed

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Polyurethane adhesives are found in a large number of household products in the United States and are used for a variety of purposes. Several brands of these expanding wood glues (those containing diphenylmethane diisocyanate [MDI]) have the potential to form gastrointestinal (GI) foreign bodies if ingested. The ingested adhesive forms an expanding ball of glue in the esophagus and gastric lumen. This expansion is caused by a polymerization reaction using the heat, water, and gastric acids of the stomach. A firm mass is created that can be 4-8 times its original volume. As little as 2 oz of glue have been reported to develop gastric foreign bodies. The obstructive mass is reported to form within minutes of ingestion of the adhesive. The foreign body can lead to esophageal impaction and obstruction, airway obstruction, gastric outflow obstruction, mucosal hemorrhage, ulceration, laceration, perforation of the esophageal and gastric linings, and death. Clinical signs following ingestion include anorexia, lethargy, vomiting, tachypnea, and abdominal distention and pain, and typically develop within 12 hours. Clinical signs may depend upon the size of the mass. If left untreated, perforation and rupture of the esophagus or stomach can occur. The glue mass does not stick to the GI mucosa and is not always detectable on abdominal palpation. Radiographs are recommended to confirm the presence of the "glue-ball" foreign body, and radiographic evidence of the obstruction may be seen as early as 4-6 hours following ingestion. Emesis is contraindicated owing to the risk of aspiration of the glue into the respiratory tree or the subsequent lodging of the expanding glue mass in the esophagus. Likewise, efforts to dilute the glue and prevent the formation of the foreign body through administration of liquids, activated charcoal, or bulk-forming products to push the foreign body through the GI tract have proven ineffective. Even endoscopy performed to remove the foreign body has

  6. Adhesion of hydrogels under water by hydrogen bonding: from molecular interactions to macroscopic adhesion

    NASA Astrophysics Data System (ADS)

    Creton, Costantino

    2012-02-01

    Hydrogels are an essential part of living organisms and are widely used in biotechnologies, health care and food science. Although swelling properties, cell adhesion on gel surfaces and gel elasticity have attracted much interest, macroscopic adhesion of hydrogels on solid surfaces in aqueous environment is much less well understood. We studied systematically and in aqueous environment, the reversible adhesion by hydrogen bonding of macroscopic model hydrogels of polydimethylacrylamide (PDMA) or of polyacrylamide (PAAm) on solid surfaces functionalized with polyacrylic acid (PAA) polymer brushes. The hydrogels were synthesized by free radical polymerization and the brushes were prepared by grafting polytertbutyl acrylate chains and converting them by pyrolisis into polyacrylic acid. A new adhesion tester based on the flat punch geometry was designed and used to control the contact area, contact time, contact pressure and debonding velocity of the gels from the surface while the samples were fully immersed in water. The adhesion tests were performed at different pH and temperatures and the modulus of the gel and grafting density and molecular weight of the brushes was varied. Macroscopic adhesion results were compared with phase diagrams in dilute solution to detect molecular interactions. While the PDMA/PAA pair behaved very similarly in solution and in macroscopic adhesion tests, the PAAm/PAA pair showed an unexpectedly high adhesion level relatively to its complexation ability in dilute solution. Surprisingly, time dependent experiments showed that the kinetics of H-bond formation and breakup at interfaces was very slow resulting in adhesion energies which were very dependent on contact time up to one hour of contact. At the molecular level, neutron reflectivity showed that the equilibrium brush conformation when in contact with the gels was more extended at pH2 (H-bonds activated) than at pH9 (H-bonds deactivated) and that a certain applied pressure was

  7. Adhesive-Bonded Composite Joint Analysis with Delaminated Surface Ply Using Strain-Energy Release Rate

    NASA Technical Reports Server (NTRS)

    Chadegani, Alireza; Yang, Chihdar; Smeltzer, Stanley S. III

    2012-01-01

    This paper presents an analytical model to determine the strain energy release rate due to an interlaminar crack of the surface ply in adhesively bonded composite joints subjected to axial tension. Single-lap shear-joint standard test specimen geometry with thick bondline is followed for model development. The field equations are formulated by using the first-order shear-deformation theory in laminated plates together with kinematics relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. The system of second-order differential equations is solved to using the symbolic computation tool Maple 9.52 to provide displacements fields. The equivalent forces at the tip of the prescribed interlaminar crack are obtained based on interlaminar stress distributions. The strain energy release rate of the crack is then determined by using the crack closure method. Finite element analyses using the J integral as well as the crack closure method are performed to verify the developed analytical model. It has been shown that the results using the analytical method correlate well with the results from the finite element analyses. An attempt is made to predict the failure loads of the joints based on limited test data from the literature. The effectiveness of the inclusion of bondline thickness is justified when compared with the results obtained from the previous model in which a thin bondline and uniform adhesive stresses through the bondline thickness are assumed.

  8. Effects of MMP inhibitors incorporated within dental adhesives.

    PubMed

    Almahdy, A; Koller, G; Sauro, S; Bartsch, J W; Sherriff, M; Watson, T F; Banerjee, A

    2012-06-01

    Matrix metalloproteinase (MMP) inhibition has been shown to reduce adhesive bond degradation when applied as a pre-conditioner, adding to clinical steps in the placement of adhesives, but their incorporation within dental adhesives has not been fully explored. This study examined the effect of including 2 MMP inhibitors (BB94 and GM6001) within the primers of 3 commercially available adhesives. Fluorometric assay and zymography showed that adhesives with MMP inhibitors had high affinity toward both synthetic fluorogenic FRET peptides (95%) and dentin powder substrates, respectively. The immediate microtensile bond strength was enhanced for 2 types of adhesives following the addition of both inhibitors. However, no changes were detected between the control and the inhibitor groups following 3-month storage. The modified two-step etch-and-rinse and single-step systems showed less Rhodamine B penetration to the "hybrid layer" and to the "adhesive", respectively. The incorporation of BB94 and GM6001 within the primers resulted in the inhibition of dentin MMPs with improved initial bond strength and enhanced sealing ability. PMID:22518030

  9. Volatile organic emissions from adhesives with indoor applications

    SciTech Connect

    Girman, J.R.; Hodgson, A.T.; Newton, A.S.; Winkes, A.W.

    1984-02-01

    Studies have shown that volatile organic compounds (VOC) emitted from building materials are a potentially important source of indoor air pollution. In this study, we investigated emissions of VOC from both solvent- and water-based adhesives. Adhesives were applied to an inert substrate and dried for at least a week. VOC were cryogenically trapped and identified by GC-MS or sorbent trapped, solvent extracted, and quantified by GC-FID. Among the compounds emitted by adhesives were toluene, styrene, and a variety of normal, branched, and cyclic alkanes. The measured emission rates ranged from below the limit of detection for some adhesives to a total alkane emission rate of over 700 ..mu..g g/sup -1/h/sup -1/ for a water-based adhesive. A simple, well-mixed tank model was used to assess the potential impacts of the adhesives studied and to demonstrate that adhesives can be significant sources of VOC. 8 references, 1 figure, 2 tables.

  10. Spatial anisotropy and heterogeneity in contractility and adhesion distribution may contribute to cell steering during migration

    NASA Astrophysics Data System (ADS)

    Soumya S S; Kolwankar, Subodh; George, Edna; Basu, Santanu K.; Sen, Shamik; Inamdar, Mandar M.

    2014-02-01

    Transition from random to persistent cell motility requires spatiotemporal organization of the cytoskeleton and focal adhesions. The influence of these two structures on cell steering can also be gleaned from trypsin de-adhesion experiments, wherein cells exposed to trypsin round up, exhibiting a combination of rotation and translation. Here, we present a model to evaluate the contributions of contractility and bond distribution to experimentally observed de-adhesion. We show that while asymmetry in bond distribution causes only cell translation, a combination of asymmetric bond distribution and non-uniform contractility is required for translation and rotation and may guide cell migration.

  11. Improved Adhesion and Compliancy of Hierarchical Fibrillar Adhesives.

    PubMed

    Li, Yasong; Gates, Byron D; Menon, Carlo

    2015-08-01

    The gecko relies on van der Waals forces to cling onto surfaces with a variety of topography and composition. The hierarchical fibrillar structures on their climbing feet, ranging from mesoscale to nanoscale, are hypothesized to be key elements for the animal to conquer both smooth and rough surfaces. An epoxy-based artificial hierarchical fibrillar adhesive was prepared to study the influence of the hierarchical structures on the properties of a dry adhesive. The presented experiments highlight the advantages of a hierarchical structure despite a reduction of overall density and aspect ratio of nanofibrils. In contrast to an adhesive containing only nanometer-size fibrils, the hierarchical fibrillar adhesives exhibited a higher adhesion force and better compliancy when tested on an identical substrate. PMID:26167951

  12. Effect of adhesive thickness on adhesively bonded T-joint

    NASA Astrophysics Data System (ADS)

    Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul

    2013-12-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.

  13. Method for uniformly bending conduits

    DOEpatents

    Dekanich, S.J.

    1984-04-27

    The present invention is directed to a method for bending metal tubing through various radii while maintaining uniform cross section of the tubing. The present invention is practical by filling the tubing to a sufficient level with water, freezing the water to ice and bending the ice-filled tubing in a cooled die to the desired radius. The use of the ice as a filler material provides uniform cross-sectional bends of the tubing and upon removal of the ice provides an uncontaminated interior of the tubing which will enable it to be used in its intended application without encountering residual contaminants in the tubing due to the presence of the filler material.

  14. Reactor for making uniform capsules

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Anikumar, Amrutur V. (Inventor); Lacik, Igor (Inventor)

    1999-01-01

    The present invention provides a novel reactor for making capsules with uniform membrane. The reactor includes a source for providing a continuous flow of a first liquid through the reactor; a source for delivering a steady stream of drops of a second liquid to the entrance of the reactor; a main tube portion having at least one loop, and an exit opening, where the exit opening is at a height substantially equal to the entrance. In addition, a method for using the novel reactor is provided. This method involves providing a continuous stream of a first liquid; introducing uniformly-sized drops of the second liquid into the stream of the first liquid; allowing the drops to react in the stream for a pre-determined period of time; and collecting the capsules.

  15. Stimuli-Responsive Reversible Two-Level Adhesion from a Structurally Dynamic Shape-Memory Polymer.

    PubMed

    Michal, Brian T; Spencer, Emily J; Rowan, Stuart J

    2016-05-01

    A shape-memory adhesive has been prepared that exhibits two levels of reversible adhesion. The adhesive is a semicrystalline cross-linked polymer that contains dynamic disulfide bonds. Melting of the crystalline regions via heat causes a drop in the modulus of the material facilitating wetting of the substrate as well as enhancing the surface contact area with the substrate, which result in the formation of an adhesive bond. Exposure to higher heat or UV light results in dynamic exchange of the disulfide bonds, which yields a further drop in the modulus/viscosity that improves surface wetting/contact and strengthens the adhesive bond. This improvement in adhesion is shown to apply over different substrates, contact forces, and deformation modes. Furthermore, the adhesive acts as a thermal shape-memory material and can be used to create joints that can reposition themselves upon application of heat. PMID:27096252

  16. Small Arms: Treated Uniforms for Personal Protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Permethrin-treatment of field-worn U.S. Military uniforms has been standard practice since 1991. The uniform fabric composition has changed significantly from 100% cotton to 50:50 nylon:cotton Battle Dress Uniforms (BDUs), to 50:50 nylon:cotton Army Combat Uniforms (ACUs) with wrinkle-free finish, a...

  17. Uniform batch processing using microwaves

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Jackson, Henry W. (Inventor)

    2000-01-01

    A microwave oven and microwave heating method generates microwaves within a cavity in a predetermined mode such that there is a known region of uniform microwave field. Samples placed in the region will then be heated in a relatively identical manner. Where perturbations induced by the samples are significant, samples are arranged in a symmetrical distribution so that the cumulative perturbation at each sample location is the same.

  18. Influence of colloidal silicon dioxide on gel strength, robustness, and adhesive properties of diclofenac gel formulation for topical application.

    PubMed

    Lu, Zheng; Fassihi, Reza

    2015-06-01

    The objective of this study is to identify the extent of stiffness, adhesiveness, and thixotropic character of a three-dimensional gel network of a 1% diclofenac sodium topical gel formulation in the presence and absence of colloidal silicon dioxide (CSD) and assess its ease of application and adhesiveness using both objective and subjective analysis. The 1% diclofenac gel was mixed with different amounts of CSD (e.g., 0.5, 1, 2, 3, and 5% w/w) and allowed to equilibrate prior to testing. The texture analyzer in combination with a cone-cap assembly was used to objectively investigate the changes in spreadability and adhesiveness of the gel system before and after addition of CSD. Results indicate that an increase in pliability and adhesiveness at levels ≥2 to ≤5% w/w of CSD dispersed in the gel ensues. For subjective analysis, gels with (2% w/w) CSD and in the absence of CSD were uniformly applied to a 20-cm(2) (5 cm × 4 cm) surface area on the forearms of healthy volunteers and vehicle preferences by the volunteers regarding ease of application, durability on the skin, compliance, and feelings concerning its textural properties were assessed. It appears that changes in the gel formulation with the addition of CSD enhance gel viscosity and bonding to the skin. Results further show that changes in physical and rheological characteristics of gel containing 2% w/w CSD did not significantly change subject preferences for the gel preparations. These findings may help formulators to have additional options to develop more robust and cost-effective formulations. PMID:25501873

  19. Mechanosensitive components of integrin adhesions: Role of vinculin

    PubMed Central

    Atherton, Paul; Stutchbury, Ben; Jethwa, Devina; Ballestrem, Christoph

    2016-01-01

    External forces play a key role in shaping development and normal physiology. Aberrant responses to forces, or changes in the nature of such forces, are implicated in a variety of diseases. Cells contain several types of adhesions, linking them to their external environment. It is through these adhesions that forces are both sensed (from the outside inwards) and applied (from inside to out). Furthermore, several adhesion-based proteins are sensitive to changes in intracellular forces, utilising them for activation and regulation. Here, we outline how vinculin, a key component of integrin-mediated adhesions linking the actin cytoskeleton to the extracellular matrix (ECM), is regulated by force and acts as force transducing protein. We discuss the role of vinculin in vivo and its place in health and disease; summarise the proposed mechanisms by which vinculin is recruited to and activated at integrin-ECM adhesions; and discuss recent findings that place vinculin as the major force sensing and transmitting component of cell–matrix adhesion complexes. Finally, we discuss the role of vinculin in regulating the cellular responses to both the physical properties of the external environment and to externally applied physical stimuli. PMID:26607713

  20. Platelet adhesiveness in diabetes mellitus

    PubMed Central

    Shaw, S.; Pegrum, G. D.; Wolff, Sylvia; Ashton, W. L.

    1967-01-01

    Platelet adhesiveness has been assessed on whole blood from a series of 34 diabetics and 50 control subjects using adenosine diphosphate (A.D.P.) and by adherence to glass microspherules (ballotini). Using both techniques it was possible to demonstrate a significant increase in platelet adhesiveness in the diabetic patients. PMID:5614070

  1. Measuring Adhesion And Friction Forces

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1991-01-01

    Cavendish balance adapted to new purpose. Apparatus developed which measures forces of adhesion and friction between specimens of solid materials in vacuum at temperatures from ambient to 900 degrees C. Intended primarily for use in studying adhesion properties of ceramics and metals, including silicon carbide, aluminum oxide, and iron-base amorphous alloys.

  2. Simulation of Cell Adhesion using a Particle Transport Model

    NASA Astrophysics Data System (ADS)

    Chesnutt, Jennifer

    2005-11-01

    An efficient computational method for simulation of cell adhesion through protein binding forces is discussed. In this method, the cells are represented by deformable elastic particles, and the protein binding is represented by a rate equation. The method is first developed for collision and adhesion of two similar cells impacting on each other from opposite directions. The computational method is then applied in a particle-transport model for a cloud of interacting and colliding cells, each of which are represented by particles of finite size. One application might include red blood cells adhering together to form rouleaux, which are chains of red blood cells that are found in different parts of the circulatory system. Other potential applications include adhesion of platelets to a blood vessel wall or mechanical heart valve, which is a precursor of thrombosis formation, or adhesion of cancer cells to organ walls in the lymphatic, circulatory, digestive or pulmonary systems.

  3. Induction thermography for non-destructive evaluation of adhesive bonds

    NASA Astrophysics Data System (ADS)

    Balaji, L.; Balasubramaniam, Krishnan; Krishnamurthy, C. V.

    2013-01-01

    Adhesive bonding is widely used in automotive industry in the recent times. One of the major problems with adhesive bonds is the lack of a suitable non-destructive evaluation technique for assessing bonding. In this paper, an experimental study was carried out to apply induction thermography technique to evaluate adhesively bonded steel plates. Samples were fabricated with artificial defects such as air gap, foreign material, and improper adhesive filling. Induction thermography technique was found to detect defects and foreign inclusions. The sample specimen was also inspected using standard techniques such as Ultrasonic testing and Radiography testing. Defect detecting capabilities of the three techniques are compared. Induction thermography heating was FE modelled in 3D using COMSOL 3.5a. The simulated Induction thermography model was compared and validated with experimental results.

  4. Supernova remnant evolution in uniform and non-uniform media

    NASA Astrophysics Data System (ADS)

    Ferreira, S. E. S.; de Jager, O. C.

    2008-01-01

    Aims:In this work numerical simulations showing the time evolution of supernova remnants (SNRs) in uniform and non-uniform interstellar medium (ISM) are presented. Methods: We use a hydrodynamic model including a kinematic calculation of the interstellar magnetic field. Important parameters influencing SNR evolution include the ejecta mass and energy of the remnant, as well as the ISM density and adiabatic index. Results: By varying these parameters we constructed an analytical expression giving the return time of the SNR reverse shock to the origin, in terms of these parameters. We also found that the reverse shock spends half of its time moving outward and the other half returning to the origin. Also computed is SNR evolution in non-uniform media where the blast wave moves from one medium into either a less or more dense medium. As the SNR moves into a medium of higher density a reflection wave is created at the interface between the two media which is driven back toward the center. This drives mass via a nonspherical flow away from the discontinuity. As this wave moves inward it also drags some of the ISM field lines (if the field is parallel with the interface) with it and heats the inside of the SNR resulting in larger temperatures in this region. When a SNR explodes in a medium with a high density and the blast wave propagates into a medium with a lower density, a cavity is being blown away changing the geometry of the high density region. Also, once the forward shock moves into the medium of less density a second reverse shock will start to evolve in this region.

  5. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  6. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  7. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  8. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  9. 21 CFR 880.5240 - Medical adhesive tape and adhesive bandage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical adhesive tape and adhesive bandage. 880... Personal Use Therapeutic Devices § 880.5240 Medical adhesive tape and adhesive bandage. (a) Identification. A medical adhesive tape or adhesive bandage is a device intended for medical purposes that...

  10. Eliminating adhesion errors in nanoindentation of compliant polymers and hydrogels.

    PubMed

    Kohn, Julie C; Ebenstein, Donna M

    2013-04-01

    Nanoindentation is a valuable tool for characterization of biomaterials due to its ability to measure local properties in heterogeneous, small or irregularly shaped samples. However, applying nanoindentation to compliant, hydrated biomaterials leads to many challenges including adhesion between the nanoindenter tip and the sample. Although adhesion leads to overestimation of the modulus of compliant samples when analyzing nanoindentation data using traditional analysis techniques, most studies of biomaterials have ignored its effects. This paper demonstrates two methods for managing adhesion in nanoindentation analysis, the nano-JKR force curve method and the surfactant method, through application to two biomedically-relevant compliant materials, poly(dimethyl siloxane) (PDMS) elastomers and poly(ethylene glycol) (PEG) hydrogels. The nano-JKR force curve method accounts for adhesion during data analysis using equations based on the Johnson-Kendall-Roberts (JKR) adhesion model, while the surfactant method eliminates adhesion during data collection, allowing data analysis using traditional techniques. In this study, indents performed in air or water resulted in adhesion between the tip and the sample, while testing the same materials submerged in Optifree Express(®) contact lens solution eliminated tip-sample adhesion in most samples. Modulus values from the two methods were within 7% of each other, despite different hydration conditions and evidence of adhesion. Using surfactant also did not significantly alter the properties of the tested material, allowed accurate modulus measurements using commercial software, and facilitated nanoindentation testing in fluids. This technique shows promise for more accurate and faster determination of modulus values from nanoindentation of compliant, hydrated biological samples. PMID:23517775

  11. Characterization of adhesive from oysters: A structural and compositional study

    NASA Astrophysics Data System (ADS)

    Alberts, Erik

    The inability for man-made adhesives to set in wet or humid environments is an ongoing challenging the design of biomedical and marine adhesive materials. However, we see that nature has already overcome this challenge. Mussels, barnacles, oysters and sandcastle worms all have unique mechanisms by which they attach themselves to surfaces. By understanding what evolution has already spent millions of years perfecting, we can design novel adhesive materials inspired by nature's elegant designs. The well-studied mussel is currently the standard for design of marine inspired biomimetic polymers. In the work presented here, we aim to provide new insights into the adhesive produced by the eastern oyster, Crassostrea virginica. Unlike the mussel, which produces thread-like plaques comprised of DOPA containing-protein, the oyster secretes an organic-inorganic hybrid adhesive as it settles and grows onto a surface. This form of adhesion renders the oyster to be permanently fixed in place. Over time, hundreds of thousands of oyster grow and agglomerate to form extensive reef structures. These reefs are not only essential to survival of the oyster, but are also vital to intertidal ecosystems. While the shell of the oyster has been extensively studied, curiously, only a few conflicting insights have been made into the nature of the adhesive and contact zone between shell and substrate, and even lesfs information has been ascertained on organic and inorganic composition. In this work, we provide microscopy and histochemical studies to characterize the structure and composition of the adhesive, using oyster in the adult and juvenile stages of life. Preliminary work on extracting and characterizing organic components through collaborative help with solid-state NMR (SSNMR) and proteomics are also detailed here. We aim to provide a full, comprehensive characterization of oyster adhesive so that in the future, we may apply what we learn to the design of new materials.

  12. Biological adhesives and fastening devices

    NASA Astrophysics Data System (ADS)

    Wolpert, H. D.

    2012-04-01

    Sea creatures are a leading source to some of the more interesting discoveries in adhesives. Because sea water naturally breaks down even the strongest conventional adhesive, an alternative is important that could be used in repairing or fabricating anything that might have regular contact with moisture such as: Repairing broken and shattered bones, developing a surgical adhesive, use in the dental work, repairing and building ships, and manufacturing plywood. Some of nature's prototypes include the common mussel, limpet, some bacteria and abalone. As we learn more about these adhesives we are also developing non adhesive fasteners, such as mimicked after studying the octopus, burdock burrs (i.e. Velcro®) and the gecko.

  13. Hyaluronan-mediated cellular adhesion

    NASA Astrophysics Data System (ADS)

    Curtis, Jennifer

    2005-03-01

    Many cells surround themselves with a cushioning halo of polysaccharides that is further strengthened and organized by proteins. In fibroblasts and chrondrocytes, the primary component of this pericellular matrix is hyaluronan, a large linear polyanion. Hyaluronan production is linked to a variety of disease, developmental, and physiological processes. Cells manipulate the concentration of hyaluronan and hyaluronan receptors for numerous activities including modulation of cell adhesion, cell motility, and differentiation. Recent investigations by identify hyaluronan's role in mediating early-stage cell adhesion. An open question is how the cell removes the 0.5-10 micron thick pericellular matrix to allow for further mature adhesion events requiring nanometer scale separations. In this investigation, holographic optical tweezers are used to study the adhesion and viscoelastic properties of chondrocytes' pericellular matrix. Ultimately, we aim to shed further light on the spatial and temporal details of the dramatic transition from micron to nanometer gaps between the cell and its adhesive substrate.

  14. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, Ray A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe within an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough.

  15. Corrugated pipe adhesive applicator apparatus

    DOEpatents

    Shirey, R.A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe with an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough. 4 figs.

  16. Adhesion testing device

    NASA Technical Reports Server (NTRS)

    LaPeyronnie, Glenn M. (Inventor); Huff, Charles M. (Inventor)

    2010-01-01

    The present invention provides a testing apparatus and method for testing the adhesion of a coating to a surface. The invention also includes an improved testing button or dolly for use with the testing apparatus and a self aligning button hook or dolly interface on the testing apparatus. According to preferred forms, the apparatus and method of the present invention are simple, portable, battery operated rugged, and inexpensive to manufacture and use, are readily adaptable to a wide variety of uses, and provide effective and accurate testing results. The device includes a linear actuator driven by an electric motor coupled to the actuator through a gearbox and a rotatable shaft. The electronics for the device are contained in the head section of the device. At the contact end of the device, is positioned a self aligning button hook, attached below the load cell located on the actuator shaft.

  17. Epidural lysis of adhesions.

    PubMed

    Lee, Frank; Jamison, David E; Hurley, Robert W; Cohen, Steven P

    2014-01-01

    As our population ages and the rate of spine surgery continues to rise, the use epidural lysis of adhesions (LOA) has emerged as a popular treatment to treat spinal stenosis and failed back surgery syndrome. There is moderate evidence that percutaneous LOA is more effective than conventional ESI for both failed back surgery syndrome, spinal stenosis, and lumbar radiculopathy. For cervical HNP, cervical stenosis and mechanical pain not associated with nerve root involvement, the evidence is anecdotal. The benefits of LOA stem from a combination of factors to include the high volumes administered and the use of hypertonic saline. Hyaluronidase has been shown in most, but not all studies to improve treatment outcomes. Although infrequent, complications are more likely to occur after epidural LOA than after conventional epidural steroid injections. PMID:24478895

  18. Epidural Lysis of Adhesions

    PubMed Central

    Lee, Frank; Jamison, David E.; Hurley, Robert W.

    2014-01-01

    As our population ages and the rate of spine surgery continues to rise, the use epidural lysis of adhesions (LOA) has emerged as a popular treatment to treat spinal stenosis and failed back surgery syndrome. There is moderate evidence that percutaneous LOA is more effective than conventional ESI for both failed back surgery syndrome, spinal stenosis, and lumbar radiculopathy. For cervical HNP, cervical stenosis and mechanical pain not associated with nerve root involvement, the evidence is anecdotal. The benefits of LOA stem from a combination of factors to include the high volumes administered and the use of hypertonic saline. Hyaluronidase has been shown in most, but not all studies to improve treatment outcomes. Although infrequent, complications are more likely to occur after epidural LOA than after conventional epidural steroid injections. PMID:24478895

  19. [Retention of adhesive bridges].

    PubMed

    Raes, F; De Boever, J

    1994-04-01

    Since the development of adhesive bridges in the early seventies, the retention and therefore the durability of these bridges has been tremendously improved. Conditioning of the non-precious metal by silanisation, careful acid etching of the enamel and the use of the appropriate composite resin are of prime importance. Furthermore, the meticulous preparation with enough interproximal embrace, occlusal rests, interocclusal clearance and cingulum stops is equally important. Including more teeth in the design does not necessarily lead to an improved retention. Besides the material and technical aspects, the whole clinical procedure needs much attention. The retention does not depend on one single factor, but on the precision of all the necessary clinical steps and on a well-defined selection of the material. In this way a five-year survival rate of close to 80% can be obtained. PMID:11830965

  20. Effect of fibril shape on adhesive properties

    NASA Astrophysics Data System (ADS)

    Soto, Daniel; Hill, Ginel; Parness, Aaron; Esparza, Noé; Cutkosky, Mark; Kenny, Tom

    2010-08-01

    Research into the gecko's adhesive system revealed a unique architecture for adhesives using tiny hairs. By using a stiff material (β-keratin) to create a highly structured adhesive, the gecko's system demonstrates properties not seen in traditional pressure-sensitive adhesives which use a soft, unstructured planar layer. In contrast to pressure sensitive adhesives, the gecko adhesive displays frictional adhesion, in which increased shear force allows it to withstand higher normal loads. Synthetic fibrillar adhesives have been fabricated but not all demonstrate this frictional adhesion property. Here we report the dual-axis force testing of single silicone rubber pillars from synthetic adhesive arrays. We find that the shape of the adhesive pillar dictates whether frictional adhesion or pressure-sensitive behavior is observed. This work suggests that both types of behavior can be achieved with structures much larger than gecko terminal structures. It also indicates that subtle differences in the shape of these pillars can significantly influence their properties.

  1. Tunicate-mimetic nanofibrous hydrogel adhesive with improved wet adhesion.

    PubMed

    Oh, Dongyeop X; Kim, Sangsik; Lee, Dohoon; Hwang, Dong Soo

    2015-07-01

    The main impediment to medical application of biomaterial-based adhesives is their poor wet adhesion strength due to hydration-induced softening and dissolution. To solve this problem, we mimicked the wound healing process found in tunicates, which use a nanofiber structure and pyrogallol group to heal any damage on its tunic under sea water. We fabricated a tunicate-mimetic hydrogel adhesive based on a chitin nanofiber/gallic acid (a pyrogallol acid) composite. The pyrogallol group-mediated cross-linking and the nanofibrous structures improved the dissolution resistance and cohesion strength of the hydrogel compared to the amorphous polymeric hydrogels in wet condition. The tunicate-mimetic adhesives showed higher adhesion strength between fully hydrated skin tissues than did fibrin glue and mussel-mimetic adhesives. The tunicate mimetic hydrogels were produced at low cost from recyclable and abundant raw materials. This tunicate-mimetic adhesive system is an example of how natural materials can be engineered for biomedical applications. PMID:25841348

  2. Preparation and testing of plant seed meal-based wood adhesives.

    PubMed

    He, Zhongqi; Chapital, Dorselyn C

    2015-01-01

    Recently, the interest in plant seed meal-based products as wood adhesives has steadily increased, as these plant raw materials are considered renewable and environment-friendly. These natural products may serve as alternatives to petroleum-based adhesives to ease environmental and sustainability concerns. This work demonstrates the preparation and testing of the plant seed-based wood adhesives using cottonseed and soy meal as raw materials. In addition to untreated meals, water washed meals and protein isolates are prepared and tested. Adhesive slurries are prepared by mixing a freeze-dried meal product with deionized water (3:25 w/w) for 2 hr. Each adhesive preparation is applied to one end of 2 wood veneer strips using a brush. The tacky adhesive coated areas of the wood veneer strips are lapped and glued by hot-pressing. Adhesive strength is reported as the shear strength of the bonded wood specimen at break. Water resistance of the adhesives is measured by the change in shear strength of the bonded wood specimens at break after water soaking. This protocol allows one to assess plant seed-based agricultural products as suitable candidates for substitution of synthetic-based wood adhesives. Adjustments to the adhesive formulation with or without additives and bonding conditions could optimize their adhesive properties for various practical applications. PMID:25867092

  3. A Review of Cell Adhesion Studies for Biomedical and Biological Applications.

    PubMed

    Khalili, Amelia Ahmad; Ahmad, Mohd Ridzuan

    2015-01-01

    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events. PMID:26251901

  4. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    PubMed Central

    Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan

    2015-01-01

    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events. PMID:26251901

  5. Adhesive bonding and the use of corrosion resistant primers. [for metal surface preparation

    NASA Technical Reports Server (NTRS)

    Hockridge, R. R.; Thibault, H. G.

