Science.gov

Sample records for adhesive bonded composite

  1. Cyclic debonding of adhesively bonded composites

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.; Everett, R. A., Jr.

    1982-01-01

    The fatigue behavior of a simple composite to composite bonded joint was analyzed. The cracked lap shear specimen subjected to constant amplitude cyclic loading was studied. Two specimen geometries were tested for each bonded system: (1) a strap adherend of 16 plies bonded to a lap adherend of 8 plies; and (2) a strap adherend of 8 plies bonded to a lap adherend of 16 plies. In all specimens the fatigue failure was in the form of cyclic debonding with some 0 deg fiber pull off from the strap adherend. The debond always grew in the region of adhesive that had the highest mode (peel) loading and that region was close to the adhesive strap interface.

  2. Analysis of adhesively bonded composite lap joints

    SciTech Connect

    Tong, L.; Kuruppu, M.; Kelly, D.

    1994-12-31

    A new nonlinear formulation is developed for the governing equations for the shear and peel stresses in adhesively bonded composite double lap joints. The new formulation allows arbitrary nonlinear stress-strain characteristics in both shear and peel behavior. The equations are numerically integrated using a shooting technique and Newton-Raphson method behind a user friendly interface. The failure loads are predicted by utilizing the maximum stress criterion, interlaminar delamination and the energy density failure criteria. Numerical examples are presented to demonstrate the effect of the nonlinear adhesive behavior on the stress distribution and predict the failure load and the associated mode.

  3. A novel composite-to-composite adhesive bond mechanism.

    PubMed

    Akimoto, Naotake; Sakamoto, Tominori; Kubota, Yuya; Kondo, Yoshie; Momoi, Yasuko

    2011-01-01

    The purpose of this study was to determine if adhesion between various resin composites can occur by a chelation reaction of elemental ions. The surface composition of four commercially available resin composites (Beautifil II, Clearfil AP-X, Estelite Σ Quick and Solare) were measured by X-ray fluorescence analysis. Composite-to-composite adhesion with conventional silane coupling treatment was compared to self-etching primer treatment and evaluated by conventional shear bond strength testing. Our results detected Strontium and Barium (alkaline metallic earth ions) on the surface of Beautifil II and Clearfil AP-X resins. The shear bond strength values of self-etching primer treatments of Beautifil II and Clearfil AP-X was significantly higher than Estelite Σ Quick and Solare. Our data suggest that self-etching primer treatment is effective for adhesion of resin composites, depending on their filler composition, due to the chelation adhesion reaction between the acidic monomer and incorporated alkaline metal ions. PMID:21778602

  4. Probabilistic assessment of failure in adhesively bonded composite laminates

    SciTech Connect

    Minnetyan, L.; Chamis, C.C.

    1997-07-01

    Damage initiation and progressive fracture of adhesively bonded graphite/epoxy composites is investigated under tensile loading. A computer code is utilized for the simulation of composite structural damage and fracture. Structural response is assessed probabilistically during degradation. The effects of design variable uncertainties on structural damage progression are quantified. The Fast Probability Integrator is used to assess the response scatter in the composite structure at damage initiation. Sensitivity of the damage response to design variables is computed. Methods are general purpose in nature and are applicable to all types of laminated composite structures and joints, starting from damage initiation to unstable damage propagation and collapse. Results indicate that composite constituent and adhesive properties have a significant effect on structural durability. Damage initiation/progression does not necessarily begin in the adhesive bond. Design implications with regard to damage tolerance of adhesively bonded joints are examined.

  5. Adhesive Bonding Characterization of Composite Joints for Cryogenic Usage

    NASA Technical Reports Server (NTRS)

    Graf, Neil A.; Schieleit, Gregory F.; Biggs, Robert

    2000-01-01

    The development of polymer composite cryogenic tanks is a critical step in creating the next generation of launch vehicles. Future reusable launch vehicles need to minimize the gross liftoff weight (GLOW). This weight reduction is possible due to the large reduction in weight that composite materials can provide over current aluminum technology. In addition to composite technology, adhesively bonded joints potentially have several benefits over mechanically fastened joints, such as weight savings and cryogenic fluid containment. Adhesively bonded joints may be used in several areas of these cryogenic tanks, such as in lobe-to-lobe joints (in a multi-lobe concept), skirt-to-tank joint, strut-to-tank joint, and for attaching stringers and ring frames. The bonds, and the tanks themselves, must be able to withstand liquid cryogenic fuel temperatures that they contain. However, the use of adhesively bonded composite joints at liquid oxygen and hydrogen temperatures is largely unknown and must be characterized. Lockheed Martin Space Systems Company, Michoud Operations performed coupon-level tests to determine effects of material selection, cure process parameters, substrate surface preparation, and other factors on the strength of these composite joints at cryogenic temperatures. This led to the selection of a material and process that would be suitable for a cryogenic tank. KEY WORDS: Composites, Adhesive Bonding, Cryogenics

  6. Shear bond strength evaluation of resin composite bonded to GIC using three different adhesives.

    PubMed

    Gopikrishna, V; Abarajithan, M; Krithikadatta, J; Kandaswamy, D

    2009-01-01

    The current study evaluated the bonding ability of composite to glass ionomer cement (GIC) using three different bonding systems. One hundred samples of composites bonded to GIC were prepared and divided into five groups. In Group A, the composite was bonded to GIC after the initial setting of the GIC being employed as a total-etch adhesive. In Group B, the self-etch primer was employed to bond composite to GIC before the initial setting of the GIC. In Group C, the self-etch primer was employed to bond composite to the GIC after the initial setting of the GIC. In Group D, the GIC-based adhesive was employed to bond composite to the GIC before the initial setting of the GIC. In Group E, the GIC-based adhesive was employed to bond composite to the GIC after the initial setting of the GIC. Shear bond strength analysis was performed at a crosshead speed of 0.5 mm/minute. The results were tabulated and the statistical analysis was performed with one-way ANOVA; the Tukey's test showed that the bond strength of composite to GIC was significantly higher for the self-etch primer group employed on unset GIC and the GIC-based adhesive group employed on the set GIC for bonding composite to GIC. PMID:19678453

  7. Laser Surface Preparation for Adhesive Bonding of Aerospace Structural Composites

    NASA Technical Reports Server (NTRS)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical pre-bonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  8. Non destructive evaluation of adhesively bonded carbon fiber reinforced composite lap joints with varied bond quality

    NASA Astrophysics Data System (ADS)

    Vijayakumar, R. L.; Bhat, M. R.; Murthy, C. R. L.

    2012-05-01

    Structural adhesive bonding is widely used to execute assemblies in automobile and aerospace structures. The quality and reliability of these bonded joints must be ensured during service. In this context non destructive evaluation of these bonded structures play an important role. Evaluation of adhesively bonded composite single lap shear joints has been attempted through experimental approach. Series of tests, non-destructive as well as destructive were performed on different sets of carbon fiber reinforced polymer (CFRP) composite lap joint specimens with varied bond quality. Details of the experimental investigations carried out and the outcome are presented in this paper.

  9. Structural Health Monitoring of Adhesively Bonded Composite Joints

    NASA Astrophysics Data System (ADS)

    Habib, Fady

    In recent years, many aerospace organizations have researched and implemented composite materials to achieve better fuel efficiency as well as reduced maintenance cost. In addition to the use of composites, manufacturers are investigating the use of adhesive bonded joints and composite patch bonded repairs to extend the life of their in-service aircraft. Adhesive joints are superior to traditional mechanical fasteners as they reduce stress concentration zones and overall part count. However, the integrity of an adhesive joint is difficult to inspect. Inspection of adhesive joints may be carried out using interrogation technology such as Structural Health Monitoring (SHM). This thesis focuses on the evaluation of Acoustic-Ultrasonic (AU) SHM technique for the detection of crack and disbond growth. In addition to AU, Capacitance Disbond Detection Technique (CDDT) and the Surface Mountable Crack Detection System (SMCDS) were evaluated for the detection disbonds. Results of the AU system demonstrated that AU technology may be used to detect and quantify crack and disbond growth. It was also found that SMCDS and CDDT both complement each other, as SMCDS identified the location of disbond while CDDT quantify disbond.

  10. Adhesive Characterization and Progressive Damage Analysis of Bonded Composite Joints

    NASA Technical Reports Server (NTRS)

    Girolamo, Donato; Davila, Carlos G.; Leone, Frank A.; Lin, Shih-Yung

    2014-01-01

    The results of an experimental/numerical campaign aimed to develop progressive damage analysis (PDA) tools for predicting the strength of a composite bonded joint under tensile loads are presented. The PDA is based on continuum damage mechanics (CDM) to account for intralaminar damage, and cohesive laws to account for interlaminar and adhesive damage. The adhesive response is characterized using standard fracture specimens and digital image correlation (DIC). The displacement fields measured by DIC are used to calculate the J-integrals, from which the associated cohesive laws of the structural adhesive can be derived. A finite element model of a sandwich conventional splice joint (CSJ) under tensile loads was developed. The simulations indicate that the model is capable of predicting the interactions of damage modes that lead to the failure of the joint.

  11. Shear bond strength of new self-adhesive flowable composite resins.

    PubMed

    Wajdowicz, Michael N; Vandewalle, Kraig S; Means, Mark T

    2012-01-01

    Recently, new self-adhesive flowable composite resin systems have been introduced to the market. These new composite resin systems reportedly bond to dentin and enamel without the application of an adhesive bonding agent. The purpose of this study was to evaluate the shear bond strength to enamel of two new self-adhesive flowable composites with and without the use of an etch-and-rinse bonding agent. The new self-adhesive flowable composites had significantly lower bond strengths to enamel compared to a traditional adhesively bonded flowable composite. Both self-adhesive flowable composites had a significant increase in bond strength to enamel with the use of a phosphoric acid-etch and adhesive bonding agent. PMID:22414513

  12. Microtensile bond strength of silorane-based composite specific adhesive system using different bonding strategies

    PubMed Central

    Bastos, Laura Alves; Sousa, Ana Beatriz Silva; Drubi-Filho, Brahim; Panzeri Pires-de-Souza, Fernanda de Carvalho

    2015-01-01

    Objectives The aim of this study was to evaluate the effect of pre-etching on the bond strength of silorane-based composite specific adhesive system to dentin. Materials and Methods Thirty human molars were randomly divided into 5 groups according to the different bonding strategies. For teeth restored with silorane-based composite (Filtek Silorane, 3M ESPE), the specific self-etching adhesive system (Adhesive System P90, 3M ESPE) was used with and without pre-etching (Pre-etching/Silorane and Silorane groups). Teeth restored with methacrylate based-composite (Filtek Z250, 3M ESPE) were hybridized with the two-step self-etching system (Clearfil SE Bond, Kuraray), with and without pre-etching (Pre-etching/Methacrylate and Methacrylate groups), or three-step adhesive system (Adper Scotchbond Multi-Purpose, 3M ESPE) (Three-step/Methacrylate group) (n = 6). The restored teeth were sectioned into stick-shaped test specimens (1.0 × 1.0 mm), and coupled to a universal test machine (0.5 mm/min) to perform microtensile testing. Results Pre-etching/Methacrylate group presented the highest bond strength values, with significant difference from Silorane and Three-step/Methacrylate groups (p < 0.05). However, it was not significantly different from Preetching/Silorane and Methacrylate groups. Conclusions Pre-etching increased bond strength of silorane-based composite specific adhesive system to dentin. PMID:25671209

  13. Further understanding of aged composite and adhesively bonded structures

    NASA Astrophysics Data System (ADS)

    Heslehurst, Rikard B.; Baird, John P.

    1996-11-01

    As the application of advanced composite materials and adhesively bonded components becomes increasingly numerous in aircraft structures, so is the number of aircraft containing such structures that can be classified in the aging aircraft category. The effect of environmental and in- service aging of such structures is not well known or understood, neither have NDE techniques been able to satisfactorily qualify and quantify the loss of structural integrity due to the aging process. This paper will present the latest developments in the practical use of a field portable holographic interferometric testing system. The system results, known as holographic interferograms, provide a better understanding of how a structure is behaving under realistic loads in the presence of defects, damage and material property aging. The system has been applied to a variety of defects in composite and adhesive bondlines, as well as artificial environmental aging of these materials. The holographic interferograms produced form these investigations will be briefly reviewed and their impact on structural integrity of the component discussed.

  14. Characterization of mode I and mixed-mode failure of adhesive bonds between composite adherends

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.

    1986-01-01

    A combined experimental and analytical investigation of an adhesively bonded composite joint was conducted to characterize both the static and fatigue beyond growth mechanism under mode 1 and mixed-mode 1 and 2 loadings. Two bonded systems were studied: graphite/epoxy adherends bonded with EC 3445 and FM-300 adhesives. For each bonded system, two specimen types were tested: a double-cantilever-beam specimen for mode 1 loading and a cracked-lapshear specimen for mixed-mode 1 and 2 loading. In all specimens tested, failure occurred in the form of debond growth. Debonding always occurred in a cohesive manner with EC 3445 adhesive. The FM-300 adhesive debonded in a cohesive manner under mixed-mode 1 and 2 loading, but in a cohesive, adhesive, or combined cohesive and adhesive manner under mode 1 loading. Total strain-energy release rate appeared to be the driving parameter for debond growth under static and fatigue loadings.

  15. Characterization of mode 1 and mixed-mode failure of adhesive bonds between composite adherends

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.

    1985-01-01

    A combined experimental and analytical investigation of an adhesively bonded composite joint was conducted to characterize both the static and fatigue beyond growth mechanism under mode 1 and mixed-mode 1 and 2 loadings. Two bonded systems were studied: graphite/epoxy adherends bonded with EC 3445 and FM-300 adhesives. For each bonded system, two specimen types were tested: a double-cantilever-beam specimen for mode 1 loading and a cracked-lapshear specimen for mixed-mode 1 and 2 loading. In all specimens tested, failure occurred in the form of debond growth. Debonding always occurred in a cohesive manner with EC 3445 adhesive. The FM-300 adhesive debonded in a cohesive manner under mixed-mode 1 and 2 loading, but in a cohesive, adhesive, or combined cohesive and adhesive manner under mode 1 loading. Total strain-energy release rate appeared to be the driving parameter for debond growth under static and fatigue loadings.

  16. Rapid adhesive bonding concepts

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryar, J. R.; Hodges, W. T.

    1984-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process is often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid adhesive bonding concepts were developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens are cut by a factor of 10 to 100 compared to standard press bonding. The development of rapid adhesive bonding for lap shear specimens (per ASTM D1003 and D3163), for aerospace panel bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric matrix composite structures are reviewed.

  17. Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments

    PubMed Central

    dos Santos, Victor Hugo; Griza, Sandro; de Moraes, Rafael Ratto

    2014-01-01

    Objectives Extensively destroyed teeth are commonly restored with composite resin before cavity preparation for indirect restorations. The longevity of the restoration can be related to the proper bonding of the resin cement to the composite. This study aimed to evaluate the microshear bond strength of two self-adhesive resin cements to composite resin. Materials and Methods Composite discs were subject to one of six different surface pretreatments: none (control), 35% phosphoric acid etching for 30 seconds (PA), application of silane (silane), PA + silane, PA + adhesive, or PA + silane + adhesive (n = 6). A silicone mold containing a cylindrical orifice (1 mm2 diameter) was placed over the composite resin. RelyX Unicem (3M ESPE) or BisCem (Bisco Inc.) self-adhesive resin cement was inserted into the orifices and light-cured. Self-adhesive cement cylinders were submitted to shear loading. Data were analyzed by two-way ANOVA and Tukey's test (p < 0.05). Results Independent of the cement used, the PA + Silane + Adhesive group showed higher microshear bond strength than those of the PA and PA + Silane groups. There was no difference among the other treatments. Unicem presented higher bond strength than BisCem for all experimental conditions. Conclusions Pretreatments of the composite resin surface might have an effect on the bond strength of self-adhesive resin cements to this substrate. PMID:24516824

  18. Permeability testing of composite material and adhesive bonds for the DC-XA composite feedline program

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    1995-01-01

    Hercules IM7/8552 carbon/epoxy and Hysol EA 9394 epoxy adhesive bonded between composite/titanium were tested for permeability after various numbers of thermal cycles between 100 C and liquid nitrogen (-196 C). The specimens were quenched from the 100 C temperature into liquid nitrogen to induce thermal shock into the material. Results showed that the carbon/epoxy system was practically impermeable even after 12 thermal cycles. The EA 9394 adhesive bondline was more permeable than the carbon/epoxy, but vacuum mixing minimized the permeability and kept it within allowable limits. Thermal cycling had little effect on the permeability values of the bondline specimens.

  19. AMORPHOUS CALCIUM PHOSPHATE COMPOSITES AND THEIR EFFECT ON COMPOSITE-ADHESIVE-DENTIN BONDING

    PubMed Central

    Antonucci, J.M.; O’Donnell, J.N.R.; Schumacher, G.E.; Skrtic, D.

    2009-01-01

    This study evaluates the bond strength and related properties of photo-polymerizable, remineralizing amorphous calcium phosphate (ACP) polymeric composite-adhesive systems to dentin after various periods of aqueous aging at 37 °C. An experimental ACP base and lining composite was made from a photo-activated resin comprising 2,2-bis[p-(2’-hydroxy-3’-methacryloxypropoxy)phenyl]propane (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), 2-hydroxyethyl methacrylate (HEMA) and zirconyl dimethacrylate (ZrDMA); designated BTHZ. An experimental orthodontic composite was formulated from a photo-activated resin comprising ethoxylated bisphenol A dimethacrylate (EBPADMA), TEGDMA, HEMA and methacryloxyethyl phthalate (MEP); designated ETHM. In both composite series three fillers were compared: 1) freshly precipitated zirconium-modified ACP freshly precipitated (as-prepared Zr-ACP), 2) milled Zr-ACP and 3) an ion-leachable fluoride glass. In addition to the shear bond strength (SBS), work to fracture and failure modes of the orthodontic composites were determined. The SBS of the base and lining ACP composites appeared unaffected by filler type or immersion time. In the orthodontic ACP composite series, milled ACP composites showed initial mechanical advantages over as-prepared ACP composites, and produced higher incidence of a failure mode consistent with stronger adhesion. After six months of aqueous exposure, 80 % of specimens failed at the dentin-primer interface, with a 42 % overall reduction in bond strength. BTHZ and ETHM based ACP composites are potentially effective anti-demineralizing-remineralizing agents with possible clinical utility as protective base-liners and orthodontic cements, respectively. The analysis of the bond strength and failure modalities suggests that milled ACP composites may offer greater potential in clinical applications. PMID:19696914

  20. Installation of adhesively bonded composites to repair carbon steel structure.

    SciTech Connect

    Roach, Dennis Patrick; Dunn, Dennis P.; Rackow, Kirk A.

    2003-02-01

    In the past decade, an advanced composite repair technology has made great strides in commercial aviation use. Extensive testing and analysis, through joint programs between the Sandia Labs FAA Airworthiness Assurance Center and the aviation industry, have proven that composite materials can be used to repair damaged aluminum structure. Successful pilot programs have produced flight performance history to establish the viability and durability of bonded composite patches as a permanent repair on commercial aircraft structures. With this foundation in place, efforts are underway to adapt bonded composite repair technology to civil structures. This paper presents a study in the application of composite patches on large trucks and hydraulic shovels typically used in mining operations. Extreme fatigue, temperature, erosive, and corrosive environments induce an array of equipment damage. The current weld repair techniques for these structures provide a fatigue life that is inferior to that of the original plate. Subsequent cracking must be revisited on a regular basis. It is believed that the use of composite doublers, which do not have brittle fracture problems such as those inherent in welds, will help extend the structure's fatigue life and reduce the equipment downtime. Two of the main issues for adapting aircraft composite repairs to civil applications are developing an installation technique for carbon steel structure and accommodating large repairs on extremely thick structures. This paper will focus on the first phase of this study which evaluated the performance of different mechanical and chemical surface preparation techniques. The factors influencing the durability of composite patches in severe field environments will be discussed along with related laminate design and installation issues.

  1. Adhesive Bonding of Titanium to Carbon-Carbon Composites for Heat Rejection Systems

    NASA Technical Reports Server (NTRS)

    Cerny, Jennifer; Morscher, Gregory

    2006-01-01

    High temperature adhesives with good thermal conductivity, mechanical performance, and long term durability are crucial for the assembly of heat rejection system components for space exploration missions. In the present study, commercially available adhesives were used to bond high conductivity carbon-carbon composites to titanium sheets. Bonded pieces were also exposed to high (530 to 600 Kelvin for 24 hours) and low (liquid nitrogen 77K for 15 minutes) temperatures to evaluate the integrity of the bonds. Results of the microstructural characterization and tensile shear strengths of bonded specimens will be reported. The effect of titanium surface roughness on the interface microstructure will also be discussed.

  2. Effect of interfacial chemical bonding and surface topography on adhesion in carbon fiber/epoxy composites

    SciTech Connect

    Drzal, L.T.; Sugiura, N.; Hook, D. |

    1994-12-31

    A series of PAN-based IM6 carbon fibers having varying amounts of surface treatment were, pretreated with compounds representing the constituents encountered in epoxy composites to pre-react any groups on the fiber surface before composite fabrication in order to determine the effect of chemical bonding on fiber-matrix adhesion. Chemical bonding was quantified using XPS. Chemical bonding between reactive groups in amine cured epoxy matrices and the surface groups present on IN46 carbon fibers as a result of commercial surface treatments has been detected although the absolute amount of chemical bonding is low (1-3%). It was found that reaction with monofunctional epoxy groups having hydrocarbon functionalities blocked the surface from further reaction and reduced the adhesion that could be attained to its lowest value. Prereaction with difunctional amines had little effect on adhesion when compared to normal composite fabrication procedures. Prereaction with difunctional epoxy groups did enhance adhesion levels over the level attained in normal composite fabrication methods. These results showed that chemical bonding between epoxy and the carbon fiber surface could increases the adhesion between fiber and matrix about 25% while between the amino group and the carbon fiber surface about 15%. Quantitative measurements of the fiber surface microtopography were made with scanning tunneling microscopy. An increase in roughness was detected with increasing surface treatment. It was concluded that surface roughness also accounted for a significant increase in fiber-matrix adhesion.

  3. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements

    PubMed Central

    Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-01-01

    Background No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Material and Methods Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Results Bond strength values were significantly influenced by the resin cement used (p<0.001). However, composite surface treatment and the interaction between the resin cement applied and surface treatment did not significantly affect dentin bond strength (p>0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. Conclusions The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Key words:Bond

  4. Develop, demonstrate, and verify large area composite structural bonding with polyimide adhesives. [adhesively bonding graphite-polyimide structures

    NASA Technical Reports Server (NTRS)

    Bhombal, B. D.; Wykes, D. H.; Hong, K. C.; Stenersen, A. A.

    1982-01-01

    The technology required to produce graphite-polyimide structural components with operational capability at 598 K (600 F) is considered. A series of polyimide adhesives was screened for mechanical and physical properties and processibility in fabricating large midplane bonded panels and honeycomb sandwich panels in an effort to fabricate a structural test component of the space shuttle aft body flap. From 41 formulations, LaRC-13, FM34B-18, and a modified LaRC-13 adhesive were selected for further evaluation. The LaRC-13 adhesive was rated as the best of the three adhesives in terms of availability, cost, processibility, properties, and ability to produce void fee large area (12" x 12") midplane bonds. Surface treatments and primers for the adhesives were evaluated and processes were developed for the fabrication of honeycomb sandwich panels of very good quality which was evidenced by rupture in the honeycomb core rather than in the facesheet bands on flatwise tensile strength testing. The fabrication of the adhesively bonded honeycomb sandwich cover panels, ribs, and leading edge covers of Celion graphite/LARC-160 polyimide laminates is described.

  5. Bonding and nondestructive evaluation of graphite/PEEK composite and titanium adherends with thermoplastic adhesives

    NASA Technical Reports Server (NTRS)

    Hodges, W. T.; Tyeryar, J. R.; Berry, M.

    1985-01-01

    Bonded single overlap shear specimens were fabricated from Graphite/PEEK (Polyetheretherketone) composite adherends and titanium adherends. Six advanced thermoplastic adhesives were used for the bonding. The specimens were bonded by an electromagnetic induction technique producing high heating rates and high-strength bonds in a few minutes. This contrasts with conventionally heated presses or autoclaves that take hours to process comparable quality bonds. The Graphite/PEEK composites were highly resistant to delamination during the testing. This allowed the specimen to fail exclusively through the bondline, even at very high shear loads. Nondestructive evaluation of bonded specimens was performed ultrasonically by energizing the entire thickness of the material through the bondline and measuring acoustic impedance parameters. Destructive testing confirmed the unique ultrasonic profiles of strong and weak bonds, establishing a standard for predicting relative bond strength in subsequent specimens.

  6. Effect of silorane-based adhesive system on bond strength between composite and dentin substrate

    PubMed Central

    Pereira, Jefferson Ricardo; Júnior, Lindomar Corrêa; de Souza Almeida, Mauro; do Valle, Accácio Lins; Honório, Heitor Marques; Vidotti, Hugo Alberto; De Souza, Grace Mendonca

    2015-01-01

    Context: The complexities of the oral environment, the dentin substrate, and the different bond and composite resin systems represent a challenge to the maintenance of reasonable bond between the composite resin and the tooth structure. Aims: To evaluate the effect of the adhesive system on bond strength between silorane-based composite resin and dentin. Materials and Methods: Fourteen human molars extracted were selected and vertically cut into 3 dentin fragments, randomly divided among the experimental groups and restored with Z250 and P90 composite resin using different adhesive protocols (Adper Single Bond 2, Silorano primer, Adper SE Plus, and Scotchbond Multiuse). Two composite resin cylinders were built up on each dentin surface (n = 10) and subjected to a micro-shear bond strength test. Statistical Analysis Used: Kruskal–Wallis one-way analysis of variance and Tukey test (P = 0.05). Results: According to the results, Kruskal–Wallis test evidenced at least one statistical significant difference (P = 0.001). The Tukey test showed statistically significant differences among the group (P < 0.05). Group PSM8 (P90 + SM) showed statically significant higher results when compared with groups PSP4 (P90 + SP), PSB2 (P90 + SB), and ZSE5 (Z250 + SE). Conclusion: The results evidenced that the monomer of the adhesive system has an effect on bond strength between the composite resin and dentin. PMID:26752846

  7. Comparison of bond strength of three adhesives: composite resin, hybrid GIC, and glass-filled GIC.

    PubMed

    Rix, D; Foley, T F; Mamandras, A

    2001-01-01

    The objective of this study was to compare 3 orthodontic adhesives in the areas of shear-peel bond strength, location of adhesive failure, and extent of enamel cracking before bonding and after debonding of orthodontic brackets. The adhesives included a composite resin control (Transbond XT; 3M/Unitek, St Paul, Minn), a resin-modified glass ionomer cement (Fuji Ortho LC; GC America Corp, Alsip, Ill), and a polyacid-modified composite resin under dry and saliva-contaminated conditions (Assure; Reliance Orthodontic Products Inc, Itasca, Ill). Metal brackets were bonded to the buccal surfaces of 160 (4 groups of 40) human premolars. The bonded teeth were stored in deionized water at 37 degrees C for 30 days and thermocycled for 24 hours before debonding with a Universal Instron (Instron Corp, Canton, Mass) testing machine. The extent of cracking in the buccal surfaces was evaluated under 16x magnification before bonding and after debonding. Although the bond strength of the composite resin control (20.19 MPa) was significantly greater (P <.05) than that of the adhesives in the other groups, clinically acceptable shear-peel bond strengths were found for all adhesives (Fuji Ortho LC = 13.57 MPa, Assure-dry = 10.74 MPa, Assure-wet = 10.99 MPa). The bond strength for the Assure adhesive was not significantly affected by saliva contamination. The sample of extracted premolars used in this study displayed a greater frequency of buccal surface enamel cracking (46.7%) than that reported in the literature for in vivo premolars (7.8%-10.2%), which was possibly due to the extraction process. The frequency of enamel cracking in a subset of this sample (n = 34) increased from 46.4% at prebonding to 62.4% at postdebonding as a result of the forces of debonding. PMID:11174538

  8. Preliminary evaluation of adhesion strength measurement devices for ceramic/titanium matrix composite bonds

    NASA Technical Reports Server (NTRS)

    Pohlchuck, Bobby; Zeller, Mary V.

    1992-01-01

    The adhesive bond between ceramic cement and a titanium matrix composite substrate to be used in the National Aerospace Plane program is evaluated. Two commercially available adhesion testers, the Sebastian Adherence Tester and the CSEM REVETEST Scratch Tester, are evaluated to determine their suitability for quantitatively measuring adhesion strength. Various thicknesses of cements are applied to several substrates, and bond strengths are determined with both testers. The Sabastian Adherence Tester has provided limited data due to an interference from the sample mounting procedure, and has been shown to be incapable of distinguishing adhesion strength from tensile and shear properties of the cement itself. The data from the scratch tester has been found to be difficult to interpret due to the porosity and hardness of the cement. Recommendations are proposed for a more reliable adhesion test method.

  9. Effect of new adhesion promoter and mechanical interlocking on bonding strength in metal-polymer composites

    NASA Astrophysics Data System (ADS)

    Schuberth, A.; Göring, M.; Lindner, T.; Töberling, G.; Puschmann, M.; Riedel, F.; Scharf, I.; Schreiter, K.; Spange, S.; Lampke, T.

    2016-03-01

    There are various opportunities to improve the adhesion between polymer and metal in metal-plastic composites. The addition of a bonding agent which reacts with both joining components at the interfaces of the composite can enhance the bonding strength. An alternative method for the adjustment of interfaces in metal-plastic composites is the specific surface structuring of the joining partners in order to exploit the mechanical interlock effect. In this study the potential of using an adhesion promoter based on twin polymerization for metal-plastic composites in combination with different methods of mechanical surface treatment is evaluated by using the tensile shear test. It is shown that the new adhesion promoter has a major effect when applied on smooth metal surfaces. A combination of both mechanical and chemical surface treatment of the metal part is mostly just as effective as the application of only one of these surface treatment methods.

  10. Dentin bond strengths of three adhesive/composite core systems using different curing units.

    PubMed

    Ariyoshi, Meu; Nikaido, Toru; Okada, Ayako; Foxton, Richard M; Tagami, Junji

    2008-03-01

    This study evaluated the tensile bond strengths of three adhesive/composite core materials to bovine dentin using three different curing units. Bovine dentin surfaces were ground with 600-grit SiC paper. Bonding area was demarcated with a vinyl tape (4-mm-diameter hole). Three adhesive/composite core systems--S6054 (experimental), UniFil Core, and Clearfil DC Core Automix--were used with three curing units--Curing Light XL3000 (quartz-tungsten-halogen), Hyper Lightel (high-power quartz-tungsten-halogen), and LEDemetronl (blue light-emitting diode)--according to manufacturers' instructions. After 24 hours of storage in water at 37 degrees C, tensile bond strengths were measured at a crosshead speed of 2 mm/min. Results were statistically analyzed with one-way ANOVA and Tukey's HSD test (p < 0.05). Highest tensile bond strength was obtained using Clearfil DC Core Automix with Hyper Lightel. PMID:18540391

  11. Multitechnique monitoring of fatigue damage in adhesively bonded composite lap-joints

    NASA Astrophysics Data System (ADS)

    Karpenko, Oleksii; Koricho, Ermias; Khomenko, Anton; Dib, Gerges; Haq, Mahmoodul; Udpa, Lalita

    2015-03-01

    The requirement for reduced structural weight has driven the development of adhesively bonded joints. However, a major issue preventing their full acceptance is the initiation of premature failure in the form of a disbond between adherends, mainly due to fatigue, manufacturing flaws or impact damage. This work presents the integrated approach for in-situ monitoring of degradation of the adhesive bond in the GFRP composite lap-joint using ultrasonic guided waves and dynamic measurements from strategically embedded FBG sensors. Guided waves are actuated with surface mounted piezoelectric elements and mode tuning is used to provide high sensitivity to the degradation of the adhesive layer parameters. Composite lap-joints are subjected to fatigue loading, and data from piezoceramic transducers are collected at regular intervals to evaluate the progression of damage. Results demonstrate that quasi-static loading affects guided wave measurements considerably, but FBG sensors can be used to monitor the applied load levels and residual strains in the adhesive bond. The proposed technique shows promise for determining the post-damage stiffness of adhesively bonded joints.

  12. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength

    PubMed Central

    2015-01-01

    Objectives This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. Materials and Methods 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Results Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p < 0.001). All combinations with Xeno V (Dentsply De Trey) and Clearfil S3 Bond (Kuraray Dental) adhesives showed no significant differences in micro-shear bond strength, but other adhesives showed significant differences depending on the composite resin (p < 0.05). Contrary to the other adhesives, Xeno V and BondForce (Tokuyama Dental) had higher bond strengths with the same manufacturer's composite resin than other manufacturer's composite resin. Conclusions Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations. PMID:25671210

  13. Adhesively bonded steel and composites-durability in substitute ocean water

    SciTech Connect

    Aartun, L.; Dillard, J.G.

    1996-12-31

    Ocean water, marine life and certain oil-well fluids constitute a highly aggressive environment for most metals. In the offshore oil industry, the economic driving force to seek new materials points towards polymeric composites which offer reduction of weight and elimination of corrosion. However, a combined use of steel and composites creates a joining problem. Exposure to humid air and liquid water affects adhesive bonds in a negative manner, and adhesively bonded metal systems are even less durable in marine than in non-ocean environments. In marine environments and sea coast atmospheres, marine life and salts can contribute to the degradation process. On an operating oil rig, repair and replacements involving adhesive bonding are forced to be carried out under non-ideal conditions because of environmental regulations (affecting surface treatments) and safety requirements (affecting the curing method). The objective of this work is to develop environmentally friendly surface preparations and to study, the influence of salt water on the durability of adhesively bonded steel/composite systems.

  14. Effect of service environments on adhesively bonded joints in composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, S. N.; Chamis, C. C.; Murthy, P. L. N.

    1992-01-01

    The models employed in the present computational methods for evaluating severe service-environment effects on adhesively bonded joints in composites are based on composite analyses and structural mechanics, encompassing nonlinear environmental degradation. The methods are demonstrated for the case of a butt joint with a single doubler, subjected to the environmental effects as well as static and cyclic loads. The highest joint strength is noted to be required in the case of cyclic loads and hygrothermal service environments; margins of safety for adhesive material stresses decline rapidly in such cases.

  15. Polymer Composition and Substrate Influences on the Adhesive Bonding of a Biomimetic, Cross-Linking Polymer

    PubMed Central

    Matos-Pérez, Cristina R.; White, James D.; Wilker, Jonathan J.

    2012-01-01

    Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have been shown to form surface coatings or hydrogels, however bulk adhesion is demonstrated less often. Developing adhesives requires addressing design issues including finding a good balance between cohesive and adhesive bonding interactions. Despite the growing number of mussel mimicking polymers, there has been little effort to generate structure-property relations and gain insights on what chemical traits give rise to the best glues. In this report, we examined the simplest of these biomimetic polymers, poly[(3,4-dihydroxystyrene)-co-styrene]. Pendant catechol groups (i.e., 3,4-dihydroxystyrene) were distributed throughout a polystyrene backbone. Several polymer derivatives were prepared, each with a different 3,4-dihyroxystyrene content. Bulk adhesion testing showed where the optimal middle ground of cohesive and adhesive bonding resides. Adhesive performance was benchmarked against commercial glues as well as the genuine material produced by live mussels. In the best case, bonding was similar to cyanoacrylate “Krazy” or “Super” glue. Performance was also examined using low (e.g., plastics) and high (e.g., metals, wood) energy surfaces. Adhesive bonding of poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest of reported mussel protein mimics. These insights should help us to design future biomimetic systems, thereby bringing us closer to development of bone cements, dental composites, and surgical glues. PMID:22582754

  16. Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer.

    PubMed

    Matos-Pérez, Cristina R; White, James D; Wilker, Jonathan J

    2012-06-01

    Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have been shown to form surface coatings or hydrogels; however, bulk adhesion is demonstrated less often. Developing adhesives requires addressing design issues including finding a good balance between cohesive and adhesive bonding interactions. Despite the growing number of mussel-mimicking polymers, there has been little effort to generate structure-property relations and gain insights on what chemical traits give rise to the best glues. In this report, we examine the simplest of these biomimetic polymers, poly[(3,4-dihydroxystyrene)-co-styrene]. Pendant catechol groups (i.e., 3,4-dihydroxystyrene) are distributed throughout a polystyrene backbone. Several polymer derivatives were prepared, each with a different 3,4-dihyroxystyrene content. Bulk adhesion testing showed where the optimal middle ground of cohesive and adhesive bonding resides. Adhesive performance was benchmarked against commercial glues as well as the genuine material produced by live mussels. In the best case, bonding was similar to that obtained with cyanoacrylate "Krazy Glue". Performance was also examined using low- (e.g., plastics) and high-energy (e.g., metals, wood) surfaces. The adhesive bonding of poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest of reported mussel protein mimics. These insights should help us to design future biomimetic systems, thereby bringing us closer to development of bone cements, dental composites, and surgical glues. PMID:22582754

  17. The analysis of adhesively bonded advanced composite joints using joint finite elements

    NASA Astrophysics Data System (ADS)

    Stapleton, Scott E.

    The design and sizing of adhesively bonded joints has always been a major bottleneck in the design of composite vehicles. Dense finite element (FE) meshes are required to capture the full behavior of a joint numerically, but these dense meshes are impractical in vehicle-scale models where a course mesh is more desirable to make quick assessments and comparisons of different joint geometries. Analytical models are often helpful in sizing, but difficulties arise in coupling these models with full-vehicle FE models. Therefore, a joint FE was created which can be used within structural FE models to make quick assessments of bonded composite joints. The shape functions of the joint FE were found by solving the governing equations for a structural model for a joint. By analytically determining the shape functions of the joint FE, the complex joint behavior can be captured with very few elements. This joint FE was modified and used to consider adhesives with functionally graded material properties to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. Furthermore, proof-of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. Furthermore, the capability to model non-linear adhesive constitutive behavior with large rotations was developed, and progressive failure of the adhesive was modeled by re-meshing the joint as the adhesive fails. Results predicted using the joint FE was compared with experimental results for various

  18. The Analysis of Adhesively Bonded Advanced Composite Joints Using Joint Finite Elements

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.

    2012-01-01

    The design and sizing of adhesively bonded joints has always been a major bottleneck in the design of composite vehicles. Dense finite element (FE) meshes are required to capture the full behavior of a joint numerically, but these dense meshes are impractical in vehicle-scale models where a course mesh is more desirable to make quick assessments and comparisons of different joint geometries. Analytical models are often helpful in sizing, but difficulties arise in coupling these models with full-vehicle FE models. Therefore, a joint FE was created which can be used within structural FE models to make quick assessments of bonded composite joints. The shape functions of the joint FE were found by solving the governing equations for a structural model for a joint. By analytically determining the shape functions of the joint FE, the complex joint behavior can be captured with very few elements. This joint FE was modified and used to consider adhesives with functionally graded material properties to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. Furthermore, proof-of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. Furthermore, the capability to model non-linear adhesive constitutive behavior with large rotations was developed, and progressive failure of the adhesive was modeled by re-meshing the joint as the adhesive fails. Results predicted using the joint FE was compared with experimental results for various

  19. A comprehensive assessment of adhesively bonded joints between sandwich composite beams

    NASA Astrophysics Data System (ADS)

    Shahin, Khaled Omar

    Assessment of adhesively bonded joints between sandwich composite beams are presented in this thesis in three parts, each is concerned with a distinct aspect of the joint behaviour. In physical order, these include the deformations of the entire joint assembly, the state of stress in the joint overlap region, and the strain energy release at the crack-tip at the end of the overlap. Analytical models developed in this thesis, however, are not limited in their application to adhesive joint between sandwich beams. In each part of this thesis, the integrity of the proposed analytical models are tested against geometrically non-linear finite element models. In this first part of this thesis, an analytical asymptotic model is presented for the analysis of balanced and unbalanced adhesively bonded joints. The model takes advantage of the asymptotic nature of the adhesive stress functions by eliminating exponentially small terms. Analysis of balanced and unbalanced adhesive joints is greatly simplified with negligible loss in accuracy. Accurate closed-form solutions for both adhesive peel and shear stresses are presented, providing an efficient analysis and design tool and a significant contribution to the literature on unbalanced adhesively bonded joints. In the second part, the asymptotic model is extended to the analysis of strain energy release rates in adhesively bonded joints, using the crack closure concept. Closed-form expressions are presented for various joint types. The shear force and adhesive layer effects are included in the analysis, thus improving on currently available works in the literature. In joints with a long crack and a thin adhesive layer, the asymptotic model is shown to be in good agreement with classical beam theory models. In the third part, deformations in adhesively bonded joints between sandwich beams are studied. Adherends are modeled as cylindrically bent plates on elastic foundations and the overlap section is treated as a single

  20. Elastomer toughened polyimide adhesives. [bonding metal and composite material structures for aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L. (Inventor)

    1985-01-01

    A rubber-toughened, addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber-containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride has been mixed, and utilizing solvent or mixture of solvents for the reaction.

  1. Mixed-mode cyclic debonding of adhesively bonded composite joints. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rezaizadeh, M. A.; Mall, S.

    1985-01-01

    A combined experimental-analytical investigation to characterize the cyclic failure mechanism of a simple composite-to-composite bonded joint is conducted. The cracked lap shear (CLS) specimens of graphite/epoxy adherend bonded with EC-3445 adhesive are tested under combined mode 1 and 2 loading. In all specimens tested, fatigue failure occurs in the form of cyclic debonding. The cyclic debond growth rates are measured. The finite element analysis is employed to compute the mode 1, mode 2, and total strain energy release rates (i.e., GI, GII, and GT). A wide range of mixed-mode loading, i.e., GI/GII ranging from 0.03 to 0.38, is obtained. The total strain energy release rate, G sub T, appeared to be the driving parameter for cyclic debonding in the tested composite bonded system.

  2. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    PubMed Central

    TÜRKMEN, Cafer; DURKAN, Meral; CİMİLLİ, Hale; ÖKSÜZ, Mustafa

    2011-01-01

    Objective The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. Material and Methods Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group): direct composite resin restoration (Alert) with etch-and-rinse adhesive system (Bond 1 primer/adhesive), Group 2: indirect composite restoration (Estenia) luted with a resin cement (Cement-It) combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond), Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively) onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. Results The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7) showed better results compared to the other groups (p<0.05). Group 4 showed the weakest bond strength (p>0.05). The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. Conclusion The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces. PMID:21710095

  3. SEM/XPS analysis of fractured adhesively bonded graphite fibre-reinforced polyimide composites

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Messick, D. L.; Wightman, J. P.; Progar, D. J.

    1985-01-01

    The surfaces of the graphite fiber-reinforced polyimide composites presently pretreated prior to bonding with polyimide adhesive contained variable amounts of a fluoropolymer, as determined by X-ray photoelectron spectroscopy. Lap shear strengths were determined for unaged samples and for those aged over 500- and 1000-hour periods at 177 and 232 C. Unaged sample lap strengths, which were the highest obtained, exhibited no variation with surface pretreatment, but a significant decrease is noted with increasing aging temperature. These thermally aged samples, however, had increased surface fluorine concentration, while a minimal concentration was found in unaged samples. SEM demonstrated a progressive shift from cohesive to adhesive failure for elevated temperature-aged composites.

  4. ADHESION OF AMORPHOUS CALCIUM PHOSPHATE COMPOSITES BONDED TO DENTIN: A STUDY IN FAILURE MODALITY

    PubMed Central

    O’Donnell, J.N.R.; Schumacher, G.E.; Antonucci, J.M.; Skrtic, D.

    2009-01-01

    Aims As a bioactive filler capable of remineralizing tooth structures, the main disadvantage of as-made amorphous calcium phosphate (am-ACP) are its large agglomerates. The objective of this study was to mill ACP, and compare the adhesive strength to dentin, work to fracture, and failure modes of both groups to glass-filled composites and one commercial compomer after 24 h, 1 week, 1, 3 and 6 months of exposure to simulated saliva solution (SLS). Flat dentin surfaces were acid-etched, primed, and photopolymerized. Composites were applied, photo-cured, and debonded in shear. The resin used in each composite was identical: ethoxylated bisphenol A dimethacrylate, triethylene glycol dimethacrylate, 2-hydroxyethyl methacrylate and methacryloxyethyl phthalate. Fillers consisted of am-ACP and milled ACP (m-ACP), and a strontium-containing glass (Sr-glass) at respective mass fractions of (40, 60, and 75) %. Findings 90 % of the fracture surfaces in this study showed adhesive failure, with most of these occurring at the dentin/primer interface. 52 % of failures after 24 h immersion occurred at the primer/composite interface. After six months of SLS exposure, 80 % of specimens failed at the dentin/primer interface, with a 42 % overall reduction in bond strength. Conclusions Milled ACP composites showed initial mechanical advantages over am-ACP composites and the compomer, and produced a higher incidence of a failure mode consistent with stronger adhesion. Evidence is provided which suggests that milled ACP composites may offer enhanced potential in clinical bonding applications. PMID:19107798

  5. Supersonic Retropulsion Surface Preparation of Carbon Fiber Reinforced Epoxy Composites for Adhesive Bonding

    NASA Technical Reports Server (NTRS)

    Palmieri, Frank L.; Belcher, Marcus A.; Wohl, Christopher J.; Blohowiak, Kay Y.; Connell, John W.

    2013-01-01

    Surface preparation is widely recognized as a key step to producing robust and predictable bonds in a precise and reproducible manner. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, can lack precision and reproducibility, which can lead to variation in surface properties and subsequent bonding performance. The use of a laser to ablate composite surface resin can provide an efficient, precise, and reproducible means of preparing composite surfaces for adhesive bonding. Advantages include elimination of physical waste (i.e., grit media and sacrificial peel ply layers that ultimately require disposal), reduction in process variability due to increased precision (e.g. increased reproducibility), and automation of surface preparation, all of which improve reliability and process control. This paper describes a Nd:YAG laser surface preparation technique for composite substrates and the mechanical performance and failure modes of bonded laminates thus prepared. Additionally, bonded specimens were aged in a hot, wet environment for approximately one year and subsequently mechanically tested. The results of a one year hygrothermal aging study will be presented.

  6. Damage prognosis of adhesively-bonded joints in laminated composite structural components of unmanned aerial vehicles

    SciTech Connect

    Farrar, Charles R; Gobbato, Maurizio; Conte, Joel; Kosmatke, John; Oliver, Joseph A

    2009-01-01

    The extensive use of lightweight advanced composite materials in unmanned aerial vehicles (UAVs) drastically increases the sensitivity to both fatigue- and impact-induced damage of their critical structural components (e.g., wings and tail stabilizers) during service life. The spar-to-skin adhesive joints are considered one of the most fatigue sensitive subcomponents of a lightweight UAV composite wing with damage progressively evolving from the wing root. This paper presents a comprehensive probabilistic methodology for predicting the remaining service life of adhesively-bonded joints in laminated composite structural components of UAVs. Non-destructive evaluation techniques and Bayesian inference are used to (i) assess the current state of damage of the system and, (ii) update the probability distribution of the damage extent at various locations. A probabilistic model for future loads and a mechanics-based damage model are then used to stochastically propagate damage through the joint. Combined local (e.g., exceedance of a critical damage size) and global (e.g.. flutter instability) failure criteria are finally used to compute the probability of component failure at future times. The applicability and the partial validation of the proposed methodology are then briefly discussed by analyzing the debonding propagation, along a pre-defined adhesive interface, in a simply supported laminated composite beam with solid rectangular cross section, subjected to a concentrated load applied at mid-span. A specially developed Eliler-Bernoulli beam finite element with interlaminar slip along the damageable interface is used in combination with a cohesive zone model to study the fatigue-induced degradation in the adhesive material. The preliminary numerical results presented are promising for the future validation of the methodology.

  7. Shear Bond Strengths of Methacrylate- and Silorane-based Composite Resins to Feldspathic Porcelain using Different Adhesive Systems.

    PubMed

    Mohammadi, Narmin; Shakur Shahabi, Maryam; Kimyai, Soodabeh; Pournagi Azar, Fatemeh; Ebrahimi Chaharom, Mohammad Esmaeel

    2015-01-01

    Background and aims. Use of porcelain as inlays, laminates and metal-ceramic and all-ceramic crowns is common in modern dentistry. The high cost of ceramic restorations, time limitations and difficulty of removing these restorations result in delays in replacing fractured restorations; therefore, their repair is indicated. The aim of the present study was to compare the shear bond strengths of two types of composite resins (methacrylate-based and silorane-based) to porcelain, using three adhesive types. Materials and methods. A total of 156 samples of feldspathic porcelain surfaces were prepared with air-abrasion and randomly divided into 6 groups (n=26). In groups 1-3, Z250 composite resin was used to repair porcelain samples with Ad-per Single Bond 2 (ASB), Clearfil SE Bond (CSB) and Silorane Adhesive (SA) as the bonding systems, afterapplication of silane, respectively. In groups 4-6, the same adhesives were used in the same manner with Filtek Silorane composite resin. Finally, the shear bond strengths of the samples were measured. Two-way ANOVA and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at P<0.05. Results. There were significant differences in the mean bond strength values in terms of the adhesive type (P<0.001). In addition, the interactive effect of the adhesive type and composite resin type had no significant effect on bond strength (P=0.602). Conclusion. The results of the present study showed the highest repair bond strength values to porcelain with both composite resin types with the application of SA and ASB. PMID:26697151

  8. Shear Bond Strengths of Methacrylate- and Silorane-based Composite Resins to Feldspathic Porcelain using Different Adhesive Systems

    PubMed Central

    Mohammadi, Narmin; Shakur Shahabi, Maryam; Kimyai, Soodabeh; Pournagi Azar, Fatemeh; Ebrahimi Chaharom, Mohammad Esmaeel

    2015-01-01

    Background and aims. Use of porcelain as inlays, laminates and metal-ceramic and all-ceramic crowns is common in modern dentistry. The high cost of ceramic restorations, time limitations and difficulty of removing these restorations result in delays in replacing fractured restorations; therefore, their repair is indicated. The aim of the present study was to compare the shear bond strengths of two types of composite resins (methacrylate-based and silorane-based) to porcelain, using three adhesive types. Materials and methods. A total of 156 samples of feldspathic porcelain surfaces were prepared with air-abrasion and randomly divided into 6 groups (n=26). In groups 1-3, Z250 composite resin was used to repair porcelain samples with Ad-per Single Bond 2 (ASB), Clearfil SE Bond (CSB) and Silorane Adhesive (SA) as the bonding systems, afterapplication of silane, respectively. In groups 4-6, the same adhesives were used in the same manner with Filtek Silorane composite resin. Finally, the shear bond strengths of the samples were measured. Two-way ANOVA and post hoc Tukey tests were used to compare bond strengths between the groups with different adhesives at P<0.05. Results. There were significant differences in the mean bond strength values in terms of the adhesive type (P<0.001). In addition, the interactive effect of the adhesive type and composite resin type had no significant effect on bond strength (P=0.602). Conclusion. The results of the present study showed the highest repair bond strength values to porcelain with both composite resin types with the application of SA and ASB. PMID:26697151

  9. Ultrasonic, microwave, and millimeter wave inspection techniques for adhesively bonded stacked open honeycomb core composites

    NASA Astrophysics Data System (ADS)

    Thomson, Clint D.; Cox, Ian; Ghasr, Mohammad Tayeb Ahmed; Ying, Kuang P.; Zoughi, Reza

    2015-03-01

    Honeycomb sandwich composites are used extensively in the aerospace industry to provide stiffness and thickness to lightweight structures. A common fabrication method for thick, curved sandwich structures is to stack and bond multiple honeycomb layers prior to machining core curvatures. Once bonded, each adhesive layer must be inspected for delaminations and the presence of unwanted foreign materials. From a manufacturing and cost standpoint, it can be advantageous to inspect the open core prior to face sheet closeout in order to reduce end-article scrap rates. However, by nature, these honeycomb sandwich composite structures are primarily manufactured from low permittivity and low loss materials making detection of delamination and some of the foreign materials (which also are low permittivity and low loss) quite challenging in the microwave and millimeter wave regime. Likewise, foreign materials such as release film in adhesive layers can be sufficiently thin as to not cause significant attenuation in through-transmission ultrasonic signals, making them difficult to detect. This paper presents a collaborative effort intended to explore the efficacy of different non-contact NDI techniques for detecting flaws in a stacked open fiberglass honeycomb core panel. These techniques primarily included air-coupled through-transmission ultrasonics, single-sided wideband synthetic aperture microwave and millimeter-wave imaging, and lens-focused technique. The goal of this investigation has been to not only evaluate the efficacy of these techniques, but also to determine their unique advantages and limitations for evaluating parameters such as flaw type, flaw size, and flaw depth.

  10. Metallic Adhesion and Bonding

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1984-01-01

    Although metallic adhesion has played a central part in much tribological speculation, few quantitative theoretical calculations are available. This is in part because of the difficulties involved in such calculations and in part because the theoretical physics community is not particularly involved with tribology. The calculations currently involved in metallic adhesion are summarized and shown that these can be generalized into a scaled universal relationship. Relationships exist to other types of covalent bonding, such as cohesive, chemisorptive, and molecular bonding. A simple relationship between surface energy and cohesive energy is offered.

  11. Effect of Atmospheric Pressure Plasma Treatment on Surface Characteristics and Adhesive Bond Quality of Peel Ply Prepared Composites

    NASA Astrophysics Data System (ADS)

    Tracey, Ashley C.

    The purpose of this research was to investigate if atmospheric pressure plasma treatment could modify peel ply prepared composite surfaces to create strong adhesive bonds. Two peel ply surface preparation composite systems previously shown to create weak bonds (low fracture energy and adhesion failure) that were potential candidates for plasma treatment were Toray T800/3900-2 carbon fiber reinforced polymer (CFRP) prepared with Precision Fabrics Group, Inc. (PFG) 52006 nylon peel ply and Hexcel T300/F155 CFRP prepared with PFG 60001 polyester peel ply. It was hypothesized that atmospheric pressure plasma treatment could functionalize and/or remove peel ply remnants left on the CFRP surfaces upon peel ply removal. Surface characterization measurements and double cantilever beam (DCB) testing were used to determine the effects of atmospheric pressure plasma treatment on surface characteristics and bond quality of peel ply prepared CFRP composites. Previous research showed that Toray T800/3900-2 carbon fiber reinforced epoxy composites prepared with PFG 52006 peel ply and bonded with Cytec MetlBond 1515-3M structural film adhesive failed in adhesion at low fracture energies when tested in the DCB configuration. Previous research also showed that DCB samples made of Hexcel T300/F155 carbon fiber reinforced epoxy composites prepared with PFG 60001 peel ply and bonded with Henkel Hysol EA 9696 structural film adhesive failed in adhesion at low fracture energies. Recent research suggested that plasma treatment could be able to activate these "un-bondable" surfaces and result in good adhesive bonds. Nylon peel ply prepared 177 °C cure and polyester peel ply prepared 127 °C cure CFRP laminates were treated with atmospheric pressure plasma after peel ply removal prior to bonding. Atmospheric pressure plasma treatment was capable of significantly increasing fracture energies and changing failure modes. For Toray T800/3900-2 laminates prepared with PFG 52006 and bonded with

  12. Environmental Aging of Scotch-Weld(TradeMark) AF-555M Structural Adhesive in Composite to Composite Bonds

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Miner, Gilda A.; Lowther, Sharon E.; Connell, John W.; Baughman, James M.

    2010-01-01

    Fiber reinforced resin matrix composites have found increased usage in recent years. Due to the lack of service history of these relatively new material systems, their long-term aging performance is not well established. In this study, adhesive bonds were prepared by the secondary bonding of Scotch-Weld(TradeMark) AF-555M between pre-cured adherends comprised of T800H/3900-2 uni-directional laminate. The adherends were co-cured with wet peel-ply for surface preparation. Each bond-line of single-lap-shear (SLS) specimen was measured to determine thickness and inspected visually for voids. A three-year environmental aging plan for the SLS specimens at 82 C and 85% relative humidity was initiated. SLS strengths were measured for both controls and aged specimens at room temperature and 82 C. The aging results of strength retention and failure modes to date are reported.

  13. Active Metal Brazing and Adhesive Bonding of Titanium to C/C Composites for Heat Rejection System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Cerny, Jennifer

    2006-01-01

    Robust assembly and integration technologies are critically needed for the manufacturing of heat rejection system (HRS) components for current and future space exploration missions. Active metal brazing and adhesive bonding technologies are being assessed for the bonding of titanium to high conductivity Carbon-Carbon composite sub components in various shapes and sizes. Currently a number of different silver and copper based active metal brazes and adhesive compositions are being evaluated. The joint microstructures were examined using optical microscopy, and scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS). Several mechanical tests have been employed to ascertain the effectiveness of different brazing and adhesive approaches in tension and in shear that are both simple and representative of the actual system and relatively straightforward in analysis. The results of these mechanical tests along with the fractographic analysis will be discussed. In addition, advantages, technical issues and concerns in using different bonding approaches will also be presented.

  14. Effect of adhesive debond on stress-intensity factors in bonded composite panels

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1988-01-01

    Stress-intensity factors are calculated for a cracked infinite sheet adhesively bonded to a stringer, and debonding of the adhesive layer is predicted. The stringer is modeled as a semiinfinite sheet. Adhesive nonlinearity is also included. Both the sheet and stringer are treated as homogeneous, orthotropic materials, a set of integral equations is formulated and solved to obtain the adhesive shear stresses and crack-tip stress-intensity factors. Adhesive debonding is predicted using a rupture criterion based on the combined adhesive stresses. A through-the-thickness crack is located in the infinite sheet perpendicular to the edge of the stringer. When the crack is not under the stringer, the debond extends along the edge of the stringer. When the crack tip is beneath the stringer, the debond extends to the crack tip, then along the edge of the stringer. Stress levels required for debond initiation decrease as the crack tip is moved beneath the stringer. With a nonlinear adhesive, the debond initiates at higher applied stress levels than in linear adhesive cases. Compared with the linear adhesive solution, modeling a nonlinear adhesive causes the stress-intensity factor to decrease when debonding is included.

  15. Adhesive-Bonded Composite Joint Analysis with Delaminated Surface Ply Using Strain-Energy Release Rate

    NASA Technical Reports Server (NTRS)

    Chadegani, Alireza; Yang, Chihdar; Smeltzer, Stanley S. III

    2012-01-01

    This paper presents an analytical model to determine the strain energy release rate due to an interlaminar crack of the surface ply in adhesively bonded composite joints subjected to axial tension. Single-lap shear-joint standard test specimen geometry with thick bondline is followed for model development. The field equations are formulated by using the first-order shear-deformation theory in laminated plates together with kinematics relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. The system of second-order differential equations is solved to using the symbolic computation tool Maple 9.52 to provide displacements fields. The equivalent forces at the tip of the prescribed interlaminar crack are obtained based on interlaminar stress distributions. The strain energy release rate of the crack is then determined by using the crack closure method. Finite element analyses using the J integral as well as the crack closure method are performed to verify the developed analytical model. It has been shown that the results using the analytical method correlate well with the results from the finite element analyses. An attempt is made to predict the failure loads of the joints based on limited test data from the literature. The effectiveness of the inclusion of bondline thickness is justified when compared with the results obtained from the previous model in which a thin bondline and uniform adhesive stresses through the bondline thickness are assumed.

  16. Behavior of adhesively bonded concrete-graphite/epoxy composite bridge girders

    SciTech Connect

    Gordaninejad, F.; Saiidi, M.S.; Wehbe, N. )

    1994-01-01

    The focus of this paper is on the behavior of composite bridge girders constructed from carbon fiber reinforced plastic sections and concrete slabs. The study examined four-point bending of three beams, one bare, I-type, graphite/epoxy beam, and two constructed from concrete slab and graphite/epoxy sections. The concrete slab and graphite/epoxy section were adhesively bonded and no shear connectors were used. All three beams are approximately one-eighth scale models of bridge girders. The sections are geometrically symmetric and have the same symmetric lamination schemes. Theoretical and experimental studies were performed on the bare I-sections to develop basic understanding of the bending behavior. The analyses and tests were then extended to the composite girders. The theoretical and experimental results for the failure loads were in close agreement. It was found that the slip at the interface of the concrete slab and the graphite/epoxy beam had minor effects on the failure load, but it significantly reduced the stiffness of the composite sections. 8 refs., 14 figs., 2 tabs.

  17. Influence of methyl mercaptan on the repair bond strength of composites fabricated using self-etch adhesives.

    PubMed

    Yokokawa, Miho; Rikuta, Akitomo; Tsujimoto, Akimasa; Tsuchiya, Kenji; Shibasaki, Syo; Matsuyoshi, Saki; Miyazaki, Masashi

    2015-02-01

    The influence of methyl mercaptan on the repair bond strength of composites fabricated using self-etch adhesives was investigated. The surface free-energies were determined by measuring the contact angles of test liquids placed on composites that had been immersed in different concentrations of methyl mercaptan (0.01, 0.1, and 1.0 M). To determine the repair bond strength, self-etch adhesives were applied to the aged composite, and then newly added composites were condensed. Ten samples of each specimen were subjected to shear testing at a crosshead speed of 1.0 mm min(-1). Samples were analyzed using two-way ANOVA followed by Tukey's honestly significant difference (HSD) test. Although the dispersion force of the composites remained relatively constant, their polar force increased slightly as the concentration of methyl mercaptan increased. The hydrogen-bonding forces were significantly higher after immersion in 1.0 M methyl mercaptan, leading to higher surface-free energies. However, the repair bond strengths for the repair restorations prepared from composites immersed in 1.0 M methyl mercaptan were significantly lower than for those immersed in 0.01 and 0.10 M methyl mercaptan. Considering the results of this study, it can be concluded that the repair bond strengths of both the aged and newly added composites were affected by immersion in methyl mercaptan solutions. PMID:25545663

  18. Micro-tensile bond strength of different adhesive systems on sound dentin and resin-based composite: An in-vitro study

    PubMed Central

    Mallick, Rashmirekha; Sarangi, Priyanka; Mohanty, Sandhyarani; Behera, Subasish; Nanda, Soumyaranjan; Satapathy, Sukanta Kumar

    2015-01-01

    Aim: To analyze the difference in the micro-tensile bond strength of specimens made with two different adhesive systems and compare them with two homogenous substrates. Materials and Methods: Sixty permanent mandibular molars were mounted in acrylic blocks and sectioned with exposed dentin surfaces. Samples were then divided into four groups. To Group-I Adper Single Bond 2 and to Group-II Adper Self-Etch plus bonding agents were applied. For Group-I and Group-II beams consisted of resin composite in the upper half and dentin in the lower half. In Group-III beams were made of only dentin. In Group-IV beams were made of only composite. Fifteen specimens of each group were taken for the micro-tensile bond strength test. Statistical Analysis: The results are analyzed using one-way analysis of variance and Critical Difference test. Results: The interface bonded with the two adhesive systems had lower micro-tensile bond strength than those of dentin and resin composite and the self-etching adhesive Adper Self-Etch plus had comparable bond strength with total-etch adhesive Adper Single Bond 2. Conclusion: The bond strength values for current adhesive systems cannot be compared to the micro-tensile bond strength of dentin and resin composite, and self-etching adhesives have comparable bond strength with total-etch adhesives. PMID:26430301

  19. Optimal tubular adhesive-bonded lap joint of the carbon fiber epoxy composite shaft

    NASA Astrophysics Data System (ADS)

    Kim, Ki S.; Kim, Won T.; Lee, Dai G.; Jun, Eui J.

    The effects of the adhesive thickness and the adherend surface roughness on the fatigue strength of a tubular adhesive-bonded single lap joint were investigated using fatigue test specimens whose adherends were made of S45C carbon steel. Results of fatigue tests showed that the optimal arithmetic surface roughness of the adherends is about 2 microns and the optimal adhesive thickness is about 0.15 mm. Using these values, the prototype torsional adhesive joints were manufactured for power transmission shafts of an automotive vehicle or a small helicopter, and static tests under torque were performed on a single-lap joint, a single-lap joint with scarf, a double-lap joint, and a double-lap joint with scarf. It was found that the double-lap joint was superior among the joints, in terms of torque capacity and manufacturing cost.

  20. Assessment of the Shear Bond Strength between Nanofilled Composite Bonded to Glass-ionomer Cement Using Self-etch Adhesive with Different pHs and Total-Etch Adhesive

    PubMed Central

    Sharafeddin, Farahnaz; Choobineh, Mohammad Mehdi

    2016-01-01

    Statement of the Problem In the sandwich technique, the undesirable bond between the composite resin and glass-ionomer cement (GIc) is one of the most important factors which lead to the failure of restoration. Total-etch and self-etch adhesives may improve the bond strength based on their pH. Purpose The purpose of this study was to evaluate the shear bond strength between the nanofilled composite resin and GIc using different adhesives. Materials and Method In this experimental study, 40 specimens (6×6mm) in 4 groups (n=10) were prepared in acrylic mold. Each specimen contained conventional GI ChemFil Superior with a height of 3mm, bonded to Z350 composite resin with a height measured 3mm. In order to bond the composite to the GI, the following adhesives were used, respectively: A: mild Clearfil SE Bond self-etch (pH=2), B: intermediate OptiBond self-etch (pH=1.4), C: strong Adper Prompt L-Pop (pH=1), and D: Adper Single Bond 2 total-etch (pH=7.2). The shear bond strength was measured by using universal testing machine with a crosshead speed of 1mm/min. One-way ANOVA and Tukey’s test were used to analyze the data (p< 0.05). Results The shear bond strength in group A was significantly higher than group B (p= 0.002), C (p< 0.001), and D (p< 0.001). Moreover, the shear bond strength of groups A and B (self-etch) was significantly different from group D (total-etch) (p< 0.001); and C (self-etch) with D (p= 0.024). Conclusion The results of this study showed that applying the mild self-etch adhesive between the composite and the GIc results in stronger shear bond strength compared to intermediate and strong self-etch adhesives. Moreover, the self-etch adhesive increased the shear bond strength between composite resin and GIc more significantly than total-etch adhesive. PMID:26966701

  1. Loading Analysis of Composite Wind Turbine Blade for Fatigue Life Prediction of Adhesively Bonded Root Joint

    NASA Astrophysics Data System (ADS)

    Salimi-Majd, Davood; Azimzadeh, Vahid; Mohammadi, Bijan

    2015-06-01

    Nowadays wind energy is widely used as a non-polluting cost-effective renewable energy resource. During the lifetime of a composite wind turbine which is about 20 years, the rotor blades are subjected to different cyclic loads such as aerodynamics, centrifugal and gravitational forces. These loading conditions, cause to fatigue failure of the blade at the adhesively bonded root joint, where the highest bending moments will occur and consequently, is the most critical zone of the blade. So it is important to estimate the fatigue life of the root joint. The cohesive zone model is one of the best methods for prediction of initiation and propagation of debonding at the root joint. The advantage of this method is the possibility of modeling the debonding without any requirement to the remeshing. However in order to use this approach, it is necessary to analyze the cyclic loading condition at the root joint. For this purpose after implementing a cohesive interface element in the Ansys finite element software, one blade of a horizontal axis wind turbine with 46 m rotor diameter was modelled in full scale. Then after applying loads on the blade under different condition of the blade in a full rotation, the critical condition of the blade is obtained based on the delamination index and also the load ratio on the root joint in fatigue cycles is calculated. These data are the inputs for fatigue damage growth analysis of the root joint by using CZM approach that will be investigated in future work.

  2. Effect of adherend thickness and mixed mode loading on debond growth in adhesively bonded composite joints

    NASA Technical Reports Server (NTRS)

    Mangalgiri, P. D.; Johnson, W. S.; Everett, R. A., Jr.

    1986-01-01

    Symmetric and unsymmetric double cantilever beam (DCB) specimens were tested and analyzed to assess the effect of: (1) adherend thickness, and (2) a predominantly mode I mixed mode loading on cyclic debond growth and static fracture toughness. The specimens were made of unidirectional composite (T300/5208) adherends bonded together with EC3445 structural adhesive. The thickness was 8, 16, or 24 plies. The experimental results indicated that the static fracture toughness increases and the cyclic debond growth rate decreases with increasing adherend thickness. This behavior was related to the length of the plastic zone ahead of the debond tip. For the symmetric DCB specimens, it was further found that displacement control tests resulted in higher debond growth rates than did load control tests. While the symmetric DCB tests always resulted in cohesive failures in the bondline, the unsymmetric DCB tests resulted in the debond growing into the thinner adherend and the damage progressing as delamination in that adherend. This behavior resulted in much lower fracture toughness and damage growth rates than found in the symmetric DCB tests.

  3. Use of high and low frequency dielectric measurements in the NDE of adhesively bonded composite joints

    NASA Astrophysics Data System (ADS)

    Pethrick, R. A.; Hayward, D.; McConnell, B. K.; Crane, R. L.

    2005-05-01

    Dielectric spectroscopy has been developed as a non-destructive technique for assessment of moisture content and structural integrity of adhesively bonded joints. Knowledge of these parameters is particularly crucial for the aerospace industry, since environmental degradation of adhesive joints presents a major limit on their utilization. High and low frequency measurements have been carried out on joints assembled from CFRP adherend, and a commercially available adhesive (AF 163-2K). The samples have been aged in deionised water at 75oC to chart the effect water ingress has on bond durability. In addition, some joints have been exposed to cryogenic temperatures to mimic the conditions joints experience whilst an aircraft is in flight. In this way it has been possible to determine the extent of degradation caused by freezing of water within the joint structure. Dielectric behaviour of the joints was studied in both the frequency and in the time domain. Frequency domain analysis allows the amount and effects of moisture ingress in the bondline to be assessed, whereas the time domain highlights the onset of joint defects with increasing exposure time. Mechanical testing of the joints has been carried out to enable correlation between changes in strength and failure mechanism due to moisture ingress, with changes in the dielectric data. In addition, dielectric studies of the neat adhesive have been undertaken, as have gravimetric and dynamic mechanical thermal analysis. These have helped reveal the effects of ageing upon the adhesive layer itself.

  4. Effect of postoperative peroxide bleaching on the marginal seal of composite restorations bonded with self-etch adhesives.

    PubMed

    Roubickova, A; Dudek, M; Comba, L; Housova, D; Bradna, P

    2013-01-01

    The aim of this study was to determine the effect of peroxide bleaching on the marginal seal of composite restorations bonded with several adhesive systems. Combined cylindrical Class V cavities located half in enamel and half in dentin were prepared on the buccal and lingual surfaces of human molars. The cavities were bonded with the self-etch adhesives Clearfil SE-Bond (CLF), Adper Prompt (ADP), and iBond (IBO) and an etch-and-rinse adhesive Gluma Comfort Bond (GLU) and restored with a microhybrid composite Charisma. Experimental groups were treated 25 times for eight hours per day with a peroxide bleaching gel Opalescence PF 20, while the control groups were stored in distilled water for two months and then subjected to a microleakage test using a dye penetration method. Scanning electron microscopy was used to investigate the etching and penetration abilities of the adhesives and morphology of debonded restoration-enamel interfaces after the microleakage tests. Statistical analyses were performed using nonparametric Kruskal-Wallis, Mann-Whitney, and Wilcoxon tests at p=0.05. The microleakage of all GLU groups was low and not significantly affected by peroxide bleaching. Low microleakage was recorded for CLF control groups, but after bleaching, a small but significant increase in microleakage at the enamel margin indicated its sensitivity to peroxide bleaching. For ADP and IBO control groups, the microleakage at the enamel margins was significantly higher than for GLU and CLF and exceeded that at the dentin margins. Bleaching did not induce any significant changes in the microleakage. Electron microscopy analysis indicated that in our experimental setup, decreased adhesion and mechanical resistance of the ADP- and IBO-enamel interfaces could be more important than the chemical degradation effects induced by the peroxide bleaching gel. PMID:23570299

  5. Effect of dentin dehydration and composite resin polymerization mode on bond strength of two self-etch adhesives

    PubMed Central

    Samimi, Pooran; Alizadeh, Mehdi; Shirban, Farinaz; Davoodi, Amin; Khoroushi, Maryam

    2016-01-01

    Background: Dual-cured composite resins are similar to self-cured composite resins in some of their clinical applications due to inadequate irradiation, lack of irradiation, or delayed irradiation. Therefore, incompatibility with self-etch adhesives (SEAs) should be taken into account with their use. On the other, the extent of dentin dehydration has a great role in the quality of adhesion of these resin materials to dentin. The aim of this study was to investigate the effect of dentin dehydration and composite resin polymerization mode on bond strength of two SEAs. Materials and Methods: A total of 120 dentinal specimens were prepared from extracted intact third molars. Half of the samples were dehydrated in ethanol with increasing concentrations. Then Clearfil SE Bond (CSEB) and Prompt L-Pop (PLP) adhesives were applied in the two groups. Cylindrical composite resin specimens were cured using three polymerization modes: (1) Immediate light-curing, (2) delayed light-curing after 20 min, and (3) self-curing. Bond strength was measured using universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed with two-way ANOVA and Duncan post hoc tests. Statistical significance was defined at P < 0.05. Results: There were no significant differences for CSEB subgroups with hydrated and dehydrated dentin samples between the three different curing modes (P > 0.05). PLP showed significant differences between subgroups with the lowest bond strength in hydrated dentin with delayed light-curing and self-cured mode of polymerization. Conclusion: Within the limitations of this study, a delay in composite resin light-curing or using chemically cured composite resin had a deleterious effect on dentin bond strength of single-step SEAs used in the study. PMID:27041894

  6. Advances in the analysis and design of adhesive-bonded joints in composite aerospace structures

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1974-01-01

    Several aspects of adhesive-bonded joint analysis and design are presented from the reference of size of structure or load intensity. This integrates the individual characterizations of double-lap, single-lap, stepped-lap, tapered-lap and scarf joints. The paper includes an overview of bonded joint selection from the standpoints of design, fabrication, and processing, each bearing in mind the influence of such considerations on the strength of the joint. A case study is presented of the optimization of a specific relatively thick titanium-to-graphite epoxy stepped-lap joint, using the digital computer analysis program A4EG. The factors accounted for are adhesive plasticity, adherend stiffness imbalance, adherend thermal mismatch, and change of material properties within the range of temperature environment and with load direction. The strength increases obtainable by refining the initial design are demonstrated.

  7. Development of a shock wave adhesion test for composite bonds by pulsed laser and mechanical impacts

    NASA Astrophysics Data System (ADS)

    Ecault, R.; Boustie, M.; Touchard, F.; Arrigoni, M.; Berthe, L.

    2014-05-01

    Evaluating the bonding quality of composite material is becoming one of the main challenges faced by aeronautic industries. This work aims to the development of a technique using shock wave, which would enable to quantify the bonding mechanical quality. Laser shock experiments were carried out. This technique enables high tensile stress generation in the thickness of composite bonds. The resulting damage has been quantified using different methods such as confocal microscopy, ultrasound and cross section observation. The discrimination between a correct bond and a weak bond was possible thanks to these experiments. Nevertheless, laser sources are not well adapted for optimization of such a test because of often fixed settings. That is why mechanical impacts on bonded composites were also performed in this work. By changing the thickness of aluminum projectiles, the generated tensile stresses by the shock wave propagation were moved toward the composite/bond interface. The made observations prove that the technique optimization is possible. The key parameters for the development of a bonding test using shock waves have been identified.

  8. Development of a shock wave adhesion test for composite bonds by laser pulsed and mechanical impacts

    NASA Astrophysics Data System (ADS)

    Ecault, Romain; Boustie, Michel; Touchard, Fabienne; Arrigoni, Michel; Berthe, Laurent; CNRS Collaboration

    2013-06-01

    Evaluating the bonding quality of composite material is becoming one of the main challenges faced by aeronautic industries. This work aims the development of a technique using shock wave, which would enable to quantify the bonding mechanical quality. Laser shock experiments were carried out. This technique enables high tensile stress generation in the thickness of composite bond without any mechanical contact. The resulting damage has been quantified using different method such as confocal microscopy, ultrasound and cross section observation. The discrimination between a correct bond and a weak bond was possible thanks to these experiments. Nevertheless, laser sources are not well adapted for optimization of such a test since it has often fixed parameters. That is why mechanical impacts bonded composites were also performed in this work. By changing the thickness of aluminum projectiles, the tensile stresses generated by the shock wave propagation were moved toward the composite/bond interface. The observations made prove that the optimization of the technique is possible. The key parameters for the development of a bonding test using shock wave have been identified.

  9. Surface analysis in composite bonding

    NASA Technical Reports Server (NTRS)

    Messick, D. L.; Wightman, J. P.

    1982-01-01

    The role of the interfacial region in determining the bond strength and durability of composite bonds is discussed. The characterization of a variety of carbon fibers including Celion 6000 using both scanning electron microscopy and X-ray photoelectron spectroscopy is discussed. The emphasis is on composite bonding, that is, the adhesive bonding between composites in contrast to fiber-matrix interaction. The primary objective of the research is the characterization of composite surfaces before adhesive bonding and after fracture of bonded specimens. Work done on the analysis of composite samples pretreated in a number of ways prior to bonding is detailed.

  10. The effect of oxalate desensitizers on the microleakage of resin composite restorations bonded by etch and rinse adhesive systems.

    PubMed

    Shafiei, Fereshteh; Motamedi, Mehran; Alavi, Ali Asghar; Namvar, Babak

    2010-01-01

    This in vitro study evaluated the effect of an oxalate desensitizer (OX) on the marginal microleakage of resin composite restorations bonded by two three-step and two two-step etch and rinse adhesives. Class V cavities were prepared on the buccal surfaces of 126 extracted premolars at the cementoenamel junction and randomly divided into nine groups of 14 each. In the control groups (1-4), four adhesives were applied, respectively, including Adper Scotchbond Multi-Purpose (SBMP), Optibond FL (OBFL), One-Step Plus (OS) and Excite (EX). In the experimental groups (5-8), the same adhesives, in combination with OX (BisBlock), were applied. And, in one group, OX was applied without any adhesive, as the negative control group (9). All the groups were restored with a resin composite. After 24 hours of storage in distilled water and thermocycling, the samples were placed in 1% methylene blue dye solution. The dye penetration was evaluated using a stereomicroscope. The data were analyzed using non-parametric tests. The OX application, in combination with OBFL and EX, resulted in significantly increasing microleakage at the gingival margins (p < 0.05), while it had no effect on OS and SBMP (p > 0.05). At the occlusal margins, no significant difference in microleakage was observed after OX application for each of four adhesives (p > 0.05). PMID:21180008

  11. Shear bond strength of resin composite bonded with two adhesives: Influence of Er: YAG laser irradiation distance

    PubMed Central

    Shirani, Farzaneh; Birang, Reza; Malekipour, Mohammad Reza; Hourmehr, Zahra; Kazemi, Shantia

    2014-01-01

    Background: Dental surfaces prepared with different Er:YAG laser distance may have different characteristics compared with those prepared with conventional instruments. The aim of this study was to investigate the effect of Er:YAG laser irradiation distance from enamel and dentin surfaces on the shear bond strength of composite with self-etch and etch and rinse bonding systems compared with conventional preparation method. Materials and Methods: Two hundred caries-free human third molars were randomly divided into twenty groups (n = 10). Ten groups were designated for enamel surface (E1-E10) and ten for dentin surface (D1-D10). Er: YAG laser (2940 nm) was used on the E1-E8 (240 mJ, 25 Hz) and D1-D8 (140 mJ, 30 Hz) groups at four different distances of 0.5 (standard), 2, 4 and 11 mm. Control groups (E9, E10, D9 and D10) were ground with medium grit diamond bur. The enamel and dentin specimens were divided into two subgroups that were bonded with either Single Bond or Clearfil SE Bond. Resin composite (Z100) was dispensed on prepared dentin and enamel. The shear bond strengths were tested using a universal testing machine. Data were analyzed by SPSS12 statistical software using three way analysis of variance, Tukey and independent t-test. P < 0.05 was considered as significant. Results: There was a significant difference between enamel and dentin substrates (P < 0.001) and between lased and un-lased groups; the un-lased group had significantly higher bond strength (P < 0.001). Shear bond strength increased significantly with an increase in the laser irradiation distance (P < 0.05) on enamel surfaces (in both bonding agent subgroups) and on dentin surfaces (in the Single Bond subgroup). Conclusion: Laser irradiation decreases shear bond strength. Irradiation distance affects shear bond strength and increasing the distance would decrease the negative effects of laser irradiation. PMID:25540665

  12. The Effect of Composite Patches on the Failure of Adhesively-Bonded Joints Under Bending Moment

    NASA Astrophysics Data System (ADS)

    Akpinar, Salih

    2013-12-01

    In this study, it was aimed to compare mechanical behavior of double-strap joints with aluminum (AA2024-T3) or 16-ply laminate of carbon/epoxy composite (T300/934) patches of different orientation angles at their overlap area subjected to bending moment. For this purpose, AA2024-T3 aluminum was used as adherend, while the adhesive was a two-part paste (DP 460). Six different types of joint samples were subjected to bending moment. The effect of patch material on failure load and stress distribution was examined experimentally and numerically. In the numerical analysis, the composite patches were assumed to behave linearly elastic, while adherend and adhesive layers were assumed to be nonlinear. It was found that the data obtained from 3-D finite element analysis were coherent with experimental results. Meanwhile, experiments showed that fiber orientation angles of the patches markedly affected the failure load of joints, failure mode and stress distributions appeared in adhesive and composite.

  13. Fracture Analysis of Double-Side Adhesively Bonded Composite Repairs to Cracked Aluminium Plate Using Line Spring Model

    NASA Astrophysics Data System (ADS)

    Niu, Yong; Su, Weiguo

    2016-06-01

    A line spring model is developed for analyzing the fracture problem of cracked metallic plate repaired with the double-sided adhesively bonded composite patch. The restraining action of the bonded patch is modeled as continuous distributed linear springs bridging the crack faces provided that the cracked plate is subjected to extensional load. The effective spring constant is determined from 1-D bonded joint theory. The hyper-singular integral equation (HSIE), which can be solved using the second kind Chebyshev polynomial expansion method, is applied to determine the crack opening displacements (COD) and the crack tip stress intensity factors (SIF) of the repaired cracked plate. The numerical result of SIF for the crack-tip correlates very well with the finite element (FE) computations based on the virtual crack closure technique (VCCT). The present analysis approaches and mathematical techniques are critical to the successful design, analysis and implementation of crack patching.

  14. Adhesive bonding of carbon and ceramic materials

    SciTech Connect

    Kravetskii, G.A.; Anikin, L.T.; Demin, A.V.; Butyrin, G.M.

    1995-12-01

    On the basis of phenol resins and high-melting powder fillers, adhesives for bonding carbon and ceramic materials have been developed at NIIGRAFIT that allow adhesively bonded parts to be used at temperatures as high as 1500 to 1800{degrees}C, Some properties of those adhesives are covered in. The present paper describes results of recent investigations of the heat- and corrosion-resistance of the NIIGRAFIT`s adhesives. As the subjects of investigations were taken adhesives differing in the powder filler composition. Moreover, one adhesive (SVK) was subjected to a preliminary heat treatment (1200{degrees}C, 1 h, Ar) to fully complete the interaction processes between powder components and a binder coke.

  15. Dynamic fracture of adhesively bonded composite structures using cohesive zone models

    NASA Astrophysics Data System (ADS)

    Makhecha, Dhaval P.

    material model to be used in an explicit code (LS-DYNA). Dynamic simulations of the standard test configurations for Mode I (Double Cantilever Beam) and Mode II (End Load Split) are carried out using the explicit code. Verification of these coupon tests leads to the crash analysis of realistic structures like the square composite tube. Analyses of bonded and unbonded square tubes are presented. These tubes shows a very uncharacteristic failure mode: the composite material disintegrates on impact, and this has been captured in the analysis. Disadvantages of the interface element approach are well documented in the literature. An alternative method, known as the Extended Finite Element Method (XFEM), is implemented here through an eight-noded quadrilateral plane strain element. The method, based on the partition-of-unity, is used to study simple test configuration like the three-point bend problem and a double cantilever beam. Functionally graded materials are also simulated and the results are compared to the experimental results available in the literature.

  16. Bonded and Stitched Composite Structure

    NASA Technical Reports Server (NTRS)

    Zalewski, Bart F. (Inventor); Dial, William B. (Inventor)

    2014-01-01

    A method of forming a composite structure can include providing a plurality of composite panels of material, each composite panel having a plurality of holes extending through the panel. An adhesive layer is applied to each composite panel and a adjoining layer is applied over the adhesive layer. The method also includes stitching the composite panels, adhesive layer, and adjoining layer together by passing a length of a flexible connecting element into the plurality of holes in the composite panels of material. At least the adhesive layer is cured to bond the composite panels together and thereby form the composite structure.

  17. Computational Chemistry of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Phillips, Donald H.

    1999-01-01

    This investigation is intended to determine the electrical mechanical, and chemical properties of adhesive bonds at the molecular level. The initial determinations will be followed by investigations of the effects of environmental effects on the chemistry and properties of the bond layer.

  18. Optimizing ultrasonic imaging for adhesively bonded plates

    SciTech Connect

    Conboy, Mike; Hart, Scot; Harris-Weiel, David; Meyer, R. L.; Claytor, T. N.

    2004-01-01

    Bonded materials are used in many critical applications, making it important to determine the state of the adhesive during service or aging. It is also of importance, in many cases, to determine if the adhesive has uniformly and completely covered the area to be joined. Through dual transducer scanning, focused and unfocused transducers, and immersion scanning, the uniformity and adherence of a visco-elastic material can be evaluated. In this report, ultrasonic scanning parameters will be optimized experimentally with guidance from simulation tools including Wave 2000 pro and Imagine 3D. We explored optimizing the contrast ratio by varying the interrogation frequency and also by adjusting the distance between the transducer and bond line. An improvement in contrast should also increase the ability to detect differences in compositions and viscosity of the bonded layer. By maximizing the contrast the quality of the visco-elastic bond can be determined, and imperfections detected before adhesive failure.

  19. Bending effects of unsymmetric adhesively bonded composite repairs on cracked aluminum panels

    NASA Technical Reports Server (NTRS)

    Arendt, Cory; Sun, C. T.

    1994-01-01

    The bending effects of unsymmetrically bonded composite repairs on cracked aluminum panels were quantified using a plate linear finite element model. Stress intensity factors and strain energy release rates were obtained from the model twice, once with out-of-plane displacement suppressed and another time without these restrictions. Several configurations were examined, crack growth stability was identified, and the effect of a debond was considered. The maximum stress intensity factor was also analyzed. Previous work by other authors was found to underpredict the bending effect.

  20. Shear Bond Strength of Acidic Primer, Light-Cure Glass Ionomer, Light-Cure and Self Cure Composite Adhesive Systems - An In Vitro Study

    PubMed Central

    D, Krishnakanth Reddy; V, Kishore M S; Safeena, Safeena

    2013-01-01

    Background: The purpose of this study was to determine shear bond strength and the effect on the bracket/ adhesive failure mode when an acidic primer and other etchants were used to condition the enamel surface before bonding. Materials & Methods: Group I: Brackets bonded with Ultimate cure-on-light Light-cure composite adhesive system. Group II: Brackets bonded with Ortho-one no-mix. Self-cure composite adhesive system. Group III: Brackets bonded with Light-cure glass ionomer adhesive system. Group IV: Brackets bonded with Transbond plus self etching primer. Results: The results of this study indicated that the shear bond strength when using Transbond plus self etching primer showed the highest bond strength Group- IV(8.69 2.54 MPa) followed by Ultimate cure-on-light Group-I (8.62 1.84 MPa), Ortho-one no-mix (Bisco Inc. USA)Group-II (8.07 1.72 MPa), and least bond strength was seen in G.C. Fuji Ortho L.C. Group-III (6.01 1.6) MPa Conclusion: Use of self etching primer saves chairside time and satisfactory high bond strength was obtained. Care should be taken during debonding of ceramic brackets How to cite this article: Reddy K D, Kishore M S V, Safeena S. Shear Bond Strength of Acidic Primer, Light-Cure Glass Ionomer, Light-Cure and Self Cure Composite Adhesive Systems - An In Vitro Study. J Int Oral Health 2013; 5(3):73-78. PMID:24155606

  1. Surface analysis in composite bonding

    NASA Technical Reports Server (NTRS)

    Messick, D. L.; Wightman, J. P.

    1983-01-01

    X ray photoelectron spectroscopy and contact angle measurements on graphite fiber composites pretreated in a number of different ways including mechanical, chemical, and light irradiation were analyzed. Data acquired on surface contamination as a result of fabrication techniques provides answers to the strength and durability of adhesively bonded composites. These techniques were shown to provide valuable information on surface analysis of pretreated composites prior to adhesive bonding and following lap shear fracture.

  2. Nondestructive Characterization of Adhesive Bonds from Guided Wave Data

    NASA Technical Reports Server (NTRS)

    Mal, A. K.; Lih, S-S.; Bar-Cohen, Y.

    1994-01-01

    The critical role played by adhesive bonds in the fracture and failure of composites and other bonded materials is well known. A good knowledge of the mechanical properties of these adhesion joints is a prerequisite to reliable design and reliable prediction of the performance of these bonded structures.

  3. Nondestructive Evaluation of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Nayeb-Hashemi, Hamid; Rossettos, J. N.

    1997-01-01

    The final report consists of 5 published papers in referred journals and a technical letter to the technical monitor. These papers include the following: (1) Comparison of the effects of debonds and voids in adhesive; (2) On the peak shear stresses in adhesive joints with voids; (3) Nondestructive evaluation of adhesively bonded joints by acousto-ultrasonic technique and acoustic emission; (4) Multiaxial fatigue life evaluation of tubular adhesively bonded joints; (5) Theoretical and experimental evaluation of the bond strength under peeling loads. The letter outlines the progress of the research. Also included is preliminary information on the study of nondestructive evaluation of composite materials subjected to localized heat damage. The investigators studied the effects of localized heat on unidirectional fiber glass epoxy composite panels. Specimens of the fiber glass epoxy composites were subjected to 400 C heat for varying lengths of time. The specimens were subjected to nondestructive tests. The specimens were then pulled to their failure and acoustic emission of these specimens were measured. The analysis of the data was continuing as of the writing of the letter, and includes a finite element stress analysis of the problem.

  4. Bonding Durability of Four Adhesive Systems

    PubMed Central

    Seyed Tabai, Elaheh; Mohammadi Basir, Mahshid

    2015-01-01

    Objectives: This study aimed to compare the durability of four adhesive systems by assessing their microtensile bond strength (MTBS) and microleakage during six months of water storage. Materials and Methods: A total of 128 human third molars were used. The adhesives tested were Scotch Bond Multipurpose (SBMP), Single Bond (SB), Clearfil-SE bond (CSEB), and All-Bond SE (ABSE). After sample preparation for MTBS testing, the microspecimens were subjected to microtensile tester after one day and six months of water storage. For microleakage evaluation, facial and lingual class V cavities were prepared and restored with composite. After thermocycling, microleakage was evaluated. Bond strength values were subjected to one-way ANOVA and Tamhane’s test, and the microleakage data were analyzed by the Kruskal-Wallis, Dunn, Mann Whitney and Wilcoxon tests (P<0.05). Results: Single Bond yielded the highest and ABSE yielded the lowest bond strength at one day and six months. Short-term bond strength of SBMP and CSEB was similar. After six months, a significant decrease in bond strength was observed in ABSE and SBMP groups. At one day, ABSE showed the highest microleakage at the occlusal margin; however, at the gingival margin, there was no significant difference among groups. Long-term microleakage of all groups at the occlusal margins was similar, whilst gingival margins of SBMP and SB showed significantly higher microleakage. Conclusion: The highest MTBS and favorable sealability were obtained by Clearfil SE bond. Water storage had no effect on microleakage of self-etch adhesives at the gingival margin or MTBS of CSEB and SB. PMID:27123015

  5. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1999-01-01

    Adhesives and adhesive joints are widely used in various industrial applications to reduce weight and costs, and to increase reliability. For example, advances in aerospace technology have been made possible, in part, through the use of lightweight materials and weight-saving structural designs. Joints, in particular, have been and continue to be areas in which weight can be trimmed from an airframe through the use of novel attachment techniques. In order to save weight over traditional riveted designs, to avoid the introduction of stress concentrations associated with rivet holes, and to take full advantage of advanced composite materials, engineers and designers have been specifying an ever-increasing number of adhesively bonded joints for use on airframes. Nondestructive characterization for quality control and remaining life prediction has been a key enabling technology for the effective use of adhesive joints. Conventional linear ultrasonic techniques generally can only detect flaws (delamination, cracks, voids, etc) in the joint assembly. However, more important to structural reliability is the bond strength. Although strength, in principle, cannot be measured nondestructively, a slight change in material nonlinearity may indicate the onset of failure. Furthermore, microstructural variations due to aging or under-curing may also cause changes in the third order elastic constants, which are related to the ultrasonic nonlinear parameter of the polymer adhesive. It is therefore reasonable to anticipate a correlation between changes in the ultrasonic nonlinear acoustic parameter and the remaining bond strength. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasonic wave passes through a nonlinear material. It seems that such nonlinearity can be effectively used to characterize bond strength. Several theories have been developed to model this nonlinear effect. Based on a microscopic description of the nonlinear

  6. Approaching improved adhesive bonding repeatability

    NASA Astrophysics Data System (ADS)

    Schlette, Christian; Müller, Tobias; Roβmann, Jürgen; Brecher, Christian

    2016-03-01

    Today, the precision of micro-optics assembly is mostly limited by the accuracy of the bonding process ― and in the case of adhesive bonding by the prediction and compensation of adhesive shrinkage during curing. In this contribution, we present a novel approach to address adhesive bonding based on hybrid control system theory. In hybrid control, dynamic systems are described as "plants" which produce discrete and/or continuous outputs from given discrete and/or continuous inputs, thus yielding a hybrid state space description of the system. The task of hybrid controllers is to observe the plant and to generate a discrete and/or continuous input sequence that guides or holds the plant in a desired target state region while avoiding invalid or unwanted intermediate states. Our approach is based on a series of experiments carried out in order to analyze, define and decouple the dependencies of adhesive shrinkage on multiple parameters, such as application geometries, fixture forces and UV intensities. As some of the dependencies describe continuous effects (e.g. shrinkage from UV intensity) and other dependencies describe discrete state transitions (e.g. fixture removal during curing), the resulting model of the overall bonding process is a hybrid dynamic system in the general case. For this plant model, we then propose a concept of sampling-based parameter search as a basis to design suitable hybrid controllers, which have the potential to optimize process control for a selection of assembly steps, thus improving the repeatability of related production steps like beam-shaping optics or mounting of turning mirrors for fiber coupling.

  7. Adhesive force measurement between HOPG and zinc oxide as an indicator for interfacial bonding of carbon fiber composites.

    PubMed

    Patterson, Brendan A; Galan, Ulises; Sodano, Henry A

    2015-07-22

    Vertically aligned zinc oxide (ZnO) nanowires have recently been utilized as an interphase to increase the interfacial strength of carbon fiber composites. It was shown that the interaction between the carbon fiber and the ZnO nanowires was a critical parameter in adhesion; however, fiber based testing techniques are dominated by local defects and cannot be used to effectively study the bonding interaction directly. Here, the strength of the interface between ZnO and graphitic carbon is directly measured with atomic force microscopy (AFM) using oxygen plasma treated highly oriented pyrolytic graphite (HOPG) and an AFM tip coated with ZnO nanoparticles. X-ray photoelectron spectroscopy analysis is used to compare the surface chemistry of HOPG and carbon fiber and to quantify the presence of various oxygen functional groups. An indirect measurement of the interfacial strength is then performed through single fiber fragmentation testing (SFF) on functionalized carbon fibers coated with ZnO nanowires to validate the AFM measurements. The SFF and AFM methods showed the same correlation, demonstrating the capacity of the AFM method to study the interfacial properties in composite materials. Additionally, the chemical interactions between oxygen functional groups and the ionic structure of ZnO suggest that intermolecular forces at the interface are responsible for the strong interface. PMID:26107931

  8. Evaluation of microshear bond strength of resin composites to enamel of dental adhesive systems associated with Er,Cr:YSGG laser

    NASA Astrophysics Data System (ADS)

    Cassimiro-Silva, Patricia F.; Zezell, Denise M.; Monteiro, Gabriela Q. d. M.; Benetti, Carolina; de Paula Eduardo, Carlos; Gomes, Anderson S. L.

    2016-02-01

    The aim of this in vitro study was to evaluate the microshear bond strength (μSBS) of resin composite to enamel etching by Er,Cr:YSGG laser with the use of two differents adhesives systems. Fifty freshly extracted human molars halves were embedded in acrylic resin before preparation for the study, making a total of up to 100 available samples. The specimens were randomly assigned into six groups (η=10) according to substrate pre-treatment and adhesive system on the enamel. A two-step self-etching primer system (Clearfil SE Bond) and a universal adhesive used as an etch-andrinse adhesive (Adper Single Bond Universal) were applied to the nonirradiated enamel surface according to manufacturer's instructions, as control groups (Control CF and Control SB, respectively). For the other groups, enamel surfaces were previously irradiated with the Er,Cr:YSGG laser with 0.5 W, 75 mJ and 66 J/cm2 (CF 5 Hz and SB 5 Hz) and 1.25 W, 50 mJ and 44 J/cm2 (CF 15 Hz and SB 15 Hz). Irradiation was performed under air (50%) and water (50%) cooling. An independent t-test was performed to compare the adhesive systems. Mean μSBS ± sd (MPa) for each group was 16.857 +/- 2.61, 17.87 +/- 5.83, 12.23 +/- 2.02, 9.88 +/- 2.26, 15.94 +/- 1.98, 17.62 +/- 2.10, respectively. The control groups and the 50 mJ laser groups showed no statistically significant differences, regardless of the adhesive system used. The results obtained lead us to affirm that the bonding interaction of adhesives to enamel depends not only on the morphological aspects of the dental surface, but also on the characteristics of the adhesive employed and the parameters of the laser.

  9. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study

    PubMed Central

    Deepa, Velagala L; Dhamaraju, Bhargavi; Bollu, Indira Priyadharsini; Balaji, Tandri S

    2016-01-01

    Aims: To compare and evaluate the bonding ability of resin composite (RC) to three different liners: TheraCal LC™ (TLC), a novel resin-modified (RM) calcium silicate cement, Biodentine™ (BD), and resin-modified glass ionomer cement (RMGIC) using an universal silane-containing adhesive and characterizing their failure modes. Materials and Methods: Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height) were mounted in acrylic blocks and divided into three groups of 10 samples each based on the liner used as Group A (TLC), Group B (BD), and Group C (RMGIC). Composite post of 3 mm diameter and 3 mm height was then bonded to each sample using universal adhesive. Shear bond strength (SBS) analysis was performed at a cross-head speed of 1 mm/min. Statistical Analysis Used: Statistical analysis was performed with one-way analysis of variance (ANOVA) and post hoc test using Statistical Package for the Social Sciences (SPSS) version 20. Results: No significant difference was observed between group A and group C (P = 0.573) while group B showed the least bond strength values with a highly significant difference (P = 0.000). The modes of failure were predominantly cohesive in Groups A and B (TLC and BD) while RMGIC showed mixed and adhesive failures. Conclusions: Hence, this present study concludes that the bond strength of composite resin to TLC and RMGIC was similar and significantly higher than that of BD following application of universal adhesive. PMID:27099425

  10. Bond strength of composite to dentin: effect of acid etching and laser irradiation through an uncured self-etch adhesive system

    NASA Astrophysics Data System (ADS)

    Castro, F. L. A.; Carvalho, J. G.; Andrade, M. F.; Saad, J. R. C.; Hebling, J.; Lizarelli, R. F. Z.

    2014-08-01

    This study evaluated the effect on micro-tensile bond strength (µ-TBS) of laser irradiation of etched/unetched dentin through an uncured self-etching adhesive. Dentinal surfaces were treated with Clearfil SE Bond Adhesive (CSE) either according to the manufacturer’s instructions (CSE) or without applying the primer (CSE/NP). The dentin was irradiated through the uncured adhesive, using an Nd:YAG laser at 0.75 or 1 W power settings. The adhesive was cured, composite crowns were built up, and the teeth were sectioned into beams (0.49 mm2) to be stressed under tension. Data were analyzed using one-way ANOVA and Tukey statistics (α = 5%). Dentin of the fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). The results showed that non-etched irradiated surfaces presented higher µ-TBS than etched and irradiated surfaces (p < 0.05). Laser irradiation alone did not lead to differences in µ-TBS (p > 0.05). SEM showed solidification globules on the surfaces of the specimens. The interfaces were similar on irradiated and non-irradiated surfaces. Laser irradiation of dentin through the uncured adhesive did not lead to higher µ-TBS when compared to the suggested manufacturer’s technique. However, this treatment brought benefits when performed on unetched dentin, since bond strengths were higher when compared to etched dentin.

  11. Adhesively-Bonded Structural Composite Joint Utilizing Shoulder-Centered Sleeves

    NASA Technical Reports Server (NTRS)

    Lukowski, Florian P., Jr. (Inventor)

    2015-01-01

    A composite joint includes a first member having a groove therein, a second member adjacent to the first member, and a connector member disposed between the second member and the first member. The connector member is received in the groove so as to bias a load path between the first member and the second member from a peripheral portion to a central portion of the connector member.

  12. Adhesive wafer bonding for MEMS applications

    NASA Astrophysics Data System (ADS)

    Dragoi, Viorel; Glinsner, Thomas; Mittendorfer, Gerald; Wieder, Bernhard; Lindner, Paul

    2003-04-01

    Low temperature wafer bonding is a powerful technique for MEMS/MOEMS devices fabrication and packaging. Among the low temperature processes adhesive bonding focuses a high technological interest. Adhesive wafer bonding is a bonding approach using an intermediate layer for bonding (e.g. glass, polymers, resists, polyimides). The main advantages of this method are: surface planarization, encapsulation of structures on the wafer surface, particle compensation and decrease of annealing temperature after bonding. This paper presents results on adhesive bonding using spin-on glass and Benzocyclobutene (BCB) from Dow Chemicals. The advantages of using adhesive bonding for MEMS applications will be illustrated be presenting a technology of fabricating GaAs-on-Si substrates (up to 150 mm diameter) and results on BCB bonding of Si wafers (200 mm diameter).

  13. Biocompatibility of a flowable composite bonded with a self-etching adhesive compared with a glass lonomer cement and a high copper amalgam.

    PubMed

    Shimada, Yasushi; Seki, Yuichi; Sasafuchi, Yasutaka; Arakawa, Makoto; Burrow, Michael F; Otsuki, Masayuki; Tagami, Junji

    2004-01-01

    This study evaluated the pulpal response and in-vivo microleakage of a flowable composite bonded with a self-etching adhesive and compared the results with a glass ionomer cement and amalgam. Cervical cavities were prepared in monkey teeth. The teeth were randomly divided into three groups. A self-etching primer system (Imperva FluoroBond, Shofu) was applied to the teeth in one of the experimental groups, and the cavities were filled with a flowable composite (SI-BF-2001-LF, Shofu). In the other groups, a glass ionomer cement (Fuji II, GC) or amalgam (Dispersalloy, Johnson & Johnson) filled the cavity. The teeth were then extracted after 3, 30 and 90 days, fixed in 10% buffered formalin solution and prepared according to routine histological techniques. Five micrometer sections were stained with hematoxylin and eosin or Brown and Brenn gram stain for bacterial observation. No serious inflammatory reaction of the pulp, such as necrosis or abscess formation, was observed in any of the experimental groups. Slight inflammatory cell infiltration was the main initial reaction, while deposition of reparative dentin was the major long-term reaction in all groups. No bacterial penetration along the cavity walls was detected in the flowable composite or glass ionomer cement except for one case at 30 days in the glass ionomer cement. The flowable composite bonded with self-etching adhesive showed an acceptable biological com- patibility to monkey pulp. The in vivo sealing ability of the flowable composite in combination with the self-etching adhesive was considered comparable to glass ionomer cement. Amalgam restorations without adhesive liners showed slight bacterial penetration along the cavity wall. PMID:14753328

  14. Effect of aluminum chloride hemostatic agent on microleakage of class V composite resin restorations bonded with all-in-one adhesive

    PubMed Central

    Mohammadi, Narmin; Bahari, Mahmood; Pournaghi-Azar, Fatemeh; Mozafari, Aysan

    2012-01-01

    Objectives: Since hemostatic agents can induce changes on enamel and dentin surfaces and influence composite resin adhesion, the aim of the present study was to evaluate the effect of the aluminum chloride hemostatic agent on the gingival margin microleakage of class V (Cl V) composite resin restorations bonded with all-in-one adhesive. Study design: Cl V cavities were prepared on the buccal surfaces of 60 sound bovine permanent incisors. Gingival margins of the cavities were placed 1.5 mm apical to the cemento-enamel junction (CEJ). The teeth were randomly divided into two groups of 30. In group 1, the cavities were restored without the application of a hemostatic agent; in group 2, the cavities were restored after the application of the hemostatic agent. In both groups all-in-one adhesive and Z250 composite resin were used to restore the cavities with the incremental technique. After finishing and polishing, the samples underwent a thermocycling procedure, followed by immersion in 2% basic fuschin solution for 24 hours. The samples were sectioned and gingival microleakage was evaluated under a stereomicroscope. The non-parametric Mann-Whitney U test was used to compare microleakage between the two groups. Statistical significance was defined at P<0.05. Results: A statistically significant difference was observed in microleakage between the two groups (P<0.001). Conclusions: Contamination of Cl V composite resin restorations bonded with all-in-one adhesive with aluminum chloride hemostatic agent significantly increases restoration gingival margin microleakage. Key words:All-in-one adhesive resin, composite resin restoration, hemostatic agent, microleakage. PMID:22322497

  15. Weld bonding of titanium with polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Sheppard, C. H.; Orell, M. K.

    1975-01-01

    A conductive adhesive primer and a capillary flow adhesive were developed for weld bonding titanium alloy joints. Both formulations contained ingredients considered to be non-carcinogenic. Lap-shear joint test specimens and stringer-stiffened panels were weld bonded using a capillary flow process to apply the adhesive. Static property information was generated for weld bonded joints over the temperature range of 219K (-65 F) to 561K (550 F). The capillary flow process was demonstrated to produce weld bonded joints of equal strength to the weld through weld bonding process developed previously.

  16. Viscoelastic analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    In this paper an adhesively bonded lap joint is analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. After formulating the general problem a specific example for two identical adherends bonded through a three parameter viscoelastic solid adhesive is considered. The standard Laplace transform technique is used to solve the problem. The stress distribution in the adhesive layer is calculated for three different external loads namely, membrane loading, bending, and transverse shear loading. The results indicate that the peak value of the normal stress in the adhesive is not only consistently higher than the corresponding shear stress but also decays slower.

  17. Viscoelastic analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1980-01-01

    An adhesively bonded lap joint is analyzed by assuming that the adherends are elastic and the adhesive is linearly viscoelastic. After formulating the general problem a specific example for two identical adherends bonded through a three parameter viscoelastic solid adhesive is considered. The standard Laplace transform technique is used to solve the problem. The stress distribution in the adhesive layer is calculated for three different external loads, namely, membrane loading, bending, and transverse shear loading. The results indicate that the peak value of the normal stress in the adhesive is not only consistently higher than the corresponding shear stress but also decays slower.

  18. Rapid adhesive bonding and field repair of aerospace materials

    NASA Technical Reports Server (NTRS)

    Stein, B. A.

    1985-01-01

    Adhesive bonding in the aerospace industry typically utilizes autoclaves or presses which have considerable thermal mass. As a consequence, the rates of heatup and cooldown of the bonded parts are limited and the total time and cost of the bonding process are often relatively high. Many of the adhesives themselves do not inherently require long processing times. Bonding could be performed rapidly if the heat was concentrated in the bond lines or at least in the adherends. Rapid Adhesive Bonding concepts are developed to utilize induction heating techniques to provide heat directly to the bond line and/or adherends without heating the entire structure, supports, and fixtures of a bonding assembly. Bonding times for specimens can be cut by a factor of 10 to 100 compared to standard press or autoclave bonding. The development of Rapid Adhesive Bonding for lap shear specimens (per ASTM D1002 and D3163), for aerospace panel or component bonding, and for field repair needs of metallic and advanced fiber reinforced polymeric-matrix composite structures is reviewed. Equipment and procedures are described for bonding and repairing thin sheets, simple geometries, and honeycomb core panels.

  19. Covering of fiber-reinforced composite bars by adhesive materials, is it necessary to improve the bond strength of lingual retainers?

    PubMed Central

    Heravi, Farzin; Kerayechian, Navid; Moazzami, Saied Mostafa; Shafaee, Hooman; Heravi, Parya

    2015-01-01

    Objectives: The objectives were to evaluate the shear bond strength (SBS) of fiber-reinforced composite (FRC) retainers when bonding them to teeth with and without covering the FRC bars using two different adhesive systems. Materials and Methods: Hundred and twenty extracted human maxillary premolars were randomly divided into eight groups (n = 15). FRC bars (4 mm length, Everstick Ortho®, Stick Tech, Oy, Turku, Finland) were bonded to the proximal (distal) surfaces of the teeth using two different adhesives (Tetric Flow [TF, Ivoclar Vivadent, Switzerland] and resin-modified glass ionomer cement [RMGIC, ODP, Vista, CA, USA]) with and without covering with the same adhesive. Specimens were exposed to thermocycling (625 cycles per day [5–55°C, intervals: 30 s] for 8 days). The SBS test was then performed using the universal testing machine (Zwick, GMBH, Ulm, Germany). After debonding, the remaining adhesive on the teeth was recorded by the adhesive remnant index (0–3). Results: The lowest mean SBS (standard deviation) was found in the TF group without covering with adhesive (12.6 [2.11] MPa), and the highest bond strength was in the TF group with covering with adhesive (16.01 [1.09] MPa). Overall, the uncovered RMGIC (15.65 [3.57] MPa) provided a higher SBS compared to the uncovered TF. Covering of FRC with TF led to a significant increase in SBS (P = 0.001), but this was not true for RMGIC (P = 0.807). Thermal cycling did not significantly change the SBS values (P = 0.537). Overall, eight groups were statistically different (ANOVA test, F = 3.32, P = 0.034), but no significant differences in bond failure locations were found between the groups (Fisher's exact tests, P = 0.92). Conclusions: The present findings showed no significant differences between SBS of FRC bars with and without covering by RMGIC. However, when using TF, there was a significant difference in SBS measurements between covering and noncovering groups. Therefore, the use of RMGIC without

  20. Wood Composite Adhesives

    NASA Astrophysics Data System (ADS)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  1. The Effects of Temperature, Humidity and Aircraft Fluid Exposure on T800H/3900-2 Composites Bonded with AF-555M Adhesive

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Hou, Tan-Hung; Lowther, Sharon E.; Thibeault, Sheila A.; Connell, John W.; Blasini, Sheila Roman

    2010-01-01

    Fiber reinforced resin matrix composites and structural adhesives have found increased usage on commercial and military aircraft in recent years. Due to the lack of service history of these relatively new material systems, their long-term aging performance has not been well established. In this study, single lap shear specimens (SLS) were fabricated by secondary bonding of Scotch-Weld(TradeMark) AF-555M between pre-cured adherends comprised of T800H/3900-2 uni-directional laminates. The adherends were co-cured with wet peel-ply for surface preparation. Each bond-line of the SLS specimen was measured to determine thickness and inspected visually using an optical microscope for voids. A three-year environmental aging plan for the SLS specimens at 82 C (180 F) and 85% relative humidity was initiated. SLS strengths were measured for both controls and aged specimens at room temperature and 82 C. The effect of this exposure on lap shear strength and failure modes to date is reported. In addition, the effects of water, saline water, deicing fluid, JP-5 jet fuel and hydraulic fluid on both the composite material and the adhesive bonds were investigated. The up to date results on the effects of these exposures will be discussed.

  2. Analysis of "Kiss" Bonds Between Composite Laminates

    NASA Astrophysics Data System (ADS)

    Poveromo, Scott L.; Earthman, James C.

    2014-06-01

    One of the leading challenges to designing lightweight, cost-effective bonded structures is to detect low shear strength "kiss" bonds where no other defects such as voids and cracks exist. To develop a nondestructive testing method that is sensitive to kiss bonds, standards need to be fabricated with known strength values. In the current work, we attempt to create kiss bonds in between carbon fiber composite laminates that have been bonded with epoxy film adhesive and epoxy paste adhesive. Based on ultrasonic testing, when creating true kiss bonds using film adhesives, a complete disbond could not be avoided because of thermally induced stresses during the high-temperature cure. However, further work demonstrated that kiss bonds can be formed using room-temperature curable epoxy paste adhesives by creating an amine blush on the epoxy surface or applying a release agent on the bonding surfaces.

  3. Effect of adhesive thickness on adhesively bonded T-joint

    NASA Astrophysics Data System (ADS)

    Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul

    2013-12-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.

  4. A Semi-Analytical Method for Determining the Energy Release Rate of Cracks in Adhesively-Bonded Single-Lap Composite Joints

    NASA Technical Reports Server (NTRS)

    Yang, Charles; Sun, Wenjun; Tomblin, John S.; Smeltzer, Stanley S., III

    2007-01-01

    A semi-analytical method for determining the strain energy release rate due to a prescribed interface crack in an adhesively-bonded, single-lap composite joint subjected to axial tension is presented. The field equations in terms of displacements within the joint are formulated by using first-order shear deformable, laminated plate theory together with kinematic relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. Based on the adhesive stress distributions, the forces at the crack tip are obtained and the strain energy release rate of the crack is determined by using the virtual crack closure technique (VCCT). Additionally, the test specimen geometry from both the ASTM D3165 and D1002 test standards are utilized during the derivation of the field equations in order to correlate analytical models with future test results. The system of second-order differential field equations is solved to provide the adherend and adhesive stress response using the symbolic computation tool, Maple 9. Finite element analyses using J-integral as well as VCCT were performed to verify the developed analytical model. The finite element analyses were conducted using the commercial finite element analysis software ABAQUS. The results determined using the analytical method correlated well with the results from the finite element analyses.

  5. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-09-08

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  6. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Paulauskas, Felix L.; Fathi, Zakaryae; Wei, Jianghua

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  7. Adhesive bonding using variable frequency microwave energy

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

    1998-08-25

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

  8. High Temperature Adhesives for Bonding Kapton

    NASA Technical Reports Server (NTRS)

    Stclair, A. K.; Slemp, W. S.; Stclair, T. L.

    1978-01-01

    Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/Kapton bondlines were monitored by thermomechanical analysis.

  9. Low-temperature full wafer adhesive bonding

    NASA Astrophysics Data System (ADS)

    Niklaus, Frank; Enoksson, Peter; Kälvesten, Edvard; Stemme, Göran

    2001-03-01

    We have systematically investigated the influence of different bonding parameters on void formation in a low-temperature adhesive bonding process. As a result of these studies we present guidelines for void free adhesive bonding of 10 cm diameter wafers. We have focused on polymer coatings with layer thicknesses between 1 µm and 18 µm. The tested polymer materials were benzocyclobutene (BCB) from Dow Chemical, a negative photoresist (ULTRA-i 300) and a positive photoresist (S1818) from Shipley, a polyimide (HTR3) from Arch Chemical and two different polyimides (PI2555 and PI2610) from DuPont. The polymer material, the bonding pressure and the pre-curing time and temperature for the polymer significantly influence void formation at the bond interface. High bonding pressure and optimum pre-curing times/temperatures counteract void formation. We present the process parameters to achieve void-free bonding with the BCB coating and with the ULTRA-i 300 photoresist coating as adhesive materials. Excellent void-free and strong bonds have been achieved by using BCB as the bonding material which requires a minimum bonding temperature of 180 °C.

  10. Verification of surface preparation for adhesive bonding

    NASA Technical Reports Server (NTRS)

    Myers, Rodney S.

    1995-01-01

    A survey of solid rocket booster (SRB) production operations identified potential contaminants which might adversely affect bonding operations. Lap shear tests quantified these contaminants' effects on adhesive strength. The most potent contaminants were selected for additional studies on SRB thermal protection system (TPS) bonding processes. Test panels were prepared with predetermined levels of contamination, visually inspected using white and black light, then bonded with three different TPS materials over the unremoved contamination. Bond test data showed that white and black light inspections are adequate inspection methods for TPS bonding operations. Extreme levels of contamination (higher than expected on flight hardware) had an insignificant effect on TPS bond strengths because of the apparent insensitivity of the adhesive system to contamination effects, and the comparatively weak cohesive strength of the TPS materials.

  11. Surface characterization in composite and titanium bonding

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Wightman, J. P.

    1986-01-01

    The failure surface analysis of adhesively bonded carbon fiber composites is described. The emphasis is on the bonding of composites when the surface has been made intentionally resin-rich. Also discussed is surface analysis of both commercially available and pretreated carbon fibers. The interaction of the fibers with polysulfone is described.

  12. Evaluation of Er,Cr:YSGG Laser Effect on Microshear Bond Strength of a Self-Adhesive Flowable Composite in the Dentin of Permanent Molar: An In Vitro Study

    PubMed Central

    Moslemi, Masoumeh; Javadi, Fatemeh; Khalili Sadrabad, Zahra; Shadkar, Zahra; Shadkar, Mohammad Saeid

    2016-01-01

    Aim and Background. Recently, new restorative materials such as self-adhesive flowable composites, because of their simple use and no need to bonding and etching, are considered important, particularly in pediatric dentistry. The aim of this study is to evaluate the effect of Er,Cr:YSGG laser on microshear bond strength of self-adhesive flowable composite on permanent teeth dentin in vitro. Material and Methods. In this experimental study, 40 dentin sections were prepared from healthy third molars and divided into two groups according to their surface preparation by Er,Cr:YSGG laser or without laser, only with silicon carbide paper. In each group, two groups of 10 teeth were treated with self-adhesive flowable composite (Dyad) and conventional flowable composite (acid etch and bonding). Samples were stored in normal saline and after 48 hours their bond strength was measured. The failure mode of samples was observed on stereomicroscope. In order to analyse the results, the one way ANOVA and Tukey's test for multiple comparisons were used. Result. The maximum bond strength was related to conventional flowable composite with laser preparation group (24/21 Mpa). The lowest one was seen in Dyad composite without laser emitting (9/89 Mpa). The statistical difference between this two groups was significant (P value = 0/0038). The microshear bond strength differences between Dyad composite groups with laser preparation (mean = 16/427 ± 1/79) and without laser preparation (mean = 12/85 ± 1/90) were statistically significant too (P value = 0/01). Conclusion. Self-adhesive flowable composite has lower microshear bond strength than conventional flowable composite. Moreover, the laser irradiation as a surface treatment can improve this bond strength. PMID:27493829

  13. Evaluation of Er,Cr:YSGG Laser Effect on Microshear Bond Strength of a Self-Adhesive Flowable Composite in the Dentin of Permanent Molar: An In Vitro Study.

    PubMed

    Moslemi, Masoumeh; Fotouhi Ardakani, Faezeh; Javadi, Fatemeh; Khalili Sadrabad, Zahra; Shadkar, Zahra; Shadkar, Mohammad Saeid

    2016-01-01

    Aim and Background. Recently, new restorative materials such as self-adhesive flowable composites, because of their simple use and no need to bonding and etching, are considered important, particularly in pediatric dentistry. The aim of this study is to evaluate the effect of Er,Cr:YSGG laser on microshear bond strength of self-adhesive flowable composite on permanent teeth dentin in vitro. Material and Methods. In this experimental study, 40 dentin sections were prepared from healthy third molars and divided into two groups according to their surface preparation by Er,Cr:YSGG laser or without laser, only with silicon carbide paper. In each group, two groups of 10 teeth were treated with self-adhesive flowable composite (Dyad) and conventional flowable composite (acid etch and bonding). Samples were stored in normal saline and after 48 hours their bond strength was measured. The failure mode of samples was observed on stereomicroscope. In order to analyse the results, the one way ANOVA and Tukey's test for multiple comparisons were used. Result. The maximum bond strength was related to conventional flowable composite with laser preparation group (24/21 Mpa). The lowest one was seen in Dyad composite without laser emitting (9/89 Mpa). The statistical difference between this two groups was significant (P value = 0/0038). The microshear bond strength differences between Dyad composite groups with laser preparation (mean = 16/427 ± 1/79) and without laser preparation (mean = 12/85 ± 1/90) were statistically significant too (P value = 0/01). Conclusion. Self-adhesive flowable composite has lower microshear bond strength than conventional flowable composite. Moreover, the laser irradiation as a surface treatment can improve this bond strength. PMID:27493829

  14. Ultrasonic characterization of interfaces in composite bonds

    SciTech Connect

    Wang, N.; Lobkis, O. I.; Rokhlin, S. I.; Cantrell, J. H.

    2011-06-23

    The inverse determination of imperfect interfaces from reflection spectra of normal and oblique incident ultrasonic waves in adhesive bonds of multidirectional composites is investigated. The oblique measurements are complicated by the highly dispersed nature of oblique wave spectra at frequencies above 3MHz. Different strategies for bond property reconstruction, including a modulation method, are discussed. The relation of measured interfacial spring density to the physico-chemical model of a composite interface described by polymer molecular bonds to emulate loss of molecular strength on an adhesive composite interface is discussed. This potentially relates the interfacial (adhesion) strength (number of bonds at the adhesive substrate interface) to the spring constant (stiffness) area density (flux), which is an ultrasonically measurable parameter.

  15. Ultrasonic Characterization of Interfaces in Composite Bonds

    NASA Technical Reports Server (NTRS)

    Wang, N.; Lobkis, O. I.; Rokhlin, S. I.; Cantrell, J. H.

    2010-01-01

    The inverse determination of imperfect interfaces from reflection spectra of normal and oblique incident ultrasonic waves in adhesive bonds of multidirectional composites is investigated. The oblique measurements are complicated by the highly dispersed nature of oblique wave spectra at frequencies above 3MHz. Different strategies for bond property reconstruction, including a modulation method, are discussed. The relation of measured interfacial spring density to the physico-chemical model of a composite interface described by polymer molecular bonds to emulate loss of molecular strength on an adhesive composite interface is discussed. This potentially relates the interfacial (adhesion) strength (number of bonds at the adhesive substrate interface) to the spring constant (stiffness) area density (flux), which is an ultrasonically measurable parameter.

  16. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  17. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 7 2014-10-01 2014-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  18. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  19. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  20. 49 CFR 587.16 - Adhesive bonding procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Adhesive bonding procedure. 587.16 Section 587.16... Adhesive bonding procedure. Immediately before bonding, aluminum sheet surfaces to be bonded are thoroughly... the abrading process are removed, as these can adversely affect bonding. The adhesive is applied...

  1. Coatings for rubber bonding and paint adhesion

    NASA Astrophysics Data System (ADS)

    Boulos, M. S.; Petschel, M.

    1997-08-01

    Conversion coatings form an important base for the adhesion of paint to metal substrates and for the bonding of rubber to metal parts. Four types of conversion coatings were assessed as base treatments for the bonding of rubber to steel and for the corrosion protection of metal substrates under paint: amorphous iron phosphate, heavy zinc phosphate, and three types of modified zinc phosphates that utilized one or more metal cations in addition to zinc. When applied, these conversion coatings formed a thin film over the metal substrate that was characterized by scanning electron microscopy, x-ray diffraction, and chemical methods. The performance of the coatings was assessed using physical methods such as dry adhesion, conical mandrel, impact, and stress adhesion for the rubber-bonded parts, and by corrosion resistance methods such as humidity, salt spray, and cyclic corrosion. Coating characterization and performance were correlated.

  2. Adhesion between silica surfaces due to hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Bowen, James; Rossetto, Hebert L.; Kendall, Kevin

    2016-09-01

    The adhesion between surfaces can be enhanced significantly by the presence of hydrogen bonding. Confined water at the nanoscale can display behaviour remarkably different to bulk water due to the formation of hydrogen bonds between two surfaces. In this work we investigate the role of confined water on the interaction between hydrophilic surfaces, specifically the effect of organic contaminants in the aqueous phase, by measuring the peak adhesive force and the work of adhesion. Atomic force microscope cantilevers presenting hemispherical silica tips were interacted with planar single crystals of silica in the presence of dimethylformamide, ethanol, and formamide; solution compositions in the range 0–100 mol% water were investigated for each molecule. Each molecule was chosen for its ability to hydrogen bond with water molecules, with increasing concentrations likely to disrupt the structure of surface-bound water layers. With the exception of aqueous solutions containing low concentrations of ethanol, all molecules decreased the ability of confined water to enhance the adhesion between the silica surfaces in excess of the predicted theoretical adhesion due to van der Waals forces. The conclusion was that adhesion depends strongly on the formation of a hydrogen-bonding network within the water layers confined between the silica surfaces.

  3. Investigation of modified cottonseed protein adhesives for wood composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several modified cottonseed protein isolates were studied and compared to corresponding soy protein isolates for their adhesive properties when bonded to wood composites. Modifications included treatments with alkali, guanidine hydrochloride, sodium dodecyl sulfate (SDS), and urea. Wood composites...

  4. Assessment of piezoelectric sensor adhesive bonding

    NASA Astrophysics Data System (ADS)

    Wandowski, T.; Moll, J.; Malinowski, P.; Opoka, S.; Ostachowicz, W.

    2015-07-01

    Piezoelectric transducers are widely utilized in Structural Health Monitoring (SHM). They are used both in guided wave-based and electromechanical impedance-based methods. Transducer debonding or unevenly distributed glue underneath the transducer reduce the performance and reliability of the SHM system. Therefore, quality assessment methods for glue layer need to be developed. In this paper, the authors present results obtained from two methods that allow the quality assessment of adhesive bonds of piezoelectric transducers. The electromechanical impedance method is utilized to analyze transducer adhesive bonding. An improperly prepared bonding layer is a source for changes in the electromechanical impedance characteristics in comparison to a perfectly bonded transducer. In the resistance characteristics of the properly bonded transducer the resonance peaks of the structure were clearly visible. In the case when adhesive layer is not equally distributed under sensor, the amplitudes of structural resonance peaks are reduced. In the case of completely detached transducer, the structural resonance peaks disappear and only resonance peaks of the transducer itself are visible. These peaks (peaks of free transducer hanging on wires) are significantly larger than the resonance peaks of the investigated structure in the considered frequency interval. The bonding layer shape is also analyzed using time-domain terahertz spectroscopy in reflection mode. This method allows to visualize the adhesive layer distribution based on C-scan analysis. C-scans of signals or envelope-detected signals can be used to estimate the area of proper adhesion between bonding agent and transducer and hence provides a more quantitative approach towards transducer inspection.

  5. Proanthocyanidins Alter Adhesive/Dentin Bonding Strengths when Included in a Bonding System

    PubMed Central

    Hechler, Benjamin; Yao, Xiaomei; Wang, Yong

    2014-01-01

    Purpose To determine the effect of proanthocyanidins (PA) incorporation into a bonding system on dentin/adhesive bond stability following long-term storage in buffer and collagenase. Methods Human dentin surfaces were bonded with no PA (0-PA), PA incorporated in the primer (PA-primer), or PA incorporated in the adhesive (PA-adhesive), and composite build-ups were created. Following sectioning into beams, bonded specimens were stored in buffer or collagenase for 0, 1, 4, 26, or 52 weeks before being tested for microtensile bond strength (μTBS). ANOVA and Tukey’s HSD post-hoc were performed. Fractured surfaces were viewed with scanning electron microscopy (SEM). Results Both bonding system and storage time but not storage medium significantly affected μTBS. Initially, 0-PA and PA-primer were superior to PA-adhesive, and after 1 week both PA groups were inferior to 0-PA. However, after 4 weeks PA-adhesive had significantly increased and 0-PA significantly decreased such that all three groups were equal. Thereafter, both PA-primer/adhesive groups trended with an increase (the 0-PA group remaing consistent) such that at 52 weeks PA-primer samples were significantly stronger (p < 0.001) or nearly so (p = 0.08) when compared to 0-PA samples. SEM revealed that initial fractures tended to occur at the middle/bottom of the hybrid layer for 0-PA and PA-primer groups but at the top of the hybrid layer/in the adhesive for PA-adhesive. After 4 weeks, however, all groups fractured similarly at the middle/bottom of the hybrid layer. Clinical Significance PA incorporation into a bonding system significantly alters interfacial bonding strengths, and its incorporation may stabilize the interface and protect degradation over time under clinical conditions. PMID:23243975

  6. In-vitro study of the adhesive strengths of brackets on metals, ceramic and composite. Part 1: Bonding to precious metals and amalgam.

    PubMed

    Jost-Brinkmann, P G; Drost, C; Can, S

    1996-04-01

    Adult patients often have fillings, artificial crowns and/or bridges that make fitting of conventional bands difficult or even impossible. In such cases bonding rather than banding would be preferable. The present paper presents the investigation of more than 25 resin/conditioner combinations with respect to their bond strength to different metals as well as to amalgam. For that purpose stainless steel lingual buttons were bonded with the various adhesives and their shear bond strengths and types of bond failure were determined after 24 hours. All specimens were air-abraded with 50 microns Al2O3 for 2 or 4 seconds by means of a Microetcher before bonding. For comparison, buttons were also bonded to bovine enamel after air-abrasion or conventional etching with 37% H3PO4. Results show that, on all metals investigated, several materials yield bond strengths which are similar to or higher than what is achieved with the conventional acid etch technique on enamel. Maximum adhesive strength is not always desirable, however, for bonding brackets. The type of bond failure and the risk of irreversible damage to the bonded material have also to be taken into consideration. Al2O3 abrasion may cause considerable damage to enamel within 4 seconds. Since the bond strength on air-abraded enamel is about the same as on acid etched enamel, conventional etching with H3PO4 is preferable to the sandblasting of enamel. PMID:8647560

  7. Computed tomography analysis of wood-adhesive bonds

    NASA Astrophysics Data System (ADS)

    Modzel, Gunter Georg Rolf

    The importance of wood bonding increased in the last decades due to the increased usage of wood composites whose performance depends to a large extent on the adhesive penetration and subsequent bonding of the adherends. The presented research used XMT (x-ray microtomography) to perform a non-destructive, three-dimensional analysis of the adhesive bondline and wood-structure of Southern yellow pine, Douglas-fir and yellow-poplar samples. A phenol-formaldehyde adhesive was used. The sodium hydroxide catalyst was replaced with rubidium hydroxide during resin formulation. This was done to improve the image contrast. The reconstructions of the wood structure of Southern yellow pine showed tracheids, rays, fusiform rays, resin canals and pits. On the Douglas-fir sample tracheids, pits and rays were displayed clearly. The yellow-poplar images showed vessels, fibers, bordered pits, scalariform sieve plates and rays. The renderings of the adhesive-bondline of Southern yellow pine proved the dominant role of tracheids for the adhesive flow and showed rays as a secondary pathway of adhesive flow. The results revealed no adhesive flow occured through bordered pits, while simple pits permitted some adhesive flow through ray parenchyma. The results for Douglas-fir showed a similar result; the tracheids were the predominant path of adhesive penetration, while rays played a secondary role and no adhesive flow through the pit aperture was visible. The adhesive flow through the microstructure of yellow-poplar wood occured mainly through vessels and also through rays, but no adhesive flow through the pits was directly observed. The segmentation of the images in three phases: void space, cell wall substance and adhesive, enabled the calculation of the effective bondline thickness based on the adhesive, as well as the volumetric measurement of all three elements and their share on the sample volume. Subsequent experiments showed that the exposure of the Southern yellow pine and yellow

  8. Effect of light activation mode on the incompatibility between one-bottle adhesives and light-cured composites: an in vitro shear bond strength study.

    PubMed

    Shafiei, Fereshteh; Saffarpour, Aida; Safarpoor, Ida; Moradmand, Masoud; Alavi, Ali Asghar

    2009-01-01

    This study examined the effect of different light activation modes for light-cured resin-based composites on the shear bond strength to dentin of two one-bottle adhesives with differing acidity. In this experimental study, a flat middle dentin surface was prepared on 110 extracted sound molars using a 600-grit polish paper. The teeth were then randomly divided into 10 equal groups (n = 11). One-Step Plus (OS) and Prime & Bond NT (P&B NT) were used according to the manufacturer's instruction with their respective composite (Aelite, Spectrum TPH) applied and cured using five different light-activation modes: 1. Conventional (CO): 600 mW/cm2 (40 seconds) 2. Soft-Start I (SSI): 100 mW/cm2 (10 seconds) 600 mW/cm2 (30 seconds) 3. Soft-Start II (SSII): 200 mW/cm2 (10 seconds), 600 mW/cm2 (30 seconds) 4. Pulse-Delay I (PDI): 100 mW/cm2 (3 seconds), 3-minute delay, 600 mW/cm2 (37 seconds) 5. Pulse-Delay II (PDII): 200 mW/cm2 (3 seconds), 3-minute delay, 600 mW/cm2 (37 seconds) After 24 hours storage in distilled water at room temperature, a shear bond strength (SBS) test was performed using an Instron machine at 1 mm/minute and the results were recorded in MPa. Statistical analysis included two-way ANOVA and Tukey HSD (p < 0.05). The highest SBS (MPa) was shown in the OS conventional group (19.62 +/- 2.21) and the lowest SBS was shown in P&B NT, PDII (5.93 +/- 1.79). In each group of five curing modes, the mean SBS for P&B NT was significantly lower than OS: conventional mode--P&B NT (17.27 +/- 1.98) vs OS (19.62 +/- 2.21); SSI-P&B NT (10.84 +/- 2.82) vs OS (13.09 +/- 1.24); SSII - P&B NT (14.78 +/- 1.63) vs OS (18.79 +/- 1.57); PDI-P&B NT (5.93 +/- 1.79) vs OS (11.97 +/- 2.59) and PDII-P&B NT (11.82 +/- 1.24) vs OS (16.00 +/- 1.62) (p < 0.001 for all comparisons). For each of the adhesives, the ranking of SBS was as follows: CO > SSII > PDII > SSI > PDI, with the two-paired comparisons of curing modes being significantly different (p < 0.05). The results of the current

  9. Marginal microleakage of cervical composite resin restorations bonded using etch-and-rinse and self-etch adhesives: two dimensional vs. three dimensional methods

    PubMed Central

    Khoroushi, Maryam

    2016-01-01

    Objectives This study was evaluated the marginal microleakage of two different adhesive systems before and after aging with two different dye penetration techniques. Materials and Methods Class V cavities were prepared on the buccal and lingual surfaces of 48 human molars. Clearfil SE Bond and Single Bond (self-etching and etch-and-rinse systems, respectively) were applied, each to half of the prepared cavities, which were restored with composite resin. Half of the specimens in each group underwent 10,000 cycles of thermocycling. Microleakage was evaluated using two dimensional (2D) and three dimensional (3D) dye penetration techniques separately for each half of each specimen. Data were analyzed with SPSS 11.5 (SPSS Inc.), using the Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Results The difference between the 2D and 3D microleakage evaluation techniques was significant at the occlusal margins of Single bond groups (p = 0.002). The differences between 2D and 3D microleakage evaluation techniques were significant at both the occlusal and cervical margins of Clearfil SE Bond groups (p = 0.017 and p = 0.002, respectively). The difference between the 2D and 3D techniques was significant at the occlusal margins of non-aged groups (p = 0.003). The difference between these two techniques was significant at the occlusal margins of the aged groups (p = 0.001). The Mann-Whitney test showed significant differences between the two techniques only at the occlusal margins in all specimens. Conclusions Under the limitations of the present study, it can be concluded that the 3D technique has the capacity to detect occlusal microleakage more precisely than the 2D technique. PMID:27200275

  10. Micromorphology and bond strength evaluation of adhesive interface of a self-adhering flowable composite resin-dentin: Effect of surface treatment.