    1972-01-01

    The use of an anti-corrosive primer has been shown to be essential to assure survival of a bonded structure in a hostile environment, particularly if a stress is to be applied to the adhesively bonded joint during the environmental exposure. For example, the Lockheed L-1011 TriStar assembly, after exhaustive evaluation tests specifies use of chromate filled inhibitive polysulfide sealants, and use of corrosion inhibiting adhesive primers prior to structural bonding with film adhesive.

  6. Scattering of plane guided waves obliquely incident on a straight feature with uniform cross-section.

    PubMed

    Wilcox, Paul D; Velichko, Alexander; Drinkwater, Bruce W; Croxford, Anthony J; Todd, Michael D

    2010-11-01

    A frequency-domain finite element (FE) method is presented for modeling the scattering of plane guided waves incident on an infinitely-long, straight feature with uniform cross-section in a planar host waveguide. The method utilizes a mesh of 2-dimensional finite elements with harmonic shape functions in the perpendicular direction. The model domain comprises a cross-section through the feature and short lengths of the adjoining host waveguide. A spatial frequency equal to the wavenumber of the desired incident mode multiplied by the sine of the desired incidence angle is prescribed for the element shape functions. An integral representation of the incident mode is used to determine a suitable system of harmonic forces to uniquely excite that mode. These are applied at nodes through the thickness of the host waveguide on one side of the feature. The displacement field is measured at nodes through the thickness of the host waveguide on either side of the feature and decomposed into reflected and transmitted modes. The cases of guided wave transmission in a featureless waveguide and the reflection of guided waves from a free-edge are examined as validation cases. Finally, the results for transmission at an adhesively-bonded stiffener are presented and compared with experimental measurements. PMID:21110567

  7. Superior biofunctionality of dental implant fixtures uniformly coated with durable bioglass films by magnetron sputtering.

    PubMed

    Popa, A C; Stan, G E; Enculescu, M; Tanase, C; Tulyaganov, D U; Ferreira, J M F

    2015-11-01

    Bioactive glasses are currently considered the suitable candidates to stir the quest for a new generation of osseous implants with superior biological/functional performance. In congruence with this vision, this contribution aims to introduce a reliable technological recipe for coating fairly complex 3D-shaped implants (e.g. dental screws) with uniform and mechanical resistant bioactive glass films by the radio-frequency magnetron sputtering method. The mechanical reliability of the bioactive glass films applied to real Ti dental implant fixtures has been evaluated by a procedure comprised of "cold" implantation in pig mandibular bone from a dead animal, followed by immediate tension-free extraction tests. The effects of the complex mechanical strains occurring during implantation were analysed by scanning electron microscopy coupled with electron dispersive spectroscopy. Extensive biocompatibility assays (MTS, immunofluorescence, Western blot) revealed that the bioactive glass films stimulated strong cellular adhesion and proliferation of human dental pulp stem cells, without promoting their differentiation. The ability of the implant coatings to conserve a healthy stem cell pool is promising to further endorse the fabrication of new osseointegration implant designs with extended lifetime. PMID:26282074

  8. Study on the structural evolution of modified phenol formaldehyde resin adhesive for the high-temperature bonding of graphite

    NASA Astrophysics Data System (ADS)

    Wang, Jigang; Jiang, Nan; Guo, Quangui; Liu, Lang; Song, Jinren

    2006-01-01

    A novel adhesive for carbon materials composed of phenol-formaldehyde resin, boron carbide and fumed silica, was prepared. The adhesive property of graphite joints bonded by the above adhesive treated at high-temperatures was tested. Results showed that the adhesive was found to have outstanding high-temperature bonding properties for graphite. The adhesive structure was dense and uniform even after the graphite joints were heat-treated at 1500 °C. Bonding strength was 17.1 MPa. The evolution of adhesive structure was investigated. The results indicated that the addition of the secondary additive, fumed silica, improved the bonding performance greatly. Borosilicate phase with better stability was formed during the heat-treatment process, and the volume shrinkage was restrained effectively, which was responsible for the satisfactory high-temperature bonding performance of graphite.

  9. Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces

    PubMed Central

    Shirtcliffe, Neil J.; McHale, Glen; Newton, Michael I.

    2012-01-01

    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces. PMID:22693563

  10. The effect of different adhesive system applications on push-out bond strengths of glass fiber posts

    PubMed Central

    Deniz Arısu, Hacer; Üçtaşlı, Mine Betül; Okay, Tufan Can

    2013-01-01

    PURPOSE Over the past years, the adhesion of fiber posts luted with simplified adhesive systems has been a matter of great interest. The aim of this study was to assess the post retentive potential of a self-adhesive resin cement using different adhesive systems to compare the push-out bond strengths of fiber posts. MATERIALS AND METHODS The post spaces of 56 mandibular premolar roots were prepared and divided into 4 experimental groups and further divided into 2 subgroups according to testing time (n=7). The fiber posts (Rely X Fiber Post) were luted with a self-adhesive resin cement (RelyX Unicem) and one of the following adhesive systems: no adhesive, a total-etch adhesive resin (Single Bond), a two-step self-etch adhesive resin (Clearfil SE Bond) and a one-step self-etch adhesive resin (Clearfil S3 Bond). Each root was cut horizontally, and 1.5 mm thick six root segments were prepared. Push-out tests were performed after one week or three months (0.5 mm/min). Statistical analysis were performed with three-way ANOVA (α=.05). RESULTS Cervical root segments showed higher bond strength values than middle segments. Adhesive application increased the bond strength. For one week group, the total-etch adhesive resin Single Bond showed higher bond strength than the self-adhesive resin cement RelyX Unicem applied without adhesive resin at middle region. For 3 months group, the two-step self-etch adhesive resin Clearfil SE Bond showed the highest bond strength for both regions. Regarding the time considered, Clearfil SE Bond 3 months group showed higher bond strength values than one week group. CONCLUSION Using the adhesive resins in combination with the self-adhesive resin cement improves the bond strengths. The bond strength values of two-step self-etch adhesive resin Clearfil SE Bond improved as time passes. PMID:24049572

  11. Marine Bioinspired Underwater Contact Adhesion.

    PubMed

    Clancy, Sean K; Sodano, Antonio; Cunningham, Dylan J; Huang, Sharon S; Zalicki, Piotr J; Shin, Seunghan; Ahn, B Kollbe

    2016-05-01

    Marine mussels and barnacles are sessile biofouling organisms that adhere to a number of surfaces in wet environments and maintain remarkably strong bonds. Previous synthetic approaches to mimic biological wet adhesive properties have focused mainly on the catechol moiety, present in mussel foot proteins (mfps), and especially rich in the interfacial mfps, for example, mfp-3 and -5, found at the interface between the mussel plaque and substrate. Barnacles, however, do not use Dopa for their wet adhesion, but are instead rich in noncatecholic aromatic residues. Due to this anomaly, we were intrigued to study the initial contact adhesion properties of copolymerized acrylate films containing the key functionalities of barnacle cement proteins and interfacial mfps, for example, aromatic (catecholic or noncatecholic), cationic, anionic, and nonpolar residues. The initial wet contact adhesion of the copolymers was measured using a probe tack testing apparatus with a flat-punch contact geometry. The wet contact adhesion of an optimized, bioinspired copolymer film was ∼15.0 N/cm(2) in deionized water and ∼9.0 N/cm(2) in artificial seawater, up to 150 times greater than commercial pressure-sensitive adhesive (PSA) tapes (∼0.1 N/cm(2)). Furthermore, maximum wet contact adhesion was obtained at ∼pH 7, suggesting viability for biomedical applications. PMID:27046671

  12. UV-cured adhesives for carbon fiber composite applications

    NASA Astrophysics Data System (ADS)

    Lu, Hsiao-Chun

    Carbon fiber composite materials are increasingly used in automobile, marine, and aerospace industries due to their unique properties, including high strength, high stiffness and low weight. However, due to their brittle characteristic, these structures are prone to physical damage, such as a bird strike or impact damage. Once the structure is damaged, it is important to have fast and reliable temporary repair until the permanent repair or replacement can take place. In this dissertation, UV-based adhesives were used to provide a bonding strength for temporary repair. Adhesively bonded patch repair is an efficient and effective method for temporary repair. In this study, precured patches (hard patches) and dry fabric patches with laminating resins (soft patches) were performed. UV-based epoxy adhesives were applied to both patch repair systems. For precured patch repair, the bonding strengths were investigated under different surface treatments for bonding area and different adhesives thicknesses. The shear stresses of different UV exposure times and curing times were tested. Besides, the large patch repair was investigated as well. For soft patch repair, the hand wet lay-up was applied due to high viscosity of UV resins. A modified single lap shear testing (ASTM D5868) was applied to determine the shear stress. The large patches used fiber glass instead of carbon fiber to prove the possibility of repair with UV epoxy resin by hand wet lay-up process. The hand lay-up procedure was applied and assisted by vacuum pressure to eliminate the air bubbles and consolidate the patches. To enhance the bonding strength and effective soft patch repair, vacuum assisted resin transferring molding (VaRTM) is the better option. However, only low viscosity resins can be operated by VaRTM. Hence, new UV-based adhesives were formulated. The new UV-based adhesives included photoinitiator (PI), epoxy and different solvents. Solvents were used to compound the photoinitiator into epoxy

  13. Surface Modifications in Adhesion and Wetting

    NASA Astrophysics Data System (ADS)

    Longley, Jonathan

    Advances in surface modification are changing the world. Changing surface properties of bulk materials with nanometer scale coatings enables inventions ranging from the familiar non-stick frying pan to advanced composite aircraft. Nanometer or monolayer coatings used to modify a surface affect the macro-scale properties of a system; for example, composite adhesive joints between the fuselage and internal frame of Boeing's 787 Dreamliner play a vital role in the structural stability of the aircraft. This dissertation focuses on a collection of surface modification techniques that are used in the areas of adhesion and wetting. Adhesive joints are rapidly replacing the familiar bolt and rivet assemblies used by the aerospace and automotive industries. This transition is fueled by the incorporation of composite materials into aircraft and high performance road vehicles. Adhesive joints have several advantages over the traditional rivet, including, significant weight reduction and efficient stress transfer between bonded materials. As fuel costs continue to rise, the weight reduction is accelerating this transition. Traditional surface pretreatments designed to improve the adhesion of polymeric materials to metallic surfaces are extremely toxic. Replacement adhesive technologies must be compatible with the environment without sacrificing adhesive performance. Silane-coupling agents have emerged as ideal surface modifications for improving composite joint strength. As these coatings are generally applied as very thin layers (<50 nm), it is challenging to characterize their material properties for correlation to adhesive performance. We circumvent this problem by estimating the elastic modulus of the silane-based coatings using the buckling instability formed between two materials of a large elastic mismatch. The elastic modulus is found to effectively predict the joint strength of an epoxy/aluminum joint that has been reinforced with silane coupling agents. This buckling

  14. Designing divertor targets for uniform power load

    NASA Astrophysics Data System (ADS)

    Dekeyser, W.; Reiter, D.; Baelmans, M.

    2015-08-01

    Divertor design for next step fusion reactors heavily relies on 2D edge plasma modeling with codes as e.g. B2-EIRENE. While these codes are typically used in a design-by-analysis approach, in previous work we have shown that divertor design can alternatively be posed as a mathematical optimization problem, and solved very efficiently using adjoint methods adapted from computational aerodynamics. This approach has been applied successfully to divertor target shape design for more uniform power load. In this paper, the concept is further extended to include all contributions to the target power load, with particular focus on radiation. In a simplified test problem, we show the potential benefits of fully including the radiation load in the design cycle as compared to only assessing this load in a post-processing step.

  15. Adhesion molecules in cutaneous inflammation.

    PubMed

    Barker, J N

    1995-01-01

    As in other organs, leukocyte adhesion molecules and their ligands play a major role in cutaneous inflammatory events both by directing leukocyte trafficking and by their effects on antigen presentation. Skin biopsies of inflamed skin from patients with diseases such as as psoriasis or atopic dermatitis reveal up-regulation of endothelial cell expression of P- and E-selectin, vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. Studies of evolving lesions following UVB irradiation, Mantoux reaction or application of contact allergen, demonstrate that expression of these adhesion molecules parallels leukocyte infiltration into skin. When cutaneous inflammation is widespread (e.g. in erythroderma), soluble forms of these molecules are detectable in serum. In vitro studies predict that peptide mediators are important regulatory factors for endothelial adhesion molecules. Intradermal injection of the cytokines interleukin 1, tumour necrosis factor alpha and interferon gamma into normal human skin leads to induction of endothelial adhesion molecules with concomitant infiltration of leukocytes. In addition, neuropeptides rapidly induce P-selectin translocation to the cell membrane and expression of E-selectin. Adhesion molecules also play a crucial role as accessory molecules in the presentation of antigen to T lymphocytes by Langerhans' cells. Expression of selectin ligands by Langerhans' cells is up-regulated by various inflammatory stimuli, suggesting that adhesion molecules may be important in Langerhans' cell migration. The skin, because of its accessibility, is an ideal organ in which to study expression of adhesion molecules and their relationship to inflammatory events. Inflammatory skin diseases are common and inhibition of lymphocyte accumulation in skin is likely to prove of great therapeutic benefit. PMID:7587640

  16. The Shadow Uniform Resource Locator

    PubMed Central

    DiCarlo, Joseph V.; Pastor, Xavier; Markovitz, Barry P.

    2000-01-01

    Citation of scientific materials published on the Internet is often cumbersome because of unwieldy uniform resource locators (URLs). The authors describe a format for URLs that simplifies citation of scholarly materials. Its use depends on a simple HTML device, the “refresh page.” Uniform citation would follow this format: [Author I. Title of article. http://domain/year/month-day(e#).html ]. The HTML code for such a page is: . The code instructs the browser to suppress the content of the refresh page and bring up the title page of the cited article instead. Citations would be succinct and predictable. An electronic journal would not need to alter its existing file hierarchy but would need to establish a distinct domain name and maintain a file of refresh pages. Utilization of the “shadow” URL would bring us one step closer to truly universal resource locators. PMID:10730598

  17. Willow: a uniform search interface.

    PubMed Central

    Ketchell, D S; Freedman, M M; Jordan, W E; Lightfoot, E M; Heyano, S; Libbey, P A

    1996-01-01

    The objective of the Willow Project is to develop a uniform search interface that allows a diverse community of users to retrieve information from heterogeneous network-based information resources. Willow separates the user interface from the database management or information retrieval system. It provides a graphic user interface to a variety of information resources residing on diverse hosts, and using different search engines and idiomatic query languages through networked-based client-server and Transmission Control Protocol/Internet Protocol (TCP/IP) protocols. It is based on a "database driver'' model, which allows new database hosts to be added without altering Willow itself. Willow employs a multimedia extension mechanism to launch external viewers to handle data in almost any form. Drivers are currently available for a local BRS/SEARCH system and the Z39.50 protocol. Students, faculty, clinicians, and researchers at the University of Washington are currently offered 30 local and remote databases via Willow. They conduct more than 250,000 sessions a month in libraries, medical centers and clinics, laboratories, and offices, and from home. The Massachusetts Institute of Technology is implementing Willow as its uniform search interface to Z39.50 hosts. PMID:8750388

  18. Adhesive Performance of Biomimetic Adhesive-Coated Biologic Scaffolds

    PubMed Central

    Murphy, John L.; Vollenweider, Laura; Xu, Fangmin; Lee, Bruce P.

    2010-01-01

    Surgical repair of a discontinuity in traumatized or degenerated soft tissues is traditionally accomplished using sutures. A current trend is to reinforce this primary repair with surgical grafts, meshes, or patches secured with perforating mechanical devices (i.e., sutures, staples, or tacks). These fixation methods frequently lead to chronic pain and mesh detachment. We developed a series of biodegradable adhesive polymers that are synthetic mimics of mussel adhesive proteins (MAPs), composed of 3,4-dihydroxyphenylalanine (DOPA)-derivatives, polyethylene glycol (PEG), and polycaprolactone (PCL). These polymers can be cast into films, and their mechanical properties, extent of swelling, and degradation rate can be tailored through the composition of the polymers as well as blending with additives. When coated onto a biologic mesh used for hernia repair, these adhesive constructs demonstrated adhesive strengths significantly higher than fibrin glue. With further development, a pre-coated bioadhesive mesh may represent a new surgical option for soft tissue repair. PMID:20919699

  19. Focal adhesion kinases in adhesion structures and disease.

    PubMed

    Eleniste, Pierre P; Bruzzaniti, Angela

    2012-01-01

    Cell adhesion to the extracellular matrix (ECM) is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organization and role of focal adhesions, podosomes, and invadopodia in different cells. In addition, we discuss the role of the tyrosine kinases, FAK, Pyk2, and Src, which are critical for the function of the different adhesion structures. Finally, we discuss the essential role of these tyrosine kinases from the perspective of human diseases. PMID:22888421

  20. Focal Adhesion Kinases in Adhesion Structures and Disease

    PubMed Central

    Eleniste, Pierre P.; Bruzzaniti, Angela

    2012-01-01

    Cell adhesion to the extracellular matrix (ECM) is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organization and role of focal adhesions, podosomes, and invadopodia in different cells. In addition, we discuss the role of the tyrosine kinases, FAK, Pyk2, and Src, which are critical for the function of the different adhesion structures. Finally, we discuss the essential role of these tyrosine kinases from the perspective of human diseases. PMID:22888421

  1. Gridding and fast Fourier transformation on non-uniformly sparse sampled multidimensional NMR data.

    PubMed

    Jiang, Bin; Jiang, Xianwang; Xiao, Nan; Zhang, Xu; Jiang, Ling; Mao, Xi-an; Liu, Maili

    2010-05-01

    For multidimensional NMR method, indirect dimensional non-uniform sparse sampling can dramatically shorten acquisition time of the experiments. However, the non-uniformly sampled NMR data cannot be processed directly using fast Fourier transform (FFT). We show that the non-uniformly sampled NMR data can be reconstructed to Cartesian grid with the gridding method that has been wide applied in MRI, and sequentially be processed using FFT. The proposed gridding-FFT (GFFT) method increases the processing speed sharply compared with the previously proposed non-uniform Fourier Transform, and may speed up application of the non-uniform sparse sampling approaches. PMID:20236843

  2. Gridding and fast Fourier transformation on non-uniformly sparse sampled multidimensional NMR data

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Jiang, Xianwang; Xiao, Nan; Zhang, Xu; Jiang, Ling; Mao, Xi-an; Liu, Maili

    2010-05-01

    For multidimensional NMR method, indirect dimensional non-uniform sparse sampling can dramatically shorten acquisition time of the experiments. However, the non-uniformly sampled NMR data cannot be processed directly using fast Fourier transform (FFT). We show that the non-uniformly sampled NMR data can be reconstructed to Cartesian grid with the gridding method that has been wide applied in MRI, and sequentially be processed using FFT. The proposed gridding-FFT (GFFT) method increases the processing speed sharply compared with the previously proposed non-uniform Fourier Transform, and may speed up application of the non-uniform sparse sampling approaches.

  3. Waterborne polyacrylic/PEDOT nanocomposites for conductive transparent adhesives.

    PubMed

    Kim, Byeonggwan; Park, Teahoon; Kim, Jeonghun; Kim, Eunkyoung

    2013-11-01

    A new nanocomposite for conductive transparent adhesives (CTAs) was synthesized by emulsion polymerization of acrylate monomers dispersed with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). Polymer particles of waterborne CTAs were uniform, and the average size of the particles was 330 nm. The conductive transparent adhesive nanocomposites (CTANs) were casted onto various substrates including slide glass, indium tin oxide (ITO) glass, and PET film. Upon thermal processing at 80 degrees C, highly transparent adhesive films were obtained with surface uniformity. The stress of the CTANs was affected by the contents of PEDOT:PSS, and a 7.5 wt% CTAN film had the highest maximum stress of 0.33 MPa. Importantly, polyacrylic nanoparticles were well dispersed with conductive filler PEDOT:PSS in water because of their high dispersity in water. Therefore, the polyacrylic/PEDOT nanocomposite had a low percolation threshold of approximately 8% due to the enhanced connection between conductive channels. The CTANs with an optimum content (10 wt%) of PEDOT:PSS had high electromagnetic interference shielding effectiveness (36 dB) and transparency (75%) for application to electronics including displays and solar cells. PMID:24245305

  4. Interfacial adhesion of carbon fibers

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.

    1987-01-01

    Relative adhesion strengths between AS4, AS1, and XAS carbon fibers and thermoplastic polymers were determined using the embedded single filament test. Polymers studied included polycarbonate, polyphenylene oxide, polyetherimide, polysulfone, polyphenylene oxide blends with polystyrene, and polycarbonate blends with a polycarbonate polysiloxane block copolymer. Fiber surface treatments and sizings improved adhesion somewhat, but adhesion remained well below levels obtained with epoxy matrices. An explanation for the differences between the Hercules and Grafil fibers was sought using X ray photon spectroscopy, wetting, scanning electron microscopy and thermal desorption analysis.

  5. Notch-Mediated Cell Adhesion.

    PubMed

    Murata, Akihiko; Hayashi, Shin-Ichi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms. PMID:26784245

  6. Photovoltaic module with adhesion promoter

    SciTech Connect

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  7. Notch-Mediated Cell Adhesion

    PubMed Central

    Murata, Akihiko; Hayashi, Shin-Ichi

    2016-01-01

    Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms. PMID:26784245

  8. Adhesives from modified soy protein

    DOEpatents

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  9. Wear mechanism based on adhesion

    NASA Technical Reports Server (NTRS)

    Yamamoto, T.; Buckley, D. H.

    1982-01-01

    Various concepts concerning wear mechanisms and deformation behavior observed in the sliding wear track are surveyed. The mechanisms for wear fragment formation is discussed on the basis of adhesion. The wear process under unlubricated sliding conditions is explained in relation to the concept of adhesion at the interface during the sliding process. The mechanism for tearing away the surface layer from the contact area and forming the sliding track contour is explained by assuming the simplified process of material removal based on the adhesion theory.

  10. Advances in light curing adhesives

    NASA Astrophysics Data System (ADS)

    Bachmann, Andy

    2001-11-01

    This paper describes the development of a new family of light curing adhesives containing a new reactive additive previously not used in optical grade light curing adhesives are obtained with the addition of functionalized cellulositics. Outgassing as low as 10-6 grams/gram has been observed based on headspace sampling. Other additives have lowered the shrinkage rates of positioning adhesives from near 1 percent to less than 0.1 percent with fractional, percentage movements over thermal range of -40 degrees C to +200 degrees C.

  11. Non-thermal atmospheric plasmas in dental restoration: improved resin adhesive penetration

    PubMed Central

    Zhang, Ying; Yu, Qingsong; Wang, Yong

    2014-01-01

    Objective To investigate the influence of non-thermal plasma treatment on the penetration of a model dental adhesive into the demineralized dentin. Methods Prepared dentin surfaces were conditioned with Scotchbond Universal etchant for 15 s and sectioned equally perpendicular to the etched surfaces. The separated halves were randomly selected for treatment with an argon plasma brush (input current 6 mA, treatment time 30 s) or gentle argon air blowing (treatment time 30 s, as control). The plasma-treated specimens and control specimens were applied with a model adhesive containing 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]-propane (BisGMA) and 2-hydroxyethyl methacrylate (HEMA) (mass ratio of 30/70), gently air-dried for 5 s, and light-cured for 20 s. Cross-sectional specimens were characterized using micro-Raman spectral mapping across the dentin, adhesive/dentin interface, and adhesive layer at 1∼micron spatial resolution. SEM was also employed to examine the adhesive/dentin interfacial morphology. Results The micro-Raman result disclosed that plasma treatment significantly improved the penetration of the adhesive, evidenced by the apparently higher content of the adhesive at the adhesive/dentin interface as compared to the control. Specifically, the improvement of the adhesive penetration using plasma technique was achieved by dramatically enhancing the penetration of hydrophilic monomer (HEMA), while maintaining the penetration of hydrophobic monomer (BisGMA). Morphological observation at the adhesive/dentin interface using SEM also confirmed the improved adhesive penetration. The results further suggested that plasma treatment could benefit polymerization of the adhesive, especially in the interface region. Conclusion The significant role of the non-thermal plasma brush in improving the adhesive penetration into demineralized dentin has been demonstrated. The results obtained may offer a better prospect of using plasma in dental restoration to

  12. Bond strength of adhesives to dentin contaminated with smoker’s saliva

    PubMed Central

    Oguri, Makoto; O’Keefe, Kathy; Dusevish, Vladimir; Spencer, Paulette; Powers, John M.; Marshall, Grayson W.

    2010-01-01

    The purpose of this study was to determine the effects of contamination with smoker’s and non-smoker’s saliva on the bond strength of resin composite to superficial dentin using different adhesive systems. The interfacial structure between the resin and dentin was evaluated for each treatment using environmental scanning electron microscopy (ESEM). Freshly extracted human molars were ground with 600-grit SiC paper to expose the superficial dentin. Adhesives [One-Up-Bond-F-Plus (OUFP) and Adper-Prompt-L-Pop (APLP)] and resin composite (TPH-Spectrum) were bonded to the dentin (n = 8/group, 180 total specimens) under five surface conditions: control (adhesive applied following manufacturers’ instructions); saliva, then 5-s air dry, then adhesive; adhesive, saliva, 5-s air dry; adhesive, saliva, 5-s water rinse, 5-s air dry (ASW group); and adhesive, saliva, 5-s water rinse, 5-s air dry, reapply adhesive (ASWA group). After storage in water at 37°C for 24 h, the specimens were debonded under tension at a speed of 0.5 mm/min. ESEM photomicrographs of the dentin/adhesive interfaces were taken. Mean bond strength ranged from 8.1 to 24.1 MPa. Fisher’s protected least significant difference (P = 0.05) intervals for critical adhesive, saliva, and surface condition differences were 1.3, 1.3, and 2.1 MPa, respectively. There were no significant differences in bond strength to dentin between contamination by smoker’s and non-smoker’s saliva, but bond strengths were significantly different between adhesive systems, with OUFP twice as strong as APLP under almost all conditions. After adhesive application and contamination with either smoker’s or nonsmoker’s saliva followed by washing and reapplication of the adhesive (ASWA group), the bond strength of both adhesive systems was the same as that of the control group. PMID:20155506

  13. Instantly switchable adhesion of bridged fibrillar adhesive via gecko-inspired detachment mechanism and its application to a transportation system

    NASA Astrophysics Data System (ADS)

    Bae, Won-Gyu; Kim, Doogon; Suh, Kahp-Yang

    2013-11-01

    Inspired by the exceptional climbing ability of gecko lizards, artificial fibrillar adhesives have been extensively studied over the last decade both experimentally and theoretically. Therefore, a new leap towards practical uses beyond the academic horizon is timely and highly anticipated. To this end, we present a fibrillar adhesive in the form of bridged micropillars and its application to a transportation system with the detachment mechanism inspired by the climbing behaviour of gecko lizards. The adhesive shows strong normal attachment (~30 N cm-2) as well as easy and fast detachment within 0.5 s without involving complex dynamic mechanisms or specific stimulus-responsive materials. The fabrication of the bridged micropillars consists of replica moulding of polydimethylsiloxane (PDMS) micropillars, transfer of the PDMS precursor to the heads of the micropillars, and inverse placement on an inert Teflon-coated surface. Owing to the spontaneous interconnections of low viscosity PDMS precursor, bridged micropillars with a uniform capping nanomembrane (~800 nm thickness) are formed over a large area. Interestingly, macroscopic adhesion in the normal direction can be immediately switched between on and off states by changing the two detachment modes of pulling and peeling, respectively. To prove the potential of the fibrillar adhesive for practical use, an automated transportation system is demonstrated for lifting and releasing a mass of stacked glass slides over 1000 cycles of attachment and detachment.Inspired by the exceptional climbing ability of gecko lizards, artificial fibrillar adhesives have been extensively studied over the last decade both experimentally and theoretically. Therefore, a new leap towards practical uses beyond the academic horizon is timely and highly anticipated. To this end, we present a fibrillar adhesive in the form of bridged micropillars and its application to a transportation system with the detachment mechanism inspired by the

  14. Fatigue crack propagation at polymer adhesive interfaces

    SciTech Connect

    Ritter, J.E.

    1996-12-31

    Delamination of polymer adhesive interfaces often occurs due to slow crack growth under either monotonic or cyclic loading. The author`s previous research showed that moisture-assisted crack growth at epoxy/glass and epoxy acrylate/glass interfaces under monotonic loading was directly related to the applied energy release rate and relative humidity and that cyclic loading could enhance crack growth. The purpose of the present research is to compare crack growth along epoxy acrylate/glass and epoxy/PMMA interfaces under monotonic and cyclic loading.

  15. [Retention of adhesive bridges].

    PubMed

    Raes, F; De Boever, J

    1990-01-01

    Since the development of adhesive bridges in the early seventies, the retention and therefore the durability of these bridges has been tremendously improved. To ensure an adequate retention over a number of years different factors have to be considered. Conditioning of the non-precious metal by silanisation, careful acid etching of the enamel and the use of the appropriate composite resin (Panavia Ex) are of prime importance. Furthermore, the meticulous preparation with enough interproximal embrace, occlusal rets, interocclusal clearance of 0.4 mm and cingulum stops is equally important. Care should be taken not to remove all the enamel in the cervical region in preparing a mini chamfer. Including more teeth in the design does not necessarily lead to an improved retention. Teeth with a different mobility should not be included in the same bridge. Besides the material and technical aspects, the whole clinical procedure needs much attention. Only an exact impression, a precise model and a reliable casting technique will provide a metal frame with an optimal marginal adaptation and a close fit. The retention does not depend on one single factor but on the precision of all the necessary clinical steps and on a well-defined selection of the material. In this way a five-year survival rate of close to 90% can be obtained. PMID:2077574

  16. Effects of MMP Inhibitors Incorporated within Dental Adhesives

    PubMed Central

    Almahdy, A.; Koller, G.; Sauro, S.; Bartsch, J.W.; Sherriff, M.; Watson, T.F.; Banerjee, A.