    PubMed

    Shafiei, Fereshteh; Saadat, Maryam

    2016-05-01

    This study evaluated the effect of dentin surface treatment on the micromorphology and shear bond strength (SBS) of a self-adhering flowable composite, Vertis Flow (VF). Flat dentin surfaces obtained from sixty extracted human molars were divided into six groups (n = 10) according to the following surface treatments: (G1) control, no treatment; (G2) self-etching adhesive, Optibond All-in-One; (G3) phosphoric acid etching for 15 s; (G4) polyacrylic acid for 10 s; (G5) EDTA for 60 s; and G6) sodium hypochlorite (NaOCl) for 15 s. After restoration using VF, SBS was measured in MPa. Data were analyzed using one-way ANOVA and Tamhane test (α = 0.05). Six additional specimens were prepared for scanning electron microscopy analysis. SBS was significantly affected by surface treatment (P < 0.001). SBS of six groups from the highest to the lowest were as follows: (G3) 13.5(A); (G5) 8.98(AB); (G2) 8.85(AB); (G4) 8.21(AB); (G1) 7.53(BC); and (G6) 4.49(C) (groups with the same superscript letter were statistically similar). Morphological analysis revealed numerous long resin tags at the adhesive interface for acid-etched group, with a few short resin tags for the control group and small gap formation for NaOCl-treated group. In conclusion, dentin surface treatments tested differently affected bonding performance of VF; only acid-etching effectively improved this. PMID:26918399

  11. Failure strength prediction for adhesively bonded single lap joints

    NASA Astrophysics Data System (ADS)

    Rahman, Niat Mahmud

    For adhesively bonded joint, failure strength depends on many factors such as material properties (both adhesive and adherend), specimen geometries, test environments, surface preparation procedures, etc. Failure occurs inside constitutive materials or along joint interfaces. Based on location, adhesively bonded failure mode can be classified as adhesive failure mode, cohesive failure mode and adherend failure mode. Failure mode directly affects the failure strength of joint. For last eight decades, researchers have developed analytical, empirical or semi-empirical methods capable of predicting failure strength for adhesively bonded joints generating either cohesive failure or adherend failure. Applicability of most of the methods is limited to particular cases. In this research, different failure modes for single lap joints (SLJs) were generated experimentally using epoxy based paste adhesive. Based on experimental data and analytical study, simplified failure prediction methods were developed for each failure mode. For adhesive failure mode, it is observed that peel stress distributions concur along interface near crack initiation points. All SLJs for this test endured consistent surface treatments. Geometric parameters of the joints were varied to study their effect on failure strength. Peel stress distributions were calculated using finite analysis (FEA). Based on peel stress distribution near crack initiation point, a failure model is proposed. Numerous analytical, empirical and semi-empirical models are available for predicting failure strengths of SLJs generating cohesive failures. However, most of the methods in the literature failed to capture failure behavior of SLJs having thickness of adhesive layer as variable. Cohesive failure mode was generated experimentally using aluminum as adherend and epoxy adhesive considering thickness of adhesive layers as variable within SLJs. Comparative study was performed among various methods. It was observed that

  12. Surface characterization in composite and titanium bonding: Carbon fiber surface treatments for improved adhesion to thermoplastic polymers

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Wightman, J. P.

    1987-01-01

    The effect of anodization in NaOH, H2SO4, and amine salts on the surface chemistry of carbon fibers was examined by X-ray photoelectron spectroscopy (XPS). The surfaces of carbon fibers after anodization in NaOH and H2SO4 were examined by scanning transmission electron microscopy (STEM), angular dependent XPS, UV absorption spectroscopy of the anodization bath, secondary ion mass spectrometry, and polar/dispersive surface energy analysis. Hercules AS-4, Dexter Hysol XAS, and Union Carbide T-300 fibers were examined by STEM, angular dependent XPS, and breaking strength measurement before and after commercial surface treatment. Oxygen and nitrogen were added to the fiber surfaces by anodization in amine salts. Analysis of the plasmon peak in the carbon 1s signal indicated that H2SO4 anodization affected the morphological structure of the carbon fiber surface. The work of adhesion of carbon fibers to thermoplastic resins was calculated using the geometric mean relationship. A correlation was observed between the dispersive component of the work of adhesion and the interfacial adhesion.

  13. Strength of adhesive-bonded hybrid structures

    NASA Technical Reports Server (NTRS)

    Kirschke, L.; Prinz, R.; Schnell, H.

    1979-01-01

    Structures prepared from materials with different thermal and mechanical properties by means of fiber-strengthened binders can fail in a number of ways. The present lecture is focused on failures through debonding at the metal or at the fiber-reinforced plastic. A method for calculating the stress distribution in adhesive layers as a function of the load is outlined, and its usefulness in providing insight into the behavior of bonds in hybrid structures is noted. Means of eliminating the unfavorable effects of temperature, humidity, creep and relaxation on the bonds in the manufacture of hybrid structures are examined, along with test methods developed for such structures.

  14. Durability of bonds and clinical success of adhesive restorations

    PubMed Central

    Carvalho, Ricardo M.; Manso, Adriana P.; Geraldeli, Saulo; Tay, Franklin R.; Pashley, David H.

    2013-01-01

    Resin-dentin bond strength durability testing has been extensively used to evaluate the effectiveness of adhesive systems and the applicability of new strategies to improve that property. Clinical effectiveness is determined by the survival rates of restorations placed in non-carious cervical lesions (NCCL). While there is evidence that the bond strength data generated in laboratory studies somehow correlates with the clinical outcome of NCCL restorations, it is questionable whether the knowledge of bonding mechanisms obtained from laboratory testing can be used to justify clinical performance of resin-dentin bonds. There are significant morphological and structural differences between the bonding substrate used in in vitro testing versus the substrate encountered in NCCL. These differences qualify NCCL as a hostile substrate for bonding, yielding bond strengths that are usually lower than those obtained in normal dentin. However, clinical survival time of NCCL restorations often surpass the durability of normal dentin tested in the laboratory. Likewise, clinical reports on the long-term survival rates of posterior composite restorations defy the relatively rapid rate of degradation of adhesive interfaces reported in laboratory studies. This article critically analyzes how the effectiveness of adhesive systems is currently measured, to identify gaps in knowledge where new research could be encouraged. The morphological and chemical analysis of bonded interfaces of resin composite restorations in teeth that had been in clinical service for many years, but were extracted for periodontal reasons, could be a useful tool to observe the ultrastructural characteristics of restorations that are regarded as clinically acceptable. This could help determine how much degradation is acceptable for clinical success. PMID:22192252

  15. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  16. Adhesive Bonding to Dentin Improved by Polymerizable Cyclodextrin Derivatives

    PubMed Central

    Bowen, Rafael L.; Schumacher, Gary E.; Giuseppetti, Anthony A.; Guttman, Charles M.; Carey, Clifton M.

    2009-01-01

    The objective of this work was to determine bonding characteristics of a hydrophilic monomer formulation containing polymerizable cyclodextrin derivatives. The hypothesis was that a formulation containing hydrophilic cross-linking diluent comonomers and cyclodextrins with functional groups attached by hydrolytically stable ether linkages could form strong adhesive bonds to dentin. The previously synthesized polymerizable cyclodextrin derivatives were formulated with sorbitol dimethacrylate, methacrylic acid and phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide photoinitiator. The same formulation without the polymerizable cyclodextrin derivatives isolated the effects of the polymerizable cyclodextrin derivatives. A commercial self-etching bonding system was tested as a comparative control. Ground mid-coronal dentin was etched with 37 % phosphoric acid (H3PO4) for 15 s and rinsed with distilled water for 10 s. Formulations were applied to the moist dentin and light-cured 10 s. A packable composite was then applied through irises and light-cured 60 s. Teeth were stored in water for 24 h before bonds were tested in a shearing orientation. One-way ANOVA was performed on the data. The average values of shear bond strengths were defined as loads at fracture divided by the 4 mm diameter iris areas. The average value of shear bond strength for the formulation containing the polymerizable cyclodextrin derivatives was higher (p < 0.05), where p is a fraction of the probability distribution) than that of the same monomeric formulation except that the polymerizable cyclodextrin derivatives were not included. This was supporting evidence that the polymerizable cyclodextrin derivatives contributed to improved bonding. The average value of shear bond strength for the formulation containing the polymerizable cyclodextrin derivatives was also higher (p < 0.05) than that of the commercial self-etching bonding system. These preliminary results are in accordance with the hypothesis

  17. The Effect of Temperature on Shear Bond Strength of Clearfil SE Bond and Adper Single Bond Adhesive Systems to Dentin

    PubMed Central

    Sharafeddin, Farahnaz; Nouri, Hossein; Koohpeima, Fatemeh

    2015-01-01

    Statement of the Problem Monomer viscosity and solvent evaporation can be affected by the adhesive system temperature. Higher temperature can elevate the vapor pressure in solution and penetration of adhesive in smear layer. Bonding mechanism may be influenced by the adhesive temperature. Purpose This study aimed to evaluate the effect of pre-heating on shear bond strength of etch-and-rinse and self-etching adhesives to ground bovine dentin surfaces, at temperatures of 4˚C, 25˚C and 40˚C. Materials and Method In this experimental study, 60 maxillary bovine incisors were randomly divided into 6 groups (n=10). The central part of labial dentin surfaces was exposed with a diamond bur and standardized smear layer was created by using silicon carbide paper (600 grit) under water-coolant while the specimens were mounted in acrylic resin. Two adhesive systems, an etch-and-rinse (Adper single bond) and a self-etch (Clearfil SE Bond) were stored at temperatures of 4˚C, 25˚C and 40˚C for 30 minutes and were then applied on the prepared labial surface according to the manufacturer’s instructions. The composite resin (Z350) was packed in Teflon mold (5 mm in diameter) on this surface and was cured. The shear bond strength (MPa) was evaluated by universal testing machine (Zwick/Roell Z020, Germany) at cross head speed of 1mm/min. The results were statistically analyzed by using ANOVA and Tukey tests (p< 0.05). Results No significant difference was found between the shear bond strength of Clearfil SE Bond adhesive in different temperature and single Bond adhesive system at 25 ˚C and 40 ˚C. However, there were significant differences between 4 ˚C of Adper single bond in comparison with 25˚C and 40˚C (p= 0.0001). Conclusion Pre-heating did not affect the shear bond strength of SE Bond, but could promote the shear bond strength of Adper Single Bond. PMID:25759852

  18. Adhesive bonding of medical and implantable devices.

    PubMed

    Tavakoli, S M

    2002-09-01

    Although there are many commercially available medical-grade adhesives, their use for new applications requires detailed investigation. It is also important that as well as the initial joint strength, durability of the bonded components during intended use, including exposure to low and high temperatures, stress, fluids and sterilisation, are investigated. Design of accelerated ageing tests, which can simulate the service environments, is critical in providing realistic durability data. Interpretation of ageing data and lifetime prediction of the joint is essential in assessing the performance of medical devices. Emergence of new types of adhesives as well as further development of precision dispensing and rapid-curing technologies offer many exciting and commercially attractive opportunities for joining medical devices. PMID:12397833

  19. Comparison of Shear Bond Strength of Three Self-etching Adhesives: An In-Vitro Study

    PubMed Central

    Yadala, Chandrashekhar; Gaddam, Rajkumar; Arya, Siddarth; Baburamreddy, K V; Raju, V Ramakrishnam; Varma, Praveen Kumar

    2015-01-01

    Background: The aim of the study was to determine and compare the shear bond strength of brackets bonded with Adper Promt self-etching adhesive (3M ESPE), Xeno III self-etching adhesive (DENSPLY), Transbond plus self-etching adhesive (3M) with that of conversional bonding procedure, and to calculate the adhesive remnant index (ARI). Materials and Methods: Totally, 60 maxillary premolar teeth were collected, and divided into Group I (Blue): Transbond™ XT primer, Group II (Purple): Adper™ Prompt™ self-etching adhesive, Group III (Orange): Xeno III® self-etching adhesive, Group IV (Pink): Tranbond™ Plus self-etching adhesive. Results: The results of the study showed there was no statistical significance in the shear bond strength according to an analysis of variance (P = 0.207) of the four groups. The mean shear bond strength of Groups I, II, III, IV were 14.56 ± 2.97 Megapascals (MPa), 12.62 ± 2.48 MPa, 13.27 ± 3.16, and 12.64 ± 2.56, respectively. Chi-square comparison for the ARI indicated that there was a significant difference (P = 0.003) between the groups. Conclusion: All the four self-etching adhesives showed clinically acceptable mean shear bond strength. The ARI score showed a self-etching adhesive the debonding occurred more within the adhesive interface leaving less composite adhesive on the tooth surface making it easy to clean up. PMID:26229371

  20. Ultrasonic Evaluation of Thermal Degradation in Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Mal, Ajit K.; Bar-Cohen, Yoseph

    1994-01-01

    The critical role played by adhesive bonds in lap joints is well known. A good knowledge of the mechanical properties of adhesive bonds in lap joints is a prerequisite to the design and reliable prediction of the performance of these bonded structures. Furthermore, the lap joint may be subject to high-temperature environments in service. Early detection of the degree of thermal degradation in adhesive bonds is required under these circumstances. A variety of ultrasonic nondestructive evaluation (NDE) techniques can be used to determine the thickness and the elastic moduli of adhesively bonded joints. In this paper we apply a previously developed technique based on the leaky Lamb wave (LLW) experiment to investigate the possibility of characterizing the thermal degradation of adhesive bonds in lap joints. The degradation of the adhesive bonds is determined through comparison between experimental data and theoretical calculations.

  1. Bond strength of adhesives to dentin contaminated with smoker’s saliva

    PubMed Central

    Oguri, Makoto; O’Keefe, Kathy; Dusevish, Vladimir; Spencer, Paulette; Powers, John M.; Marshall, Grayson W.

    2010-01-01

    The purpose of this study was to determine the effects of contamination with smoker’s and non-smoker’s saliva on the bond strength of resin composite to superficial dentin using different adhesive systems. The interfacial structure between the resin and dentin was evaluated for each treatment using environmental scanning electron microscopy (ESEM). Freshly extracted human molars were ground with 600-grit SiC paper to expose the superficial dentin. Adhesives [One-Up-Bond-F-Plus (OUFP) and Adper-Prompt-L-Pop (APLP)] and resin composite (TPH-Spectrum) were bonded to the dentin (n = 8/group, 180 total specimens) under five surface conditions: control (adhesive applied following manufacturers’ instructions); saliva, then 5-s air dry, then adhesive; adhesive, saliva, 5-s air dry; adhesive, saliva, 5-s water rinse, 5-s air dry (ASW group); and adhesive, saliva, 5-s water rinse, 5-s air dry, reapply adhesive (ASWA group). After storage in water at 37°C for 24 h, the specimens were debonded under tension at a speed of 0.5 mm/min. ESEM photomicrographs of the dentin/adhesive interfaces were taken. Mean bond strength ranged from 8.1 to 24.1 MPa. Fisher’s protected least significant difference (P = 0.05) intervals for critical adhesive, saliva, and surface condition differences were 1.3, 1.3, and 2.1 MPa, respectively. There were no significant differences in bond strength to dentin between contamination by smoker’s and non-smoker’s saliva, but bond strengths were significantly different between adhesive systems, with OUFP twice as strong as APLP under almost all conditions. After adhesive application and contamination with either smoker’s or nonsmoker’s saliva followed by washing and reapplication of the adhesive (ASWA group), the bond strength of both adhesive systems was the same as that of the control group. PMID:20155506

  2. Urethane/Silicone Adhesives for Bonding Flexing Metal Parts

    NASA Technical Reports Server (NTRS)

    Edwards, Paul D.

    2004-01-01

    Adhesives that are blends of commercially available urethane and silicone adhesives have been found to be useful for bonding metal parts that flex somewhat during use. These urethane/silicone adhesives are formulated for the specific metal parts to be bonded. The bonds formed by these adhesives have peel and shear strengths greater than those of bonds formed by double-sided tapes and by other adhesives, including epoxies and neat silicones. In addition, unlike the bonds formed by epoxies, the bonds formed by these adhesives retain flexibility. In the initial application for which the urethane/silicone adhesives were devised, there was a need to bond spring rings, which provide longitudinal rigidity for inflatable satellite booms, with the blades that provide the booms axial strength. The problem was to make the bonds withstand the stresses, associated with differences in curvature between the bonded parts, that arose when the booms were deflated and the springs were compressed. In experiments using single adhesives (that is, not the urethane/ silicone blends), the bonds were broken and, in each experiment, it was found that the adhesive bonded well with either the ring or with the blade, but not both. After numerous experiments, the adhesive that bonded best with the rings and the adhesive that bonded best with the blades were identified. These adhesives were then blended and, as expected, the blend bonded well with both the rings and the blades. The two adhesives are Kalex (or equivalent) high-shear-strength urethane and Dow Corning 732 (or equivalent) silicone. The nominal mixture ratio is 5 volume parts of the urethane per 1 volume part of the silicone. Increasing the proportion of silicone makes the bond weaker but more flexible, and decreasing the proportion of silicone makes the bond stronger but more brittle. The urethane/silicone blend must be prepared and used quickly because of the limited working time of the urethane: The precursor of the urethane

  3. Production of biopolymer composites by particle bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article describes a new process, particle-bonding technology, to produce biopolymer composites from agricultural commodities. In this technology, matrix-protein complexes are formed by the interaction of micrometer-scale matrix material with an adhesive protein, zein. This spontaneous process m...

  4. Ultrasonic Nondestructive Characterization of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin

    1997-01-01

    Qualitative measurements of adhesion or binding forces can be accomplished, for example, by using the reflection coefficient of an ultrasound or by using thermal waves (Light and Kwun, 1989, Achenbach and Parikh, 1991, and Bostrom and wickham, 1991). However, a quantitative determination of binding forces is rather difficult. It has been observed that higher harmonics of the fundamental frequency are generated when an ultrasound passes through a nonlinear material. It seems that such non-linearity can be effectively used to characterize the bond strength. Several theories have been developed to model this nonlinear effect (Adler and Nagy, 1991; Achenbach and Parikh, 1991; Parikh and Achenbach, 1992; and Hirose and Kitahara, 1992; Anastasi and Roberts, 1992). Based on a microscopic description of the nonlinear interface binding force, a quantitative method was presented by Pangraz and Arnold (1994). Recently, Tang, Cheng and Achenbach (1997) made a comparison between the experimental and simulated results based on this theoretical model. A water immersion mode-converted shear wave through-transmission setup was used by Berndt and Green (1997) to analyze the nonlinear acoustic behavior of the adhesive bond. In this project, the nonlinear responses of an adhesive joint was investigated through transmission tests of ultrasonic wave and analyzed by the finite element simulations. The higher order harmonics were obtained in the tests. It is found that the amplitude of higher harmonics increases as the aging increases, especially the 3dorder harmonics. Results from the numerical simulation show that the material nonlinearity does indeed generate higher order harmonics. In particular, the elastic-perfect plastic behavior generates significant 3rd and 5th order harmonics.

  5. [The application of universal adhesives in dental bonding].

    PubMed

    Guo, Jingmei; Lei, Wenlong; Yang, Hongye; Huang, Cui

    2016-03-01

    The bonding restoration has become an important clinical technique for the development of dental bonding technology. Because of its easy operation and the maximum preservation of tooth tissues, bonding repair is widely used in dental restoration. The recent multi-mode universal adhesives have brought new progress in dental bonding restoration. In this article the universal adhesives were reviewed according to its definition, development, improvement, application features and possible problems. PMID:26980660

  6. Characterisation of CFRP adhesive bonds by electromechanical impedance

    NASA Astrophysics Data System (ADS)

    Malinowski, Pawel H.; Wandowski, Tomasz; Ostachowicz, Wieslaw M.

    2014-03-01

    In aircraft industry the Carbon Fiber Reinforced Polymer (CFRP) elements are joint using rivets and adhesive bonding. The reliability of the bonding limits the use of adhesive bonding for primary aircraft structures, therefore it is important to assess the bond quality. The performance of adhesive bonds depends on the physico-chemical properties of the adhered surfaces. The contamination leading to weak bonds may have various origin and be caused by moisture, release agent, hydraulic fluid, fuel, poor curing of adhesive and so on. In this research three different causes of possible weak bonds were selected for the investigation: 1. Weak bond due to release agent contamination, 2. Weak bond due to moisture contamination, 3. Weak bond due to poor curing of the adhesive. In order to assess the bond quality electromechanical impedance (EMI) technique was selected and investigation was focused on the influence of bond quality on electrical impedance of piezoelectric transducer. The piezoelectric transducer was mounted at the middle of each sample surface. Measurements were conducted using HIOKI Impedance Analyzer IM3570. Using the impedance analyzer the electrical parameters were measured for wide frequency band. Due to piezoelectric effect the electrical response of a piezoelectric transducer is related to mechanical response of the sample to which the transducers is attached. The impedance spectra were investigated in order to find indication of the weak bonds. These spectra were compared with measurements for reference sample using indexes proposed in order to assess the bond quality.

  7. Bonding of self-adhesive resin cements to enamel using different surface treatments: bond strength and etching pattern evaluations.

    PubMed

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-08-01

    This study evaluated the shear bond strengths and etching patterns of seven self-adhesive resin cements to human enamel specimens which were subjected to one of the following surface treatments: (1) Polishing with #600 polishing paper; (2) Phosphoric acid; (3) G-Bond one-step adhesive; or (4) Phosphoric acid and G-Bond. After surface treatment, the human incisor specimens were bonded to a resin composite using a self-adhesive resin cement [Maxcem (MA), RelyX Unicem (UN), Breeze (BR), BisCem (BI), seT (SE), Clearfil SA Luting (CL)] or a conventional resin cement [ResiCem (RE)]. Representative morphology formed with self-adhesive resin cements showed areas of etched enamel intermingled with areas of featureless enamel. In conclusion, etching efficacy influenced the bonding effectiveness of self-adhesive resin cements to unground enamel, and that a combined use of phosphoric acid and G-Bond for pretreatment of human enamel surfaces improved the bond strength of self-adhesive resin cements. PMID:20668359

  8. Improved primer for bonding polyurethane adhesives to metals

    NASA Technical Reports Server (NTRS)

    Constanza, L. J.

    1969-01-01

    Primer ensures effective bonding integrity of polyurethane adhesives on metal surfaces at temperatures ranging from minus 423 degrees to plus 120 degrees F. It provides greater metal surface protection and bond strengths over this temperature range than could be attained with other adhesive systems.

  9. Bond Assembly FOD Zones - A Procedure for Assuring Acceptable Adhesion

    NASA Technical Reports Server (NTRS)

    Evans, Kurt; Wurth, Laura; Mitchell, Mark

    2009-01-01

    Rocket motor components are primarily assembled by adhesion. a) For example, the RSRM (Reusable Solid Rocket Motor - part of the Space Shuttle Boosters) system contains 10,000 sq ft of bondline area. b) Rocket motors contain a variety of adhesive/substrate bond systems c) Bond system performance requirements also vary. To assemble reliable components, ATK Space Systems and customers invest substantial resources to the study of bond assembly processes. a) Surface and adhesion science; b) Adhesive chemistry; c) Process parameters; d) Contamination effects.

  10. Laser Surface Preparation and Bonding of Aerospace Structural Composites

    NASA Technical Reports Server (NTRS)

    Belcher, Marcus A.; Wohl, Christopher J.; Connell, John W.

    2009-01-01

    A Nd:YAG laser was used to etch patterns conducive to adhesive bonding onto CFRP surfaces. These were compared to typical pre-bonding surface treatments including grit blasting, manual abrasion, and peel ply. Laser treated composites were then subjected to optical microscopy, contact angle measurements, and post-bonding mechanical testing.

  11. Nondestructive inspection in adhesive-bonded joint CFRP using pulsed phase thermography

    NASA Astrophysics Data System (ADS)

    Shin, P. H.; Webb, S. C.; Peters, K. J.

    2013-05-01

    Many forms of damages in fiber reinforcement polymer (FRP) composites are difficult to detect because they occurs in subsurface layers of the composites. One challenging need for inspection capabilities is in adhesively bonded joints between composite components, a common location of premature failure in aerospace structures. This paper investigates pulsed phase thermography (PPT) imaging of fatigue damage in these adhesively bonded joints. Simulated defects were created to calibrate parameters for fatigue loading conditions, PPT imaging parameters, and a damage sizing algorithm for carbon fiber reinforced polymer (CFRP) single lap joints. Afterwards, lap joint specimens were fabricated with varying quality of manufacturing. PPT imaging of the pristine specimens revealed defects such as air bubbles, adhesive thickness variations, and weak bonding surface between the laminate and adhesive. Next, fatigue testing was performed and acquired PPT imaging data identified fatigue induced damage prior to final failure cycles. After failure of each sample, those images were confirmed by visual inspections of failure surface.

  12. Comparative evaluation of bond strength of three contemporary self-etch adhesives: An ex vivo study

    PubMed Central

    Nikhil, Vineeta; Singh, Vijay; Chaudhry, Suruchi

    2011-01-01

    Aim: This study evaluated the effect of 2-hydroxymethyl methacrylate (HEMA) and the type of solvent on the tensile bond strength of the following three self-etch adhesives: Adper easy one (HEMA-rich adhesive) which contained ethanol, G-Bond (HEMA-free adhesive) which contained acetone, and Xeno V (HEMA-free adhesive) which contained butanol as a solvent. Material and Methods: Intact mandibular molars were mounted in self-cured resin and the occlusal surfaces were ground with # 600 SiC paper. Adhesives were applied on the prepared dentinal surfaces and the resin composite was condensed in the split brass mold (5 × 3 mm) placed over the adhesive surface. The specimens were stored in normal saline and placed in incubator at 37°C. After 24 hours, the specimens were tested in tensile mode at a crosshead speed of 1 mm/min. Statistical analysis was done using One way ANOVA and Tukey's HSD test. Results: The mean bond strengths of Adper easy one, G-Bond, and Xeno V were 12.41 MPa, 10.09 MPa, and 8.67 MPa, respectively. Conclusions: Comparison of contemporary adhesives in this ex vivo study revealed that the ethanol-based HEMA-rich self-etch adhesive is better than HEMA-free self-etch adhesive that contained acetone and butanol as the solvents, when compared in terms of bond strength. PMID:21957383

  13. Comparison of Bond in Roll-bonded and Adhesively Bonded Aluminums

    NASA Technical Reports Server (NTRS)

    Schwensfeir, R. J., Jr.; Trenkler, G.; Delagi, R. G.; Forster, J. A.

    1985-01-01

    Lap-shear and peel test measurements of bond strength have been carried out as part of an investigation of roll bonding of 2024 and 7075 aluminum alloys. Shear strengths of the bonded material in the F temper are in the range of 14 to 16 ksi. Corresponding peel strengths are 120 to 130 lb/inch. These values, which are three to five times those reported in the literature for adhesively bonded 2024 and 7075, are a result of the true metallurgical bond achieved. The effects of heat-treating the bonded material are described and the improvements in bond strength discussed relative to the shear strength of the parent material. The significance of the findings for aerospace applications is discussed.

  14. Shear bond strength of one-step self-etch adhesives: pH influence

    PubMed Central

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2015-01-01

    Background: The aim of this study was to compare the shear bond strength of four one-step self-etch adhesives with different pH values to enamel and dentin. Materials and Methods: In this in vitro study, 200 bovine permanent mandibular incisors were used. Four one-step self-etch adhesives with different pH values were tested both on enamel and on dentin: Adper™ Easy Bond Self-Etch Adhesive (pH = 0.8-1), Futurabond NR (pH=2), G-aenial Bond (pH = 1.5), Clearfil S3 Bond (pH = 2.7). After adhesive systems application, a nanohybrid composite resin was inserted into the bonded surface. The specimens were placed in a universal testing machine. The shear bond strength was performed at a cross-head speed of 1 mm/min until the sample rupture. The shear bond strength values (MPa) of the different groups were compared with analysis of variance after that Kolmogorov and Smirnov tests were applied to assess normality of distributions. P < 0.05 was considered as significant. Results: In enamel shear bond strength, the highest shear bond strength values were reported with Futurabond NR (P < 0.01); however, no significant differences were found with Clearfil S3 Bond. The others adhesive systems showed lower shear bond strength values with significant differences between them (P < 0.05). When comparing the dentin shear bond strength, the lowest shear bond strength values were reported with Clearfil S3 Bond (P < 0.05), while there were no significant differences among the other three products (P > 0.05). Conclusion: The pH values of adhesive systems did not influence significantly their shear bond strength to enamel or dentin. PMID:26005459

  15. Adhesive Bonding of Polymeric Materials for Automotive Applications

    SciTech Connect

    Warren, C.D., Boeman, R.G., Paulauskas, F.L.

    1994-11-18

    In 1992, the Oak Ridge National Laboratory (ORNL) began a cooperative research program with the Automotive Composites Consortium (ACC) to develop technologies that would overcome obstacles to the adhesive bonding of current and future automotive materials. This effort is part of a larger Department of Energy (DOE) program to promote the use of lighter weight materials in automotive structures. By reducing the weight of current automobiles, greater fuel economy and reduced emissions can be achieved. The bonding of similar and dissimilar materials was identified as being of primary importance since this enabling technology gives designers the freedom to choose from an expanded menu of low-mass materials for structural component weight reduction. Early in the project`s conception, five key areas were identified as being of primary importance to the automotive industry.

  16. Fatigue strength of adhesive bonded section beams under torsion

    SciTech Connect

    Tomioka, Noboru; Kakiage, Masashi; Niisawa, Junetsu; Kitagawa, Hideo

    1995-11-01

    Fatigue strength of adhesive bonded box beams was investigated. From results of the fatigue tests, it was seen that the fatigue strength of bonded beams was higher than that of spot welded beams. Fatigue strength of bonded beams was independent of plate thickness and partition. The flexural rigidity of the box beams in the plane of partition can increase without decrease of torsional rigidity and torsional fatigue strength, if the partition is jointed by adhesive bonding instead of spot welding. Since the fatigue strength and rigidity of adhesive bonded joints can be higher than the spot welded joints in the weight saving structures, it is expected that the structural adhesive joints will be employed more in the automobile body structure. For assuring the introduction of this joint more into the automobile body structures, it is necessary that the fatigue tests on the model members of the actual members used in the automobile body structure are conducted, in addition to those of the simple joints such as tension shear and T-type tension, and the property of the fatigue strength on the adhesive bonded members is known. But, the authors now have little data on fatigue tests of the adhesive bonded members. In the present research to be reported, the fatigue tests on adhesive bonded box beams under torsion, which are typical members in automobile body structure, were carried out and the effects of the presence of longitudinal partition and plate thickness on fatigue strength were investigated. Comparing the results of fatigue tests on adhesive bonded box beams with those on spot welded box beams, the property of fatigue strength on these adhesive bonded box beams was cleared.

  17. Shear bond strength of self-etching adhesive systems to Er:YAG-laser-prepared dentin.

    PubMed

    Brulat, Nathalie; Rocca, Jean-Paul; Leforestier, Eric; Fiorucci, Gilbert; Nammour, Samir; Bertrand, Marie-France

    2009-01-01

    This study was conducted to compare the shear bond strengths of composite resin bonded to Er:YAG laser or bur-prepared dentin surfaces using three self-etching adhesive systems. The occlusal surfaces of 120 human third molars were ground flat to expose dentin. The dentin was prepared using either a carbide bur or an Er:YAG laser at 350 mJ/pulse and 10 Hz (fluence, 44.5 J/cm(2)). Three different self-etching adhesive systems were applied: iBond, Xeno III and Clearfil SE Bond. Rods of composite resin were bonded to dentin surfaces and shear bond tests were carried out. Both dentin surfaces after debonding and resin rods were observed using a scanning electron microscope. When the Xeno III was used, no difference was observed on shear bond strength values when bur and Er:YAG laser were compared. When using iBond and Clearfil SE Bond, bond strength values measured on Er:YAG-laser-prepared surfaces were lower than those observed on bur-prepared surfaces. The absence of smear layer formation during the preparation of the dentin by the Er:YAG laser did not improve the adhesion values of self-etching adhesive systems. PMID:18034284

  18. Incremental layer shear bond strength of low-shrinkage resin composites under different bonding conditions.

    PubMed

    Al Musa, A H; Al Nahedh, H N A

    2014-01-01

    The purpose of this study was to determine the incremental shear bond strength of a silorane-based composite (Filtek Silorane) repaired with silorane or a methacrylate-based composite (Filtek Z250) under various aging conditions. Also, the incremental bond strength of the silorane-based composite was compared with that of another low-shrinkage methacrylate-based composite (Aelite LS Posterior) under fresh and aged conditions, with and without the use of an adhesive resin between successive layers. The two brands of low-shrinkage composites were compared with a microhybrid, Filtek Z250, which served as the control. Substrate discs were fabricated and second layers were adhered to them immediately, after two weeks of aging, or after four weeks of aging and with and without an adhesive resin. Shear bond strengths were measured and failure modes were evaluated. The incremental bond strength of silorane to the silorane-based composite was not significantly different from that of the methacrylate-based composite. However, repairing a silorane-based composite with a methacrylate-based composite significantly reduced the bond strength. Aelite showed a lower incremental bond strength than Z250 and silorane, but the use of an adhesive significantly improved the bond strength. The absence of an oxygen-inhibited layer did not affect the bond strength of the consecutive layers of the silorane-based composite. PMID:24807812

  19. Embedded proteins and sacrificial bonds provide the strong adhesive properties of gastroliths

    NASA Astrophysics Data System (ADS)

    Thormann, Esben; MizunoPresent Address: Nihon L'Oreal, Research; Innovation Center, 3-2-1 Sakado, Takatsu, Kawasaki, Kanagawa, Japan., Hiroyasu; Jansson, Kjell; Hedin, Niklas; Fernández, M. Soledad; Arias, José Luis; Rutland, Mark W.; PaiPresent Address: CenterFunctional Nanomaterials, Brookhaven National Laboratory, 735 Brookhaven Avenue, Upton, New York 11973., Ranjith Krishna; Bergström, Lennart

    2012-06-01

    The adhesive properties of gastroliths from a freshwater crayfish (Cherax quadricarinatus) were quantified by colloidal probe atomic force microscopy (AFM) between heavily demineralized gastrolith microparticles and gastrolith substrates of different composition. Combined AFM and transmission electron microscopy studies demonstrated that the sequential detachment and large adhesion energies that characterise the adhesive behaviour of a native gastrolith substrate are dominated by sacrificial bonds between chitin fibres and between chitin fibres and CaCO3. The sacrificial bonds were shown to be strongly related to the gastrolith proteins and when the majority of these proteins were removed by ethylenediaminetetraacetic acid (EDTA), the sequential detachment disappeared and the adhesive energy was reduced by more than two orders of magnitude.The adhesive properties of gastroliths from a freshwater crayfish (Cherax quadricarinatus) were quantified by colloidal probe atomic force microscopy (AFM) between heavily demineralized gastrolith microparticles and gastrolith substrates of different composition. Combined AFM and transmission electron microscopy studies demonstrated that the sequential detachment and large adhesion energies that characterise the adhesive behaviour of a native gastrolith substrate are dominated by sacrificial bonds between chitin fibres and between chitin fibres and CaCO3. The sacrificial bonds were shown to be strongly related to the gastrolith proteins and when the majority of these proteins were removed by ethylenediaminetetraacetic acid (EDTA), the sequential detachment disappeared and the adhesive energy was reduced by more than two orders of magnitude. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30536d

  20. In vitro degradation of resin-dentin bonds with one-bottle self-etching adhesives.

    PubMed

    Hashimoto, Masanori; Fujita, Shinichi; Endo, Kazuhiko; Ohno, Hiroki

    2009-10-01

    The purpose of this study was to evaluate the durability of one-bottle self-etching adhesive during long-term water-storage testing. Resin-dentin bonded specimens were prepared using four commercially available one-bottle self-etching adhesives. The specimens were sectioned perpendicular to the adhesive interface to produce beam-shaped specimens that were stored in water for 24 h (control group) and 100, 200, and 300 d (experimental groups). After each storage period, the beams were subjected to a microtensile bond test. After the bond test, fractured surfaces were examined using a scanning electron microscope. In addition, interfacial observations of the silver tracer were performed using the secondary and back-scatter modes of the scanning electron microscope. The bond strength of all tested adhesives decreased significantly after 100 or more days in water. The interfacial observations showed an oxygen-inhibition zone as electron lucent in the adhesive-composite border in control specimens, displaying silver impregnation with breakage after aging. The deterioration of the oxygen-inhibition zone in the adhesive-resin composite junction resulted in a decrease in bond strength after 100 d in water for one-bottle self-etching adhesives. PMID:19758260

  1. Tensile Bond Strengths of Two Adhesives on Irradiated and Nonirradiated Human Dentin.

    PubMed

    Bernard, Cécile; Villat, Cyril; Abouelleil, Hazem; Gustin, Marie-Paule; Grosgogeat, Brigitte

    2015-01-01

    The aim of this study was to assess the effect of radiotherapy on bond efficiency of two different adhesive systems using tensile bond strength test. Twenty extracted teeth after radiotherapy and twenty nonirradiated extracted teeth were used. The irradiation was applied in vivo to a minimal dose of 50 Gy. The specimens of each group were randomly assigned to two subgroups to test two different adhesive systems. A three-step/etch-and-rinse adhesive system (Optibond FL) and a two-steps/self-etch adhesive system (Optibond XTR) were used. Composite buildups were performed with a nanohybrid composite (Herculite XTR). All specimens were submitted to thermocycling ageing (10000 cycles). The specimens were sectioned in 1 mm(2) sticks. Microtensile bond strength tests were measured. Nonparametric statistical analyses were performed due to nonnormality of data. Optibond XTR on irradiated and nonirradiated teeth did not show any significant differences. However, Optibond FL bond strength was more effective on nonirradiated teeth than on irradiated teeth. Within the limitations of an in vitro study, it can be concluded that radiotherapy had a significant detrimental effect on bond strength to human dentin. However, it seems that adhesive choice could be adapted to the substrata. According to the present study, the two-steps/self-etch (Optibond XTR) adhesive system tested could be more effective on irradiated dentin compared to three-steps/etch-and-rinse adhesive system (Optibond FL). PMID:26783528

  2. Tensile Bond Strengths of Two Adhesives on Irradiated and Nonirradiated Human Dentin

    PubMed Central

    Bernard, Cécile; Abouelleil, Hazem; Gustin, Marie-Paule; Grosgogeat, Brigitte

    2015-01-01

    The aim of this study was to assess the effect of radiotherapy on bond efficiency of two different adhesive systems using tensile bond strength test. Twenty extracted teeth after radiotherapy and twenty nonirradiated extracted teeth were used. The irradiation was applied in vivo to a minimal dose of 50 Gy. The specimens of each group were randomly assigned to two subgroups to test two different adhesive systems. A three-step/etch-and-rinse adhesive system (Optibond FL) and a two-steps/self-etch adhesive system (Optibond XTR) were used. Composite buildups were performed with a nanohybrid composite (Herculite XTR). All specimens were submitted to thermocycling ageing (10000 cycles). The specimens were sectioned in 1 mm2 sticks. Microtensile bond strength tests were measured. Nonparametric statistical analyses were performed due to nonnormality of data. Optibond XTR on irradiated and nonirradiated teeth did not show any significant differences. However, Optibond FL bond strength was more effective on nonirradiated teeth than on irradiated teeth. Within the limitations of an in vitro study, it can be concluded that radiotherapy had a significant detrimental effect on bond strength to human dentin. However, it seems that adhesive choice could be adapted to the substrata. According to the present study, the two-steps/self-etch (Optibond XTR) adhesive system tested could be more effective on irradiated dentin compared to three-steps/etch-and-rinse adhesive system (Optibond FL). PMID:26783528

  3. Microleakage under orthodontic brackets bonded with different adhesive systems

    PubMed Central

    Alkis, Huseyin; Turkkahraman, Hakan; Adanir, Necdet

    2015-01-01

    Objective: This in vitro study aimed to compare the microleakage of orthodontic brackets between enamel-adhesive and adhesive-bracket interfaces at the occlusal and gingival margins bonded with different adhesive systems. Materials and Methods: A total of 144 human maxillary premolar teeth extracted for orthodontic reasons was randomly divided into four groups. Each group was then further divided into three sub-groups. Three total-etching bonding systems (Transbond XT, Greengloo and Kurasper F), three one-step self-etching bonding systems (Transbond Plus SEP, Bond Force and Clearfil S3), three two-step self-etching bonding systems (Clearfil SE Bond, Clearfil Protectbond and Clearfil Liner Bond), and three self-adhesive resin cements (Maxcem Elite, Relyx U 100 and Clearfil SA Cement) were used to bond the brackets to the teeth. After bonding, all teeth were sealed with nail varnish and stained with 0.5% basic fuchsine for 24 h. All samples were sectioned and examined under a stereomicroscope to score for microleakage at the adhesive–enamel and adhesive–bracket interfaces from both occlusal and gingival margins. Statistical Analysis Used: Statistical analyses were performed with Kruskal–Wallis and Wilcoxon signed-rank tests. Results: The results indicate no statistically significant differences between the microleakage scores of the adhesives; microleakage was detected in all groups. Comparison of the average values of the microleakage scores in the enamel–adhesive and adhesive–bracket interfaces indicated statistically significant differences (P < 0.05). The amount of the microleakage was higher at the enamel–adhesive interface than at the bracket-adhesive interface. Conclusions: All of the brackets exhibited some amount of microleakage. This result means that microleakage does not depend on the type of adhesive used. PMID:25713494

  4. Evaluation of adhesives for adhering carbon/epoxy composites to various metallic substrates

    SciTech Connect

    Bonk, R.B.; Osterndorf, J.F.; Ambrosio, A.M.; Pettenger, B.L.

    1996-12-31

    The strength properties of composite matrix resins and adhesive are dependent on time, temperature, environment, and stress factors. All of these conditions combine to influence the properties of adhesives and composites in ways that are not yet fully known or quantifiable. Therefore, it is important to know the service conditions that structural adhesive bonded composite joints will encounter prior to fielding. This paper details an evaluation of five epoxy adhesives used to adhere a carbon/epoxy composite to 7075-T6 aluminum, 4340 steel and aluminum coated steel. Test results indicate that certain paste adhesives are capable of better lap-shear and peel performance than film adhesives, especially at elevated temperatures.

  5. Shear bond strength of composite resin to amalgam: an experiment in vitro using different bonding systems.

    PubMed

    Hadavi, F; Hey, J H; Ambrose, E R

    1991-01-01

    The shear bond strength between amalgam and composite resin with and without the use of adhesive systems was evaluated. It was found that the application of Cover-Up II or Prisma Universal Bond prior to placement of composite resin enhanced the shear bond strength between amalgam and composite resin more than five times; and a shear strength of 4.34 and 4.30 MPa was measured respectively. Acid-etching of the roughened amalgam surface prior to application of Prisma Universal Bond decreased the bond strength by nearly 45%. PMID:1784535

  6. Effect of Saliva on the Tensile Bond Strength of Different Generation Adhesive Systems: An In-Vitro Study

    PubMed Central

    Tripathi, Abhay Mani; Saha, Sonali; Dhinsa, Kavita; Garg, Aarti

    2015-01-01

    Background Newer development of bonding agents have gained a better understanding of factors affecting adhesion of interface between composite and dentin surface to improve longevity of restorations. Objective The present study evaluated the influence of salivary contamination on the tensile bond strength of different generation adhesive systems (two-step etch-and-rinse, two-step self-etch and one-step self-etch) during different bonding stages to dentin where isolation is not maintained. Materials and Methods Superficial dentin surfaces of 90 extracted human molars were randomly divided into three study Groups (Group A: Two-step etch-and-rinse adhesive system; Group B: Two-step self-etch adhesive system and Group C: One-step self-etch adhesive system) according to the different generation of adhesives used. According to treatment conditions in different bonding steps, each Group was further divided into three Subgroups containing ten teeth in each. After adhesive application, resin composite blocks were built on dentin and light cured subsequently. The teeth were then stored in water for 24 hours before sending for testing of tensile bond strength by Universal Testing Machine. The collected data were then statistically analysed using one-way ANOVA and Tukey HSD test. Results One-step self-etch adhesive system revealed maximum mean tensile bond strength followed in descending order by Two-step self-etch adhesive system and Two-step etch-and-rinse adhesive system both in uncontaminated and saliva contaminated conditions respectively. Conclusion Unlike One-step self-etch adhesive system, saliva contamination could reduce tensile bond strength of the two-step self-etch and two-step etch-and-rinse adhesive system. Furthermore, the step of bonding procedures and the type of adhesive seems to be effective on the bond strength of adhesives contaminated with saliva. PMID:26393214

  7. Automation Tools for Finite Element Analysis of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Tahmasebi, Farhad; Brodeur, Stephen J. (Technical Monitor)

    2002-01-01

    This article presents two new automation creation tools that obtain stresses and strains (Shear and peel) in adhesively bonded joints. For a given adhesively bonded joint Finite Element model, in which the adhesive is characterised using springs, these automation tools read the corresponding input and output files, use the spring forces and deformations to obtain the adhesive stresses and strains, sort the stresses and strains in descending order, and generate plot files for 3D visualisation of the stress and strain fields. Grids (nodes) and elements can be numbered in any order that is convenient for the user. Using the automation tools, trade-off studies, which are needed for design of adhesively bonded joints, can be performed very quickly.

  8. Resolving fundamental limits of adhesive bonding in microfabrication.

    SciTech Connect

    Hall, Jessica S.; Frischknecht, Amalie Lucile; Emerson, John Allen; Adkins, Douglas Ray; Kent, Michael Stuart; Read, Douglas H.; Giunta, Rachel Knudsen; Lamppa, Kerry P.; Kawaguchi, Stacie; Holmes, Melissa A.

    2004-04-01

    As electronic and optical components reach the micro- and nanoscales, efficient assembly and packaging require the use of adhesive bonds. This work focuses on resolving several fundamental issues in the transition from macro- to micro- to nanobonding. A primary issue is that, as bondline thicknesses decrease, knowledge of the stability and dewetting dynamics of thin adhesive films is important to obtain robust, void-free adhesive bonds. While researchers have studied dewetting dynamics of thin films of model, non-polar polymers, little experimental work has been done regarding dewetting dynamics of thin adhesive films, which exhibit much more complex behaviors. In this work, the areas of dispensing small volumes of viscous materials, capillary fluid flow, surface energetics, and wetting have all been investigated. By resolving these adhesive-bonding issues, we are allowing significantly smaller devices to be designed and fabricated. Simultaneously, we are increasing the manufacturability and reliability of these devices.

  9. Dentin bond strength and degree of conversion evaluation of experimental self-etch adhesive systems

    PubMed Central

    Yazdi, Fatemeh-Maleknejad; Atai, Mohammad; Zeynali, Mahsa

    2015-01-01

    Background The aim of this study was to investigate the effect of different concentrations of 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) monomer in one-step self-etch experimental adhesives on dentinal microshear bond strength (µSBS), their degree of conversion and bonded micro structure. Material and Methods Composite resin cylinders (Clearfil AP-X) were bonded on human sound molar dentinal surfaces by using five experimental one-step self-etching adhesives (1-SEAs) containing 0% (E0), 5% (E5), 10% (E10), 15% (E15), 20% (E20) (by weight) 10-MDP monomer and Clearfil S3 Bond (CS3) as a control. After 24 hours, microshear bond strength was tested. The degree of conversion was also measured using Fourier transform infrared spectroscopy. Interfacial ultrastructure was observed under a scanning electron microscope in all the groups. Results A higher microshear bond strength was observed with adhesives containing 10% and 15% 10-MDP in comparison to study groups (P<.05). Clearfil S3 Bond and 10% MDP had a significantly greater degree of conversion than other groups (P<.05). Conclusions The amount of functional monomer in 1-SEAs influences both the bonding performance and degree of conversion; 10% 10-MDP showed the best combination of bond strength and degree of conversion. Key words:Self-etch adhesives, 10-MDP, bond strength, degree of conversion. PMID:26155340

  10. The Evaluation of High Temperature Adhesive Bonding Processes for Rocket Engine Combustion Chamber Applications

    NASA Technical Reports Server (NTRS)

    McCray, Daniel; Smith, Jeffrey; Rice, Brian; Blohowiak, Kay; Anderson, Robert; Shin, E. Eugene; McCorkle, Linda; Sutter, James

    2003-01-01

    NASA Glenn Research Center is currently evaluating the possibility of using high- temperature polymer matrix composites to reinforce the combustion chamber of a rocket engine. One potential design utilizes a honeycomb structure composed of a PMR-II- 50/M40J 4HS composite facesheet and titanium honeycomb core to reinforce a stainless steel shell. In order to properly fabricate this structure, adhesive bond PMR-II-50 composite. Proper prebond surface preparation is critical in order to obtain an acceptable adhesive bond. Improperly treated surfaces will exhibit decreased bond strength and durability, especially in metallic bonds where interface are susceptible to degradation due to heat and moisture. Most treatments for titanium and stainless steel alloys require the use of strong chemicals to etch and clean the surface. This processes are difficult to perform due to limited processing facilities as well as safety and environmental risks and they do not consistently yield optimum bond durability. Boeing Phantom Works previously developed sol-gel surface preparations for titanium alloys using a PETI-5 based polyimide adhesive. In support of part of NASA Glenn Research Center, UDRI and Boeing Phantom Works evaluated variations of this high temperature sol-gel surface preparation, primer type, and primer cure conditions on the adhesion performance of titanium and stainless steel using Cytec FM 680-1 polyimide adhesive. It was also found that a modified cure cycle of the FM 680-1 adhesive, i.e., 4 hrs at 370 F in vacuum + post cure, significantly increased the adhesion strength compared to the manufacturer's suggested cure cycle. In addition, the surface preparation of the PMR-II-50 composite was evaluated in terms of surface cleanness and roughness. This presentation will discuss the results of strength and durability testing conducted on titanium, stainless steel, and PMR-II-50 composite adherends to evaluate possible bonding processes.

  11. Induction thermography for non-destructive evaluation of adhesive bonds

    NASA Astrophysics Data System (ADS)

    Balaji, L.; Balasubramaniam, Krishnan; Krishnamurthy, C. V.

    2013-01-01

    Adhesive bonding is widely used in automotive industry in the recent times. One of the major problems with adhesive bonds is the lack of a suitable non-destructive evaluation technique for assessing bonding. In this paper, an experimental study was carried out to apply induction thermography technique to evaluate adhesively bonded steel plates. Samples were fabricated with artificial defects such as air gap, foreign material, and improper adhesive filling. Induction thermography technique was found to detect defects and foreign inclusions. The sample specimen was also inspected using standard techniques such as Ultrasonic testing and Radiography testing. Defect detecting capabilities of the three techniques are compared. Induction thermography heating was FE modelled in 3D using COMSOL 3.5a. The simulated Induction thermography model was compared and validated with experimental results.

  12. Investigation of Adhesive Bond Cure Conditions using Nonlinear Ultrasonic Methods

    NASA Technical Reports Server (NTRS)

    Berndt, Tobias P.; Green, Robert E., Jr.

    1999-01-01

    The objective of this presentation is to investigate various cure conditions of adhesive bonds using nonlinear ultrasonic methods with water coupling. Several samples were used to obtain normal incidence, oblique incidence, and wave mixing.

  13. Experimental and numerical investigations on adhesively bonded joints

    NASA Astrophysics Data System (ADS)

    Negru, R.; Marsavina, L.; Hluscu, M.

    2016-04-01

    Two types of adhesively bonded joints were experimental and numerical investigated. Firstly, the adhesives were characterized through a set of tests and the main elastic and mechanical properties were obtained. After that, the stress distributions at interface and middle of adhesive layer were determined using a linear elastic FEA. The numerical data were fitted by a power law in order to determine the critical values of intensity of stress singularity.

  14. Adhesive-Bonded Tab Attaches Thermocouples to Titanium

    NASA Technical Reports Server (NTRS)

    Cook, C. F.

    1982-01-01

    Mechanical strength of titanium-alloy structures that support thermocouples is preserved by first spotwelding thermocouples to titanium tabs and then attaching tabs to titanium with a thermosetting adhesive. In contrast to spot welding, a technique previously used for thermocouples, fatigue strength of the titanium is unaffected by adhesive bonding. Technique is also gentler than soldering or attaching thermocouples with a tap screw.

  15. Safety and performance of adhesively bonded aluminum structures

    NASA Astrophysics Data System (ADS)

    Lu, Jianping

    The application of light-weight metallic materials (especially aluminum alloys) in tubular section shapes in the front end of automotive vehicles for crashworthiness and occupant protection is drawing considerable attention. Adhesively bonded aluminum hat sections offer light-weight solutions as energy absorbing members. Aluminum hat section, either adhesively bonded or unbonded, experiences buckling, post buckling and plastic collapse when axially loaded. The analytical solution for the critical buckling stress of the adhesively bonded aluminum hat section under static axial compression is obtained using the thin plate theory based governing partial differential equation derived by Saint Venant. The relative critical buckling stress is computed according to the transcendental equations. Finite element analyses were performed to simulate the static structural collapse, and a variety of modeling schemes are introduced. The real role of the adhesive material in the adhesively bonded hat sections in terms of energy absorption is that the adhesive does not absorb a great amount of energy by itself but shifting the buckling mode to a higher level, and hence the structure presents a higher buckling mode related buckling strength. Based on the higher buckling mode, the structure normally is not highly distorted as in the unbonded case so that the entire cross section is effectively carrying the plastic collapse load. The dynamic impact response of the adhesively bonded hat sections is explored both computationally and empirically. It is found that the finite element simulation creates satisfactory correlation to the impact test results, meanwhile, the empirical evaluation presents a quite conservative specific energy absorption.

  16. Shear bond strength to dentin and Ni-Cr-Be alloy with the All-Bond universal adhesive system.

    PubMed

    Barkmeier, W W; Suh, B I; Cooley, R L

    1991-01-01

    The shear bond strength of the All-Bond system to dentin and a nonprecious alloy was evaluated. Eighty human molar teeth (10 per group) were used in the dentin bonding phase of the study. A bond site was prepared in dentin, and both the succinic anhydride modified HEMA and 10 percent phosphoric acid dentin conditioning techniques were evaluated under both wet and dry conditions. Eighty Rexillium III specimens were used in the metal bonding phase of the study. All-Bond primer and opaquer were applied to the metal surface, followed by a visible light-cured composite restorative material. Dentin bond strengths were determined at 24 hours, while metal bond strengths were evaluated both at 24 hours and after thermocycling (2,500 cycles). Separate groups were established for adhesion to both dentin and metal with the composite placed in a plastic matrix or a gelatin capsule. The highest mean shear bond values to dentin were obtained in the groups with the gelatin capsule bonding procedure, where the dentin was treated with 10 percent phosphoric acid and then blotted dry (wet technique) before the bonding procedure (39.99 MPa). These values were higher than the succinic anhydride modified HEMA-treated group with gentle air drying (wet technique-29.56 MPa). There was essentially no difference in mean shear bond strengths to dentin when a succinic anhydride modified HEMA dentin conditioner was used with aggressive (dry technique) or gentle air drying (wet technique) [29.56 versus 29.08 MPa]. High bond strengths to Rexillium III were obtained when the All-Bond adhesive system was used in combination with a dual-care opaquer and a composite restorative material.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1817584

  17. Bond strength evaluation in adhesive joints using NDE and DIC methods

    NASA Astrophysics Data System (ADS)

    Poudel, Anish

    Adhesive bonding of graphite epoxy composite laminates to itself or traditional metal alloys in modern aerospace and aircraft structural applications offers an excellent opportunity to use the most efficient and intelligent combination of materials available thus providing an attractive package for efficient structural designs. However, one of the major issues of adhesive bonding is the occasional formation of interfacial defects such as kissing or weak bonds in the bondline interface. Also, there are shortcomings of existing non-destructive evaluation (NDE) methods to non-destructively detect/characterize these interfacial defects and reliably predicting the bond shear strength. As a result, adhesive bonding technology is still not solely implemented in primary structures of an aircraft. Therefore, there is a greater demand for a novel NDE tool that can meet the existing aerospace requirement for adhesive bondline characterization. This research implemented a novel Acoustography ultrasonic imaging and digital image correlation (DIC) technique to detect and characterize interfacial defects in the bondline and determine bond shear strength in adhesively bonded composite-metal joints. Adhesively bonded Carbon Fiber Reinforced Plastic (CFRP) laminate and 2024-T3 Aluminum single lap shear panels subjected to various implanted kissing/weak bond defects were the primary focus of this study. Kissing/weak bonds were prepared by controlled surface contamination in the composite bonding surface and also by improperly mixing the adhesive constituent. SEM analyses were also conducted to understand the surface morphology of substrates and their interaction with the contaminants. Morphological changes were observed in the microscopic scale and the chemical analysis confirmed the stability of the contaminant at or very close to the interface. In addition, it was also demonstrated that contaminants migrated during the curing of the adhesive from CFRP substrate which caused a

  18. Adhesive-bonded double-lap joints. [analytical solutions for static load carrying capacity

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Explicit analytical solutions are derived for the static load carrying capacity of double-lap adhesive-bonded joints. The analyses extend the elastic solution Volkersen and cover adhesive plasticity, adherend stiffness imbalance and thermal mismatch between the adherends. Both elastic-plastic and bi-elastic adhesive representations lead to the explicit result that the influence of the adhesive on the maximum potential bond strength is defined uniquely by the strain energy in shear per unit area of bond. Failures induced by peel stresses at the ends of the joint are examined. This failure mode is particularly important for composite adherends. The explicit solutions are sufficiently simple to be used for design purposes

  19. Laser Surface Preparation and Bonding of Aerospace Structural Composites

    NASA Technical Reports Server (NTRS)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical prebonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  20. Gun facilitates adhesive bonding of studs to surfaces

    NASA Technical Reports Server (NTRS)

    Davis, B. K.; Simpson, W. G.

    1969-01-01

    Gun facilitates adhesive bonding of thermoplastic-backed studs to smooth, hard surfaces. Such studs can be used for mounting loads where defacement with drilled holes cannot be tolerated. These studs can be easily removed by softening the plastic bonding with heat from the gun.

  1. Stress analysis of adhesive bonded stiffener plates and double joints

    NASA Technical Reports Server (NTRS)

    Yuceoglu, U.; Updike, D. P.

    1975-01-01

    The general problem of adhesive bonded stiffener plates and double joints of dissimilar orthotropic adherends with transverse shear deformations are analyzed. Adhesive layers are assumed to be of an isotropic, elastic and relatively flexible material. It is shown that the stress distributions in the adhesive layers are very much dependent on the bending deformations in adherends. Also, it is found that, in the adhesive layer, maximum transverse normal stress is, in many cases, larger than the longitudinal shear stress and that both occur at the edge of the joint. The general method of solution developed is applied to several practical examples.

  2. Time-temperature effect in adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    The viscoelastic analysis of an adhesively bonded lap joint was reconsidered. The adherends are approximated by essentially Reissner plates and the adhesive is linearly viscoelastic. The hereditary integrals are used to model the adhesive. A linear integral differential equations system for the shear and the tensile stress in the adhesive is applied. The equations have constant coefficients and are solved by using Laplace transforms. It is shown that if the temperature variation in time can be approximated by a piecewise constant function, then the method of Laplace transforms can be used to solve the problem. A numerical example is given for a single lap joint under various loading conditions.

  3. Adhesive fracture mechanics. [stress analysis for bond line interface

    NASA Technical Reports Server (NTRS)

    Bennett, S. J.; Devries, K. L.; Williams, M. L.

    1974-01-01

    In studies of fracture mechanics the adhesive fracture energy is regarded as a fundamental property of the adhesive system. It is pointed out that the value of the adhesive fracture energy depends on surface preparation, curing conditions, and absorbed monolayers. A test method reported makes use of a disk whose peripheral part is bonded to a substrate material. Pressure is injected into the unbonded central part of the disk. At a certain critical pressure value adhesive failure can be observed. A numerical stress analysis involving arbitrary geometries is conducted.

  4. Effect of Fluoride and Simplified Adhesive Systems on the Bond Strength of Primary Molars and Incisors.

    PubMed

    Firoozmand, Leily Macedo; Noleto, Lawanne Ellen Carvalho; Gomes, Isabella Azevedo; Bauer, José Roberto de Oliveira; Ferreira, Meire Coelho

    2015-01-01

    The aim of this study was evaluate in vitro the influence of simplified adhesive systems (etch-and-rinse and self-etching) and 1.23% acidulated phosphate fluoride (APF) on the microshear bond strength (μ-SBS) of composite resins on primary molars and incisors. Forty primary molars and forty incisors vestibular enamel was treated with either the self-etching Clearfil SE Bond (CSE, Kuraray) or etch-and-rinse Adper Single Bond 2 (SB2, 3M/ESPE) adhesive system. Each group was subdivided based on the prior treatment of the enamel with or without the topical application of 1.23% APF. Thereafter, matrices were positioned and filled with composite resin and light cured. After storage in distilled water at 37 ± 1°C for 24 h, the specimens were submitted to μ-SBS in a universal testing machine. Kruskal-Wallis and Mann-Whitney tests (p < 0.05) showed that the prior application of 1.23% APF led to a significant reduction in bond strength. The type of adhesive exerted no significant influence bond strength. In the inter-group analysis, however, significantly bond strength reduction was found for the incisors when CSE was employed with APF. Adhesive failure was the most common type of fracture. The bond strength was affected by the prior application of 1.23% APF and type of tooth. PMID:26312974

  5. Casein Phosphopeptide-Amorphous Calcium Phosphate and Shear Bond Strength of Adhesives to Primary Teeth Enamel

    PubMed Central

    Farokh Gisovar, Elham; Hedayati, Nassim; Shadman, Niloofar; Shafiee, Leila

    2015-01-01

    Background: CPP-ACP (Phosphopeptide-Amorphous Calcium Phosphate) has an important role in caries prevention in pediatric patients. This study was done, because of the great use of CPP-ACP and the need for restoration for teeth treated with CPP-ACP as well as the importance of shear bond strength of adhesives in the success of restorations. Objectives: This study aimed to evaluate the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on shear bond strength of dental adhesives to enamel of primary teeth molars. Materials and Methods: This in vitro study was conducted on 180 extracted primary molars. They were randomly divided into 6 groups and each group was divided into 2 subgroups (treated with CPP-ACP and untreated). In subgroups with CPP-ACP, enamel was treated with CPP-ACP paste 1 h/d for 5 days. Types of adhesives that were evaluated in this study were Tetric N-Bond, AdheSE, AdheSE One F, single Bond 2, SE Bond, and Adper Prompt L-Pop. Shear bond strength was tested with a universal testing machine and mode of failure was evaluated under stereomicroscope. Data were analyzed by T test, 2-way analysis of variance (ANOVA), Tukey and Fisher exact test using SPSS18. P < 0.05 was considered as significance level. Results: Shear bond strengths of different adhesive systems to enamel of primary teeth treated and untreated with CPP-ACP showed no significant difference (P > 0.05). Mode of failure in all groups regardless of CPP-ACP administration was mainly adhesive type. Our results indicated that CPP-ACP did not affect shear bond strength of studied adhesives to primary teeth enamel. Conclusions: To have a successful and durable composite restoration, having a high strength bonding is essential. Considering the wide use of CPP-ACP in preventing tooth decay and the role of adhesive shear bond strength (SBS) in success of composite restoration, we conducted the present study to evaluate the effect of CPP-ACP on the SBS of adhesives to primary teeth

  6. Promotion of adhesive penetration and resin bond strength to dentin using non-thermal atmospheric pressure plasma.

    PubMed

    Kim, Jae-Hoon; Han, Geum-Jun; Kim, Chang-Keun; Oh, Kyu-Hwan; Chung, Sung-No; Chun, Bae-Hyeock; Cho, Byeong-Hoon

    2016-02-01

    Non-thermal atmospheric pressure plasmas (NT-APPs) have been shown to improve the bond strength of resin composites to demineralized dentin surfaces. Based on a wet-bonding philosophy, it is believed that a rewetting procedure is necessary after treatment with NT-APP because of its air-drying effect. This study investigated the effect of 'plasma-drying' on the bond strength of an etch-and-rinse adhesive to dentin by comparison with the wet-bonding technique. Dentin surfaces of human third molars were acid-etched and divided into four groups according to the adhesion procedure: wet bonding, plasma-drying, plasma-drying/rewetting, and dry bonding. In plasma treatment groups, the demineralized dentin surfaces were treated with a plasma plume generated using a pencil-type low-power plasma torch. After the adhesion procedures, resin composite/dentin-bonded specimens were subjected to a microtensile bond-strength test. The hybrid layer formation was characterized by micro-Raman spectroscopy and scanning electron microscopy. The plasma-drying group presented significantly higher bond strength than the wet-bonding and dry-bonding groups. Micro-Raman spectral analysis indicated that plasma-drying improved the penetration and polymerization efficacy of the adhesive. Plasma-drying could be a promising method to control the moisture of demineralized dentin surfaces and improve the penetration of adhesive and the mechanical property of the adhesive/dentin interface. PMID:26714586

  7. Effect of additional etching and ethanol-wet bonding on the dentin bond strength of one-step self-etch adhesives

    PubMed Central

    Ahn, Joonghee; Jung, Kyoung-Hwa; Son, Sung-Ae; Hur, Bock; Kwon, Yong-Hoon

    2015-01-01

    Objectives This study examined the effects of additional acid etching on the dentin bond strength of one-step self-etch adhesives with different compositions and pH. The effect of ethanol wetting on etched dentin bond strength of self-etch adhesives was also evaluated. Materials and Methods Forty-two human permanent molars were classified into 21 groups according to the adhesive types (Clearfil SE Bond [SE, control]; G-aenial Bond [GB]; Xeno V [XV]; Beauti Bond [BB]; Adper Easy Bond [AE]; Single Bond Universal [SU]; All Bond Universal [AU]), and the dentin conditioning methods. Composite resins were placed on the dentin surfaces, and the teeth were sectioned. The microtensile bond strength was measured, and the failure mode of the fractured specimens was examined. The data were analyzed statistically using two-way ANOVA and Duncan's post hoc test. Results In GB, XV and SE (pH ≤ 2), the bond strength was decreased significantly when the dentin was etched (p < 0.05). In BB, AE and SU (pH 2.4 - 2.7), additional etching did not affect the bond strength (p > 0.05). In AU (pH = 3.2), additional etching increased the bond strength significantly (p < 0.05). When adhesives were applied to the acid etched dentin with ethanol-wet bonding, the bond strength was significantly higher than that of the no ethanol-wet bonding groups, and the incidence of cohesive failure was increased. Conclusions The effect of additional acid etching on the dentin bond strength was influenced by the pH of one-step self-etch adhesives. Ethanol wetting on etched dentin could create a stronger bonding performance of one-step self-etch adhesives for acid etched dentin. PMID:25671215

  8. Nature of the adhesion bond between epoxy adhesive and steel

    NASA Astrophysics Data System (ADS)

    Vettegren', V. I.; Mamalimov, R. I.; Savitskii, A. V.; Shcherbakov, I. P.; Sytov, V. V.; Sytov, V. A.

    2014-03-01

    The potential difference that appears in the epoxy resin located between two grade 3 steel plates is studied. One of them is stored in epoxy resin to reach equilibrium, and the second plate is coated with an asprepared mixture of epoxy resin with a hardener. It is found that the potential difference decreases in time because of charge transfer by Fe2+ ions through epoxy resin. The luminescence and infrared absorption spectra of the epoxy adhesive on the grade 3 steel surface are recorded. An analysis of these spectra shows that Fe2+ ions penetrate into the as-prepared mixture of epoxy resin with the hardener, and interact with CN groups in the mixture, and form coordination compounds. As a result, a diffusion layer saturated by the coordination compounds forms at the interface between the steel and the adhesive.

  9. A randomized clinical trial evaluating the success rate of ethanol wet bonding technique and two adhesives

    PubMed Central

    Mortazavi, Vajihesadat; Samimi, Pouran; Rafizadeh, Mojgan; Kazemi, Shantia

    2012-01-01

    Background: Composite resin restorations may have a short lifespan due to the degradation of resin–dentin interface. Ethanol wet bonding technique may extend the longevity of resin–dentin bond. The purpose of this one year randomized clinical trial was to compare clinical performance of two adhesives with ethanol wet bonding technique. Materials and Methods: This randomized clinical trial was performed on 36 non-carious cervical lesions in 12 patients restored with composite resin using one of the following approaches: 1. OptiBond FL (Kerr, USA); 2. Clearfil SE Bond (Kuraray, Japan) with enamel etching and 3. Ethanol wet bonding technique with the part of adhesive of OptiBond FL. The clinical success rate was assessed after 24 h, 6, 9 and 12 months according to the United States Public Health Service (USPHS) criteria: Marginal discoloration, marginal defect, retention rate, caries occurrence, and postoperative sensitivity. The tooth vitality was also assessed. Results: The retention rate was 100% at baseline and at 6 months follow up for all types of bonding protocols and was 91.67% at 9 and 12 months follow up for ethanol wet bonding group. None of the restorations in three groups showed marginal defects, marginal discoloration or caries occurrence and were vital after 12 months. There was no statistically significant difference between three groups after 12 months follow up (p value = 0.358). Conclusions: Composite restorations placed using ethanol wet bonding technique presented equal performance to the other groups. PMID:23559924

  10. A study of the compatibility of adhesives with composites.

    PubMed

    Suh, Byoung I

    2003-08-01

    A decade ago, the revolution in adhesion dentistry brought the profession to the basic three-step adhesives, such as ALL-BOND 2 and Adper Scotchbond MP, which were at the time deemed as fourth generation. However, the recent trend in adhesive products is to simplify the steps into two steps or even a single step to make them, possibly, more user-friendly and time saving. Subsequent naming led to a "generation battle." Is this the right track? Does this achieve simplification without compromising performance? Perhaps the best way to classify adhesives is to indicate the number of steps required. This article describes the results of a compatibility study of modern adhesive systems with composites in the fabrication of long-lasting and esthetic restorations. PMID:14692212

  11. The use of a cyanoacrylate adhesive for bonding orthodontic brackets: an ex-vivo study.

    PubMed

    Al-Munajed, M K; Gordon, P H; McCabe, J F

    2000-09-01

    The purpose of this study was to evaluate the performance of a cyanoacrylate orthodontic adhesive with regard to tensile bond strength and bond failure location in comparison with a conventional no-mix orthodontic composite adhesive using stainless steel and ceramic brackets. One-hundred-and-twenty caries-free extracted premolar teeth were used in this study. There were 30 specimens for each tooth, adhesive, and bracket combination, and of these half were tested at 24 hours and half at 3 months. Hence, there were 15 samples in each test group. Bond strengths were assessed using an Instron Universal Testing Machine after storage for 24 hours and for 3 months at 37 degrees C in distilled water. Analysis of variance showed the mean bond strength of specimens bonded with cyanoacrylate was significantly lower than for those bonded with Right-on (P < 0.001). Weibull analysis showed that at a given stress the probability of failure significantly increased after 3 months for brackets bonded with cyanoacrylate. A Chi-square test of the ARI scores revealed no significant difference among the groups tested. This study showed that cyanoacrylate adhesives are unsuitable for use as a bonding agent in routine orthodontic practice. PMID:11099558

  12. Progressive Damage Analysis of Bonded Composite Joints

    NASA Technical Reports Server (NTRS)

    Leone, Frank A., Jr.; Girolamo, Donato; Davila, Carlos G.

    2012-01-01

    The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented durable redundant joint. Both designs involve honeycomb sandwich structures with carbon/epoxy facesheets joined using adhesively bonded doublers.Progressive damage modeling allows for the prediction of the initiation and evolution of damage within a structure. For structures that include multiple material systems, such as the joint designs under consideration, the number of potential failure mechanisms that must be accounted for drastically increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, intraply matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The bonded joints were modeled using highly parametric, explicitly solved finite element models, with damage modeling implemented via custom user-written subroutines. Each ply was discretely meshed using three-dimensional solid elements. Layers of cohesive elements were included between each ply to account for the possibility of delaminations and were used to model the adhesive layers forming the joint. Good correlation with experimental results was achieved both in terms of load-displacement history and the predicted failure mechanism(s).

  13. Bond strength and SEM observation of CO2 laser irradiated dentin, bonded with simplified-step adhesives.

    PubMed

    Koshiro, K; Inoue, S; Niimi, K; Koase, K; Sano, H

    2005-01-01

    This study investigated, mechanically and morphologically, whether the dentin surface irradiated by CO2 laser could be a possible adherent when bonded with simplified-step adhesives. Buccal enamel and cementum of extracted human premolars were removed to expose a flat dentin surface. The dentin surfaces were irradiated continuously with CO2 laser at 1.0 W. Before bonding with either a single-bottle adhesive (Single Bond) or a self-etching priming system (Mega Bond), the irradiated dentin surface was treated as follows: no treatment, NaHCO3 powder abrasion and wet-grinding with 600-grit SiC paper. The treated dentin surfaces were bonded to resin composite with either of the two adhesives. Non-irradiated dentin surfaces were also used as control. Resin bonded specimens were stored in water at 37 degrees C for 24 hours and subjected to microtensile bond test. Additionally, to observe the resin/irradiated dentin interface, resin-bonded specimens were similarly prepared, sectioned into slabs, embedded in epoxy resin, polished with diamond pastes, sputter coated Au-Pd and examined with scanning electron microscopy (SEM). After SEM observation, the specimens were further polished with diamond paste to remove the Au-Pd sputter-coat, immersed in HCL and NaOCl and finally observed by SEM again. In the presence of carbonized dentin, microtensile bond strength drastically decreased but recovered to the control value by removing the carbonized dentin layer visually with SiC paper for both adhesive systems. However, the laser-affected dentin that remained on the bonded interface was easily dissolved with NaOCl and HCl. PMID:15853101

  14. Adhesives for the composite wood panel industry

    SciTech Connect

    Koch, G.S.; Klareich, F.; Exstrum, B.

    1987-01-01

    This book presents a market and technology analysis of current fossil-fuel-based adhesives for the composite wood panel industry. It is also a study of the potential for, and technology of, less-energy-intensive biomass-derived adhesives for use in the industry. Adhesives manufacturer and production account for a significant portion of overall wood panel industry energy use as well as overall production costs, and the wood panel industry consumes about 25% of the total U.S. adhesives production. Significant savings might be realized if current fossil-fuel-based resins could be replaced with alternative biomass-derived adhesives.

  15. Effect of Sodium Ascorbate and Delayed Bonding on the Bond Strength of Silorane and Two-step Self-etch Adhesive Systems in Bleached Enamel

    PubMed Central

    Abed Kahnemooyi, Mehdi; Ajami, Amir Ahmad; Kimyai, Soodabeh; Pournaghiazar, Fatemeh; Savadi Oskoee, Siavash; Mhammadi Torkani, Mohammad Ali

    2014-01-01

    Background and aims. Studies have shown decreased bond strength of composite resin to human and bovine bleached enamel. This study evaluated the effect of sodium ascorbate and delayed bonding on the bond strength of two adhesive systems to bleached enamel. Materials and methods. The labial surfaces of 150 sound bovine incisor teeth were abraded with abrasive paper. The teeth were randomly divided into 8 groups: A: control; B: bleached with 35% hydrogen peroxide; C: bleached with 35% hydrogen peroxide + sodium ascorbate gel; and D: bleached with 35% hydrogen peroxide + delayed bonding. In groups A‒D, silorane adhesive system and Filtek silorane composite resin were used. In groups E‒H, the same preparation methods of groups A-D were used. Two-step self-etch Clearfil SE Bond adhesive systems and AP-X composite resin were administered. Shear bond strength of each group was measured. Two samples were prepared for each surface preparation for ultra-structural evaluation. Two-way ANOVA and Tukey test were used for data analysis at P<0.05. Results. The interaction between the adhesive system type and surface preparation protocol was significant (P=0.014), withsignificant differences in shear bond strengths in terms of the adhesive systems (P<0.01). There were significant differences in shear bond strength in terms of surface preparation techniques irrespective of the adhesive system (P<0.01). Conclusion. The results showed that bleaching with 35% hydrogen peroxide decreased the shear bond strength values with both adhesive systems, and a one-week delay in bonding and 10% sodium ascorbate for10 minutes restored the bond strength in both adhesive systems. PMID:25587382

  16. Effect of refrigeration on bond strength of self-etching adhesive systems.

    PubMed

    Borges, Gilberto Antonio; Spohr, Ana Maria; de Oliveira, Wildomar José; Correr-Sobrinho, Lourenço; Correr, Américo Bortolazzo; Borges, Luis Henrique

    2006-01-01

    The purpose of this study was to investigate the tensile bond strength to dentin of three self-etching adhesive systems at refrigerated and room temperatures. Seventy-eight bovine incisors were embedded in self-cured acrylic resin, abraded on a water-cooled lathe and polished with 400- and 600-grit sandpapers to obtain standard dentin surfaces. The specimens were randomly assigned to 6 groups (n=13). Clearfil SE Bond, AdheSE and One-Up Bond F adhesive systems at refrigerated (4 degrees C) and room temperatures (23 degrees C) were applied to dentin according to the manufacturers' instructions. A truncated composite resin (Herculite XRV) cone was bonded to dentin surface. The specimens were stored in distilled water at 37 degrees C for 24 h and submitted to tensile bond strength testing at a crosshead speed of 0.5 mm/min. Means in MPa were analyzed statistically by Student's t-test at 5% significance level. No statistically significant differences (p>0.05) were found between the adhesive systems applied at refrigerated and room temperatures. In conclusion, no adverse effects on tensile bond strength were observed when self-etching adhesive systems were used after being taken directly from the refrigerated storage. PMID:17262122

  17. Functionally Graded Adhesives for Composite Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof of concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint.

  18. Model-based adhesive shrinkage compensation for increased bonding repeatability

    NASA Astrophysics Data System (ADS)

    Müller, Tobias; Schlette, Christian; Lakshmanan, Shunmuganathan; Haag, Sebastian; Zontar, Daniel; Sauer, Sebastian; Wenzel, Christian; Brecher, Christian; Roβmann, Jürgen

    2016-03-01

    The assembly process of optical components consists of two phases - the alignment and the bonding phase. Precision - or better process repeatability - is limited by the latter one. The limitation of the alignment precision is given by the measurement equipment and the manipulation technology applied. Today's micromanipulators in combination with beam imaging setups allow for an alignment in the range of far below 100nm. However, once precisely aligned optics need to be fixed in their position. State o f the art in optics bonding for laser systems is adhesive bonding with UV-curing adhesives. Adhesive bonding is a multi-factorial process and thus subject to statistical process deviations. As a matter of fact, UV-curing adhesives inherit shrinkage effects during their curing process, making offsets for shrinkage compensation mandatory. Enhancing the process control of the adhesive bonding process is the major goal of the activities described in this paper. To improve the precision of shrinkage compensation a dynamic shrinkage prediction is envisioned by Fraunhofer IPT. Intense research activities are being practiced to gather a deeper understanding of the parameters influencing adhesive shrinkage behavior. These effects are of different nature - obviously being the raw adhesive material itself as well as its condition, the bonding geometry, environmental parameters like surrounding temperature and of course process parameters such as curing properties. Understanding the major parameters and linking them in a model-based shrinkage-prediction environment is the basis for improved process control. Results are being deployed by Fraunhofer in prototyping, as well as volume production solutions for laser systems.

  19. The effect of saliva decontamination procedures on dentin bond strength after universal adhesive curing

    PubMed Central

    Kim, Jayang; Hong, Sungok; Choi, Yoorina

    2015-01-01

    Objectives The purpose of this study was to investigate the effectiveness of multiple decontamination procedures for salivary contamination after curing of a universal adhesive on dentin bond strength according to its etch modes. Materials and Methods Forty-two extracted bovine incisors were trimmed by exposing the labial dentin surfaces and embedded in cylindrical molds. A universal adhesive (All-Bond Universal, Bisco) was used. The teeth were randomly divided into groups according to etch mode and decontamination procedure. The adhesive was applied according to the manufacturer's instructions for a given etch mode. With the exception of the control groups, the cured adhesive was contaminated with saliva for 20 sec. In the self-etch group, the teeth were divided into three groups: control, decontamination with rinsing and drying, and decontamination with rinsing, drying, and adhesive. In the etch-and-rinse group, the teeth were divided into four groups: control, decontamination with rinsing and drying, decontamination with rinsing, drying, and adhesive, and decontamination with rinsing, drying, re-etching, and reapplication of adhesive. A composite resin (Filtek Z350XT, 3M ESPE) was used for filling and was cured on the treated surfaces. Shear bond strength was measured, and failure modes were evaluated. The data were subjected to one-way analysis of variation and Tukey's HSD test. Results The etch-and-rinse subgroup that was decontaminated by rinse, drying, re-etching, and reapplication of adhesive showed a significantly higher bond strength. Conclusions When salivary contamination occurs after curing of the universal adhesive, additional etching improves the bond strength to dentin. PMID:26587416

  20. Thermoplastic polymeric adhesive for structural bonding applications for orthopaedic devices

    SciTech Connect

    Devanathan, D.; King, R.; Swarts, D.; Lin, S.; Ramani, K.; Tagle, J.

    1994-12-31

    The orthopaedics industry has witnessed tremendous growth in recent years primarily due to the introduction of high performance, porous coated implants. These devices have eliminated the need for the use of bone cement for in vivo implant fixation, replacing it with the ingrowth of bone into the porous surfaces. The metallurgical bonding processes used for attaching the porous to the implant body introduce some undesirable effect i.e., the reduction of the fatigue strength of the implant due to the ``notches`` created and also due to the high temperature exposure during the sintering operations. This paper describes the development of a thermoplastic polymeric adhesive based structural bonding technique. The high performance polymeric adhesive is fully characterized with respect to its intended application. The design of the porous layer is optimized to achieve a reliable bond to the implant. A thermal heating/cooling process was developed to control the final polymer morphology. Static and fatigue tests were conducted to fully characterize the adhesive bond strength. A ring shear test method was developed to determine the shear strength of the bond interface. Besides the characterization of the adhesive bond, the joints will be analyzed using finite element models. The correlation between the analytical models and the

  1. Stresses in adhesively bonded joints - A closed-form solution

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1981-01-01

    The general plane strain problem of adhesively bonded structures consisting of two different, orthotropic adherends is considered, under the assumption that adherend thicknesses are constant and small in relation to the lateral dimensions of the bonded region, so that they may be treated as plates. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form, with a single lap joint and a stiffened plate under various loading conditions being considered as examples. It is found that the plate theory used in the analysis not only predicts the correct trend for adhesive stresses but gives surprisingly accurate results, the solution being obtained by assuming linear stress-strain relations for the adhesive.

  2. Effect of Self-etching Adhesives on the Bond Strength of Glass-Ionomer Cements

    PubMed Central

    Jaberi Ansari, Zahra; Panahandeh, Narges; Tabatabaei Shafiei, Zahra Sadat; Akbarzadeh Baghban, Alireza

    2014-01-01

    Objective: Statement of Problem: Adequate bond strength between glass ionomer cements and composite resin is necessary for the success of the sandwich technique. Purpose of Study: This study assessed the micro-shear bond strength of composite resin to glass-ionomer cements (GIC) using self-etch adhesives with different pH values. Materials and Methods: One hundred specimens (6×4×2 mm) were made using Fuji II and Fuji II LC GICs and treated with different adhesives as follows: Group 1:Fuji II+ Adper Prompt L-Pop, Group-2: Fuji II+SE bond, Group-3: Fuji II + AdheSE, Group-4:Fuji II+ Protect bond, Group-5: Fuji II + Single bond, Group-6:Fuji II LC+ Adper Prompt LPop, Group-7: Fuji II LC+SE bond, Group-8:Fuji II LC+ AdheSE, Group-9: Fuji II LC+ Protect bond, and Group-10: Fuji II LC+ Single bond. Each group consisted of 10 specimens. A cylinder of Z100 composite resin was placed on each sample and light cured. After 24 hours of water storage (37°C), the specimens were subjected to micro-shear bond strength tests (0.5 mm/min). Data were analyzed using two-way ANOVA and Tukey’s test. Results: The mean micro-shear bond strength of groups 1–10 was 11.66±1.79, 16.50±1.85, 18.47±1.77, 13.95±1.77, 15.27±1.49, 15.14±0.90, 20.03±1.19, 17.48±3.00, 16.24±1.98 and 16.03±1.49 MPa, respectively. There were significant differences between groups 1 and 7 (P<0.05). No significant difference was observed between other groups (P>0.05). Fuji II LC showed higher bond strength than Fuji II (P<0.05). Conclusion: Type of self-etch adhesive had no significant effect on micro-shear bond strength of glass-ionomer to composite resin. Resin modified glass ionomer cement (RMGIC) exhibited higher bond strength than the conventional GIC. PMID:25628698

  3. Post-bleaching application of an antioxidant on dentin bond strength of three dental adhesives

    PubMed Central

    Khoroushi, Maryam; Saneie, Tahereh

    2012-01-01

    Background: Antioxidizing agents have recently been suggested to compensate decreased bond strength of resin materials to bleached tooth tissues. This study compared the shear bond strength (SBS) of three different adhesives on bleached dentin immediately after bleaching, bleached/delayed for 1 week, and bleached/applied antioxidizing agent. Materials and Methods: The dentinal surfaces of 132 intact extracted molars were prepared and divided into 12 groups. The following adhesives were investigated: Optibond FL (OFL) (three-step etch-and-rinse), Optibond Solo Plus (two-step etch-and-rinse), and Optibond all-in-one (OA) (one-step self-etch) (Kerr, Orange, USA). Unbleached dentin groups (groups 1-3) were prepared as negative controls (NC). The remainder surfaces (groups 4-12) were bleached with 20% Opalescent PF (Ultradent, USA). Specimens were bonded immediately after bleaching (groups 4-6), after 1 week (groups 7-9), or after using 10% sodium ascorbate (SA) gel (groups 10-12). Subsequent to bonding of composite resin, the samples were tested for SBS and analyzed using Kruskal-Wallis and Mann-Whitney tests (α=0.05). Results: Regarding control groups, OA showed the highest SBS among the studied adhesives (P<0.05). The SBS decreased for the adhesives after bleaching except for OFL. No statistically significant difference in SBS were noted when the SA and delayed bonding groups were compared with their similar NC groups (P>0.05) except the of delay bonding with OA. Conclusions: The findings suggest that bond strength of resin to bleached dentin may be affected with the adhesive system. Reduced SBS to bleached dentin can be amended by the use of SA as an antioxidizing agent. However, the amount of reversed bond strength subsequent to applying antioxidant might be related to the kind of dental adhesive. PMID:22363363

  4. Microtensile and tensile bond strength of single-bottle adhesives: a new test method.

    PubMed

    Abdalla, A I

    2004-04-01

    To evaluate the tensile and microtensile bond strength of five single-bottle adhesives to dentine, extracted human molar teeth were used. For each tooth dentine was exposed on the occlusal surface by cutting with an isomet saw and the remaining part was mounted in a plastic ring using dental stone. The tested adhesive materials were: Scotchbond 1, Syntac SC, One-Step, Prime & Bond 2.1 and Clearfil SE Bond. The adhesive was applied to either 1 mm(2) of dentine or a circular area with a diameter of 3.9 mm. Composite resin Clearfil AP-X was placed to the adhesives using a Teflon split mould 3.9 mm in diameter and 2.5 mm in height. Tensile and microtensile bond strengths were measured using a universal testing machine at a crosshead speed of 0.5 mm min(-1). Under tensile mode, the bond strengths were 16.7 +/- 3.5, 15.2 +/- 2.5, 11.5 +/- 3.2, 13.7 +/- 2.6, 20.9 +/- 4.2 MPa for each material. Under microtensile mode, the bond strengths were 52.5 +/- 9.5, 55.3 +/- 8.3, 40.5 +/- 5.2, 37.5 +/- 8.7, 60 +/- 6.21 MPa. Fracture pattern of bonded specimens showed 66% cohesive dentine failure in samples tested for tensile bond strength. For the microtensile test, failures were mainly adhesive at the interface between adhesive and dentine (94%). PMID:15089946

  5. Embedded proteins and sacrificial bonds provide the strong adhesive properties of gastroliths.

    PubMed

    Thormann, Esben; Mizuno, Hiroyasu; Jansson, Kjell; Hedin, Niklas; Fernández, M Soledad; Arias, José Luis; Rutland, Mark W; Pai, Ranjith Krishna; Bergström, Lennart

    2012-07-01

    The adhesive properties of gastroliths from a freshwater crayfish (Cherax quadricarinatus) were quantified by colloidal probe atomic force microscopy (AFM) between heavily demineralized gastrolith microparticles and gastrolith substrates of different composition. Combined AFM and transmission electron microscopy studies demonstrated that the sequential detachment and large adhesion energies that characterise the adhesive behaviour of a native gastrolith substrate are dominated by sacrificial bonds between chitin fibres and between chitin fibres and CaCO(3). The sacrificial bonds were shown to be strongly related to the gastrolith proteins and when the majority of these proteins were removed by ethylenediaminetetraacetic acid (EDTA), the sequential detachment disappeared and the adhesive energy was reduced by more than two orders of magnitude. PMID:22653376

  6. Nondestructive inspection of CFRP adhesively bonded joints using embedded FBG sensors

    NASA Astrophysics Data System (ADS)

    Webb, S.; Shin, P.; Peters, K.; Selfridge, R.; Schultz, S.

    2013-05-01

    One challenging need for inspection capabilities is in adhesively bonded joints between composite components, a common location of premature failure in aerospace structures. In this work we demonstrate that dynamic, full spectral scanning of FBG sensors embedded in the adhesive bond can identify changes in bond quality through the measurement of non-linear dynamics of the joint. Eighteen lap joint specimens were fabricated with varying manufacturing quality. Ten samples also included fiber Bragg grating (FBG) sensors embedded in the adhesive bond for real-time inspection during a simulated flight condition of these single-lap joints. Prior to testing, pulse phase thermography imaging of the pristine specimens revealed defects such as air bubbles, adhesive thickness variations, and weak bonding surface between the laminate and adhesive. The lap joint specimens were then subjected to fatigue loading, with regular interrogation of the FBG sensors at selected load cycle intervals. The FBG data was collected during vibration loading of the lap joint to represent an in-flight environment. Changes in the lap joint dynamic response, including the transition to non-linear responses, were measured from both the full-spectral and peak wavelength FBG data. These changes were correlated to initial manufacturing defects and the progression of fatigue-induced damage independently measured with pulse phase imaging and visual inspections of the failure surfaces.

  7. Adhesive bonding between polyamide and steel

    NASA Astrophysics Data System (ADS)

    Vettegren', V. I.; Bashkarev, A. Ya.; Savitskii, A. V.; Shcherbakov, I. P.; Sytov, V. V.; Mamalimov, R. I.

    2015-08-01

    Fluorescence and IR absorption spectra are taken of coatings obtained by applying polyamide 6 powder on a steel substrate heated above the polymer melting point and subsequently cooling to room temperature. It follows from the coating spectra that the energy of a π* → n transition in the C—O bonds of polyamide decreases. Simultaneously, the maximum of a band assigned to the deformation vibrations of N—H bonds shifts toward longer wavelengths. These effects are explained by the formation of coordination bonds between Fe2+ ions having diffused from the steel into the polymer and nitrogen atoms entering into polyamide 6 molecules. As a result, a coordination-compound-saturated diffusion layer up to 100 µm thick arises near the steel surface. Coordination compounds squeeze the framework of the polyamide 6 molecule roughly by 0.06%. Eventually, a polyamide layer that is stronger than the surroundings appears at the polyamide 6—steel interface.

  8. On structural health monitoring of aircraft adhesively bonded repairs

    NASA Astrophysics Data System (ADS)

    Pavlopoulou, Sofia

    The recent interest in life extension of ageing aircraft and the need to address the repair challenges in the new age composite ones, led to the investigation of new repair methodologies such as adhesively bonded repair patches. The present thesis focuses on structural health monitoring aspects of the repairs, evaluating their performance with guided ultrasonic waves aiming to develop a monitoring strategy which would eliminate unscheduled maintenance and unnecessary inspection costs. To address the complex nature of the wave propagation phenomena, a finite element based model identified the existing challenges by exploring the interaction of the excitation waves with different levels of damage. The damage sensitivity of the first anti-symmetric mode was numerically investigated. An external bonded patch and a scarf repair, were further tested in static and dynamic loadings, and their performance was monitored with Lamb waves, excited by surface-bonded piezoelectric transducers.. The response was processed by means of advanced pattern recognition and data dimension reduction techniques such as novelty detection and principal component analysis. An optimisation of these tools enabled an accurate damage detection under complex conditions. The phenomena of mode isolation and precise arrival time determination under a noisy environment and the problem of inadequate training data were investigated and solved through appropriate transducer arrangements and advanced signal processing respectively. The applicability of the established techniques was demonstrated on an aluminium repaired helicopter tail stabilizer. Each case study utilised alternative non-destructive techniques for validation such as 3D digital image correlation, X-ray radiography and thermography. Finally a feature selection strategy was developed through the analysis of the instantaneous properties of guided waves for damage detection purposes..

  9. Effects of adhesion promoter on orthodontic bonding in fluorosed teeth: A scanning electron microscopy study

    PubMed Central

    Gaur, Aditi; Maheshwari, Sandhya; Verma, Sanjeev Kumar; Tariq, Mohd.

    2016-01-01

    Introduction: The objectives of the present study were to elucidate the effects of fluorosis in orthodontic bonding and to evaluate the efficiency of an adhesion promoter (Assure Universal Bonding Resin) in bonding to fluorosed teeth. Materials and Methods: Extracted premolars were divided into two groups on the basis of Thylstrup and Fejerskov Index. Ten samples from each group were etched and evaluated for etching patterns using scanning electron microscope (SEM). The remaining samples were subdivided into four groups of 20 each on the basis of adhesives used: IA, IIA - Transbond XT and IB, IIB - Transbond XT plus Assure Universal Bonding Resin. Shear bond strength (SBS) was measured after 24 h using the universal testing machine. Adhesive remnant index (ARI) scores were recorded using SEM. Statistical analysis was conducted using a two-way analysis of variance, and Tukey's post hoc test was performed on SBS and ARI scores. Results: Similar etching patterns were observed in both fluorosed and nonfluorosed teeth. No significant differences were found in the SBS values observed in both groups (8.66 ± 3.19 vs. 8.53 ± 3.44, P = 1.000). Increase in SBS was observed when Assure Universal Bonding Resin was used. Higher ARI scores were observed when adhesion promoter was used for bonding. Conclusions: Mild-moderately fluorosed teeth etch in a manner similar to the nonfluorosed teeth. Similar bond strengths were achieved in fluorosed and nonfluorosed teeth when conventional composite was used. Use of adhesion promoter increases the bond strengths in both groups of teeth. PMID:27556020

  10. Interaction morphology and bond strength of nanofilled simplified-step adhesives to acid etched dentin

    PubMed Central

    Di Hipólito, Vinicius; Reis, André Figueiredo; Mitra, Sumita B.; de Goes, Mario Fernando

    2012-01-01

    Objective: To evaluate the effect of nanofillers incorporated into adhesives on the microtensile bond strength (μ-TBS) and interfacial micromorphology to dentin. Methods: The occlusal enamel of 5 human molars was removed and each tooth sectioned into four quarters. The exposed dentin was treated with one of the following adhesives: Adper Single Bond (SB-unfilled), OptiBond Solo Plus (OS-barium aluminoborosilicate, 400nm Ø), Prime & Bond NT (NT-colloidal silica, 7–40 nm Ø) and Adper Single Bond 2 (SB2-colloidal silica, 5nm Ø). Cylinders of resin-based composite were constructed on the adhesive layers. After 24-hour storage, the restored tooth-quadrants were sectioned to obtain stick-shaped specimens (0.8 mm2, cross-sectional area) and submitted to μ-TBS at a cross-speed of 0.5 mm/min. Data were analyzed using one-way ANOVA and Tukey’s test (alpha = .05). Twenty-eight additional teeth were used for interfacial micro-morphologic analysis by SEM (16-teeth) and TEM (12-teeth). The dentin surfaces of 32 discs were treated with the adhesives (8 discs for adhesive) and laminated to form disc-pairs using a flowable resin composite for SEM/EDS analysis. For TEM, 90nm-thick nondemineralized unstained sections were processed. Results: SB2 showed significant higher bond strength than SB, OS and NT. The SEM/EDS and TEM analysis revealed nanofillers infiltrated within the interfibrillar spaces of the SB2-hybrid layer. Fillers were concentrated around patent tubular orifices and in the adhesive layer for OS and NT. Conclusion: The presence of nanofillers within the interfibrillar spaces of the SB2-hybrid layer suggests its importance in the improvement of the μ-TBS. PMID:23077413

  11. Robust adhesive precision bonding in automated assembly cells

    NASA Astrophysics Data System (ADS)

    Müller, Tobias; Haag, Sebastian; Bastuck, Thomas; Gisler, Thomas; Moser, Hansruedi; Uusimaa, Petteri; Axt, Christoph; Brecher, Christian

    2014-03-01

    Diode lasers are gaining importance, making their way to higher output powers along with improved BPP. The assembly of micro-optics for diode laser systems goes along with the highest requirements regarding assembly precision. Assembly costs for micro-optics are driven by the requirements regarding alignment in a submicron and the corresponding challenges induced by adhesive bonding. For micro-optic assembly tasks a major challenge in adhesive bonding at highest precision level is the fact, that the bonding process is irreversible. Accordingly, the first bonding attempt needs to be successful. Today's UV-curing adhesives inherit shrinkage effects crucial for submicron tolerances of e.g. FACs. The impact of the shrinkage effects can be tackled by a suitable bonding area design, such as minimal adhesive gaps and an adapted shrinkage offset value for the specific assembly parameters. Compensating shrinkage effects is difficult, as the shrinkage of UV-curing adhesives is not constant between two different lots and varies even over the storage period even under ideal circumstances as first test results indicate. An up-to-date characterization of the adhesive appears necessary for maximum precision in optics assembly to reach highest output yields, minimal tolerances and ideal beamshaping results. Therefore, a measurement setup to precisely determine the up-to-date level of shrinkage has been setup. The goal is to provide necessary information on current shrinkage to the operator or assembly cell to adjust the compensation offset on a daily basis. Impacts of this information are expected to be an improved beam shaping result and a first-time-right production.

  12. Non-classical adhesive-bonded joints in practical aerospace construction

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Solutions are derived for adhesive-bonded joints of non-classical geometries. Particular attention is given to bonded doublers and to selective reinforcement by unidirectional composites. Non-dimensionalized charts are presented for the efficiency limit imposed on the skin as the result of the eccentricity in the load path through the doubler. It is desirable to employ a relativly large doubler to minimize the effective eccentricity in the load path. The transfer stresses associated with selective reinforcement of metal structures by advanced composites are analyzed. Reinforcement of bolt holes in composites by bonded metal doublers is covered quantitatively. Also included is the adhesive joint analysis for shear flow in a multi-cell torque box, in which the bond on one angle becomes more critical sooner than those on the others, thereby restricting the strength to less than the total of each maximum strength when acting alone. Adhesive plasticity and adherend stiffness and thermal imbalances are included. A simple analysis/design technique of solution in terms of upper and lower bounds on an all-plastic adhesive analysis is introduced.

  13. Processable polyimide adhesive and matrix composite resin

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Progar, Donald J. (Inventor)

    1990-01-01

    A high temperature polyimide composition prepared by reacting 4,4'-isophthaloyldiphthalic anhydride with metaphenylenediamine is employed to prepare matrix resins, adhesives, films, coatings, moldings, and laminates, especially those showing enhanced flow with retention of mechanical and adhesive properties. It can be used in the aerospace industry, for example, in joining metals to metals or metals to composite structures. One area of application is in the manufacture of lighter and stronger aircraft and spacecraft structures.

  14. Direct observation of catch bonds involving cell-adhesion molecules

    NASA Astrophysics Data System (ADS)

    Marshall, Bryan T.; Long, Mian; Piper, James W.; Yago, Tadayuki; McEver, Rodger P.; Zhu, Cheng

    2003-05-01

    Bonds between adhesion molecules are often mechanically stressed. A striking example is the tensile force applied to selectin-ligand bonds, which mediate the tethering and rolling of flowing leukocytes on vascular surfaces. It has been suggested that force could either shorten bond lifetimes, because work done by the force could lower the energy barrier between the bound and free states (`slip'), or prolong bond lifetimes by deforming the molecules such that they lock more tightly (`catch'). Whereas slip bonds have been widely observed, catch bonds have not been demonstrated experimentally. Here, using atomic force microscopy and flow-chamber experiments, we show that increasing force first prolonged and then shortened the lifetimes of P-selectin complexes with P-selectin glycoprotein ligand-1, revealing both catch and slip bond behaviour. Transitions between catch and slip bonds might explain why leukocyte rolling on selectins first increases and then decreases as wall shear stress increases. This dual response to force provides a mechanism for regulating cell adhesion under conditions of variable mechanical stress.

  15. UV-cured adhesives for carbon fiber composite applications

    NASA Astrophysics Data System (ADS)

    Lu, Hsiao-Chun

    Carbon fiber composite materials are increasingly used in automobile, marine, and aerospace industries due to their unique properties, including high strength, high stiffness and low weight. However, due to their brittle characteristic, these structures are prone to physical damage, such as a bird strike or impact damage. Once the structure is damaged, it is important to have fast and reliable temporary repair until the permanent repair or replacement can take place. In this dissertation, UV-based adhesives were used to provide a bonding strength for temporary repair. Adhesively bonded patch repair is an efficient and effective method for temporary repair. In this study, precured patches (hard patches) and dry fabric patches with laminating resins (soft patches) were performed. UV-based epoxy adhesives were applied to both patch repair systems. For precured patch repair, the bonding strengths were investigated under different surface treatments for bonding area and different adhesives thicknesses. The shear stresses of different UV exposure times and curing times were tested. Besides, the large patch repair was investigated as well. For soft patch repair, the hand wet lay-up was applied due to high viscosity of UV resins. A modified single lap shear testing (ASTM D5868) was applied to determine the shear stress. The large patches used fiber glass instead of carbon fiber to prove the possibility of repair with UV epoxy resin by hand wet lay-up process. The hand lay-up procedure was applied and assisted by vacuum pressure to eliminate the air bubbles and consolidate the patches. To enhance the bonding strength and effective soft patch repair, vacuum assisted resin transferring molding (VaRTM) is the better option. However, only low viscosity resins can be operated by VaRTM. Hence, new UV-based adhesives were formulated. The new UV-based adhesives included photoinitiator (PI), epoxy and different solvents. Solvents were used to compound the photoinitiator into epoxy

  16. Morphological and Chemical Characterization of Bonding Hydrophobic Adhesive to Dentin Using Ethanol Wet Bonding Technique

    PubMed Central

    Shin, T. Phillip; Yao, Xiaomei; Huenergardt, Robin; Walker, Mary P; Wang, Yong

    2009-01-01

    Objective BisGMA, a widely used component in dentin adhesive has very good mechanical properties after curing, but is relatively hydrophobic and thus, does not adequately infiltrate the water wet demineralized dentin collagen. Developing techniques that would lead to optimum infiltration of the hydrophobic component into the demineralized dentin matrix is very important. The purpose of this study was to evaluate interfacial morphological and chemical characteristics of the resultant adhesive-dentin interface when the ethanol wet bonding technique is used with hydrophobic adhesives. Materials and methods The occlusal one-third of the crown was removed from six unerupted human third molars; a uniform smear layer was created with 600 grit SiC. The dentin surface was etched with 35% phosphoric acid for 15 seconds before applying BisGMA/HEMA model adhesive using either water wet or ethanol wet bonding technique. Five-micro-thick sections of adhesive/dentin interface specimens were cut and stained with Goldner’s trichrome for light microscopy. Companion slabs were analyzed with SEM and micro-Raman spectroscopy. Results The presence of ethanol in the demineralized dentin increased adhesive collagen encapsulation as indicated by trichrome staining. The SEM results confirmed that the ethanol wet bonding improved the quality of the interface. Micro-Raman spectral analysis of the dentin/adhesive interface indicated there was a gradual decrease in penetration of BisGMA component for specimens using water wet bonding, while relatively homogeneous distribution of the hydrophobic BisGMA component was noted in the interface with ethanol wet bonding. Significance Wet bonding with ethanol instead of water permits better BisGMA infiltration improving the quality of interface. We speculate that the higher infiltration of hydrophobic BisGMA and better collagen encapsulation observed from the specimens using ethanol wet bonding would lead to more durable bonds because of improved

  17. Nanoindentation mapping of a wood-adhesive bond

    NASA Astrophysics Data System (ADS)

    Konnerth, J.; Valla, A.; Gindl, W.

    2007-08-01

    A mapping experiment of a wood phenol-resorcinol-formaldehyde adhesive bond was performed by means of grid nanoindentation. The variability of the modulus of elasticity and the hardness was evaluated for an area of 17 μm by 90 μm. Overall, the modulus of elasticity of the adhesive was clearly lower than the modulus of wood cell walls, whereas the hardness of the adhesive was slightly higher compared to cell walls. A very slight trend of decreasing modulus of elasticity was found with increasing distance from the immediate bond line. However, the trend was superimposed by a high variability of the modulus of elasticity in dependence on the position in the wood cell wall. The unexpectedly high variation of the modulus between 12 and 24 GPa may be explained by the interaction between the helical orientation of the cellulose microfibrils in the S2 layer of the wood cell wall and the geometry of the three-sided Berkovich type indenter pyramid used. Corresponding to the very slight decrease in modulus with increasing distance from the bond line, a similar but clearer trend was found for hardness. Both trends of changing mechanical properties of wood cell walls with varying distance from the bond line are attributed to effects of adhesive penetration into the wood cell wall.

  18. Geometrically nonlinear analysis of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Dattaguru, B.; Everett, R. A., Jr.; Whitcomb, J. D.; Johnson, W. S.

    1982-01-01

    A geometrically nonlinear finite element analysis of cohesive failure in typical joints is presented. Cracked-lap-shear joints were chosen for analysis. Results obtained from linear and nonlinear analysis show that nonlinear effects, due to large rotations, significantly affect the calculated mode 1, crack opening, and mode 2, inplane shear, strain-energy-release rates. The ratio of the mode 1 to mode 2 strain-energy-relase rates (G1/G2) was found to be strongly affected by he adhesive modulus and the adherend thickness. The ratios between 0.2 and 0.8 can be obtained by varying adherend thickness and using either a single or double cracked-lap-shear specimen configuration. Debond growth rate data, together with the analysis, indicate that mode 1 strain-energy-release rate governs debond growth. Results from the present analysis agree well with experimentally measured joint opening displacements.

  19. Nanotube Reinforcement of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Saltysiak, Bethany

    2002-01-01

    Over the past five years there has been much excitement about the development of nanotubes and nanofibers and the potential that these materials may offer in enhancing electrical and mechanical properties of systems. The purpose of this paper is to present research into improving the mechanical performance of polymers by using nanofibers as a reinforcement to make high performance composite materials. This paper will present theoretical predictions of the composite modulus and then present the actual performance of the composite. Fabrication details will be given along with photos of the microstructure. The matrix material is polymethylmethacrylate (PMMA) and the nanofibers are vapor-grown carbon nanofibers produced by Pyrograph Products, Inc.

  20. Nanotube Reinforcement of Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Saltysiak, Bethany

    2003-01-01

    Over the past five years there has been much excitement about the development of nanotubes and nanofibers and the potential that these materials may offer in enhancing electrical and mechanical properties of systems. The purpose of this paper is to present research into improving the mechanical performance of polymers by using nanofibers as a reinforcement to make high performance composite materials. This paper will present theoretical predictions of the composite modulus and then present the actual performance of the composite. Fabrication details will be given along with photos of the microstructure. The matrix material is polymethylmethacrylate (PMMA) and the nanofibers are vapor-grown carbon nanofibers produced by Pyrograph Products, Inc.

  1. High-temperature adhesives for bonding polyimide film. [bonding Kapton film for solar sails

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; Slemp, W. S.; St.clair, T. L.

    1980-01-01

    Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575 K (575 F) in vacuum. Glass transition temperatures of the polyimide/"Kapton" bondlines were monitored by thermomechanical analysis.

  2. Effects of blood contamination on microtensile bond strength to dentin of three self-etch adhesives.

    PubMed

    Chang, Seok Woo; Cho, Byeong Hoon; Lim, Ran Yeob; Kyung, Seung Hyun; Park, Dong Sung; Oh, Tae Seok; Yoo, Hyun Mi

    2010-01-01

    This study evaluated the effects of blood contamination and decontamination methods during different steps of bonding procedures on the microtensile bond strength of two-step self-etch adhesives to dentin. Sixty extracted human molars were ground flat to expose occlusal dentin. The 60 molars were randomly assigned to three groups, each treated with a different two-step self-etch adhesive: Clearfil SE Bond, AdheSE and Tyrian SPE. In turn, these groups were subdivided into five subgroups (n = 20), each treated using different experimental conditions as follows: control group-no contamination; contamination group 1-CG1: primer application/ contamination/primer re-application; contamination group 2-CG2: primer application/contamination/wash/dry/primer re-application; contamination group 3-CG3: primer application/adhesive application/light curing/contamination/ adhesive re-application/light curing; contamina- tion group 4-CG4: primer application/adhesive application/light curing/contamination/wash/ dry/adhesive re-application/light curing. Composite buildup was performed using Z250. After 24 hours of storage in distilled water at 37 degrees C, the bonded specimens were trimmed to an hourglass shape and serially sectioned into slabs with 0.6 mm2 cross-sectional areas. Microtensile bond strengths (MTBS) were assessed for each specimen using a universal testing machine. The data were analyzed by two-way ANOVA followed by a post hoc LSD test. SEM evaluations of the fracture modes were also performed. The contaminated specimens showed lower bond strengths than specimens in the control group (p < 0.05), with the exception of CG1 in the Clearfil SE group and CG2 and CG3 in the Tyrian SPE group. Among the three self-etch adhesives, the Tyrian SPE group exhibited a significantly lower average MTBS compared to the Clearfil SE Bond and AdheSE (p < 0.05) groups. Based on the results of the current study, it was found that blood contamination reduced the MTBS of all three self

  3. Effect of Chlorhexidine on Dentin Bond Strength of Two Adhesive Systems after Storage in Different Media.

    PubMed

    Da Silva, Enio Marcos; Glir, Daniel Hatschbach; Gill, Allana Walesca Martins Castanho; Giovanini, Allan Fernando; Furuse, Adilson Yoshio; Gonzaga, Carla Castiglia

    2015-01-01

    The aim of this study was to evaluate the effect of 2% chlorhexidine (CHX) application during the bonding protocol on microshear bond strength of two adhesive systems, after storage in different media. Seventy-two human molars had their crowns cut in half and embedded in PVC cylinders with acrylic resin. The specimens were randomly divided into experimental groups (n=12) according to the adhesive system (Ambar and Single Bond 2), use of CHX in the bonding protocol, and time interval (24 h and 15 days) in the storage media (distilled water, mineral oil and 1% sodium hypochlorite - NaOCl). Adhesive systems were applied in accordance to manufacturers' recommendations, with or without the use of CHX, and resin composite (Z350 XT) cylinders were placed on the hybridized dentin. After photoactivation, the specimens were stored in distilled water, mineral oil and 1% NaOCl for 24 h and 15 days. Microshear bond strength was determined at a crosshead speed of 0.5 mm/min until fracture. The bond strength data were analyzed statistically by 4-way ANOVA and Tukey's test (α=5%). Use of CHX in the bonding protocol did not cause loss of bond strength in any of the evaluated situations, irrespective of time and storage medium. The storage medium had no influence on bond strength values after 15 days when the bond protocol without CHX application was used. However, the use of CHX in the protocol influenced negatively the bond strength values for Single Bond 2 after 15 days storage in distilled water and 1% NaOCl. PMID:26963210

  4. Analysis of interfacial structure and bond strength of self-etch adhesive systems

    PubMed Central

    Pinzon, Lilliam M; Watanabe, Larry G; Reis, Andre F; Powers, John M; Marshall, Sally J; Marshall, Grayson W

    2013-01-01

    Purpose To determine the bond strength, nanoleakage and interfacial morphology of four self-etch adhesives bonded to superficial dentin. Methods Micro-tensile (MT, n=15) and single plane shear (SP, n=8) bond tests were performed using human dentin polished through 320-grit SiC paper. Clearfil Protect Bond (PB), Clearfil S3 Bond (S3), Prompt L-Pop (PLP) and G-BOND (GB) were used according to manufacturers’ instructions. Composite was applied as cylinders with a thickness of 4 mm with a 1-mm diameter and stored in water at 37° C for 24 hours. Specimens were debonded with a testing machine at a cross-head speed of 1 mm/min. Means and standard deviations of bond strength were calculated. Data were analyzed using ANOVA. Fisher’s PLSD intervals were calculated at the 0.05 level of significance. Failure modes were determined at 100X. The hybrid layer was revealed by treatment with 5N HCl/5% NaOCl or fractured perpendicular to the interface and sputter coated with gold. Specimens were viewed at 1000X, 2500X, and 5000X in a field emission SEM at 15 kV. Teeth (n=2) sectioned into 0.9-mm thick slabs were immersed in ammoniacal silver nitrate solution for 24 hours, rinsed and immersed in photo-developing solution for 8h. Specimens were sectioned (90-nm thick) and observed under TEM. Results Means ranged from 25.0 to 73.1 MPa for MT and from 15.5 to 56.4 MPa for SP. MT values were greater than SP, but were highly correlated (R2 = 0.99, p= 0.003) and provided the same order for the systems studied. Fisher’s PLSD intervals (p<0.05) for bond strength techniques and adhesives results were 1.7 and 2.3 MPa, respectively. Failures sites were mixed. TEM showed that hybrid layers were ~0.5 µm for PB, GB and S3 and ~5 µm for PLP. SEM showed morphologic differences among adhesives. Silver nitrate deposits were observed within interfaces for all adhesive systems. Clinical significance Simplification of application procedures appears to induce loss of adhesion capabilities. In this

  5. Rapid induction bonding of composites, plastics, and metals

    NASA Technical Reports Server (NTRS)

    Buckley, John D.; Fox, Robert L.

    1991-01-01

    The Toroid Bonding Gun is and induction heating device. It is a self contained, portable, low powered induction welding system developed for bonding or joining plastic, ceramic, or metallic parts. Structures can be bonded in a factory or in a the field. This type of equipment allows for applying heat directly to the bond lines and/or to the adhesives without heating the entire structure, supports, and fixtures of a bonding assembly. The induction heating gun originally developed for use in the fabrication of space Gangs of bonders are now used to rapidly join composite sheet and structural components. Other NASA-developed applications of this bonding technique include the joining of thermoplastic composites, thermosetting composites, metals, and combinations of these materials.

  6. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    NASA Technical Reports Server (NTRS)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  7. Effect of cleaning methods on bond strength of self-etching adhesive to dentin

    PubMed Central

    Bronzato, Juliana Delatorre; Cecchin, Doglas; Miyagaki, Daniela Cristina; de Almeida, José Flávio Affonso; Ferraz, Caio Cezar Randi

    2016-01-01

    Aim: The aim of this study was to investigate the influence of cleaning methods to remove zinc oxide-eugenol-based root canal sealer (Endomethasone) on the bond strength of the self-etching adhesive to dentin. Materials and Methods: Twenty crowns of bovine incisors were cut to expose the pulp chamber. A zinc oxide- and eugenol-based sealer was placed for 10 min in contact with the pulp chamber dentin. Specimens were divided into four groups according to the cleaning method of dentin used: G1, no root canal sealer (control); G2, 0.9% sodium chlorite (NaCl); G3, ethanol; and G4, followed by diamond drill. After cleaning, the teeth were restored with composite resin and Clearfil SE Bond. All specimens were sectioned to produce rectangular sticks and dentin/resin interface was submitted to microtensile bond testing. The mean bond strengths were analyzed using ANOVA/Tukey (α = 0.05). Results: G3 and G4 showed bond strengths similar to the G1 (P > 0.05). A significant decrease in the bond strength in the G2 was observed (P < 0.05). G1, G3, and G4, the predominant failure mode was the mixed type. The prevalence of adhesive failure mode was verified in the G2. Conclusion: The cleaning methods affected the bond strength of the self-etching adhesive to dentin differently. PMID:26957789

  8. Effect of EDTA Conditioning and Carbodiimide Pretreatment on the Bonding Performance of All-in-One Self-Etch Adhesives

    PubMed Central

    Singh, Shipra; Nagpal, Rajni; Tyagi, Shashi Prabha; Manuja, Naveen

    2015-01-01

    Objective. This study evaluated the effect of ethylenediaminetetraacetic acid (EDTA) conditioning and carbodiimide (EDC) pretreatment on the shear bond strength of two all-in-one self-etch adhesives to dentin. Methods. Flat coronal dentin surfaces were prepared on one hundred and sixty extracted human molars. Teeth were randomly divided into eight groups according to two different self-etch adhesives used [G-Bond and OptiBond-All-In-One] and four different surface pretreatments: (a) adhesive applied following manufacturer's instructions; (b) dentin conditioning with 24% EDTA gel prior to application of adhesive; (c) EDC pretreatment followed by application of adhesive; (d) application of EDC on EDTA conditioned dentin surface followed by application of adhesive. Composite restorations were placed in all the samples. Ten samples from each group were subjected to immediate and delayed (6-month storage in artificial saliva) shear bond strength evaluation. Data collected was subjected to statistical analysis using three-way ANOVA and post hoc Tukey's test at a significance level of p < 0.05.  Results and Conclusion. EDTA preconditioning as well as EDC pretreatment alone had no significant effect on the immediate and delayed bond strengths of either of the adhesives. However, EDC pretreatment on EDTA conditioned dentin surface resulted in preservation of resin-dentin bond strength of both adhesives with no significant fall over six months. PMID:26557850

  9. Effects of two adhesion boosters on the shear bond strength of new and rebonded orthodontic brackets.

    PubMed

    Chung, C H; Fadem, B W; Levitt, H L; Mante, F K

    2000-09-01

    The purpose of this study was to evaluate the effects of 2 adhesion boosters, Enhance LC (Reliance, Itasca, Ill) and All-Bond 2 (Bisco, Schaumburg, Ill), on the shear bond strength of new and rebonded (previously debonded) brackets. Sixty new and 60 sandblasted rebonded brackets were bonded to 120 extracted human premolars with composite resin and divided equally into 6 groups based on the 2 adhesion boosters used: (1) new brackets/no booster (2) rebonded brackets/no booster (3) new brackets/Enhance (4) rebonded brackets/Enhance (5) new brackets/All-Bond (6) rebonded brackets/All-Bond. Shear bond strength of each sample was tested with an Instron machine (Instron Corp, Canton, Mass). Results show that the new brackets/All-Bond group yielded the highest strength (20.8 +/- 7.5 MPa), followed by the new brackets/Enhance group (18.6 +/- 6.5 MPa), rebond brackets/All-Bond group (17.3 +/- 7.2 MPa), new brackets/no booster group (16.8 +/- 6.3 MPa), rebonded brackets/no booster group (14.2 +/- 7.2 MPa), and rebonded brackets/Enhance group (13.6 +/- 6.7 MPa). No statistically significant difference was found among the 3 groups utilizing new brackets. For groups of rebonded brackets/no booster and rebonded brackets/Enhance, bond strength was significantly lower than groups of 3 new brackets and rebonded brackets/All-Bond. Rebonded brackets/All-Bond group had comparable bond strength to all 3 new brackets groups. It was concluded that in the process of replacing a failed bracket, (1) when new brackets are used, neither All-Bond 2 or Enhance LC improves bond strength significantly, (2) without the use of any adhesion booster, sandblasted rebonded brackets yield significantly less bond strength than new brackets, (3) Enhance LC fails to increase bond strength of sandblasted rebonded brackets, (4) All-Bond 2 significantly increases bond strength of sandblasted rebonded brackets, (5) sandblasted rebonded brackets with All-Bond 2 yield comparable bond strength to new brackets

  10. Influence of an oxygen-inhibited layer on enamel bonding of dental adhesive systems: surface free-energy perspectives.

    PubMed

    Ueta, Hirofumi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Oouchi, Hajime; Sai, Keiichi; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The influence of an oxygen-inhibited layer (OIL) on the shear bond strength (SBS) to enamel and surface free-energy (SFE) of adhesive systems was investigated. The adhesive systems tested were Scotchbond Multipurpose (SM), Clearfil SE Bond (CS), and Scotchbond Universal (SU). Resin composite was bonded to bovine enamel surfaces to determine the SBS, with and without an OIL, of adhesives. The SFE of cured adhesives with and without an OIL were determined by measuring the contact angles of three test liquids. There were no significant differences in the mean SBS of SM and CS specimens with or without an OIL; however, the mean SBS of SU specimens with an OIL was significantly higher than that of SU specimens without an OIL. For all three systems, the mean total SFE (γS), polarity force (γSp), and hydrogen bonding force (γSh) values of cured adhesives with an OIL were significantly higher than those of cured adhesives without an OIL. The results of this study indicate that the presence of an OIL promotes higher SBS of a single-step self-etch adhesive system, but not of a three-step or a two-step self-etch primer system. The SFE values of cured adhesives with an OIL were significantly higher than those without an OIL. The SFE characteristics of the OIL of adhesives differed depending on the type of adhesive. PMID:26647775

  11. Adhesive bond cryogenic lens cell margin of safety test

    NASA Astrophysics Data System (ADS)

    Stubbs, David M.; Hom, Craig L.; Holmes, Howard C.; Cannon-Morret, Joseph C.; Lindstrom, Obert F.; Irwin, J. Wes; Ryder, Leigh A.; Hix, Troy T.; Bonvallet, Jane A.; Hu, Hsin-Kuei S.; Chapman, Ira V.; Lomax, Curtis; Kvamme, E. Todd; Feller, Gregory S.; Haynes, Mark M.

    2011-09-01

    The Near Infrared Camera (NIRCam) instrument for NASA's James Webb Space Telescope (JWST) has an optical prescription which employs four triplet lens cells. The instrument will operate at 35K after experiencing launch loads at approximately 295K and the optic mounts must accommodate all associated thermal and mechanical stresses, plus maintain an exceptional wavefront during operation. Lockheed Martin Space Systems Company (LMSSC) was tasked to design and qualify the bonded cryogenic lens assemblies for room temperature launch, cryogenic operation, and thermal survival (25K) environments. The triplet lens cell designs incorporated coefficient of thermal expansion (CTE) matched bond pad-to-optic interfaces, in concert with flexures to minimize bond line stress and induced optical distortion. A companion finite element study determined the bonded system's sensitivity to bond line thickness, adhesive modulus, and adhesive CTE. The design team used those results to tailor the bond line parameters, minimizing stress transmitted into the optic. The challenge for the Margin of Safety (MOS) team was to design and execute a test that verified all bond pad/adhesive/ optic substrate combinations had the required safety factor to generate confidence in a very low probability optic bond failure during the warm launch and cryogenic survival conditions. Because the survival temperature was specified to be 25K, merely dropping the test temperature to verify margin was not possible. A shear/moment loading device was conceived that simultaneously loaded the test coupons at 25K to verify margin. This paper covers the design/fab/SEM measurement/thermal conditioning of the MOS test articles, the thermal/structural analysis, the test apparatus, and the test execution/results.

  12. A fracture mechanics approach for designing adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Mall, S.

    1983-01-01

    An analytical and experimental investigation was undertaken to determine if the adhesive debond initiation stress could be predicted for arbitrary joint geometries. The analysis was based upon a threshold total strain-energy-release rate (Gth) concept. Two bonded systems were tested: T300/5208 graphite/epoxy adherends bonded with either EC-3445 or FM-300 adhesive. The Gth for each adhesive was determined from cracked-lap-shear (CLS) specimens by initiation tests. Finite-element analyses of various tapered CLS specimen geometries predicted the specimen stress at which the total strain-energy-release rate (GT) equaled Gth at the joint tip. Experiments verified the predictions. The approach described herein predicts the maximum stress at which an adhesive joint can be cycled yet not debond. Furthermore, total strain-energy-release rate appeared to be the driving parameter for cyclic debonding and debond initiation in structural adhesives. In addition, debond initiation and growth were found to occur with virtually no peel stress present.

  13. Adhesive bond strengths to enamel and dentin using recommended and extended treatment times.

    PubMed

    Kimmes, Nicole S; Barkmeier, Wayne W; Erickson, Robert L; Latta, Mark A

    2010-01-01

    This study examined the effect of different enamel and dentin conditioning times on the shear bond strength of a resin composite using etch-and-rinse and self-etch adhesive systems. Shear bond strengths were determined following treatment of flat ground human enamel and dentin surfaces (4000 grit) with 11 adhesive systems: 1) AdheSE One Viva Pen-(ASE), 2) Adper Prompt L-Pop-(PLP), 3) Adper Single Bond Plus-(SBP), 4) Clearfil SE Bond-(CSE), 5) Clearfil S3 Bond-(CS3), 6) OptiBond All-In-One-(OBA), 7) OptiBond Solo Plus-(OBS), 8) Peak SE-(PSE), 9) Xeno IV-(X4), 10) Xeno V-(X5) and 11) XP Bond-(XPB) using recommended treatment times and an extended treatment time of 60 seconds (n = 10/group). Composite (Z100) to enamel and dentin bond strengths (24 hours) were determined using Ultradent fixtures and debonded with a crosshead speed of 1 mm/minute. The data were analyzed with a three-way Analysis of Variance (ANOVA) and Fisher's LSD post hoc test. The highest shear bond strengths (MPa) to enamel were achieved by the three etch-and-rinse systems at both the recommended treatment time (SBP-40.5 +/- 6.1; XPB-38.7 +/- 3.7; OBS- 35.2 +/- 6.2) and the extended treatment time (SBP-44.5 +/- 8.1; XPB-40.9 +/- 5.7; OBS-35.0 +/- 4.5). Extending the enamel treatment time did not produce a significant change (p > 0.05) in bond strength for the 11 adhesive systems tested. OBS generated the highest (46.2 +/- 7.9) bond strengths to dentin at the recommended treatment time. At the extended treatment time X4 (42.2 +/- 11.7), PSE (42.1 +/- 9.7) and OBS (41.4 +/- 8.0) produced the highest bond strengths to dentin. The bond strength change between recommend and extended treatment times was significant (p < 0.05) for PSE, but the other 10 systems did not exhibit any significant change. PMID:20166418

  14. Evaluation of bond strength of different adhesive systems: Shear and Microtensile Bond Strength Test

    PubMed Central

    GALLUSI, G.; GALEANO, P.; LIBONATI, A.; GIUCA, M.R.; CAMPANELLA, V.

    2010-01-01

    SUMMARY Objectives. Aim of this work is the in vitro bond strength evaluation of three bonding agents comparing the results of two kinds of test, Microtensile Bond Strength Test and a Shear Bond Strength Test. Bond strength tests have been used to test both direct and indirect restorative techniques to investigate if methods could give different results. Methods 72 human third molars have been collected and stored in physiological solution. Three kinds of test were conducted: 1- SB, 2- “Slice” preparation μTBS1, 3- “Stick” preparation μTBS2. We tested three different adhesive systems (Groups 1-2-3 n=24), two restorative techniques (subgroup A–B n=12). The tested adhesives were: Optibond FL (OFL) (Group 1), Optibond Solo Plus (OSP) (Group 2), Optibond Solo Plus Self-Etch (OSSE) (Group 3). For all tests was used a universal load machine Instron Machine. Results. Best values were found for Optibond FL with mean values of 45–50 MPa. Optibond Solo Plus resulted in values very similar and in some cases almost identical to FL. Optibond Solo Self Etch showed poorer adhesion in both direct and indirect restorative techniques. The parametric and non parametric statistical variance analysis pointed out the absence of significant differences between OFL and OSP, and demonstrated a significant difference for OSSE adhesive. Significance. The results confirm that a total etch two-step adhesive is the best compromise between easiness and effectiveness. PMID:23285371

  15. New Experimental Sample for Shear Testing of Adhesively Bonded Assemblies

    NASA Astrophysics Data System (ADS)

    Challita, Georges; Othman, Ramzi; Guegan, Pierrick; Khalil, Khalid; Poitou, Arnaud

    In this paper, Split Hopkinson Bar technique was used to investigate the shear behaviour of adhesively bonded assemblies at high rates of loading. New sample geometry was adopted so that the compressive wave is transformed in a shear loading in the sample. Samples are conditioned at 20°C and 50% of hygrometry to eliminate any interference with temperature and humidity effects. The new technique is applied to an assembly built with a cyanoacrylate based adhesive and a metallic (Steel) adherent. They are found to be highly rate sensitive.

  16. Strategies for precision adhesive bonding of micro-optical systems

    NASA Astrophysics Data System (ADS)

    Müller, Tobias; Kotnur Venu, Vyshak; Haag, Sebastian; Zontar, Daniel; Sauer, Sebastian; Wenzel, Christian; Brecher, Christian

    2015-02-01

    Today's piezo-based micromanipulator technology allows for highly precise manipulation of optical components. A crucial question for the quality of optical assemblies is the misalignment after curing. The challenge of statistical deviations in the curing process requires a sophisticated knowledge on the relevant process parameters. An approach to meet these requirements is the empirical analysis such as characterization of shrinkage. Gaining sophisticated knowledge about the statistical process of adhesive bonding advances the quality of related production steps like beam-shaping optics, mounting of turning mirrors for fiber coupling or building resonators evaluating power, mode characteristics and beam shape. Maximizing the precision of these single assembly steps fosters the scope of improving the overall efficiency of the entire laser system. At Fraunhofer IPT research activities on the identification of relevant parameters for improved adhesive bonding precision have been undertaken and are ongoing. The influence of the volumetric repeatability of different automatic and manual dispensing methods play an important role. Also, the evaluation of UV-light sources and the relating illumination properties have a significant influence on the bonding result. Furthermore, common UV-curing adhesives are being examined on their performance and reliability for both highest precision prototyping, as well as their application as robust bonding medium in automated optics assembly cells. This paper sums up the parameters of most influence. Overall goal of these activities is the development of a prediction model for optimized shrinkage compensation and thus improved assembly quality.

  17. Bond strengths of a self-etching adhesive to dentin surfaces treated with saliva, blood, and different hemostatic agents.

    PubMed

    Unlu, Nimet; Cebe, Fatma; Cebe, Mehmet Ata; Cetin, Ali Riza; Cobanoglu, Nevin

    2015-01-01

    The aim of this study was to evaluate the microtensile bond strengths of a self-etching adhesive to dentin surfaces after treatment with 4 different hemostatic agents in the presence of saliva and blood. After testing, no significant differences were found between the mean bond strength of Clearfil SE (CSE) Bond resin adhesive to normal dentin and those of CSE to dentin treated with the hemostatic agents ViscoStat Clear, Astringedent, or Astringedent X (P > 0.05). However, the mean bond strength of CSE Bond to dentin treated with Ankaferd Blood Stopper (ABS) was significantly greater than those of the other groups (P < 0.05). Thus, while 3 of the tested hemostatic agents did not have significant effects on the bond strength of composite resin to dentin, ABS increased the bond strength of CSE Bond to dentin. PMID:26147164

  18. Computational Characterization of Adhesive Bond Properties Using Guided Waves in Bonded Plates

    NASA Astrophysics Data System (ADS)

    Koreck, Juergen; Valle, Christine; Qu, Jianmin; Jacobs, Laurence J.

    2007-03-01

    This research focuses on the application of guided waves techniques to nondestructively characterize the structural integrity of bonded engineering components. Computational methods are used to examine the properties of double-layered, adhesive bonded plates. This study quantifies the effect of the adhesive bond parameters (Young's modulus, Poisson's ratio and bond thickness) on the dispersion curves. A commercial finite element (FE) code (ABAQUS/Explicit) is used for the numerical model while the global matrix method (GMM) is used to benchmark the resulting dispersion relationships in the form of a frequency-wavenumber or slowness-frequency relation. In the dispersion relations, a set of bond parameter sensitive and FE-visible points is selected. The frequency locations of these points represent the solution criteria for the inversion procedure based on the global matrix method. The capabilities of the inversion process depend on the number of transient output signals from a FE simulation for the forward problem.

  19. Explosive bonding of metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Reece, O. Y.

    1969-01-01

    Explosive bonding process produces sheet composites of aluminum alloy reinforced by high-strength stainless steel wires. The bonds are excellent metallurgically, no external heat is required, various metals can be bonded, and the process is inexpensive.

  20. Effect of digluconate chlorhexidine on bond strength between dental adhesive systems and dentin: A systematic review

    PubMed Central

    Dionysopoulos, Dimitrios

    2016-01-01

    Aim: This study aimed to systematically review the literature for the effect of digluconate chlorhexidine (CHX) on bond strength between dental adhesive systems and dentin of composite restorations. Materials and Methods: The electronic databases that were searched to identify manuscripts for inclusion were Medline via PubMed and Google search engine. The search strategies were computer search of the database and review of reference lists of the related articles. Search words/terms were as follows: (digluconate chlorhexidine*) AND (dentin* OR adhesive system* OR bond strength*). Results: Bond strength reduction after CHX treatments varied among the studies, ranging 0-84.9%. In most of the studies, pretreatment CHX exhibited lower bond strength reduction than the control experimental groups. Researchers who previously investigated the effect of CHX on the bond strength of dental adhesive systems on dentin have reported contrary results, which may be attributed to different experimental methods, different designs of the experiments, and different materials investigated. Conclusions: Further investigations, in particular clinical studies, would be necessary to clarify the effect of CHX on the longevity of dentin bonds. PMID:26957786

  1. Numerical Characterization of a Composite Bonded Wing-Box

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Lovejoy, Andrew E.; Satyanarayana, Arunkumar

    2008-01-01

    The development of composite wing structures has focused on the use of mechanical fasteners to join heavily-loaded areas, while bonded joints have been used only for select locations. The focus of this paper is the examination of the adhesive layer in a generic bonded wing box that represents a "fastenerless" or unitized structure in order to characterize the general behavior and failure mechanisms. A global/local approach was applied to study the response of the adhesive layer using a global shell model and a local shell/solid model. The wing box was analyzed under load to represent a high-g up-bending condition such that the strains in the composite sandwich face sheets are comparable to an expected design allowable. The global/local analysis indicates that at these wing load levels the strains in the adhesive layer are well within the adhesive's elastic region, such that yielding would not be expected in the adhesive layer. The global/local methodology appears to be a promising approach to evaluate the structural integrity of the adhesively bonded structures.

  2. Plasma treatment of dentin surfaces for improving self-etching adhesive/dentin interface bonding

    PubMed Central

    Dong, Xiaoqing; Li, Hao; Chen, Meng; Wang, Yong; Yu, Qingsong

    2015-01-01

    This study is to evaluate plasma treatment effects on dentin surfaces for improving self-etching adhesive and dentin interface bonding. Extracted unerupted human third molars were used after crown removal to expose dentin. One half of each dentin surface was treated with atmospheric non-thermal argon plasmas, while another half was untreated and used as the same tooth control. Self-etching adhesive and universal resin composite was applied to the dentin surfaces as directed. After restoration, the adhesive-dentin bonding strength was evaluated by micro-tensile bonding strength (μTBS) test. Bonding strength data was analyzed using histograms and Welch’s t-test based on unequal variances. μTBS test results showed that, with plasma treatment, the average μTBS value increased to 69.7±11.5 MPa as compared with the 57.1±17.5 MPa obtained from the untreated controls. After 2 months immersion of the restored teeth in 37 °C phosphate buffered saline (PBS), the adhesive-dentin bonding strengths of the plasma-treated specimens slightly decreased from 69.7±11.5 MPa to 63.9±14.4 MPa, while the strengths of the untreated specimens reduced from 57.1±17.5 MPa to 48.9±14.6 MPa. Water contact angle measurement and scanning electron microscopy (SEM) examination verified that plasma treatment followed by water rewetting could partially open dentin tubules, which could enhance adhesive penetration to form thicker hybrid layer and longer resin tags and consequently improve the adhesive/dentin interface quality. PMID:26273561

  3. Adhesive joint and composites modeling in SIERRA.

    SciTech Connect

    Ohashi, Yuki; Brown, Arthur A.; Hammerand, Daniel Carl; Adolf, Douglas Brian; Chambers, Robert S.; Foulk, James W., III

    2005-11-01

    Polymers and fiber-reinforced polymer matrix composites play an important role in many Defense Program applications. Recently an advanced nonlinear viscoelastic model for polymers has been developed and incorporated into ADAGIO, Sandia's SIERRA-based quasi-static analysis code. Standard linear elastic shell and continuum models for fiber-reinforced polymer-matrix composites have also been added to ADAGIO. This report details the use of these models for advanced adhesive joint and composites simulations carried out as part of an Advanced Simulation and Computing Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical response of an adhesive joint when loaded during repeated thermal cycling is simulated, the response of some composite rings under internal pressurization is calculated, and the performance of a composite container subjected to internal pressurization, thermal loading, and distributed mechanical loading is determined. Finally, general comparisons between the continuum and shell element approaches for modeling composites using ADAGIO are given.

  4. Recent advances in bonded composite repair technology for metallic aircraft components

    SciTech Connect

    Baker, A.A.; Chester, R.J.

    1993-12-31

    Advanced fiber composites such as boron/epoxy can be employed as adhesively bonded patches to repair or to reinforce metallic aerospace components. This approach provides many advantages over conventional mechanically fastened metallic patches, including improved fatigue behavior, reduced corrosion and easy conformance to complex aerodynamic contours. Bonded composite repairs have been shown to provide high levels of bond durability under aircraft operating conditions. The recent application of bonded composite repairs to military and civil aircraft is described.

  5. Adhesive bone bonding prospects for lithium disilicate ceramic implants

    NASA Astrophysics Data System (ADS)

    Vennila Thirugnanam, Sakthi Kumar

    Temporomandibular Joint (TMJ) implants articulating mandible with temporal bone in humans have a very high failure rate. Metallic TMJ implants available in the medical market are not osseointegrated, but bond only by mechanical interlocking using screws which may fail, mandating a second surgery for removal. Stress concentration around fixture screws leads to aseptic loosening or fracture of the bone. It has been proposed that this problem can be overcome by using an all-ceramic TMJ implant bonded to bone with dental adhesives. Structural ceramics are promising materials with an excellent track record in the field of dentis.