    2012-01-01

    Matrix metalloproteinase (MMP) inhibition has been shown to reduce adhesive bond degradation when applied as a pre-conditioner, adding to clinical steps in the placement of adhesives, but their incorporation within dental adhesives has not been fully explored. This study examined the effect of including 2 MMP inhibitors (BB94 and GM6001) within the primers of 3 commercially available adhesives. Fluorometric assay and zymography showed that adhesives with MMP inhibitors had high affinity toward both synthetic fluorogenic FRET peptides (95%) and dentin powder substrates, respectively. The immediate microtensile bond strength was enhanced for 2 types of adhesives following the addition of both inhibitors. However, no changes were detected between the control and the inhibitor groups following 3-month storage. The modified two-step etch-and-rinse and single-step systems showed less Rhodamine B penetration to the “hybrid layer” and to the “adhesive”, respectively. The incorporation of BB94 and GM6001 within the primers resulted in the inhibition of dentin MMPs with improved initial bond strength and enhanced sealing ability. PMID:22518030

  17. Bacterial Adhesion of Porphyromonas Gingivalis on Provisional Fixed Prosthetic Materials

    PubMed Central

    Zortuk, Mustafa; Kesim, Servet; Kaya, Esma; Özbilge, Hatice; Kiliç, Kerem; Çölgeçen, Özlem

    2010-01-01

    Background: When provisional restorations are worn for long term period, the adhesion of bacteria becomes a primary factor in the development of periodontal diseases. The aims of this study were to evaluate the surface roughness and bacterial adhesion of four different provisional fixed prosthodon-tic materials. Methods: Ten cylindrical specimens were prepared from bis-acrylic composites (PreVISION CB and Protemp 3 Garant), a light-polymerized composite (Revotek LC), and a polymethyl methacrylate-based (Dentalon) provisional fixed prosthodontic materials. Surface roughness was assessed by profilometry. The bacterial adhesion test was applied using Porphyromonas gingivalis (P. gingivalis) and spectro-fluorometric method. Statistical analysis was performed using ANOVA and Dunnett t-tests. Results: All tested materials were significantly rougher than glass (P < 0.05). Revotek LC had the greatest fluorescence intensity, PreVISION and Protemp 3 Garant had moderate values and all of them had significantly more bacterial adhesion compared to glass (P < 0.05). Dentalon had the lowest fluorescence intensity among the provisional fixed prosthodontic materials. Conclusion: The quantity of bacterial adhesion and surface roughness differed among the assessed provisional fixed prosthodontic materials. The light-polymerized provisional material Revotek LC had rougher surface and more bacterial adhesion compared with the others. PMID:21448445

  18. Optimization and experimental validation of electrostatic adhesive geometry

    NASA Astrophysics Data System (ADS)

    Ruffatto, D.; Shah, J.; Spenko, M.

    This paper introduces a method to optimize the electrode geometry of electrostatic adhesives for robotic gripping, attachment, and manipulation applications. Electrostatic adhesion is achieved by applying a high voltage potential, on the order of kV, to a set of electrodes, which generates an electric field. The electric field polarizes the substrate material and creates an adhesion force. Previous attempts at creating electro-static adhesives have shown them to be effective, but researchers have made no effort to optimize the electrode configuration and geometry. We have shown that by optimizing the geometry of the electrode configuration, the electric field strength, and therefore the adhesion force, is enhanced. To accomplish this, Comsol Multiphysics was utilized to evaluate the average electric field generated by a given electrode geometry. Several electrode patterns were evaluated, including parallel conductors, concentric circles, Hilbert curves (a fractal geometry) and spirals. The arrangement of the electrodes in concentric circles with varying electrode widths proved to be the most effective. The most effective sizing was to use the smallest gap spacing allowable coupled with a variable electrode width. These results were experimentally validated on several different surfaces including drywall, wood, tile, glass, and steel. A new manufacturing process allowing for the fabrication of thin, conformal electro-static adhesive pads was utilized. By combining the optimized electrode geometry with the new fabrication process we are able to demonstrate a marked improvement of up to 500% in shear pressure when compared to previously published values.

  19. Time course of isocyanate emission from curing polyurethane adhesives

    NASA Astrophysics Data System (ADS)

    Wirts, M.; Grunwald, D.; Schulze, D.; Uhde, E.; Salthammer, T.

    The time course of isocyanate emission from curing polyurethane (PUR) resins and adhesives was studied in two different emission test chambers. The measured emissions were strongly dependent on the type of experiment. The adhesives under investigation contained different types of diisocyanates and are used for different applications, e.g. for fixing of textile floor coverings. The influence of the curing mechanism on emission was studied by comparing the emission curves of one-component adhesives (OCA) and two-component adhesives (TCA). For TCA, the decrease in isocyanate emission was found to follow a two-step process during curing. In the first step, the emission is dominated by surface evaporation, and the decay of emission is mainly caused by the decrease in monomer content due to reaction. In the second step, the release is limited by internal diffusion. The influence of monomer reactivity on the emission profile could be demonstrated for 2,4'- and 4,4'-MDI. The less-reactive 2,4'-MDI caused prolonged emission. A strong dependence of emission rates on temperature and adhesive viscosity was also obvious. The evaluation of emission rates of different commercially available PUR adhesives showed the highest emission from systems that are applied at high temperatures. The high reactivity of diisocyanates requires special techniques for sampling and analysis. Therefore, an analytical method using HPLC-MS/MS was developed that enables limits of quantitation of <5 ng/m 3 with a sampling volume of 100 l.

  20. Amygdalin influences bladder cancer cell adhesion and invasion in vitro.

    PubMed

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Tsaur, Igor; Nelson, Karen; Pfitzenmaier, Jesco; Haferkamp, Axel; Blaheta, Roman A

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK) and total and activated focal adhesion kinase (FAK) were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines) may depend upon the cancer cell type. PMID:25333694

  1. Amygdalin Influences Bladder Cancer Cell Adhesion and Invasion In Vitro

    PubMed Central

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Tsaur, Igor; Nelson, Karen; Pfitzenmaier, Jesco

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK) and total and activated focal adhesion kinase (FAK) were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines) may depend upon the cancer cell type. PMID:25333694

  2. Switching stiction and adhesion of a liquid on a solid

    NASA Astrophysics Data System (ADS)

    Mertens, Stijn F. L.; Hemmi, Adrian; Muff, Stefan; Gröning, Oliver; de Feyter, Steven; Osterwalder, Jürg; Greber, Thomas

    2016-06-01

    When a gecko moves on a ceiling it makes use of adhesion and stiction. Stiction—static friction—is experienced on microscopic and macroscopic scales and is related to adhesion and sliding friction. Although important for most locomotive processes, the concepts of adhesion, stiction and sliding friction are often only empirically correlated. A more detailed understanding of these concepts will, for example, help to improve the design of increasingly smaller devices such as micro- and nanoelectromechanical switches. Here we show how stiction and adhesion are related for a liquid drop on a hexagonal boron nitride monolayer on rhodium, by measuring dynamic contact angles in two distinct states of the solid–liquid interface: a corrugated state in the absence of hydrogen intercalation and an intercalation-induced flat state. Stiction and adhesion can be reversibly switched by applying different electrochemical potentials to the sample, causing atomic hydrogen to be intercalated or not. We ascribe the change in adhesion to a change in lateral electric field of in-plane two-nanometre dipole rings, because it cannot be explained by the change in surface roughness known from the Wenzel model. Although the change in adhesion can be calculated for the system we study, it is not yet possible to determine the stiction at such a solid–liquid interface using ab initio methods. The inorganic hybrid of hexagonal boron nitride and rhodium is very stable and represents a new class of switchable surfaces with the potential for application in the study of adhesion, friction and lubrication.

  3. Single Cell Adhesion Assay Using Computer Controlled Micropipette

    PubMed Central

    Salánki, Rita; Hős, Csaba; Orgovan, Norbert; Péter, Beatrix; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint

    2014-01-01

    Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today’s techniques typically have an extremely low throughput (5–10 cells per day). Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min). We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a sub

  4. Seafood delicacy makes great adhesive

    ScienceCinema

    Idaho National Laboratory - Frank Roberto, Heather Silverman

    2010-01-08

    Technology from Mother Nature is often hard to beat, so Idaho National Laboratory scientistsgenetically analyzed the adhesive proteins produced by blue mussels, a seafood delicacy. Afterobtaining full-length DNA sequences encoding these proteins, reprod

  5. Seafood delicacy makes great adhesive

    SciTech Connect

    Idaho National Laboratory - Frank Roberto, Heather Silverman

    2008-03-26

    Technology from Mother Nature is often hard to beat, so Idaho National Laboratory scientistsgenetically analyzed the adhesive proteins produced by blue mussels, a seafood delicacy. Afterobtaining full-length DNA sequences encoding these proteins, reprod

  6. Uniformly dense polymeric foam body

    DOEpatents

    Whinnery, Jr., Leroy

    2003-07-15

    A method for providing a uniformly dense polymer foam body having a density between about 0.013 g/cm.sup.3 to about 0.5 g/cm.sup.3 is disclosed. The method utilizes a thermally expandable polymer microsphere material wherein some of the microspheres are unexpanded and some are only partially expanded. It is shown that by mixing the two types of materials in appropriate ratios to achieve the desired bulk final density, filling a mold with this mixture so as to displace all or essentially all of the internal volume of the mold, heating the mold for a predetermined interval at a temperature above about 130.degree. C., and then cooling the mold to a temperature below 80.degree. C. the molded part achieves a bulk density which varies by less then about .+-.6% everywhere throughout the part volume.

  7. Adhesive for polyester films cures at room temperature, has high initial tack

    NASA Technical Reports Server (NTRS)

    Christian, C. M.; Fust, G. W.; Welchel, C. J.

    1966-01-01

    Quick room-temperature-cure adhesive bonds polyester-insulated flat electrical cables to metal surfaces and various other substrates. The bond strength of the adhesive may be considerably increased by first applying a commercially available polyamide primer to the polyester film.

  8. 49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When... requirements apply. Except as otherwise provided in this part, the description “Paint” is the proper...

  9. 49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When... requirements apply. Except as otherwise provided in this part, the description “Paint” is the proper...

  10. 49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When... requirements apply. Except as otherwise provided in this part, the description “Paint” is the proper...

  11. Improved uniformity of multiphase ceramic-metal plasma-sprayed coats

    NASA Technical Reports Server (NTRS)

    Nakamura, H. H.; Logan, W. R.; Harada, Y.; Jacobson, T. P.; Sliney, H. E.

    1982-01-01

    Processing-technology development of a multiphase, self-lubricating, plasma-spray powder resulted in greater uniformity and reproducibility of plasma-sprayed coats. The effect of particle-size variation, binder concentration, and reproducible processing parameters are reported. Greater adhesive strengths of coats to substrates were achieved by particle-size variation, use of an intermediate bond coat such as Ni-Cr, or heat treatment. Quantitative analyses of polished, coated specimens are also given.

  12. Attitudes of Parents about School Uniforms.

    ERIC Educational Resources Information Center

    West, Charles K.; Tidwell, Diane K.; Bomba, Anne K.; Elmore, Patsy Alexander

    1999-01-01

    Responses from 144 parents of fourth graders showed that 56% favored uniforms in public schools; most agreed that uniforms contributed to a conducive learning environment, promoted school spirit, and discouraged violence; and most disagreed that uniforms cost more than other types of clothing. (SK)

  13. 15 CFR 400.43 - Uniform treatment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Uniform treatment. 400.43 Section 400... Zones and Administrative Requirements § 400.43 Uniform treatment. Pursuant to Section 14 of the FTZ Act... uniform treatment under like conditions. Treatment of zone participants within a zone...

  14. 15 CFR 400.43 - Uniform treatment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 2 2014-01-01 2014-01-01 false Uniform treatment. 400.43 Section 400... Zones and Administrative Requirements § 400.43 Uniform treatment. Pursuant to Section 14 of the FTZ Act... uniform treatment under like conditions. Treatment of zone participants within a zone...

  15. Acoustic emission analysis: A test method for metal joints bonded by adhesives

    NASA Technical Reports Server (NTRS)

    Brockmann, W.; Fischer, T.

    1978-01-01

    Acoustic emission analysis is applied to study adhesive joints which had been subjected to mechanical and climatic stresses, taking into account conditions which make results applicable to adhesive joints used in aerospace technology. Specimens consisting of the alloy AlMgSi0.5 were used together with a phenolic resin adhesive, an epoxy resin modified with a polyamide, and an epoxy resin modified with a nitrile. Results show that the acoustic emission analysis provides valuable information concerning the behavior of adhesive joints under load and climatic stresses.

  16. Nano-anisotropic surface coating based on drug immobilized pendant polymer to suppress macrophage adhesion response.

    PubMed

    Kaladhar, K; Renz, H; Sharma, C P

    2015-04-01

    Exploring drug molecules for material design, to harness concepts of nano-anisotropy and ligand-receptor interactions, are rather elusive. The aim of this study is to demonstrate the bottom-up design of a single-step and bio-interactive polymeric surface coating, based on drug based pendant polymer. This can be applied on to polystyrene (PS) substrates, to suppress macrophage adhesion and spreading. The drug molecule is used in this coating for two purposes. The first one is drug as a "pendant" group, to produce nano-anisotropic properties that can enable adhesion of the coatings to the substrate. The second purpose is to use the drug as a "ligand", to produce ligand-receptor interaction, between the bound ligand and receptors of albumin, to develop a self-albumin coat over the surface, by the preferential binding of albumin in biological environment, to reduce macrophage adhesion. Our in silico studies show that, diclofenac (DIC) is an ideal drug based "ligand" for albumin. This can also act as a "pendant" group with planar aryl groups. The combination of these two factors can help to harness, both nano-anisotropic properties and biological functions to the polymeric coating. Further, the drug, diclofenac (DIC) is immobilized to the polyvinyl alcohol (PVA), to develop the pendant polymer (PVA-DIC). The interaction of bound DIC with the albumin is a ligand-receptor based interaction, as per the studies by circular dichroism, differential scanning calorimetry, and SDS-PAGE. The non-polar π-π* interactions are regulating; the interactions between PVA bound DIC-DIC interactions, leading to "nano-anisotropic condensation" to form distinct "nano-anisotropic segments" inside the polymeric coating. This is evident from, the thermo-responsiveness and uniform size of nanoparticles, as well as regular roughness in the surface coating, with similar properties as that of nanoparticles. In addition, the hydrophobic DIC-polystyrene (PS) interactions, between the PVA

  17. Uniform Gold Nanorod Arrays from Polyethylenimine-coated Alumina Templates

    PubMed Central

    Moon, Jeong-Mi; Wei, Alexander

    2008-01-01

    Monolithic Au nanorod arrays can be grown by electrodeposition in Au-backed nanoporous alumina templates using polyethylenimine (PEI) as an adhesion layer, with excellent height control between 300 nm and 1.4 microns. The local height distribution can be extremely narrow with relative standard deviations well below 2%. The uniform growth rate appears to be determined by the adsorbed PEI matrix, which controls the growth kinetics of the grains comprising the nanorods. The nanorods can be retained as free-standing 2D arrays after careful removal of the AAO template. Reflectance spectroscopy reveals a collective plasmon mode with a maximum near 1.2 μm, in accord with recent calculations for 2D arrays of closely spaced cylindrical nanoparticles. PMID:16375304

  18. Effect of adhesive debond on stress-intensity factors in bonded composite panels

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1988-01-01

    Stress-intensity factors are calculated for a cracked infinite sheet adhesively bonded to a stringer, and debonding of the adhesive layer is predicted. The stringer is modeled as a semiinfinite sheet. Adhesive nonlinearity is also included. Both the sheet and stringer are treated as homogeneous, orthotropic materials, a set of integral equations is formulated and solved to obtain the adhesive shear stresses and crack-tip stress-intensity factors. Adhesive debonding is predicted using a rupture criterion based on the combined adhesive stresses. A through-the-thickness crack is located in the infinite sheet perpendicular to the edge of the stringer. When the crack is not under the stringer, the debond extends along the edge of the stringer. When the crack tip is beneath the stringer, the debond extends to the crack tip, then along the edge of the stringer. Stress levels required for debond initiation decrease as the crack tip is moved beneath the stringer. With a nonlinear adhesive, the debond initiates at higher applied stress levels than in linear adhesive cases. Compared with the linear adhesive solution, modeling a nonlinear adhesive causes the stress-intensity factor to decrease when debonding is included.

  19. Process Sprays Uniforms Plasma Coatings

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Jacobson, T. P.; Walther, G. C.; Nakamura, H. H.

    1983-01-01

    Composite-powder processing procedure developed along with plasma-spray parameters to achieve homogeneous, well-bonded, low-porosity, self-lubricating coatings. Multicomponent plasma coatings are applied without segretation of components.

  20. Investigation of organic adhesives for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1975-01-01

    The properties of organic adhesives were investigated to acquire information for a guideline document regarding the selection of adhesives for use in high reliability hybrid microcircuits. Specifically, investigations were made of (1) alternate methods for determining the outgassing of cured adhesives, (2) effects of long term aging at 150 C on the electrical properties of conductive adhesives, (3) effects of shelf life age on adhesive characteristics, (4) bond strengths of electrically conductive adhesives on thick film gold metallization, (5) a copper filled adhesive, (6) effects of products outgassed from cured adhesives on device electrical parameters, (7) metal migration from electrically conductive adhesives, and (8) ionic content of electrically insulative adhesives. The tests performed during these investigations are described, and the results obtained are discussed.

  1. Adhesion enhancement of indium tin oxide (ITO) coated quartz optical fibers

    NASA Astrophysics Data System (ADS)

    Wang, Yihua; Liu, Jing; Wu, Xu; Yang, Bin

    2014-07-01

    Transparent conductive indium tin oxide (ITO) film was prepared on optical fiber through a multi-step sol-gel process. The influence of annealing temperature on the adhesion of ITO coated optical fibers was studied. Different surface treatments were applied to improve the adhesion between ITO film and quartz optical fiber. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD), UV-vis spectrophotometer and Avometer were used to characterize the morphology, crystal structure and photo-electric properties. A thermal shock test was used to evaluate the adhesion. The result shows that the adhesion between ITO film and quartz optical fiber can be strongly influenced by the annealing process, and optimal adhesion can be acquired when annealing temperature is 500 °C. Surface treatments of ultrasonic cleaning and the application of surface-active agent have effectively enhanced the adhesion and photo-electric properties of indium tin oxide film coated quartz optical fiber.

  2. Damage analysis in composite materials and design of adhesive joints for composite structures

    NASA Astrophysics Data System (ADS)

    Zhang, Jian

    Interfacial debonding and damage evolution in composites. The local imperfect interface models were developed for the single spherical and cylindrical inclusion composites. In contrast with the classical results under perfect interface conditions, the strain and stress fields were no longer uniform in the inclusions. To facilitate using the results in micromechanics models, the average stress concentration factors and average Eshelby tensor were derived under imperfect interface conditions. Moreover, the energy release was also discussed for a single inclusion during interface deterioration. Evolution of distributed damage in heterogeneous solids was modeled using the Transformation Field Analysis method and the selected models of interface debonding in fibrous or particulate composites. In this approach, stress changes caused by local debonding under increasing overall loads were represented by residual stresses generated by damage-equivalent eigenstrains that acted together with the applied mechanical loading program and physically based local transformation strains on an undamaged elastic aggregate. Interaction of the actual and equivalent eigenstrains with the mechanical loads at any state of damage was described by certain transformation influence functions which provide explicit expressions for the local stresses at any current damage state. Damage rates were then derived from a prescribed probability distribution of interface strength and local energy released by debonding. Numerical simulations of damage evolution in a glass/elastomer composite indicate which of these two conditions controlled the process at different reinforcement densities and overall stress states. In general, the energy released by a single particle at given overall stress decreased with increasing reinforcement density, and in proportion to particle size. Therefore, dense reinforcement by smaller-diameter particles should enhance damage resistance of composite systems. Analysis and

  3. Presence of adhesive vesicles in the mycoherbicide Alternaria helianthi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alternaria helianthi conidia have been shown to cause disease on common cocklebur. Conidia were applied to slides made hydrophobic by coating with dimethyldicholorosilane (mimics leaf surface), then rinsed and treated with FITC-Con A to stain the adhesive material. Alternaria helianthi coni...

  4. The influence of adhesive on fiber Bragg grating strain sensor

    NASA Astrophysics Data System (ADS)

    Chen, Jixuan; Gong, Huaping; Jin, Shangzhong; Li, Shuhua

    2009-08-01

    A fiber Bragg grating (FBG) sensor was fixed on the uniform strength beam with three adhesives, which were modified acrylate, glass glue and epoxy resin. The influence of adhesive on FBG strain sensor was investigated. The strain of FBG sensor was varied by loading weight to the uniform strength beam. The wavelength shift of the FBG sensor fixed by the three kinds of adhesive were measured with different weight at the temperatures 0°C, 10°C, 20°C, 30°C, 40°C. The linearity, sensitivity and their stability at different temperature of FBG sensor which fixed by every kind of adhesives were analyzed. The results show that, the FBG sensor fixed by the modified acrylate has a high linearity, and the linear correlation coefficient is 0.9996. It also has a high sensitivity which is 0.251nm/kg. The linearity and the sensitivity of the FBG sensor have a high stability at different temperatures. The FBG sensor fixed by the glass glue also has a high linearity, and the linear correlation coefficient is 0.9986, but it has a low sensitivity which is only 0.041nm/kg. The linearity and the sensitivity of the FBG sensor fixed by the glass glue have a high stability at different temperatures. When the FBG sensor is fixed by epoxy resin, the sensitivity and linearity is affected significantly by the temperature. When the temperature changes from 0°C to 40°C, the sensitivity decreases from 0.302nm/kg to 0.058nm/kg, and the linear correlation coefficient decreases from 0.9999 to 0.9961.

  5. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    NASA Astrophysics Data System (ADS)

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  6. Optimizing Adhesive Design by Understanding Compliance.

    PubMed

    King, Daniel R; Crosby, Alfred J

    2015-12-23

    Adhesives have long been designed around a trade-off between adhesive strength and releasability. Geckos are of interest because they are the largest organisms which are able to climb utilizing adhesive toepads, yet can controllably release from surfaces and perform this action over and over again. Attempting to replicate the hierarchical, nanoscopic features which cover their toepads has been the primary focus of the adhesives field until recently. A new approach based on a scaling relation which states that reversible adhesive force capacity scales with (A/C)(1/2), where A is the area of contact and C is the compliance of the adhesive, has enabled the creation of high strength, reversible adhesives without requiring high aspect ratio, fibrillar features. Here we introduce an equation to calculate the compliance of adhesives, and utilize this equation to predict the shear adhesive force capacity of the adhesive based on the material components and geometric properties. Using this equation, we have investigated important geometric parameters which control force capacity and have shown that by controlling adhesive shape, adhesive force capacity can be increased by over 50% without varying pad size. Furthermore, we have demonstrated that compliance of the adhesive far from the interface still influences shear adhesive force capacity. Utilizing this equation will allow for the production of adhesives which are optimized for specific applications in commercial and industrial settings. PMID:26618537

  7. Blister Test for Measurements of Adhesion and Adhesion Degradation of Organic Polymers on AA2024-T3

    NASA Astrophysics Data System (ADS)

    Rincon Troconis, Brendy Carolina

    A key parameter for the performance of corrosion protective coatings applied to metals is adhesion. Surface preparation prior to coating application is known to be critical, but there is a lack of understanding of what controls adhesion. Numerous techniques have been developed in the last decades to measure the adhesion strength of coatings to metals. Nonetheless, they are generally non-quantitative, non-reproducible, performed in dry conditions, or overestimate adhesion. In this study, a quantitative and reproducible technique, the Blister Test (BT), is used. The BT offers the ability to study the effects of a range of parameters, including the presence or absence of a wetting liquid, and simulates the stress situation in the coating/substrate interface. The effects of roughness and surface topography were studied by the BT and Optical Profilometry, using AA2024-T3 substrates coated with polyvinyl butyral (PVB). Random abrasion generated a surface with lower average roughness than aligned abrasion due to the continual cross abrasion of the grooves. The BT could discern the effects of different mechanical treatments. An adhesion strength indicator was defined and found to be a useful parameter. The effectiveness of standard adhesion techniques such as ASTM D4541 (Pull-off Test) and ASTM D3359 (Tape Test) was compared to the BT. Also, different attempts to measure adhesion and adhesion degradation of organic polymers to AA2024-T3 were tested. The pull-off test does not produce adhesive failure across the entire interface, while the tape test is a very qualitative technique and does not discern between the effects of different coating systems on the adhesion performance. The BT produces adhesive failure of the primer studied, is very reproducible, and is able to rank different coating systems. Therefore, it was found to be superior to the others. The approaches tested for adhesion degradation were not aggressive enough to have a measurable effect. The effects of

  8. Uniform-burning matrix burner

    DOEpatents

    Bohn, Mark S.; Anselmo, Mark

    2001-01-01

    Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

  9. Innovative Electrostatic Adhesion Technologies

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and

  10. Innovative Electrostatic Adhesion Technologies

    NASA Astrophysics Data System (ADS)

    Gagliano, L.; Bryan, T.; Williams, S.; McCoy, B.; MacLeod, T.

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and development

  11. Elastocapilllarity in insect adhesion: the case of beetle adhesive hair

    NASA Astrophysics Data System (ADS)

    Gernay, Sophie; Gilet, Tristan; Lambert, Pierre; Federle, Walter

    2014-11-01

    The feet of many insects are covered with dense arrays of hair-like structures called setae. Liquid capillary bridges at the tip of these micrometric structures are responsible for the controlled adhesion of the insect on a large variety of substrates. The resulting adhesion force can exceed several times the body weight of the insect. The high aspect-ratio of setae suggests that flexibility is a key ingredient in this capillary-based adhesion mechanism. There is indeed a strong coupling between their elastic deformation and the shape of the liquid meniscus. In this experimental work, we observe and quantify the local deflection of dock beetle seta tips under perpendicular loading using interference microscopy. Our results are then interpreted in the light of an analytic model of elastocapillarity. This research has been funded by the FRIA/FNRS and the Interuniversity Attraction Poles Programme (IAP 7/38 MicroMAST) initiated by the Belgian Science Policy Office.

  12. Effectiveness and biocompatibility of a novel biological adhesive application for repair of meniscal tear on the avascular zone

    NASA Astrophysics Data System (ADS)

    Inoue, Takahito; Taguchi, Tetsushi; Imade, Shinji; Kumahashi, Nobuyuki; Uchio, Yuji

    2012-12-01

    We have investigated the effectiveness and safety of a newly developed biological adhesive for repair of meniscal tear. The adhesive was composed of disuccinimidyl tartrate (DST) as a crosslinker and human serum albumin (HSA) as a hardener. To determine adequate concentration, bonding strength was measured using a tensiometer 5 min after applying the adhesive on the avascular zone tear of porcine meniscus; it was compared with the strengths of commercially available cyanoacrylate-based and fibrin-based adhesives. In vivo examination was performed using Japanese white rabbits, creating longitudinal tears on the avascular zone of meniscus and applying DST-HSA adhesive. Three months after operation the rabbits were sacrificed and tension test and histological evaluation were performed. Bonding strength was measured in three porcine meniscus groups: (i) only suturing, (ii) suturing after applying the adhesive on surface and (iii) suturing using an adhesive-soaked suture. The optimum concentrations were 0.1 mmol of DST and 42 w/v% of HAS. Bonding strength was greatest with cyanoacrylate-based adhesive, followed by DST-HSA adhesive, and fibrin-based adhesive. No inflammation was observed in the synovium or surrounding tissues 3 months after using the DST-HSA adhesive. Bonding strength was greatest with DST-HSA adhesive-soaked suturing group (77 ± 6 N), followed by suturing only group (61 ± 5 N) and surface adhesive application group (60 ± 8 N). The newly developed DST-HSA adhesive is considered safe and may be effective in enforcement of bonding of avascular zone tear of the meniscus.

  13. New Experimental Sample for Shear Testing of Adhesively Bonded Assemblies

    NASA Astrophysics Data System (ADS)

    Challita, Georges; Othman, Ramzi; Guegan, Pierrick; Khalil, Khalid; Poitou, Arnaud

    In this paper, Split Hopkinson Bar technique was used to investigate the shear behaviour of adhesively bonded assemblies at high rates of loading. New sample geometry was adopted so that the compressive wave is transformed in a shear loading in the sample. Samples are conditioned at 20°C and 50% of hygrometry to eliminate any interference with temperature and humidity effects. The new technique is applied to an assembly built with a cyanoacrylate based adhesive and a metallic (Steel) adherent. They are found to be highly rate sensitive.

  14. Adhesion strength of sputtered TiAlN-coated WC insert tool

    NASA Astrophysics Data System (ADS)

    Budi, Esmar; Razali, M. Mohd.; Nizam, A. R. Md.

    2013-09-01

    The adhesion strength of TiAlN coating that deposited by using DC magnetron sputtering on WC insert tool are studied. TiAlN coating are deposited on Tungsten Carbide (WC) insert tool by varying negatively substrate bias from 79 to 221 volt and nitrogen flow rate from 30 to 72 sccm. The adhesion strength are obtained by using Rockwell indentation test method with a Brale diamond at applied load of 60,100 and 150 kgf. The lateral diameter of indentation is plotted on three different applied loads and the adhesion strength of TiAlN coating was obtained from the curved slopes at 100 and 150 kgf. The lower curve slop indicated better adhesion strength. The results shows that the adhesion strength of sputterred TiAlN coating tend to increase as the negatively substrate bias and nitrogen flow rate are increased.

  15. Adhesion strength of sputtered TiAlN-coated WC insert tool

    SciTech Connect

    Budi, Esmar; Razali, M. Mohd.; Nizam, A. R. Md.

    2013-09-09

    The adhesion strength of TiAlN coating that deposited by using DC magnetron sputtering on WC insert tool are studied. TiAlN coating are deposited on Tungsten Carbide (WC) insert tool by varying negatively substrate bias from 79 to 221 volt and nitrogen flow rate from 30 to 72 sccm. The adhesion strength are obtained by using Rockwell indentation test method with a Brale diamond at applied load of 60,100 and 150 kgf. The lateral diameter of indentation is plotted on three different applied loads and the adhesion strength of TiAlN coating was obtained from the curved slopes at 100 and 150 kgf. The lower curve slop indicated better adhesion strength. The results shows that the adhesion strength of sputterred TiAlN coating tend to increase as the negatively substrate bias and nitrogen flow rate are increased.

  16. Improvement of uniformity in a weakly magnetized inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Lee, W. H.; Cheong, H. W.; Kim, J. W.; Whang, K. W.

    2015-12-01

    Magnetic fields are applied to inductively coupled plasma (ICP) to achieve high plasma densities using electromagnets. If the magnetic fields are set up such that the magnitude of magnetic flux density on the substrate decreases with both radial and axial distances from the substrate’s center (here after referred to as M-ICP-A), the plasma density increases by 237% compared with that for ICP although the non-uniformity of the plasma density for M-ICP-A (11.1%) is higher than that for ICP (10.9%). As the rate of decrease in the magnitude of magnetic flux density on the substrate increases both radially and axially, the non-uniformity in the plasma density increases further. The increase in the non-uniformity for M-ICP-A was confirmed to arise from the flute instability. To suppress the flute instability, we arranged the magnitude of magnetic flux density on the substrate to increase with increasing distance from the substrate center both radially and axially (here after referred to as M-ICP-V). In this configuration, plasma fluctuations were not observed, hence the plasma density non-uniformity was lowered to 8.1%, although the measured plasma density was higher than that for M-ICP-A. The oxide etch-rate non-uniformity in M-ICP-V (2.5%) was also lower than that for ICP (5.2%) or that for M-ICP-A (21.4%).

  17. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St.clair, Terry L.

    1988-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  18. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St. Clair, Terry L.

    1989-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  19. Capillarity-based switchable adhesion

    PubMed Central

    Vogel, Michael J.; Steen, Paul H.

    2010-01-01

    Drawing inspiration from the adhesion abilities of a leaf beetle found in nature, we have engineered a switchable adhesion device. The device combines two concepts: The surface tension force from a large number of small liquid bridges can be significant (capillarity-based adhesion) and these contacts can be quickly made or broken with electronic control (switchable). The device grabs or releases a substrate in a fraction of a second via a low-voltage pulse that drives electroosmotic flow. Energy consumption is minimal because both the grabbed and released states are stable equilibria that persist with no energy added to the system. Notably, the device maintains the integrity of an array of hundreds to thousands of distinct interfaces during active reconfiguration from droplets to bridges and back, despite the natural tendency of the liquid toward coalescence. We demonstrate the scaling of adhesion strength with the inverse of liquid contact size. This suggests that strengths approaching those of permanent bonding adhesives are possible as feature size is scaled down. In addition, controllability is fast and efficient because the attachment time and required voltage also scale down favorably. The device features compact size, no solid moving parts, and is made of common materials. PMID:20133725

  20. Laboratory evaluation of adhesive systems.

    PubMed

    Barkmeier, W W; Cooley, R L

    1992-01-01

    Adhesive bonding of resin materials to acid-conditioned enamel is a clinically proven technique in preventative, restorative, and orthodontic procedures. Laboratory evaluations of etched-enamel resin bonding have shown excellent bond strengths and the virtual elimination of marginal microleakage. Adhesion to dentin has been more of a challenge. Earlier-generation dentin bonding systems did not yield high bond strengths in the laboratory or prevent marginal microleakage. Newer-generation adhesive systems generally use a dentin conditioner to modify or remove the smear layer and a subsequent application of an adhesive resin bonding agent. Laboratory evaluations of newer systems have shown bond strengths that approach or actually exceed that of etched enamel resin bonding. Bond strengths have improved with the evolution of dentin bonding systems, and microleakage from the cementum/dentin margin has been significantly reduced or prevented with the newer systems. Although laboratory testing of adhesive systems provides a mechanism to screen and compare newly developed systems, clinical trials are essential to document long-term clinical performance. PMID:1470553

  1. A Diagram for Evaluating Delamination of GFRP/Stainless-steel Adhesive Joints by Using Stress Singularity Parameters

    NASA Astrophysics Data System (ADS)

    Iwasa, Masaaki

    Static tests on double-lap and T-type adhesive joints were performed. We developed a device that applies contact pressure to glass-fiber reinforced plastics/stainless-steel double-lap adhesive joints. The device contains a bolt with which a strain gauge is bonded for controlling contact pressure. Using this device, we investigated the effect of contact pressure on the delamination strength of double-lap adhesive joints. We applied tensile shear loading to double-lap adhesive joints under contact pressure to their adhesive interfaces. We found that the delamination strength of the double-lap adhesive joints increased with increasing contact pressure. On the contrary, when we applied compressive shear stress to them, the delamination strength stayed constant. Therefore the delamination strength of double-lap adhesive joints is dominated by normal stress when contact pressure under tensile shear loading is applied. On the other hand, it was dominated by shear stress when contact pressure under compressive shear loading was applied. Then stress singularity parameters for double-lap and T-type adhesive joints were performed by the FEM. Stress distributions near the bonding edge could be expressed by the stress singularity parameters. Finally, a delamination evaluation diagram using stress singularity parameters was developed. This diagram enables us to evaluate the delamination strength of adhesive joints.

  2. How to develop globular proteins into adhesives.

    PubMed

    van der Leeden, M C; Rutten, A A; Frens, G

    2000-05-26

    To make globular proteins suitable for application in adhesives, the specific bonds and interactions which shape their structure have to broken. Only then, a layer of relatively large, flexible and interwoven polymer chains, which are firmly attached to the solid surface by adsorption, can be created. Such a network layer is essential to save the adhesive bond under an applied force, because it can distribute the concentration of stresses generated at the interface into the bulk. Unfolding and swelling of a protein can be achieved by changing the solvent quality. For the globular whey protein beta-lactoglobulin, the optimal conditions for unfolding and swelling is found with 98% formic acid as a solvent. In formic acid, beta-lactoglobulin looses its amphoteric character (it is protonated, probably for approximately 20%). In addition, formic acid is less polar than water and thus a better solvent for the apolar parts of the protein. The swelling and unfolding behaviour of beta-lactoglobulin is studied by viscosity and CD-spectroscopy measurements. For the interpretation of the results we apply the Kuhn formalism that the conformation of a protein can be described in terms of a statistical chain which consists of segments of an average persistence length P. The statistical segment length P, which varies with the experimental conditions, is directly related to the adsorption energy required for a strong adhesion between coil and surface. It determines the depletion energy kT P(-2) m(-2) which must be overcome by specific attraction between side groups of the protein chain and the surface. For beta-lactoglobulin in 98% formic acid, we find a P value of approximately 2.2 nm, pointing at a relatively flexible chain. The minimum net adsorption energy kT P(-2) is then approximately 1 mJ m(-2), a relatively small value to be exceeded. Preliminary results of destructive adhesion tests on beech wood lap-shear joints reveal promising tensile strengths of approximately 2

  3. Adhesion of nanoscale asperities with power-law profiles

    NASA Astrophysics Data System (ADS)

    Grierson, David S.; Liu, Jingjing; Carpick, Robert W.; Turner, Kevin T.

    2013-02-01

    The behavior of single-asperity micro- and nanoscale contacts in which adhesion is present is important for the performance of many small-scale mechanical systems and processes, such as atomic force microscopy (AFM). When analyzing such problems, the bodies in contact are often assumed to have paraboloidal shapes, thus allowing the application of the familiar Johnson-Kendall-Roberts (JKR), Derjaguin-Müller-Toporov (DMT), or Maugis-Dugdale (M-D) adhesive contact models. However, in many situations the asperities do not have paraboloidal shapes and, instead, have geometries that may be better described by a power-law function. An M-D-n analytical model has recently been developed to extend the M-D model to asperities with power-law profiles. We use a combination of M-D-n analytical modeling, finite element (FE) analysis, and experimental measurements to investigate the behavior of nanoscale adhesive contacts with non-paraboloidal geometries. Specifically, we examine the relationship between pull-off force, work of adhesion, and range of adhesion for asperities with power-law-shaped geometries. FE analysis is used to validate the M-D-n model and examine the effect of the shape of the adhesive interaction potential on the pull-off force. In the experiments, the extended M-D model is applied to analyze pull-off force measurements made on nanoscale tips that are engineered via gradual wear to have power-law shapes. The experimental and modeling results demonstrate that the range of the adhesive interaction is a crucial parameter when quantifying the adhesion of non-paraboloidal tips, quite different than the familiar paraboloidal case. The application of the M-D-n model to the experimental results yields an unusually large adhesion range of 4-5 nm, a finding we attribute to either the presence of long-range van der Waals forces or deviations from continuum theory due to atomic-scale roughness of the tips. Finally, an adhesion map to aid in analysis of pull-off force

  4. Analysis of Basis Weight Uniformity of Microfiber Nonwovens and Its Impact on Permeability and Filtration Properties

    NASA Astrophysics Data System (ADS)

    Amirnasr, Elham

    It is widely recognized that nonwoven basis weight non-uniformity affects various properties of nonwovens. However, few studies can be found in this topic. The development of uniformity definition and measurement methods and the study of their impact on various web properties such as filtration properties and air permeability would be beneficial both in industrial applications and in academia. They can be utilized as a quality control tool and would provide insights about nonwoven behaviors that cannot be solely explained by average values. Therefore, for quantifying nonwoven web basis weight uniformity we purse to develop an optical analytical tool. The quadrant method and clustering analysis was utilized in an image analysis scheme to help define "uniformity" and its spatial variation. Implementing the quadrant method in an image analysis system allows the establishment of a uniformity index that can be used to quantify the degree of uniformity. Clustering analysis has also been modified and verified using uniform and random simulated images with known parameters. Number of clusters and cluster properties such as cluster size, member and density was determined. We also utilized this new measurement method to evaluate uniformity of nonwovens produced with different processes and investigated impacts of uniformity on filtration and permeability. The results of quadrant method shows that uniformity index computed from quadrant method demonstrate a good range for non-uniformity of nonwoven webs. Clustering analysis is also been applied on reference nonwoven with known visual uniformity. From clustering analysis results, cluster size is promising to be used as uniformity parameter. It is been shown that non-uniform nonwovens has provide lager cluster size than uniform nonwovens. It was been tried to find a relationship between web properties and uniformity index (as a web characteristic). To achieve this, filtration properties, air permeability, solidity and

  5. Efficacy of New Adhesion Promoters on Compromised Hypocalcified Enamel

    PubMed Central

    Venkata, Kishore Mayakuntla Sai; Aileni, Kaladhar Reddy; Sashidhar, Nagam Reddy

    2015-01-01

    Introduction The amount of technological progress occurred in the last few years has brought an add up to the benefits of bonding in Orthodontics. Research-based findings have constantly led to the development of new materials that are aimed to simplify the clinical procedures like bonding of brackets to compromised enamel surfaces. Hence, the present study is aimed to assess the bond strength of orthodontic brackets on fluorosed enamel using adhesion promoters. Aim To evaluate the shear bond strength (SBS) of orthodontic brackets bonded on fluorosed enamel using conventional Transbond XT and new adhesion promoters such as Enhance LC and All Bond 3. Materials and Methods The study involved 90 non carious, extracted teeth with mild to moderate fluorosis randomly divided into 3 Groups. In Group - I (control group) the teeth were bonded with conventional Transbond XT and cured with LED light. In Group - II Enhance LC was applied to fluorosed enamel before bonding and in Group - III All Bond 3 was used. Shear bond strength was tested by using Universal testing Instron machine. ANOVA and Post-Hoc Tukey’s tests were used to compare shear bond strength. Adhesive remnant on the tooth was assessed and scored using adhesive remnant index (ARI). Results Results showed a reduced SBS values (9.43MPa ±3.03) with conventional Transbond XT on fluorosed enamel. Among the adhesion boosters used Enhance LC illustrated lesser SBS values (12.03 MPa ± 4.42) compared with All Bond 3 (14.38MPa ±4.92). ARI showed bond failure at bracket resin interface in group I & group II and at enamel resin interface in group III although statistically insignificant. Conclusion It was concluded that using adhesion boosters on fluorosed enamel showed higher bond strength compared to the control group. Among the two adhesion promoters used All Bond 3 expressed highest bond strength compared to Enhance LC although statistically insignificant. PMID:26393196

  6. Model-based adhesive shrinkage compensation for increased bonding repeatability

    NASA Astrophysics Data System (ADS)

    Müller, Tobias; Schlette, Christian; Lakshmanan, Shunmuganathan; Haag, Sebastian; Zontar, Daniel; Sauer, Sebastian; Wenzel, Christian; Brecher, Christian; Roβmann, Jürgen

    2016-03-01

    The assembly process of optical components consists of two phases - the alignment and the bonding phase. Precision - or better process repeatability - is limited by the latter one. The limitation of the alignment precision is given by the measurement equipment and the manipulation technology applied. Today's micromanipulators in combination with beam imaging setups allow for an alignment in the range of far below 100nm. However, once precisely aligned optics need to be fixed in their position. State o f the art in optics bonding for laser systems is adhesive bonding with UV-curing adhesives. Adhesive bonding is a multi-factorial process and thus subject to statistical process deviations. As a matter of fact, UV-curing adhesives inherit shrinkage effects during their curing process, making offsets for shrinkage compensation mandatory. Enhancing the process control of the adhesive bonding process is the major goal of the activities described in this paper. To improve the precision of shrinkage compensation a dynamic shrinkage prediction is envisioned by Fraunhofer IPT. Intense research activities are being practiced to gather a deeper understanding of the parameters influencing adhesive shrinkage behavior. These effects are of different nature - obviously being the raw adhesive material itself as well as its condition, the bonding geometry, environmental parameters like surrounding temperature and of course process parameters such as curing properties. Understanding the major parameters and linking them in a model-based shrinkage-prediction environment is the basis for improved process control. Results are being deployed by Fraunhofer in prototyping, as well as volume production solutions for laser systems.

  7. Hybrid inverse opals for regulating cell adhesion and orientation.

    PubMed

    Lu, Jie; Zheng, Fuyin; Cheng, Yao; Ding, Haibo; Zhao, Yuanjin; Gu, Zhongze

    2014-09-21

    Cell adhesion and alignment are two important considerations in tissue engineering applications as they can regulate the subsequent cell proliferation activity and differentiation program. Although many effects have been applied to regulate the adhesion or alignment of cells by using physical and chemical methods, it is still a challenge to regulate these cell behaviors simultaneously. Here, we present novel substrates with tunable nanoscale patterned structures for regulating the adhesion and alignment of cells. The substrates with different degrees of pattern orientation were achieved by customizing the amount of stretching applied to polymer inverse opal films. Cells cultured on these substrates showed an adjustable morphology and alignment. Moreover, soft hydrogels, which have poor plasticity and are difficult to cast into patterned structures, were applied to infiltrate the inverse opal structure. We demonstrated that the adhesion ratio of cells could be regulated by these hybrid substrates, as well as adjusting the cell morphology and alignment. These features of functional inverse opal substrates make them suitable for important applications in tissue engineering. PMID:25088946

  8. Hybrid inverse opals for regulating cell adhesion and orientation

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Zheng, Fuyin; Cheng, Yao; Ding, Haibo; Zhao, Yuanjin; Gu, Zhongze

    2014-08-01

    Cell adhesion and alignment are two important considerations in tissue engineering applications as they can regulate the subsequent cell proliferation activity and differentiation program. Although many effects have been applied to regulate the adhesion or alignment of cells by using physical and chemical methods, it is still a challenge to regulate these cell behaviors simultaneously. Here, we present novel substrates with tunable nanoscale patterned structures for regulating the adhesion and alignment of cells. The substrates with different degrees of pattern orientation were achieved by customizing the amount of stretching applied to polymer inverse opal films. Cells cultured on these substrates showed an adjustable morphology and alignment. Moreover, soft hydrogels, which have poor plasticity and are difficult to cast into patterned structures, were applied to infiltrate the inverse opal structure. We demonstrated that the adhesion ratio of cells could be regulated by these hybrid substrates, as well as adjusting the cell morphology and alignment. These features of functional inverse opal substrates make them suitable for important applications in tissue engineering.

  9. UV curable pressure sensitive adhesives

    SciTech Connect

    Glotfelter, C.A.

    1995-12-01

    Pressure sensitive adhesives (PSA`s) have become a ubiquitous element in our society, so much so, that the relative status of a society can be determined by the per capita consumption of PSA`s. We discuss new monomers as components of PSA formulations which enable adhesion to be achieved on a variety of substrates. Since solventless coating systems are desirable, the UV PSA market is of utmost importance to meeting the strict environmental guidelines now being imposed worldwide. In addition, highly ethoxylated monomers have shown promise in water dispersed PSA formulations, and a self-emulsifying acrylate monomer has been developed to offer dispersive abilities without using traditional emulsifying agents. This talk will focus on the effects of the materials described on properties of adhesive strength and shear strength in UV PSA formulations.

  10. A novel addition polyimide adhesive

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Progar, D. J.

    1981-01-01

    An addition polyimide adhesive, LARC 13, was developed which shows promise for bonding both titanium and composites for applications which require service temperatures in excess of 533 K. The LARC 13 is based on an oligomeric bis nadimide containing a meta linked aromatic diamine. The adhesive melts prior to polymerization due to its oligomeric nature, thereby allowing it to be processed at 344 kPa or less. Therefore, LARC 13 is ideal for the bonding of honeycomb sandwich structures. After melting, the resin thermosets during the cure of the nadic endcaps to a highly crosslinked system. Few volatiles are evolved, thus allowing large enclosed structures to be bonded. Preparation of the adhesive as well as bonding, aging, and testing of lap shear and honeycomb samples are discussed.

  11. Liposome adhesion generates traction stress

    NASA Astrophysics Data System (ADS)

    Murrell, Michael P.; Voituriez, Raphaël; Joanny, Jean-François; Nassoy, Pierre; Sykes, Cécile; Gardel, Margaret L.

    2014-02-01

    Mechanical forces generated by cells modulate global shape changes required for essential life processes, such as polarization, division and spreading. Although the contribution of the cytoskeleton to cellular force generation is widely recognized, the role of the membrane is considered to be restricted to passively transmitting forces. Therefore, the mechanisms by which the membrane can directly contribute to cell tension are overlooked and poorly understood. To address this, we directly measure the stresses generated during liposome adhesion. We find that liposome spreading generates large traction stresses on compliant substrates. These stresses can be understood as the equilibration of internal, hydrostatic pressures generated by the enhanced membrane tension built up during adhesion. These results underscore the role of membranes in the generation of mechanical stresses on cellular length scales and that the modulation of hydrostatic pressure due to membrane tension and adhesion can be channelled to perform mechanical work on the environment.

  12. Interfacial adhesion - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Banerjea, Amitava; Bozzolo, Guillermo H.; Finley, Clarence W.

    1988-01-01

    Adhesion, the binding of different materials at an interface, is of general interest to many branches of technology, e.g., microelectronics, tribology, manufacturing, construction, etc. However, there is a lack of fundamental understanding of such diverse interfaces. In addition, experimental techniques generally have practical objectives, such as the achievement of sufficient strength to sustain mechanical or thermal effects and/or have the proper electronic properties. In addition, the theoretical description of binding at interfaces is quite limited, and a proper data base for such theoretical analysis does not exist. This presentation will review both experimental and theoretical aspects of adhesion in nonpolymer materials. The objective will be to delineate the critical parameters needed, governing adhesion testing along with an outline of testing objectives. A distinction will be made between practical and fundamental objectives. Examples are given where interfacial bonding may govern experimental consideration. The present status of theory is presented along with recommendations for future progress and needs.

  13. Interfacial adhesion: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Bozzolo, Guillermo H.; Finley, Clarence W.; Banerjea, Amitava

    1988-01-01

    Adhesion, the binding of different materials at an interface, is of general interest to many branches of technology, e.g., microelectronics, tribology, manufacturing, construction, etc. However, there is a lack of fundamental understanding of such diverse interfaces. In addition, experimental techniques generally have practical objectives, such as the achievement of sufficient strength to sustain mechanical or thermal effects and/or have the proper electronic properties. In addition, the theoretical description of binding at interfaces is quite limited, and a proper data base for such theoretical analysis does not exist. This presentation will review both experimental and theoretical aspects of adhesion in nonpolymer materials. The objective will be to delineate the critical parameters needed, governing adhesion testing along with an outline of testing objectives. A distinction will be made between practical and fundamental objectives. Examples are given where interfacial bonding may govern experimental consideration. The present status of theory is presented along wiith recommendations for future progress and needs.

  14. Enhanced adhesion of bioinspired nanopatterned elastomers via colloidal surface assembly

    PubMed Central

    Akerboom, Sabine; Appel, Jeroen; Labonte, David; Federle, Walter; Sprakel, Joris; Kamperman, Marleen

    2015-01-01

    We describe a scalable method to fabricate nanopatterned bioinspired dry adhesives using colloidal lithography. Close-packed monolayers of polystyrene particles were formed at the air/water interface, on which polydimethylsiloxane (PDMS) was applied. The order of the colloidal monolayer and the immersion depth of the particles were tuned by altering the pH and ionic strength of the water. Initially, PDMS completely wetted the air/water interface outside the monolayer, thereby compressing the monolayer as in a Langmuir trough; further application of PDMS subsequently covered the colloidal monolayers. PDMS curing and particle extraction resulted in elastomers patterned with nanodimples. Adhesion and friction of these nanopatterned surfaces with varying dimple depth were studied using a spherical probe as a counter-surface. Compared with smooth surfaces, adhesion of nanopatterned surfaces was enhanced, which is attributed to an energy-dissipating mechanism during pull-off. All nanopatterned surfaces showed a significant decrease in friction compared with smooth surfaces. PMID:25392404

  15. Loading-unloading hysteresis loop of randomly rough adhesive contacts

    NASA Astrophysics Data System (ADS)

    Carbone, Giuseppe; Pierro, Elena; Recchia, Giuseppina

    2015-12-01

    We investigate the loading and unloading behavior of soft solids in adhesive contact with randomly rough profiles. The roughness is assumed to be described by a self-affine fractal on a limited range of wave vectors. A spectral method is exploited to generate such randomly rough surfaces. The results are statistically averaged, and the calculated contact area and applied load are shown as a function of the penetration, for loading and unloading conditions. We found that the combination of adhesion forces and roughness leads to a hysteresis loading-unloading loop. This shows that energy can be lost simply as a consequence of roughness and van der Waals forces, as in this case a large number of local energy minima exist and the system may be trapped in metastable states. We numerically quantify the hysteretic loss and assess the influence of the surface statistical properties and the energy of adhesion on the hysteresis process.

  16. Loading-unloading hysteresis loop of randomly rough adhesive contacts.

    PubMed

    Carbone, Giuseppe; Pierro, Elena; Recchia, Giuseppina

    2015-12-01

    We investigate the loading and unloading behavior of soft solids in adhesive contact with randomly rough profiles. The roughness is assumed to be described by a self-affine fractal on a limited range of wave vectors. A spectral method is exploited to generate such randomly rough surfaces. The results are statistically averaged, and the calculated contact area and applied load are shown as a function of the penetration, for loading and unloading conditions. We found that the combination of adhesion forces and roughness leads to a hysteresis loading-unloading loop. This shows that energy can be lost simply as a consequence of roughness and van der Waals forces, as in this case a large number of local energy minima exist and the system may be trapped in metastable states. We numerically quantify the hysteretic loss and assess the influence of the surface statistical properties and the energy of adhesion on the hysteresis process. PMID:26764700

  17. Study of cellular adhesion with scanning acoustic microscopy.

    PubMed

    Tittmann, Bernhard R; Miyasaka, Chiaki; Mastro, Andrea M; Mercer, Robyn R

    2007-08-01

    A mechanical scanning acoustic reflection microscope was applied to living cells (e.g., osteoblasts) to observe their undisguised shapes and to evaluate their adhesive conditions at a substrate interface. A conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. To characterize the cellular adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for 2 days, then assayed with the scanning acoustic reflection microscope. At 600 MHz the scanning acoustic reflection microscope clearly indicated that MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium had both an abnormal shape and poor adhesion at the substrate interface. The results are compared with those obtained with laser scanning confocal microscopy and are supported by a simple multilayer model. PMID:17703653

  18. The symbolism and myth surrounding nurses' uniform.

    PubMed

    Richardson, M

    This article addresses nurses' uniform from the perspective of the symbolic, myth, legend and competing discourse. The analysis touches upon why nurses working with people who have learning disabilities discarded the nurses' uniform and why other nurses may consider doing so, particularly if suitable alternatives exist. The analysis draws from various areas of nursing practice, including the nursing of disabled people, elderly people and people with learning disabilities. Nurses' uniform is revealed as a totem of considerable potency such that to wear a uniform in just any setting or context has to be cautioned. The practicalities of protective clothing are addressed. A differentiation is drawn between uniform and protective clothing such that much of the undesirable symbolism associated with uniform may be discarded with a consequent enhancement of the image of the nurse. PMID:10222879

  19. Adhesion to chondroitinase ABC treated dentin

    PubMed Central

    Mazzoni, Annalisa; Pashley, David H.; Ruggeri, Alessandra; Vita, Francesca; Falconi, Mirella; Di Lenarda, Roberto; Breschi, Lorenzo

    2013-01-01

    Dentin bonding relies on complete resin impregnation throughout the demineralised hydrophilic collagen mesh. Chondroitin sulphate-glycosaminoglycans are claimed to regulate the three-dimensional arrangement of the dentin organic matrix and its hydrophilicity. The aim of this study was to investigate bond strength of two etch-and-rinse adhesives to chondroitinase ABC treated dentin. Human extracted molars were treated with chondroitinase ABC and a double labelling immunohistochemical technique was applied to reveal type I collagen and chondroitin 4/6 sulphate distribution under field emission in-lens scanning electron microscope. The immunohistochemical technique confirmed the effective removal of chondroitin 4/6 sulphate after the enzymatic treatment. Dentin surfaces exposed to chondroitinase ABC and untreated specimens prepared on untreated acid-etched dentin were bonded with Adper Scotchbond Multi-Purpose or Prime & Bond NT. Bonded specimens were submitted to microtensile testing and nanoleakage interfacial analysis under transmission electron microscope. Increased mean values of microtensile bond strength and reduced nanoleakage expression were found for both adhesives after chondroitinase ABC treatment of the dentin surface. Adper Scotchbond Multi-Purpose increased its bond strength about 28%, while bonding made with Prime & Bond NT almost doubled (92% increase) compared to untreated specimens. This study supports the hypothesis that adhesion can be enhanced by removal of chondroitin 4/6 sulphate and dermatan sulphate, probably due to a reduced amount of water content and enlarged interfibrillar spaces. Further studies should validate this hypothesis investigating the stability of chondroitin 4/6 and dermatan sulphate-depleted dentin bonded interface over time. PMID:18161809

  20. Dual-Mode Adhesive Pad

    NASA Technical Reports Server (NTRS)

    Hartz, Leslie

    1994-01-01

    Tool helps worker grip and move along large, smooth structure with no handgrips or footholds. Adheres to surface but easily released by actuating simple mechanism. Includes handle and segmented contact-adhesive pad. Bulk of pad made of soft plastic foam conforming to surface of structure. Each segment reinforced with rib. In sticking mode, ribs braced by side catches. In peeling mode, side catches retracted, and segmented adhesive pad loses its stiffness. Modified versions useful in inspecting hulls of ships and scaling walls in rescue operations.

  1. Coordination of contractility, adhesion and flow in migrating Physarum amoebae.

    PubMed

    Lewis, Owen L; Zhang, Shun; Guy, Robert D; del Álamo, Juan C

    2015-05-01

    This work examines the relationship between spatio-temporal coordination of intracellular flow and traction stress and the speed of amoeboid locomotion of microplasmodia of Physarum polycephalum. We simultaneously perform particle image velocimetry and traction stress microscopy to measure the velocity of cytoplasmic flow and the stresses applied to the substrate by migrating Physarum microamoebae. In parallel, we develop a mathematical model of a motile cell which includes forces from the viscous cytosol, a poro-elastic, contractile cytoskeleton and adhesive interactions with the substrate. Our experiments show that flow and traction stress exhibit back-to-front-directed waves with a distinct phase difference. The model demonstrates that the direction and speed of locomotion are determined by this coordination between contraction, flow and adhesion. Using the model, we identify forms of coordination that generate model predictions consistent with experiments. We demonstrate that this coordination produces near optimal migration speed and is insensitive to heterogeneity in substrate adhesiveness. While it is generally thought that amoeboid motility is robust to changes in extracellular geometry and the nature of extracellular adhesion, our results demonstrate that coordination of adhesive forces is essential to producing robust migration. PMID:25904525

  2. Coordination of contractility, adhesion and flow in migrating Physarum amoebae

    PubMed Central

    Lewis, Owen L.; Zhang, Shun; Guy, Robert D.; del Álamo, Juan C.

    2015-01-01

    This work examines the relationship between spatio-temporal coordination of intracellular flow and traction stress and the speed of amoeboid locomotion of microplasmodia of Physarum polycephalum. We simultaneously perform particle image velocimetry and traction stress microscopy to measure the velocity of cytoplasmic flow and the stresses applied to the substrate by migrating Physarum microamoebae. In parallel, we develop a mathematical model of a motile cell which includes forces from the viscous cytosol, a poro-elastic, contractile cytoskeleton and adhesive interactions with the substrate. Our experiments show that flow and traction stress exhibit back-to-front-directed waves with a distinct phase difference. The model demonstrates that the direction and speed of locomotion are determined by this coordination between contraction, flow and adhesion. Using the model, we identify forms of coordination that generate model predictions consistent with experiments. We demonstrate that this coordination produces near optimal migration speed and is insensitive to heterogeneity in substrate adhesiveness. While it is generally thought that amoeboid motility is robust to changes in extracellular geometry and the nature of extracellular adhesion, our results demonstrate that coordination of adhesive forces is essential to producing robust migration. PMID:25904525

  3. A test of the adhesion approximation for gravitational clustering

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Shandarin, Sergei; Weinberg, David H.