  6. Micro-tensile bond strength of two adhesives to Erbium:YAG-lased vs. bur-cut enamel and dentin.

    PubMed

    De Munck, Jan; Van Meerbeek, Bart; Yudhira, Rafaël; Lambrechts, Paul; Vanherle, Guido

    2002-08-01

    The purpose of the study was to assess the hypotheses that laser irradiation is equally effective for bonding as traditional acid-etch procedures, and that tooth substrate prepared either by Erbium:YAG laser or diamond bur is equally receptive to adhesive procedures. Buccal/oral enamel and mid-coronal dentin were laser-irradiated using an Erbium:YAG laser. A total-etch adhesive (OptiBond FL) applied with and without prior acid-etching and a self-etch adhesive (Clearfil SE Bond) were employed to bond the composite. The micro-tensile bond strength (microTBS) was determined after 24 h of storage in water. Failure patterns were analysed using a stereo-microscope, and samples were processed for Field-emission Scanning Electron Microscopy (Fe-SEM) evaluation. Unbonded, lased enamel and dentin surfaces were evaluated using Fe-SEM as well. The total-etch adhesive bonded significantly less effectively to lased than to bur-cut enamel/dentin. Laser 'conditioning' was clearly less effective than acid-etching. Moreover, acid etching lased enamel and dentin significantly improved the microTBS of OptiBond FL. The self-etch adhesive performed equally to lased as to bur-cut enamel, but significantly less effectively to lased than to bur-cut dentin. It is concluded that cavities prepared by laser appear less receptive to adhesive procedures than conventional bur-cut cavities. PMID:12206595

  7. The effect of antimicrobial agents on bond strength of orthodontic adhesives: a meta-analysis of in vitro studies.

    PubMed

    Altmann, A S P; Collares, F M; Leitune, V C B; Samuel, S M W

    2016-02-01

    Antimicrobial orthodontic adhesives aim to reduce white spot lesions' incidence in orthodontic patients, but they should not jeopardizing its properties. Systematic review and meta-analysis were performed to answer the question whether the association of antimicrobial agents with orthodontic adhesives compromises its mechanical properties and whether there is a superior antimicrobial agent. PubMed and Scopus databases. In vitro studies comparing shear bond strength of conventional photo-activated orthodontic adhesives to antimicrobial photo-activated orthodontic adhesives were considered eligible. Search terms included the following: orthodontics, orthodontic, antimicrobial, antibacterial, bactericidal, adhesive, resin, resin composite, bonding agent, bonding system, and bond strength. The searches yielded 494 citations, which turned into 467 after duplicates were discarded. Titles and abstracts were read and 13 publications were selected for full-text reading. Twelve studies were included in the meta-analysis. The global analysis showed no statistically significant difference between control and experimental groups. In the subgroup analysis, only the chlorhexidine subgroup showed a statistically significant difference, where the control groups had higher bond strength than the experimental groups. Many studies on in vitro orthodontic bond strength fail to report test conditions that could affect their outcomes. The pooled in vitro data suggest that adding an antimicrobial agent to an orthodontic adhesive system does not influence bond strength to enamel. It is not possible to state which antimicrobial agent is better to be associated. PMID:26257400

  8. Adhesion of hydrogels under water by hydrogen bonding: from molecular interactions to macroscopic adhesion

    NASA Astrophysics Data System (ADS)

    Creton, Costantino

    2012-02-01

    Hydrogels are an essential part of living organisms and are widely used in biotechnologies, health care and food science. Although swelling properties, cell adhesion on gel surfaces and gel elasticity have attracted much interest, macroscopic adhesion of hydrogels on solid surfaces in aqueous environment is much less well understood. We studied systematically and in aqueous environment, the reversible adhesion by hydrogen bonding of macroscopic model hydrogels of polydimethylacrylamide (PDMA) or of polyacrylamide (PAAm) on solid surfaces functionalized with polyacrylic acid (PAA) polymer brushes. The hydrogels were synthesized by free radical polymerization and the brushes were prepared by grafting polytertbutyl acrylate chains and converting them by pyrolisis into polyacrylic acid. A new adhesion tester based on the flat punch geometry was designed and used to control the contact area, contact time, contact pressure and debonding velocity of the gels from the surface while the samples were fully immersed in water. The adhesion tests were performed at different pH and temperatures and the modulus of the gel and grafting density and molecular weight of the brushes was varied. Macroscopic adhesion results were compared with phase diagrams in dilute solution to detect molecular interactions. While the PDMA/PAA pair behaved very similarly in solution and in macroscopic adhesion tests, the PAAm/PAA pair showed an unexpectedly high adhesion level relatively to its complexation ability in dilute solution. Surprisingly, time dependent experiments showed that the kinetics of H-bond formation and breakup at interfaces was very slow resulting in adhesion energies which were very dependent on contact time up to one hour of contact. At the molecular level, neutron reflectivity showed that the equilibrium brush conformation when in contact with the gels was more extended at pH2 (H-bonds activated) than at pH9 (H-bonds deactivated) and that a certain applied pressure was

  9. Glenn Refractory Adhesive for Bonding and Exterior Repair (GRABER) Developed for Repairing Shuttle Damage

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Shpargel, Tarah P.

    2005-01-01

    Advanced in-space repair technologies for reinforced carbon/carbon composite (RCC) thermal protection system (TPS) structures are critically needed for the space shuttle Return To Flight (RTF) efforts. These technologies are also critical for the repair and refurbishment of thermal protection system structures of future Crew Exploration Vehicles of space exploration programs. The Glenn Refractory Adhesive for Bonding and Exterior Repair (GRABER) material developed at the NASA Glenn Research Center has demonstrated capabilities for repair of small cracks and damage in RCC leading-edge material. The concept consists of preparing an adhesive paste of desired ceramic in a polymer/phenolic resin matrix with appropriate additives, such as surfactants, and then applying the paste into the damaged or cracked area of the RCC composite components with caulking guns. The adhesive paste cures at 100 to 120 C and transforms into a high-temperature ceramic during simulated vehicle reentry testing conditions.

  10. Innovative use of adhesive interface characteristics to nondestructively quantify the strength of bonded joints.

    SciTech Connect

    Roach, Dennis Patrick; Duvall, Randy L.; Rackow, Kirk A.

    2010-05-01

    Advances in structural adhesives have permitted engineers to contemplate the use of bonded joints in areas that have long been dominated by mechanical fasteners and welds. Although strength, modulus, and toughness have been improved in modern adhesives, the typical concerns with using these polymers still exist. These include concerns over long-term durability and an inability to quantify bond strength (i.e., identify weak bonds) in adhesive joints. Bond deterioration in aging structures and bond strength in original construction are now critical issues that require more than simple flaw detection. Whether the structure involves metallic or composite materials, it is necessary to extend inspections beyond the detection of disbond flaws to include an assessment of the strength of the bond. Use of advanced nondestructive inspection (NDI) methods to measure the mechanical properties of a bonded joint and associated correlations with post-inspection failure tests have provided some clues regarding the key parameters involved in assessing bond strength. Recent advances in ultrasonic- and thermographic-based inspection methods have shown promise for measuring such properties. Specialized noise reduction and signal enhancement schemes have allowed thermographic interrogations to image the subtle differences between bond lines of various strengths. Similarly, specialized ultrasonic (UT) inspection techniques, including laser UT, guided waves, UT spectroscopy, and resonance methods, can be coupled with unique signal analysis algorithms to accurately characterize the properties of weak interfacial bonds. The generation of sufficient energy input levels to derive bond strength variations, the production of sufficient technique sensitivity to measure such minor response variations, and the difficulty in manufacturing repeatable weak bond specimens are all issues that exacerbate these investigations. The key to evaluating the bond strength lies in the ability to exploit the

  11. Hybridization quality and bond strength of adhesive systems according to interaction with dentin

    PubMed Central

    Salvio, Luciana Andrea; Hipólito, Vinicius Di; Martins, Adriano Luis; de Goes, Mario Fernando

    2013-01-01

    Objective: To evaluate the hybridization quality and bond strength of adhesives to dentin. Materials and Methods: Ten human molars were ground to expose the dentin and then sectioned in four tooth-quarters. They were randomly divided into 5 groups according to the adhesive used: Two single-step self-etch adhesives – Adper Prompt (ADP) and Xeno III (XE), two two-step self-etching primer systems – Clearfil SE Bond (SE) and Adhe SE (ADSE), and one one-step etch-and-rinse system – Adper Single Bond (SB). Resin composite (Filtek Z250) crown buildups were made on the bonded surfaces and incrementally light-cured for 20 s. The restored tooth-quarters were stored in water at 37°C for 24 h and then sectioned into beams (0.8 mm2 in cross-section). Maximal microtensile bond strength (μ-TBS) was recorded (0.5 mm/min in crosshead speed). The results were submitted to one-way ANOVA and Tukey's test (α = 0.05). Thirty additional teeth were used to investigate the hybridization quality by SEM using silver methenamine or ammoniacal silver nitrate dyes. Results: SE reached significantly higher μ-TBS (P < 0.05); no significance was found between ADSE and XE (P > 0.05), and between SB and ADP (P > 0.05); ADSE and XE were significantly higher than SB and ADP (P < 0.05). The bonding interface of SB showed the most intense silver uptake. SE and ADSE showed more favorable hybridization quality than that observed for ADP and XE. Conclusions: The bond strength and hybridization quality were affected by the interaction form of the adhesives with dentin. The hybridization quality was essential to improve the immediate μ-TBS to dentin. PMID:24926212

  12. Influence of fluoride-containing adhesives and bleaching agents on enamel bond strength.

    PubMed

    Cavalli, Vanessa; Liporoni, Priscila Cristiane Suzy; Rego, Marcos Augusto do; Berger, Sandrine Bittencourt; Giannini, Marcelo

    2012-01-01

    This study evaluated the influence of fluoride-containing carbamide peroxide (CP) bleaching agents and adhesive systems on bonded enamel interfaces that are part of the dynamic pH cycling and thermal cycling models. The buccal surfaces of 60 bovine incisors were restored with a composite resin and bonded with three- and two-step, etch-and-rinse, fluoride-containing adhesives, Optibond FL (FL) and Optibond Solo Plus (SP), respectively. Restored teeth were subjected to thermal cycling to age the interface. Both SP and FL adhesive-restored teeth were bleached (n = 10) with 10% CP (CP) and 10% CP + fluoride (CPF) or were left unbleached (control). Bleaching was performed for 14 days simultaneously with pH cycling, which comprised of 14 h of remineralization, 2 h of demineralization and 8 h of bleaching. The control groups (FL and SP) were stored in remineralizing solution during their bleaching periods and were also subjected to carious lesion formation. Parallelepiped-shaped samples were obtained from the bonded interface for microtensile bond strength (μTBS) testing. The enamel μTBS of the FL and SP groups (control, not bleached) were higher (p < 0.05) than those of the bleached interfaces (FL > FL + CPF = FL + CP and SP > SP + CPF = SP + CP). The groups subjected to treatment with the fluoride-containing bleaching agents exhibited similar μTBS compared to regular bleaching agents. Bleaching agents, regardless of whether they contained fluoride, decreased enamel bond strength. PMID:23184165

  13. Bonding efficacy of etch-and-rinse adhesives after dentin biomodification using ethanol saturation and collagen cross-linker pretreatment

    PubMed Central

    Sharma, Pallavi; Nagpal, Rajni; Tyagi, Shashi Prabha; Manuja, Naveen

    2015-01-01

    Aim: To evaluate whether the application of two simplified etch-and-rinse adhesives to biomodified dentin using ethanol-wet bonding (EWB) and collagen cross-linker (CCL) pretreatment improves their sealing ability. Materials and Methods: In 176 extracted human molars, the pulp-chambers were deroofed, and teeth were sectioned horizontally. Samples were randomly divided into eight groups according to four bonding techniques using two simplified etch-and-rinse adhesives; Adper Single Bond 2 (ASB) and XP Bond (XPB). The bonding protocols included: (a) Water-wet bonding (WWB); (b) EWB; (c) WWB and CCL application; (d) EWB and CCL application. After composite resin restorations, dye leakage evaluation and scanning electron microscope analysis were done. Leakage scores were statistically analyzed using Kruskal-Wallis and Mann-Whitney U tests at a significance level of P < 0.05. Result: For both ASB and XPB adhesives, least dye leakage was observed in EWB groups (b and d) (P = 0.918 and P = 0.399 respectively) which showed no significant difference, while maximum leakage scores were seen in WWB groups (a and c). Regardless of CCL application and adhesives used, EWB technique depicted (P = 0.003 and P = 0.004) significantly greater sealing ability than WWB. Conclusion: Bonding of ASB and XPB using EWB significantly improved their sealing ability. Biomodification using CCL pretreatment had no significant effect on the sealing ability of adhesives bonded with either WWB or EWB. PMID:26180421

  14. Bonding to sound vs caries-affected dentin using photo- and dual-cure adhesives.

    PubMed

    Say, Esra Can; Nakajima, Masatoshi; Senawongse, Pisol; Soyman, Mübin; Ozer, Füsun; Tagami, Junji

    2005-01-01

    This study aimed to evaluate the microtensile bond strength (microTBS) of photo- and dual-cure adhesives to sound and caries-affected dentin using total- and self-etch techniques. Human third molars with occlusal caries were prepared as previously described by Nakajima and others (1995). Dentin surfaces were bonded with Optibond Solo Plus (Kerr; photo-cure adhesive) or Optibond Solo Plus + Dual-cure activator (Kerr; dual-cure adhesive) with total- and self-etch technique. Clearfil AP-X (Kuraray) was used for composite buildups. Following storage in distilled water at 37 degrees C for 24 hours, the teeth were sectioned into 0.7-mm thick slices to obtain sound and caries-affected dentin slabs, then trimmed to form hour glass shapes with a 1 mm2 cross-sectional area. The specimens were subjected to microtensile testing using EZ-test (Shimadzu) at 1 mm/minute. Data were analyzed using three-way ANOVA and Student's t-Test (p<0.05). Bond strengths to sound dentin with photo- and dual-cure adhesives using total- and self-etch techniques were significantly higher than those to caries-affected dentin. Dual-cure adhesive significantly decreased bond strengths both to sound and caries-affected dentin. The total-etch technique showed no beneficial effect on caries-affected dentin compared with the self-etch technique. Scanning electron microscopic observation of the resin-dentin interfaces revealed that hybrid layers in caries-affected dentin were thicker than those observed in sound dentin with photo- and dual-cure adhesives. Resin infiltration into dentinal tubules of caries-affected dentin was hampered by the presence of mineral deposits. PMID:15765963

  15. Inspection of bonded composites using selectively excited ultrasonic modes

    NASA Astrophysics Data System (ADS)

    Krauss, Gordon Gustav

    Improved methods of nondestructive testing (NDT) of multi-layered composites are vital for fundamental research in composites fabrication and performance. Fast, accurate NDT methods can also be used to predict catastrophic in-use failure and to reduce costly rejects during the manufacture of composite parts. Commercial normal incidence inspection techniques have generally yielded reliable detection of large areas of delamination and damage. They fail, however, to detect defects within thin bonded regions, such as disbonds, debonds, kissing bonds, and porosity. We have developed and studied a nondestructive testing technique designed to be sensitive to flaws in the bond area of adhesively bonded anisotropic materials. The technique utilizes specific ultrasonic modes which are selected through a priori modeling of the composite as a single anisotropic elastic layer. The displacement and stress profiles of the modes within the fluid loaded layer are evaluated. A propagating mode that is predicted to be highly sensitive to the bond area is then utilized in the inspection. The inspection is carried out with an apparatus designed and constructed to excite and detect the selected ultrasonic mode. The apparatus uses transducers oriented at the theoretically optimal incident angle to excite the desired mode, using a tone burst between 0.5 and 10.0 MHz. We monitor with a second transducer changes in the amplitude of the leaky component of the mode propagating in the plate. By using this apparatus we have experimentally distinguished changes in the bond areas of adhesively bonded aluminum plates and carbon-epoxy composite plates of unidirectional and quasi-isotropic lay-up, The radiated leaky wave amplitudes from poorly bonded plates were less than 50% of those from corresponding well bonded plates. We observed no significant changes in the amplitudes of normal incidence pulse-echo signals for these specimens. These results demonstrate that selective mode excitation can

  16. Experimental determination of the effects of moisture on composite-to-composite adhesive joints

    NASA Technical Reports Server (NTRS)

    Deiasi, R. J.; Schulte, R. L.

    1981-01-01

    The primary mode of moisture ingress into bonded composite joints is determined using a nuclear probe for deuterium (NPD) to measure the localized D2O content along the length of the adhesive (FM-300 and EA-9601) and through the thickness of bonded composite speciments. Calculated diffusivities and NPD measured equilibrium moisture contents are used to predict the moisture profiles along the length of the adhesives as a function of exposure time, temperature, and relative humidity. These results are compared with the observed moisture profiles to evaluate the extent of enhanced edge diffusion. The FM-300 adhesive exhibits good agreement between measured and predicted profiles at 49 C, 70% and 90% RH, and 77 C, 70% RH. At 77 C, 90% RH, the measured moisture content near the adhesive edge is substantially larger than the predicted level. The EA-9601 adhesive also shows good agreement at 49 C, 70% and 90% RH, but at 77 C, the concentration of D20 near the edges is enhanced at each humidity level. The effect of moisture content on the bond shear strength at room temperature and at elevated temperature is evaluated.

  17. Effects of solvent volatilization time on the bond strength of etch-and-rinse adhesive to dentin using conventional or deproteinization bonding techniques

    PubMed Central

    de Sousa Júnior, José Aginaldo; Carregosa Santana, Márcia Luciana; de Figueiredo, Fabricio Eneas Diniz

    2015-01-01

    Objectives This study determined the effect of the air-stream application time and the bonding technique on the dentin bond strength of adhesives with different solvents. Furthermore, the content and volatilization rate of the solvents contained in the adhesives were also evaluated. Materials and Methods Three adhesive systems with different solvents (Stae, SDI, acetone; XP Bond, Dentsply De Trey, butanol; Ambar, FGM, ethanol) were evaluated. The concentrations and evaporation rates of each adhesive were measured using an analytical balance. After acid-etching and rinsing, medium occlusal dentin surfaces of human molars were kept moist (conventional) or were treated with 10% sodium hypochlorite for deproteinization. After applying adhesives over the dentin, slight air-stream was applied for 10, 30 or 60 sec. Composite cylinders were built up and submitted to shear testing. The data were submitted to ANOVA and Tukey's test (α = 0.05). Results Stae showed the highest solvent content and Ambar the lowest. Acetone presented the highest evaporation rate, followed by butanol. Shear bond strengths were significantly affected only by the factors of 'adhesive' and 'bonding technique' (p < 0.05), while the factor 'duration of air-stream' was not significant. Deproteinization of dentin increased the bond strength (p < 0.05). Stae showed the lowest bond strength values (p < 0.05), while no significant difference was observed between XP Bond and Ambar. Conclusions Despite the differences in content and evaporation rate of the solvents, the duration of air-stream application did not affect the bond strength to dentin irrespective of the bonding technique. PMID:26295023

  18. Quantitative Percussion Diagnostics For Evaluating Bond Integrity Between Composite Laminates

    NASA Astrophysics Data System (ADS)

    Poveromo, Scott Leonard

    Conventional nondestructive testing (NDT) techniques used to detect defects in composites are not able to determine intact bond integrity within a composite structure and are costly to use on large and complex shaped surfaces. To overcome current NDT limitations, a new technology was utilized based on quantitative percussion diagnostics (QPD) to better quantify bond quality in fiber reinforced composite materials. Experimental results indicate that this technology is capable of detecting 'kiss' bonds (very low adhesive shear strength), caused by the application of release agents on the bonding surfaces, between flat composite laminates bonded together with epoxy adhesive. Specifically, the local value of the loss coefficient determined from quantitative percussion testing was found to be significantly greater for a release coated panel compared to that for a well bonded sample. Also, the local value of the probe force or force returned to the probe after impact was observed to be lower for the release coated panels. The increase in loss coefficient and decrease in probe force are thought to be due to greater internal friction during the percussion event for poorly bonded specimens. NDT standards were also fabricated by varying the cure parameters of an epoxy film adhesive. Results from QPD for the variable cure NDT standards and lap shear strength measurements taken of mechanical test specimens were compared and analyzed. Finally, experimental results have been compared to a finite element analysis to understand the visco-elastic behavior of the laminates during percussion testing. This comparison shows how a lower quality bond leads to a reduction in the percussion force by biasing strain in the percussion tested side of the panel.

  19. Dentin bond strength of a fluoride-releasing adhesive system submitted to pH-cycling.

    PubMed

    Costa, Ana Rosa; Correr-Sobrinho, Lourenço; Ambrosano, Glaucia Maria Bovi; Sinhoreti, Mario Alexandre Coelho; Borges, Gilberto Antonio; Platt, Jeffrey A; Puppin-Rontani, Regina Maria

    2014-01-01

    To evaluate the microtensile bond strength (µTBS) of a fluoride-containing adhesive system submitted to a pH-cycling and storage time regimen for primary outcomes. As secondary outcomes the fluoride released amount was evaluated. Twelve dentin surfaces from sound third molar were divided into 2 groups according to adhesive systems: Clearfil SE Protect (PB) and Clearfil SE Bond (SE). Sticks obtained (1.0 mm2) from teeth were randomly divided into 3 subgroups according to storage regimen model: immediate (24h); 5-month deionized water (W); and pH-cycling model (C). All sticks were tested for µTBS in a universal testing machine. Fluoride concentration was obtained from 1-4 days and 30-day in W and 1-4 days in demineralization (DE)/remineralization (RE) solutions from C, using a fluoride-specific electrode. µTBS and fluoride released data were, respectively, submitted to ANOVA in a split plot design and Tukey, and Friedman' tests (a=0.05). There was no significant interaction between adhesive system and storage regimen for µTBS. W showed the lowest µTBS values. There was no significant difference between 24 h and C models for µTBS. There was no significant difference between adhesive systems. Failure mode was predominantly cohesive within composite for the 24 h and W, for the C group it was mixed for SE and cohesive within composite for PB adhesive system. Fluoride concentrations in the DE/RE solutions were less than 0.03125 ppm and not detected in W. In conclusion, the fluoride-containing adhesive system performed similarly to the regular one. Hydrolytic degradation is the main problem with both adhesive systems, regardless of fluoride contents. PMID:25590191

  20. Evaluation of micro-shear bond strength of resin modified glass-ionomer to composite resins using various bonding systems

    PubMed Central

    Kasraie, Shahin; Shokripour, Mohadese; Safari, Mahin

    2013-01-01

    Aim: The aim was to compare the micro-shear bond strength between composite and resin-modified glass-ionomer (RMGI) by different adhesive systems. Materials and Methods: A total of 16 discs of RMGI with a diameter of 15 mm and a thickness of 2 mm were randomly divided into four groups (n = 4). Four cylinders of composite resin (z250) were bonded to the RMGI discs with Single Bond, Clearfil SE Bond and Clearfil S3 Bond in Groups 1-3, respectively. The fourth group was the control. Samples were tested by a mechanical testing machine with a strain rate of 0.5 mm/min. Failure mode was assessed under a stereo-microscope. Results: The means of micro-shear bond strength values for Groups 1-4 were 14.45, 23.49, 16.23 and 5.46 MPa, respectively. Using a bonding agent significantly increased micro-shear bond strength (P = 0.0001). Conclusion: Micro-shear bond strength of RMGI to composite increased significantly with the use of adhesive resin. The bond strength of RMGI to composite resin could vary depending upon the type of adhesive system used. PMID:24347892

  1. Analysis Method for Inelastic, Adhesively Bonded Joints with Anisotropic Adherends

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Klang, Eric C.

    2003-01-01

    A one-dimensional analysis method for evaluating adhesively bonded joints composed of anisotropic adherends and adhesives with nonlinear material behavior is presented in the proposed paper. The strain and resulting stress field in a general, bonded joint overlap are determined by using a variable-step, finite-difference solution algorithm to iteratively solve a system of first-order differential equations. Applied loading is given by a system of combined extensional, bending, and shear forces that are applied to the edge of the joint overlap. Adherends are assumed to behave as linear, cylindrically bent plates using classical laminated plate theory that includes the effects of first-order transverse shear deformation. Using the deformation theory of plasticity and a modified von-Mises yield criterion, inelastic material behavior is modeled in the adhesive layer. Results for the proposed method are verified against previous results from the literature and shown to be in excellent agreement. An additional case that highlights the effects of transverse shear deformation between similar adherends is also presented.

  2. Adhesive-bonded scarf and stepped-lap joints

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Continuum mechanics solutions are derived for the static load-carrying capacity of scarf and stepped-lap adhesive-bonded joints. The analyses account for adhesive plasticity and adherend stiffness imbalance and thermal mismatch. The scarf joint solutions include a simple algebraic formula which serves as a close lower bound, within a small fraction of a per cent of the true answer for most practical geometries and materials. Digital computer programs were developed and, for the stepped-lap joints, the critical adherend and adhesive stresses are computed for each step. The scarf joint solutions exhibit grossly different behavior from that for double-lap joints for long overlaps inasmuch as that the potential bond shear strength continues to increase with indefinitely long overlaps on the scarf joints. The stepped-lap joint solutions exhibit some characteristics of both the scarf and double-lap joints. The stepped-lap computer program handles arbitrary (different) step lengths and thickness and the solutions obtained have clarified potentially weak design details and the remedies. The program has been used effectively to optimize the joint proportions.

  3. Durable bonds at the adhesive/dentin interface: an impossible mission or simply a moving target?

    PubMed Central

    SPENCER, Paulette; Jonggu PARK, Qiang YE; MISRA, Anil; BOHATY, Brenda S.; SINGH, Viraj; PARTHASARATHY, Ranga; SENE, Fábio; de Paiva GONÇALVES, Sérgio Eduardo; LAURENCE, Jennifer

    2013-01-01

    Composite restorations have higher failure rates, more recurrent caries and increased frequency of replacement as compared to dental amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and failure. The gingival margin of composite restora tions is particularly vulnerable to decay and at this margin, the adhesive and its seal to dentin provides the primary barrier between the prepared tooth and the environment. The intent of this article is to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface. PMID:24855586

  4. Effects of mechanical properties of adhesive resin cements on stress distribution in fiber-reinforced composite adhesive fixed partial dentures.

    PubMed

    Yokoyama, Daiichiro; Shinya, Akikazu; Gomi, Harunori; Vallittu, Pekka K; Shinya, Akiyoshi

    2012-01-01

    Using finite element analysis (FEA), this study investigated the effects of the mechanical properties of adhesive resin cements on stress distributions in fiber-reinforced resin composite (FRC) adhesive fixed partial dentures (AFPDs). Two adhesive resin cements were compared: Super-Bond C&B and Panavia Fluoro Cement. The AFPD consisted of a pontic to replace a maxillary right lateral incisor and retainers on a maxillary central incisor and canine. FRC framework was made of isotropic, continuous, unidirectional E-glass fibers. Maximum principal stresses were calculated using finite element method (FEM). Test results revealed that differences in the mechanical properties of adhesive resin cements led to different stress distributions at the cement interfaces between AFPD and abutment teeth. Clinical implication of these findings suggested that the safety and longevity of an AFPD depended on choosing an adhesive resin cement with the appropriate mechanical properties. PMID:22447051

  5. Fracture testing and analysis of adhesively bonded joints for automotive applications

    SciTech Connect

    Boeman, R.G.; Warren, C.D.

    1994-12-31

    In 1992, the Oak Ridge National Laboratory (ORNL) began a cooperative effort with the Automotive Composites Consortium (ACC) to conduct research and development that would overcome technological hurdles to the adhesive bonding of current and future automotive materials. This effort is part of a larger Department of Energy (DOE) program to promote the use of lighter weight materials in automotive structures for the purpose of increasing fuel efficiency and reducing environmental pollutant emissions. In accomplishing this mission, the bonding of similar and dissimilar materials was identified as being of primary importance to the automotive industry since this enabling technology would give designers the freedom to choose from an expanded menu of low mass materials for component weight reduction. This paper concentrates on the details of developing accurate fracture test methods for adhesively bonded joints in the automotive industry. The test methods being developed are highly standardized and automated so that industry suppliers will be able to pass on reliable data to automotive designers in a timely manner. Mode I fracture tests have been developed that are user friendly and automated for easy data acquisition, data analysis, test control and test repeatability. The development of this test is discussed. In addition, materials and manufacturing issues are addressed which are of particular importance when designing adhesive and composite material systems.

  6. Bonding performance and interfacial characteristics of short fiber-reinforced resin composite in comparison with other composite restoratives.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-06-01

    The purpose of this study was to investigate the shear bond strength (SBS) and surface free-energy (SFE) of short fiber-reinforced resin composite (SFRC), using different adhesive systems, in comparison with other composite restoratives. The resin composites used were everX Posterior (EP), Clearfil AP-X (CA), and Filtek Supreme Ultra Universal Restorative (FS). The adhesive systems used were Scotchbond Multi-Purpose (SM), Clearfil SE Bond (CS), and G-Premio Bond (GB). Resin composite was bonded to dentin, and SBS was determined after 24 h of storage in distilled water and after 10,000 thermal cycles (TCs). The SFEs of the resin composites and the adhesives were determined by measuring the contact angles of three test liquids. The SFE values and SFE characteristics were not influenced by the type of resin composite, but were influenced by the type of adhesive system. The results of this study suggest that the bonding performance and interfacial characteristics of SFRC are the same as for other composite restoratives, but that these parameters are affected by the type of adhesive system. The bonding performance of SFRC was enhanced by thermal cycling in a manner similar to that for other composite restoratives. PMID:26954878

  7. Statistical failure analysis of adhesive resin cement bonded dental ceramics

    PubMed Central

    Wang, Yaou; Katsube, Noriko; Seghi, Robert R; Rokhlin, Stanislav I.

    2007-01-01

    The goal of this work is to quantitatively examine the effect of adhesive resin cement on the probability of crack initiation from the internal surface of ceramic dental restorations. The possible crack bridging mechanism and residual stress effect of the resin cement on the ceramic surface are examined. Based on the fracture-mechanics-based failure probability model, we predict the failure probability of glass-ceramic disks bonded to simulated dentin subjected to indentation loads. The theoretical predictions match experimental data suggesting that both resin bridging and shrinkage plays an important role and need to be considered for accurate prognostics to occur. PMID:18670583

  8. Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III (Inventor); Lundgren, Eric C. (Inventor)

    2016-01-01

    Systems, methods, and apparatus for increasing durability of adhesively bonded joints in a sandwich structure. Such systems, methods, and apparatus includes an first face sheet and an second face sheet as well as an insert structure, the insert structure having a first insert face sheet, a second insert face sheet, and an insert core material. In addition, sandwich core material is arranged between the first face sheet and the second face sheet. A primary bondline may be coupled to the face sheet(s) and the splice. Further, systems, methods, and apparatus of the present disclosure advantageously reduce the load, provide a redundant path, reduce structural fatigue, and/or increase fatigue life.

  9. Torsional Stiffness Verification of an Adhesively Bonded Joint

    NASA Astrophysics Data System (ADS)

    Annicchiarico, A.; Caputo, F.; De Angelis, G.; Frascà, F.; Lamanna, G.

    2010-06-01

    In the present work numerical-experimental analysis for the characterization of a structural adhesive has been performed. The numerical analysis has been carried out through the finite element method by using, for the phases pre / post processing were used commercial programs while for the phase of numerical solution the Abaqus code was used. The experimental analyses were carried out at laboratories of C.R.F. S.C.p.A. by using of a standard quasi static testing machine. Later numerical analysis was performed comparing the torsional stiffness of a vehicle in which the welded connection between the pavilion and the flank has been substituted by bonded one. This comparison has allowed to demonstrate the ability of the bonded joint discussed to provide mechanical performances comparable with those of a welded joint widely used in the automotive industry.

  10. Effect of blood contamination with 1-step self-etching adhesives on microtensile bond strength to dentin.

    PubMed

    Yoo, H M; Pereira, P N R

    2006-01-01

    This study evaluated the effect of blood contamination and decontamination methods on the microtensile bond strength of 1-step self-etching adhesive systems to dentin contaminated after adhesive application and light curing. Three commercially available "all-in-one" adhesives (One Up Bond F, Xeno III and Adper Prompt L-Pop) and 1 resin composite (Clearfil AP-X) were used. Third molars that had been stored in distilled water with 0.5% thymol at 4 degrees C were ground with #600 SiC paper under running water to produce a standardized smear layer. The specimens were randomly divided into groups according to the 3 adhesive systems. The adhesive systems were used under 3 conditions: no contamination, which was the control (C); contamination of the light-cured adhesive surface with blood and reapplication of adhesive (Contamination 1) and contamination of the light-cured adhesive surface with blood, then washing, drying and reapplication of the adhesive (Contamination 2). Following light curing of the adhesive, the resin composite was placed in 3 increments up to a 5-mm-thick layer on the bonded surface. All specimens were stored in distilled water at 37 degrees C for 24 hours. The microtensile bond strength was measured using a universal testing machine (EZ test), and data were analyzed by 1-way ANOVA followed by the Duncan test to make comparisons among the groups (p=0.05). After debonding, 5 specimens were selected from each group and examined in a scanning electron microscope to evaluate the modes of fracture. For all adhesives, contamination groups showed lower bond strength than the control (p<0.05). There was no statistically significant difference among the control groups (p>0.05). For Xeno III and Adper Prompt L-Pop, contamination group #2 showed the lowest bond strength among the groups (p<0.05). For One Up Bond F, contamination group #2 showed higher bond strength than contamination group #1 but showed no statistical significance between them (p>0.05). PMID

  11. Effect of surface pretreatments on resin composite bonding to PEEK.

    PubMed

    Silthampitag, Patcharawan; Chaijareenont, Pisaisit; Tattakorn, Kittipong; Banjongprasert, Chaiyasit; Takahashi, Hidekazu; Arksornnukit, Mansuang

    2016-01-01

    This study evaluated the effect of surface pretreatments on resin composite bonding to polyetheretherketone (PEEK). Four groups of surface pretreatment (no pretreatment, etched with 98% sulfuric acid, etched with piranha solution and sandblasting with 50 µm alumina) were performed on PEEK. Surface roughness, Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis were examined. Shear bond strength (SBS) and interface characteristics were also evaluated after the specimens were bonded with resin materials. Two-way ANOVA analysis revealed significance on two main effects and interactions. Tukey's multiple comparisons test showed that the SBS of resin composite on PEEK were the highest in the group etched with 98% sulfuric acid and bonded with Heliobond(®) (p<0.05). All pretreatments produced similar spectra of FTIR patterns. SEM demonstrated porosities and pitting from chemical etching, which suggested a significant influence on the adhesion between PEEK and resin materials. PMID:27477234

  12. 24% Indigenously Prepared Ethylene Diamine Tetra Acetic Acid Compared to Self-Etching Adhesives and their Effect on Shear Bond Strength of Composites in Primary Teeth: An In-vitro Study

    PubMed Central

    Nagar, Priya; Tandil, Yogesh L.; T.P., Chandru; Gupta, Anamika; Kalaria, Devendra; Kumar, Prafful

    2015-01-01

    Background: Over the years, it has been known that 34% phosphoric acid is the benchmark in etchants with the best shear bond strength shown with composites in primary teeth. However, with latest technological advancements and innovations, in order to reduce the number of steps and less damage to the tooth structure, non-rinse conditioner (NRC) & Single-Etch and various other etchants have been tried and tested. These etchants have been found to have shear bond strength comparable to phosphoric acid. In this study, indigenously prepared 24% ethylenediaminetetraacetic acid (EDTA) has been compared with established etchants, as to prove if their shear bond strength was closely related. As it is a well-known fact that EDTA could be less damaging to the enamel during etching and hence can be an alternative for etching of primary teeth. Materials and Methods: For the study 60 caries-free primary molars were used, they were sectioned in the middle, after making area for bonding; the marked area was then etched using different etchants for 30 s. Each of the teeth was then rinsed and bonded with composite resin and thermocycling was done. Shear bond strength testing was done on the composite using Universal Testing Machine. Results: Results of the study showed that phosphoric acid showed the highest bond strength, closely followed by Single Etch (Adper Prompt) and NRC, then by EDTA. Conclusions: About 24% EDTA can be another comparable replacement for phosphoric acid if used with a Single Etch Primer, like Prime and Bond NT on primary teeth. 34% phosphoric acid has the highest bond strength values with composite resin. Single etch followed by NRC has the second and third highest bond strength values, which are comparable to phosphoric acid. PMID:26464540

  13. Heat Transfer in Adhesively Bonded Honeycomb Core Panels

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    2001-01-01

    The Swann and Pittman semi-empirical relationship has been used as a standard in aerospace industry to predict the effective thermal conductivity of honeycomb core panels. Recent measurements of the effective thermal conductivity of an adhesively bonded titanium honeycomb core panel using three different techniques, two steady-state and one transient radiant step heating method, at four laboratories varied significantly from each other and from the Swann and Pittman predictions. Average differences between the measurements and the predictions varied between 17 and 61% in the temperature range of 300 to 500 K. In order to determine the correct values of the effective thermal conductivity and determine which set of the measurements or predictions were most accurate, the combined radiation and conduction heat transfer in the honeycomb core panel was modeled using a finite volume numerical formulation. The transient radiant step heating measurements provided the best agreement with the numerical results. It was found that a modification of the Swann and Pittman semi-empirical relationship which incorporated the facesheets and adhesive layers in the thermal model provided satisfactory results. Finally, a parametric study was conducted to investigate the influence of adhesive thickness and thermal conductivity on the overall heat transfer through the panel.

  14. Nondestructive Characterization of Adhesive Bonds from Guided Wave Data

    NASA Technical Reports Server (NTRS)

    Mal, A.; Lih, S-S.; Bar-Cohen, Y.

    1994-01-01

    The critical role played by interface zones in the fracture and failure of composites and other bonded materials is well known. The existing nondestructive evaluation methods are generally not capable of yielding useful quantitative information of the strength of an interface.

  15. Effect of chlorhexidine on bonding durability of two self-etching adhesives with and without antibacterial agent to dentin

    PubMed Central

    Shafiei, Fereshteh; Alikhani, Armaghan; Alavi, Ali Asghar

    2013-01-01

    Background: Considering the possibility of remaining bacteria in the cavity or invading via microgaps, the use of antibacterial agents in adhesive restoration may be beneficial. This study evaluated the effect of chlorhexidine on immediate and long-term shear bond strength of adhesives with and without antibacterial agent to dentin. Materials and Methods: In this in vitro study, the occlusal surfaces of 80 intact human premolars were removed to expose the flat midcoronal dentin. The teeth were assigned to four groups. Two adhesive systems, Clearfil SE Bond (SE) and Clearfil Protect Bond (PB) were used according to manufacturer's instructions as the control groups. In the experimental groups, 2% chlorhexidine was applied prior to acidic primer of two adhesives. Then, resin composite was applied. Half of the specimens in each group were submitted to shear bond test after 24 h without thermocycling, and the other half were submitted to water storage for 6 months and thermocycling before testing. The data was analyzed using three-way analysis of variance (ANOVA) and t-test (α = 0.05). Results: Chlorhexidine application significantly decreased the initial bond strength (BS) of the two self-etch adhesives to dentin (P < 0.05). There was a significant reduction in BS of SE and PB after aging compared to initial bonding (P < 0.05). However, there was no significant difference between BS of the control and chlorhexidine-treated groups for the tested adhesives after aging. PB showed a lower BS than SE in two time periods (P < 0.05). Conclusion: Chlorhexidine was capable of diminishing the loss of BS of these adhesives over time. However, considering the negative effect of chlorhexidine on the initial BS, the benefits of chlorhexidine associated with these adhesives cannot possibly be used. PMID:24379870

  16. Adhesive bonding and the use of corrosion resistant primers. [for metal surface preparation

    NASA Technical Reports Server (NTRS)

    Hockridge, R. R.; Thibault, H. G.

    1972-01-01

    The use of an anti-corrosive primer has been shown to be essential to assure survival of a bonded structure in a hostile environment, particularly if a stress is to be applied to the adhesively bonded joint during the environmental exposure. For example, the Lockheed L-1011 TriStar assembly, after exhaustive evaluation tests specifies use of chromate filled inhibitive polysulfide sealants, and use of corrosion inhibiting adhesive primers prior to structural bonding with film adhesive.

  17. Evaluating the shear bond strength of enamel and dentin with or without etching: A comparative study between dimethacrylate-based and silorane-based adhesives

    PubMed Central

    Hajizadeh, Hila; Nasseh, Atefeh; Rahmanpour, Naim

    2015-01-01

    Background Silorane-based composites and their specific self-etch adhesive were introduced to conquest the polymerization shrinkage of methacrylate-based composites. It has been shown that additional etching of enamel and dentin can improve the bond strength of self-etch methacrylate-based adhesives but this claim is not apparent about silorane-based adhesives. Our objective was to compare the shear bond strength (SBS) of enamel and dentin between silorane-based adhesive resin and a methacrylate-based resin with or without additional etching. Material and Methods 40 sound human premolars were prepared and divided into two groups: 1- Filtek P60 composite and Clearfil SE Bond adhesive; 2- Filtek P90 composite and Silorane adhesive. Each group divided into two subgroups: with or without additional etching. For additional etching, 37% acid phosphoric was applied before bonding procedure. A cylinder of the composite was bonded to the surface. After 24 hours storage and 500 thermo cycling between 5-55°C, shear bond strength was assessed with the cross head speed of 0.5 mm/min. Then, bonded surfaces were observed under stereomicroscope to determine the failure mode. Data were analyzed with two-way ANOVA and Fischer exact test. Results Shear bond strength of Filtek P60 composite was significantly higher than Filtek P90 composite both in enamel and dentin surfaces (P<0.05). However, additional etching had no significant effect on shear bond strength in enamel or dentin for each of the composites (P>0.05). There was no interaction between composite type and additional etching (P>0.05). Failure pattern was mainly adhesive and no significant correlation was found between failure and composite type or additional etching (P>0.05). Conclusions Shear bond strength of methacrylate-based composite was significantly higher than silorane-based composite both in enamel and dentin surfaces and additional etching had no significant effect on shear bond strength in enamel or dentin for

  18. Bond performance of "Touch and Cure" adhesives on resin core systems.

    PubMed

    Kadowaki, Yoshitaka; Kakuda, Shinichi; Kawano, Shimpei; Katsumata, Aiichiro; Ting, Shihchun; Hoshika, Shuhei; Ikeda, Takatsumi; Tanaka, Toru; Carvalho, Ricardo Marinsde; Sano, Hidehiko

    2016-01-01

    The purpose of this study was to compare the micro-tensile bond strength (µTBS) of three resin core composites to dentin and to examine the bonded interface of the composites. One experimental TDK-03(TD) and, two commercial, DC core Automix One (DC) and Unifil core EM(UN) were used. Flat dentin surfaces of human molars were exposed using #600 SiC paper and bonded with the respective adhesive of each system. After bonding, the composites were built up on the surfaces and cured under two conditions: "light condition" or "dark condition". µTBSs (MPa) in the light condition were: TD; 60.02±17.08, DC; 38.21±13.70, and UN; 29.50±9.71; in the dark condition: TD; 54.62±17.11, DC; 8.40±4.81, and UN; 9.47±6.56. Dark curing negatively affected the bond strength of the two commercial resin-core materials. The experimental material was not affected by the curing conditions. PMID:27251993

  19. Resin-dentin bond strength of 10 contemporary etch-and-rinse adhesive systems after one year of water storage.

    PubMed

    Fontes, Silvia Terra; Cubas, Gloria Beatriz de Azevedo; Flores, Josiane Barcelos; Montemezzo, Murieli Leonor; Pinto, Marcia Bueno; Piva, Evandro

    2010-01-01

    To compare the resin-dentin bond degradation of 10 contemporary etch-and-rinse adhesive systems after one year of water storage, 100 bovine incisors were randomly separated into 10 groups and their superficial coronal dentin was exposed. According to manufacturers' instructions, dentin surfaces were bonded with one of seven two-step etch-and-rinse adhesives or one of three three-step etch-and-rinse adhesives. Composite buildups were constructed incrementally. Restored teeth were sectioned to obtain sticks (0.5 mm²). The specimens were subjected to a microtensile bond strength test after storage in distilled water (at 37°C) for one year. Data (MPa) were analyzed using Kruskal-Wallis and Tukey's tests at α = 0.05. Of the adhesives tested, One Step, All Bond 2, and Optibond FL attained the highest bond strength to dentin after one year in water storage, while Magic Bond DE and Master Bond presented a high number of premature debonded flaws. PMID:21062710

  20. Light-induced bonding and debonding with supramolecular adhesives.

    PubMed

    Heinzmann, Christian; Coulibaly, Souleymane; Roulin, Anita; Fiore, Gina L; Weder, Christoph

    2014-04-01

    Light-responsive supramolecular polymers were applied as reversible adhesives that permit bonding and debonding on demand features. A telechelic poly(ethylene-co-butylene) (PEB) was functionalized with either self-complementary hydrogen-bonding ureidopyrimidinone (UPy) motifs (UPy-PEB-UPy) or 2,6-bis(1'-methylbenzimidazolyl)-pyridine (Mebip) ligands (Mebip-PEB-Mebip), which can coordinate to metal ions (Zn(NTf2)2) and form a metallosupramolecular polymer with the sum formula [Znx(Mebip-PEB-Mebip)](NTf2)2x, with x ≈ 1. In the latter case, light-heat conversion is facilitated by the ultraviolet (UV) light-absorbing metal-ligand motifs, while in the case of UPy-PEB-UPy a UV absorber was added for this purpose. Single lap joints were prepared by sandwiching films of the supramolecular polymers of a thickness of 80-100 μm between two glass, quartz, or stainless steel substrates and bonded by exposure to either UV light (320-390 nm, 900 mW/cm(2)) or heat (80 or 200 °C for UPy-PEB-UPy and the metallopolymer, respectively). UPy-PEB-UPy and [Zn0.8Mebip-PEB-Mebip](NTf2)1.6 displayed a shear strength of 0.9-1.2 and 1.8-2.5 MPa, respectively. When lap joints were placed under load and exposed to light or heat, the samples debonded within seconds. They could be rebonded through exposure to light or heat, and the original adhesive properties were recovered. PMID:24484360

  1. Application of atmospheric pressure plasma in polymer and composite adhesion

    NASA Astrophysics Data System (ADS)

    Yu, Hang

    An atmospheric pressure helium and oxygen plasma was used to investigate surface activation and bonding in polymer composites. This device was operated by passing 1.0-3.0 vol% of oxygen in helium through a pair of parallel plate metal electrodes powered by 13.56 or 27.12 MHz radio frequency power. The gases were partially ionized between the capacitors where plasma was generated. The reactive species in the plasma were carried downstream by the gas flow to treat the substrate surface. The temperature of the plasm gas reaching the surface of the substrate did not exceed 150 °C, which makes it suitable for polymer processing. The reactive species in the plasma downstream includes ~ 1016-1017 cm-3 atomic oxygen, ~ 1015 cm-3 ozone molecule, and ~ 10 16 cm-3 metastable oxygen molecule (O2 1Deltag). The substrates were treated at 2-5 mm distance from the exit of the plasma. Surface properties of the substrates were characterized using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS). Subsequently, the plasma treated samples were bonded adhesively or fabricated into composites. The increase in mechanical strength was correlated to changes in the material composition and structure after plasma treatment. The work presented hereafter establishes atmospheric pressure plasma as an effective method to activate and to clean the surfaces of polymers and composites for bonding. This application can be further expanded to the activation of carbon fibers for better fiber-resin interactions during the fabrication of composites. Treating electronic grade FR-4 and polyimide with the He/O2 plasma for a few seconds changed the substrate surface from hydrophobic to hydrophilic, which allowed complete wetting of the surface by epoxy in underfill applications. Characterization of the surface by X-ray photoelectron spectroscopy shows formation of oxygenated functional groups, including hydroxyl, carbonyl, and

  2. Extended Maxwell Garnett formalism for composite adhesives for microwave-assisted adhesion of polymer surfaces

    SciTech Connect

    Shanker, B.; Lakhtakia, A. )

    1993-01-01

    Adhesives with dielectric loss are needed for microwave-assisted joining of polymeric substances. The dielectric loss in an otherwise suitable adhesive may be enhanced by doping it with fine metallic particles. Here we use a recently extended Maxwell Garnett formalism to estimate the complex dielectric constant of a metal-doped composite adhesive, with specific focus on the imaginary part of the dielectric constant of the composite adhesive. 14 refs.

  3. Evaluating resin-enamel bonds by microshear and microtensile bond strength tests: effects of composite resin

    PubMed Central

    de ANDRADE, Andrea Mello; MOURA, Sandra Kiss; REIS, Alessandra; LOGUERCIO, Alessandro Dourado; GARCIA, Eugenio Jose; GRANDE, Rosa Helena Miranda

    2010-01-01

    Objectives The aims of this study were to evaluate the effect of resin composite (Filtek Z250 and Filtek Flow Z350) and adhesive system [(Solobond Plus, Futurabond NR (VOCO) and Adper Single Bond (3M ESPE)] on the microtensile (µTBS) and microshear bond strength (µSBS) tests on enamel, and to correlate the bond strength means between them. Material and methods Thirty-six extracted human molars were sectioned to obtain two tooth halves: one for µTBS and the other one for µSBS. Adhesive systems and resin composites were applied to the enamel ground surfaces and light-cured. After storage (37ºC/24 h) specimens were stressed (0.5 mm/ min). Fracture modes were analyzed under scanning electron microscopy. The data were analyzed using two-way ANOVA and Tukey's test (α=0.05). Results The correlation between tests was estimated with Pearson's product-moment correlation statistics (α =0.05). For both tests only the main factor resin composite was statistically significant (p<0.05). The correlation test detected a positive (r=0.91) and significant (p=0.01) correlation between the tests. Conclusions The results were more influenced by the resin type than by the adhesives. Both microbond tests seem to be positive and linearly correlated and can therefore lead to similar conclusions. PMID:21308290

  4. Shear Bond Strength of Repaired Composites Using Surface Treatments and Repair Materials: An In vitro Study

    PubMed Central

    Hemadri, M; Saritha, G; Rajasekhar, V; Pachlag, K Amit; Purushotham, R; Reddy, Veera Kishore Kumar

    2014-01-01

    Background: Enhancement of bond strength between new and old composite usually requires increased surface roughness of old composite to promote mechanical interlocking and subsequent coating with bonding agents to improve surface wetting and chemical bonding. So this study was carried out to evaluate and compare the effects of different surface treatments and repair materials on the shear bond strength (SBS) of composite repairs The mode of failure of repaired composites whether cohesive or adhesive was also evaluated. Materials and Methods: The substrates for 60 composite specimens were fabricated and aged with water treatment and subjected to various surface treatments. The surface treatment regimens used in the study were: No surface treatment, abraded with diamond bur, air abraded (sandblasted) with 50 µ aluminum oxide particles. Specimens were then repaired with fresh composite using either Clearfil™ repair or all-bond two adhesive systems. Specimens were water stored, thermocycled and tested for SBS using universal testing machine. Fractured specimens were then examined under stereomicroscope to determine the mode of failure. Results: It was clearly showed that surface roughening of the aged composite substrate with air abrasion, followed by the application of Clearfil™ repair adhesive system (Group IIIa) yielded the highest repair bond strength (32.3 ± 2.2 MPa). Conclusion: Surface treatment with air abrasion followed by bonding with Clearfil™ repair adhesive system can be attempted clinically for the repair of composite restorations. PMID:25628478

  5. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    PubMed Central

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  6. The effects of three different desensitizing agents on the shear bond strength of composite resin bonding agents.

    PubMed

    Zorba, Yahya Orcun; Erdemir, Ali; Ercan, Ertugrul; Eldeniz, Ayce Unverdi; Kalaycioglu, Baris; Ulker, Mustafa

    2010-07-01

    The aim of this study was to evaluate the effects of three desensitizing agents on the shear bond strengths of four different bonding agents used to bond composite resin to dentin. A total of 160 extracted human molars were sectioned parallel to the occlusal plane under water cooling, polished and randomly divided into 4 groups of 40. Each group was treated with a different desensitizing agent (Tooth Mousse, Ultra-EZ, Cervitec Plus), except for an untreated control group. Each group was then randomly subdivided into 4 groups of 10, and a different dentin bonding agent (XP Bond, AdheSE, Adper Prompt L-pop, GBond) was applied to each group in order to bond the specimens to a resin composite (Gradia Direct) built up using a plastic apparatus. A Universal Testing Machine was used to measure the shear bond strength of each specimen. Statistical analysis was performed using one-way ANOVA and Tukey's tests. With the exception of the Control/AdheSE and Ultra-EZ/XP Bond groups, no statistically significant differences were found in the shear bond strength values of the groups tested. These findings suggest that the use of different desensitizing agents does not affect the shear bond strength of various adhesive systems used to bond resin composite to dentin. PMID:20416554

  7. Fracture surface analysis in composite and titanium bonding: Part 1: Titanium bonding

    NASA Technical Reports Server (NTRS)

    Sanderson, K. A.; Wightman, J. P.

    1985-01-01

    Fractured lap shear Ti 6-4 adherends bonded with polyphenyquinoxaline (PPQ) and polysulfone were analyzed. The effects of adherend pretreatment, stress level, thermal aging, anodizing voltage, and modified adhesive of Ti 6-4 adherend bonded with PPQ on lap shear strength were studied. The effect of adherend pretreatment on lap shear strength was investigated for PS samples. Results of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) used to study the surface topography and surface composition are also discussed.

  8. Effect of different adhesive strategies on microtensile bond strength of computer aided design/computer aided manufacturing blocks bonded to dentin

    PubMed Central

    Roperto, Renato; Akkus, Anna; Akkus, Ozan; Lang, Lisa; Sousa-Neto, Manoel Damiao; Teich, Sorin; Porto, Thiago Soares

    2016-01-01

    Background: The aim of this study was to determine the microtensile bond strength (μTBS) of ceramic and composite computer aided design-computer aided manufacturing (CAD-CAM) blocks bonded to dentin using different adhesive strategies. Materials and Methods: In this in vitro study, 30 crowns of sound freshly extracted human molars were sectioned horizontally 3 mm above the cementoenamel junction to produce flat dentin surfaces. Ceramic and composite CAD/CAM blocks, size 14, were sectioned into slices of 3 mm thick. Before bonding, CAD/CAM block surfaces were treated according to the manufacturer's instructions. Groups were created based on the adhesive strategy used: Group 1 (GI) - conventional resin cement + total-etch adhesive system, Group 2 (GII) - conventional resin cement + self-etch adhesive system, and Group 3 (GIII) - self-adhesive resin cement with no adhesive. Bonded specimens were stored in 100% humidity for 24h at 37΀C, and then sectioned with a slow-speed diamond saw to obtain 1 mm × 1 mm × 6 mm microsticks. Microtensile testing was then conducted using a microtensile tester. μTBS values were expressed in MPa and analyzed by one-way ANOVA with post hoc (Tukey) test at the 5% significance level. Results: Mean values and standard deviations of μTBS (MPa) were 17.68 (±2.71) for GI/ceramic; 17.62 (±3.99) for GI/composite; 13.61 (±6.92) for GII/composite; 12.22 (±4.24) for GII/ceramic; 7.47 (±2.29) for GIII/composite; and 6.48 (±3.10) for GIII/ceramic; ANOVA indicated significant differences among the adhesive modality and block interaction (P < 0.05), and no significant differences among blocks only, except between GI and GII/ceramic. Bond strength of GIII was consistently lower (P < 0.05) than GI and GII groups, regardless the block used. Conclusion: Cementation of CAD/CAM restorations, either composite or ceramic, can be significantly affected by different adhesive strategies used. PMID:27076825

  9. Electrostatic adhesion for added functionality of composite structures

    NASA Astrophysics Data System (ADS)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2016-02-01

    Electrostatic adhesion can be used as a means of reversible attachment. The incorporation of electrostatic adhesion into fibre reinforced polymer (FRP) composite structures could provide significant value added functionality. Imparting large potential differences (∼2 kV) across electrodes generates an attractive force, thus providing a means of attachment. This could be used as a reversible latching mechanism or as a means of controllable internal connectivity. Varying the connectivity for discrete elements of a substructure of a given design allows for control of internal load paths and moment of area of the cross section. This could facilitate variable stiffness (both in bending and torsion). Using a combination of existing fabrication techniques, functional electrodes have been integrated within a FRP. Copper polyimide thin film laminate material has been both co-cured with carbon fibre reinforced epoxy and bonded to PVC closed cell foam core material to provide a range of structural configurations with integrated electrodes. The ability of such integrated devices to confer variations in global bending stiffness of basic beam structures is investigated. Through the application of 4 kV across integrated electrostatic adhesive devices, a 112% increase in flexural stiffness has been demonstrated for a composite sandwich structure.

  10. Evaluation of a thermoplastic polyimide (422) for bonding GR/PI composite

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.

    1988-01-01

    A hot-melt processable copolyimide previously studied and characterized as an adhesive for bonding Ti-6Al-4V was used to bond Celion 6000/LARC-160 composite. Comparisons are made for the two adherend systems. A bonding cycle was determined for the composite bonding and lap shear specimens were prepared which were thermally exposed in a forced-air oven for up to 5000 h at 204 C. The lap shear strengths (LSSs) were determined at RT, 177, and 204 C. After thermal exposure at RT, 177, and 204 C the LSS decreased significantly; however, a slight increase was noted for the 204 C tests. Initially the LSS values are higher for the bonded Ti-6Al-4V than for the bonded composite, however, the LSS decreases dramatically between 5000 and 10,000 h of 204 C thermal exposure. Longer periods of thermal exposure up to 20,000 h results in further decreases in the LSSs. Although the bonded composite retained useful strengths for exposures up to 5000 h, based on the por results of the bonded Ti-6Al-4V beyond 5000 h, the 422 adhesive bonded composites would most likely also produce poor strengths beyond 5000 h exposure. Adhesive bonded composite lap shear specimens exposed to boiling water for 72 h exhibited greatly reduced strengths at all test temperatures. The percent retained after water boil for each test temperature was essentially the same for both systems.

  11. Evaluation of a thermoplastic polyimide (422) for bonding GR/PI composite

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.

    1988-01-01

    A hot-melt processable copolyimide previously studied and characterized as an adhesive for bonding Ti-6Al-4V was used to bond Celion 6000/LARC-160 composite. Comparisons are made for the two adherend systems. A bonding cycle was determined for the composite bonding and lap shear specimens were prepared which were thermally exposed in a forced-air oven for up to 5000 h at 204 C. The lap shear strengths (LSSs) were determined at RT, 177, and 204 C. After thermal exposure at RT, 177, and 204 C the LSS decreased significantly; however, a slight increase was noted for the 204 C tests. Initially the LSS values are higher for the bonded Ti-6Al-4V than for the bonded composite, however, the LSS decreases dramatically between 5000 and 10,000 h of 204 C thermal exposure. Longer periods of thermal exposure up to 20,000 h results in further decreases in the LSSs. Although the bonded composite retained useful strengths for exposures up to 5000 h, based on the poor results of the bonded Ti-6Al-4V beyond 5000 h, the 422 adhesive bonded composites would most likely also produce poor strengths beyond 5000 h exposure. Adhesive bonded composite lap shear specimens exposed to boiling water for 72 h exhibited greatly reduced strengths at all test temperatures. The percent retained after water boil for each test temperature was essentially the same for both systems.

  12. Evaluation of Adhesive Bonding of Lithium Disilicate Ceramic Material with Duel Cured Resin Luting Agents

    PubMed Central

    Gundawar, Sham M.; Radke, Usha M.

    2015-01-01

    Purpose: The purpose of this vitro study was to comparatively evaluate the adhesive bonding of dual cured resin luting agents with lithium disilicate ceramic material. Materials and Methods: Porcelain laminate veneers were prepared with lithium disilicate ceramic material i.e. IPS Empress II( E-Max Press). These laminates were bonded with RelyX ARC, Panavia F 2.0, Variolink II, Duolink and Nexus NX3.The porcelain laminates were etched with 9.6% hydrofluoric acid (Pulpdent Corporation) for one minute, washed for 15 sec with three way syringe and dried for 15 sec with air syringe. The silane (Ultradent) was applied with the help of applicator tip in a single coat and kept undisturbed for one minute. The prepared surfaces of the premolars were treated with 37% phosphoric acid (Prime dent) for 15 sec, thoroughly rinsed and dried as per manufactures instructions. The shear bond test was carried out on all samples with the Universal testing machine (Instron U.S.A.) The scanning electron microscopic study was performed at the fractured interface of representative samples from each group of luting agents. Result: In this study, the highest value of shear bond strength was obtained for NEXUS NX3 and the lowest for VARIOLINK II. Conclusion: The difference in bond strength can be interpreted as the difference in fracture resistance of luting agents, to which shearing load was applied during the shear bond strength test. It is inferred from this study that the composition of the luting agent determines the adhesive characteristics in addition to surface treatment and bonding surface area. PMID:25859514

  13. The bond strength of adhesive resins to AH plus contaminated dentin cleaned by various gutta-percha solvents.

    PubMed

    Topçuoğlu, Hüseyin Sinan; Demirbuga, Sezer; Pala, Kansad; Cayabatmaz, Muhammed; Topçuoğlu, Gamze

    2015-01-01

    The optimal bonding of adhesives to dentin requires the sealer to be completely removed from dentinal walls. The aim of this study was to investigate the effect of different cleaning procedures using gutta-percha solvents on bond strength of adhesive resins to AH Plus contaminated dentin (APCD). The pulp chamber dentin surfaces were contaminated with AH Plus and cleaned with five different techniques (dry cotton, chloroform, orange oil, eucalyptol, and ethanol). Then, Clearfil SE Bond (CSE) (Kuraray), and Tetric N Bond (TNB) (Ivoclar Vivadent) were applied and filled with a composite resin. The serial sticks (1 × 1 mm) were obtained and tested for microtensile bond strength. Scanning electron microscopy (SEM) was used for analysis of debonded surfaces. Ethanol exhibited the highest bond strength to APCD followed by dry cotton. There was no statistically significant difference between ethanol and dry cotton (p > 0.05). Eucalyptol showed the lowest bond strength to APCD and statistically significant differences (p < 0.05) in comparison with other groups. APCD reduced the bond strength of all adhesive resins. Dry cotton, ethanol, and chloroform were the most suitable techniques when used with CSE together, whereas ethanol was best with TNB. PMID:25678408

  14. Adhesive bond failure monitoring with triboluminescent optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Shohag, Md Abu S.; Hammel, Emily C.; Olawale, David O.; Okoli, Okenwa O.

    2016-04-01

    One of the most severe damage modes in modern wind turbines is the failure of the adhesive joints in the trailing edge of the large composite blades. The geometrical shape of the blade and current manufacturing techniques make the trailing edge of the wind turbine blade more sensitive to damage. Failure to timely detect this damage type may result in catastrophic failures, expensive system downtime, and high repair costs. A novel sensing system called the In-situ Triboluminescent Optical Fiber (ITOF) sensor has been proposed for monitoring the initiation and propagation of disbonds in composite adhesive joints. The ITOF sensor combines the triboluminescent property of ZnS:Mn with the many desirable features of optical fiber to provide in-situ and distributed damage sensing in large composite structures like the wind blades. Unlike other sensor systems, the ITOF sensor does not require a power source at the sensing location or for transmitting damage-induced signals to the hub of the wind turbine. Composite parts will be fabricated and the ITOF integrated within the bondline to provide in-situ and real time damage sensing. Samples of the fabricated composite parts with integrated ITOF will be subjected to tensile and flexural loads, and the response from the integrated sensors will be monitored and analyzed to characterize the performance of the ITOF sensor as a debonding damage monitoring system. In addition, C-scan and optical microscopy will be employed to gain greater insights into the damage propagation behavior and the signals received from the ITOF sensors.

  15. Bond Strength of Composite Resin to Enamel: Assessment of Two Ethanol Wet-Bonding Techniques

    PubMed Central

    Khoroushi, Maryam; Rafizadeh, Mojgan; Samimi, Pouran

    2014-01-01

    Objective Ethanol wet-bonding (EWB) technique has been stated to decrease degradation of resin-dentin bond. This study evaluated the effect of two EWB techniques on composite resin-to-enamel bond strength. Materials and Methods: Silicon carbide papers were used to produce flat enamel surfaces on the buccal faces of forty-five molars. OptiBond FL (OFL) adhesive was applied on enamel surfaces in three groups of 15 namely: Enamel surface and OFL (control);Protocol 1 of the EWB technique: absolute ethanol was applied to water-saturated acid-etched enamel surfaces for 1 minute before the application of ethanol-solvated hydrophobic adhesive resin of OFL 3 times;Protocol 2: progressive ethanol replacement; water was gradually removed from the enamel matrix using ascending ethanol concentrations before OFL application. Composite build-ups were made and the specimens were stored for 24 hours at 37°C and 100% relative humidity. Shear bond strength test was performed using a universal testing machine at 1 mm/min crosshead speed. Fracture patterns were evaluated microscopically. Data were analyzed with one-way ANOVA and Fisher’s exact test (α=0.05). Results: There were no significant differences in bond strength between the groups (P=0.73). However, regarding failure patterns, the highest cohesive enamel fractures were recorded in groups 2 and 3. Conclusion: In this study, although both methods of EWB did not influence immediate bond strength of composite resin to enamel, the majority of failure patterns occurred cohesively in enamel. PMID:24910690

  16. The shear bond strength of MTA with three different types of adhesive systems: An in vitro study

    PubMed Central

    Tyagi, Nimish; Chaman, Chandrakar; Tyagi, Shashi Prabha; Singh, Udai Pratap; Sharma, Apoorv

    2016-01-01

    Aim: To evaluate the shear bond strength of MTA with three different types of adhesive systems- self-adhering flowable composite, etch and rinse adhesive system and self etch adhesive system. Methodology: MTA specimens (n = 60) were prepared using cylindrical acrylic blocks, having a central cavity with 4 mm diameter and 2 mm depth. MTA was mixed and placed in the prepared cavity, and was covered with a moist cotton pellet and temporary filling material. The specimens were divided into 3 groups which were further divided into 2 sub-groups (45 Minutes and 24 hours). After the application of bonding agents composite resin was placed over the MTA surface. The specimens were tested for shear bond strength and readings were statically analyzed. Result: After 24 hrs the mean value of etch and rinse group was significantly higher than self etch and the self adhering composite groups. Among the 45 minutes groups there were no significant difference. Conclusion: In single visit after 45 minutes self adhering flowable can be used successfully as a final restorative material in place of conventional flowable composite without using any alternative adhesive system over MTA. PMID:27099417

  17. An in vitro comparison of adhesive techniques and rotary instrumentation on shear bond strength of nanocomposite with simulated pulpal pressure

    PubMed Central

    Hegde, Jayshree; Sravanthi, Y

    2011-01-01

    Aim: The aim of this study is to evaluate the shear bond strength of composite to tooth using different adhesive techniques and rotary instruments under simulated pulpal pressure. Materials and Methods: Sixty extracted human molars were randomly divided into two groups of 30 samples each (group I and II), according to the adhesive technique followed (i.e. total etch and self etch groups). Each group was further divided into two sub-groups (Sub-groups A and B) of 15 samples each according to the cutting instrument (diamond abrasive or carbide burs) used. Class II cavities were made with diamond abrasive or carbide burs, and restored with nano-composite under positive intra-pulpal pressure. Shear bond strength of the specimens were recorded simultaneously. Results: After statistical evaluation using two-way ANOVA and t-test, the mean shear bond strength values of the groups are as follows: Group IA- 4.69 MPa, Group IB-6.15 MPa, Group IIA-4.3 MPa, and Group IIB-6.24 MPa. It was seen that group IIB showed highest bond strength followed by group IB. Group II A showed the least bond strength. Conclusions: Within the limitations of the study, diamond abrasive gave better bond strength than carbide bur with both the adhesive techniques. PMID:22025823

  18. Effect of saliva contamination on the microshear bond strength of one-step self-etching adhesive systems to dentin.

    PubMed

    Yoo, H M; Oh, T S; Pereira, P N R

    2006-01-01

    This study evaluated the effect of saliva contamination and decontamination methods on the dentin bond strength of one-step self-etching adhesive systems. Three commercially available "all-in-one" adhesives (One Up Bond F, Xeno III and Adper Prompt) and one resin composite (Filtek Z-250) were used. Third molars stored in distilled water with 0.5% thymol at 4 degrees C were ground with #600 SiC paper under running water to produce a standardized smear layer. The specimens were randomly divided into groups according to contamination methods: no contamination, which was the control (C); contamination of the adhesive surface with fresh saliva before light curing (A) and contamination of the adhesive surface with fresh saliva after light curing (B). Each contamination group was further subdivided into three subgroups according to the decontamination method: A1-Saliva was removed by a gentle air blast and the adhesive was light-cured; A2-Saliva was rinsed for 10 seconds, gently air-dried and the was adhesive light-cured; A3-Saliva was rinsed and dried as in A2, then the adhesive was re-applied to the dentin surface and light-cured; B1-Saliva was removed with a gentle air blast; B2-Saliva was rinsed and dried; B3-Saliva was rinsed, dried and the adhesive was re-applied and light cured. Tygon tubes filled with resin composite were placed on each surface and light cured. All specimens were stored in distilled water at 37 degrees C for 24 hours. Microshear bond strength was measured using a universal testing machine (EZ test), and data were analyzed by one-way ANOVA followed by the Duncan test to make comparisons among the groups (p<0.05). After debonding, five specimens were selected and examined in a scanning electron microscope to evaluate the modes of fracture. The A2 subgroup resulted in the lowest bond strength. For One Up Bond F and Adper Prompt, there was no significant difference between subgroup A1 and the control, and subgroup A3 and the control (p>0.05). Bond

  19. Influence of salivary contamination on the dentin bond strength of two different seventh generation adhesive systems: In vitro study

    PubMed Central

    Bhatia, Taranjeet Kaur; Asrani, Hemant; Banga, Harpreet; Jain, Aditi; Rawlani, Sudhir S.