    1993-01-01

    We quantitatively compare a particle implementation of the adhesion approximation to fully non-linear, numerical 'N-body' simulations. Our primary tool, cross-correlation of N-body simulations with the adhesion approximation, indicates good agreement, better than that found by the same test performed with the Zel-dovich approximation (hereafter ZA). However, the cross-correlation is not as good as that of the truncated Zel-dovich approximation (TZA), obtained by applying the Zel'dovich approximation after smoothing the initial density field with a Gaussian filter. We confirm that the adhesion approximation produces an excessively filamentary distribution. Relative to the N-body results, we also find that: (a) the power spectrum obtained from the adhesion approximation is more accurate than that from ZA or TZA, (b) the error in the phase angle of Fourier components is worse than that from TZA, and (c) the mass distribution function is more accurate than that from ZA or TZA. It appears that adhesion performs well statistically, but that TZA is more accurate dynamically, in the sense of moving mass to the right place.

  4. Work of Adhesion of Thin Spray-On Liners

    NASA Astrophysics Data System (ADS)

    Ozturk, H.

    2012-11-01

    The interface property known as work of adhesion incorporates both adhesion and effective bond width, which are two important design parameters in thin spray-on liner (TSL) support design. The value of this parameter is yet to be recognized by the mining industry and liner manufacturers. The importance of this parameter is introduced in this study. A new methodology using pull-out load-displacement data was developed to calculate the work of adhesion between a TSL and a substrate. Tests were performed using Tekflex as a liner material, which was applied to concrete, granite or sandstone substrate. It was found that a Tekflex liner, when sprayed onto substrates, will likely have work of adhesion values around 777-973 N/m depending on the type of substrate. In addition, for the first time in TSL literature, an effective bond width calculation is introduced in this study. It was found that Tekflex has average effective bond width of 0.7 mm on different substrates. Liner manufacturers should measure and document work of adhesion for their products on a standard substrate.

  5. Electrochemically Preadsorbed Collagen Promotes Adult Human Mesenchymal Stem Cell Adhesion.

    PubMed

    Benavidez, Tomás E; Wechsler, Marissa E; Farrer, Madeleine M; Bizios, Rena; Garcia, Carlos D

    2016-01-01

    The present article reports on the effect of electric potential on the adsorption of collagen type I (the most abundant component of the organic phase of bone) onto optically transparent carbon electrodes (OTCE) and its mediation on subsequent adhesion of adult, human, mesenchymal stem cells (hMSCs). For this purpose, adsorption of collagen type I was investigated as a function of the protein concentration (0.01, 0.1, and 0.25 mg/mL) and applied potential (open circuit potential [OCP; control], +400, +800, and +1500 mV). The resulting substrate surfaces were characterized using spectroscopic ellipsometry, atomic force microscopy, and cyclic voltammetry. Adsorption of collagen type I onto OTCE was affected by the potential applied to the sorbent surface and the concentration of protein. The higher the applied potential and protein concentration, the higher the adsorbed amount (Γcollagen). It was also observed that the application of potential values higher than +800 mV resulted in the oxidation of the adsorbed protein. Subsequent adhesion of hMSCs on the OTCEs (precoated with the collagen type I films) under standard cell culture conditions for 2 h was affected by the extent of collagen preadsorbed onto the OTCE substrates. Specifically, enhanced hMSCs adhesion was observed when the Γcollagen was the highest. When the collagen type I was oxidized (under applied potential equal to +1500 mV), however, hMSCs adhesion was decreased. These results provide the first correlation between the effects of electric potential on protein adsorption and subsequent modulation of anchorage-dependent cell adhesion. PMID:26549607

  6. Development and characterization of a novel hydrogel adhesive for soft tissue applications

    NASA Astrophysics Data System (ADS)

    Sanders, Lindsey Kennedy

    With laparoscopic and robotic surgical techniques advancing, the need for an injectable surgical adhesive is growing. To be effective, surgical adhesives for internal organs require bulk strength and compliance to avoid rips and tears, and adhesive strength to avoid leakage at the application site, while not hindering the natural healing process. Although a number of tissue adhesives and sealants approved by the FDA for surgical use are currently available, attaining a useful balance in all of these qualities has proven difficult, particularly when considering applications involving highly expandable tissue, such as bladder and lung. The long-term goal of this project is to develop a hydrogel-based tissue adhesive that provides proper mechanical properties to eliminate the need for sutures in various soft tissue applications. Tetronic (BASF), a 4-arm poly(propylene oxide)-poly(ethylene oxide) (PPO-PEO) block copolymer, has been selected as the base material for the adhesive hydrogel system. Solutions of Tetronic T1107 can support reverse thermal gelation at physiological temperatures, which can be combined with covalent crosslinking to achieve a "tandem gelation" process making it ideal for use as a tissue adhesive. The objective of this doctoral thesis research is to improve the performance of the hydrogel based tissue adhesive developed previously by Cho and co-workers by applying a multi-functionalization of Tetronic. Specifically, this research aimed to improve bonding strength of Tetronic tissue adhesive using bi-functional modification, incorporate hemostatic function to the bi-functional Tetronic hydrogel, and evaluate the safety of bi-functional Tetronic tissue adhesive both in vitro and in vivo. In summary, we have developed a fast-curing, mechanically strong hemostatic tissue adhesive that can control blood loss in wet conditions during wound treatment applications (bladder, liver and muscle). Specifically, the bi-functional Tetronic adhesive (TAS) with a

  7. Detecting cell-adhesive sites in extracellular matrix using force spectroscopy mapping

    PubMed Central

    Chirasatitsin, Somyot; Engler, Adam J

    2010-01-01

    The cell microenvironment is composed of extracellular matrix (ECM), which contains specific binding sites that allow the cell to adhere to its surroundings. Cells employ focal adhesion proteins, which must be able to resist a variety of forces to bind to ECM. Current techniques for detecting the spatial arrangement of these adhesions, however, have limited resolution and those that detect adhesive forces lack sufficient spatial characterization or resolution. Using a unique application of force spectroscopy, we demonstrate here the ability to determine local changes in the adhesive property of a fibronectin substrate down to the resolution of the fibronectin antibody-functionalized tip diameter, ~20 nm. To verify the detection capabilities of force spectroscopy mapping (FSM), changes in loading rate and temperature were used to alter the bond dynamics and change the adhesion force. Microcontact printing was also used to pattern fluorescein isothiocyanate-conjugated fibronectin in order to mimic the discontinuous adhesion domains of native ECM. Fluorescent detection was used to identify the pattern while FSM was used to map cell adhesion sites in registry with the initial fluorescent image. The results show that FSM can be used to detect the adhesion domains at high resolution and may subsequently be applied to native ECM with randomly distributed cell adhesion sites. PMID:21152375

  8. Evidence for heterophilic adhesion of embryonic retinal cells and neuroblastoma cells to substratum-adsorbed NCAM.

    PubMed

    Murray, B A; Jensen, J J

    1992-06-01

    The adhesion of embryonic chicken retinal cells and mouse N2A neuroblastoma cells to purified embryonic chicken retinal NCAM adsorbed on a solid substratum was examined using a quantitative centrifugal adhesion assay. Both cell types adhered to NCAM and the adhesion was specifically inhibited by monovalent anti-NCAM antibody fragments. N2A cell adhesion depended on the amount of NCAM applied to the substratum, was cation independent, and was insensitive to treatment with the cytoskeletal perturbing drugs colchicine and cytochalasin D. These results indicated that the tubulin and actin cytoskeletons were not critically required for adhesion to NCAM and make it unlikely that the cell surface ligand for NCAM is an integrin. Adhesion was however temperature dependent, strengthening greatly after a brief incubation at 37 degrees C. CHO cells transfected with NCAM cDNAs did not adhere specifically to substratum-bound NCAM and pretreatment of N2A cells and retinal cells with anti-NCAM antibodies did not inhibit adhesion to substratum-bound NCAM. These results suggest that a heterophilic interaction between substratum-adsorbed NCAM and a non-NCAM ligand on the surface of the probe cells affects adhesion in this system and support the possibility that heterophilic adhesion may be a function of NCAM in vivo. PMID:1607391

  9. Comparative evaluation of bond strength of three contemporary self-etch adhesives: An ex vivo study

    PubMed Central

    Nikhil, Vineeta; Singh, Vijay; Chaudhry, Suruchi

    2011-01-01

    Aim: This study evaluated the effect of 2-hydroxymethyl methacrylate (HEMA) and the type of solvent on the tensile bond strength of the following three self-etch adhesives: Adper easy one (HEMA-rich adhesive) which contained ethanol, G-Bond (HEMA-free adhesive) which contained acetone, and Xeno V (HEMA-free adhesive) which contained butanol as a solvent. Material and Methods: Intact mandibular molars were mounted in self-cured resin and the occlusal surfaces were ground with # 600 SiC paper. Adhesives were applied on the prepared dentinal surfaces and the resin composite was condensed in the split brass mold (5 × 3 mm) placed over the adhesive surface. The specimens were stored in normal saline and placed in incubator at 37°C. After 24 hours, the specimens were tested in tensile mode at a crosshead speed of 1 mm/min. Statistical analysis was done using One way ANOVA and Tukey's HSD test. Results: The mean bond strengths of Adper easy one, G-Bond, and Xeno V were 12.41 MPa, 10.09 MPa, and 8.67 MPa, respectively. Conclusions: Comparison of contemporary adhesives in this ex vivo study revealed that the ethanol-based HEMA-rich self-etch adhesive is better than HEMA-free self-etch adhesive that contained acetone and butanol as the solvents, when compared in terms of bond strength. PMID:21957383

  10. The representation of uniform motion in vision.

    PubMed

    Swanston, M T; Wade, N J; Day, R H

    1987-01-01

    For veridical detection of object motion any moving detecting system must allocate motion appropriately between itself and objects in space. A model for such allocation is developed for simplified situations (points of light in uniform motion in a frontoparallel plane). It is proposed that motion of objects is registered and represented successively at four levels within frames of reference that are defined by the detectors themselves or by their movements. The four levels are referred to as retinocentric, orbitocentric, egocentric, and geocentric. Thus the retinocentric signal is combined with that for eye rotation to give an orbitocentric signal, and the left and right orbitocentric signals are combined to give an egocentric representation. Up to the egocentric level, motion representation is angular rather than three-dimensional. The egocentric signal is combined with signals for head and body movement and for egocentric distance to give a geocentric representation. It is argued that although motion perception is always geocentric, relevant registrations also occur at the three earlier levels. The model is applied to various veridical and nonveridical motion phenomena. PMID:3684477

  11. Candida biofilms: is adhesion sexy?

    PubMed

    Soll, David R

    2008-08-26

    The development of Candida albicans biofilms requires two types of adhesion molecule - the Als proteins and Hwp1. Mutational analyses have recently revealed that these molecules play complementary roles, and their characteristics suggest that they may have evolved from primitive mating agglutinins. PMID:18727911

  12. Fluorescence Reveals Contamination From Adhesives

    NASA Technical Reports Server (NTRS)

    Nikolia, William

    1992-01-01

    Contamination of nearby surfaces from ingredients in some adhesive materials detected by ultraviolet illumination and observation of resulting fluorescence. Identification of contaminants via telltale fluorescence not new; rather, significance lies in method of implementation and potential extension to wider variety of materials and applications.

  13. New adhesive withstands temperature extremes

    NASA Technical Reports Server (NTRS)

    Park, J. J.; Seidenberg, B.

    1978-01-01

    Adhesive, developed for high-temperature components aboard satellites, is useful at both high and low temperatures and exhibits low-vacuum volatility and low shrinkage. System uses polyfunctional epoxy with high aromatic content, low equivalent weight, and more compact polymer than conventional bisphenol A tape.

  14. Computational Chemistry of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Phillips, Donald H.

    1999-01-01

    This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.

  15. Tackifier Dispersions to Make Pressure Sensitive Adhesives

    SciTech Connect

    2003-02-01

    Development of new processes for tackifier dispersion could improve the production of pressure sensitive adhesives. Pressure sensitive adhesives (PSAs) have the ability to adhere to different surfaces with manual or finger pressure.

  16. Microfluidic adhesion induced by subsurface microstructures.

    PubMed

    Majumder, Abhijit; Ghatak, Animangsu; Sharma, Ashutosh

    2007-10-12

    Natural adhesives in the feet of different arthropods and vertebrates show strong adhesion as well as excellent reusability. Whereas the hierarchical structures on the surface are known to have a substantial effect on adhesion, the role of subsurface structures such as the network of microchannels has not been studied. Inspired by these bioadhesives, we generated elastomeric layers with embedded air- or oil-filled microchannels. These adhesives showed remarkable enhancement of adhesion ( approximately 30 times), which results from the crack-arresting properties of the microchannels, together with the surface stresses caused by the capillary force. The importance of the thickness of the adhesive layer, channel diameter, interchannel spacing, and vertical position within the adhesive has been examined for developing an optimal design of this microfluidic adhesive. PMID:17932295

  17. School Uniform Policies in Public Schools

    ERIC Educational Resources Information Center

    Brunsma, David L.

    2006-01-01

    The movement for school uniforms in public schools continues to grow despite the author's research indicating little if any impact on student behavior, achievement, and self-esteem. The author examines the distribution of uniform policies by region and demographics, the impact of these policies on perceptions of school climate and safety, and…

  18. School Uniform Policies: Students' Views of Effectiveness.

    ERIC Educational Resources Information Center

    McCarthy, Teresa M.; Moreno, Josephine

    2001-01-01

    Focus-group interviews of New York City middle-school students about their perceptions of the effectiveness of the school-uniform policy. Finds that students' perceptions of the effects of school-uniform policy on school culture varied considerably with those intended by the principal. (Contains 40 references.) (PKP)

  19. School Dress Codes and Uniform Policies.

    ERIC Educational Resources Information Center

    Anderson, Wendell

    2002-01-01

    Opinions abound on what students should wear to class. Some see student dress as a safety issue; others see it as a student-rights issue. The issue of dress codes and uniform policies has been tackled in the classroom, the boardroom, and the courtroom. This Policy Report examines the whole fabric of the debate on dress codes and uniform policies…

  20. School Uniforms and Discourses on Childhood.

    ERIC Educational Resources Information Center

    Bodine, Ann

    2003-01-01

    This ethnographic study examined the introduction of school uniforms in the public schools of one California city. Findings indicated that the uniform issue intersected with issues such as student safety and violence, family stress, egalitarianism, competitive dressing, and a power struggle over shaping the childhood environment. It was concluded…

  1. A School Uniform Program That Works.

    ERIC Educational Resources Information Center

    Loesch, Paul C.

    1995-01-01

    According to advocates, school uniforms reduce gang influence, decrease families' clothing expenditures, and help mitigate potentially divisive cultural and economic differences. Aiming to improve school climate, a California elementary school adopted uniforms as a source of pride and affiliation. This article describes the development of the…

  2. Student Dress Codes and Uniforms. Research Brief

    ERIC Educational Resources Information Center

    Johnston, Howard

    2009-01-01

    According to an Education Commission of the States "Policy Report", research on the effects of dress code and school uniform policies is inconclusive and mixed. Some researchers find positive effects; others claim no effects or only perceived effects. While no state has legislatively mandated the wearing of school uniforms, 28 states and the…

  3. Uniformity, Diversity, and the "New Social Studies."

    ERIC Educational Resources Information Center

    Rossi, John A.

    1992-01-01

    Uses interpretations of educational historians to explain the uniformity that resulted from the New Social Studies (NSS) movement. Describes the origins of the NSS in two streams: the academic disciplines and citizenship education. Suggests that the uniformity and diversity of the profession is based on a central tendency that emphasizes…

  4. Radionic Non-Uniform Black Strings

    NASA Astrophysics Data System (ADS)

    Tamaki, T.; Kanno, S.; Soda, J.

    Non-uniform black strings in the two-brane system are investigated using the effective action approach. It is shown that the radion acts as a non-trivial hair of black strings. The stability of solutions is demonstrated using the catastrophe theory. The black strings are shown to be non-uniform.

  5. Doping suppression and mobility enhancement of graphene transistors fabricated using an adhesion promoting dry transfer process

    SciTech Connect

    Cheol Shin, Woo; Hun Mun, Jeong; Yong Kim, Taek; Choi, Sung-Yool; Jin Cho, Byung E-mail: tskim1@kaist.ac.kr; Yoon, Taeshik; Kim, Taek-Soo E-mail: tskim1@kaist.ac.kr

    2013-12-09

    We present the facile dry transfer of graphene synthesized via chemical vapor deposition on copper film to a functional device substrate. High quality uniform dry transfer of graphene to oxidized silicon substrate was achieved by exploiting the beneficial features of a poly(4-vinylphenol) adhesive layer involving a strong adhesion energy to graphene and negligible influence on the electronic and structural properties of graphene. The graphene field effect transistors (FETs) fabricated using the dry transfer process exhibit excellent electrical performance in terms of high FET mobility and low intrinsic doping level, which proves the feasibility of our approach in graphene-based nanoelectronics.

  6. Adhesion of single crystals on modified surfaces in crystallization fouling

    NASA Astrophysics Data System (ADS)

    Mayer, Moriz; Augustin, Wolfgang; Scholl, Stephan

    2012-12-01

    In crystallization fouling it has been observed that during a certain initial phase the fouling is formed by a non-uniform layer consisting of a population of single crystals. These single crystals are frequently formed by inverse soluble salts such as CaCO3. During heterogeneous nucleation and heterogeneous growth an interfacial area between the crystal and the heat transfer surface occurs. The development of this interfacial area is the reason for the adhesion of each single crystal and of all individual crystals, once a uniform layer has been built up. The emerging interfacial area is intrinsic to the heterogeneous nucleation of crystals and can be explained by the thermodynamic principle of the minimum of the Gibbs free energy. In this study CaCO3 crystals were grown heterogeneously on untreated and on modified surfaces inside a flow channel. An untreated stainless steel (AISI 304) surface was used as a reference. Following surface modifications were investigated: enameled and electropolished stainless steel as well as diamond-like-carbon based coatings on stainless steel substrate. The adhesion was measured through a novel measurement technique using a micromanipulator to shear off single crystals from the substrate which was fixed to a spring table inside a SEM.

  7. Nonlinear adhesive behavior effects in a cracked orthotropic sheet stiffened by a semi-infinite orthotropic sheet

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1986-01-01

    The stress-intensity factors are determined for a cracked orthotropic sheet adhesively bonded to an orthotropic stringer where the adhesive layer is modeled with a nonlinear stress-strain curve. By the use of Green's functions and the complex variable theory of orthotropic elasticity, a set of integral equations is obtained. The integral equations are replaced by an equivalent set of algebraic equations, which are solved to obtain the shear stress distribution in the adhesive layer, with which the crack-tip stress-intensity factors are found. When the adhesive was modeled with a nonlinear stress-strain curve, the peak shear stresses in the adhesive were considerably reduced in comparison to the solution for the linear elastic adhesive. This resulted in increases in the stress-intensity factors for the nonlinear adhesive solution compared to the linear adhesive solution. The nonlinear adhesive has no significant effect on the stress-intensity factor unless the near crack tip is beneath the stringer. It is assumed that the adhesive bond remains intact and it is predicted that onset of adhesive failure occurs at decreasing levels of applied stress as the crack propagates beneath the stringer.

  8. Nonlinear adhesive behavior effects in a cracked orthotropic sheet stiffened by a semi-infinite orthotropic sheet

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1985-01-01

    The stress-intensity factors are determined for a cracked orthotropic sheet adhesively bonded to an orthotropic stringer where the adhesive layer is modeled with a nonlinear stress-strain curve. By the use of Green's functions and the complex variable theory of orthotropic elasticity, a set of integral equations is obtained. The integral equations are replaced by an equivalent set of algebraic equations, which are solved to obtain the shear stress distribution in the adhesive layer, with which the crack-tip stress-intensity factors are found. When the adhesive was modeled with a nonlinear stress-strain curve, the peak shear stresses in the adhesive were considerably reduced in comparison to the solution for the linear elastic adhesive. This resulted in increases in the stress-intensity factors for the nonlinear adhesive solution compared to the linear adhesive solution. The nonlinear adhesive has no significant effect on the stress-intensity factor unless the near crack tip is beneath the stringer. It is assumed that the adhesive bond remains intact and it is predicted that onset of adhesive failure occurs at decreasing levels of applied stress as the crack propagates beneath the stringer.

  9. A new adhesive technique for internal fixation in midfacial surgery

    PubMed Central

    Endres, Kira; Marx, Rudolf; Tinschert, Joachim; Wirtz, Dieter Christian; Stoll, Christian; Riediger, Dieter; Smeets, Ralf

    2008-01-01

    Background The current surgical therapy of midfacial fractures involves internal fixation in which bone fragments are fixed in their anatomical positions with osteosynthesis plates and corresponding screws until bone healing is complete. This often causes new fractures to fragile bones while drilling pilot holes or trying to insert screws. The adhesive fixation of osteosynthesis plates using PMMA bone cement could offer a viable alternative for fixing the plates without screws. In order to achieve the adhesive bonding of bone cement to cortical bone in the viscerocranium, an amphiphilic bone bonding agent was created, analogous to the dentin bonding agents currently on the market. Methods The adhesive bonding strengths were measured using tension tests. For this, metal plates with 2.0 mm diameter screw holes were cemented with PMMA bone cement to cortical bovine bone samples from the femur diaphysis. The bone was conditioned with an amphiphilic bone bonding agent prior to cementing. The samples were stored for 1 to 42 days at 37 degrees C, either moist or completely submerged in an isotonic NaCl-solution, and then subjected to the tension tests. Results Without the bone bonding agent, the bonding strength was close to zero (0.2 MPa). Primary stability with bone bonding agent is considered to be at ca. 8 MPa. Moist storage over 42 days resulted in decreased adhesion forces of ca. 6 MPa. Wet storage resulted in relatively constant bonding strengths of ca. 8 MPa. Conclusion A new amphiphilic bone bonding agent was developed, which builds an optimizied interlayer between the hydrophilic bone surface and the hydrophobic PMMA bone cement and thus leads to adhesive bonding between them. Our in vitro investigations demonstrated the adhesive bonding of PMMA bone cement to cortical bone, which was also stable against hydrolysis. The newly developed adhesive fixing technique could be applied clinically when the fixation of osteosynthesis plates with screws is impossible. With

  10. X-ray radiographic technique for measuring density uniformity of silica aerogel

    NASA Astrophysics Data System (ADS)

    Tabata, Makoto; Hatakeyama, Yoshikiyo; Adachi, Ichiro; Morita, Takeshi; Nishikawa, Keiko

    2013-01-01

    This paper proposes a new X-ray radiographic technique for measuring density uniformity of silica aerogels used as radiator in proximity-focusing ring-imaging Cherenkov detectors. To obtain high performance in a large-area detector, a key characteristic of radiator is the density (i.e. refractive index) uniformity of an individual aerogel monolith. At a refractive index of n=1.05, our requirement for the refractive index uniformity in the transverse plane direction of an aerogel tile is |δ(n-1)/(n-1)|<4% in a focusing dual layer radiator (with different refractive indices) scheme. We applied the radiographic technique to evaluate the density uniformity of our original aerogels from a trial production and that of Panasonic products (SP-50) as a reference, and to confirm they have sufficient density uniformity within ±1% along the transverse plane direction. The measurement results show that the proposed technique can quantitatively estimate the density uniformity of aerogels.

  11. Alterations in cell adhesion proteins and cardiomyopathy

    PubMed Central

    Li, Jifen

    2014-01-01

    Cell adhesive junction is specialized intercellular structure composed of cell adhesion proteins. They are essential to connect adjacent heart muscle cell and make heart contraction effectively and properly. Clinical and genetic studies have revealed close relationship between cell adhesive proteins and the occurrence of various cardiomyopathies. Here we will review recent development on the disease phenotype, potential cellular and molecular mechanism related to cell adhesion molecules, with particular disease pathogenesis learned from genetic manipulated murine models. PMID:24944760

  12. A method to screen and evaluate tissue adhesives for joint repair applications

    PubMed Central

    2012-01-01

    Background Tissue adhesives are useful means for various medical procedures. Since varying requirements cause that a single adhesive cannot meet all needs, bond strength testing remains one of the key applications used to screen for new products and study the influence of experimental variables. This study was conducted to develop an easy to use method to screen and evaluate tissue adhesives for tissue engineering applications. Method Tissue grips were designed to facilitate the reproducible production of substrate tissue and adhesive strength measurements in universal testing machines. Porcine femoral condyles were used to generate osteochondral test tissue cylinders (substrates) of different shapes. Viability of substrates was tested using PI/FDA staining. Self-bonding properties were determined to examine reusability of substrates (n = 3). Serial measurements (n = 5) in different operation modes (OM) were performed to analyze the bonding strength of tissue adhesives in bone (OM-1) and cartilage tissue either in isolation (OM-2) or under specific requirements in joint repair such as filling cartilage defects with clinical applied fibrin/PLGA-cell-transplants (OM-3) or tissues (OM-4). The efficiency of the method was determined on the basis of adhesive properties of fibrin glue for different assembly times (30 s, 60 s). Seven randomly generated collagen formulations were analyzed to examine the potential of method to identify new tissue adhesives. Results Viability analysis of test tissue cylinders revealed vital cells (>80%) in cartilage components even 48 h post preparation. Reuse (n = 10) of test substrate did not significantly change adhesive characteristics. Adhesive strength of fibrin varied in different test settings (OM-1: 7.1 kPa, OM-2: 2.6 kPa, OM-3: 32.7 kPa, OM-4: 30.1 kPa) and was increasing with assembly time on average (2.4-fold). The screening of the different collagen formulations revealed a substance with significant higher adhesive

  13. Chemical force microscopy of stimuli-responsive adhesive copolymers

    NASA Astrophysics Data System (ADS)

    Beaussart, Audrey; Ngo, T. Chinh; Derclaye, Sylvie; Kalinova, Radostina; Mincheva, Rosica; Dubois, Philippe; Leclère, Philippe; Dufrêne, Yves F.

    2013-12-01

    Atomic force microscopy with chemically sensitive tips was used to investigate the hydrophobic and electrostatic interaction forces of a stimuli-responsive adhesive polymer, and their dynamic changes in response to water immersion and salt concentration. Block copolymer-filled coatings were obtained by incorporating an amphiphilic block copolymer containing a polydimethylsiloxane (PDMS) block and a poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) block in a PDMS matrix. Topographic images of fresh samples revealed the presence of nanoscale domains associated with the presence of copolymers, covered by a thin layer of PDMS. Prolonged (30 days) immersion in aqueous solution led to the exposure of the hydrophilic PDMAEMA chains on the surface. Using adhesion force mapping with hydrophobic tips, we showed that fresh samples were uniformly hydrophobic, while aged samples exhibited lower surface hydrophobicity and featured nanoscale hydrophilic copolymer domains. Force mapping with negatively charged tips revealed remarkable salt-dependent force plateau signatures reflecting desorption of polyelectrolyte copolymer chains. These nanoscale experiments show how solvent-induced conformational changes of stimuli-responsive copolymers can be used to modulate surface adhesion.

  14. Interrogating adhesion using fiber Bragg grating sensing technology

    NASA Astrophysics Data System (ADS)

    Rasberry, Roger D.; Rohr, Garth D.; Miller, William K.; Udd, Eric; Blach, Noah T.; Davis, Ryan A.; Olson, Walter R.; Calkins, David; Roach, Allen R.; Walsh, David S.; McElhanon, James R.

    2015-05-01

    The assurance of the integrity of adhesive bonding at substrate interfaces is paramount to the longevity and sustainability of encapsulated components. Unfortunately, it is often difficult to non-destructively evaluate these materials to determine the adequacy of bonding after manufacturing and then later in service. A particularly difficult problem in this regard is the reliable detection/monitoring of regions of weak bonding that may result from poor adhesion or poor cohesive strength, or degradation in service. One promising and perhaps less explored avenue we have recently begun to investigate for this purpose centers on the use of (chirped) fiber Bragg grating sensing technology. In this scenario, a grating is patterned into a fiber optic such that a (broadband) spectral reflectance is observed. The sensor is highly sensitive to local and uniform changes across the length of the grating. Initial efforts to evaluate this approach for measuring adhesive bonding defects at substrate interfaces are discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. A uniform parametrization of moment tensors

    NASA Astrophysics Data System (ADS)

    Tape, Walter; Tape, Carl

    2015-09-01

    A moment tensor is a 3 × 3 symmetric matrix that expresses an earthquake source. We construct a parametrization of the 5-D space of all moment tensors of unit norm. The coordinates associated with the parametrization are closely related to moment tensor orientations and source types. The parametrization is uniform, in the sense that equal volumes in the coordinate domain of the parametrization correspond to equal volumes of moment tensors. Uniformly distributed points in the coordinate domain therefore give uniformly distributed moment tensors. A cartesian grid in the coordinate domain can be used to search efficiently over moment tensors. We find that uniformly distributed moment tensors have uniformly distributed orientations (eigenframes), but that their source types (eigenvalue triples) are distributed so as to favour double couples.

  16. Study of adhesion of vertically aligned carbon nanotubes to a substrate by atomic-force microscopy

    NASA Astrophysics Data System (ADS)

    Ageev, O. A.; Blinov, Yu. F.; Il'ina, M. V.; Il'in, O. I.; Smirnov, V. A.; Tsukanova, O. G.

    2016-02-01

    The adhesion to a substrate of vertically aligned carbon nanotubes (VA CNT) produced by plasmaenhanced chemical vapor deposition has been experimentally studied by atomic-force microscopy in the current spectroscopy mode. The longitudinal deformation of VA CNT by applying an external electric field has been simulated. Based on the results, a technique of determining VA CNT adhesion to a substrate has been developed that is used to measure the adhesion strength of connecting VA CNT to a substrate. The adhesion to a substrate of VA CNT 70-120 nm in diameter varies from 0.55 to 1.19 mJ/m2, and the adhesion force from 92.5 to 226.1 nN. When applying a mechanical load, the adhesion strength of the connecting VA CNT to a substrate is 714.1 ± 138.4 MPa, and the corresponding detachment force increases from 1.93 to 10.33 μN with an increase in the VA CNT diameter. As an external electric field is applied, the adhesion strength is almost doubled and is 1.43 ± 0.29 GPa, and the corresponding detachment force is changed from 3.83 to 20.02 μN. The results can be used in the design of technological processes of formation of emission structures, VA CNT-based elements for vacuum microelectronics and micro- and nanosystem engineering, and also the methods of probe nanodiagnostics of VA CNT.

  17. Solar cells with distributed parameters: Current-voltage characteristics under uniform and nonuniform illumination

    NASA Astrophysics Data System (ADS)

    Aripov, K. K.; Rumyantsev, V. D.

    1984-02-01

    A simple method of calculating the current voltage characteristics of solar cells, based on an equivalent resistance diode ladder network with stripline contacts, is applied to such cells with uniform thickness and various shapes of the active surface. Distributed resistance are represented by equivalent lumped ones. This procedure is applied first to the case of uniform illumination, using measured current voltage characteristics of cells and very precisely piecewise linearly approximated exponential current voltage characteristics of diodes. In the case of nonuniform illumination the latter is assumed to be axisymmetric, with the surface consisting of completely dark and uniformly bright segments. Numerical data is generated on this basis for GaAs cells of rectangular or sectoral shape uniformly illuminated and in the shape of circular disks either completely uniformly illuminated or with various configurations of concentric dark and bright zones. Nonuniform illumination is found to result in a flatter current voltage characteristic with a lower open circuit voltage.

  18. 21 CFR 175.105 - Adhesives.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Adhesives. 175.105 Section 175.105 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use Only as Components of Adhesives §...

  19. 21 CFR 175.105 - Adhesives.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Adhesives. 175.105 Section 175.105 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use Only as Components of Adhesives §...

  20. Nonwoven glass fiber mat reinforces polyurethane adhesive

    NASA Technical Reports Server (NTRS)

    Roseland, L. M.

    1967-01-01

    Nonwoven glass fiber mat reinforces the adhesive properties of a polyurethane adhesive that fastens hardware to exterior surfaces of aluminum tanks. The mat is embedded in the uncured adhesive. It ensures good control of the bond line and increases the peel strength.

  1. 21 CFR 878.4380 - Drape adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and... GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification. A drape adhesive is a device intended to be placed on the skin to attach a surgical drape....

  2. 21 CFR 878.4380 - Drape adhesive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Drape adhesive. 878.4380 Section 878.4380 Food and... GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4380 Drape adhesive. (a) Identification. A drape adhesive is a device intended to be placed on the skin to attach a surgical drape....

  3. The role of endothelial cell adhesion molecules P-selectin, E-selectin and intercellular adhesion molecule-1 in leucocyte recruitment induced by exogenous methylglyoxal

    PubMed Central

    Su, Yang; Lei, Xi; Wu, Lingyun; Liu, Lixin

    2012-01-01

    Methylglyoxal (MG) is a reactive dicarbonyl metabolite formed during glucose, protein and fatty acid metabolism. In hyperglycaemic conditions, increased MG level has been linked to the development of diabetes and its vascular complications at the macrovascular and microvascular levels where inflammation plays a role. To study the mechanism of MG-induced inflammation in vivo, we applied MG locally to healthy mice and used intravital microscopy to investigate the role of endothelial cell adhesion molecules in MG-induced leucocyte recruitment in cremasteric microvasculature. Administration of MG (25 and 50 mg/kg) to the tissue dose-dependently induced leucocyte recruitment at 4·0–5·5 hr, with 84–92% recruited cells being neutrophils. Such MG treatment up-regulated the expression of endothelial cell adhesion molecules P-selectin, E-selectin, intercellular adhesion molecule-1, but not vascular cell adhesion molecule-1. Activation of the nuclear factor-κB signalling pathway contributed to MG-induced up-regulation of these adhesion molecules and leucocyte recruitment. The role of the up-regulated endothelial cell adhesion molecules in MG-induced leucocyte recruitment was determined by applying specific functional blocking antibodies to MG-treated animals and observing changes in leucocyte recruitment parameters. Our data demonstrate that the up-regulation of P-selectin, E-selectin and intercellular adhesion molecule-1 contributes to the increased leucocyte rolling flux, reduced leucocyte rolling velocity, and increased leucocyte adhesion, respectively. Our results reveal the role of endothelial cell adhesion molecules in MG-induced leucocyte recruitment in microvasculature, an inflammatory condition related to diabetic vascular complications. PMID:22681228

  4. Nature of the adhesion bond between epoxy adhesive and steel

    NASA Astrophysics Data System (ADS)

    Vettegren', V. I.; Mamalimov, R. I.; Savitskii, A. V.; Shcherbakov, I. P.; Sytov, V. V.; Sytov, V. A.

    2014-03-01

    The potential difference that appears in the epoxy resin located between two grade 3 steel plates is studied. One of them is stored in epoxy resin to reach equilibrium, and the second plate is coated with an asprepared mixture of epoxy resin with a hardener. It is found that the potential difference decreases in time because of charge transfer by Fe2+ ions through epoxy resin. The luminescence and infrared absorption spectra of the epoxy adhesive on the grade 3 steel surface are recorded. An analysis of these spectra shows that Fe2+ ions penetrate into the as-prepared mixture of epoxy resin with the hardener, and interact with CN groups in the mixture, and form coordination compounds. As a result, a diffusion layer saturated by the coordination compounds forms at the interface between the steel and the adhesive.

  5. Preliminary evaluation of adhesion strength measurement devices for ceramic/titanium matrix composite bonds

    NASA Technical Reports Server (NTRS)

    Pohlchuck, Bobby; Zeller, Mary V.

    1992-01-01

    The adhesive bond between ceramic cement and a titanium matrix composite substrate to be used in the National Aerospace Plane program is evaluated. Two commercially available adhesion testers, the Sebastian Adherence Tester and the CSEM REVETEST Scratch Tester, are evaluated to determine their suitability for quantitatively measuring adhesion strength. Various thicknesses of cements are applied to several substrates, and bond strengths are determined with both testers. The Sabastian Adherence Tester has provided limited data due to an interference from the sample mounting procedure, and has been shown to be incapable of distinguishing adhesion strength from tensile and shear properties of the cement itself. The data from the scratch tester has been found to be difficult to interpret due to the porosity and hardness of the cement. Recommendations are proposed for a more reliable adhesion test method.

  6. Structural and compositional characterization of the adhesive produced by reef building oysters.

    PubMed

    Alberts, Erik M; Taylor, Stephen D; Edwards, Stephanie L; Sherman, Debra M; Huang, Chia-Ping; Kenny, Paul; Wilker, Jonathan J

    2015-04-29

    Oysters have an impressive ability to overcome difficulties of life within the stressful intertidal zone. These shellfish produce an adhesive for attaching to each other and building protective reef communities. With their reefs often exceeding kilometers in length, oysters play a major role in balancing the health of coastal marine ecosystems. Few details are available to describe oyster adhesive composition or structure. Here several characterization methods were applied to describe the nature of this material. Microscopy studies indicated that the glue is comprised of organic fiber-like and sheet-like structures surrounded by an inorganic matrix. Phospholipids, cross-linking chemistry, and conjugated organics were found to differentiate this adhesive from the shell. Symbiosis in material synthesis could also be present, with oysters incorporating bacterial polysaccharides into their adhesive. Oyster glue shows that an organic-inorganic composite material can provide adhesion, a property especially important when constructing a marine ecosystem. PMID:25843147

  7. Tetraspanin CD151 regulates alpha6beta1 integrin adhesion strengthening

    NASA Technical Reports Server (NTRS)

    Lammerding, Jan; Kazarov, Alexander R.; Huang, Hayden; Lee, Richard T.; Hemler, Martin E.

    2003-01-01

    The tetraspanin CD151 molecule associates specifically with laminin-binding integrins, including alpha6beta1. To probe strength of alpha6beta1-dependent adhesion to laminin-1, defined forces (0-1.5 nN) were applied to magnetic laminin-coated microbeads bound to NIH 3T3 cells. For NIH 3T3 cells bearing wild-type CD151, adhesion strengthening was observed, as bead detachment became more difficult over time. In contrast, mutant CD151 (with the C-terminal region replaced) showed impaired adhesion strengthening. Static cell adhesion to laminin-1, and detachment of beads coated with fibronectin or anti-alpha6 antibody were all unaffected by CD151 mutation. Hence, CD151 plays a key role in selectively strengthening alpha6beta1 integrin-mediated adhesion to laminin-1.

  8. Evaluation of the mechanical properties of dental adhesives and glass-ionomer cements.

    PubMed

    Magni, Elisa; Ferrari, Marco; Hickel, Reinhard; Ilie, Nicoleta

    2010-02-01

    Adhesives and lining/base materials should relieve the stresses concentrated at the tooth/restoration interface. The study aimed at comparing the mechanical properties of eight adhesives and six glass-ionomer cements (GICs). The adhesives were applied on dentin disks, whereas 2 mm x 3 mm x 2 mm GICs specimens were prepared in a teflon mold. Vicker's hardness (VH), elastic modulus (E), creep (Cr) and elastic work (We/Wtot) were measured with a micro hardness indenter. One-way ANOVA and Tukey's test were used to compare the mechanical properties within each materials' type and among the materials' classes. Enamel and dentin were used as references. Significant differences were detected within each materials' type and among the materials' classes and enamel and dentin. GICs were superior to adhesives in VH and E and showed a VH similar to dentin. GICs presented mechanical properties more similar to enamel and dentin than adhesives. PMID:19241096

  9. FLRT Structure: Balancing Repulsion and Cell Adhesion in Cortical and Vascular Development

    PubMed Central

    Seiradake, Elena; del Toro, Daniel; Nagel, Daniel; Cop, Florian; Härtl, Ricarda; Ruff, Tobias; Seyit-Bremer, Gönül; Harlos, Karl; Border, Ellen Clare; Acker-Palmer, Amparo; Jones, E. Yvonne; Klein, Rüdiger

    2014-01-01

    Summary FLRTs are broadly expressed proteins with the unique property of acting as homophilic cell adhesion molecules and as heterophilic repulsive ligands of Unc5/Netrin receptors. How these functions direct cell behavior and the molecular mechanisms involved remain largely unclear. Here we use X-ray crystallography to reveal the distinct structural bases for FLRT-mediated cell adhesion and repulsion in neurons. We apply this knowledge to elucidate FLRT functions during cortical development. We show that FLRTs regulate both the radial migration of pyramidal neurons, as well as their tangential spread. Mechanistically, radial migration is controlled by repulsive FLRT2-Unc5D interactions, while spatial organization in the tangential axis involves adhesive FLRT-FLRT interactions. Further, we show that the fundamental mechanisms of FLRT adhesion and repulsion are conserved between neurons and vascular endothelial cells. Our results reveal FLRTs as powerful guidance factors with structurally encoded repulsive and adhesive surfaces. PMID:25374360

  10. Adhesion and membrane tension of single vesicles and living cells using a micropipette-based technique.

    PubMed

    Colbert, M-J; Raegen, A N; Fradin, C; Dalnoki-Veress, K

    2009-10-01

    The fundamental study of the adhesion of cells to each other or to a substrate is a key research topic in cellular biophysics because cell adhesion is important to many biological processes. We report on the adhesion of a model cell, a liposome, and a living HeLa cell to a substrate measured with a novel experimental technique. The cells are held at the end of a micropipette mounted on a micromanipulator and brought into contact with a surface. The adhesion energy and membrane tension are measured directly using the deflection of the micropipette when binding or unbinding the cell from the substrate. Since the force applied on the cells is known throughout the experiment, the technique presented enables the measurement of dynamics such as changes in the adhesion, elasticity, and membrane tension with time. PMID:19777278

  11. Shear Adhesive Connections for Glass Structures

    NASA Astrophysics Data System (ADS)

    Machalická, K.; Horčičková, I.; Eliášová, M.

    2015-11-01

    Unique aesthetical properties of glass - not only transparency but also smooth, glossy and primarily reflective surface - give this material special importance in the contemporary architecture. In every structural application of glass it is necessary to solve the problem associated with connections between glass pane and other part from a different material or between two glass elements. Moreover, there are many types of hybrid structures that combine glass and different materials to achieve safe failure behaviour and high degree of transparency at the same time. Connection of brittle glass and reinforcing material is an essential part of these structures, where composite action between two parts is beneficially ensured by a glued joint. The current paper deals with the experimental analysis focused on the determination of mechanical characteristics of adhesives applied in planar connections under shear loading.

  12. Ceramic adhesive restorations and biomimetic dentistry: tissue preservation and adhesion.

    PubMed

    Tirlet, Gil; Crescenzo, Hélène; Crescenzo, Dider; Bazos, Panaghiotis

    2014-01-01

    Thanks to sophisticated adhesive techniques in contemporary dentistry, and the development of composite and ceramic materials, it is possible to reproduce a biomimetic match between substitution materials and natural teeth substrates. Biomimetics or bio-emulation allows for the association of two fundamental parameters at the heart of current therapeutic treatments: tissue preservation and adhesion. This contemporary concept makes the retention of the integrity of the maximum amount of dental tissue possible, while offering exceptional clinical longevity, and maximum esthetic results. It permits the conservation of the biological, esthetic, biomechanical and functional properties of enamel and dentin. Today, it is clearly possible to develop preparations allowing for the conservation of the enamel and dentin in order to bond partial restorations in the anterior and posterior sectors therefore limiting, as Professor Urs Belser from Geneva indicates, "the replacement of previous deficient crowns and devitalized teeth whose conservation are justified but whose residual structural state are insufficient for reliable bonding."1 This article not only addresses ceramic adhesive restoration in the anterior area, the ambassadors of biomimetic dentistry, but also highlights the possibility of occasionally integrating one or two restorations at the heart of the smile as a complement to extensive rehabilitations that require more invasive treatment. PMID:25126616

  13. Bio-inspired adhesion: local chemical environments impact adhesive stability

    NASA Astrophysics Data System (ADS)

    Gebbie, Matthew A.; Rapp, Michael V.; Yu, Jing; Wei, Wei; Waite, J. Herbert; Israelachvili, Jacob N.

    2014-03-01

    3,4-dihydroxyphenylalanine (Dopa) is an amino acid that is naturally synthesized by marine mussels and exhibits the unique ability to strongly bind to surfaces in aqueous environments. However, the Dopa functional group undergoes auto-oxidation to a non-adhesive quinone form in neutral to basic pH conditions, limiting the utilization of Dopa in biomedical applications. In this work, we performed direct surface force measurements with in situ electrochemical control across a Dopa-rich native mussel foot protein (mfp-5), as well as three simplified model peptide sequences. We find that the neighboring peptide residues can significantly impact the redox stability of Dopa functional groups, with lysine residues imparting a substantial degree of Dopa redox stabilization. Surprisingly, the local chemical environments only minimally impact the magnitude of the adhesion forces measured between molecularly-smooth mica and gold surfaces. Our results provide molecular level insight into approaches that can be used to mitigate the detrimental impact of Dopa auto-oxidation, thus suggesting new molecular design strategies for improving the performance of Dopa-based underwater adhesives.

  14. Adhesives for the composite wood panel industry

    SciTech Connect

    Koch, G.S.; Klareich, F.; Exstrum, B.

    1987-01-01

    This book presents a market and technology analysis of current fossil-fuel-based adhesives for the composite wood panel industry. It is also a study of the potential for, and technology of, less-energy-intensive biomass-derived adhesives for use in the industry. Adhesives manufacturer and production account for a significant portion of overall wood panel industry energy use as well as overall production costs, and the wood panel industry consumes about 25% of the total U.S. adhesives production. Significant savings might be realized if current fossil-fuel-based resins could be replaced with alternative biomass-derived adhesives.

  15. A review of high-temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1981-01-01

    The development of high temperature adhesives and polyphenylquinoxalines (PPQ) is reported. Thermoplastic polyimides and linear PPQ adhesive are shown to have potential for bonding both metals and composite structures. A nadic terminated addition polyimide adhesive, LARC-13, and an acetylene terminated phenylquinoxaline (ATPQ) were developed. Both of the addition type adhesives are shown to be more readily processable than linear materials but less thermooxidatively stable and more brittle. It is found that the addition type adhesives are able to perform, at elevated temperatures up to 595 C where linear systems fail thermoplastically.

  16. Viscoelastic analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    In this paper an adhesively bonded lap joint is analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. After formulating the general problem a specific example for two identical adherends bonded through a three parameter viscoelastic solid adhesive is considered. The standard Laplace transform technique is used to solve the problem. The stress distribution in the adhesive layer is calculated for three different external loads namely, membrane loading, bending, and transverse shear loading. The results indicate that the peak value of the normal stress in the adhesive is not only consistently higher than the corresponding shear stress but also decays slower.

  17. Viscoelastic analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1980-01-01

    An adhesively bonded lap joint is analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. After formulating the general problem a specific example for two identical adherends bonded through a three parameter viscoelastic solid adhesive is considered. The standard Laplace transform technique is used to solve the problem. The stress distribution in the adhesive layer is calculated for three different external loads, namely, membrane loading, bending, and transverse shear loading. The results indicate that the peak value of the normal stress in the adhesive is not only consistently higher than the corresponding shear stress but also decays slower.

  18. Gecko adhesion pad: a smart surface?

    NASA Astrophysics Data System (ADS)

    Pesika, Noshir S.; Zeng, Hongbo; Kristiansen, Kai; Zhao, Boxin; Tian, Yu; Autumn, Kellar; Israelachvili, Jacob

    2009-11-01

    Recently, it has been shown that humidity can increase the adhesion of the spatula pads that form the outermost (adhesive) surface of the tokay gecko feet by 50% relative to the main adhesion mechanism (i.e. van der Waals adhesive forces), although the mechanism by which the enhancement is realized is still not well understood. A change in the surface hydrophobicity of a gecko setal array is observed when the array, which supports the spatulae, is exposed to a water drop for more than 20 min, suggesting a change in the hydrophilic-lyophilic balance (HLB), and therefore of the conformation of the surface proteins. A surface force apparatus (SFA) was used to quantify these changes, i.e. in the adhesion and friction forces, while shearing the setal array against a silica surface under (i) dry conditions, (ii) 100% humidity and (iii) when fully immersed in water. The adhesion increased in the humid environment but greatly diminished in water. Although the adhesion forces changed significantly, the friction forces remained unaffected, indicating that the friction between these highly textured surfaces is 'load-controlled' rather than 'adhesion-controlled'. These results demonstrate that the gecko adhesive pads have the ability to exploit environmental conditions to maximize their adhesion and stabilize their friction forces. Future designs of synthetic dry adhesives inspired by the gecko can potentially include similar 'smart' surfaces that adapt to their environment.

  19. Nanocapillary Adhesion between Parallel Plates.

    PubMed

    Cheng, Shengfeng; Robbins, Mark O

    2016-08-01

    Molecular dynamics simulations are used to study capillary adhesion from a nanometer scale liquid bridge between two parallel flat solid surfaces. The capillary force, Fcap, and the meniscus shape of the bridge are computed as the separation between the solid surfaces, h, is varied. Macroscopic theory predicts the meniscus shape and the contribution of liquid/vapor interfacial tension to Fcap quite accurately for separations as small as two or three molecular diameters (1-2 nm). However, the total capillary force differs in sign and magnitude from macroscopic theory for h ≲ 5 nm (8-10 diameters) because of molecular layering that is not included in macroscopic theory. For these small separations, the pressure tensor in the fluid becomes anisotropic. The components in the plane of the surface vary smoothly and are consistent with theory based on the macroscopic surface tension. Capillary adhesion is affected by only the perpendicular component, which has strong oscillations as the molecular layering changes. PMID:27413872

  20. Particle adhesion in powder coating

    SciTech Connect

    Mazumder, M.K.; Wankum, D.L.; Knutson, M.; Williams, S.; Banerjee, S.

    1996-12-31

    Electrostatic powder coating is a widely used industrial painting process. It has three major advantages: (1) it provides high quality durable finish, (2) the process is environmentally friendly and does not require the use of organic solvents, and (3) it is economically competitive. The adhesion of electrostatically deposited polymer paint particles on the grounded conducting substrate depends upon many parameters: (a) particle size and shape distributions, (b) electrostatic charge distributions, (c) electrical resistivity, (d) dielectric strength of the particles, (e) thickness of the powder film, (f) presence and severity of the back corona, and (g) the conductivity and surface properties of the substrate. The authors present a model on the forces of deposition and adhesion of corona charged particles on conducting substrates.

  1. Acetylene-terminated polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Hanky, A. O.

    1983-01-01

    The nadic-encapped LARC-13 addition polyimide exhibits excellent flow, is easy to process, and can be utilized for short terms at temperatures up to 593 C. It retains good lap shear strength as an adhesive for titanium after aging in air up to 125 hours at 316 C; but lap shear strength degrades with longer exposures at that temperature. Thermid 600, an addition polyimide that is acetylene encapped, exhibits thermomechanical properties even after long term exposure in at air at 316 C. An inherent drawback of this system is that it has a narrow processing window. An acetylene encapped, addition polyimide which is a hybrid of these two systems was developed. It has good retention of strength after long term aging and is easily processed. The synthesis and characterization of various molecular weight oligomers of this system are discussed as well as the bonding, aging, and testing of lap shear adhesive samples.

  2. Labial adhesions in pubertal girls.

    PubMed

    Kumar, Roy Kallol; Sonika, Agarwal; Charu, Chanana; Sunesh, Kumar; Neena, Malhotra

    2006-01-01

    Labial adhesions after puberty are rare and are usually the result of chronic inflammation, urinary tract infection, hypoestrogenism or surgical procedures leading to vulval trauma. Sexual abuse leading to labial adhesions is extremely rare in girls who have attained menarche. Complete vulval fusion can rarely occur without any evidence of hypoestrogenism. We address this rare entity in three young pubertal girls wherein one had a history of genital trauma, the second had a history of surgical intervention due to urinary retention and the last one had a history of sexual abuse. All patients had history of genital trauma in common. Accepted management of this condition is adhesiolysis followed by application of estrogen cream in the postoperative period. PMID:16189695

  3. Acetylene-terminated polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Hanky, A. O.; St. Clair, T. L.

    1983-01-01

    The nadic-encapped LARC-43 addition polyimide exhibits excellent flow, is easy to process, and can be utilized for short terms at temperatures up to 593 C. It retains good lap shear strength as an adhesive for titanium after aging in air up to 125 hours at 316 C; but lap shear strength degrades with longer exposures at that temperature. Thermid 600, an addition polyimide that is acetylene encapped, exhibits thermomechanical properties even after long term exposure in at air at 316 C. An inherent drawback of this system is that it has a narrow processing window. An acetylene encapped, addition polyimide which is a hybrid of these two systems was developed. It has good retention of strength after long term aging and is easily processed. The synthesis and characterization of various molecular weight oligomers of this system are discussed as well as the bonding, aging, and testing of lap shear adhesive samples. Previously announced in STAR as N83-18910

  4. On General Relativistic Uniformly Rotating White Dwarfs

    NASA Astrophysics Data System (ADS)

    Boshkayev, Kuantay; Rueda, Jorge A.; Ruffini, Remo; Siutsou, Ivan

    2013-01-01

    The properties of uniformly rotating white dwarfs (RWDs) are analyzed within the framework of general relativity. Hartle's formalism is applied to construct the internal and external solutions to the Einstein equations. The white dwarf (WD) matter is described by the relativistic Feynman-Metropolis-Teller equation of state which generalizes that of Salpeter by taking into account the finite size of the nuclei, and the Coulomb interactions as well as electroweak equilibrium in a self-consistent relativistic fashion. The mass M, radius R, angular momentum J, eccentricity epsilon, and quadrupole moment Q of RWDs are calculated as a function of the central density ρ c and rotation angular velocity Ω. We construct the region of stability of RWDs (J-M plane) taking into account the mass-shedding limit, inverse β-decay instability, and the boundary established by the turning points of constant J sequences which separates stable from secularly unstable configurations. We found the minimum rotation periods ~0.3, 0.5, 0.7, and 2.2 s and maximum masses ~1.500, 1.474, 1.467, 1.202 M ⊙ for 4He, 12C, 16O, and 56Fe WDs, respectively. By using the turning-point method, we found that RWDs can indeed be axisymmetrically unstable and we give the range of WD parameters where this occurs. We also construct constant rest-mass evolution tracks of RWDs at fixed chemical composition and show that, by losing angular momentum, sub-Chandrasekhar RWDs (mass smaller than maximum static one) can experience both spin-up and spin-down epochs depending on their initial mass and rotation period, while super-Chandrasekhar RWDs (mass larger than maximum static one) only spin up.

  5. ON GENERAL RELATIVISTIC UNIFORMLY ROTATING WHITE DWARFS

    SciTech Connect

    Boshkayev, Kuantay; Rueda, Jorge A.; Ruffini, Remo; Siutsou, Ivan E-mail: jorge.rueda@icra.it E-mail: siutsou@icranet.org

    2013-01-10

    The properties of uniformly rotating white dwarfs (RWDs) are analyzed within the framework of general relativity. Hartle's formalism is applied to construct the internal and external solutions to the Einstein equations. The white dwarf (WD) matter is described by the relativistic Feynman-Metropolis-Teller equation of state which generalizes that of Salpeter by taking into account the finite size of the nuclei, and the Coulomb interactions as well as electroweak equilibrium in a self-consistent relativistic fashion. The mass M, radius R, angular momentum J, eccentricity {epsilon}, and quadrupole moment Q of RWDs are calculated as a function of the central density {rho} {sub c} and rotation angular velocity {Omega}. We construct the region of stability of RWDs (J-M plane) taking into account the mass-shedding limit, inverse {beta}-decay instability, and the boundary established by the turning points of constant J sequences which separates stable from secularly unstable configurations. We found the minimum rotation periods {approx}0.3, 0.5, 0.7, and 2.2 s and maximum masses {approx}1.500, 1.474, 1.467, 1.202 M {sub Sun} for {sup 4}He, {sup 12}C, {sup 16}O, and {sup 56}Fe WDs, respectively. By using the turning-point method, we found that RWDs can indeed be axisymmetrically unstable and we give the range of WD parameters where this occurs. We also construct constant rest-mass evolution tracks of RWDs at fixed chemical composition and show that, by losing angular momentum, sub-Chandrasekhar RWDs (mass smaller than maximum static one) can experience both spin-up and spin-down epochs depending on their initial mass and rotation period, while super-Chandrasekhar RWDs (mass larger than maximum static one) only spin up.

  6. Host Selection of Microbiota via Differential Adhesion.

    PubMed

    McLoughlin, Kirstie; Schluter, Jonas; Rakoff-Nahoum, Seth; Smith, Adrian L; Foster, Kevin R

    2016-04-13

    The host epithelium is the critical interface with microbial communities, but the mechanisms by which the host regulates these communities are poorly understood. Here we develop the hypothesis that hosts use differential adhesion to select for and against particular members of their microbiota. We use an established computational, individual-based model to study the impact of host factors that regulate adhesion at the epithelial surface. Our simulations predict that host-mediated adhesion can increase the competitive advantage of microbes and create ecological refugia for slow-growing species. We show how positive selection via adhesion can be transformed into negative selection if the host secretes large quantities of a matrix such as mucus. Our work predicts that adhesion is a powerful mechanism for both positive and negative selection within the microbiota. We discuss molecules-mucus glycans and IgA-that affect microbe adhesion and identify testable predictions of the adhesion-as-selection model. PMID:27053168

  7. Adhesive mechanisms in cephalopods: a review.

    PubMed

    von Byern, Janek; Klepal, Waltraud

    2006-01-01

    Several genera of cephalopods (Nautilus, Sepia, Euprymna and Idiosepius) produce adhesive secretions, which are used for attachment to the substratum, for mating and to capture prey. These adhesive structures are located in different parts of the body, viz. in the digital tentacles (Nautilus), in the ventral surface of the mantle and fourth arm pair (Sepia), in the dorsal epidermis (Euprymna), or in the dorsal mantle side and partly on the fins (Idiosepius). Adhesion in Sepia is induced by suction of dermal structures on the mantle, while for Nautilus, Euprymna and Idiosepius adhesion is probably achieved by chemical substances. Histochemical studies indicate that in Nautilus and Idiosepius secretory cells that appear to be involved in adhesion stain for carbohydrates and protein, whilst in Euprymna only carbohydrates are detectable. De-adhesion is either achieved by muscle contraction of the tentacles and mantle (Nautilus and Sepia) or by secretion of substances (Euprymna). The de-adhesive mechanism used by Idiosepius remains unknown. PMID:17110356

  8. Adhesion effects in contact interaction of solids

    NASA Astrophysics Data System (ADS)

    Goryacheva, Irina; Makhovskaya, Yulya

    2008-01-01

    An approach to solving problems of the interaction of axisymmetric elastic bodies in the presence of adhesion is developed. The different natures of adhesion, i.e. capillary adhesion, or molecular adhesion described by the Lennard-Jones potential are examined. The effect of additional loading of the interacting bodies outside the contact zone is also investigated. The approach is based on the representation of the pressure outside the contact zone arising from adhesion by a step function. The analytical solution is obtained and is used to analyze the influence of the form of the adhesion interaction potential, of the surface energy of interacting bodies or the films covering the bodies, their shapes (parabolic, higher power exponential function), volume of liquid in the meniscus, density of contact spots, of elastic modulus and the Poisson ratio on the characteristics of the interaction of the bodies in the presence of adhesion. To cite this article: I. Goryacheva, Y. Makhovskaya, C. R. Mecanique 336 (2008).

  9. Theory of adhesion: Role of surface roughness

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.; Scaraggi, M.

    2014-09-01

    We discuss how surface roughness influences the adhesion between elastic solids. We introduce a Tabor number which depends on the length scale or magnification, and which gives information about the nature of the adhesion at different length scales. We consider two limiting cases relevant for (a) elastically hard solids with weak (or long ranged) adhesive interaction (DMT-limit) and (b) elastically soft solids with strong (or short ranged) adhesive interaction (JKR-limit). For the former cases we study the nature of the adhesion using different adhesive force laws (F ˜ u-n, n = 1.5-4, where u is the wall-wall separation). In general, adhesion may switch from DMT-like at short length scales to JKR-like at large (macroscopic) length scale. We compare the theory predictions to results of exact numerical simulations and find good agreement between theory and simulation results.