    2015-01-01

    Aim: To investigate the effect of salivary contamination on the bond strength of two different seventh generation adhesive systems. Materials and Methods: Sixty caries-free human premolars with flat dentin surfaces were randomly divided into six groups of 10 teeth each and bonding was done using seventh-generation bonding agents Adper Easy One (3M ESPE) and Xeno V (Dentsply). Following the bonding procedure, resin composite was bonded to the surfaces using a plastic mould. The prepared specimen with composite cylinders attached were placed in 37°C distilled water for 24 h and then subjected to shear bond strength (SBS) with 0 h universal testing machine and the data were subjected to one-way analysis of variance and unpaired t-test. Results: Statistical significant difference between the Groups I, II and III in which Adper Easy One was used and similarly for Groups IV, V, and VI in which Xeno V was used. When an intergroup comparison was made using unpaired t-test Group II and Group V showed the nonsignificant difference. Conclusion: Salivary contamination significantly affects the SBS of both the seventh generation dentin bonding agents. However, 2-hydroxyethyl methacryate based adhesive has higher bond strength. PMID:26752841

  20. Integrating electrostatic adhesion to composite structures

    NASA Astrophysics Data System (ADS)

    Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.

    2015-04-01

    Additional functionality within load bearing components holds potential for adding value to a structure, design or product. We consider the adaptation of an established technology, electrostatic adhesion or electroadhesion, for application in glass fibre reinforced polymer (GFRP) composite materials. Electroadhesion uses high potential difference (~2-3 kV) between co-planar electrodes to generate temporary holding forces to both electrically conductive and nonconductive contact surfaces. Using a combination of established fabrication techniques, electroadhesive elements are co-cured within a composite host structure during manufacture. This provides an almost symbiotic relationship between the electroadhesive and the composite structure, with the electroadhesive providing an additional functionality, whilst the epoxy matrix material of the composite acts as a dielectric for the high voltage electrodes of the device. Silicone rubber coated devices have been shown to offer high shear load (85kPa) capability for GFRP components held together using this technique. Through careful control of the connection interface, we consider the incorporation of these devices within complete composite structures for additional functionality. The ability to vary the internal connectivity of structural elements could allow for incremental changes in connectivity between discrete sub-structures, potentially introducing variable stiffness to the global structure.

  1. Effect of acid etching on bond strength of nanoionomer as an orthodontic bonding adhesive

    PubMed Central

    Khan, Saba; Verma, Sanjeev K.; Maheshwari, Sandhya

    2015-01-01

    Aims: A new Resin Modified Glass Ionomer Cement known as nanoionomer containing nanofillers of fluoroaluminosilicate glass and nanofiller 'clusters' has been introduced. An in-vitro study aimed at evaluating shear bond strength (SBS) and adhesive remnant index (ARI) of nanoionomer under etching/unetched condition for use as an orthodontic bonding agent. Material and Methods: A total of 75 extracted premolars were used, which were divided into three equal groups of 25 each: 1-Conventional adhesive (Enlight Light Cure, SDS, Ormco, CA, USA) was used after and etching with 37% phosphoric acid for 30 s, followed by Ortho Solo application 2-nanoionomer (Ketac™ N100, 3M, ESPE, St. Paul, MN, USA) was used after etching with 37% phosphoric acid for 30 s 3-nanoionomer was used without etching. The SBS testing was performed using a digital universal testing machine (UTM-G-410B, Shanta Engineering). Evaluation of ARI was done using scanning electron microscopy. The SBS were compared using ANOVA with post-hoc Tukey test for intergroup comparisons and ARI scores were compared with Chi-square test. Results: ANOVA (SBS, F = 104.75) and Chi-square (ARI, Chi-square = 30.71) tests revealed significant differences between groups (P < 0.01). The mean (SD) SBS achieved with conventional light cure adhesive was significantly higher (P < 0.05) (10.59 ± 2.03 Mpa, 95% CI, 9.74-11.41) than the nanoionomer groups (unetched 4.13 ± 0.88 Mpa, 95% CI, 3.79-4.47 and etched 9.32 ± 1.87 Mpa, 95% CI, 8.58-10.06). However, nanoionomer with etching, registered SBS in the clinically acceptable range of 5.9–7.8 MPa, as suggested by Reynolds (1975). The nanoionomer groups gave significantly lower ARI values than the conventional adhesive group. Conclusion: Based on this in-vitro study, nanoionomer with etching can be successfully used as an orthodontic bonding agent leaving less adhesive remnant on enamel surface, making cleaning easier. However, in-vivo studies are needed to confirm the validity

  2. Bonding Effectiveness of Universal Adhesive to Intracoronal Bleached Dentin Treated with Sodium Ascorbate.

    PubMed

    Trindade, Thaís Fantinato; Moura, Luana Kelle Batista; Raucci, Walter; Messias, Danielle Cristine Furtado; Colucci, Vivian

    2016-01-01

    This study evaluated the effect of restorative protocol with sodium ascorbate on the shear bond strength (SBS) of a universal adhesive to intracoronal bleached dentin. One hundred-and-twenty bovine dentin fragments were randomly divided into 12 groups (n=10), according to the bleaching procedure (unbleached and bleached) and restorative protocol (no treatment, 10% sodium ascorbate -10SA, 35% sodium ascorbate -35SA and two-step etch-and-rinse -ER or one-step self-etch -SE Scotchbond universal adhesive approaches). Four whitening sessions were performed using 35% hydrogen peroxide. The samples from control groups were kept in relative humidity at 37 °C. Immediately after bleaching procedures, the assigned antioxidant solution was applied on dentin and restorative procedures were performed following either the ER or the SE approach. After 24 h, the specimens were subjected to SBS test. Data (MPa) were analyzed by ANOVA and Tukey's test (?=0.05). Lower SBS values were found for bleached specimens (8.54 MPa) compared with those unbleached (12.13 MPa) (p<0.05). The bond strength of the sodium ascorbate-treated groups was higher than those untreated, regardless of the strategy employed (p<0.05). Groups restored without sodium ascorbate showed lower bond strength values for both ER (8.32 MPa) and SE (8.28 MPa) adhesive strategies. The group treated with 10SA submitted to ER approach (10.14 MPa) was similar to untreated groups (p>0.05). It may be concluded that bond strength of composite resin to intracoronal dentin was affected by restorative protocol and reduced by bleaching. PMID:27224564

  3. Effect of Intermediate Agents and Preheated Composites on Repair Bond Strength of Silorane-Based Composites

    PubMed Central

    Shafiei, Fereshteh; Daryadar, Marzieh

    2015-01-01

    Objectives: Repairing composite restorations is a challenging procedure especially when two different types of composites are used. This study aimed to compare the repair strength of silorane-based composite (SC) (Filtek P90) with that of preheated SC, methacrylate composite (MC)(Z250), flowable MC (Filtek Supreme Plus) and different adhesive/composite combinations. Materials and Methods: Eighty-four SC specimens were fabricated and randomly divided into seven groups (G). In the control group (G7), SC was bonded immediately to SC. The other specimens were water-aged for two months and were then roughened, etched and repaired with the following materials: G1) Silorane Adhesive Bond (SAB)/SC; G2) Preheated SC; G3) SAB/MC; G4) Adper Single Bond (SB)/MC; G5) Flowable MC/MC; G6) Preheated MC. After water storage and thermocycling, the repaired specimens were subjected to shear bond strength testing. The data were analyzed using ANOVA and Tukey’s test. Results: Preheated SC and MC, flowable MC and SAB/SC resulted in bond strength comparable to that of the control group. Preheated SC showed significantly higher bond strength when compared to SAB/MC (P=0.04) and SB/MC (P<0.001). Bond strength of SB/MC was significantly lower than that of the other groups (P<0.05), except for SAB/SC and SAB/MC. Conclusion: All repairing materials except for SB/MC resulted in bond strength values comparable to that of the control group. Repair with preheated SC yielded the highest bond strength. PMID:27148378

  4. The effect of different adhesive system applications on push-out bond strengths of glass fiber posts

    PubMed Central

    Deniz Arısu, Hacer; Üçtaşlı, Mine Betül; Okay, Tufan Can

    2013-01-01

    PURPOSE Over the past years, the adhesion of fiber posts luted with simplified adhesive systems has been a matter of great interest. The aim of this study was to assess the post retentive potential of a self-adhesive resin cement using different adhesive systems to compare the push-out bond strengths of fiber posts. MATERIALS AND METHODS The post spaces of 56 mandibular premolar roots were prepared and divided into 4 experimental groups and further divided into 2 subgroups according to testing time (n=7). The fiber posts (Rely X Fiber Post) were luted with a self-adhesive resin cement (RelyX Unicem) and one of the following adhesive systems: no adhesive, a total-etch adhesive resin (Single Bond), a two-step self-etch adhesive resin (Clearfil SE Bond) and a one-step self-etch adhesive resin (Clearfil S3 Bond). Each root was cut horizontally, and 1.5 mm thick six root segments were prepared. Push-out tests were performed after one week or three months (0.5 mm/min). Statistical analysis were performed with three-way ANOVA (α=.05). RESULTS Cervical root segments showed higher bond strength values than middle segments. Adhesive application increased the bond strength. For one week group, the total-etch adhesive resin Single Bond showed higher bond strength than the self-adhesive resin cement RelyX Unicem applied without adhesive resin at middle region. For 3 months group, the two-step self-etch adhesive resin Clearfil SE Bond showed the highest bond strength for both regions. Regarding the time considered, Clearfil SE Bond 3 months group showed higher bond strength values than one week group. CONCLUSION Using the adhesive resins in combination with the self-adhesive resin cement improves the bond strengths. The bond strength values of two-step self-etch adhesive resin Clearfil SE Bond improved as time passes. PMID:24049572

  5. Effect of desensitizing agents on the microtensile bond strength of two-step etch-and-rinse adhesives to dentin.

    PubMed

    Cortiano, Fernanda M; Rached, Rodrigo N; Mazur, Rui F; Vieira, Sergio; Freire, Andrea; de Souza, Evelise M

    2016-06-01

    Desensitizers can be used to control postoperative sensitivity in adhesive restorations. The aim of this study was to evaluate the effect of desensitizing agents on the bond strength of two-step etch-and-rinse adhesive systems to dentin. Forty-two human molars were sectioned to obtain 3-mm-thick dentin discs. The discs were divided into three groups (n = 14 in each) - no-treatment control group (CT), and oxalic acid [BisBlock (BB)] and calcium phosphate [Desensibilize Nano-P (NP)] desensitizers - before the application of two adhesive systems [Adper Single Bond Plus (SB) and One-Step Plus (OSP)]. A nanoparticle composite resin was used to create a 3-mm-thick build-up. The specimens were stored in distilled water for 24 h before a microtensile bond-strength test was performed. The failure modes were determined using a stereomicroscope at 100 × magnification. Specimens were sectioned perpendicular to the interface for scanning electron microscopy analyses. The CT-SB group exhibited the highest bond strength, differing significantly from BB-SB and BB-OSP groups. Mixed failures were prevalent for all groups. Scanning electron microscopy revealed a continuous hybrid layer and resin tags in all groups. Dentin bond strength of etch-and-rinse adhesive systems was reduced by an oxalic acid desensitizer but was not affected by a calcium phosphate-containing desensitizer. PMID:27038226

  6. Effect of dentinal water on bonding of self-etching adhesives.

    PubMed

    Hashimoto, Masanori; Fujita, Shinichi; Endo, Kazuhiko; Ohno, Hiroki

    2009-09-01

    This study examined the effect of dentinal water on bonding, comparing one-bottle and two-step self-etching adhesives using microtensile bond test and scanning electron microscope. The bond strength of resin to dentin was measured for wet dentin (control) and dry dentin substrates. Wet dentin is the normal substrate for bond testing, whereas dry dentin was dehydrated in a desiccator at different drying times (5 to 60 min) before bonding. After bond testing, the fractured surfaces were examined. Although no correlation was found for two-step self-etching adhesives, the bond strength of the dry-dentin was significantly increased with the increase in the drying-time for one-bottle adhesives. With increased drying-time, the amount of water-bubbles was decreased for one-bottle adhesives; however, no bubble formation was seen in two-step adhesives in any group. The hydrophilic resin adhesive may entrap the water from dentin by osmosis during and after bonding. This effect may depend on the "hydrophilicity" of adhesives. PMID:19822996

  7. Nanoleakage of dentin adhesive systems bonded to Carisolv-treated dentin.

    PubMed

    Kubo, Shisei; Li, Heping; Burrow, Michael F; Tyas, Martin J

    2002-01-01

    The hybrid layer created in caries-affected dentin has not been fully elucidated and may influence bond durability. This study investigated the nanoleakage patterns of caries-affected dentin after excavation with Carisolv or conventional instruments treated with one of three adhesive systems. Flat occlusal dentin surfaces, including carious lesions, were prepared from extracted human molars and finished with wet 600-grit silicon carbide paper. Carious dentin was removed with Carisolv or round steel burs in conjunction with Caries Detector. PermaQuik, Single Bond or One-Up Bond F was bonded to the excavated dentin surfaces and adjacent flat occlusal surfaces and it was covered with Silux Plus resin-based composite. After 24-hour storage in 37 degrees C water, the bonded interfaces were polished to remove flash, and the surrounding tooth surfaces were coated with nail varnish. Specimens were immersed in 50% (w/v) silver nitrate solution for 24 hours, exposed to photo developing solution for eight hours, then sectioned longitudinally through the bonded, excavated dentin or "normal" dentin surfaces. The sectioned surfaces were polished, carbon coated and observed in a Field Emission-SEM using back scattered electrons. Silver deposition occurred along the base of the hybrid layer for all specimens. However, Single Bond showed a greater density of silver deposition in the caries-affected dentin compared with normal dentin. PermaQuik had a thicker hybrid layer in caries-affected dentin than normal dentin. One-Up Bond F exhibited a thin hybrid layer in normal dentin, but the hybrid layer was often difficult to detect in caries-affected dentin. PMID:12120777

  8. Impact of adhesive application to wet and dry dentin on long-term resin-dentin bond strengths.

    PubMed

    Reis, Alessandra; Pellizzaro, Arlete; Dal-Bianco, Karen; Gones, Osnara Mongruel; Patzlaff, Rafael; Loguercio, Alessandro Dourado

    2007-01-01

    This study compared the effects of moisture and rubbing action on the immediate and one-year microtensile bond strength (BS) of an ethanol/water-based adhesive system (Single Bond [SB]) and an acetone-based system (One Step [OS]) to dentin. A flat superficial dentin surface on 60 human molars was exposed by wet abrasion. Two coats of the adhesives were applied on either a dry (D) or rewetted surface (W) with no (NRA), slight (SRA) or vigorous rubbing action (VRA). After light curing (600 mW/cm2/10 seconds), composite buildups were constructed incrementally and the specimens were stored in water (37 degrees C/24 hours). They were longitudinally sectioned in the "x" and "y" directions to obtain bonded sticks (0.8 mm2) to be tested in tension at 0.5 mm/minute. The sticks from each tooth were then divided, stored in water at 37 degrees C and tested immediately and after 12 months (12 M) at 0.5 mm/minute. The bond strength values of sticks from the same hemitooth were averaged for statistical purposes. The prematurely debonded specimens were included in the hemi-tooth mean. The data from each adhesive was analyzed by three-way ANOVA and Tukey's multiple comparison tests (alpha = 0.05). In the dry groups, high bond strength values were obtained under VRA. When the dentin was kept moist, both SRA and VRA provided high resin-dentin bond strength values. Reductions in bond strength values after one year of water storage were not observed for the SB adhesive or were less pronounced for the OS adhesive when it was vigorously rubbed onto the dentin surface. PMID:17695611

  9. Comparison of Shear Bond Strength of Composite to Stainless Steel Crowns Using Two Mechanical Surface Treatments and Two Bonding Systems

    PubMed Central

    Ghadimi, Sara; Heidari, Alireza

    2016-01-01

    Objectives: This study aimed to compare the shear bond strength (SBS) of composite to stainless steel crowns (SSC) using two mechanical surface treatments (MSTs) and two bonding systems. Materials and Methods: Eighty-four SSCs were divided into six groups of 14; Group1: No MST+Scotchbond Universal adhesive (N+U), Group 2: Surface roughening by a diamond bur+Scotchbond Universal adhesive (R+U), Group 3: Sandblasting+Scotchbond Universal adhesive (S+U), Group 4: No MST+Alloy Primer+Clearfil SE Primer and Bond (N+A), Group 5: Surface roughening by a diamond bur+Alloy Primer+Clearfil SE Primer and Bond (R+A), Group 6: Sandblasting+Alloy Primer+Clearfil SE Primer and Bond (S+A). After MST and bonding procedure, composite cylinders were bonded to the lingual surface of SSCs, then the SBS of composite to SSCs was measured using a universal testing machine following thermocycling. Results: The SBS of groups R+U and S+U was significantly higher than that of group N+U. No significant difference was noted in SBS of groups R+U and S+U. The SBS of group S+A was significantly higher than that of groups N+A and R+A. No significant difference was noted in the SBS of groups N+A and R+A (P>0.05). Conclusions: In Scotchbond Universal adhesive groups, sandblasting and surface roughening by diamond bur significantly increased the SBS of composite to SSCs compared to no MST. In Alloy Primer groups, sandblasting significantly increased the SBS of composite to SSC compared to surface roughening with diamond bur and no MST. PMID:27536330

  10. Adhesive/Dentin Interface: The Weak Link in the Composite Restoration

    PubMed Central

    Spencer, Paulette; Ye, Qiang; Park, Jonggu; Topp, Elizabeth M.; Misra, Anil; Marangos, Orestes; Wang, Yong; Bohaty, Brenda S.; Singh, Viraj; Sene, Fabio; Eslick, John; Camarda, Kyle; Katz, J. Lawrence

    2010-01-01

    Results from clinical studies suggest that more than half of the 166 million dental restorations that were placed in the United States in 2005 were replacements for failed restorations. This emphasis on replacement therapy is expected to grow as dentists use composite as opposed to dental amalgam to restore moderate to large posterior lesions. Composite restorations have higher failure rates, more recurrent caries, and increased frequency of replacement as compared to amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and premature failure. Under in vivo conditions the bond formed at the adhesive/dentin interface can be the first defense against these noxious, damaging substances. The intent of this article is to review structural aspects of the clinical substrate that impact bond formation at the adhesive/dentin interface; to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface. PMID:20195761

  11. Oxide film microstructure: the link between surface preparation processes and strength/durability of adhesively bonded aluminum. Final report

    SciTech Connect

    Hsia, K. Jimmy; Pearlstein, Arne J.; Scheeline, Alexander; Shang, Jian Ku

    2000-11-30

    Strength and durability of adhesive bonding of aluminum alloys structures are intrinsically determined by the surface microstructures and interfacial failure micromechanisms. The current project presents a multidisciplinary approach to addressing critical issues controlling the strength and durability of adhesive bonds of aluminum alloys. Three main thrust areas have been pursued: surface treatment technology development to achieve desirable surface microstructures; relationship between surface structure and properties of adhesive bonds; and failure mechanisms of adhesively bonded components.

  12. Effect of bromelain enzyme for dentin deproteinization on bond strength of adhesive system

    PubMed Central

    Chauhan, Kirti; Basavanna, Revaplar Siddaveerappa; Shivanna, Vasundhara

    2015-01-01

    Aims: To assess the deproteinizing effect of bromelain enzyme and compare it with 5% sodium hypochlorite (NaOCl) on shear bond strength before application of the adhesive system. Materials and Methods: A total of 30 extracted human premolars were divided into three groups, each one consisted of 10 teeth. The occlusal surface was wet ground to expose superficial dentin. In Group 1, teeth were etched; in Group 2, teeth were etched and deproteinized with bromelain enzyme; in Group 3, teeth were etched and deproteinized with 5% NaOCl. Upon completion of the adhesive procedures, resin composite was inserted into the plastic tube and light-polymerized. All specimens were stored at 37°C in water for 24 h, and the specimens were transferred to the universal testing machine, and then subjected to shear bond strength analysis at a crosshead speed of 1.0 mm/min. Statistical Analysis Used: Data were statistically analyzed using one-way analysis of variance and unpaired t-test at a significance level of 0.05. The statistical analysis was performed using SPSS version 12.0.1 for Windows (SPSS Inc., Chicago, IL, USA). Results: The bond strength results were significantly influenced by the application of bromelain enzyme. Statistically significant differences were not demonstrated in control group and NaOCl-treated group. The highest bond strength was seen in bromelain enzyme-treated group. Conclusions: Within the limitations of the present study, it was concluded that removal of unsupported collagen fiber with bromelain enzyme after acid etching results in improved bond strength. PMID:26430297

  13. The Influence of Casing-Sand Adhesion on Cementing Bond Strength

    PubMed Central

    Zhao, Xiaofeng; Guan, Zhichuan; Xu, Minglei; Shi, Yucai; Liao, Hualin; Sun, Jia

    2015-01-01

    In the petroleum industry, one of the most serious problems encountered during cementing is the failure at the bonding interface. Many measures including casing-sand adhesion have been developed to improve cementing bond strength. However, due to the lack of detailed study of the technique, many questions remain. The primary goal of this study is to investigate the influence of casing-sand adhesion on cementing bond strength, and to optimize parameters. An orthogonal experiment and a supplementary experiment were conducted. The results indicated that casing-sand adhesion can improve the cementing bond strength. The priority orders of key factors are: sand grain size, sand coverage, adhesive curing temperature and adhesive curing time. The optimal parameters recommended for application are: 1.6mm~1.9mm sand grain size, 60%~70% sand coverage, 30°C curing temperature and 60 hours curing time. PMID:26115343

  14. A self-diagnostic adhesive for monitoring bonded joints in aerospace structures

    NASA Astrophysics Data System (ADS)

    Zhuang, Yitao; Li, Yu-hung; Kopsaftopoulos, Fotis; Chang, Fu-Kuo

    2016-04-01

    Bondline integrity is still one of the most critical concerns in the design of aircraft structures up to date. Due to the lack of confidence on the integrity of the bondline both during fabrication and service, the industry standards and regulations still require assembling the composite using conventional fasteners. Furthermore, current state-of-the-art non-destructive evaluation (NDE) and structural health monitoring (SHM) techniques are incapable of offering mature solutions on the issue of bondline integrity monitoring. Therefore, the objective of this work is the development of an intelligent adhesive film with integrated micro-sensors for monitoring the integrity of the bondline interface. The proposed method makes use of an electromechanical-impedance (EMI) based method, which is a rapidly evolving approach within the SHM family. Furthermore, an innovative screen-printing technique to fabricate piezoelectric ceramic sensors with minimal thickness has been developed at Stanford. The approach presented in this study is based on the use of (i) micro screen-printed piezoelectric sensors integrated into adhesive leaving a minimal footprint on the material, (ii) numerical and analytical modeling of the EMI spectrum of the adhesive bondline, (iii) novel diagnostic algorithms for monitoring the bondline integrity based on advanced signal processing techniques, and (iv) the experimental assessment via prototype adhesively bonded structures in static (varying loads) and dynamic (fatigue) environments. The proposed method will provide a huge confidence on the use of bonded joints for aerospace structures and lead to a paradigm change in their design by enabling enormous weight savings while maximizing the economic and performance efficiency.

  15. Structural and in vitro adhesion analysis of a novel covalently coupled bioactive composite.

    PubMed

    Khan, Abdul S; Hassan, Khawaja R; Bukhari, Syeda F; Wong, Ferranti S L; Rehman, Ihtesham U

    2012-01-01

    The interfacial adhesion between a restorative composite and tooth is one of the major factors that determine the ultimate performance of composite restoration. A novel polyurethane (PU) composite material was prepared by chemically binding the nano-hydroxyapatite (nHA) to the diisocyanate component in the PU backbone by utilizing solvent polymerization. The procedure involved stepwise addition of monomeric units of the PU and optimizing the reagent concentrations. The resultant materials were characterized structurally (Raman Spectroscopy) and in vitro bioactive analysis was conducted in modified-simulated body fluid for periodical time intervals. The in vitro study evaluated the push-out bond strength of existing obturating material and novel covalently linked PU/nHA composites to dentin after long-term storage in deionized water and artificial saliva. Human extracted molar roots were filled with experimental samples and analyzed at predetermined time intervals. The shear bond strength of samples was measured and surface morphologies were evaluated. Covalent bond formation was achieved between PU and nHA without intermediate coupling agent. With the increase in concentration of nHA, the composite showed more bioactivity and adhesion toward tooth structure. Bond strength of this new composite were in accordance with obutrating material, therefore, the material can be used as an obturating material because of its direct adhesion with tooth structure. PMID:22102537

  16. Adhesive Bonding for Optical Metrology Systems in Space Applications

    NASA Astrophysics Data System (ADS)

    Gohlke, Martin; Schuldt, Thilo; Döringshoff, Klaus; Peters, Achim; Johann, Ulrich; Weise, Dennis; Braxmaier, Claus

    2015-05-01

    Laser based metrology systems become more and more attractive for space applications and are the core elements of planned missions such as LISA (NGO, eLISA) or NGGM where laser interferometry is used for distance measurements between satellites. The GRACE-FO mission will for the first time demonstrate a Laser Ranging Instrument (LRI) in space, starting 2017. Laser based metrology also includes optical clocks/references, either as ultra-stable light source for high sensitivity interferometry or as scientific payload e.g. proposed in fundamental physics missions such as mSTAR (mini SpaceTime Asymmetry Research), a mission dedicated to perform a Kennedy-Thorndike experiment on a satellite in a low-Earth orbit. To enable the use of existing optical laboratory setups, optimization with respect to power consumption, weight and dimensions is necessary. At the same time the thermal and structural stability must be increased. Over the last few years we investigated adhesive bonding of optical components to thermally highly stable glass ceramics as an easy-to-handle assembly integration technology. Several setups were implemented and tested for potential later use in space applications. We realized a heterodyne LISA related interferometer with demonstrated noise levels in the pm-range for translation measurement and nano-radiant-range for tilt measurements and two iodine frequency references on Elegant Breadboard (EBB) and Engineering Model (EM) level with frequency stabilities in the 10-15 range for longer integration times. The EM setup was thermally cycled and vibration tested.

  17. Nonlinear Analysis of Bonded Composite Single-LAP Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Barut, A.; Madenci, E.; Smeltzer, S. S.; Ambur, D. R.

    2004-01-01

    This study presents a semi-analytical solution method to analyze the geometrically nonlinear response of bonded composite single-lap joints with tapered adherend edges under uniaxial tension. The solution method provides the transverse shear and normal stresses in the adhesive and in-plane stress resultants and bending moments in the adherends. The method utilizes the principle of virtual work in conjunction with von Karman s nonlinear plate theory to model the adherends and the shear lag model to represent the kinematics of the thin adhesive layer between the adherends. Furthermore, the method accounts for the bilinear elastic material behavior of the adhesive while maintaining a linear stress-strain relationship in the adherends. In order to account for the stiffness changes due to thickness variation of the adherends along the tapered edges, their in-plane and bending stiffness matrices are varied as a function of thickness along the tapered region. The combination of these complexities results in a system of nonlinear governing equilibrium equations. This approach represents a computationally efficient alternative to finite element method. Comparisons are made with corresponding results obtained from finite-element analysis. The results confirm the validity of the solution method. The numerical results present the effects of taper angle, adherend overlap length, and the bilinear adhesive material on the stress fields in the adherends, as well as the adhesive, of a single-lap joint

  18. Physical gas discharge procedure for adhesive surface pretreatment of polymer composite materials

    NASA Astrophysics Data System (ADS)

    Hahn, O.; Huesgen, B.

    The effects of corona discharge and low-pressure plasma treatments are examined with respect to the preparation of the adhesive surfaces of polymer composites. A glass-fiber-reinforced polyamide and an epoxy-based structural adhesive are employed and treated with the physical gas-discharge procedure. Attention is given to the wettability of the polymer surface and to the adhesive strengths of the joints for the two pretreatment procedures. Diagrams show the dependence of bonding strength and constant contact angle on the duration, performance, and storage times of the corona and plasma treatments. SEM is used to study the surface characteristics of the materials, and decomposition products are noted in the surfaces of the joints. Plasma treatments generally lead to more effective bonds in the polyamide specimens, and the corona-discharge treatment leads to good bonds with some surface modifications.

  19. The influence of cyclical environmental exposure on the durability of adhesively bonded titanium

    SciTech Connect

    Creegan, C.A.; Shephard, N.E.; Dillard, J.G.

    1996-12-31

    Bonded systems must be able to withstand a variety of conditions including environmental exposure throughout their lifetime. This is especially important in the aerospace industry where adhesives are used for fastening as well as sealing and insulating. Conditions such as high and low temperatures and high relative humidity may be particularly detrimental to adhesive bonds. Previous durability studies have focused on exposing bonded joints to static environments. This study examines the potential differences in durability when comparing static and cyclical environmental exposure of adhesively bonded titanium. Cyclical tests may more readily simulate actual use exposure conditions for aerospace applications. Base/acid cleaning and chromic acid anodization (CAA) treatments were used to treat the titanium-6Al-4V, and the adherends were bonded with a polyimide adhesive. After static and cyclical environmental exposure tests were conducted, failed samples were characterized via surface sensitive analytical methods.

  20. Effect of ferric sulfate contamination on the bonding effectiveness of etch-and-rinse and self-etch adhesives to superficial dentin

    PubMed Central

    Ebrahimi, Shahram Farzin; Shadman, Niloofar; Abrishami, Arezoo

    2013-01-01

    Aim: This study investigated the effect of one hemostatic agent on the shear bond strength of self-etch and etch-and-rinse adhesive systems. Materials and Methods: Sixty extracted third molars were selected. After preparing a flat surface of superficial dentin, they were randomly divided into six groups. Adhesives were Tetric N-Bond, AdheSE, and AdheSE One F. Before applying adhesives, surfaces were contaminated with ViscoStat for 60 s in three groups and rinsed. Then composite were attached to surfaces and light cured. After thermocycling, the bond strength was calculated and failure modes were determined by stereomicroscope. The data were analyzed by t-test and one-way ANOVA with P < 0.05 as the level of significance. Results: ViscoStat had significantly decreased the shear bond strength of AdheSE (P < 0.0001) to dentin. Modes of failures in all groups were mainly adhesive. Conclusion: Contamination had an adverse effect on the shear bond strength of AdheSE and reduced it. PMID:23716963

  1. Production of biopolymer composites by particle bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes a new technology to produce biopolymer composites at room temperature. During the process, micrometer-scale raw material is coated with zein that has strong adhesive property, which is then compressed to form a rigid material. Since this technology does not require purificati...

  2. An Ultrasonic Technique to Determine the Residual Strength of Adhesive Bonds

    NASA Technical Reports Server (NTRS)

    Achenbach, J. D.; Tang, Z.

    1999-01-01

    In this work, ultrasonic techniques to nondestructively evaluate adhesive bond degradation have been studied. The key to the present approach is the introduction of an external factor which pulls the adhesive bond in the nonlinear range, simultaneously with the application of an ultrasonic technique. With the aid of an external static tensile loading, a superimposed longitudinal wave has.been used to obtain the slopes of the stress-strain curve of an adhesive bond at a series of load levels. The critical load, at which a reduction of the slope is detected by the superimposed longitudinal wave, is an indication of the onset of nonlinear behavior of the adhesive bond, and therefore of bond degradation. This approach has been applied to the detection of adhesive bond degradation induced by cyclic fatigue loading. Analogously to the longitudinal wave case, a superimposed shear wave has been used to obtain the effective shear modulus of adhesive layers at different shear load levels. The onset of the nonlinear behavior of an adhesive bond under shear loading has been detected by the use of a superimposed shear wave. Experiments show that a longitudinal wave can also detect the nonlinear behavior when an adhesive bond is subjected to shear loading. An optimal combination of ultrasonic testing and mechanical loading methods for the detection of degradation related nonlinear behavior of adhesive bonds has been discussed. For the purpose of a practical application, an ultrasonic technique that uses a temperature increase as an alternative to static loading has also been investigated. A general strain-temperature correspondence principle that relates a mechanical strain to a temperature has been presented. Explicit strain-temperature correspondence relations for both the tension and shear cases have been derived. An important parameter which quantifies the relation between the wave velocity and temperature has been defined. This parameter, which is indicative of adhesive

  3. Evaluation of enamel damages following orthodontic bracket debonding in fluorosed teeth bonded with adhesion promoter

    PubMed Central

    Baherimoghadam, Tahreh; Akbarian, Sahar; Rasouli, Reza; Naseri, Navid

    2016-01-01

    Objective: To evaluate shear bond strength (SBS) of the orthodontic brackets bonded to fluorosed and nonfluorosed teeth using Light Bond with and without adhesion promoters and compare their enamel damages following debonding. Materials and Methods: In this study, 30 fluorosed (Thylstrup and Fejerskov Index = 4–5) and 30 nonfluorosed teeth were randomly distributed between two subgroups according to the bonding materials: Group 1, fluorosed teeth bonded with Light Bond; Group 2, fluorosed teeth bonded with adhesion promoters and Light Bond; Group 3, nonfluorosed teeth bonded with Light Bond; Group 4, nonfluorosed bonded with adhesion promoters and Light Bond. After bonding, the SBS of the brackets was tested with a universal testing machine. Stereomicroscopic evaluation was performed by unbiased stereology in all teeth to determine the amount of adhesive remnants and the number and length of enamel cracks before bonding and after debonding. The data were analyzed using two-way analysis of variance, Kruskal–Wallis, Wilcoxon Signed Rank, and Mann–Whitney test. Results: While fluorosis reduced the SBS of orthodontic bracket (P = 0.017), Enhance Locus Ceruleus LC significantly increased the SBS of the orthodontic bracket in fluorosed and nonfluorosed teeth (P = 0.039). Significant increasing in the number and length of enamel crack after debonding was found in all four groups. There were no significant differences in the length of enamel crack increased after debonding among four groups (P = 0.768) while increasing in the number of enamel cracks after debonding was significantly different among the four groups (P = 0.023). Teeth in Group 2 showed the highest enamel damages among four groups following debonding. Conclusion: Adhesion promoters could improve the bond strength of orthodontic brackets, but conservative debonding methods for decreasing enamel damages would be necessary. PMID:27095895

  4. Resistance heating releases structural adhesive

    NASA Technical Reports Server (NTRS)

    Glemser, N. N.

    1967-01-01

    Composite adhesive package bonds components together for testing and enables separation when testing is completed. The composite of adhesives, insulation and a heating element separate easily when an electrical current is applied.

  5. Universal adhesive (glue composition) for electrical porcelain products

    SciTech Connect

    Khristoforov, K.K.; Belen'kaya, E.S.; Omel'chenko, Y.A.; Vinogradova, T.K.

    1986-05-01

    The aim of this work is to develop an adhesive for porcelain insulators that exhibits high physicomechanical properties and increased resistance to the simultaneous action of heat and moisture. One method of solving this problem is to introduce special additives possessing hydrophobic (waterrepelling) properties into the adhesive composition during the process of its preparation. The adhesive based on the ED-20 epoxy resin and TEA hardened with 5 parts of AF-2 additive possesses higher resistance to the action of heat and moisture as compared to the adhesive used at the present time for assembling insulators. The improved and stable physiomechanical properties of the developed adhesive permit its use in any climactic conditions.

  6. Studies of interdiffusion, chemical bonding, and intermolecular interactions in fiber-matrix adhesion

    SciTech Connect

    Chou, Chiate.

    1990-01-01

    A study of the key factors involved in adhesion was conducted to determine a quantitative relation between the underlying physicochemical mechanisms of adhesion and the adhesive performance at the fiber-matrix interface. Aramid fiber was modified by attaching pendent chains to its surface to change the nature of its interaction with matrix materials. The relative importance of the three fundamental factors of adhesion (interdiffusion, intermolecular interactions, and chemical bonding) was studied by evaluating the fiber-matrix adhesive performance of these modified fiber-matrix systems.

  7. Degradation in the Fatigue Strength of Dentin by Cutting, Etching and Adhesive Bonding

    PubMed Central

    Lee, H.-H.; Majd, H.; Orrego, S.; Majd, B.; Romberg, E.; Mutluay, M.M.; Arola, D.

    2014-01-01

    The processes involved in placing resin composite restorations may degrade the fatigue strength of dentin and increase the likelihood of fractures in restored teeth. Objective The objective of this study was to evaluate the relative changes in strength and fatigue behavior of dentin caused by bur preparation, etching and resin bonding procedures using a 3-step system. Methods Specimens of dentin were prepared from the crowns of unrestored 3rd molars and subjected to either quasi-static or cyclic flexural loading to failure. Four treated groups were prepared including dentin beams subjected to a burr treatment only with a conventional straight-sided bur, or etching treatment only. An additional treated group received both bur and etching treatments, and the last was treated by bur treatment and etching, followed by application of a commercial resin adhesive. The control group consisted of “as sectioned” dentin specimens. Results Under quasi-static loading to failure there was no significant difference between the strength of the control group and treated groups. Dentin beams receiving only etching or bur cutting treatments exhibited fatigue strengths that were significantly lower (p≤0.0001) than the control; there was no significant difference in the fatigue resistance of these two groups. Similarly, the dentin receiving bur and etching treatments exhibited significantly lower (p≤0.0001) fatigue strength than that of the control, regardless of whether an adhesive was applied. Significance The individual steps involved in the placement of bonded resin composite restorations significantly decrease the fatigue strength of dentin, and application of a bonding agent does not increase the fatigue strength of dentin. PMID:24985539

  8. The behavior of bonded doubler splices for composite sandwich panels

    NASA Technical Reports Server (NTRS)

    Zeller, T. A.; Weisahaar, T. A.

    1980-01-01

    The results of an investigation into the behavior of adhesively bonded doubler splices of two composite material sandwich panels are presented. The splices are studied from three approaches: analytical; numerical (finite elements); and experimental. Several parameters that characterize the splice are developed to determine their influence upon joint strength. These parameters are: doubler overlap length; core stiffness; laminate bending stiffness; the size of the gap between the spliced sandwich panels; and room and elevated temperatures. Similarities and contrasts between these splices and the physically similar single and double lap joints are discussed. The results of this investigation suggest several possible approaches to improving the strength of the sandwich splices.

  9. Mechanisms of degradation in adhesive joint strength: Glassy polymer thermoset bond in a humid environment

    SciTech Connect

    Kropka, Jamie Michael; Adolf, Douglas Brian; Spangler, Scott Wilmer; Austin, Kevin N.; Chambers, Robert S.

    2015-08-06

    The degradation in the strength of napkin-ring (NR) joints bonded with an epoxy thermoset is evaluated in a humid environment. While adherend composition (stainless steel and aluminum) and surface preparation (polished, grit blasted, primed, coupling agent coated) do not affect virgin (time=0) joint strength, they can significantly affect the role of moisture on the strength of the joint. Adherend surface abrasion and corrosion processes are found to be key factors in determining the reliability of joint strength in humid environments. In cases where surface specific joint strength degradation processes are not active, decreases in joint strength can be accounted for by the glass transition temperature, Tg, depression of the adhesive associated with water sorption. Under these conditions, joint strength can be rejuvenated to virgin strength by drying. In addition, the decrease in joint strength associated with water sorption can be predicted by the Simplified Potential Energy Clock (SPEC) model by shifting the adhesive reference temperature, Tref, by the same amount as the Tg depression. When surface specific degradation mechanisms are active, they can reduce joint strength below that associated with adhesive Tg depression, and joint strength is not recoverable by drying. Furthermore, a critical relative humidity (or, potentially, critical water sorption concentration), below which the surface specific degradation does not occur, appears to exist for the polished stainless steel joints.

  10. Mechanisms of degradation in adhesive joint strength: Glassy polymer thermoset bond in a humid environment

    DOE PAGESBeta

    Kropka, Jamie Michael; Adolf, Douglas Brian; Spangler, Scott Wilmer; Austin, Kevin N.; Chambers, Robert S.

    2015-08-06

    The degradation in the strength of napkin-ring (NR) joints bonded with an epoxy thermoset is evaluated in a humid environment. While adherend composition (stainless steel and aluminum) and surface preparation (polished, grit blasted, primed, coupling agent coated) do not affect virgin (time=0) joint strength, they can significantly affect the role of moisture on the strength of the joint. Adherend surface abrasion and corrosion processes are found to be key factors in determining the reliability of joint strength in humid environments. In cases where surface specific joint strength degradation processes are not active, decreases in joint strength can be accounted formore » by the glass transition temperature, Tg, depression of the adhesive associated with water sorption. Under these conditions, joint strength can be rejuvenated to virgin strength by drying. In addition, the decrease in joint strength associated with water sorption can be predicted by the Simplified Potential Energy Clock (SPEC) model by shifting the adhesive reference temperature, Tref, by the same amount as the Tg depression. When surface specific degradation mechanisms are active, they can reduce joint strength below that associated with adhesive Tg depression, and joint strength is not recoverable by drying. Furthermore, a critical relative humidity (or, potentially, critical water sorption concentration), below which the surface specific degradation does not occur, appears to exist for the polished stainless steel joints.« less

  11. Effect of placement agitation and placement time on the shear bond strength of 3 self-etching adhesives.

    PubMed

    Velasquez, Lina Maria; Sergent, Robert S; Burgess, John O; Mercante, D E

    2006-01-01

    This study measured the shear bond strength (SBS) of 3 self-etching bonding agents to enamel and dentin with and without agitation at 3 different application times. The null hypotheses tested were that agitation and application time have no effect on bond strength. Occlusal surfaces of 180 recently extracted caries-free human molars were wet ground with 600 grit wet-dry silica carbide abrasive paper to obtain a flat enamel surface. The teeth were divided into 18 groups of 10 teeth. Three self-etching bonding agents, Clearfil SE BOND (Kuraray America), Xeno III (Dentsply) and AdheSE (Ivoclar-Vivadent) were applied using application times of 10, 20 or 30 seconds with or without agitation, thinned with a gentle stream of air and cured for 10 seconds, according to manufacturers' directions. Z100 (3M ESPE) composite, A2 shade, was placed over the cured adhesive and cured for 40 seconds. The samples were stored in distilled water at room temperature until testing. The samples were tested in shear to failure with a 1-mm/minute crosshead speed. After enamel shear bond strength testing, the teeth were again ground with 400 and 600-grit wet-dry SiC paper to obtain a flat dentin surface. The protocol used for preparing the enamel bond test samples was repeated, and the teeth were stored until testing in distilled water at room temperature. The samples were again tested in shear at a 1-mm/minute crosshead speed. Values were converted to MPa and data analyzed for intergroup differences using ANOVA and Tukey post-hoc tests. Agitation did not improve enamel SBS for any of the materials tested, but there was a significant difference in enamel SBS among materials: Clearfil SE Bond shear bond strength was greater than Xeno III, which was greater than AdheSE. At 10 seconds application time on dentin, agitation improved the Clearfil SE Bond SBS and, at 20 seconds application time on dentin, agitation significantly improved SBS to dentin for all systems tested. Agitation had no affect

  12. Effect of curing unit and adhesive system on marginal adaptation of composite restorations.

    PubMed

    Casselli, Denise Sa Maia; Faria-e-Silva, Andre Luis; Casselli, Henrique; Martins, Luis Roberto Marcondes

    2012-01-01

    This study sought to evaluate how a curing unit and adhesive system affected the marginal adaptation of resin composite restorations. Class V cavities were prepared in bovine teeth with a gingival margin in dentin and an incisal margin in enamel. The cavities were restored with a micro-hybrid resin composite using one of four adhesives: Single Bond 2, Prime & Bond NT, Clearfil SE Bond, Xeno IV. The light-activations were performed using a quartz-tungsten-halogen (QTH) lamp or a second-generation light-emitting diode (LED). Restorations were finished and polished and epoxy replicas were prepared. Marginal adaptation was analyzed by using scanning electronic microscopy (magnification 500X). The widest gaps in each margin were recorded, and data were submitted to Kruskal-Wallis, Mann-Whitney, and Wilcoxon tests (α = 0.05). Differences between the adhesives were observed only when the dentin margins were evaluated: Clearfil SE Bond demonstrated better marginal adaptation than Prime & Bond NT or Single Bond 2 (which demonstrated the widest gaps in the dentin margin). The type of curing unit only affected the results for Xeno IV when the enamel margin was analyzed; the LED lamp promoted smaller gaps than the QTH lamp. PMID:23220321

  13. Influence of adhesive system and bevel preparation on fracture strength of teeth restored with composite resin.

    PubMed

    Coelho-de-Souza, Fábio Herrmann; Rocha, Analice da Cunha; Rubini, Alessandro; Klein-Júnior, Celso Afonso; Demarco, Flávio Fernando

    2010-01-01

    The aim of this study was to evaluate the fracture strength of teeth with different cavosurface margin cavity preparations and restored with composite resin and different adhesive systems. Eighty premolars were randomly divided in 8 groups, as follow: G1- sound teeth; G2- MOD preparation (no restoration); G3- Adper Single Bond without bevel preparation (butt joint); G4- Adper Single Bond with bevel preparation; G5- Adper Single Bond with chamfer preparation; G6- Clearfil SE Bond without bevel (butt joint); G7- Clearfil SE Bond with bevel preparation; G8- Clearfil SE Bond with chamfer preparation. The adhesive systems were applied according to manufacturers' instructions. Composite resin (Filtek Z250) was incrementally placed in all cavities. After 24 h, the specimens were tested in a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed statistically by ANOVA and Tukey's test (fracture strength) and Fisher's exact test (fracture pattern). The confidence level was set at 95% for all tests. Prepared and non-restored teeth showed the worst performance and G4 exhibited the highest fracture strength among all groups (p<0.05). In conclusion, all restorative treatments were able to recover the fracture strength of non-restored teeth to levels similar to those of sound teeth. Using a total-etch adhesive system with bevel preparation significantly improved the resistance to fracture. PMID:20976383

  14. Non-uniform breaking of molecular bonds, peripheral morphology and releasable adhesion by elastic anisotropy in bio-adhesive contacts

    PubMed Central

    Liu, Yan; Gao, Yanfei

    2015-01-01

    Biological adhesive contacts are usually of hierarchical structures, such as the clustering of hundreds of sub-micrometre spatulae on keratinous hairs of gecko feet, or the clustering of molecular bonds into focal contacts in cell adhesion. When separating these interfaces, releasable adhesion can be accomplished by asymmetric alignment of the lowest scale discrete bonds (such as the inclined spatula that leads to different peeling force when loading in different directions) or by elastic anisotropy. However, only two-dimensional contact has been analysed for the latter method (Chen & Gao 2007 J. Mech. Phys. Solids 55, 1001–1015 (doi:10.1016/j.jmps.2006.10.008)). Important questions such as the three-dimensional contact morphology, the maximum to minimum pull-off force ratio and the tunability of releasable adhesion cannot be answered. In this work, we developed a three-dimensional cohesive interface model with fictitious viscosity that is capable of simulating the de-adhesion instability and the peripheral morphology before and after the onset of instability. The two-dimensional prediction is found to significantly overestimate the maximum to minimum pull-off force ratio. Based on an interface fracture mechanics analysis, we conclude that (i) the maximum and minimum pull-off forces correspond to the largest and smallest contact stiffness, i.e. ‘stiff-adhere and compliant-release’, (ii) the fracture toughness is sensitive to the crack morphology and the initial contact shape can be designed to attain a significantly higher maximum-to-minimum pull-off force ratio than a circular contact, and (iii) since the adhesion is accomplished by clustering of discrete bonds or called bridged crack in terms of fracture mechanics terminology, the above conclusions can only be achieved when the bridging zone is significantly smaller than the contact size. This adhesion-fracture analogy study leads to mechanistic predictions that can be readily used to design biomimetics and

  15. Microtensile bond strength of fiber-reinforced composite with semi-interpenetrating polymer matrix to dentin using various bonding systems.

    PubMed

    Tezvergil-Mutluay, Arzu; Lassila, Lippo V J; Vallittu, Pekka K

    2008-11-01

    This study investigated the microtensile bond strength (microTBS) of fiber-reinforced composite (FRC) to dentin using various adhesive systems. Forty eight (n = 8/group) human molars were flattened to expose dentin. A layer of preimpregnated unidirectional FRC (everStick) was applied on the dentin surface after treatment with either a single-step self-etching adhesive, two-step self-etching system, or a conventional three-step adhesive system. For the control, particulate filler composite (PFC) (Filtek Z250) layering without FRC was used. After 24-hour water storage at 37 degrees C, the specimens were sectioned, further water-stored at 37 degrees C for 30 days and then tested. Data were analyzed using ANOVA and Tukey's test, and reliability was analyzed with Weibull distribution. microTBS values differed significantly according to the adhesive material used (p < 0.05). Single-step self-etching adhesive showed the lowest bond reliability and microTBS values with both FRC and PFC, whereas conventional three-step and two-step self-etching systems showed higher bond reliability and microTBS with both materials. PMID:19241691

  16. Effect of Forming Speed on Plastic Bending of Adhesively Bonded Sheet Metals

    NASA Astrophysics Data System (ADS)

    Takiguchi, Michihiro; Yoshida, Fusahito

    Using highly ductile acrylic adhesive, the present authors proposed a new technique of plastic bending of adhesively bonded sheet metals. In this process, the suppression of large transverse shear deformation occurring in the adhesive layer, which in some cases would induce the geometrical imperfection (so-called ‘gull-wing bend') and the delamination of the sheet, is one of the most important technical issues. In the present work, the effect of forming speed on bending deformation was investigated. From experimental observations in V-bending experiments of adhesively bonded aluminium sheets, as well as the corresponding numerical simulations which consider the viscoplasticity nature of the adhesive resin, it was found that the large shear deformation and ‘gull-wing bend' are successfully suppressed by high-speed forming since the deformation resistance of the adhesive resin becomes higher at a high strain rate.

  17. Does the use of a novel self-adhesive flowable composite reduce nanoleakage?

    PubMed Central

    Naga, Abeer Abo El; Yousef, Mohammed; Ramadan, Rasha; Fayez Bahgat, Sherif; Alshawwa, Lana

    2015-01-01

    Objective The aim of the study reported here was to evaluate the performance of a self-adhesive flowable composite and two self-etching adhesive systems, when subjected to cyclic loading, in preventing the nanoleakage of Class V restorations. Methods Wedge-shape Class V cavities were prepared (4×2×2 mm [length × width × depth]) on the buccal surfaces of 90 sound human premolars. Cavities were divided randomly into three groups (n=30) according to the used adhesive (Xeno® V [self-etching adhesive system]) and BOND-1® SF (solvent-free self-etching adhesive system) in conjunction with Artiste® Nano Composite resin, and Fusio™ Liquid Dentin (self-adhesive flowable composite), consecutively. Each group was further divided into three subgroups (n=10): (A) control, (B) subjected to occlusal cyclic loading (90N for 5,000 cycles), and (C) subjected to occlusal cyclic loading (90N for 10,000 cycles). Teeth then were coated with nail polish up to 1 mm from the interface, immersed in 50% silver nitrate solution for 24 hours and tested for nanoleakage using the environmental scanning electron microscopy and energy dispersive analysis X-ray analysis. Data were statistically analyzed using two-way analysis of variance and Tukey’s post hoc tests (P≤0.05). Results The Fusio Liquid Dentin group showed statistically significant lower percentages of silver penetration (0.55 μ) compared with the BOND-1 SF (3.45 μ) and Xeno V (3.82 μ) groups, which were not statistically different from each other, as they both showed higher silver penetration. Conclusion Under the test conditions, the self-adhesive flowable composite provided better sealing ability. Aging of the two tested adhesive systems, as a function of cyclic loading, increased nanoleakage. PMID:25848318

  18. Effect of thermal shock loadings on stability of dentin-composite polymer material adhesive interfaces

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Shlyapnikova, Olga A.; Venig, Sergey B.; Gribov, Andrey N.

    2015-03-01

    In the past several decades the problem of longevity and durability of adhesive interfaces between hard tooth tissues and composite resin-based materials are of great interest among dental researchers and clinicians. These parameters are partially determined by adhesive system mechanical properties. In the present research project nanoindentation has been examined to test hardness of dental adhesive systems. A series of laboratory experiments was performed to study the effect of light curing time and oxygen inhibition phenomenon on light-cured adhesive material hardness. An adhesive system AdperTM Single Bond (3M ESPE) was selected as a material for testing. The analysis of experimental data revealed that the maximum values of hardness were observed after the material had been light-cured for 20 seconds, as outlined in guidelines for polymerization time of the adhesive system. The experimental studies of oxygen inhibition influence on adhesive system hardness pointed out to the fact that the dispersive layer removal led to increase in adhesive system hardness. A long - time exposure of polymerized material of adhesive system at open air at room temperature resulted in no changes in its hardness, which was likely to be determined by the mutual effect of rival processes of air oxygen inhibition and directed light curing.

  19. Adhesive bond performance of heat-treated wood at various conditions.

    PubMed

    Kol, Hamiyet Sahin; Özbay, Günay

    2016-07-01

    Heat treatment of wood leads to chemical, structural and physical changes in wood constituents, which can significantly affect the bonding performance of wood in several ways depending on the adhesive type used. In the present study, fir (Abies bornmülleriana Mattf.) and beech (Fagus orientalis L.) were heat treated at 170 degrees C, 180 degrees C, 190 degrees C, 200 and 212 degrees C for 2 hours. Four different types of adhesives were used for bonding process: melamine-urea-formaldehyde (MUF), melamine formaldehyde (MF), phenol formaldehyde (PF), and polyurethane (PUR). For all the pretreatment conditions, highest shear strength of adhesive bonds of each adhesive system was observed for untreated samples and shear strength decreased with increasing heat treatment. The strength of each adhesive bond of samples which were soaked in water was much less than dry samples, approximately half of the dry strength. Generally, the shear strength of the adhesive bonds after boiling was smaller than or similar to the values obtained for soaking. The untreated samples lost more strength after soaking and boiling than heat treated samples. With increasing heat treatment severity, reduction in shear strength increased in dry samples while decreased in soaking and boiling samples. For instance, after soaking, the untreated samples lost more strength (almost 39%) than heat treated samples (almost 24% for most severely heat treated samples). The results showed that the shear strength of adhesive bonds was influenced by heat treatment and depended on pretreatment of samples prior to testing. In general, all adhesives used performed in quite a similar way for all pretreatment conditions, and the bonding performance of heat treated fir wood was less satisfactory than that of beech wood for all adhesive system and condition. PMID:27498501

  20. Introduction to the adhesive bonding session. [foam system for attaching thermal insulation on space shuttle

    NASA Technical Reports Server (NTRS)

    Mccarty, J. E.

    1972-01-01

    Space shuttle unique requirements call for the development of a specific adhesive system to reliable attach reusable surface insulation. A low density foam system has been developed that provides strain isolation from the support structure and remains structurally stable in space shuttle thermal environment. Surface preparation and its stabilization by an adhesive primer system are the most important factors in preventing corrosion from reducing the reliability and durability of the adhesive bonding component.

  1. Assessing the integrity of structural adhesive bonds by the measurement of acoustic properties

    NASA Technical Reports Server (NTRS)

    Jagasivamani, V.; Smith, A. C.

    1992-01-01

    Results are reported of an experimental study tracing the influence of externally applied shear stresses on the acoustic properties in the bondline region. The changes in the acoustic properties with a change in the temperature of the test samples are measured. The results of these tests are employed to evaluate the quality of the adhesive bonds. The dependence of time-of-flight on the temperature of plain steel and of steel adhesively bonded to rubber is illustrated in graphic form.

  2. Test and analysis of Celion 3000/PMR-15, graphite/polyimide bonded composite joints: Data report

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1982-01-01

    Standard single lap, double lap and symmetric step lap bonded joints of Celion 3000/PMR-15 graphite/polyimide composite were evaluated. Composite to composite and composite to titanium joints were tested at 116 K (-250 F), 294 K (70 F) and 561 K (550 F). Joint parameters evaluated are lap length, adherend thickness, adherend axial stiffness, lamina stacking sequence and adherend tapering. Advanced joint concepts were examined to establish the change in performance of preformed adherends, scalloped adherends and hybrid systems. The material properties of the high temperature adhesive, designated A7F, used for bonding were established. The bonded joint tests resulted in interlaminar shear or peel failures of the composite and there were very few adhesive failures. Average test results agree with expected performance trends for the various test parameters. Results of finite element analyses and of test/analysis correlations are also presented.

  3. Test and analysis of Celion 3000/PMR-15, graphite/polyimide bonded composite joints: Summary

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1983-01-01

    Standard single lap, double lap and symmetric step lap bonded joints of Celion 3000/PMR-15 graphite/polyimide composite were evaluated. Composite to composite and composite to titanium joints were tested at 116K (-250 F), 294K (70 F) and 561K (550 F). Joint parameters evaluated were lap length, adherend thickness, adherend axial stiffness, lamina stacking sequence and adherend tapering. Tests of advanced joint concepts were also conducted to establish the change in performance of preformed adherends, scalloped adherends and hybrid systems. Special tests were conducted to establish material properties of the high temperature adhesive, designated A7F, used for bonding. Most of the bonded joint tests resulted in interlaminar shear or peel failures of the composite. There were very few adhesive failures. Average test results agree with expected performance trends for the various test parameters. Results of finite element analyses and of test/analysis correlations are also presented.

  4. Syntactic foam composites and bonding. Final report

    SciTech Connect

    McWhirter, R.J.

    1980-09-01

    A manufacturing process has been developed to produce billets molded from a composite of carbon microspheres, a polyimide resin, and carbon fibers. The billets then are machined to configuration which results in extremely sharp and fragile edges on one part. To strengthen these parts, a parylene coating is applied, after which the parts are assembled with other parts by bonding. Bonding and assembly problems are discussed in detail; other problems encountered are summarized, and several are referenced to previous reports.

  5. Effect of different adhesive systems on microleakage at the amalgam/composite resin interface.

    PubMed

    Hadavi, F; Hey, J H; Ambrose, E R; Elbadrawy, H E

    1993-01-01

    The objective of this study was to evaluate the effect of different bonding systems on teh microleakage at the amalgam/composite interface. The microleakage at the amalgam/composite resin interface was evaluated with a quantitative dye penetration method. Amalgam cylinders were made and a 2 mm composite base was added after the application of five different bonding systems to the roughened interface of the amalgam cylinders. The cylinders were filled with an exact volume of 0.05% fuchsin solution, and the total weight of the sample was measured. The cylinders were placed on a filter paper with the composite base down and evaluated for leakage after 1, 3, 6, and 24 hours. Weight loss and coloring of the filter paper represented microleakage. The results indicated that the application of Prisma Universal Bond 2 adhesive, Cover Up II, or Amalgambond (groups E, F, and G) reduced the amount of microleakage significantly as compared to the groups in which no adhesive system, 3M Porcelain Repair Kit (with and without acid etching of the amalgam surface), or Prisma Universal Bond 2 primer and adhesive (groups A, B, C or D) was applied. PMID:8332537

  6. Damage analysis in composite materials and design of adhesive joints for composite structures

    NASA Astrophysics Data System (ADS)

    Zhang, Jian

    design of adhesive joints for composite structures . A new approach was explored for joining of thick, woven E-glass/vinyl ester composite laminated plates to steel or composite plates, with applications in naval ship structures. Adhesive was applied along through-the-thickness contoured interfaces, employing tongue-and-groove geometry. Both experimental and finite element modeling results were presented. They showed that adhesively bonded tongue-and-groove joints between steel and composite plates loaded in monotonically increasing longitudinal tension are stronger than conventional strap joints even in relatively thin plates. In particular, a single 0.25 in. wide and 8 or 12 in. long steel tongue, bonded by the Dexter-Hysol 9339 adhesive to a groove in a 0.5 in. thick laminated plate, can support a 20,000 lbs tension force. This force was expected to increase in proportion to plate thickness. Simple design rules indicate that the adhesive bond can be made stronger than that of the tongues, so that failure was transferred from the adhesive to the adherends. High joint efficiency can be achieved for any thickness of the joined plates.

  7. Effect of laser preparation on adhesion of a self-adhesive flowable composite resin to primary teeth.

    PubMed

    Memarpour, Mahtab; Shafiei, Fereshteh; Razmjoei, Faranak; Kianimanesh, Nasrin

    2016-04-01

    The aim of the study was to evaluate the adhesion of a self-adhering flowable composite resin to primary tooth enamel and dentin after silicon carbide paper (SiC) and laser pretreatment. Adhesive properties were evaluated as shear bond strength (SBS) and scanning electron microscopic (SEM) characteristics. A total 120 primary canine teeth were randomly divided into two groups to study enamel and dentin. Each group was divided into 6 subgroups (n = 10) according to type of surface preparation (SiC or Er:YAG laser) of enamel or dentin. Three methods were used to build cylinders of restoration on tooth surface: OptiBond All-In-One + Premise Flowable composite, OptiBond All-In-One + Vertise Flow and Vertise flow. After restoration, samples were tested for SBS and failure mode. Twenty eight samples were examined by SEM. The results of the study showed SBS of Vertise Flow was lower than others in enamel and dentin samples pretreated with SiC and in dentin samples pretreated with laser (P < 0.001). Compared to SiC pretreatment, laser pretreatment led to a significantly higher SBS with Vertise Flow on enamel (P < 0.001). Vertise Flow associated with the adhesive led to a higher SBS in enamel and dentin compared to Vertise Flow alone. Adhesive and mixed failure modes were observed more frequently in Vertise Flow groups. SEM images showed that Vertise Flow led to more irregularities on enamel and more open dentinal tubules after laser ablation compared SiC pretreatment. PMID:26888173

  8. Nondestructive testing of adhesive bonds by nuclear quadrupole resonance method

    NASA Technical Reports Server (NTRS)

    Hewitt, R. R.

    1971-01-01

    Inert, strain sensitive tracer, cuprous oxide, added to polymeric adhesive ensures sufficiently large signal to noise ratio in NQR system output. Method is successful, provided that RF-transparent structural materials are used between modified adhesive and probe of NQR spectrometer.

  9. Modeling cytoskeletal flow over adhesion sites: competition between stochastic bond dynamics and intracellular relaxation.

    PubMed

    Sabass, Benedikt; Schwarz, Ulrich S

    2010-05-19

    In migrating cells, retrograde flow of the actin cytoskeleton is related to traction at adhesion sites located at the base of the lamellipodium. The coupling between the moving cytoskeleton and the stationary adhesions is mediated by the continuous association and dissociation of molecular bonds. We introduce a simple model for the competition between the stochastic dynamics of elastic bonds at the moving interface and relaxation within the moving actin cytoskeleton represented by an internal viscous friction coefficient. Using exact stochastic simulations and an analytical mean field theory, we show that the stochastic bond dynamics lead to biphasic friction laws as observed experimentally. At low internal dissipation, stochastic bond dynamics lead to a regime of irregular stick-and-slip motion. High internal dissipation effectively suppresses cooperative effects among bonds and hence stabilizes the adhesion. PMID:21386438

  10. Effect of Thermocycling, Degree of Conversion, and Cavity Configuration on the Bonding Effectiveness of All-in-One Adhesives.

    PubMed

    El-Damanhoury, H M; Gaintantzopoulou, M

    2015-01-01

    The aim of this study was to compare five all-in-one bonding agents with respect to microleakage, microtensile bond strength (μTBS), degree of conversion (DC) and the impact of cavity configuration. The materials tested were Adper Easy Bond, Clearfil S3 Bond, iBond, Optibond All-in-One, Xeno IV, and Adper Single Bond Plus as a control. The DC of each adhesive was measured on the surfaces of dentin discs (n=5) by attenuated total reflectance Fourier transform infrared spectroscopy. One hundred and forty-four extracted human molars were randomly divided and assigned to one of the five tested adhesives and the control group. The μTBS to dentin was measured on flat occlusal dentin with and without thermocycling and to the gingival floor dentin of class II cavities (n=8). All specimens were restored with Filtek Z250 resin composite. Class II samples were immersed in a 5% methylene blue dye solution for 24 hours, and microleakage was examined under a stereomicroscope. Micromorphological analysis of demineralized/deproteinized specimens was done using scanning electron microscopy. The DC and microleakage data were statistically analyzed by one-way analysis of variance (ANOVA) and μTBS data by two-way ANOVA followed by a Bonferroni multiple comparison post hoc test (α=0.05) and Weibull-distribution survival analysis. The relation between different variables and μTBS and microleakage was tested by the Pearson correlation coefficient and regression statistics. A moderate direct relation between DC and μTBS durability was found for all the adhesives tested. Significant wide variations exist among the results obtained for single-bottle adhesives tested regarding their μTBS and microleakage. Some of the all-in-one materials tested have shown significantly inferior results under a high C-factor or after aging. The use of these materials should be carefully considered. PMID:25748210

  11. Bond strength of self-adhesive resin cements to tooth structure

    PubMed Central

    Hattar, Susan; Hatamleh, Muhanad M.; Sawair, Faleh; Al-Rabab’ah, Mohammad

    2015-01-01

    Objectives The aim of this study was to evaluate the strength of the bond between newly introduced self-adhesive resin cements and tooth structures (i.e., enamel and dentin). Methods Three self-adhesive cements (SmartCem2, RelyX Unicem, seT SDI) were tested. Cylindrical-shaped cement specimens (diameter, 3 mm; height, 3 mm) were bonded to enamel and dentin. Test specimens were incubated at 37 °C for 24 h. The shear bond strength (SBS) was tested in a Zwick Roll testing machine. Results were analyzed by one-way ANOVA and t-test. Statistically significant differences were defined at the α = 0.05 level. Bond failures were categorized as adhesive, cohesive, or mixed. Results The SBS values ranged from 3.76 to 6.81 MPa for cements bonded to enamel and from 4.48 to 5.94 MPa for cements bonded to dentin (p > 0.05 between surfaces). There were no statistically significant differences between the SBS values to enamel versus dentin for any given cement type. All cements exhibited adhesive failure at the resin/tooth interface. Conclusions Regardless of their clinical simplicity, the self-adhesive resin cements examined in this study exhibit limited bond performance to tooth structures; therefore, these cements must be used with caution. PMID:26082572

  12. Damage state evaluation of adhesive composite joints using chaotic ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fasel, Timothy R.; Todd, Michael D.; Park, Gyuhae

    2009-03-01

    Ultrasonic chaotic excitations combined with sensor prediction algorithms have shown the ability to identify incipient damage (loss of preload) in a bolted joint. In this study we examine the capability of this damage detection scheme to identify disbonds and poorly cured bonds in a composite-to-composite adhesive joint. The test structure consists of a carbon fiber reinforced polymer (CFRP) plate that has been bonded to a CFRP rectangular tube/spar with several sizes of disbond as well as a poorly cured section. Each excitation signal is imparted to the CFRP plate through a macro-fiber composite (MFC) patch on one side of the adhesive joint and sensed using an equivalent MFC patch on the opposite side of the joint. A novel statistical classification feature is developed from information theory concepts of cross-prediction and interdependence. Temperature dependence of this newly developed feature will also be examined.