  10. Influence of Nd:YAG laser irradiation on an adhesive restorative procedure.

    PubMed

    Franke, Margarete; Taylor, Arthur Westphal; Lago, Alexandre; Fredel, Márcio Celso

    2006-01-01

    Hard tissue modification by means of laser irradiation is becoming popular in dentistry, since it promotes assorted responses between the tooth and the restorative material. Some studies on the bond strength of adhesive systems to Nd:YAG irradiated teeth have shown distinctive behaviors when irradiation was applied before or after the adhesive agent. This study evaluated the microtensile bond strength of a commercial adhesive system to dentin irradiated with Nd:YAG laser after adhesive application but prior to polymerization. The experiment was conducted in vitro, using freshly extracted human teeth as samples. For the microtensile test, the teeth were separated into 4 different groups according to the energy density of laser irradiation: 0, 5, 10 and 50 J/cm2. The data was analyzed with analysis of variance (ANOVA) and LSD tests, and the results indicated that the group that was irradiated with 5 J/cm2 had significantly higher bond strength values. Adhesive penetration on the etched dentin was observed by scanning electron microscopy, where the images showed better adhesive penetration on dentinal tubules after dentin irradiation with 5 J/cm2. Based on the results of this study, it is possible to conclude that irradiation of dentin with the Nd:YAG laser at low energy densities after application of the adhesive but prior to polymerization might be positive for the adhesive restorative process. PMID:17024950

  11. Approaching improved adhesive bonding repeatability

    NASA Astrophysics Data System (ADS)

    Schlette, Christian; Müller, Tobias; Roβmann, Jürgen; Brecher, Christian

    2016-03-01

    Today, the precision of micro-optics assembly is mostly limited by the accuracy of the bonding process ― and in the case of adhesive bonding by the prediction and compensation of adhesive shrinkage during curing. In this contribution, we present a novel approach to address adhesive bonding based on hybrid control system theory. In hybrid control, dynamic systems are described as "plants" which produce discrete and/or continuous outputs from given discrete and/or continuous inputs, thus yielding a hybrid state space description of the system. The task of hybrid controllers is to observe the plant and to generate a discrete and/or continuous input sequence that guides or holds the plant in a desired target state region while avoiding invalid or unwanted intermediate states. Our approach is based on a series of experiments carried out in order to analyze, define and decouple the dependencies of adhesive shrinkage on multiple parameters, such as application geometries, fixture forces and UV intensities. As some of the dependencies describe continuous effects (e.g. shrinkage from UV intensity) and other dependencies describe discrete state transitions (e.g. fixture removal during curing), the resulting model of the overall bonding process is a hybrid dynamic system in the general case. For this plant model, we then propose a concept of sampling-based parameter search as a basis to design suitable hybrid controllers, which have the potential to optimize process control for a selection of assembly steps, thus improving the repeatability of related production steps like beam-shaping optics or mounting of turning mirrors for fiber coupling.

  12. Culinary Medicine-Jalebi Adhesions.

    PubMed

    Kapoor, Vinay K

    2016-02-01

    Culinary terms have been used to describe anatomy (bean-shaped kidneys), pathology (strawberry gall bladder), clinical signs (café-au-lait spots), radiological images (sausage-shaped pancreas), etc. While Indian cuisine is popular all over the world, no Indian dish finds mention in medical terminology. In intra-abdominal adhesions, sometimes, the intestinal loops are so densely adherent that it is difficult to make out proximal from distal and it is impossible to separate them without injuring the bowel resulting in spill of contents-resection is the only option (Fig. 1). Jalebi, an Indian dessert, has a single long tubular strip of fried batter filled with sugary syrup so intertwined that it is impossible to discern its ends; if broken, the syrup spills out-the best way to relish it is to chew the whole piece (Fig. 2). Because of these similarities between them, I propose to name dense intra-abdominal adhesions as 'jalebi adhesions.' PMID:27186047

  13. Adhesive evaluation of new polyimides

    NASA Technical Reports Server (NTRS)

    Stclair, Terry L.; Progar, Donald J.

    1987-01-01

    During the past 10 to 15 years, the Materials Division at NASA Langley Research Center (LaRC) has developed several novel high temperature polyimide adhesives for anticipated needs of the aerospace industry. These developments have resulted from fundamental studies of structure-property relationships in polyimides. Recent research at LaRC has involved the synthesis and evaluation of copolyimides which incorporate both flexibilizing bridging groups and meta-linked benzene rings. The purpose was to develop systems based on low cost, readily available monomers. Two of these copolyimides evaluated as adhesives for bonding titanium alloy, Ti(6Al-4V), are identified as LARC-STPI and STPI-LARC-2. Lap shear strength (LSS) measurements were used to determine the strength and durability of the adhesive materials. LSS results are presented for LARC-TPI and LARC-STPI lap shear specimens thermally exposed in air at 232 C for up to 5000 hrs. LARC-TPI was shown to perform better than the copolymer LARC-STPI which exhibited poor thermooxidative performance possibly due to the amines used which would tend to oxidize easier than the benzophenone system in LARC-TPI.

  14. [Adhesion to the antiretroviral treatment].

    PubMed

    Carballo, M

    2004-12-01

    The objective of the therapy antiretroviral is to improve the quality of life and the survival of the persons affected by the VIH through the suppression of the viral replication. Nevertheless one of the present problems is the resistant apparition of stumps to the new medicines caused by an incorrect management of the therapeutic plan; by an incorrect adhesion of the personal processing. Since the therapeutic success will depend, among others factors, and of important form of the degree of implication and commitment of the person affected, is a matter of identifying prematurely the possible situations concomitants (personal factors and of addiction, psycho-social, related to the processing and its possible secondary effects, associated factors to the own illness or even to the relation professional-patient) that can interfere in a correct adhesion. For it is necessary of the interaction multidisciplinary of the welfare team, and fundamental the work of nursing at the moment of to detect the possible determinant factors and the intervention definition of strategies arrived at by consensus with the own person, that they promote it or it improve. The quantification of the degree of adhesion (measure in %) values through various direct and indirect methods and should keep in mind in it takes of therapeutic decisions being able to come to be advised the suspension of the processing until obtaining to conscience to the person affected of the importance of a correct therapeutic compliance. PMID:15672996

  15. Strategies to Minimize Adhesions to Intraperitoneally Placed Mesh in Laparoscopic Ventral Hernia Repair

    PubMed Central

    Saliba, Lucia; Chandratnam, Edward; Turingan, Isidro; Hawthorne, Wayne

    2012-01-01

    Introduction: Adhesions to mesh/tacks in laparoscopic ventral hernia repair are often cited as reasons not to adopt its evidence-based superiority over conventional open methods. This pilot study assessed the occurrence of adhesions to full-sized Polypropylene and Gore-tex DualMesh Plus meshes and the possibility for adhesion prevention using fibrin sealant. Methods: Two 10-cm to 15-cm pieces of mesh were placed and fixed laparoscopically in pigs (25kg to 55kg). Group I: 2 animals with Polypropylene mesh on one side and DualMesh on other side. Group II: 2 animals with DualMesh on each side with fibrin sealant applied to the periphery of mesh and staples to one side. Group III: 1 animal with 2 pieces of Polypropylene mesh with fibrin sealant applied to the entire mesh. All animals underwent laparoscopy 3 months later to assess the extent of adhesions, and full-thickness specimens were removed for histological evaluation. Results: More Polypropylene mesh was involved in adhesions than DualMesh. However, with the DualMesh involved in adhesions, more of the surface area was involved in forming adhesions than with Polypropylene mesh. None of the implanted DualMesh had visceral adhesions, while 2 out of 3 Polypropylene meshes had adhesions to both the liver and spleen but none to the bowel. Implanted Polypropylene mesh with fibrin sealant had no adhesions. DualMesh had shrunk more significantly than Polypropylene mesh. Histological evaluation showed absence of acute inflammatory response, significantly more chronic inflammatory response to DualMesh compared to Polypropylene and complete mesothelialization with both meshes. There was extensive collagen deposition between Polypropylene mesh fibers, while fibrosis occurred on both sides of DualMesh with synovial metaplasia over its peritoneal surface akin to encapsulation. Conclusions: DualMesh caused fewer omental and visceral adhesions than Polypropylene mesh did. Fibrin sealant eliminated adhesions to DualMesh and

  16. Plasma uniformity of microwave ion sources

    SciTech Connect

    Tokiguichi, K.; Sakudo, N.; Suzuki, K.; Kanomata, I.

    1980-09-01

    The ion saturation current uniformities of two different type plasma sources, a coaxial and a Lisitano coil type, are investigated using a moveable Langmuir probe. They both operate under off-resonance microwave discharge. H/sub 2/ or Ar is used as the discharge gas. The coaxial source provides better uniformities for ion saturation current, electron temperature, and electon density than the Lisitano coil, independent of the discharge gas species. The ion saturation current with the coaxial source is uniform within approx.15% inside a 40-mm-diam circle for a 0.17 Pa H/sub 2/ discharge. However, with the Lisitano coil, uniformity is limited to a 20-mm-diam circle. Furthermore, the Lisitano coil easily suffers from heat distortion because of difficulties in realizing a cooled system. It is also experimentally confirmed that the coaxial-type source is more appropriate for obtaining high density plasma under continuous operation.

  17. Plasma uniformity of microwave ion sources

    NASA Astrophysics Data System (ADS)

    Tokiguichi, K.; Sakudo, N.; Suzuki, K.; Kanomata, I.

    1980-10-01

    The ion saturation current uniformities of two different type plasma sources, a coaxial and a Lisitano coil type, are investigated using a moveable Langmuir probe. They both operate under off-resonance microwave discharge; H2 or Ar is used as the discharge gas. The coaxial source provides better uniformities for ion saturation current, electron temperature, and electron density than the Lisitano coil, independent of the discharge gas species. The ion saturation current with the coaxial source is uniform within about 15% inside a 40-mm-diam circle for a 0.17 Pa H2 discharge. However, with the Lisitano coil uniformity is limited to a 20-mm-diam circle and the coil is subject to heat distortion because of difficulties in realizing a cooled system

  18. 7 CFR 29.3563 - Uniformity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign... tobacco as it is prepared for market. Uniformity is expressed in grade specifications as a percentage....

  19. 7 CFR 29.3563 - Uniformity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign... tobacco as it is prepared for market. Uniformity is expressed in grade specifications as a percentage....

  20. 7 CFR 29.3563 - Uniformity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign... tobacco as it is prepared for market. Uniformity is expressed in grade specifications as a percentage....

  1. 7 CFR 29.3563 - Uniformity.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign... tobacco as it is prepared for market. Uniformity is expressed in grade specifications as a percentage....

  2. 7 CFR 29.3563 - Uniformity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign... tobacco as it is prepared for market. Uniformity is expressed in grade specifications as a percentage....

  3. 7 CFR 54.31 - Uniforms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) MEATS, PREPARED MEATS, AND MEAT PRODUCTS (GRADING, CERTIFICATION, AND STANDARDS) Regulations Miscellaneous § 54.31 Uniforms. All meat... or meat product....

  4. 7 CFR 54.31 - Uniforms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) MEATS, PREPARED MEATS, AND MEAT PRODUCTS (GRADING, CERTIFICATION, AND STANDARDS) Regulations Miscellaneous § 54.31 Uniforms. All meat... or meat product....

  5. 7 CFR 54.31 - Uniforms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) MEATS, PREPARED MEATS, AND MEAT PRODUCTS (GRADING, CERTIFICATION, AND STANDARDS) Regulations Miscellaneous § 54.31 Uniforms. All meat... or meat product....

  6. 7 CFR 54.31 - Uniforms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) MEATS, PREPARED MEATS, AND MEAT PRODUCTS (GRADING, CERTIFICATION, AND STANDARDS) Regulations Miscellaneous § 54.31 Uniforms. All meat... or meat product....

  7. 7 CFR 54.31 - Uniforms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) MEATS, PREPARED MEATS, AND MEAT PRODUCTS (GRADING, CERTIFICATION, AND STANDARDS) Regulations Miscellaneous § 54.31 Uniforms. All meat... or meat product....

  8. An adhesion barrier may induce peritonitis and abscess after laparoscopy-assisted myomectomy with vaginal extraction: report of a case.

    PubMed

    Ko, Ma-Lee; Huang, Lee-Wen; Chang, Jier-Zen; Hwang, Jian-Loung; Pan, Hun-Shan

    2010-01-01

    Following a myomectomy, postoperative adhesions occur in many patients. Although laparoscopy has been shown to decrease the development of adhesions compared to laparotomy, adhesions still occur. There are several commercially available adhesion barriers but these are not designed to be easily applied during laparoscopic surgery. In this study, we report a case involving a 34-year-old patient who developed pelvic peritonitis and abscess without an obvious etiology; this might have been related to the off-label use of a bioabsorbable membrane converted into a slurry during recent surgery. Surgeons should be aware of such complications, which might be attributed to this product. PMID:19940487

  9. Spectral degree of polarization uniformity for polarization-sensitive OCT

    PubMed Central

    Baumann, Bernhard; Zotter, Stefan; Pircher, Michael; Götzinger, Erich; Rauscher, Sabine; Glösmann, Martin; Lammer, Jan; Schmidt-Erfurth, Ursula; Gröger, Marion; Hitzenberger, Christoph K.

    2015-01-01

    Depolarization of light can be measured by polarization-sensitive optical coherence tomography (PS-OCT) and has been used to improve tissue discrimination as well as segmentation of pigmented structures. Most approaches to depolarization assessment for PS-OCT – such as the degree of polarization uniformity (DOPU) – rely on measuring the uniformity of polarization states using spatial evaluation kernels. In this article, we present a different approach which exploits the spectral dimension. We introduce the spectral DOPU for the pixelwise analysis of polarization state variations between sub-bands of the broadband light source spectrum. Alongside a comparison with conventional spatial and temporal DOPU algorithms, we demonstrate imaging in the healthy human retina, and apply the technique for contrasting hard exudates in diabetic retinopathy and investigating the pigment epithelium of the rat iris. PMID:26689829

  10. Loss-insensitive vector encoding with two-uniform frames

    NASA Astrophysics Data System (ADS)

    Bodmann, Bernhard G.; Paulsen, Vern I.

    2005-08-01

    The central topic of this paper is the linear, redundant encoding of vectors using frames for the purpose of loss-insensitive data transmission. Our goal is to minimize the reconstruction error when frame coefficients are accidentally erased. Two-uniform frames are known to be optimal for handling up to two erasures, in the sense that they minimize the largest Euclidean error norm when up to two frame coefficients are set to zero. Here, we consider the case when an arbitrary number of the frame coefficients of a vector is lost. We derive general error bounds and apply these to concrete examples. We show that among the 227 known equivalence classes of two-uniform (36,15)-frames arising from Hadamard matrices, there are 5 that give smallest error bounds for up to 8 erasures.

  11. Spectral degree of polarization uniformity for polarization-sensitive OCT

    NASA Astrophysics Data System (ADS)

    Baumann, Bernhard; Zotter, Stefan; Pircher, Michael; Götzinger, Erich; Rauscher, Sabine; Glösmann, Martin; Lammer, Jan; Schmidt-Erfurth, Ursula; Gröger, Marion; Hitzenberger, Christoph K.

    2015-12-01

    Depolarization of light can be measured by polarization-sensitive optical coherence tomography (PS-OCT) and has been used to improve tissue discrimination as well as segmentation of pigmented structures. Most approaches to depolarization assessment for PS-OCT - such as the degree of polarization uniformity (DOPU) - rely on measuring the uniformity of polarization states using spatial evaluation kernels. In this article, we present a different approach which exploits the spectral dimension. We introduce the spectral DOPU for the pixelwise analysis of polarization state variations between sub-bands of the broadband light source spectrum. Alongside a comparison with conventional spatial and temporal DOPU algorithms, we demonstrate imaging in the healthy human retina, and apply the technique for contrasting hard exudates in diabetic retinopathy and investigating the pigment epithelium of the rat iris.

  12. Increased erythrocyte adhesion to VCAM-1 during pulsatile flow: Application of a microfluidic flow adhesion bioassay

    PubMed Central

    White, Jennell; Lancelot, Moira; Sarnaik, Sharada; Hines, Patrick

    2015-01-01

    Abstract Sickle cell disease (SCD) is characterized by microvascular occlusion mediated by adhesive interactions of sickle erythrocytes (SSRBCs) to the endothelium. Most in vitro flow adhesion assays measure SSRBC adhesion during continuous flow, although in vivo SSRBC adhesive interactions occur during pulsatile flow. Using a well-plate microfluidic flow adhesion system, we demonstrate that isolated SSRBCs adhere to vascular cell adhesion molecule (VCAM-1) at greater levels during pulsatile versus continuous flow. A significant increase in adhesive interactions was observed between all pulse frequencies 1 Hz to 2 Hz (60–120 beats/min) when compared to non-pulsatile flow. Adhesion of isolated SSRBCs and whole blood during pulsatile flow was unaffected by protein kinase A (PKA) inhibition, and exposure of SSRBCs to pulsatile flow did not affect the intrinsic adhesive properties of SSRBCs. The cell type responsible for increased adhesion of whole blood varied from patient to patient. We conclude that low flow periods of the pulse cycle allow more adhesive interactions between sickle erythrocytes and VCAM-1, and sickle erythrocyte adhesion in the context of whole blood may better reflect physiologic cellular interactions. The microfluidic flow adhesion bioassay used in this study may have applications for clinical assessment of sickle erythrocyte adhesion during pulsatile flow. PMID:24898561

  13. Applied Stratigraphy

    NASA Astrophysics Data System (ADS)

    Lucas, Spencer G.

    Stratigraphy is a cornerstone of the Earth sciences. The study of layered rocks, especially their age determination and correlation, which are integral parts of stratigraphy, are key to fields as diverse as geoarchaeology and tectonics. In the Anglophile history of geology, in the early 1800s, the untutored English surveyor William Smith was the first practical stratigrapher, constructing a geological map of England based on his own applied stratigraphy. Smith has, thus, been seen as the first “industrial stratigrapher,” and practical applications of stratigraphy have since been essential to most of the extractive industries from mining to petroleum. Indeed, gasoline is in your automobile because of a tremendous use of applied stratigraphy in oil exploration, especially during the latter half of the twentieth century. Applied stratigraphy, thus, is a subject of broad interest to Earth scientists.

  14. A nano-cheese-cutter to directly measure interfacial adhesion of freestanding nano-fibers

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Najem, Johnny F.; Wong, Shing-Chung; Wan, Kai-tak

    2012-01-01

    A nano-cheese-cutter is fabricated to directly measure the adhesion between two freestanding nano-fibers. A single electrospun fiber is attached to the free end of an atomic force microscope cantilever, while a similar fiber is similarly prepared on a mica substrate in an orthogonal direction. External load is applied to deform the two fibers into complementary V-shapes, and the force measurement allows the elastic modulus to be determined. At a critical tensile load, "pull-off" occurs when the adhering fibers spontaneously detach from each other, yielding the interfacial adhesion energy. Loading-unloading cycles are performed to investigate repeated adhesion-detachment and surface degradation.

  15. Adhesive behaviour of gecko-inspired nanofibrillar arrays: combination of experiments and finite element modelling

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-zhi; Xu, Yun; Gu, Ping

    2012-04-01

    A polypropylene nanofibrillar array was successfully fabricated by template-assisted nanofabrication strategy. Adhesion properties of this gecko-inspired structure were studied through two parallel and independent approaches: experiments and finite element simulations. Experimental results show relatively good normal adhesion, but accompanied by high preloads. The interfacial adhesion was modelled by effective spring elements with piecewise-linear constitution. The effective elasticity of the fibre-array system was originally calculated from our measured elasticity of single nanowire. Comparisons of the experimental and simulative results reveal quantitative agreement except for some explainable deviations, which suggests the potential applicability of the present models and applied theories.

  16. Evaluation of the metal/adhesive interfaces in the MC2370 fire set

    SciTech Connect

    Zavadil, K.R.

    1997-10-01

    Several analysis methods have been applied to evaluate the structure and composition of the electrode/adhesive interfaces i previously fielded M2370 Fire Sets. A method of interfacial fracture at cryogenic temperatures as been employed to expose regions of these interfaces at multiple levels in a SFE stack. Electron microscopy shows that bond failure induced by the fracture is predominantly adhesive with an equal probability of failure of the Au and Cu interfaces. Some evidence for cohesive, indicative of a possible microstructure related to electrical breakdown. Pinhole-free larger regions of adhesive also exist which may explain the observed high resistance in impedance measurements.

  17. Modeling and design optimization of adhesion between surfaces at the microscale.

    SciTech Connect

    Sylves, Kevin T.

    2008-08-01

    This research applies design optimization techniques to structures in adhesive contact where the dominant adhesive mechanism is the van der Waals force. Interface finite elements are developed for domains discretized by beam elements, quadrilateral elements or triangular shell elements. Example analysis problems comparing finite element results to analytical solutions are presented. These examples are then optimized, where the objective is matching a force-displacement relationship and the optimization variables are the interface element energy of adhesion or the width of beam elements in the structure. Several parameter studies are conducted and discussed.

  18. Marginal Sealing Durability of Two Contemporary Self-Etch Adhesives

    PubMed Central

    Khoroushi, Maryam; Mansoori, Mahsa

    2012-01-01

    Introduction. Sealing abilities of two self-etch adhesives were evaluated after two aging processes: storage in water and thermocycling. Materials and Methods. Cl V cavities were prepared on the buccal and lingual aspects of 48 human premolars, with cervical margins 1 mm below the CEJ. Clearfil Protect Bond (CPB) and BeautiBond (BB) (two-step and one-step self-etch adhesives, resp.) were applied, each to half of the cavities and restored with composite resin. Each group was randomly subdivided into 4 subgroups (n = 12) and evaluated for dye penetration after 24 hours, after 3000 thermocycling rounds, after a 6-month water storage, and after 3000 thermocycling rounds plus 6-month water storage, respectively. Data was analyzed using SPSS 11.5 and Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Results. There were no significant differences in enamel and dentin microleakage between the adhesives (P = 0.683; P = 0.154). Furthermore, no significant differences were observed in enamel microleakage of each one of CPB and BB (P = 0.061 and P = 0.318, resp.). However, significant decrease was observed in subgroups 3 and 4 (P = 0.001) for CPB dentinal margins. Conclusion. In this study, limited aging procedures had no influence on marginal integrity of composite resin restorations bonded with self-etch adhesives of CPB and BB. Furthermore, CPB dentinal sealing improved after aging. PMID:22611501

  19. Fluoride penetration from three orthodontic adhesives: an experimental study

    PubMed Central

    Szepietowska, Magdalena

    2013-01-01

    Objective To examine the prophylactic potential of 3 orthodontic bonding adhesives: Fuji Ortho SC, Illuminate, and Resilience. Methods Thirty-six Wistar Wag rats were randomly divided into 4 groups consisting of 9 rats each. One of the groups received no treatment and was used as a control. In the other groups, individual bands coated with one of the 3 adhesives were cemented to the lower incisors. Enamel samples were obtained after 6 and 12 weeks and analyzed using scanning electron microscopy in combination with energy dispersive spectrometry. Results Six weeks after band cementation, no fluoride was found in the enamel of the lower incisors. After 12 weeks, there was no fluoride in the enamel of teeth coated with the Resilience composite. However, in the case of the Illuminate composite and the resin-modified glass ionomer Fuji Ortho SC cement, the depth of fluoride penetration reached 2 µm and 4.8 - 5.7 µm, respectively. Conclusions Fluoride ions from orthodontic adhesives can be incorporated into the surface layer of the enamel. Orthodontists may apply orthodontic adhesives, such as the Fuji Ortho SC, to reduce the occurrence of caries during orthodontic treatment with fixed appliances. PMID:23502591

  20. Mask CD uniformity improvement by electron scanning exposure based Global Loading Effect Correction

    NASA Astrophysics Data System (ADS)

    Li, Rivan; Tian, Eric; Shi, Irene; Guo, Eric; Lu, Max

    2015-07-01

    Critical Dimension (CD) Uniformity is one of the necessary parameters to assure good performance and reliable functionality of any integrated circuit (IC), and towards the advanced technology node 28nm and beyond, corresponding CD Uniformity becomes more and more crucial. It is found that bad mask CD Uniformity is a significant error source at 28nm process. The CD Uniformity on mask, if not controlled well, will badly impact wafer CD performance, and it has been well-studied that CD Uniformity issue from gate line-width in transistors would affect the device performance directly. In this paper we present a novel solution for mask global CD uniformity error correction, which is called as global loading effect correction (GLEC) method and applied nesting in the mask exposure map during the electron beam exposure. There are factors such as global chip layout, writing sequence and chip pattern density distribution (Global Loading), that work on the whole mask CD Uniformity, especially Global Loading is the key factor related to mask global CD error. From our experimental results, different pattern density distribution on mask significantly influenced the final mask CD Uniformity: the mask with undulating pattern density distribution provides much worse CD Uniformity than that with uniform one. Therefore, a GLEC model based on pattern density has been created to compensate the global error during the electron beam exposure, which has been proved to be efficacious to improve mask global CD Uniformity performance. Furthermore, it 's also revealed that pattern type is another important impact factor, and GLEC coefficient need be modified due to the specific pattern type (e.g. dense line-space only, iso-space only or an average of them) to improve the corresponding mask CD uniformity.

  1. Applied oceanography

    SciTech Connect

    Bishop, J.M.

    1984-01-01

    This book combines oceanography principles and applications such as marine pollution, resources, and transportation. It is divided into two main parts treating the basic principles of physical oceanography, and presenting a unique systems framework showing how physical oceanography, marine ecology, economics, and government policy may be combined to define the newly developing field of applied oceanography.

  2. Adhesion enhancement of biomimetic dry adhesives by nanoparticle in situ synthesis

    NASA Astrophysics Data System (ADS)

    Díaz Téllez, J. P.; Harirchian-Saei, S.; Li, Y.; Menon, C.

    2013-10-01

    A novel method to increase the adhesion strength of a gecko-inspired dry adhesive is presented. Gold nanoparticles are synthesized on the tips of the microfibrils of a polymeric dry adhesive to increase its Hamaker constant. Formation of the gold nanoparticles is qualitatively studied through a colour change in the originally transparent substance and quantitatively analysed using ultraviolet-visible spectrophotometry. A pull-off force test is employed to quantify the adhesion enhancement. Specifically, adhesion forces of samples with and without embedded gold nanoparticles are measured and compared. The experimental results indicate that an adhesion improvement of 135% can be achieved.

  3. Effect of hyaluronic acid on postoperative intraperitoneal adhesion formation and reformation in the rat model

    SciTech Connect

    Urman, B.; Gomel, V. )

    1991-09-01

    The local application of 0.25% or 0.4% HA before the induction of a measured laser injury on the rat uterine horn was associated with a significant reduction (P less than 0.05) in postoperative IP adhesions when compared with the group of animals pretreated with the diluent vehicle PBS or received no pretreatment. However, 0.4% HA, when applied in a similar manner, was ineffective in reducing reformation of adhesions after microsurgical adhesiolysis.

  4. Assessing the integrity of structural adhesive bonds by the measurement of acoustic properties

    NASA Technical Reports Server (NTRS)

    Jagasivamani, V.; Smith, A. C.

    1992-01-01

    Results are reported of an experimental study tracing the influence of externally applied shear stresses on the acoustic properties in the bondline region. The changes in the acoustic properties with a change in the temperature of the test samples are measured. The results of these tests are employed to evaluate the quality of the adhesive bonds. The dependence of time-of-flight on the temperature of plain steel and of steel adhesively bonded to rubber is illustrated in graphic form.

  5. Adhesion testing of polyurethane matrix patches for transdermal delivery of testosterone.

    PubMed

    Dittgen, M; Gansen, P

    2012-06-01

    The 180 degrees peel test was applied to measure adhesion of three experimental polyurethane (PU) matrix patches and one commercial patch, Testopatch, on human volunteers skin. Comparing the results with those measurements on stainless steel or leather, a significant correlation between the leather data and the skin measurements was found. In contrary to results from stainless steel tests, all of the PU patches achieved better adhesion on skin than the commercial patch. PMID:22822549

  6. Switching first contact: photocontrol of E. coli adhesion to human cells.

    PubMed

    Möckl, L; Müller, A; Bräuchle, C; Lindhorst, T K

    2016-01-21

    We have shown previously that carbohydrate-specific bacterial adhesion to a non-physiological surface can be photocontrolled by reversible E/Z isomerisation using azobenzene-functionalised sugars. Here, this approach is applied to the surface of human cells. We show not only that bacterial adhesion to the azobenzene glycoside-modified cell surface is higher in the E than in the Z state, but add data about the specific modulation of the effect. PMID:26612767

  7. A Simple Model of Multivalent Adhesion and Its Application to Influenza Infection.

    PubMed

    Xu, Huafeng; Shaw, David E

    2016-01-01

    Adhesion between biological surfaces, which is typically the result of molecular binding between receptors on one surface and ligands on another, plays a fundamental role in biology and is key to the infection mechanisms of certain viruses, including influenza. The physiological outcome of adhesion depends on both the number of bound cells (or viruses, or other biological particles) and the properties of the adhesion interface that is formed, including the equilibrium number of receptor-ligand connections. Here, we introduce a quantitative model for biological adhesion by adapting thermodynamic models developed for the related problem of multivalent molecular binding. In our model, adhesion affinity is approximated by a simple, analytical expression involving the numbers of ligands and receptors at the interface. Our model contains only two fitting parameters and is simple to interpret. When applied to the adhesion between the hemagglutinin ligands on influenza viruses and the sialic acid receptors on biosensors or on host cells, our model generates adhesion affinities consistent with experimental measurements performed over a range of numbers of receptors, and provides a semiquantitative estimate of the affinity range of the hemagglutinin-sialic acid interaction necessary for the influenza virus to successfully infect host cells. The model also provides a quantitative explanation for the experimental finding that a mutant avian virus gained transmissibility in mammals despite the mutations conferring only a less than twofold increase in the affinity of its hemagglutinin for mammalian receptors: the model predicts an order-of-magnitude improvement in adhesion to mammalian cells. We also extend our model to describe the competitive inhibition of adhesion: the model predicts that hemagglutinin inhibitors of relatively modest affinity can dramatically reduce influenza virus adhesion to host cells, suggesting that such inhibitors, if discovered, may be viable

  8. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    PubMed

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives. PMID:27182547

  9. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    PubMed Central

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G.; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J.R.; Santos, Romana

    2016-01-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article “Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach” (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives. PMID:27182547

  10. Biorobotic adhesion in water using suction cups.

    PubMed

    Bandyopadhyay, Promode R; Hrubes, J Dana; Leinhos, Henry A

    2008-03-01

    Echeneid fish, limpets and octopi use suction cups for underwater adhesion. When echeneid fish use suckers to 'hitch a ride' on sharks (which have riblet-patterned skins), the apparent absence of any pump or plumbing may be an advantage over biorobotic suction cups. An intriguing question is: How do they achieve seemingly persistent leak-free contact at low energy cost over rough surfaces? The design features of their suckers are explored in a biorobotic context of adhesion in water over rough surfaces. We have carried out experiments to compare the release force and tenacity of man-made suction cups with those reported for limpets and echeneid fish. Applied tensile and shear release forces were monotonically increased until release. The effects of cup size and type, host surface roughness, curvature and liquid surface tension have been examined. The flow of water in the sharkskin-like host surface roughness has been characterized. The average tenacity is 5.28 N cm(-2) (sigma = 0.53 N cm(-2), N = 37) in the sub-ambient pressure range of 14.6-49.0 kPa, in man-made cups for monotonically increasing applied release force. The tenacity is lower for harmonically oscillating release forces. The dynamic structural interactions between the suction cup and the oscillating applied forcing are discussed. Inspired by the matching of sharkskin riblet topology in echeneid fish suckers, it was found that biorobotic sealed contact over rough surfaces is also feasible when the suction cup makes a negative copy of the rough host surface. However, for protracted, persistent contact, the negative topology would have to be maintained by active means. Energy has to be spent to maintain the negative host roughness topology to minute detail, and protracted hitch-riding on sharks for feeding may not be free for echeneid fish. Further work is needed on the mechanism and efficiency of the densely populated tiny actuators in the fish suckers that maintain leak-proof contact with minimal

  11. Effect of pre-tension on the peeling behavior of a bio-inspired nano-film and a hierarchical adhesive structure

    NASA Astrophysics Data System (ADS)

    Peng, Zhilong; Chen, Shaohua

    2012-10-01

    Inspired by the reversible adhesion behaviors of geckos, the effects of pre-tension in a bio-inspired nano-film and a hierarchical structure on adhesion are studied theoretically. In the case with a uniformly distributing pre-tension in a spatula-like nano-film under peeling, a closed-form solution to a critical peeling angle is derived, below or above which the peel-off force is enhanced or reduced, respectively, compared with the case without pre-tension. The effects of a non-uniformly distributing pre-tension on adhesion are further investigated for both a spatula-like nano-film and a hierarchical structure-like gecko's seta. Compared with the case without pre-tension, the pre-tension, no matter uniform or non-uniform, can increase the adhesion force not only for the spatula-like nano-film but also for the hierarchical structure at a small peeling angle, while decrease it at a relatively large peeling angle. Furthermore, if the pre-tension is large enough, the effective adhesion energy of a hierarchical structure tends to vanish at a critical peeling angle, which results in spontaneous detachment of the hierarchical structure from the substrate. The present theoretical predictions can not only give some explanations on the existing experimental observation that gecko's seta always detaches at a specific angle and no apparent adhesion force can be detected above the critical angle but also provide a deep understanding for the reversible adhesion mechanism of geckos and be helpful to the design of biomimetic reversible adhesives.