  13. Microtubule-dependent modulation of adhesion complex composition.

    PubMed

    Ng, Daniel H J; Humphries, Jonathan D; Byron, Adam; Millon-Frémillon, Angélique; Humphries, Martin J

    2014-01-01

    The microtubule network regulates the turnover of integrin-containing adhesion complexes to stimulate cell migration. Disruption of the microtubule network results in an enlargement of adhesion complex size due to increased RhoA-stimulated actomyosin contractility, and inhibition of adhesion complex turnover; however, the microtubule-dependent changes in adhesion complex composition have not been studied in a global, unbiased manner. Here we used label-free quantitative mass spectrometry-based proteomics to determine adhesion complex changes that occur upon microtubule disruption with nocodazole. Nocodazole-treated cells displayed an increased abundance of the majority of known adhesion complex components, but no change in the levels of the fibronectin-binding α5β1 integrin. Immunofluorescence analyses confirmed these findings, but revealed a change in localisation of adhesion complex components. Specifically, in untreated cells, α5-integrin co-localised with vinculin at peripherally located focal adhesions and with tensin at centrally located fibrillar adhesions. In nocodazole-treated cells, however, α5-integrin was found in both peripherally located and centrally located adhesion complexes that contained both vinculin and tensin, suggesting a switch in the maturation state of adhesion complexes to favour focal adhesions. Moreover, the switch to focal adhesions was confirmed to be force-dependent as inhibition of cell contractility with the Rho-associated protein kinase inhibitor, Y-27632, prevented the nocodazole-induced conversion. These results highlight a complex interplay between the microtubule cytoskeleton, adhesion complex maturation state and intracellular contractile force, and provide a resource for future adhesion signaling studies. The proteomics data have been deposited in the ProteomeXchange with identifier PXD001183. PMID:25526367

  14. Adhesive bonding of super-elastic titanium-nickel alloy castings with a phosphate metal conditioner and an acrylic adhesive.

    PubMed

    Matsumura, H; Tanoue, N; Yanagida, H; Atsuta, M; Koike, M; Yoneyama, T

    2003-06-01

    The purpose of the current study was to evaluate the bonding characteristics of super-elastic titanium-nickel (Ti-Ni) alloy castings. Disk specimens were cast from a Ti-Ni alloy (Ti-50.85Ni mol%) using an arc centrifugal casting machine. High-purity titanium and nickel specimens were also prepared as experimental references. The specimens were air-abraded with alumina, and bonded with an adhesive resin (Super-Bond C & B). A metal conditioner containing a phosphate monomer (Cesead II Opaque Primer) was also used for priming the specimens. Post-thermocycling average bond strengths (MPa) of the primed groups were 41.5 for Ti-Ni, 30.4 for Ti and 19.5 for Ni, whereas those of the unprimed groups were 21.6 for Ti, 19.3 for Ti-Ni and 9.3 for Ni. Application of the phosphate conditioner elevated the bond strengths of all alloy/metals (P < 0.05). X-ray fluorescence analysis revealed that nickel was attached to the debonded resin surface of the resin-to-nickel bonded specimen, indicating that corrosion of high-purity nickel occurred at the resin-nickel interface. Durable bonding to super-elastic Ti-Ni alloy castings can be achieved with a combination of a phosphate metal conditioner and a tri-n-butylborane-initiated adhesive resin. PMID:12787464

  15. Bond strength of pressure sensitive adhesives for CFRP aluminium-alloy hybrid beams under impact loading

    NASA Astrophysics Data System (ADS)

    Sato, C.

    2003-09-01

    This paper discusses the impact absorbing capabilities of CFRP aluminium-alloy hybrid beams bonded with double-coated pressure sensitive adhesive tapes. Two sorts of double-coated adhesive tapes (VHB and SBT, 3M) were used in experiments. The strength and absorbed energy of the beams under impact loading were measured using an instrumented Charpy tester. Using the beams having the different adhesive tapes and the CFRP of different length, the variations of the strength and the absorbed energy were investigated. The beams bonded with VHB showed sufficient strength and absorbed energy. SBT showed also great capability of absorbing impact energy.

  16. “Evaluation of shear bond strength of a composite resin to white mineral trioxide aggregate with three different bonding systems”-An in vitro analysis

    PubMed Central

    Patil, Anand C.

    2016-01-01

    Background Mineral trioxide aggregate (MTA) is a biomaterial that has been investigated for endodontic applications. With the increased use of MTA in pulp capping, pulpotomy, perforation repair, apexification and obturation, the material that would be placed over MTA as a final restoration is an important matter. As composite resins are one of the most widely used final restorative materials, this study was conducted to evaluate the shear bond strength of a composite resin to white mineral trioxide aggregate (WMTA) using three different bonding systems namely the two-step etch and rinse adhesive, the self-etching primer and the All-in-one system. Material and Methods Forty five specimens of white MTA (Angelus) were prepared and randomly divided into three groups of 15 specimens each depending on the bonding systems used respectively. In Group A, a Two-step etch and rinse adhesive or ‘total-etch adhesive’, Adper Single Bond 2 (3M/ESPE) and Filtek Z350 (3M ESPE, St Paul, MN) were placed over WMTA. In group B, a Two-step self-etching primer system, Clearfil SE Bond (Kuraray, Medical Inc) and Filtek Z350 were used. In Group C, an All-in-one system, G Bond (GC corporation, Tokyo, Japan) and Filtek Z350 were used. The shear bond strength was measured for all the specimens. The data obtained was subjected to One way Analysis of Variance (ANOVA) and Scheffe’s post hoc test. Results The results suggested that the Two-step etch and rinse adhesive when used to bond a composite resin to white MTA gave better bond strength values and the All-in-one exhibited the least bond strength values. Conclusions The placement of composite used with a Two-step etch and rinse adhesive over WMTA as a final restoration may be appropriate. Key words:Composite resins, dentin bonding agents, mineral trioxide aggregate, shear bond strength. PMID:27398177

  17. Structural adhesives for bonding optics to metals: a study of optomechanical stability

    NASA Astrophysics Data System (ADS)

    Daly, John G.; Daly, Damien J.

    2001-11-01

    With so many new adhesives available, characteristics affecting performance are not always well-defined. The user often selects an adhesive based on a single property and later finds his application compromised. This is an effort to study relevant properties of several different structural-type adhesives. The bonding geometry will utilize three types of glass bonded to metal mounts. The mounting geometry will include five different design approaches. These designs will investigate: face bonding, counter-bored mounts, edge bonding, and a flexure mount. The three metals selected are not only common to the industry but often used for matching the Coefficient of Expansion to the optical glass. Each optical flat will have its reflective surface used as a reference for angular stability. The adhesives selected will compare more traditional epoxies with one-part UV light cured products. The obvious advantage of the UV- cured adhesives is the instant cure on-demand. Several adhesives have been selected for differing properties including: viscosity, cure temperature, CTE, modulus of elasticity, out-gassing, and shrinkage upon cure. Discussion will compare each adhesive, its properties, and ease of use. Angular stability will be monitored as a function of: pre vs. post cure, accelerated life testing, thermal exposure, and vibration/shock exposure. Some discussion will be included on the wavefront distortion and stress birefringence.

  18. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    PubMed Central

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  19. New primers for adhesive bonding of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Burrell, B. W.; Port, W. S.

    1971-01-01

    Synthetic polypeptide adhesive primers are effective, with high temperature epoxy resins, at temperatures from 100 deg to 300 deg C. Lap-shear failure loads and lap-shear strength of both primers are discussed.

  20. Adhesives deliver low-shrink low-stress bonds and fast UV cure

    NASA Astrophysics Data System (ADS)

    Rhodes, Kyle T.

    2001-03-01

    Lower stress, higher quality assemblies as well as quantum increases in productivity are now possible with `new generation', light curing adhesives. This new technology makes obsolete the industry-accepted assumption that low strain requires slow curing UV adhesives, epoxies and cements. Curing in only seconds and without the need for secondary thermal cure, these new light curing adhesives produce laminates which are essentially strain-free, and edge bonds with shrinkage as low as 0.2%. This paper will compare and contrast these new adhesives with existing bonding technologies in typical applications. Included are comparison between epoxies, UV curing mercaptoesters, and the new light curing Aerobic Acrylates, as well as the incorporation of adhesives into optical component design.

  1. Adhesives deliver low-shrink low-stress bonds and fast UV cure

    NASA Astrophysics Data System (ADS)

    Rhodes, Kyle T.

    2001-06-01

    Lower stress, higher quality assemblies as well as quantum increases in productivity are now possible with `new generation', light curing adhesives. This new technology makes obsolete the industry-accepted assumption that low strain requires slow curing UV adhesives, epoxies and cements. Curing in only seconds and without the need for secondary thermal cure, these new light curing adhesives produce laminates which are essentially strain-free, and edge bonds with shrinkage as low as 0.2%. This paper will compare and contrast these new adhesives with existing bonding technologies in typical applications. Included are comparisons between epoxies, UV curing mercaptoesters, and the new light curing Aerobic Acrylates, as well as the incorporation of adhesives into optical component design.

  2. Stresses in adhesively bonded joints: A closed form solution. [plate theory

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.; Aydinoglu, M. N.

    1980-01-01

    The plane strain of adhesively bonded structures which consist of two different orthotropic adherents is considered. Assuming that the thicknesses of the adherends are constant and are small in relation to the lateral dimensions of the bonded region, the adherends are treated as plates. The transverse shear effects in the adherends and the in-plane normal strain in the adhesive are taken into account. The problem is reduced to a system of differential equations for the adhesive stresses which is solved in closed form. A single lap joint and a stiffened plate under various loading conditions are considered as examples. To verify the basic trend of the solutions obtained from the plate theory a sample problem is solved by using the finite element method and by treating the adherends and the adhesive as elastic continua. The plate theory not only predicts the correct trend for the adhesive stresses but also gives rather surprisingly accurate results.

  3. Haemostatic agents on the shear bond strength of self-adhesive resin

    PubMed Central

    Anil, Akansha; Sekhar, Anand; Ginjupalli, Kishor

    2015-01-01

    Background Dentin surface contaminated with haemostatic agents can interfere with the bonding of self-adhesive resin cement. Therefore the purpose of this study was to evaluate the effect of various haemostatic agents such as Aluminium chloride, Ferric sulphate and Tannic acid on the shear bond strength of self-adhesive resin luting agent. Material and Methods The buccal surfaces of extracted premolars were flattened to expose the dentine. The teeth were then randomly divided into four groups. In Group I Aluminium Chloride was applied on the flattened dentinal surface, in Group II Ferric Sulphate was applied to exposed dentin surface, in Group III tannic acid was applied on to the dentinal surface, and the control group, i.e. Group IV was rinsed with saline. After the surface treatment, all the teeth were air dried. Then a predetermined dimension of RelyX™ U200 self-adhesive resin cement was bonded to the pretreated dentin surfaces. The samples were then stored under 370C in distilled water for 24 hours under 100 % humidity. Following this each sample was tested for shear bond strength with an Instron testing machine at a crosshead speed of 1mm/min. Results There was significant difference in the shear bond strength of control and tannic acid contaminated group (p<0.05), whereas there was no significant differences between the shear bond strength between control and aluminium chloride and ferric sulphate groups (p>0.05). Conclusions The usage of haemostatic agent can negatively affect the bond strength of self-adhesive resin cement (Rely X) on to the dentin surface. As per the study Tannic acid significantly weakened the bond between the self-adhesive resin and dentin. Key words:Aluminium chloride, Ferric sulphate, haemostatic agent, self-adhesive resin cement, shear bond strength, Tannic acid. PMID:26330930

  4. Effect of desensitizing agents on the microtensile bond strength of a two-step self-etch adhesive to dentin.

    PubMed

    Arisu, Hacer Deniz; Dalkihç, Evrim; Üçtaşli, Mine Betül

    2011-01-01

    The aim of this in vitro study was to evaluate the effect of cervical hypersensitivity treatments (neodymium yttrium aluminum garnet [Nd:YAG] laser and conventional techniques) on the microtensile bond strengths of adhesives to treated dentin. The buccal cervical enamel of 42 freshly extracted human mandibular third molars was ground flat to expose the cervical dentin. The dentin surfaces were polished with a series of silicon carbide papers, and the smear was removed with an ethylenediamine tetra-acetic acid solution. The teeth were randomly divided into six groups as follows: group 1, Vivasens; group 2, BisBlock; group 3, fluoride gel; group 4, Nd:YAG laser; group 5, Clearfil SE + Nd:YAG laser; and group 6, no treatment (control). The specimens were then restored with a two-step self-etch adhesive, with the exception of group 5. Five specimens from each group were restored with a nanohybrid composite resin. The adhesive interface of two specimens from each group was examined using scanning electron microscopy. The specimens were sectioned perpendicularly to the adhesive interface to produce beams (adhesive area 1 mm(2)). The beams were then attached to a microtensile tester and stressed to failure at 1 mm/min. The data were compared using one-way analysis of variance at a significance level of 0.05. The microtensile bond strengths of the control group were significantly higher than those found for group 1, group 2, group 3, and group 4 (p< 0.05). No significant difference was found between group 5 and the control group. Most of the premature failures were seen in group 2 (80%), and the fewest premature failures were seen in group 5 (13.3%). The SEM findings verified the microtensile test findings. In conclusion, desensitizing treatment procedures (with the exception of Clearfil SE + Nd:YAG laser) reduced the microtensile bond strength of a two-step self-etch adhesive to dentin. PMID:21777097

  5. Effect of dentin location and long-term water storage on bonding effectiveness of dentin adhesives.

    PubMed

    De Munck, Jan; Mine, Atsushi; Vivan Cardoso, Marcio; De Almeida Neves, Aline; Van Landuyt, Kirsten L; Poitevin, André; Van Meerbeek, Bart

    2011-01-01

    Dentin is a variable substrate with properties that change considerable in a single surface. The purpose of this study was to evaluate the bonding effectiveness to these different dentin locations and evaluate these differences over time. After bonding procedures with five different adhesives, small micro-tensile bond strength (µTBS) beams were prepared and dichotomously divided in 'center' and 'periphery' dentin specimens. After 1 week, 3, 6 and 12 months of water storage the µTBS of specimens of each group was determined, enabling a paired study design. The bond strengths of both etch&rinse adhesives were insensitive to regional variability. For the two-step self-etch adhesives, a marked increase in bond strengths was observed with increasing amount of intertubular dentin. Regional variability did not affect the long-term bonding effectiveness for any of the adhesives tested. In conclusion, only for the mild self-etch adhesives, µTBS to 'periphery' dentin was higher than for the 'center' specimens. PMID:21282894

  6. System integration and demonstration of adhesive bonded high temperature aluminum alloys for aerospace structure, phase 2

    NASA Technical Reports Server (NTRS)

    Falcone, Anthony; Laakso, John H.

    1993-01-01

    Adhesive bonding materials and processes were evaluated for assembly of future high-temperature aluminum alloy structural components such as may be used in high-speed civil transport aircraft and space launch vehicles. A number of candidate high-temperature adhesives were selected and screening tests were conducted using single lap shear specimens. The selected adhesives were then used to bond sandwich (titanium core) test specimens, adhesive toughness test specimens, and isothermally aged lap shear specimens. Moderate-to-high lap shear strengths were obtained from bonded high-temperature aluminum and silicon carbide particulate-reinforced (SiC(sub p)) aluminum specimens. Shear strengths typically exceeded 3500 to 4000 lb/in(sup 2) and flatwise tensile strengths exceeded 750 lb/in(sup 2) even at elevated temperatures (300 F) using a bismaleimide adhesive. All faceskin-to-core bonds displayed excellent tear strength. The existing production phosphoric acid anodize surface preparation process developed at Boeing was used, and gave good performance with all of the aluminum and silicon carbide particulate-reinforced aluminum alloys investigated. The results of this program support using bonded assemblies of high-temperature aluminum components in applications where bonding is often used (e.g., secondary structures and tear stoppers).

  7. The bond strength of elastomer tray adhesives to thermoplastic and acrylic resin tray materials.

    PubMed

    Hogans, W R; Agar, J R

    1992-04-01

    This study evaluated the bond strength of selected impression materials (Permlastic, Express, and Hydrosil) to a thermoplastic custom tray material as a function of drying time of the adhesive after application to a tray material. In addition, bond strengths of a polysulfide impression material to an acrylic resin tray material and to a thermoplastic tray material made directly against wax were evaluated. Bond strengths were obtained directly from values of applied load at failure and important conclusions were drawn. PMID:1507140

  8. Comparison of tensile bond strengths of four one-bottle self-etching adhesive systems with Er:YAG laser-irradiated dentin.

    PubMed

    Jiang, Qianzhou; Chen, Minle; Ding, Jiangfeng

    2013-12-01

    This study aimed to investigate the interaction of current one-bottle self-etching adhesives and Er:YAG laser with dentin using a tensile bond strength (TBS) test and scanning electron microscopy (SEM) in vitro. Two hundred and thirteen dentin discs were randomly distributed to the Control Group using bur cutting and to the Laser Group using an Er:YAG laser (200 mJ, VSP, 20 Hz). The following adhesives were investigated: one two-step total-etch adhesive [Prime & Bond NT (Dentsply)] and four one-step self-etch adhesives [G-Bond plus (GC), XENO V (Dentsply), iBond Self Etch (Heraeus) and Adper Easy One (3 M ESPE)]. Samples were restored with composite resin, and after 24-hour storage in distilled water, subjected to the TBS test. For morphological analysis, 12 dentin specimens were prepared for SEM. No significant differences were found between the control group and laser group (p = 0.899); dentin subjected to Prime & Bond NT, XENOV and Adper Easy One produced higher TBS. In conclusion, this study indicates that Er:YAG laser-prepared dentin can perform as well as bur on TBS, and some of the one-step one-bottle adhesives are comparable to the total-etch adhesives in TBS on dentin. PMID:24190486

  9. Repair bond strength of restorative resin composite applied to fiber-reinforced composite substrate.

    PubMed

    Tezvergil, Arzu; Lassila, Lippo V J; Yli-Urpo, Antti; Vallittu, Pekka K

    2004-02-01

    Delamination or fracture of composite veneers can occur as a result of improper design of the fiber-reinforced composite (FRC) framework. This in vitro study tested the repair bond strength of restorative composite to aged FRC. The substrate was multiphase polymer matrix FRC (everStick) aged by boiling for 8 h and storing at 37 degrees C in water for 6 weeks. The aged substrate surfaces were wet-ground flat with 1200-grit silicon carbide paper and subjected randomly to 5 different surface treatments: 1) An adhesion primer (Composite Activator) and resin (CA), 2) Silane (EspeSil) and resin (SIL-MP), 3) Silane, adhesive primer, and resin (Clearfil Repair) (CF), 4) Air particle-abrading (CoJet), silane, and resin (CJ-SIL-MP), 5) Resin (Scotchbond Multipurpose Resin) only as control (MP). Restorative composite resin (Z250) was added to the substrate in 2 mm layer increments and light-cured. Subsequently, every surface treatment group was divided into 2 subgroups of 12 specimens each. The specimens were either 48 h water-stored or thermocycled (6000 x 5-55 degrees C). The shear bond strengths of composite resin to FRC were measured at a crosshead speed of 1.0 mm/min. The data were analyzed by ANOVA for factors 'treatment type' and 'storage condition'; Tukey's post-hoc tests and Weibull analysis were performed. ANOVA showed a significant difference as a function of surface treatment (P<0.05) and storage condition (P<0.05). The CJ-SIL-MP group showed highest bond strength and Weibull modulus after thermocycling. Repair of multiphase polymer matrix FRC may show reliable bond strength when silane treatment is used along with air-particle abrading. PMID:15124783

  10. Catch bonds govern adhesion through L-selectin at threshold shear.

    PubMed

    Yago, Tadayuki; Wu, Jianhua; Wey, C Diana; Klopocki, Arkadiusz G; Zhu, Cheng; McEver, Rodger P

    2004-09-13

    Flow-enhanced cell adhesion is an unexplained phenomenon that might result from a transport-dependent increase in on-rates or a force-dependent decrease in off-rates of adhesive bonds. L-selectin requires a threshold shear to support leukocyte rolling on P-selectin glycoprotein ligand-1 (PSGL-1) and other vascular ligands. Low forces decrease L-selectin-PSGL-1 off-rates (catch bonds), whereas higher forces increase off-rates (slip bonds). We determined that a force-dependent decrease in off-rates dictated flow-enhanced rolling of L-selectin-bearing microspheres or neutrophils on PSGL-1. Catch bonds enabled increasing force to convert short-lived tethers into longer-lived tethers, which decreased rolling velocities and increased the regularity of rolling steps as shear rose from the threshold to an optimal value. As shear increased above the optimum, transitions to slip bonds shortened tether lifetimes, which increased rolling velocities and decreased rolling regularity. Thus, force-dependent alterations of bond lifetimes govern L-selectin-dependent cell adhesion below and above the shear optimum. These findings establish the first biological function for catch bonds as a mechanism for flow-enhanced cell adhesion. PMID:15364963

  11. The Effect of Epigallocatechin Gallate on the Dentin Bond Durability of Two Self-etch Adhesives

    PubMed Central

    Khamverdi, Zahra; Rezaei-Soufi, Loghman; Rostamzadeh, Tayebeh

    2015-01-01

    Statement of the Problem Self-etch adhesives can activate matrix metalloproteinase (MMP) which hydrolyzes organic matrix of demineralized dentin. Epigallocatechin gallate (EGCG), especially found in green tea, could inhibit the activation of MMP. Purpose The aim of this study was to evaluate the effect of adding Epigallocatechin gallate (EGCG) into two types of adhesives on dentin bond strength. Materials and Method In this experimental study, 64 extracted third molars were randomly divided into 16 groups. Clearfil SE Bond and Filtek Silorane System with 0 µM, 25µM, 50µM, and 100µM concentration of 95% EGCG were used for bonding. Following the bonding and fabrication of beams (1±0.1 mm2) and storage in distilled water, the specimens were subjected to thermal cycles. Microtensile bond strengths of 8 groups were examined after 24 hours and others were tested after 6 months. The fracture modes of specimens were evaluated by stereomicroscope and SEM. Data were analyzed by three-way ANOVA and t-test (α = 0.05). Results The results of the three- way ANOVA test showed that types of bonding, storage time and interactive effect of EGCG concentration and bonding influenced the bond strength of specimens significantly (p<0.05). The results of the t-test indicated that storage time only had significant effect on bond strength of Clearfil SE Bond with no EGCG (p= 0.017). The most common failure modes in Filtek Silorane System groups and Clearfil SE Bond groups were adhesive and mixed/cohesive, respectively. The results of SEM at different magnifications showed that most fractures have occurred in the hybrid layer. Conclusion Although adding 100 µM volume of EGCG to Clearfil SE Bond can preserve the dentin bond, incorporation of EGCG in the silorane system, especially in high concentrations, decreases the bond strength after 6 months. PMID:26046100

  12. Ultrasonic guided wave monitoring of composite bonded joints using macro fiber composite transducers

    NASA Astrophysics Data System (ADS)

    Matt, Howard; Bartoli, Ivan; Coccia, Stefano; Lanza di Scalea, Francesco; Oliver, Joseph; Kosmatka, John; Park, Gyuhae; Farrar, Charles

    2006-03-01

    The monitoring of adhesively-bonded joints through the use of ultrasonic guided waves is the general topic of this paper. Specifically, composite-to-composite joints representative of the wing skin-to-spar bonds of Unmanned Aerial Vehicles (UAVs) are examined. This research is the first step towards the development of an on-board structural health monitoring system for UAV wings based on integrated ultrasonic sensors. The study investigates two different lay-ups for the wing skin and two different types of bond defects, namely poorly-cured adhesive and disbonded interfaces. The guided wave propagation problem is studied numerically by a semi-analytical finite element method that accounts for viscoelastic damping, and experimentally by utilizing macro fiber composite (MFC) transducers which are inexpensive, flexible, highly robust, and viable candidates for application in on-board monitoring systems. Based upon change in energy transmission, the presence of damage is successfully identified through features extracted in both the time domain and discrete wavelet transform domain. A unique "passive" version of the diagnostic system is also demonstrated experimentally, whereby MFC sensors are utilized for detecting and locating simulated active damage in an aluminum plate. By exploiting the directivity behavior of MFC sensors, a damage location algorithm which is independent of wave speed is developed. Application of this approach in CFRP components may alleviate difficulties associated with damage location in highly anisotropic systems.

  13. Thermo-oxidative and hydrothermal ageing of epoxy-dicyandiamide adhesive in bonded stainless steel joints

    NASA Astrophysics Data System (ADS)

    Gaukler, J. Ch; Fehling, P.; Possart, W.

    2009-09-01

    The ageing behaviour of stainless steel joints bonded with hot-curing adhesives is crucial for their reliability and durability in engineering applications. In industry, accelerated artificial ageing regimes are combined with short-term mechanical tests to simulate the in-service long-term behaviour and to predict the life time of the adhesive joints. With such a focus on mechanical bond strength, chemical changes in the adhesive are widely disregarded. Hence, neither the very causes for the decreasing performance of the joint nor their relevance for application can be revealed. Reasoning this study, lap shear samples of the stainless steel alloy 1.4376 are bonded with an epoxy-dicyandiamide adhesive and aged artificially under moderate thermo-oxidative (60 °C, dried air) or hydrothermal (60 °C, distilled water) condition. After testing (shear stress-strain analysis), chemical modifications of this adhesive due to ageing are detected on the fracture faces by μ-ATR-FTIR-spectroscopy as function of ageing time and position in the adhesive joint. The results attest high thermo-oxidative stability to these adhesive joints. For hydrothermal ageing, permeating water deteriorates the EP network from the edges towards the centre of the joint via hydrolysis of imine groups to ammonia, amine species and carbonyls.

  14. Influence of thermal and mechanical load cycling on microtensile bond strengths of total and self-etching adhesive systems.

    PubMed

    Mitsui, Fabio Hiroyuki Ogata; Peris, Alessandra Rezende; Cavalcanti, Andrea Nóbrega; Marchi, Giselle Maria; Pimenta, Luiz André Freire

    2006-01-01

    This study evaluated the influence of different thermal (TC) and mechanical (MC) cycling protocols on microtensile bond strength (muTBS) to cervical dentin margins of Class II restorations using two total-etch (TE) adhesives and one self-etching (SE) primer. Class II slot cavities were prepared on the mesial surfaces of 168 bovine incisors and were divided into three groups according to the bonding system used: Single Bond, OptiBond Solo Plus and Clearfil SE Bond. All cavities were restored with Filtek Z250 composite. Following restorative procedures, the restored teeth were allocated to seven subgroups (n = 8) according to the thermal/mechanical protocol performed: G1-control (no cycling), G2-100,000 MC, G3-200,000 MC, G4-500,000 MC, G5-100,000 MC+1,000 TC, G6-200,000 MC+1,000 TC, G7-500,000 MC+1,000 TC. TC was performed using 5 +/- 2 degrees C and 55 +/- 2 degrees C baths, with a dwell time of 60 seconds in each bath. MC was achieved with an axial force of 80 N at 2 cycles/second. The restorations were sectioned perpendicular to the cervical bonded interface into two 0.8-1-mm thick slabs. The slabs were trimmed at the interface to obtain a cross-sectional surface area of 0.8-1 mm2. All specimens were then subjected to muTBS (v = 0.5 mm/minute). Fracture mode analysis was performed using SEM. Bond strength mean values (MPa) were analyzed with ANOVA 3-way and Tukey's test (alpha = 5%). Dunnett's test was used to compare tested groups against Control groups of each adhesive system (alpha = 56%). SE primer presented lower mean bond strength values when compared to TE adhesives (p = 0.05). In addition, specimens restored with the SE primer did not resist to the 200,000 and 500,000 MC associated with TC. The application of 100,000 MC did not present a significant decrease in bond strength when compared to the control. Mixed failures were predominant for all groups. The higher the amount of thermal/mechanical cycles, the greater the number of mixed failures and the

  15. A Proposed Approach for Certification of Bonded Composite Repairs to Flight-Critical Airframe Structure

    NASA Astrophysics Data System (ADS)

    Baker, Alan A.

    2011-08-01

    This paper focuses on the difficult issue of the certification of adhesively bonded repairs in applications where credit has to be given to the patch for restoring residual strength in flight-critical structure. The scope of the paper includes both adhesively bonded composite repairs to composite components and composite repairs to metallic components. After discussing typical bonded repairs and, as a baseline, procedures currently used to certify new structure, a proposal is made which may constitute an acceptable basis for the structural certification of repairs. The key requirement is to demonstrate an acceptably low probability of patch disbonding during the remaining life of the structure. The focus is on one-off repairs where development of a comprehensive certification procedure based even on limited testing will be infeasible: Firstly, a decision process is undertaken to establish if there is indeed a certification issue. That is situations where flight safety depends on the structural integrity of the repair patch.

  16. A glass microfluidic chip adhesive bonding method at room temperature

    NASA Astrophysics Data System (ADS)

    Pan, Yu-Jen; Yang, Ruey-Jen

    2006-12-01

    This paper presents a novel method using UV epoxy resin for the bonding of glass blanks and patterned plates at room temperature. There is no need to use a high-temperature thermal fusion process and therefore avoid damaging temperature-sensitive metals in a microchip. The proposed technique has the further advantage that the sealed glass blanks and patterned plates can be separated by the application of adequate heat. In this way, the microchip can be opened, the fouling microchannels may be easily cleaned-up and the plates then re-bonded to recycle the microchip. The proposed sealing method is used to bond a microfluidic device, and the bonding strength is then investigated in a series of chemical resistance tests conducted in various chemicals. Leakage of solution was evaluated in a microfluidic chip using pressure testing to 1.792 × 102 kPa (26 psi), and the microchannel had no observable leak. Electrical leakage between channels was tested by comparing the resistances of two bonding methods, and the result shows no significant electrical leakage. The performance of the device obtained from the proposed bonding method is compared with that of the thermal fusion bonding technique for an identical microfluidic device. It is found that identical results are obtained under the same operating conditions. The proposed method provides a simple, quick and inexpensive method for sealing glass microfluidic chips.

  17. Hemp-Fiber-Reinforced Unsaturated Polyester Composites: Optimization of Processing and Improvement of Interfacial Adhesion

    SciTech Connect

    Qui, Renhui; Ren, Xiaofeng; Fifield, Leonard S.; Simmons, Kevin L.; Li, Kaichang

    2011-02-25

    The processing variables for making hemp-fiber-reinforced unsaturated polyester (UPE) composites were optimized through orthogonal experiments. It was found that the usage of initiator, methyl ethyl ketone peroxide, had the most significant effect on the tensile strength of the composites. The treatment of hemp fibers with a combination of 1, 6-diisocyanatohexane (DIH) and 2-hydroxylethyl acrylate (HEA) significantly increased tensile strength, flexural modulus of rupture and flexural modulus of elasticity, and water resistance of the resulting hemp-UPE composites. FTIR spectra revealed that DIH and HEA were covalently bonded to hemp fibers. Scanning electronic microscopy graphs of the fractured hemp-UPE composites demonstrated that treatment of hemp fibers with a combination of DIH and HEA greatly improved the interfacial adhesion between hemp fibers and UPE. The mechanism of improving the interfacial adhesion is proposed.

  18. Adhesive Cementation of Indirect Composite Inlays and Onlays: A Literature Review.

    PubMed

    D'Arcangelo, Camillo; Vanini, Lorenzo; Casinelli, Matteo; Frascaria, Massimo; De Angelis, Francesco; Vadini, Mirco; D'Amario, Maurizio

    2015-09-01

    The authors conducted a literature review focused on materials and techniques used in adhesive cementation for indirect composite resin restorations. It was based on English language sources and involved a search of online databases in Medline, EMBASE, Cochrane Library, Web of Science, Google Scholar, and Scopus using related topic keywords in different combinations; it was supplemented by a traditional search of peer-reviewed journals and cross-referenced with the articles accessed. The purpose of most research on adhesive systems has been to learn more about increased bond strength and simplified application methods. Adherent surface treatments before cementation are necessary to obtain high survival and success rates of indirect composite resin. Each step of the clinical and laboratory procedures can have an impact on longevity and the esthetic results of indirect restorations. Cementation seems to be the most critical step, and its long-term success relies on adherence to the clinical protocols. The authors concluded that in terms of survival rate and esthetic long-term outcomes, indirect composite resin techniques have proven to be clinically acceptable. However, the correct management of adhesive cementation protocols requires knowledge of adhesive principles and adherence to the clinical protocol in order to obtain durable bonding between tooth structure and restorative materials. PMID:26355440

  19. The effect of additional etching and curing mechanism of composite resin on the dentin bond strength

    PubMed Central

    Lee, In-Su; Son, Sung-Ae; Hur, Bock; Kwon, Yong-Hoon

    2013-01-01

    PURPOSE The aim of this study was to evaluate the effects of additional acid etching and curing mechanism (light-curing or self-curing) of a composite resin on the dentin bond strength and compatibility of one-step self-etching adhesives. MATERIALS AND METHODS Sixteen human permanent molars were randomly divided into eight groups according to the adhesives used (All-Bond Universal: ABU, Clearfil S3 Bond: CS3), additional acid etching (additional acid etching performed: EO, no additional acid etching performed: EX), and composite resins (Filtek Z-250: Z250, Clearfil FII New Bond: CFNB). Group 1: ABU-EO-Z250, Group 2: ABU-EO-CFNB, Group 3: ABU-EX-Z250, Group 4: ABU-EX-CFNB, Group 5: CS3-EO-Z250, Group 6: CS3-EO-CFNB, Group 7: CS3-EX-Z250, Group 8: CS3-EX-CFNB. After bonding procedures, composite resins were built up on dentin surfaces. After 24-hour water storage, the teeth were sectioned to make 10 specimens for each group. The microtensile bond strength test was performed using a microtensile testing machine. The failure mode of the fractured specimens was examined by means of an optical microscope at ×20 magnification. The data was analyzed using a one-way ANOVA and Scheffe's post-hoc test (α=.05). RESULTS Additional etching groups showed significantly higher values than the no additional etching group when using All-Bond Universal. The light-cured composite resin groups showed significantly higher values than the self-cured composite resin groups in the Clearfil S3 Bond. CONCLUSION The additional acid etching is beneficial for the dentin bond strength when using low acidic one-step self-etch adhesives, and low acidic one-step self-etch adhesives are compatible with self-cured composite resin. The acidity of the one-step self-etch adhesives is an influencing factor in terms of the dentin bonding strength and incompatibility with a self-cured composite resin. PMID:24353889

  20. Effect of thermal cycling on the bond strength of self-adhesive cements to fiber posts.

    PubMed

    Mazzitelli, Claudia; Monticelli, Francesca; Toledano, Manuel; Ferrari, Marco; Osorio, Raquel

    2012-06-01

    The aim of this study was to assess the push-out bond strengths of self-adhesive resin cements to epoxy resin-based fiber posts after challenging by thermocycling. Thirty-six single-rooted premolars were endodontically treated, and the post-spaces were drilled to receive RelyX Fiber posts #1. Three self-adhesive resin cements (RelyX Unicem, G-Cem, and Breeze) were used for luting fiber posts. The bonded specimens were either stored for 1 month in a moist field (37°C) or submitted to thermocycling (5,000 times) prior to push-out test. The maximum force required to dislodge the post via an apical-coronal direction was recorded (megapascal). The data were statistically analyzed with two-way ANOVA and Tukey tests (p < 0.05). The factors "luting cement" and "thermocycling" significantly influenced bond strengths. The initial push-out values of RelyX Unicem and Breeze were higher than those of G-Cem. After thermocycling, the bond strength of G-Cem increased and no differences were found between groups. RelyX Unicem and Breeze bond strengths were not affected by the thermal challenge. Thermal cycling and cement type differently influence the bond strengths of self-adhesive resin cements. Self-adhesive cements can represent an option for luting fiber posts into root canal. PMID:21670983

  1. Effect of Self-adhesive Resin Cement and Tribochemical Treatment on Bond Strength to Zirconia

    PubMed Central

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-01-01

    Aim To evaluate the interactive effects of different self-adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 µm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment - silica coating + silanization. Specimens were stored in distilled water at 37°C for 24 hours before testing shear bond strength. Results Silica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, BI, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP-containing self-adhesive resin cement CL had the highest bond strengths to zirconia. Conclusion Applying silica coating and tribochemical treatment improved the bond strength of self-adhesive resin cement to zirconia, especially for CL. PMID:20690416

  2. Effects of aging on repair bond strengths of a polyacid-modified composite resin.

    PubMed

    Yap, A U; Sau, C W; Lye, K W

    1999-01-01

    The effect of age of a poly-acid-modified composite resin on repair bond strength after different methods of surface conditioning was studied. Surface conditioning methods included the following: maleic acid with resin application; polyacrylic acid with resin application; sand-blasting with resin application. Shear bond testing between the aged and new material was carried out with an Instron Universal Testing Machine. Although repair bonds strengths after all surface conditioning methods were significantly higher than the control group at 1 week, no statistically significant differences in bond strengths were noted after aging the material for 6 months. After all aging periods, surface conditioning with sand-blasting and resin application resulted in the highest repair bond for poly-acid-modified composite resins. Specimens with cohesive failure in the material gave significantly higher repair bond strengths than specimens with adhesive failure at the repaired interface. PMID:10823087

  3. Shear bond strength of orthodontic color-change adhesives with different light-curing times

    PubMed Central

    Bayani, Shahin; Ghassemi, Amirreza; Manafi, Safa; Delavarian, Mohadeseh

    2015-01-01

    Background: The purpose of this study was to evaluate the effect of light-curing time on the shear bond strength (SBS) of two orthodontic color-change adhesives (CCAs). Materials and Methods: A total of 72 extracted premolars were randomly assigned into 6 groups of 12 teeth each. Subsequent to primer application, a metal bracket was bonded to the buccal surface using an orthodontic adhesive. Two CCAs (Greengloo and Transbond Plus) were tested and one conventional light-cured adhesive (Resilience) served as control. For each adhesive, the specimens were light-cured for two different times of 20 and 40 s. All the specimens underwent mechanical testing using a universal testing machine to measure the SBS. Adhesive remnant index (ARI) was used to assess the remnant adhesive material on the tooth surface. All statistical analyses were performed using SPSS software. The significance level for all statistical tests was set at P ≤ 0.05. Results: The SBSs of the tested groups were in the range of 14.05-31.25 MPa. Greengloo adhesive showed the highest SBS values when light-cured for 40 s, and Transbond Plus adhesive showed the lowest values when light-cured for 20 s. ARI scores of Transbond Plus adhesive were significantly higher than those of controls, while other differences in ARI values were not significant. Conclusion: Within the limitations of his study, decreasing the light-curing time from 40 to 20 s decreased the SBS of the tested adhesives; however, this decline in SBS was statistically significant only in Transbond Plus adhesive PMID:26005468

  4. Loss effects on adhesively-bonded multilayer ultrasonic transducers by self-heating.

    PubMed

    Wu, Zhengbin; Cochran, Sandy

    2010-04-01

    Multilayer ultrasonic transducers are widely being used for high power applications. In these applications, typical Langevin/Tonpilz structures without any adhesive bondings however have the disadvantage of limited bandwidth. Therefore adhesively-bonded structures are still a potential solution for this issue. In this paper, two-layer piezoelectric ceramic ultrasonic transducers with two different adhesive bondlines were investigated comparing to a single-layer transducer in terms of loss effects during operation with excitation signals sufficient to cause self-heating. The theoretical functions fitted to the measured time-temperature dependency data are compared with experimental results of different piezoelectric transducers. Theoretical analysis of loss characteristics at various surface displacements and the relationship with increasing temperature are reported. The effects of self-heating on the practical performance of multilayer ultrasonic transducers with adhesive bondlines are discussed. PMID:19942247

  5. Characterization of polysulfone-epoxy/amine interphase for bonding themoplastic composites

    SciTech Connect

    Immordino, K.M.; McKnight, S.H.; Gillespie, J.W. Jr.

    1996-12-31

    Thermoplastic matrix composites offer several advantages over thermoset matrix composites such as higher interlaminar toughness and infinite shelf life and rapid manufacturing. However, traditional welding techniques for joining thermoplastics require intimate contact between the components, localized heating at the interface and moderate consolidation pressure. Assembly tolerances represent a challenge in scaling welding techniques to large structures where any gaps in the bondline may result in overheating and poor joint quality and performance. Thermoset adhesives offer a low pressure solution to fill gaps. However joining thermoplastic composite components with structural thermoset adhesives often requires elaborate surface treatment of the thermoplastic composite adherents. These surface treatments have several limitations in production environments including finite shelf life, cost, and possible restrictions on part size and shape. These limitations may potentially hinder the widespread use of these materials in structural applications. Other methods for enhancing the bond performance are available. Previous work at the authors` institution has shown that adhesion between thermoplastic composites and epoxy-based adhesives is improved in instances where polymer interdiffusion across the interface is suspected. The improved joint performance has been attributed to interfacial diffusion of the adhesive pre-polymers into the thermoplastic material during processing. Upon final cure, bonding is believed to be enhanced through entanglements between the thermoplastic polymer chains and the network structure of the adhesive. Optimization of this bonding process requires an understanding of the rate of diffusion of the adhesive prepolymers into the thermoplastic and the structure and properties of the interfacial region. This paper focuses on the diffusion study.

  6. In-vitro comparison of the effect of different bonding strategies on the micro-shear bond strength of a silorane-based composite resin to dentin

    PubMed Central

    Samimi, Pouran; Alizadeh, Vahid; Fathpour, Kamyar; Mazaheri, Hamid; Mortazavi, Vajihosadat

    2016-01-01

    Background: The current study evaluated the micro-shear bond strengths of a new low-shrinkage composite resin to dentin. Materials and Methods: In this in-vitro study, 70 extracted premolars were assigned to one of seven groups (n = 10): Group 1: OptiBond Solo Plus (Opt; Kerr); Group 2: SE Bond (SE; Kuraray); Group 3: Silorane System Adhesive (SSA; 3M ESPE); Group 4: OptiBond Solo Plus + LS Bond (Opt LS); Group 5: SE Bond + LS Bond (SE LS); Group 6: OptiBond Solo Plus (Opt Po); and Group 7: SE Bond (SE Po). Occlusal dentin was exposed and restored with Filtek LS (3M ESPE) in groups 1 to 5 and Point 4 (Kerr) in groups 6 and 7. After thermocycling (1000 cycles at 5/55΀C), micro-shear bond test was carried out to measure the bond strengths. The results were submitted to analysis of variance and post hoc Tukeytests (P < 0.05). Results: Two-way ANOVA showed no significant differences between the two types of composite resin (P = 0.187), between bonding agents (P = 0.06) and between composite resin and bonding agents (P = 0.894). Because P value of bonding agents was near the significance level, one-way ANOVA was used separately between the two composite groups. This analysis showed significant differences between silorane composite resin groups (P = 0.045) and Tukey test showed a significant difference between Groups 4 and 5 (P = 0.03). Conclusion: The application of total-etch and self-etch methacrylate-based adhesives with and without use of a hydrophobic resin coating resulted in acceptable bond strengths. PMID:27076826

  7. The influence of the adhesive bonding on the magnetoelectric effect in bilayer magnetostrictive-piezoelectric structure

    NASA Astrophysics Data System (ADS)

    Galichyan, T. A.; Filippov, D. A.

    2014-12-01

    The influence of the interlayer adhesive bonding is considered in bilayer magnetostrictive-piezoelectric structure. The expression for the frequency dependence of the magnetoelectric voltage coefficient in the electromechanical resonance region is obtained using the simultaneous solution of the motion equations for the magnetostrict- ive, adhesive, piezoelectric phases and material equations. It is shown that in the passage to the limits this expression for the coefficient transforms to the expression for ideal connection between the layers.

  8. Effect of Adhesive Cementation Strategies on the Bonding of Y-TZP to Human Dentin.

    PubMed

    Alves, Mll; Campos, F; Bergoli, C D; Bottino, M A; Özcan, M; Souza, Roa

    2016-01-01

    This study evaluated the effects of different adhesive strategies on the adhesion of zirconia to dentin using conventional and self-adhesive cements and their corresponding adhesive resins. The occlusal parts of human molars (N=80) were sectioned, exposing the dentin. The teeth and zirconia cylinders (N=80) (diameter=3.4 mm; height=4 mm) were randomly divided into eight groups according to the factors "surface conditioning" and "cement type" (n=10 per group). One conventional cement (CC: RelyX ARC, 3M ESPE) and one self-adhesive cement (SA: RelyX U200, 3M ESPE) and their corresponding adhesive resin (for CC, Adper Single Bond Plus; for SA, Scotchbond Universal Adhesive-SU) were applied on dentin. Zirconia specimens were conditioned either using chairside (CJ: CoJet, 30 μm, 2.5 bar, four seconds), laboratory silica coating (RC: Rocatec, 110 μm, 2.5 bar, four seconds), or universal primer (Single Bond Universal-UP). Nonconditioned groups for both cements acted as the control (C). Specimens were stored in water (37°C, 30 days) and subjected to shear bond strength (SBS) testing (1 mm/min). Data (MPa) were analyzed using two-way analysis of variance and a Tukey test (α=0.05). While surface conditioning significantly affected the SBS values (p=0.0001) (Cadhesive. Air-abrasion and the use of the universal primer improved the bond strength of zirconia to dentin compared to the control group, regardless of the type of resin cement used. PMID:26509232

  9. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    NASA Astrophysics Data System (ADS)

    Saleema, N.; Sarkar, D. K.; Paynter, R. W.; Gallant, D.; Eskandarian, M.

    2012-11-01

    Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure of the adhesive were encountered on the NaOH treated surfaces that are comparable to the benchmark treatments such as anodization, which involve use of strong acids and multiple steps of treatment procedures. The NaOH treatment reported in this work is a very simple method with the use of a very dilute solution with simple ultrasonication being sufficient to produce durable joints.

  10. In vitro evaluation of influence of salivary contamination on the dentin bond strength of one-bottle adhesive systems

    PubMed Central

    Suryakumari, Nujella B. P.; Reddy, P. Satyanarayana; Surender, L. R.; Kiran, Ram

    2011-01-01

    Aim: To evaluate the effect of salivary contamination on the bond strength of one-bottle adhesive systems — (the V generation) at various stages during the bonding procedure and to investigate the effect of the contaminant removing treatments on the recovery of bond strengths. Materials and Methods: In this study the V generation one-bottle system — (Adper Single Bond) was tested. Fifty caries-free human molars with flat dentin surfaces were randomly divided into five groups of ten teeth each: Group I had 15 second etching with 35% Ortho Phosphoric acid, 15 second rinse and blot dried (Uncontaminated); Group II contaminated and blot dried; Group III contaminated and completely dried; Group IV contaminated, washed, blot dried; Group V contaminated, retched washed, and blot dried. The bonding agent was applied and resin composite (Z-100 3M ESPE) was bonded to the treated surfaces using the Teflon mold. The specimens in each group were then subjected to shear bond strength testing in an Instron Universal testing machine at a crosshead speed of 1 mm / minute and the data were subjected to one way ANOVA for comparison among the groups (P<0.05). Results: There was a significant difference between the group that was dried with strong oil-free air after contamination (Group III) and the other groups. When the etched surface was contaminated by saliva, there was no statistical difference between the just blot dry, wash, or the re-etching groups (Groups II, IV, V) if the dentin surface was kept wet before priming. When the etched dentin surface was dried (Group III) the shear bond strength decreased considerably. Conclusion: The bond strengths to the tooth structure of the recent dentin bonding agents are less sensitive to common forms of contamination than assumed. Re-etching without additional mechanical preparation is sufficient to provide or achieve the expected bond strength. PMID:22090757

  11. The development of ultrasonic techniques for nondestructive evaluation of adhesive bonds

    NASA Astrophysics Data System (ADS)

    Chapman, Gilbert B., II

    Demands for improvements in aerospace and automotive energy-efficiency, performance, corrosion resistance, body stiffness and style have increased the use of adhesive bonds to help meet those demands by providing joining technology that accommodates a wider variety of materials and design options. However, the history of adhesive bond performance clearly indicates the need for a robust method of assuring the existence of the required consistent level of adhesive bond integrity in every bonded region. This investigation seeks to meet that need by the development of new, complementary ultrasonic techniques for the evaluation of these bonds, and thus provide improvements over previous methods by extending the range of resolution, speed and applications. The development of a 20 MHz pulse-echo method for nondestructive evaluation of adhesive bonds will accomplish the assessment of bond joints with adhesive as thin as 0.1 mm. This new method advances the state of the art by providing a high-resolution, phase-sensitive procedure that identifies the bond state at each interface of the adhesive with the substrate(s), by the acquisition and analysis of acoustic echoes reflected from interfaces between layers with large acoustic impedance mismatch. Because interface echo amplitudes are marginal when the acoustic impedance of the substrate is close to that of the adhesive, a 25 kHz Lamb wave technique was developed to be employed in such cases, albeit with reduced resolution. Modeling the ultrasonic echoes and Lamb-wave signals was accomplished using mathematical expressions developed from the physics of acoustic transmission, attenuation and reflection in layered media. The models were validated by experimental results from a variety of bond joint materials, geometries and conditions, thereby confirming the validity of the methodology used for extracting interpretations from the phase-sensitive indications, as well as identifying the range and limits of applications. Results

  12. Molecular weight effects upon the adhesive bonding of a mussel mimetic polymer.

    PubMed

    Jenkins, Courtney L; Meredith, Heather J; Wilker, Jonathan J

    2013-06-12

    Characterization of marine biological adhesives are teaching us how nature makes materials and providing new ideas for synthetic systems. One of the most widely studied adhering animals is the marine mussel. This mollusk bonds to wet rocks by producing an adhesive from cross-linked proteins. Several laboratories are now making synthetic mimics of mussel adhesive proteins, with 3,4-dihydroxyphenylalanine (DOPA) or similar molecules pendant from polymer chains. In select cases, appreciable bulk bonding results, with strengths as high as commercial glues. Polymer molecular weight is amongst several parameters that need to be examined in order to both understand biomimetic adhesion as well as to maximize performance. Experiments presented here explore how the bulk adhesion of a mussel mimetic polymer varies as a function of molecular weight. Systematic structure-function studies were carried out both with and without the presence of an oxidative cross-linker. Without cross-linking, higher molecular weights generally afforded higher adhesion. When a [N(C4H9)4](IO4) cross-linker was added, adhesion peaked at molecular weights of ~50,000-65,000 g/mol. These data help to illustrate how changes to the balance of cohesion versus adhesion influence bulk bonding. Mussel adhesive plaques achieve this balance by incorporating several proteins with molecular weights ranging from 6000 to 110,000 g/mol. To mimic these varied proteins we made a blend of polymers containing a range of molecular weights. Interestingly, this blend adhered more strongly than any of the individual polymers when cross-linked with [N(C4H9)4](IO4). These results are helping us to both understand the origins of biological materials as well as design high performance polymers. PMID:23668520

  13. Achieving enhanced and tunable adhesion via composite posts

    NASA Astrophysics Data System (ADS)

    Minsky, H. K.; Turner, K. T.

    2015-05-01

    Surfaces with enhanced and tunable adhesion have a variety of applications, including microtransfer printing of semiconductor elements, material handling in manufacturing, and gripping surfaces on climbing robots. Traditionally, schemes to achieve tunable adhesion have relied on fabricating arrays of posts or fibers with complex geometries, such as angled posts terminated by wider caps. Here, we describe an alternative to post structures with complex geometries through the use of composite posts that consist of a stiff core and a compliant shell. Posts consisting of a stiff core and compliant shell have enhanced adhesion under normal loading, and the pull-off can be reduced via the application of shear. The adhesion mechanics of composite posts are demonstrated here through a combination of finite element simulations and experimental measurements on individual millimeter-scale posts.

  14. Functionally gradient hard carbon composites for improved adhesion and wear

    NASA Astrophysics Data System (ADS)

    Narayan, Roger Jagdish

    A new approach is proposed for fabricating biomedical devices that last longer and are more biocompatible than those presently available. In this approach, a bulk material is chosen that has desirable mechanical properties (low modulus, high strength, high ductility and high fatigue strength). This material is coated with corrosion-resistant, wear-resistant, hard, and biocompatible hard carbon films. One of the many forms of carbon, tetrahedral amorphous carbon, consists mainly of sp3-bonded atoms. Tetrahedral amorphous carbon possesses properties close to diamond in terms of hardness, atomic smoothness, and inertness. Tetrahedral amorphous carbon and diamond films usually contain large amounts of compressive and sometimes tensile stresses; adhesive failure from these stresses has limited widespread use of these materials. This research involves processing, characterization and modeling of functionally gradient tetrahedral amorphous carbon and diamond composite films on metals (cobalt-chromium and titanium alloys) and polymers (polymethylmethacrylate and polyethylene) used in biomedical applications. Multilayer discontinuous thin films of titanium carbide, titanium nitride, aluminum nitride, and tungsten carbide have been developed to control stresses and graphitization in diamond films. A morphology of randomly interconnected micron sized diamond crystallites provides increased toughness and stress reduction. Internal stresses in tetrahedral amorphous carbon were reduced via incorporation of carbide forming elements (silicon and titanium) and noncarbide forming elements (copper, platinum, and silver). These materials were produced using a novel target design during pulsed laser deposition. These alloying atoms reduce hardness and sp3-bonded carbon content, but increase adhesion and wear resistance. Silver and platinum provide the films with antimicrobial properties, and silicon provides bioactivity and aids bone formation. Bilayer coatings were created that couple

  15. Sciatic nerve repair using adhesive bonding and a modified conduit

    PubMed Central

    Liang, Xiangdang; Cai, Hongfei; Hao, Yongyu; Sun, Geng; Song, Yaoyao; Chen, Wen

    2014-01-01

    When repairing nerves with adhesives, most researchers place glue directly on the nerve stumps, but this method does not fix the nerve ends well and allows glue to easily invade the nerve ends. In this study, we established a rat model of completely transected sciatic nerve injury and repaired it using a modified 1 cm-length conduit with inner diameter of 1.5 mm. Each end of the cylindrical conduit contains a short linear channel, while the enclosed central tube protects the nerve ends well. Nerves were repaired with 2-octyl-cyanoacrylate and suture, which complement the function of the modified conduit. The results demonstrated that for the same conduit, the average operation time using the adhesive method was much shorter than with the suture method. No significant differences were found between the two groups in sciatic function index, motor evoked potential latency, motor evoked potential amplitude, muscular recovery rate, number of medullated nerve fibers, axon diameter, or medullary sheath thickness. Thus, the adhesive method for repairing nerves using a modified conduit is feasible and effective, and reduces the operation time while providing an equivalent repair effect. PMID:25206861

  16. Multiple-frequency C-scan bond testing for composite structures

    NASA Astrophysics Data System (ADS)

    Habermehl, J.; Lepage, B.

    2012-05-01

    Adhesive-bonded components and structures have become an important part of manufacturing in the aerospace industry. These components often rely on honeycomb composite structures for strong yet lightweight design. However, the quality of the bonds is very important to the overall integrity of the composite structures. Due to their wide range of laminate and core configurations, these materials pose inspection challenges, especially during inspection for damage in the core, for example, disbonds and crushed core. For improved probability of detection (POD) on honeycomb composite structures, a multiple frequency C-scan-based approach exploiting both amplitude and phase C-scans is proposed.

  17. Study on the structural evolution of modified phenol formaldehyde resin adhesive for the high-temperature bonding of graphite

    NASA Astrophysics Data System (ADS)

    Wang, Jigang; Jiang, Nan; Guo, Quangui; Liu, Lang; Song, Jinren

    2006-01-01

    A novel adhesive for carbon materials composed of phenol-formaldehyde resin, boron carbide and fumed silica, was prepared. The adhesive property of graphite joints bonded by the above adhesive treated at high-temperatures was tested. Results showed that the adhesive was found to have outstanding high-temperature bonding properties for graphite. The adhesive structure was dense and uniform even after the graphite joints were heat-treated at 1500 °C. Bonding strength was 17.1 MPa. The evolution of adhesive structure was investigated. The results indicated that the addition of the secondary additive, fumed silica, improved the bonding performance greatly. Borosilicate phase with better stability was formed during the heat-treatment process, and the volume shrinkage was restrained effectively, which was responsible for the satisfactory high-temperature bonding performance of graphite.

  18. The effects of inherent flaws on the time and rate dependent failure of adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Sancaktar, E.; Padgilwar, S.

    1982-01-01

    Inherent flaws, as well as the effects of rate and time, are shown by tests on viscoelastic adhesive-bonded single lap joints to be as critical in joint failure as environmental and stress concentration effects, with random inherent flaws and loading rate changes resulting in an up to 40% reduction in joint strength. It is also found that the asymptotic creep stress, below which no delayed failure may occur, may under creep loading be as much as 45% less than maximum adhesive strength. Attention is given to test results for the case of titanium-LARC-3 adhesive single-lap specimens.

  19. Effects of Temperature and Forming Speed on Plastic Bending of Adhesively Bonded Sheet Metals

    NASA Astrophysics Data System (ADS)

    Takiguchi, Michihiro; Yoshida, Tetsuya; Yoshida, Fusahito

    This paper deals with the temperature and rate-dependent elasto-viscoplasticity behaviour of a highly ductile acrylic adhesive and its effect on plastic bending of adhesively bonded sheet metals. Tensile lap shear tests of aluminium single-lap joints were performed at various temperature of 10-40°C at several tensile speeds. Based on the experimental results, a new constitutive model of temperature and rate-dependent elasto-viscoplasticity of the adhesive is presented. From V-bending experiments and the corresponding numerical simulation, it was found that the gull-wing bend is suppressed by high-speed forming at a lower temperature.

  20. Laser Surface Preparation for Adhesive Bonding of Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Belcher, Marcus A.; List, Martina S.; Wohl, Christopher J.; Ghose, Sayata; Watson, Kent A.; Hopkins, John W.; Connell, John W.

    2010-01-01

    Adhesively bonded structures are potentially lighter in weight than mechanically fastened ones, but existing surface treatments are often considered unreliable. Two main problems in achieving reproducible and durable adhesive bonds are surface contamination and variability in standard surface preparation techniques. In this work three surface pretreatments were compared: laser etching with and without grit blasting and conventional Pasa-Jell treatment. Ti-6Al-4V surfaces were characterized by contact angle goniometry, optical microscopy, and X-ray photoelectron spectroscopy (XPS). Laser -etching was found to produce clean surfaces with precisely controlled surface topographies and PETI-5 lap shear strengths and durabilities were equivalent to those produced with Pasa-Jell.

  1. In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion.

    PubMed

    Blatz, Markus B; Phark, Jin-Ho; Ozer, Fusun; Mante, Francis K; Saleh, Najeed; Bergler, Michael; Sadan, Avishai

    2010-04-01

    This study compared shear bond strengths of six self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. One hundred twenty zirconia samples were air-abraded (group SB; n = 60) or left untreated (group NO). Composite cylinders were bonded to the zirconia samples with either BisCem (BC), Maxcem (MC), G-Cem (GC), RelyX Unicem Clicker (RUC), RelyX Unicem Applicator (RUA), or Clearfil SA Cement (CSA). Shear bond strength was tested after thermocycling, and data were analyzed with analysis of variance and Holm-Sidak pairwise comparisons. Without abrasion, RUA (8.0 MPa), GC (7.9 MPa), and CSA (7.6 MPa) revealed significantly higher bond strengths than the other cements. Air-particle abrasion increased bond strengths for all test cements (p < 0.001). GC (22.4 MPa) and CSA (18.4 MPa) revealed the highest bond strengths in group SB. Bond strengths of self-adhesive resin cements to zirconia were increased by air-particle abrasion. Cements containing adhesive monomers (MDP/4-META) were superior to other compositions. PMID:19415350

  2. Characterization of adhesive from oysters: A structural and compositional study

    NASA Astrophysics Data System (ADS)

    Alberts, Erik

    The inability for man-made adhesives to set in wet or humid environments is an ongoing challenging the design of biomedical and marine adhesive materials. However, we see that nature has already overcome this challenge. Mussels, barnacles, oysters and sandcastle worms all have unique mechanisms by which they attach themselves to surfaces. By understanding what evolution has already spent millions of years perfecting, we can design novel adhesive materials inspired by nature's elegant designs. The well-studied mussel is currently the standard for design of marine inspired biomimetic polymers. In the work presented here, we aim to provide new insights into the adhesive produced by the eastern oyster, Crassostrea virginica. Unlike the mussel, which produces thread-like plaques comprised of DOPA containing-protein, the oyster secretes an organic-inorganic hybrid adhesive as it settles and grows onto a surface. This form of adhesion renders the oyster to be permanently fixed in place. Over time, hundreds of thousands of oyster grow and agglomerate to form extensive reef structures. These reefs are not only essential to survival of the oyster, but are also vital to intertidal ecosystems. While the shell of the oyster has been extensively studied, curiously, only a few conflicting insights have been made into the nature of the adhesive and contact zone between shell and substrate, and even lesfs information has been ascertained on organic and inorganic composition. In this work, we provide microscopy and histochemical studies to characterize the structure and composition of the adhesive, using oyster in the adult and juvenile stages of life. Preliminary work on extracting and characterizing organic components through collaborative help with solid-state NMR (SSNMR) and proteomics are also detailed here. We aim to provide a full, comprehensive characterization of oyster adhesive so that in the future, we may apply what we learn to the design of new materials.

  3. Shear bond strength of rebonded brackets after removal of adhesives with Er,Cr:YSGG laser.

    PubMed

    Ishida, Katsuyuki; Endo, Toshiya; Shinkai, Koichi; Katoh, Yoshiroh

    2011-07-01

    This study was conducted to examine the bond strength of rebonded orthodontic brackets after adhesive residuals on the surface of the bracket bases were removed by Er,Cr:YSGG lasers. Seventy-six brackets bonded to premolars with a self-etching primer adhesive system were equally divided into four groups after the first debonding with the bracket bases (Group 1) untreated, and treated by (Group 2) Er,Cr:YSGG laser, (Group 3) sandblaster, and (Group 4) Er,Cr:YSGG laser/sandblaster. The treated brackets were rebonded to the new premolars in the same manner as the first-stage experiment. The shear bond strengths were measured, with the bonding/debonding procedures repeated once after the first debonding, and the bracket/adhesive failure modes were evaluated after each debonding. The treated bracket base surfaces were observed under a scanning electron microscopy (SEM). The mean rebond strengths were significantly lower in group 1 than in other groups, and there were no significant differences between the other groups. The mean initial bond strength was significantly higher than the mean rebond strength in group 1 but there was no significant difference between the two in the other three groups. Failures at the bracket-adhesive interface occurred frequently at second debonding in group 1. Under the SEM, residual adhesive was removed from the bracket bases by Er,Cr:YSGG laser, while adhesive remnant was seen underneath the meshwork of the bracket bases and microroughness appeared on the meshwork after sandblasting. Er,Cr:YSGG laser certainly could serve the purpose of promoting the use of recycled orthodontic brackets. PMID:21553071

  4. Adhesive and Composite Properties of a New Phenylethynyl Terminated Imide

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Connell, J. W.; Hergenrother, P. M.

    2002-01-01

    A relatively new phenylethynyl terminated imide oligomer (PETI) from the reaction of 2,3,',4'- biphenyltetracarboxylic dianhydride, 4,4'-oxydianiline and endcapped with 4- phenylethynylphthalic anhydride at a calculated number average molecular weight of 5000 g/mole was evaluated as an adhesive and composite matrix. The asymmetric dianhydride imparts a low melt viscosity to the oligomer and a high glass transition temperature to the cured resin. Preliminary adhesive work with titanium (6Al-4V) adherend gave good room temperature (RT) tensile shear strengths and excellent retention of RT strength at 260 C. Preliminary composite work using unsized IM7 carbon fiber provided moderate to high mechanical properties. The chemistry, mechanical, and physical properties of the new PETI in neat resin, adhesive and composite form are presented.

  5. Influence of Er,Cr:YSGG laser treatment on microtensile bond strength of adhesives to enamel.

    PubMed

    Cardoso, Marcio Vivan; De Munck, Jan; Coutinho, Eduardo; Ermis, R Banu; Van Landuyt, Kirsten; de Carvalho, Rubens Corte Real; Van Meerbeek, Bart

    2008-01-01

    The current trend towards minimum-intervention dentistry has introduced laser technology as an alternative technique for cavity preparation. This study assessed the null hypothesis that enamel prepared either by Er,Cr:YSGG laser or conventional diamond bur is equally receptive to adhesive procedures. The buccal and lingual surfaces of 35 sound human molars were prepared with Er,Cr:YSGG laser or a medium-grit diamond bur. One etch&rinse (OptiBond FL) and three self-etch adhesives (Adper Prompt L-Pop, Clearfil SE Bond and Clearfil S3 Bond) were applied on laser-irradiated and bur-cut enamel, followed by the application of a 5-6 mm build-up of Z100. The micro-tensile bond strength (microTBS) was determined after 24 hours of storage in water at 37 degrees C. Prepared enamel surfaces and failure patterns were evaluated using a stereomicroscope and a field-emission-gun scanning electron microscope (Feg-SEM). The pTBS to laser-irradiated enamel was significantly lower than to bur-cut enamel (p<0.05), with the exception of Clearfil S3 Bond, which bonded equally effectively to both substrates. The latter presented the highest microTBS on laser-irradiated enamel, though it was not statistically different from the microTBS of OptiBond FL. SEM analysis revealed significant morphological alterations of the laser-irradiated enamel surface, such as areas of melted and recrystalized hydroxyapatite and deep extensive micro-cracks. In conclusion, the bonding effectiveness of adhesives to laser-irradiated enamel depends not only on the structural substrate alterations induced by the laser, but also on the characteristics of the adhesive employed. PMID:18666504

  6. Evaluation of the bond strength between aged composite cores and luting agent

    PubMed Central

    2015-01-01

    PURPOSE The aim of this study was to evaluate effect of different surface treatment methods on the bond strength between aged composite-resin core and luting agent. MATERIALS AND METHODS Seventy-five resin composites and also seventy-five zirconia ceramic discs were prepared. 60 composite samples were exposed to thermal aging (10,000 cycles, 5 to 55℃) and different surface treatment. All specimens were separated into 5 groups (n=15): 1) Intact specimens 2) Thermal aging-air polishing 3) Thermal aging- Er:YAG laser irradiation 4) Thermal aging- acid etching 5) Thermal-aging. All specimens were bonded to the zirconia discs with resin cement and fixed to universal testing machine and bond strength testing loaded to failure with a crosshead speed of 0.5 mm/min. The fractured surface was classified as adhesive failure, cohesive failure and adhesive-cohesive failure. The bond strength data was statistically compared by the Kruskal-Wallis method complemented by the Bonferroni correction Mann-Whitney U test. The probability level for statistical significance was set at α=.05. RESULTS Thermal aging and different surface treatment methods have significant effect on the bond strength between composite-resin cores and luting-agent (P<.05). The mean baseline bond strength values ranged between 7.07 ± 2.11 and 26.05 ± 6.53 N. The highest bond strength of 26.05 ± 6.53 N was obtained with Group 3. Group 5 showed the lowest value of bond strength. CONCLUSION Appropriate surface treatment method should be applied to aged composite resin cores or aged-composites restorations should be replaced for the optimal bond strength and the clinical success. PMID:25932308

  7. Cell adhesion. Competition between nonspecific repulsion and specific bonding.

    PubMed Central

    Bell, G I; Dembo, M; Bongrand, P

    1984-01-01

    We develop a thermodynamic calculus for the modeling of cell adhesion. By means of this approach, we are able to compute the end results of competition between the formation of specific macromolecular bridges and nonspecific repulsion arising from electrostatic forces and osmotic (steric stabilization) forces. Using this calculus also allows us to derive in a straightforward manner the effects of cell deformability, the Young's modulus for stretching of bridges, diffusional mobility of receptors, heterogeneity of receptors, variation in receptor number, and the strength of receptor-receptor binding. The major insight that results from our analysis concerns the existence and characteristics of two phase transitions corresponding, respectively, to the onset of stable cell adhesion and to the onset of maximum cell-cell or cell-substrate contact. We are also able to make detailed predictions of the equilibrium contact area, equilibrium number of bridges, and the cell-cell or cell-substrate separation distance. We illustrate how our approach can be used to improve the analysis of experimental data, by means of two concrete examples. PMID:6743742

  8. Durability of polyimide adhesives and their bonded joints for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Parvatareddy, Hari

    The objective of this study was to evaluate and develop an understanding of durability of an adhesive bonded system, for application in a future high speed civil transport (HSCT) aircraft structure. The system under study was comprised of Ti-6Al-4V metal adherends and a thermosetting polyimide adhesive, designated as FM-5, supplied by Cytec Engineered Materials, Inc. An approach based on fracture mechanics was employed to assess Ti-6Al-4V/FM-5 bond durability. Initially, wedge tests were utilized to find a durable surface pretreatment for the titanium adherends. Based on an extensive screening study, chromic acid anodization (CAA) was chosen as the standard pretreatment for this research project. Double cantilever beam specimens (DCB) were then made and aged at 150sp°C, 177sp°C, and 204sp°C in three different environments; ambient atmospheric air (14.7 psia), and reduced air pressures of 2 psia (13.8 KPa) and 0.2 psia (1.38 KPa). Joints were aged for up to 18 months (including several intermediate aging times) in the above environments. The strain energy release rate (G) of the adhesive joints was monitored as a function of exposure time in the different environments. A 40% drop in fracture toughness was noted over the 18 month period, with the greatest degradation observed in samples aged at 204sp°C in ambient atmospheric air pressure. The loss in adhesive bond performance with time was attributable to a combination of physical and chemical aging phenomena in the FM-5 resin, and possible degradation of the metal-adhesive interface(s). Several mechanical and material tests, performed on the bonded joints and neat FM-5 resin specimens, confirmed the above statement. It was also noted that physical aging could be "erased" by thermal rejuvenation, partially restoring the toughness of the FM-5 adhesive material. The FM-5 adhesive material displayed good chemical resistance towards organic solvents and other aircraft fluids such as jet fuel and hydraulic fluid. The

  9. Effect of lining with a flowable composite on internal adaptation of direct composite restorations using all-in-one adhesive systems.