  12. A Chitosan-Based Sinus Sealant for Reduction of Adhesion Formation in Rabbit and Sheep Models

    PubMed Central

    Medina, Jennifer G.; Steinke, John W.; Das, Subinoy

    2013-01-01

    Objective Chronic sinusitis is the most prevalent chronic disease in the United States in adults aged 18 to 44 years, with approximately 250,000 operations performed annually. Although often successful, sinus surgery fails in greater than 15% of patients. Adhesion formation is a common complication and cause for subsequent revision surgery. Here, the authors evaluate a sprayable chitosan/starch-based sinus sealant and demonstrate its ability to reduce adhesion formation both in vitro and in 2 animal models. Study Design Randomized, controlled, animal trials. Setting Academic medical center (fibroblast experiments) and animal laboratories (sheep and rabbit studies). Subjects and Methods This sinus sealant was applied to human cultured fibroblasts obtained from surgically removed polyps to examine its ability to inhibit fibroblast migration and proliferation. The sinus sealant was applied to New Zealand White rabbits (n = 20) in an established cecal-sidewall abrasion model and to sheep (n = 10) in a sinus surgical adhesion model to examine its ability to reduce adhesion formation. Results This sinus sealant inhibited migration and proliferation of human cultured fibroblasts and reduced the total adhesion score from 4.9 to 0.3 for a total reduction of 94% (95th percentile confidence interval [CI], 78%, 100%; P < .001) in a well-established rabbit cecal-sidewall model commonly used for adhesion testing. Moreover, this sealant reduced adhesion formation from 80% to 10% for a total reduction of 70% (95th percentile CI, 57%, 93%; P = .003) in a sheep sinus adhesion surgical model. Conclusion This chitosan-based sealant demonstrates promise for reducing adhesion formation in sinus surgery. PMID:22492298

  13. Experimental Investigation of Optimal Adhesion of Mushroomlike Elastomer Microfibrillar Adhesives.

    PubMed

    Marvi, Hamidreza; Song, Sukho; Sitti, Metin

    2015-09-22

    Optimal fiber designs for the maximal pull-off force have been indispensable for increasing the attachment performance of recently introduced gecko-inspired reversible micro/nanofibrillar adhesives. There are several theoretical studies on such optimal designs; however, due to the lack of three-dimensional (3D) fabrication techniques that can fabricate such optimal designs in 3D, there have not been many experimental investigations on this challenge. In this study, we benefitted from recent advances in two-photon lithography techniques to fabricate mushroomlike polyurethane elastomer fibers with different aspect ratios of tip to stalk diameter (β) and tip wedge angles (θ) to investigate the effect of these two parameters on the pull-off force. We found similar trends to those predicted theoretically. We found that β has an impact on the slope of the force-displacement curve while both β and θ play a role in the stress distribution and crack propagation. We found that these effects are coupled and the optimal set of parameters also depends on the fiber material. This is the first experimental verification of such optimal designs proposed for mushroomlike microfibers. This experimental approach could be used to evaluate a wide range of complex microstructured adhesive designs suggested in the literature and optimize them. PMID:26322396

  14. Synaptic Cell Adhesion Molecules in Alzheimer's Disease

    PubMed Central

    Leshchyns'ka, Iryna

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD. PMID:27242933

  15. Control of vascular permeability by adhesion molecules.

    PubMed

    Sarelius, Ingrid H; Glading, Angela J

    2015-01-01

    Vascular permeability is a vital function of the circulatory system that is regulated in large part by the limited flux of solutes, water, and cells through the endothelial cell layer. One major pathway through this barrier is via the inter-endothelial junction, which is driven by the regulation of cadherin-based adhesions. The endothelium also forms attachments with surrounding proteins and cells via 2 classes of adhesion molecules, the integrins and IgCAMs. Integrins and IgCAMs propagate activation of multiple downstream signals that potentially impact cadherin adhesion. Here we discuss the known contributions of integrin and IgCAM signaling to the regulation of cadherin adhesion stability, endothelial barrier function, and vascular permeability. Emphasis is placed on known and prospective crosstalk signaling mechanisms between integrins, the IgCAMs- ICAM-1 and PECAM-1, and inter-endothelial cadherin adhesions, as potential strategic signaling nodes for multipartite regulation of cadherin adhesion. PMID:25838987

  16. Mussel-Inspired Adhesives and Coatings

    PubMed Central

    Lee, Bruce P.; Messersmith, P.B.; Israelachvili, J.N.; Waite, J.H.

    2011-01-01

    Mussels attach to solid surfaces in the sea. Their adhesion must be rapid, strong, and tough, or else they will be dislodged and dashed to pieces by the next incoming wave. Given the dearth of synthetic adhesives for wet polar surfaces, much effort has been directed to characterizing and mimicking essential features of the adhesive chemistry practiced by mussels. Studies of these organisms have uncovered important adaptive strategies that help to circumvent the high dielectric and solvation properties of water that typically frustrate adhesion. In a chemical vein, the adhesive proteins of mussels are heavily decorated with Dopa, a catecholic functionality. Various synthetic polymers have been functionalized with catechols to provide diverse adhesive, sealant, coating, and anchoring properties, particularly for critical biomedical applications. PMID:22058660

  17. [Prevention of intrauterine adhesions after hysteroscopic surgery].

    PubMed

    Revaux, A; Ducarme, G; Luton, D

    2008-03-01

    Intrauterine adhesions are the most frequent complications after hysteroscopic surgery in women of reproductive age. The prevalence of intrauterine adhesions after hysteroscopic surgery is correlated to intrauterine pathology (myoma, polyp, or adhesions). Few clinical trials have demonstrated the efficiency of barrier agents developed in order to prevent adhesions after operative hysteroscopy. Adhesion barriers are mechanic agent (intrauterine device), fluid agents (Seprafilm, Hyalobarrier) and postoperative systemic treatment (estroprogestative treatment). In this article, we evaluate the efficiency of these barrier agents for adhesion prevention in hysteroscopic surgery, undertaking a review of clinical trials published. The most frequent published studies evaluate the anatomic efficiency of antiadhesion agents after hysteroscopic surgery in order to evaluate the fertility. Data are still insufficient to evaluate them for clinical use. There is a need for other randomised controlled trials. PMID:18308609

  18. Adhesive bonding of carbon and ceramic materials

    SciTech Connect

    Kravetskii, G.A.; Anikin, L.T.; Demin, A.V.; Butyrin, G.M.

    1995-12-01

    On the basis of phenol resins and high-melting powder fillers, adhesives for bonding carbon and ceramic materials have been developed at NIIGRAFIT that allow adhesively bonded parts to be used at temperatures as high as 1500 to 1800{degrees}C, Some properties of those adhesives are covered in. The present paper describes results of recent investigations of the heat- and corrosion-resistance of the NIIGRAFIT`s adhesives. As the subjects of investigations were taken adhesives differing in the powder filler composition. Moreover, one adhesive (SVK) was subjected to a preliminary heat treatment (1200{degrees}C, 1 h, Ar) to fully complete the interaction processes between powder components and a binder coke.

  19. Functionally Graded Adhesives for Composite Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof of concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint.

  20. Adhesive for solar control film

    SciTech Connect

    Penn, H.J.

    1984-01-31

    A water-activatable adhesive useful for adhering a solar film, polyester (polyethylene terephthalate) film, to glass or to metal substrates. The adhesive comprises the reacted product of (A) gamma-isocyanatopropyltriethoxy silane, containing a free isocyanate (NCO) group, and (B) a thermoplastic polyester formed by reacting (i) a dibasic acid selected from the group consisting of terephthalic acid, isophthalic acid and hexahydrophthalic acid, and mixtures thereof, with (ii) a polymethylene glycol of the formula HO(CH/sub 2/) /SUB x/ OH where x is an integer from 2 to 10, neopentyl glycol and glycerin, and mixtures thereof, and (iii) an aliphatic dibasic acid selected from the group consisting of those having the formula HOOC(CH/sub 2/) /SUB n/ COOH where n is an integer from 1 to 8, and mixtures of such acids, whereby substantially no free NCO remains in the adhesive. Solar film is used for absorbing and/or reflecting solar radiation. Solar film can be a single sheet of polyester dyed sufficiently to absorb the glare of bright sunlight, or it can be a single sheet of polyester, on one side of which a reflective metal (most often aluminum) is deposited in an amount which can be totally reflective or in an amount which still allows visible light transmission and over which a protective coating is deposited, or it can be a laminated structure of the reflective film adhered to a clear or dyed polyester film by which means the reflective metal is sandwiched between two layers of polyester film, or it can be a laminated structure of a reflective film to a polyolefin film.

  1. A uniform parameterization of moment tensors

    NASA Astrophysics Data System (ADS)

    Tape, C.; Tape, W.

    2015-12-01

    A moment tensor is a 3 x 3 symmetric matrix that expresses an earthquake source. We construct a parameterization of the five-dimensional space of all moment tensors of unit norm. The coordinates associated with the parameterization are closely related to moment tensor orientations and source types. The parameterization is uniform, in the sense that equal volumes in the coordinate domain of the parameterization correspond to equal volumes of moment tensors. Uniformly distributed points in the coordinate domain therefore give uniformly distributed moment tensors. A cartesian grid in the coordinate domain can be used to search efficiently over moment tensors. We find that uniformly distributed moment tensors have uniformly distributed orientations (eigenframes), but that their source types (eigenvalue triples) are distributed so as to favor double couples. An appropriate choice of a priori moment tensor probability is a prerequisite for parameter estimation. As a seemingly sensible choice, we consider the homogeneous probability, in which equal volumes of moment tensors are equally likely. We believe that it will lead to improved characterization of source processes.

  2. Evaluating uniformity of IR reference sources

    NASA Astrophysics Data System (ADS)

    Barrat, Catherine; Violleau, Sébastien

    2015-10-01

    Infrared reference sources such as blackbodies are used to calibrate and test IR sensors and cameras.. Applications requiring a high thermal uniformity over the emissive surface become more and more frequent compared to the past applications. Among these applications are non uniformity correction of infrared cameras focused at short distance and simultaneous calibration of a set of sensor facing a large area blackbody. Facing these demanding applications requires to accurately measuring thee thermal radiation of each point of the emissive surface of the reference source. The use of an infrared camera for this purpose turns out to be absolutely inefficient since the uniformity off response of this camera is usually worse than the uniformity of thee source to bee measured. Consequently, HGH has developed a testing bench for accurate measurement of uniformity of infrared sources based on a low noise radiometer mounted of translating stages and using an exclusive drift correction method. This bench delivers a reliable thermal map of any kind of infrared reference source.

  3. Applied Nanotoxicology.

    PubMed

    Hobson, David W; Roberts, Stephen M; Shvedova, Anna A; Warheit, David B; Hinkley, Georgia K; Guy, Robin C

    2016-01-01

    Nanomaterials, including nanoparticles and nanoobjects, are being incorporated into everyday products at an increasing rate. These products include consumer products of interest to toxicologists such as pharmaceuticals, cosmetics, food, food packaging, household products, and so on. The manufacturing of products containing or utilizing nanomaterials in their composition may also present potential toxicologic concerns in the workplace. The molecular complexity and composition of these nanomaterials are ever increasing, and the means and methods being applied to characterize and perform useful toxicologic assessments are rapidly advancing. This article includes presentations by experienced toxicologists in the nanotoxicology community who are focused on the applied aspect of the discipline toward supporting state of the art toxicologic assessments for food products and packaging, pharmaceuticals and medical devices, inhaled nanoparticle and gastrointestinal exposures, and addressing occupational safety and health issues and concerns. This symposium overview article summarizes 5 talks that were presented at the 35th Annual meeting of the American College of Toxicology on the subject of "Applied Nanotechnology." PMID:26957538

  4. Improved Cure-in-Place Silicone Adhesives

    NASA Technical Reports Server (NTRS)

    Blevins, C. E.; Sweet, J.; Gonzalez, R.

    1982-01-01

    Two improved cure-in-place silicone-elastomer-based adhesives have low thermal expansion and low thermal conductivity. Adhesives are flexible at low temperature and withstand high temperatures without disintegrating. New ablative compounds were initially developed for in-flight repair of insulating tile on Space Shuttle orbiter. Could find use in other applications requiring high-performance adhesives, such as sealants for solar collectors.

  5. Compound Charpy specimens by adhesive joining

    NASA Astrophysics Data System (ADS)

    Ghoneim, M. M.; Hammad, F. H.; Pachur, D.; Britz, L.

    1992-03-01

    Compound (reconstituted) Charpy specimens were manufactured by an adhesive joining method in which each half of a previously tested specimen formed the central section of a new testpiece. 29 adhesives were screened to select the most suitable. Compound specimens were precracked and used as minature fracture mechanics specimens and tested in both 3-point static bending and impact. The results are in good agreement with those of conventional specimens. Recommendations for the most appropriate commercial adhesive for hot cell operations are given.

  6. The impact of structure dimensions on initial bacterial adhesion.

    PubMed

    Helbig, Ralf; Günther, Denise; Friedrichs, Jens; Rößler, Florian; Lasagni, Andrés; Werner, Carsten

    2016-07-21

    Substrate topography can have profound effects on initial bacterial adhesion during biofilm formation. We applied Staphylococcus epidermidis and Escherichia coli cells onto periodically structured substrates with different structure dimensions, structure types and wetting properties. We found a strong dependence of cell retention on the structure dimensions of the applied substrates. Periodicities in the range of the cell size increased, whereas smaller periodicities decreased cell retention, independent of contact time (minutes to hours) and hydrophobicity. These novel insights on the role of surface topography on bacterial retention might facilitate the development of non-fouling surfaces in the future. PMID:27232637

  7. Computational Contact Formulations for Soft Body Adhesion

    NASA Astrophysics Data System (ADS)

    Sauer, Roger A.

    This article gives an overview of adhesive contact for soft bodies and focuses on a general computational framework that is suitable for treating a large class of adhesion problems. The contact formulation is based on a non-linear continuum approach that is capable of describing bodies down to length scales of several nanometers. Several finite element formulations are presented, that introduce various approximations in order to increase the computational efficiency. The approaches are illustrated by several examples throughout the text. These include carbon nanotube interaction, adhesion of spheres, nanoindentation, thin film peeling, gecko adhesion and self-cleaning surface mechanisms.

  8. Investigation of package sealing using organic adhesives

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1977-01-01

    A systematic study was performed to evaluate the suitability of adhesives for sealing hybrid packages. Selected adhesives were screened on the basis of their ability to seal gold-plated Kovar butterfly-type packages that retain their seal integrity after individual exposures to increasingly severe temperature-humidity environments. Tests were also run using thermal shock, temperature cycling, mechanical shock and temperature aging. The four best adhesives were determined and further tested in a 60 C/98% RH environment and continuously monitored in regard to moisture content. Results are given, however, none of the tested adhesives passed all the tests.

  9. Denture Adhesives in Prosthodontics: An Overview

    PubMed Central

    Kumar, P Ranjith; Shajahan, P A; Mathew, Jyothis; Koruthu, Anil; Aravind, Prasad; Ahammed, M Fazeel

    2015-01-01

    The use of denture adhesives is common among denture wearers, and it is also prescribed by many dentists. Prescribing denture adhesives has been viewed by many prosthodontists as a means of compensating for any defects in the fabrication procedures. Denture adhesives add to the retention and thereby improve chewing ability, reduce any instability, provide comfort and eliminate the accumulation of food debris beneath the dentures. Consequently, they increase the patient’s sense of security and satisfaction. However, obtaining the advice of the dental practitioner prior to the use of adhesives is a must. PMID:26225115

  10. Adhesion as a weapon in microbial competition

    PubMed Central

    Schluter, Jonas; Nadell, Carey D; Bassler, Bonnie L; Foster, Kevin R

    2015-01-01

    Microbes attach to surfaces and form dense communities known as biofilms, which are central to how microbes live and influence humans. The key defining feature of biofilms is adhesion, whereby cells attach to one another and to surfaces, via attachment factors and extracellular polymers. While adhesion is known to be important for the initial stages of biofilm formation, its function within biofilm communities has not been studied. Here we utilise an individual-based model of microbial groups to study the evolution of adhesion. While adhering to a surface can enable cells to remain in a biofilm, consideration of within-biofilm competition reveals a potential cost to adhesion: immobility. Highly adhesive cells that are resistant to movement face being buried and starved at the base of the biofilm. However, we find that when growth occurs at the base of a biofilm, adhesion allows cells to capture substratum territory and force less adhesive, competing cells out of the system. This process may be particularly important when cells grow on a host epithelial surface. We test the predictions of our model using the enteric pathogen Vibrio cholerae, which produces an extracellular matrix important for biofilm formation. Flow cell experiments indicate that matrix-secreting cells are highly adhesive and form expanding clusters that remove non-secreting cells from the population, as predicted by our simulations. Our study shows how simple physical properties, such as adhesion, can be critical to understanding evolution and competition within microbial communities. PMID:25290505

  11. Effect of water absorption on pollen adhesion.

    PubMed

    Lin, Haisheng; Lizarraga, Leonardo; Bottomley, Lawrence A; Carson Meredith, J

    2015-03-15

    Pollens possess a thin liquid coating, pollenkitt, which plays a major role in adhesion by forming capillary menisci at interfaces. Unfortunately, the influence of humidity on pollenkitt properties and capillary adhesion is unknown. Because humidity varies widely in the environment, the answers have important implications for better understanding plant reproduction, allergy and asthma, and pollen as atmospheric condensation nuclei. Here, pollenkitt-mediated adhesion of sunflower pollen to hydrophilic and hydrophobic surfaces was measured as a function of humidity. The results quantify for the first time the significant water absorption of pollenkitt and the resulting complex dependence of adhesion on humidity. On hydrophilic Si, adhesion increased with increasing RH for pollens with or without pollenkitt, up to 200nN at 70% RH. In contrast, on hydrophobic PS, adhesion of pollenkitt-free pollen is independent of RH. Surprisingly, when pollenkitt was present adhesion forces on hydrophobic PS first increased with RH up to a maximum value at 35% RH (∼160nN), and then decreased with further increases in RH. Independent measurement of pollenkitt properties is used with models of capillary adhesion to show that humidity-dependent changes in pollenkitt wetting and viscosity are responsible for this complex adhesion behavior. PMID:25524008

  12. The development of aerospace polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1983-01-01

    Few materials are available which can be used as aerospace adhesives at temperatures in the range of 300 C. The Materials Division at NASA-Langley Research Center developed several high temperature polyimide adhesives to fulfill the stringent needs of current aerospace programs. These adhesives are the result of a decade of basic research studies on the structure property relationships of both linear and addition aromatic polyimides. The development of both in house and commercially available polyimides is reviewed with regards to their potential for use as aerospace adhesives.

  13. Nucleation and growth of cadherin adhesions

    SciTech Connect

    Lambert, Mireille; Thoumine, Olivier; Brevier, Julien; Choquet, Daniel; Riveline, Daniel; Mege, Rene-Marc

    2007-11-15

    Cell-cell contact formation relies on the recruitment of cadherin molecules and their anchoring to actin. However, the precise chronology of events from initial cadherin trans-interactions to adhesion strengthening is unclear, in part due to the lack of access to the distribution of cadherins within adhesion zones. Using N-cadherin expressing cells interacting with N-cadherin coated surfaces, we characterized the formation of cadherin adhesions at the ventral cell surface. TIRF and RIC microscopies revealed streak-like accumulations of cadherin along actin fibers. FRAP analysis indicated that engaged cadherins display a slow turnover at equilibrium, compatible with a continuous addition and removal of cadherin molecules within the adhesive contact. Association of cadherin cytoplasmic tail to actin as well as actin cables and myosin II activity are required for the formation and maintenance of cadherin adhesions. Using time lapse microscopy we deciphered how cadherin adhesions form and grow. As lamellipodia protrude, cadherin foci stochastically formed a few microns away from the cell margin. Neo-formed foci coalesced aligned and coalesced with preformed foci either by rearward sliding or gap filling to form cadherin adhesions. Foci experienced collapse at the rear of cadherin adhesions. Based on these results, we present a model for the nucleation, directional growth and shrinkage of cadherin adhesions.

  14. Temperature uniformity in hyperthermal tumor therapy

    NASA Technical Reports Server (NTRS)

    Harrison, G. H.; Robinson, J. E.; Samaras, G. M.

    1978-01-01

    Mouse mammary tumors heated by water bath or by microwave-induced hyperthermia exhibit a response that varies sharply with treatment temperature; therefore, uniform heating of the tumor is essential to quantitate the biological response as a function of temperature. C3H tumors implanted on the mouse flank were easily heated to uniformities within 0.1 C by using water baths. Cold spots up to 1 C below the desired treatment temperature were observed in the same tumors implanted on the hind leg. These cold spots were attributed to cooling by major blood vessels near the tumor. In this case temperature uniformity was achieved by the deposition of 2450 MHz microwave energy into the tumor volume by using parallel-opposed applicators.

  15. Uniform sunlight concentration reflectors for photovoltaic cells.

    PubMed

    Rabady, Rabi Ibrahim

    2014-03-20

    Sunlight concentration is essential to reach high temperatures of a working fluid in solar-thermal applications and to reduce the cost of photovoltaic (PV) electricity generation systems. Commonly, sunlight concentration is realized by parabolic or cylindrical reflectors, which do not provide uniform concentration on the receiver finite surface. Uniform concentration of sunlight is favored especially for the PV conversion applications since it not only enhances the conversion efficiency of sunlight but also reduces the thermal variations along the receiving PV cell, which can be a performance and life-span limiting factor. In this paper a reflector profile that uniformly infiltrates the concentrated sunlight into the receiving unit is attempted. The new design accounts for all factors that contribute to the nonuniform concentration, like the reflector curvature, which spatially reflects the sunlight nonuniformly, and the angular dependency of both the reflector reflectivity and the sunlight transmission through the PV cell. PMID:24663464

  16. Uniform distortion of a heated turbulent wake

    NASA Technical Reports Server (NTRS)

    Kawall, J. G.; Keffer, J. F.

    1978-01-01

    Digital sampling and processing techniques are used to assess the effect of a uniform and constant strain rate on a slightly heated cylinder-generated wake which had undergone a prestrain development distance of 115 cylinder diameters. The wake is generated by a circular heating element (6.6-mm-diam cylinder) mounted horizontally in the center of a low-speed open return wind tunnel. The strain field is produced by a distortion duct oriented in such a way as to accentuate any periodic interface structure which might be present in the undistorted wake. Interface statistics are presented for both the undistorted (near) wake and the uniformly strained wake, and conditional (point) averages of the streamwise velocity and passive temperature fields of the strained wake. The results suggest that the interface thickness is fairly uniform along the back but decreases along the front with distance from the wake center.

  17. Uniform attenuation correction using the frequency-distance principle

    SciTech Connect

    Zeng, Gengsheng L.

    2007-11-15

    The frequency-distance principle (FDP) is a well-known relationship that relates the distance between the object and the detector to the slope in the two-dimensional Fourier transform of the projection sinogram. This relationship has been previously applied to compensation of the distance dependent collimator blurring in SPECT (single photon emission computed tomography) in the literature. This paper makes an attempt to use the FDP to correct for uniform attenuation in SPECT. Computer simulations reveal that this technique works well for objects consisting of point sources but does not work well for distributed objects.

  18. Perceptual metrics and visualization tools for evaluation of page uniformity

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh Q.; Jessome, Renee; Astling, Steve; Maggard, Eric; Nelson, Terry; Shaw, Mark; Allebach, Jan P.

    2014-01-01

    Uniformity is one of the issues of most critical concern for laser electrophotographic (EP) printers. Typically, full coverage constant-tint test pages are printed to assess uniformity. Exemplary nonuniformity defects include mottle, grain, pinholes, and "finger prints". It is a real challenge to make an overall Print Quality (PQ) assessment due to the large coverage of a letter-size, constant-tint printed test page and the variety of possible nonuniformity defects. In this paper, we propose a novel method that uses a block-based technique to analyze the page both visually and metrically. We use a grid of 150 pixels × 150 pixels ( ¼ inch × ¼ inch at 600-dpi resolution) square blocks throughout the scanned page. For each block, we examine two aspects: behavior of its pixels within the block (metrics of graininess) and behavior of the blocks within the printed page (metrics of nonuniformity). Both ΔE (CIE 1976) and the L* lightness channel are employed. For an input scanned page, we create eight visual outputs, each displaying a different aspect of nonuniformity. To apply machine learning, we train scanned pages of different 100% solid colors separately with the support vector machine (SVM) algorithm. We use two metrics as features for the SVM: average dispersion of page lightness and standard deviation in dispersion of page lightness. Our results show that we can predict, with 83% to 90% accuracy, the assignment by a print quality expert of one of two grades of uniformity in the print.

  19. Applied Koopmanisma)

    NASA Astrophysics Data System (ADS)

    Budišić, Marko; Mohr, Ryan; Mezić, Igor

    2012-12-01

    A majority of methods from dynamical system analysis, especially those in applied settings, rely on Poincaré's geometric picture that focuses on "dynamics of states." While this picture has fueled our field for a century, it has shown difficulties in handling high-dimensional, ill-described, and uncertain systems, which are more and more common in engineered systems design and analysis of "big data" measurements. This overview article presents an alternative framework for dynamical systems, based on the "dynamics of observables" picture. The central object is the Koopman operator: an infinite-dimensional, linear operator that is nonetheless capable of capturing the full nonlinear dynamics. The first goal of this paper is to make it clear how methods that appeared in different papers and contexts all relate to each other through spectral properties of the Koopman operator. The second goal is to present these methods in a concise manner in an effort to make the framework accessible to researchers who would like to apply them, but also, expand and improve them. Finally, we aim to provide a road map through the literature where each of the topics was described in detail. We describe three main concepts: Koopman mode analysis, Koopman eigenquotients, and continuous indicators of ergodicity. For each concept, we provide a summary of theoretical concepts required to define and study them, numerical methods that have been developed for their analysis, and, when possible, applications that made use of them. The Koopman framework is showing potential for crossing over from academic and theoretical use to industrial practice. Therefore, the paper highlights its strengths in applied and numerical contexts. Additionally, we point out areas where an additional research push is needed before the approach is adopted as an off-the-shelf framework for analysis and design.

  20. Applied Koopmanism.

    PubMed

    Budisić, Marko; Mohr, Ryan; Mezić, Igor

    2012-12-01

    A majority of methods from dynamical system analysis, especially those in applied settings, rely on Poincaré's geometric picture that focuses on "dynamics of states." While this picture has fueled our field for a century, it has shown difficulties in handling high-dimensional, ill-described, and uncertain systems, which are more and more common in engineered systems design and analysis of "big data" measurements. This overview article presents an alternative framework for dynamical systems, based on the "dynamics of observables" picture. The central object is the Koopman operator: an infinite-dimensional, linear operator that is nonetheless capable of capturing the full nonlinear dynamics. The first goal of this paper is to make it clear how methods that appeared in different papers and contexts all relate to each other through spectral properties of the Koopman operator. The second goal is to present these methods in a concise manner in an effort to make the framework accessible to researchers who would like to apply them, but also, expand and improve them. Finally, we aim to provide a road map through the literature where each of the topics was described in detail. We describe three main concepts: Koopman mode analysis, Koopman eigenquotients, and continuous indicators of ergodicity. For each concept, we provide a summary of theoretical concepts required to define and study them, numerical methods that have been developed for their analysis, and, when possible, applications that made use of them. The Koopman framework is showing potential for crossing over from academic and theoretical use to industrial practice. Therefore, the paper highlights its strengths in applied and numerical contexts. Additionally, we point out areas where an additional research push is needed before the approach is adopted as an off-the-shelf framework for analysis and design. PMID:23278096