    PubMed

    Yahagi, Chika; Takagaki, Tomohiro; Sadr, Alireza; Ikeda, Masaomi; Nikaido, Toru; Tagami, Junji

    2012-01-01

    The purpose of this study was to evaluate the effect of lining with a flowable composite on internal adaptation of composite restorations using three all-in-one adhesive systems; Bond Force (BF), G-Bond Plus (GP), and OptiBond All-in-one (OP), and a two-step self-etching adhesive system; Clearfil SE Bond (SE). They were applied to each cylindrical cavity prepared on the human dentin. The cavity surface was lined with/without a flowable resin composite prior to filling with a resin composite (FL/NL). After water storage for 24 h, the specimens were sectioned and polished, and internal adaptation of the restorations was assessed using a confocal laser scanning microscopy. For SE, a perfect cavity adaptation was recognized in both FL and NL. For BF, GP and OP, cavity adaptation was material dependent in NL, whereas no gap formation was observed in FL. However, voids formation was observed at the composite-adhesive-dentin interface in every all-in-one adhesive system. PMID:22673475

  10. Effect of Different Surface Treatments on Repair Micro-shear Bond Strength of Silica- and Zirconia-filled Composite Resins

    PubMed Central

    Joulaei, Mohammad; Bahari, Mahmoud; Ahmadi, Anahid; Savadi Oskoee, Siavash

    2012-01-01

    Background and aims Effect of surface treatments on repair bond strength of aged composite resins might be different due to their dissimilar fillers. The aim was to evaluate the effect of different surface treatments on repair micro-shear bond strength (µSBS) of silica- (Spectrum TPH) and zirconia-filled (Filtek Z250) composite resins. Materials and methods Twenty-seven composite resin blocks were made from each type of composite resin: Z250 and Spectrum TPH. After aging, blocks of each type were randomly divided into three groups according to surface treatments: alloy primer, silane, and only surface roughening. Subsequently, each group was further subdivided into 3 subgroups based on the adhesive system used: Single Bond, Clearfil SE Bond, and Margin Bond. Four composite resin columns were added on each block. After thermocycling, µSBStest were done at cross head speed of 0.5 mm/min. Data was analysed using multifactor ANOVA, one-way ANOVA and a post-hoc Bonferroni tests (α = 0.05). Results Analysis of data showed that the effect of composite resin type was not significant (p > 0.05), but the effects of the type of surface treatment (p = 0.01) and the type of adhesive system (p = 0.01) were significant on repair µSBS. In addition, the cumulative effect of the composite type-surface treatment and the composite type with the type of adhesive system were not statistically significant (p > 0.05). However, the cumulative effects of the adhesive system-surface treatment (p = 0.03) and the composite type-the adhesive system-surface treatments (p = 0.002) were significant. Conclusion Although repair µSBS values of both silica- and zirconia-filled composite resins were similar, use of different combinations of surface treatments and adhesive systems affected their repair µSBS differently. PMID:23277859

  11. Effect of thermocycling on the bond strength of composite resin to bur and laser treated composite resin.

    PubMed

    Özel Bektas, Özden; Eren, Digdem; Herguner Siso, Seyda; Akin, Gulsah E

    2012-07-01

    The objective of this study was to investigate the effect of two different surface treatments (Er:YAG laser and bur) and three different numbers of thermal cycling (no aging, 1,000, 5,000, and 10,000 cycles) on the micro-shear bond strength of repaired composite resin. Ninety-six composite blocks (4 mm × 4 mm × 1 mm) obtained with a micromatrix hybrid composite were prepared. The composite blocks were then randomly divided into four groups (n = 24), according to the thermal cycling procedure: (1) stored in distilled water at 37°C for 24 h (control group), (2) 1,000 cycles, (3) 5,000 cycles, and (4) 10,000 cycles. After aging, the blocks were further subdivided into two subgroups (n = 12), according to surface treatment. Bur and laser-treated composite surfaces were treated with an etch&rinse adhesive system. In addition, a microhybrid composite resin was bonded to the surfaces via polyethylene tubing. Specimens were subjected to micro-shear bond strength test by a universal testing machine with a crosshead speed of 0 and 5 mm/min. The data were analyzed using one-way analysis of variance and Tukey tests (α = 0.05) for micro-shear bond strengths. After conducting a bond strength test, it was found that the laser and bur-treated specimens had similar results. Aging with 10,000 thermocycles significantly affected the repair bond strength of composite resins. PMID:21833556

  12. Push-Out Bond Strength of Restorations with Bulk-Fill, Flow, and Conventional Resin Composites

    PubMed Central

    Caixeta, Rodrigo Vieira; Guiraldo, Ricardo Danil; Kaneshima, Edmilson Nobumitu; Barbosa, Aline Silvestre; Picolotto, Cassiana Pedrotti; Lima, Ana Eliza de Souza; Gonini Júnior, Alcides; Berger, Sandrine Bittencourt

    2015-01-01

    The aim of this study was to evaluate the bond strengths of composite restorations made with different filler amounts and resin composites that were photoactivated using a light-emitting diode (LED). Thirty bovine incisors were selected, and a conical cavity was prepared in the facial surface of each tooth. All preparations were etched with Scotchbond Etching Gel, the Adper Scotchbond Multipurpose Plus adhesive system was applied followed by photoactivation, and the cavities were filled with a single increment of Filtek Z350 XT, Filtek Z350 XT Flow, or bulk-fill X-tra fil resin composite (n = 10) followed by photoactivation. A push-out test to determine bond strength was conducted using a universal testing machine. Data (MPa) were submitted to Student's t-test at a 5% significance level. After the test, the fractured specimens were examined using an optical microscope under magnification (10x). Although all three composites demonstrated a high prevalence of adhesive failures, the bond strength values of the different resin composites photoactivated by LED showed that the X-tra fil resin composite had a lower bond strength than the Filtek Z350 XT and Filtek Z350 XT Flow resin composites. PMID:26457322

  13. Evaluation of metal bond strength to dentin and enamel using different adhesives and surface treatments.

    PubMed

    Dundar, Mine; Gungor, Mehmet Ali; Cal, Ebru; Darcan, Alev; Erdem, Adalet

    2007-01-01

    Because adherence of base metal alloys is important for the long-term clinical success of adhesive fixed partial dentures, it has been necessary to improve adhesion to metal substrate by using different surface treatments. This study used different surface conditioning methods and two different luting resins to evaluate the shear bond strength of base metal alloys to dentin and enamel. Sixty noncarious freshly extracted human teeth were mounted in a plastic holder filled with autopolymerized acrylic resin. After the roots were removed and 30 flat enamel and 30 flat dentin surfaces were exposed, the specimens were divided randomly into two main luting cement groups. Sixty nickel chromium (NiCr) metal specimens were fabricated and subjected to three different surface conditioning procedures: sandblasting with 50 microm aluminum oxide, tribochemical silica coating, and a combination of the two. Scanning electron mircoscopy (SEM) evaluations revealed mainly cohesive failures. Self-cure adhesive resulted in higher bond strengths to dental substrates. Higher bond strengths were achieved through a combination of sandblasting and tribochemical silica coating; however, further clinical research is required. A surface treatment that combines sandblasting with tribochemical silica coating can achieve a more effective bond for adhesive restorations with metal substrates. PMID:17511361

  14. Aircraft surface coatings study: Energy efficient transport program. [sprayed and adhesive bonded coatings for drag reduction

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Surface coating materials for application on transport type aircraft to reduce drag, were investigated. The investigation included two basic types of materials: spray on coatings and adhesively bonded films. A cost/benefits analysis was performed, and recommendations were made for future work toward the application of this technology.

  15. Plasticity of hydrogen bond networks regulates mechanochemistry of cell adhesion complexes.

    PubMed

    Chakrabarti, Shaon; Hinczewski, Michael; Thirumalai, D

    2014-06-24

    Mechanical forces acting on cell adhesion receptor proteins regulate a range of cellular functions by formation and rupture of noncovalent interactions with ligands. Typically, force decreases the lifetimes of intact complexes ("slip bonds"), making the discovery that these lifetimes can also be prolonged ("catch bonds") a surprise. We created a microscopic analytic theory by incorporating the structures of selectin and integrin receptors into a conceptual framework based on the theory of stochastic equations, which quantitatively explains a wide range of experimental data (including catch bonds at low forces and slip bonds at high forces). Catch bonds arise due to force-induced remodeling of hydrogen bond networks, a finding that also accounts for unbinding in structurally unrelated integrin-fibronectin and actomyosin complexes. For the selectin family, remodeling of hydrogen bond networks drives an allosteric transition resulting in the formation of the maximum number of hydrogen bonds determined only by the structure of the receptor and independent of the ligand. A similar transition allows us to predict the increase in the number of hydrogen bonds in a particular allosteric state of α5β1 integrin-fibronectin complex, a conformation which is yet to be crystallized. We also make a testable prediction that a single point mutation (Tyr51Phe) in the ligand associated with selectin should dramatically alter the nature of the catch bond compared with the wild type. Our work suggests that nature uses a ductile network of hydrogen bonds to engineer function over a broad range of forces. PMID:24927549

  16. The influence of an adhesive system on shear bond strength of repaired high-copper amalgams.

    PubMed

    Hadavi, F; Hey, J H; Ambrose, E R; elBadrawy, H E

    1991-01-01

    The shear bond strengths of intact high-copper spherical and admixed amalgams were compared with repaired high-copper spherical and admixed amalgam specimens with and without the use of an adhesive system (Amalgambond). In the spherical group the shear bond strength of the repaired specimens was found to be 55 and 53.2% of the intact specimens without and with the use of the adhesive system. After thermocycling those percentages were 48.5 and 43. In the admixed groups those percentages were 39, 36.5, 34.5, and 35.2 respectively. It was found that the application of Amalgambond did not significantly increase the strength of the repaired amalgam. Thermocycling only had a significantly adverse effect on the repair strength in the admixed group repaired without an adhesive system. PMID:1813872

  17. Optimisation of industrial production of low-force sensors - adhesive bonding of force-centring ball

    NASA Astrophysics Data System (ADS)

    Maeder, T.; Jacq, C.; Blot, M.; Ryser, P.

    2016-01-01

    This work addresses the issue of attaching the force-centring part (a round ball) to the load cell of a force sensor, a piezoresistive thick-film Wheatstone bridge deposited onto a ceramic cantilever. As the current soldering process requires expensive metallisation steps for both the ball and the cantilever, and subjects the solder pads used for mounting the cantilever to an additional reflow cycle, an alternative adhesive bonding process was developed, allowing both simpler production and the use of other ball materials such as ceramic and glass. The selfcentring action of solder capillary forces was ensured by structuring the adhesive so as to form a mechanical cuvette allowing centring of the ball by gravity. The selected adhesive materials exhibited good printability and bonding, as well as surviving the subsequent soldering and cleaning process steps.

  18. Adhesion study of thermoplastic polyimides with Ti-6Al-4V alloy and PEEK-graphite composites

    SciTech Connect

    Yoon Taeho.

    1991-01-01

    High glass transition (e.g. 360C) melt processable thermoplastic polyimide homopolymers and poly(imide-siloxane) segmented copolymers were prepared from a number of diamines and dianhydrides via solution imidization, polydimethylsilxane segment incorporation and molecular weight control with non-reactive phthalimide end-groups. The adhesive bond performance of these polyimides was investigated as a function of molecular weight, siloxane incorporation, residual solvent, test temperature, and polyimide structure via single-lap shear samples prepared from treated Ti-6Al-4V alloy adherends and compression-molded film adhesives of scrim-cloth adhesives. The adhesive bond strengths increased greatly with siloxane-segment incorporation at 10, 20 and 30 wt% and decreased slightly with total polymer molecular weight. As the test temperature was increased, adhesive bond strength increased, decreased or showed a maximum at some temperatures depending on the polyimide structure and siloxane content. The poly(imide-30% siloxane) segmented copolymer and a miscible poly(ether-imide) also demonstrated excellent adhesive bond strength with poly(arylene ether ketone) PEEK{reg sign}-graphite composites.

  19. Effects of long-term repeated topical fluoride applications and adhesion promoter on shear bond strengths of orthodontic brackets

    PubMed Central

    Endo, Toshiya; Ishida, Rieko; Komatsuzaki, Akira; Sanpei, Shinya; Tanaka, Satoshi; Sekimoto, Tsuneo

    2014-01-01

    Objective: The purpose of this study was to assess the effects of long-term repeated topical application of fluoride before bonding and an adhesion promoter on the bond strength of orthodontic brackets. Materials and Methods: A total of 76 bovine incisors were collected and divided equally into four groups. In group 1, the brackets were bonded without topical fluoride application or adhesion promoter. In group 2, before bonding, the adhesion promoter was applied to nonfluoridated enamel. In group 3, the brackets were bonded without the application of the adhesion promoter to enamel, which had undergone long-term repeated topical fluoride treatments. Teeth in group 4 received the long-term repeated topical applications of fluoride, and the brackets were bonded using the adhesion promoter. All the brackets were bonded using BeautyOrtho Bond self-etching adhesive. The shear bond strength was measured and the bond failure modes were evaluated with the use of the adhesive remnant index (ARI) after debonding. Results: The mean shear bond strength was significantly lower in group 3 than in groups 1, 2, and 4, and there were no significant differences between the groups except for group 3. There were significant differences in the distribution of ARI scores between groups 2 and 3, and between groups 3 and 4. Conclusions: The adhesion promoter can recover the bond strength reduced by the long-term repeated topical applications of fluoride to the prefluoridation level and had a significantly great amount of adhesives left on either fluoridated or nonfluoridated enamel. PMID:25512720

  20. Antibacterial effect and shear bond strength of an orthodontic adhesive cement containing Galla chinensis extract

    PubMed Central

    WANG, LU-FEI; LUO, FENG; XUE, CHAO-RAN; DENG, MENG; CHEN, CHEN; WU, HAO

    2016-01-01

    Galla chinensis extract (GCE), a naturally-derived agent, has a significant inhibitory effect on cariogenic bacteria. The present study aims to evaluate the antibacterial effect and shear bond strength of an orthodontic adhesive cement containing GCE. A resin-modified glass ionomer cement incorporated GCE at five mass fractions (0, 0.1, 0.2, 0.4, and 0.8%) to prepare GCE-containing cement for analysis. For the agar diffusion test, cement specimens were placed on agar disk inoculated with Streptococcus mutans (strain ATCC 25175). Following 48 h incubation, the inhibition halo diameter was measured. To assess bacteria colonization susceptibility, S. mutans adhesion to cement specimens was detected by scanning electron microscopy (SEM) following 48 h incubation. To evaluate bond strength, a total of 50 metal brackets were bonded on premolar surfaces by using cement (10 teeth/group). Following immersion in an artificial saliva for 3 days, shear bond strength (SBS) was measured. The results demonstrated that GCE-containing samples exhibited a larger bacterial inhibition halo than control, and the inhibition zone increased as the GCE mass fraction increased. SEM analysis demonstrated that S. mutans presented a weaker adherent capacity to all GCE-containing cements compared with control, but the difference between each GCE-containing group was not significant. SBS values of each GCE-containing group exhibited no difference compared with the control. In conclusion, GCE-containing adhesive cement exhibits a promising inhibitory effect on S. mutans growth and adhesion. Without compromising bond strength, adding GCE in adhesive cement may be an attractive option for preventing white spot lesions during orthodontic treatment. PMID:27073642

  1. Influence of different primer application times on bond strength of self-etching adhesive systems to unground enamel.

    PubMed

    Britta, Liana Cláudia; Martins, Marcelo; França, Fabiana Mantovani Gomes

    2009-01-01

    This study evaluated the influence of increasing the application time of acid primer on the bond strength of one- and two-step self-etching systems to unground enamel. Thirty-two human third molars were used in this study. Additionally, four self-etching adhesive systems: Clearfil SE Bond (Kuraray), AdheSE (Ivoclar-Vivadent), Futurabond NR (Voco) and One Up Bond F Plus (J Morita) were used in two conditions according to each manufacturer's recommendations and using double the application time of the primer recommended by the manufacturers. The teeth were randomly separated into groups and sectioned in their central region in the buccal-lingual direction perpendicular to their long axes, using a double-faced diamond disk. A 6-mm high block was then made with Rok (SDI) resin composite on the mesial and distal faces of each tooth. The samples were then serially sectioned from the resin composite in the occlusal-gingival and buccal-lingual directions at a distance of 1 mm between cuts using a high concentration diamond disk adapted to a precision cutter. The microtensile test was performed in a universal test machine at a speed of 0.5 mm/minute. The fractured specimens were analyzed by scanning electronic microscopy to determine failure modes. The data obtained were submitted to ANOVA and the Tukey Kramer tests. There was no statistically significant difference among the adhesive systems and primer application times. Failure modes varied among the groups and were influenced by the increase in acid primer application time. PMID:19192836

  2. The bond strength of different tray adhesives on vinyl polysiloxane to two tray materials: an in vitro study.

    PubMed

    Ashwini, B L; Manjunath, S; Mathew, K Xavier

    2014-03-01

    There has been no established chemical bonding between custom tray resin and the elastomeric impression materials without the use of manufacturer's recommended specific tray adhesive. The present study was aimed to compare the bond strength of the manufacturer recommended tray adhesives with the universal tray adhesives using the medium body consistency vinyl polysiloxane (VPS) material and custom tray made of autopolymerising resin and visible light cure (VLC) resin. A total 90 cubicle specimens of autopolymerising resin and 90 specimens of VLC resin were tested for its tensile bond strength. Effectiveness of universal tray adhesive was compared with manufactured tray adhesive. Each of these specimens was then subjected to tensile load in hounsefield universal testing machine at a cross head speed of 5 mm/min and the results were compared and evaluated using one way analysis of variance and post hoc Tuckey's test. Analysis of bond strength revealed that the universal tray adhesive showed better strength and was statiscally significant when compared to the manufacture supplied tray adhesive. Comparison between both the groups, VLC resin showed better bond strength as compared to autopolymerizing resin. Universal tray adhesive had better tensile bond strength than the manufacturers recommended tray adhesive with the medium body viscosity VPS impression material for both autopolymerising and VLC tray resin. PMID:24604995

  3. Microshear bond strength of preheated silorane- and methacrylate-based composite resins to dentin.

    PubMed

    Demirbuga, Sezer; Ucar, Faruk Izzet; Cayabatmaz, Muhammed; Zorba, Yahya Orcun; Cantekin, Kenan; Topçuoğlu, Hüseyin Sinan; Kilinc, Halil Ibrahim

    2016-01-01

    The aim of this study was to investigate the effect of preheating on microshear bond strength (MSBS) of silorane and methacrylate-based composite resins to human dentin. The teeth were randomly divided into three main groups: (1) composite resins were heated upto 68 °C; (2) cooled to 4 °C; and (3) control [room temperature (RT)]. Each group was then randomly subdivided into four subgroups according to adhesive system used [Solobond M (Voco), All Bond SE (Bisco), Clearfil SE Bond (CSE) (Kuraray), Silorane adhesive system (SAS) (3M ESPE)]. Resin composite cylinders were formed (0.9 mm diameter × 0.7 mm length) and MSBS of each specimen was tested. The preheated groups exhibited the highest MSBS (p < 0.001) and the groups cooled to 4 °C exhibited the lowest MSBS (p < 0.001). The CSE showed higher MSBS than the other adhesives (p < 0.001). This study concludes that preheating of composite resins may be an alternative way to increase the MSBS of composites on dentin. PMID:26381904

  4. Evaluation of Microleakage of Dental Composites Using Bonding Agents with Different Placement Techniques: An Invitro Study

    PubMed Central

    Kaur, Jasvir; Garg, Deepanshu; Sunil, MK; Sawhney, Anshul; Malaviya, Neha; Tripathi, Shashank; Arora, Saloni

    2015-01-01

    Background The rapid progress of adhesive dentistry over the past decade has been attributed to the significant advances in dentin bonding technology. Requirements of an ideal bonding agent are quite similar to those indicated by Buonocore despite of many improvements. As we enter the new millennium, it is important for us to examine the past. Objective To evaluate the microleakage of three bonding agents namely Single Bond, Prime & Bond NT and Excite using different composite materials namely Z100, Spectrum TPH, Tetric with three different placement techniques. Materials and Methods Fifty four extracted human premolars were taken & divided into 9 groups depending upon application of bonding agents followed by composite restorations. Specimens were subjected to thermal cycling at 60C, 370C, 540C and again at 370C & then placed in 10 ml each of freshly prepared 50% silver nitrate solution for 2 hour in darkness, washed & placed under sun light for 24 hours. The sectioned specimens were then observed under stereomicroscope to detect microleakage. Results On comparing the mean microleakage scores among the three groups, maximum microleakage scores have been obtained when no bonding agent was used, while least microleakage scores were obtained with double coat of bonding agent. Conclusion The present study suggests that the placement of bonding agent technique before composite restoration can be effective to limit the microleakage at the tooth restoration interface. PMID:26501015

  5. Are the low-shrinking composites suitable for orthodontic bracket bonding?

    PubMed Central

    Buyuk, Suleyman Kutalmis; Cantekin, Kenan; Demirbuga, Sezer; Ozturk, Mehmet Ali

    2013-01-01

    Purpose: To evaluate the shear bond strength (SBS), adhesive remnant index (ARI), and microleakage of low-shrinking and conventional composites used as an orthodontic bracket bonding adhesive. Materials and Methods: A hundred twenty non-caries human premolars, extracted for orthodontic purposes, were used in this study. Sixty of them were separated into two groups. Brackets were bonded to the teeth in the test group with Silorane (3M-Espe) and control group with Transbond-XT (3M-Unitek). SBS values of these brackets were recorded in MPa using a universal testing machine. ARI scores were determined after the failure of brackets. The remaining 60 teeth were divided into two groups and microleakage was evaluated by the dye penetration method. Statistical analyses were performed by Wilcoxon, Pearson Chi-square, and Mann–Whitney U tests at P < 0.05 level. Results: The mean SBS for Transbond XT was significantly greater than low-shrinking composite (P < 0.001). Significant differences (χ2 =29.60, P < 0.001) were present between the two groups for the ARI scores. Microleakage values were lower in low-shrinking composite than in the control group, and this difference was found to be statistically significant (P < 0.001). Conclusions: Although low-shrinking composite produced insufficient SBS and ARI scores, microleakage values were lower in low-shrinking composite than in the control group on the etched enamel surfaces, when used as a bracket bonding composite. PMID:24926207

  6. Ultrasonic guided wave monitoring of composite wing skin-to-spar bonded joints in aerospace structures

    NASA Astrophysics Data System (ADS)

    Matt, Howard; Bartoli, Ivan; Lanza di Scalea, Francesco

    2005-10-01

    The monitoring of adhesively bonded joints by ultrasonic guided waves is the general topic of this paper. Specifically, composite-to-composite joints representative of the wing skin-to-spar bonds of unmanned aerial vehicles (UAVs) are examined. This research is the first step towards the development of an on-board structural health monitoring system for UAV wings based on integrated ultrasonic sensors. The study investigates two different lay-ups for the wing skin and two different types of bond defects, namely poorly cured adhesive and disbonded interfaces. The assessment of bond state is based on monitoring the strength of transmission through the joints of selected guided modes. The wave propagation problem is studied numerically by a semi-analytical finite element method that accounts for viscoelastic damping, and experimentally by ultrasonic testing that uses small PZT disks preferably exciting and detecting the single-plate s0 mode. Both the models and the experiments confirm that the ultrasonic energy transmission through the joint is highly dependent on the bond conditions, with defected bonds resulting in increased transmission strength. Large sensitivity to the bond conditions is found at mode coupling points, as a result of the large interlayer energy transfer.

  7. Locally measuring the adhesion of InP directly bonded on sub-100 nm patterned Si

    NASA Astrophysics Data System (ADS)

    Pantzas, K.; Le Bourhis, E.; Patriarche, G.; Troadec, D.; Beaudoin, G.; Itawi, A.; Sagnes, I.; Talneau, A.

    2016-03-01

    A nano-scale analogue to the double cantilever experiment that combines instrumented nano-indentation and atomic force microscopy is used to precisely and locally measure the adhesion of InP bonded on sub-100 nm patterned Si using oxide-free or oxide-mediated bonding. Surface-bonding energies of 0.548 and 0.628 J m-2, respectively, are reported. These energies correspond in turn to 51% and 57% of the surface bonding energy measured in unpatterned regions on the same samples, i.e. the proportion of unetched Si surface in the patterned areas. The results show that bonding on patterned surfaces can be as robust as on unpatterned surfaces, provided care is taken with the post-patterning surface preparation process and, therefore, open the path towards innovative designs that include patterns embedded in the Si guiding layer of hybrid III-V/Si photonic integrated circuits.

  8. Locally measuring the adhesion of InP directly bonded on sub-100 nm patterned Si.

    PubMed

    Pantzas, K; Bourhis, E Le; Patriarche, G; Troadec, D; Beaudoin, G; Itawi, A; Sagnes, I; Talneau, A

    2016-03-18

    A nano-scale analogue to the double cantilever experiment that combines instrumented nano-indentation and atomic force microscopy is used to precisely and locally measure the adhesion of InP bonded on sub-100 nm patterned Si using oxide-free or oxide-mediated bonding. Surface-bonding energies of 0.548 and 0.628 J m(-2), respectively, are reported. These energies correspond in turn to 51% and 57% of the surface bonding energy measured in unpatterned regions on the same samples, i.e. the proportion of unetched Si surface in the patterned areas. The results show that bonding on patterned surfaces can be as robust as on unpatterned surfaces, provided care is taken with the post-patterning surface preparation process and, therefore, open the path towards innovative designs that include patterns embedded in the Si guiding layer of hybrid III-V/Si photonic integrated circuits. PMID:26878333

  9. Microleakage of Posterior Composite Restorations with Fiber Inserts Using two Adhesives after ging

    PubMed Central

    Sharafeddin, F; Yousefi, H; Modiri, Sh; Tondari, A; Safaee Jahromi, SR

    2013-01-01

    Statement of Problem: Microleakage is one of the most frequent problems associated with resin composites, especially at the gingival margin of posterior restorations. Insertion of fibers in composite restorations can reduce the total amount of composite and help to decrease the shrinkage. Purpose: The aim of this study was to evaluate the effect of polyethylene fiber inserts on gingival microleakage of class II composite restorations using two different adhesive systems. Materials and Method: In this experimental study, class II cavities were prepared on 60 premolars. The gingival floor was located 1.0 mm below the CEJ. Dimension of each cavity were 3 mm buccolingually and 1.5 mm in axial depth. The specimens were divided into 4 groups according to the adhesive type and fiber insert (n=4). Single bond and Clearfill SE bond and Filtek p60 were used to restore the cavities. In groups without fiber inserts composite was adapted onto cavities using layering technique. For cavities with fiber inserts, 3 mm piece of fiber insert was placed onto the composite increment and cured. The specimens were stored in distilled water at 37oC for 6 months. All specimens were subjected to 3000 thermo-cycling. The tooth surfaces except for 1 mm around the restoration margins covered with two layers of nail varnish .The teeth were immersed in 2% Basic Fuchsin for 24 hours, then rinsed and sectioned mesiodistally. The microleakage was determined under a stereomicroscope (40X). Data were statistically analyzed by Kruskal-wallis and Mann-Whitney U tests (p< 0.05). Results: The Kruskal-Wallis test revealed no significant differences in mean microleakage scores among all groups (p= 0.281). Conclusion: Use of polyethylene fiber inserts and etch-and-rinse and self-etch adhesives had no effect on microleakage in class II resin composite restorations with gingival margins below the CEJ after 6- month water storage. PMID:24724129

  10. Structural Performance Evaluation of Composite-To-Steel Weld Bonded Joint

    SciTech Connect

    Shah, Bhavesh; Frame, Barbara J; Dove, Caroline; Fuchs, Hannes

    2010-01-01

    The Automotive Composites Consortium (ACC), a collaboration of Chrysler, Ford, General Motors, and the US Department of Energy is conducting a focal project to demonstrate the use of composite materials in high volume structural applications such as an underbody capable of carrying crash loads. One of the critical challenges is to attach the composite part to the steel structure in a high-volume automotive manufacturing environment and meet the complex requirements for crash. Weld-bonding, a combination of adhesive bonding and spot welding, was selected as the primary joining method. A novel concept of bonding doubler steel strips to composite enabled the spot welding to the steel structure, ensuring the compability with the OEM assembly processes. The structural performance of the joint, including durability, was assessed via analytical and physical testing under quasi-static loading at various temperatures. This paper discusses the results of the experiments designed to generate key modeling parameters for Finite Element Analysis of the joint.

  11. Effects of Type I Collagen Degradation on the Durability of Three Adhesive Systems in the Early Phase of Dentin Bonding

    PubMed Central

    Hu, Lin; Xiao, Yu-hong; Fang, Ming; Gao, Yu; Huang, Li; Jia, An-qi; Chen, Ji-hua

    2015-01-01

    Objective This study was designed to evaluate the effects of type I collagen degradation on the durability of three adhesive systems in the early phase of dentin bonding. Methods Bonded dentin specimens were prepared using three different types of adhesive systems. Micro-tensile bond strength and degradation of collagen were tested before, and after 1 month or 4 months of aging in artificial saliva. The relationship between micro-tensile bond strength and collagen degradation was analyzed by calculating their Pearson’s correlation coefficient. Results Aging induced time-dependent reduction in micro-tensile bond strengths for all the tested adhesive systems, although such reduction for the single-step self-etching adhesive G-Bond (GB) was not statistically significant. The bond strength of the two-step self-etching primer adhesive system Clearfil SE Bond (SEB) was similar to that of the two-step etch-and-rinse self-priming adhesive system Single Bond 2 (SB), and they were both significantly reduced after one or four months of aging. A negative correlation was found between the degree of collagen degradation and magnitude of micro-tensile bond strength (r = - 0.65, p = 0.003). The Pearson’s correlation coefficient was 0.426, indicating that 42.6% of the aging-induced reduction in bond strength can be explained by the degradation of collagen. Conclusions In the early phase of dentin bonding, there was a negative correlation between the degree of collagen degradation and the magnitude of micro-tensile bond strength. The reduction of bond strength was accompanied by the degradation of collagen. These results provide evidence for the causative relationship between the degradation of collagen and the deterioration of dentin-adhesive interface. PMID:25689141

  12. Effect of excitation energy on dentine bond strength and composite properties.

    PubMed

    Lee, S Y; Greener, E H

    1994-06-01

    A number of available dentine adhesives and dental composites require light activation for polymerization. There are many variables which affect the light absorbing properties (e.g. bond strength) of these materials. The purpose of this study was to determine the influence of excitation energy (EE) on the dentine shear bond strength (SBS) of two lengths (2.1 mm and 3.25 mm) of light-cured (or dual-cured) dentine adhesives/dental composites. Diametral tensile (DTS) and compressive (CS) strengths of the same composites were also studied as a function of EE. Three resin composites with their respective adhesives (Marathon One/Tenure, Z100/Scotchbond Multi-Purpose and Herculite XRV/Optibond) were used. Five commercial curing lights were used to produce spectra of 100-650 mW cm-2. The data were analysed using ANOVA and the Tukey LSD test. No significant correlation was observed at the P > 0.05 level between EE and SBS in the shorter specimens. The SBS of Optibond is independent of EE and composite length. The SBS data were also analysed with Weibull statistics. The characteristic strengths calculated varied between 14 and 27 MPa. For the composites tested, mean values of DTS varied between 33 and 54 MPa and CS varied between 167 and 414 MPa. The DTS and CS of Z100 were significantly greater than those of the other materials. Intensities > or = 250 mW cm-2 produced equivalent mechanical properties within all composite materials and equivalent bond strengths in systems which included dentine, adhesive and composite resin. PMID:8027461

  13. Comparing the shear bond strength of direct and indirect composite inlays in relation to different surface conditioning and curing techniques

    PubMed Central

    Zorba, Yahya Orcun; Ilday, Nurcan Ozakar; Bayındır, Yusuf Ziya; Demirbuga, Sezer

    2013-01-01

    Objective: The aim of this study was to test the null hypothesis that different surface conditioning (etch and rinse and self-etch) and curing techniques (light cure/dual cure) had no effect on the shear bond strength of direct and indirect composite inlays. Materials and Methods: A total of 112 extracted human molar teeth were horizontally sectioned and randomly divided into two groups according to restoration technique (direct and indirect restorations). Each group was further subdivided into seven subgroups (n = 8) according to bonding agent (etch and rinse adhesives Scotchbond multi-purpose plus, All-Bond 3, Adper Single Bond and Prime Bond NT; and self-etch adhesives Clearfil Liner Bond, Futurabond DC and G bond). Indirect composites were cemented to dentin surfaces using dual-curing luting cement. Shear bond strength of specimens was tested using a Universal Testing Machine. Two samples from each subgroup were evaluated under Scanning electron microscopy to see the failing modes. Data was analyzed using independent sample t-tests and Tukey's tests. Results: Surface conditioning and curing of bonding agents were all found to have significant effects on shear bond strength (P < 0.05) of both direct and indirect composite inlays. With direct restoration, etch and rinse systems and dual-cured bonding agents yielded higher bond strengths than indirect restoration, self-etch systems and light-cured bonding agents. Conclusions: The results of the present study indicated that direct restoration to be a more reliable method than indirect restoration. Although etch and rinse bonding systems showed higher shear bond strength to dentin than self-etch systems, both systems can be safely used for the adhesion of direct as well as indirect restorations. PMID:24932118

  14. Effect of various intraoral repair systems on the shear bond strength of composite resin to zirconia

    PubMed Central

    Han, In-Hae; Kang, Dong-Wan; Chung, Chae-Heon; Choe, Han-Cheol

    2013-01-01

    PURPOSE This study compared the effect of three intraoral repair systems on the bond strength between composite resin and zirconia core. MATERIALS AND METHODS Thirty zirconia specimens were divided into three groups according to the repair method: Group I- CoJet™ Repair System (3M ESPE) [chairside silica coating with 30 µm SiO2 + silanization + adhesive]; Group II- Ceramic Repair System (Ivoclar Vivadent) [etching with 37% phosphoric acid + Zirconia primer + adhesive]; Group III- Signum Zirconia Bond (Heraus) [Signum Zirconia Bond I + Signum Zirconia Bond II]. Composite resin was polymerized on each conditioned specimen. The shear bond strength was tested using a universal testing machine, and fracture sites were examined with FE-SEM. Surface morphology and wettability after surface treatments were examined additionally. The data of bond strengths were statistically analyzed with one-way ANOVA and Tamhane post hoc test (α=.05). RESULTS Increased surface roughness and the highest wettability value were observed in the CoJet sand treated specimens. The specimens treated with 37% phosphoric acid and Signum Zirconia Bond I did not show any improvement of surface irregularity, and the lowest wettability value were found in 37% phosphoric acid treated specimens. There was no significant difference in the bond strengths between Group I (7.80 ± 0.76 MPa) and III (8.98 ± 1.39 MPa). Group II (3.21 ± 0.78 MPa) showed a significant difference from other groups (P<.05). CONCLUSION The use of Intraoral silica coating system and the application of Signum Zirconia Bond are effective for increasing the bond strength of composite resin to zirconia. PMID:24049565

  15. The durability of adhesively bonded titanium: Performance of plasma-sprayed polymeric coating pretreatments

    SciTech Connect

    Jackson, F.; Dillard, J.; Dillard, D.

    1996-12-31

    The role of a surface treatment of an adherend is to promote highly stable adhesive-adherend interactions; high stability is accomplished by making the chemistry of the adherend and adhesive compatible. The common surface preparations used to enhance durability include grit blasting, chromic acid or sodium hydroxide anodization, and other chemical treatments for titanium. As interest has grown in the development of environmentally benign surface treatments, other methods have been explored. In this study, plasma-sprayed polymeric materials have been evaluated as a surface coating pretreatment for adhesively bonding titanium alloy. Polyimide and polyether powders were plasm-sprayed onto grit-blasted titanium-6Al-4V. The alloy was adhesively bonded using a high performance polyimide adhesive. The coating was characterized using surface sensitive analytical measurements. The durability performance of the plasma-sprayed adherends was compared to the performance for chromic acid anodized titanium. Among the plasma-sprayed coatings, a LaRC-TPI polyimide-based coating exhibited performance comparable to that for chromic acid anodized specimens.

  16. Superplastic Forming/Adhesive Bonding of Aluminum (SPF/AB) Multi-Sheet Structures

    NASA Technical Reports Server (NTRS)

    Wagner, John A. (Technical Monitor); Will, Jeff D.; Cotton, James D.

    2003-01-01

    A significant fraction of airframe structure consists of stiffened panels that are costly and difficult to fabricate. This program explored a potentially lower-cost processing route for producing such panels. The alternative process sought to apply concurrent superplastic forming and adhesive bonding of aluminum alloy sheets. Processing conditions were chosen to balance adequate superplasticity of the alloy with thermal stability of the adhesive. As a first objective, an air-quenchable, superplastic aluminum-lithium alloy and a low-volatile content, low-viscosity adhesive with compatible forming/curing cycles were identified. A four-sheet forming pack was assembled which consisted of a welded two-sheet core separated from the face sheets by a layer of adhesive. Despite some preliminary success, of over 30 forming trials none was completely successful. The main problem was inadequate superplasticity in the heat-affected zones of the rib welds, which generally fractured prior to completion of the forming cycle. The welds are a necessary component in producing internal ribs by the 'four-sheet' process. Other challenges, such as surface preparation and adhesive bonding, were adequately solved. But without the larger issue of tearing at the weld locations, complex panel fabrication by SPF/AB does not appear viable.

  17. [Biomechanical study of medical hard tissue adhesive bonding butterfly fracture fragment in middle part of fresh human tibia].

    PubMed

    Lu, Bo; Tu, Zhongqi; Pei, Fuxing; Chen, Mengshi; Liu, Lei

    2004-06-01

    A medical hard tissue adhesive, octyl-a-cyanoacrylate, was tested in 6 fresh human tibiae. A 90 degrees butter-fly fracture fragment was made in the middle part of tibia by bandsaw. The compressive stress, torsional stress and angular deflection were assessed before and after osteoectomy respectively. After adhesive bonding, the compressive stress, torsional stress and angular deflection were tested again. The butterfly fracture fagment decreased the bending strength, torsion strength, yielding strength of tibia bone. In torsion test, the torque of tibia before osteoectomy is greater than bonded tibia, the bonded tibia is greater than that of the unbonded tibia. In compression test, before adhesive bonding broken, the compressive curve slope of tibia before osteoectomy is greater than that of bonded tibia, the bonded tibia is greater than that of the unbonded tibia. In angular deflection test before adhesive bonding of broken,the curve slope of tibia before osteoectomy is not different from that of bonded tibia (P>0.05), the slope the bonded tibia is greater than the slope of unbonded tibia(P<0.05). The elastic modulus, rigidity coefficient and moment of area inertia show no statistical difference between the bonded tibia and intact tibia. The used of medical hard tissue adhesive to bond the fracture fragment could improve the bending strength, torsion strength, yielding strength of tibia bone. In operation, it can reduce the soft tissue injury when the fracture fragment is being fixed, and this will benefit bone healing. PMID:15250133

  18. Nondestructive Evaluation of Adhesively Bonded Joints by Acousto-Ultrasonic Technique and Acoustic Emission

    NASA Technical Reports Server (NTRS)

    Nayeb-Hashemi, Hamid; Rossettos, J. N.

    1997-01-01

    Reliable applications of adhesively bonded joints require an effective nondestructive evaluation technique for their bond strength prediction. To properly evaluate factors affecting bond strength, effects of defects such as voids and disbonds on stress distribution in the overlap region must be understood. At the same time, in order to use acousto-ultrasonic (AU) technique to evaluate bond quality, the effect of these defects on dynamic response of single lap joints must be clear. The stress distribution in a single lap joint with and without defects (void or disbond) is analyzed. A bar-Theta parameter which contains adherend and adhesive thickness and properties is introduced. It is shown for bonded joints with bar-Theta greater than 10, that a symmetric void or disbond in the middle of overlap up to the 70 percent of overlap length has negligible effect on bond strength. In contrast frequency response analyses by a finite element technique showed that the dynamic response is affected significantly by the presence of voids or disbonds. These results have direct implication in the interpretations of AU results. Through transmission attenuation and a number of AU parameters for various specimens with and without defects are evaluated. It is found that although void and disbond have similar effects on bond strength (stress distribution), they have completely different effects on wave propagation characteristics. For steel-adhesive-steel specimens with voids, the attenuation changes are related to the bond strength. However, the attenuation changes for specimens with disbond are fairly constant over a disbond range. In order to incorporate the location of defects in AU parameters, a weighting function is introduced. Using an immersion system with focused transducers, a number of AU parameters are evaluated. It is found that by incorporating weighting functions in these parameters better sensitivities (AU parameters vs. bond strength) are achieved. Acoustic emission

  19. Investigation of the impact of cleaning on the adhesive bond and the process implications

    SciTech Connect

    EMERSON,JOHN A.; GUESS,TOMMY R.; ADKINS,CAROL L. JONES; CURRO,JOHN G.; REEDY JR.,EARL DAVID; LOPEZ,EDWIN P.; LEMKE,PAUL A.

    2000-05-01

    While surface cleaning is the most common process step in DOE manufacturing operations, the link between a successful adhesive bond and the surface clean performed before adhesion is not well understood. An innovative approach that combines computer modeling expertise, fracture mechanics understanding, and cleaning experience to address how to achieve a good adhesive bond is discussed here to develop a capability that would result in reduced cleaning development time and testing, improved bonds, improved manufacturability, and even an understanding that leads to improved aging. A simulation modeling technique, polymer reference interaction site model applied near wall (Wall PRISM), provided the capability to include contaminants on the surface. Calculations determined an approximately 8% reduction in the work of adhesion for 1% by weight of ethanol contamination on the structure of a silicone adhesive near a surface. The demonstration of repeatable coatings and quantitative analysis of the surface for deposition of controlled amounts of contamination (hexadecane and mineral oil) was based on three deposition methods. The effect of the cleaning process used on interfacial toughness was determined. The measured interfacial toughness of samples with a Brulin cleaned sandblasted aluminum surface was found to be {approximately} 15% greater than that with a TCE cleaned aluminum surface. The sensitivity of measured fracture toughness to various test conditions determined that both interfacial toughness and interface corner toughness depended strongly on surface roughness. The work of adhesion value for silicone/silicone interface was determined by a contact mechanics technique known as the JKR method. Correlation with fracture data has allowed a better understanding between interfacial fracture parameters and surface energy.

  20. A Single-Lap Joint Adhesive Bonding Optimization Method Using Gradient and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Finckenor, Jeffrey L.

    1999-01-01

    A natural process for any engineer, scientist, educator, etc. is to seek the most efficient method for accomplishing a given task. In the case of structural design, an area that has a significant impact on the structural efficiency is joint design. Unless the structure is machined from a solid block of material, the individual components which compose the overall structure must be joined together. The method for joining a structure varies depending on the applied loads, material, assembly and disassembly requirements, service life, environment, etc. Using both metallic and fiber reinforced plastic materials limits the user to two methods or a combination of these methods for joining the components into one structure. The first is mechanical fastening and the second is adhesive bonding. Mechanical fastening is by far the most popular joining technique; however, in terms of structural efficiency, adhesive bonding provides a superior joint since the load is distributed uniformly across the joint. The purpose of this paper is to develop a method for optimizing single-lap joint adhesive bonded structures using both gradient and genetic algorithms and comparing the solution process for each method. The goal of the single-lap joint optimization is to find the most efficient structure that meets the imposed requirements while still remaining as lightweight, economical, and reliable as possible. For the single-lap joint, an optimum joint is determined by minimizing the weight of the overall joint based on constraints from adhesive strengths as well as empirically derived rules. The analytical solution of the sin-le-lap joint is determined using the classical Goland-Reissner technique for case 2 type adhesive joints. Joint weight minimization is achieved using a commercially available routine, Design Optimization Tool (DOT), for the gradient solution while an author developed method is used for the genetic algorithm solution. Results illustrate the critical design variables

  1. Adhesive Measurements of Polymer Bonded Explosive Constituents using the JKR Experimental Technique and Finite Element Modelling of Viscoelastic Adhesive Contact

    NASA Astrophysics Data System (ADS)

    Hamilton, Neil; Williamson, David; Lewis, Daniel; Glauser, Annette; Jardine, Andrew

    2015-06-01

    It has been shown experimentally that under many circumstances the strength limiting factor of Polymer Bonded Explosives (PBXs) is the adhesion which exists between the filler crystals and the polymer matrix. Experimental measurements of the Work of Adhesion between different binders and glass have been conducted using the JKR experimental technique; a reversible axisymmetric fracture experiment in which the area of contact and the applied force are both measured during loading and unloading of the interface. The data taken with this technique show a rate dependence not described by the analytical JKR theory, which considers only elastic bodies, that arises from the viscoelastic properties of the bulk polymer. To understand and describe the effects of viscosity on the adhesive measurements a finite element model (ABAQUS) of the idealized geometry used in the JKR experiment has been constructed. It is intended to bridge the gap between the purely elastic analytical JKR theory and the viscoelastic experimental results. Together, the experimental data and the computational model are intended to inform the development, and validate the predictions of, microstructural models of PBX deformation and failure.

  2. INFLUENCE OF DIFFERENT ADHESIVE SYSTEMS ON THE PULL-OUT BOND STRENGTH OF GLASS FIBER POSTS

    PubMed Central

    da Silva, Luciana Mendonça; de Andrade, Andréa Mello; Machuca, Melissa Fernanda Garcia; da Silva, Paulo Maurício Batista; da Silva, Ricardo Virgolino C.; Veronezi, Maria Cecília

    2008-01-01

    This in vitro study evaluated the tensile bond strength of glass fiber posts (Reforpost – Angelus-Brazil) cemented to root dentin with a resin cement (RelyX ARC – 3M/ESPE) associated with two different adhesive systems (Adper Single Bond - 3M/ESPE and Adper Scotchbond Multi Purpose (MP) Plus – 3M/ESPE), using the pull-out test. Twenty single-rooted human teeth with standardized root canals were randomly assigned to 2 groups (n=10): G1- etching with 37% phosphoric acid gel (3M/ESPE) + Adper Single Bond + #1 post (Reforpost – Angelus) + four #1 accessory posts (Reforpin – Angelus) + resin cement; G2- etching with 37% phosphoric acid gel + Adper Scotchbond MP Plus + #1 post + four #1 accessory posts + resin cement. The specimens were stored in distilled water at 37°C for 7 days and submitted to the pull-out test in a universal testing machine (EMIC) at a crosshead speed of 0.5 mm/min. The mean values of bond strength (kgf) and standard deviation were: G1- 29.163 ± 7.123; G2- 37.752 ±13.054. Statistical analysis (Student's t-test; α=0.05 showed no statistically significant difference (p<0.05) between the groups. Adhesive bonding failures between resin cement and root canal dentin surface were observed in both groups, with non-polymerized resin cement in the apical portion of the post space when Single Bond was used (G1). The type of adhesive system employed on the fiber post cementation did not influence the pull-out bond strength. PMID:19089224

  3. Dynamic measurement of inside strain distributions in adhesively bonded joints by embedded fiber Bragg grating sensor

    NASA Astrophysics Data System (ADS)

    Murayama, Hideaki; Ning, Xiaoguang; Kageyama, Kazuro; Wada, Daichi; Igawa, Hirotaka

    2014-05-01

    Long-length fiber Bragg grating (FBG) with the length of about 100 mm was embedded onto the surface of a carbon fiber reinforced plastics (CFRP) substrate and two CFRP adherends were joined by adhesive to form an adhesive bonded single-lap joint. The joint was subjected to 0.5 Hz cyclic tensile load and longitudinal strain distributions along FBG were measured at 5 Hz by the fiber-optic distributed sensing system based on optical frequency domain reflectometry (OFDR). We could successfully monitor the strain distributions accurately with high spatial resolution of around 1 mm.

  4. TECHNICAL NOTE: Silicon MEMS probe using a simple adhesive bonding process for permittivity measurement

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Mu; Oh, Dong Hoon; Yoon, Jeonghoon; Cho, Sungjoon; Kim, Namgon; Cho, Jeiwon; Kwon, Youngwoo; Cheon, Changyul; Kim, Yong-Kweon

    2005-11-01

    We developed a silicon MEMS probe for permittivity measurements using an adhesive bonding process. Only two photolithographic masks are required to fabricate the probe, which can be implemented through simple bonding processes using silicon substrates and a benzo cyclo butene (BCB) adhesive layer. Undoped silicon substrates with thicknesses of 300 µm are used as the dielectric layers of the proposed probe. BCB layers, which have good electrical properties at high frequencies as well as adhesive properties for the bonding process, play the role of bonding materials between the two silicon substrates. The length of the probe is 30 mm, and the aperture located at the tip of the probe is 1.1 mm × 0.62 mm. The permittivity of 0.5% saline was measured, and the results agreed with the values obtained through the Cole Cole equation. To validate the feasibility of this probe for practical biological applications, we also performed in vivo measurements of the muscle, skin and blood of mice. Due to the simple fabrication process, the cost of the probe can be reduced in comparison with the previous micromachined probe (Kim et al 2005 J. Micromech. Microeng. 15 543 50) as well as the conventional laser machined probe. Low cost leads to disposability, which is an important factor for practical biomedical applications; and thus, coupled with the probe's capabilities of MMIC integration and CMOS compatibility, this probe has excellent potential in the field of microwave permittivity measurements.

  5. Bond Strength of a Novel One Bottle Multi-mode Adhesive to Human Dentin After Six Months of Storage

    PubMed Central

    Manfroi, Fernanda Borguetti; Marcondes, Maurem Leitão; Somacal, Deise Caren; Borges, Gilberto Antonio; Júnior, Luiz Henrique Burnett; Spohr, Ana Maria

    2016-01-01

    Objective: The aim of the study was to evaluate the microtensile bond strength (µTBS) of Scotchbond Universal to dentin using the etch-and-rinse or the self-etch technique after 24 h and 6 months of storage. Materials and Methods: Flat dentin surfaces were obtained in 24 third molars. The teeth were divided into four groups: G1 – Scotchbond Universal applied in the etch-and-rinse mode; G2 – Scotchbond Universal applied in the self-etch mode; G3 – Scotchbond Multi-Purpose; G4 – Clearfil SE Bond. A block of composite was built on the adhesive area. The tooth/resin sets were cut parallel to the long axis to obtain 40 beams (~0.8 mm2) for each group. Twenty specimens were immediately submitted to the µTBS test, and the remaining 20 were stored in water for 6 months. Failures and the adhesive interface were analyzed by SEM. Results: According to two-way ANOVA, the interaction between adhesive and storage time was significant (p=0.015).The µTBS (MPa) means were the following: 24 h – G1 (39.37±10.82), G2 (31.02±13.76), G3 (35.09±14.03) and G4 (35.84±11.06); 6 months – G1 (36.99±8.78), G2 (40.58±8.07), G3 (32.44±6.07) and G4 (41.75±8.25). Most failures were mixed. Evidence of hybrid layer and numerous resin tags were noted for Scotchbond Universal applied with the etch-and-rinse mode and Scotchbond Multi-Purpose. A thinner hybrid layer and fewer resin tags were noted for Scotchbond Universal applied in the self-etch mode and Clearfil SE Bond. Conclusion: The results indicate that the µTBS for Scotchbond Universal is comparable to the gold-standard adhesives. Scotchbond Universal applied in the self-etch mode and Clearfil SE Bond revealed higher bond stability compared to the etch-and-rinse mode. PMID:27347230

  6. CO2 laser debonding of a ceramic bracket bonded with orthodontic adhesive containing thermal expansion microcapsules.

    PubMed

    Saito, Ayano; Namura, Yasuhiro; Isokawa, Keitaro; Shimizu, Noriyoshi

    2015-02-01

    We have been studying an easy bracket debonding method using heating of an orthodontic adhesive containing thermal expansion microcapsules. However, heating with a high-temperature heater brings obvious risks of burns around the oral cavity. Thus, we examined safer and more effective bracket debonding methods. The purpose of this in vitro study was to examine the reduction in debonding strength and the time taken using a bracket bonded with an orthodontic adhesive containing thermal expansion microcapsules and a CO2 laser as the heating method while maintaining safety. Ceramic brackets were bonded to bovine permanent mandibular incisors using bonding materials containing various microcapsule contents (0, 30, and 40 wt%), and the bond strengths were measured after laser irradiation for 4, 5, and 6 s and compared with nonlaser-treated groups. Subsequently, the temperature in the pulp chamber during laser irradiation was measured. After laser irradiation for 5 or 6 s, the bond strengths of the adhesive containing 40 wt% microcapsules were significantly decreased to ∼0.40 - 0.48-fold (4.6-5.5 MPa) compared with the nonlaser groups. The mean temperature rise of the pulp chamber was 4.3 °C with laser irradiation for 6 s, which was less than that required to induce pulp damage. Based on these results, we conclude that the combined use of a CO2 laser and an orthodontic adhesive containing thermal expansion microcapsules can be effective and safe for debonding ceramic brackets with less enamel damage or tooth pain. PMID:24220847

  7. Assessment of bond defects in adhesive joints before and after the treatment with laser generated shock waves

    NASA Astrophysics Data System (ADS)

    Kalms, Michael; Hellmers, Sandra; Huke, Philipp; Bergmann, Ralf B.

    2014-03-01

    The verification of kissing bond defects with conventional nondestructive testing techniques is generally unsuccessful because kissing bonds behave very similar to an intact adhesive. Therefore, one has to apply a suitable method such as loading the adhesive joint using laser-generated shock waves in order to make this kind of defect detectable. The present work describes the results of experimental studies on nondestructive inspection of bond flaws in bonded joints of metal materials. While it is not the purpose of this work to evaluate or characterize shock waves, we demonstrate that kissing bond flaws can be made visible nondestructively using laser generated shock waves.

  8. A Mechanistic study of Plasma Treatment Effects on Demineralized Dentin Surfaces for Improved Adhesive/Dentin Interface Bonding

    PubMed Central

    Dong, Xiaoqing; Chen, Meng; Wang, Yong; Yu, Qingsong

    2014-01-01

    Our previous work has shown that non-thermal plasma treatment of demineralized dentin significantly (p<0.05) improved adhesive/dentin bonding strength for dental composite restoration as compared with the untreated controls. This study is to achieve mechanistic understanding of the plasma treatment effects on dentin surface through investigating the plasma treated dentin surfaces and their interaction with adhesive monomer, 2-Hydroxyethyl methacrylate (HEMA). The plasma treated dentin surfaces from human third molars were evaluated by water contact angle measurements and scanning electron microscopy (SEM). It was found that plasma-treated dentin surface with subsequent HEMA immersion (Plasma/HEMA Treated) had much lower water contact angle compared with only plasma-treated (Plasma Treated) or only HEMA immersed (HEMA Treated) dentin surfaces. With prolong water droplet deposition time, water droplets spread out completely on the Plasma/HEMA Treated dentin surfaces. SEM images of Plasma/HEMA Treated dentin surfaces verified that dentin tubules were opened-up and filled with HEMA monomers. Extracted type I collagen fibrils, which was used as simulation of the exposed dentinal collagen fibrils after acid etching step, were plasma treated and analyzed with Fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD) spectra. FT-IR spectra of the Plasma/HEMA Treated collage fibrils showed broadened amide I peak at 1660 cm−1 and amide II at 1550 cm−1, which indicate secondary structure changes of the collagen fibrils. CD spectra indicated that 67.4% collagen helix structures were denatured after plasma treatment. These experimental results demonstrate that non-thermal argon plasma treatment was very effective in loosing collagen structure and enhancing adhesive monomer penetration, which are beneficial to thicker hybrid layer and longer resin tag formation, and consequently enhance adhesive/dentin interface bonding. PMID:25267936

  9. Influence of Copolyester Composition on Adhesion to Soda-Lime Glass via Molecular Dynamics Simulations.

    PubMed

    Hanson, Ben; Hofmann, John; Pasquinelli, Melissa A

    2016-06-01

    Copolyesters are a subset of polymers that have the desirable properties of strength and clarity while retaining chemical resistance, and are thus potential candidates for enhancing the impact resistance of soda-lime glass. Adhesion between the polymer and the glass relates to the impact performance of the system, as well as the longevity of the bond between the polymer and the glass under various conditions. Modifying the types of diols and diacids present in the copolyester provides a method for fine-tuning the physical properties of the polymer. In this study, we used molecular dynamics (MD) simulations to examine the influence of the chemical composition of the polymers on adhesion of polymer film laminates to two soda-lime glass surfaces, one tin-rich and one oxygen-rich. By calculating properties such as adhesion energies and contact angles, these results provide insights into how the polymer-glass interaction is impacted by the polymer composition, temperature, and other factors such as the presence of free volume or pi stacking. These results can be used to optimize the adhesion of copolyester films to glass surfaces. PMID:27206103

  10. The effect of dentin desensitizers and Nd:YAG laser pre-treatment on microtensile bond strength of self-adhesive resin cement to dentin

    PubMed Central

    Tuncer, Duygu; Yuzugullu, Bulem; Celik, Cigdem

    2014-01-01

    PURPOSE The purpose of this study is to evaluate if pre-treatment with desensitizers have a negative effect on microtensile bond strength before cementing a restoration using recently introduced self-adhesive resin cement to dentin. MATERIALS AND METHODS Thirty-five human molars' occlusal surfaces were ground to expose dentin; and were randomly grouped as (n=5); 1) Gluma-(Glutaraldehyde/HEMA) 2) Aqua-Prep F-(Fluoride), 3) Bisblock-(Oxalate), 4) Cervitec Plus-(Clorhexidine), 5) Smart protect-(Triclosan), 6) Nd:YAG laser, 7) No treatment (control). After applying the selected agent, RelyX U200 self-adhesive resin cement was used to bond composite resin blocks to dentin. All groups were subjected to thermocycling for 1000 cycles between 5-55℃. Each bonded specimen was sectioned to microbars (6 mm × 1 mm × 1 mm) (n=20). Specimens were submitted to microtensile bond strength test at a crosshead speed of 0.5 mm/min. Kolmogorov-Smirnov, Levene's test, Kruskal-Wallis One-way Analysis of Variance, and Conover's nonparametric statistical analysis were used (P<.05). RESULTS Gluma, Smart Protect and Nd:YAG laser treatments showed comparable microtensile bond strengths compared with the control group (P>.05). The microtensile bond strengths of Aqua-Prep F, and Cervitec Plus were similar to each other but significantly lower than the control group (P<.05). Bisblock showed the lowest microtensile bond strength among all groups (P<.001). Most groups showed adhesive failure. CONCLUSION Within the limitation of this study, it is not recommended to use Aqua-prep F, Cervitec Plus and Bisblock on dentin when used with a self-adhesive resin cement due to the decrease they cause in bond strength. Beside, pre-treatment of dentin with Gluma, Smart protect, and Nd:YAG laser do not have a negative effect. PMID:24843392

  11. Cariogenic bacteria degrade dental resin composites and adhesives.

    PubMed

    Bourbia, M; Ma, D; Cvitkovitch, D G; Santerre, J P; Finer, Y

    2013-11-01

    A major reason for dental resin composite restoration replacement is related to secondary caries promoted by acid production from bacteria including Streptococcus mutans (S. mutans). We hypothesized that S. mutans has esterase activities that degrade dental resin composites and adhesives. Standardized specimens of resin composite (Z250), total-etch (Scotchbond Multipurpose, SB), and self-etch (Easybond, EB) adhesives were incubated with S. mutans UA159 or uninoculated culture medium (control) for up to 30 days. Quantification of the BisGMA-derived biodegradation by-product, bishydroxy-propoxy-phenyl-propane (BisHPPP), was performed by high-performance liquid chromatography. Surface analysis of the specimens was performed by scanning electron microscopy (SEM). S. mutans was shown to have esterase activities in levels comparable with those found in human saliva. A trend of increasing BisHPPP release throughout the incubation period was observed for all materials and was more elevated in the presence of bacteria vs. control medium for EB and Z250, but not for SB (p < .05). SEM confirmed the increased degradation of all materials with S. mutans UA159 vs. control. S. mutans has esterase activities at levels that degrade resin composites and adhesives; degree of degradation was dependent on the material's chemical formulation. This finding suggests that the resin-dentin interface could be compromised by oral bacteria that contribute to the progression of secondary caries. PMID:24026951

  12. Veneer vs. core failure in adhesively bonded all-ceramic crown layers.

    PubMed

    Lee, J J-W; Kwon, J-Y; Bhowmick, S; Lloyd, I K; Rekow, E D; Lawn, B R

    2008-04-01

    Joining a brittle veneer to a strong ceramic core with an adhesive offers potential benefits over current fabrication methods for all-ceramic crowns. We tested the hypothesis that such joining can withstand subsurface radial cracking in the veneer, from enhanced flexure in occlusal loading, as well as in the core. Critical conditions to initiate fractures were investigated in model crown-like layer structures consisting of glass veneers epoxy-joined onto alumina or zirconia cores, all bonded to a dentin-like polymer base. The results showed a competition between critical loads for radial crack initiation in the veneers and cores. Core radial cracking was relatively independent of adhesive thickness. Zirconia cores were much less susceptible to fracture than alumina, attributable to a relatively high strength and low modulus. Veneer cracking did depend on adhesive thickness. However, no significant differences in critical loads for veneer cracking were observed for specimens containing alumina or zirconia cores. PMID:18362320

  13. Comparing Adhesive Bonding and LAMP Joining Technology in Case of Hybrid Material Combination

    NASA Astrophysics Data System (ADS)

    Markovits, T.; Bauernhuber, A.

    As plastics are utilized more and more frequently in our devices, it becomes necessary that they can be adequately joined to other materials, like metals. Bonding different materials was carried so far out primarily by adhesives, however, novel technologies, like laser assisted metal-plastic joining are showing benefits against current technologies. In the course of this study, the authors joined PMMA plastic to structural steel by adhesives and by laser assisted metal-plastic joining. Mechanical tests were carried out to compare the two different technologies, and to be able to position the LAMP joining within the field of joining technologies. Results show clearly the advantages of laser transmission joining as compared to adhesives.

  14. Bonding efficacy of an acetone/based etch-and-rinse adhesive after dentin deproteinization

    PubMed Central

    Aguilera, Fátima S.; Osorio, Raquel; Osorio, Estrella; Moura, Pedro

    2012-01-01

    Objectives: to evaluate the effect of sodium hypochlorite (NaOCl) treatment on dentin bonding by means of shear bond strength (SBS) measurements when using Prime&Bond NT (PB NT) adhesive. Ultrastructure of the interfaces was examined by scanning electron microscopy (SEM). Study design: Extracted human third molars were sectioned and ground to expose flat surfaces of superficial or deep dentin. Specimens were randomly assigned to two equal groups, and bonded as follows: (1) according to the manufacturers’ directions, after 35% H3PO4 etching, (2) 5% NaOCl treated for 2 minutes, after 35% H3PO4 etching. Each sample was embedded in a Watanabe shear test assembly for a single plane lap shear. After PB NT bonding, specimens were stored in water for 24 h at 37ºC and thermocycled (500x). Samples were tested in shear to failure using a universal testing machine at 0.75 mm/min. Data were analyzed with ANOVA and Newman-Keuls multiple comparison test procedures. Two samples of each group were randomly selected to investigate the morphologic aspect of the resin/dentin interface with SEM. Results: After etching and after aqueous sodium hypochlorite (NaOClaq) application, SBS values were similar on superficial than deep dentin (p>0.05). SEM findings shows for H3PO4 etching conditioned samples a detectable hybrid layer and long resin tags; for NaOCl treated specimens, it may be observed a non apparent hybrid layer, and the adhesive contact directly with the neck of the cylindrical resin tags. Conclusions: The use of 5% NaOCl for 2 min after dentin demineralization when PB NT was employed did not improve the bond strength to dentin, probably due to nanofiller content and/or oxidative changes on collagen-depleted dentin. Key words:Sodium hypochlorite, shear bond strength, SEM, Prime&Bond NT, superficial dentin, deep dentin. PMID:22322501

  15. Effect of smear layer treatment on dentin bond of self-adhesive cements.

    PubMed

    Kambara, Keisuke; Nakajima, Masatoshi; Hosaka, Keiichi; Takahashi, Masahiro; Thanatvarakorn, Ornnicha; Ichinose, Shizuko; Foxton, Richard M; Tagami, Junji

    2012-01-01

    The purpose of this study was to compare the dentin bond strength of three self-adhesive cements with smear layer pretreatments using a calcium-chelating agent (EDTA) and deproteinizing solution (NaOCl) and to evaluate their interfacial characteristics. Smear layer-covered dentin surfaces were pretreated with EDTA for 60 s, NaOCl for 5 and 15 s, or none. Three self-adhesive cements; Clearfil SA luting (Kuraray Medical), Rely X Unicem clicker (3M ESPE) and Breeze (Pentron) were applied to the dentin surfaces. After 24-h water storage, shear bond strengths to dentin were determined. In addition, nanoleakage evaluation at the interface was performed using FE-SEM and EDS. EDTA-pretreatment significantly improved the bond strength of BR (p<0.05) and NaOCl-pretreatment for 15 s significantly improved the bond strength of RX (p<0.05). On the other hand, for SA, both pretreatments significantly decreased bond strength to dentin (p<0.05). Nanoleakage formation was observed in various amounts at the cement-dentin interfaces. PMID:23207204

  16. Bonding between oxide ceramics and adhesive cement systems: a systematic review.

    PubMed

    Papia, Evaggelia; Larsson, Christel; du Toit, Madeleine; Vult von Steyern, Per

    2014-02-01

    The following aims were set for this systematic literature review: (a) to make an inventory of existing methods to achieve bondable surfaces on oxide ceramics and (b) to evaluate which methods might provide sufficient bond strength. Current literature of in vitro studies regarding bond strength achieved using different surface treatments on oxide ceramics in combination with adhesive cement systems was selected from PubMed and systematically analyzed and completed with reference tracking. The total number of publications included for aim a was 127 studies, 23 of which were used for aim b. The surface treatments are divided into seven main groups: as-produced, grinding/polishing, airborne particle abrasion, surface coating, laser treatment, acid treatment, and primer treatment. There are large variations, making comparison of the studies difficult. An as-produced surface of oxide ceramic needs to be surface treated to achieve durable bond strength. Abrasive surface treatment and/or silica-coating treatment with the use of primer treatment can provide sufficient bond strength for bonding oxide ceramics. This conclusion, however, needs to be confirmed by clinical studies. There is no universal surface treatment. Consideration should be given to the specific materials to be cemented and to the adhesive cement system to be used. PMID:24123837

  17. Development of an adhesively bonded beryllium propulsion structure for the Mariner Mars 1971 spacecraft

    NASA Technical Reports Server (NTRS)

    Stevens, J. H.; Layman, W. E.

    1972-01-01

    The design, testing, and fabrication of the support truss structure for the propulsion system of the Mariner 9 spacecraft are described. Support is provided by an 8.9-kg (19.5-lbm) truss assembly consisting of beryllium tubes adhesively bonded to magnesium end fittings. Beryllium was selected for the tubular struts in the truss because of its exceptionally high stiffness-to-weight ratio. Adhesive bonding, rather than riveting, was utilized to join the struts to the end fittings because of the low toughness (high notch sensitivity) of beryllium. Magnesium, used in the end fittings, resulted in a 50% weight saving over aluminum since geometric factors in the fitting design resulted in low stress areas where magnesium's lower density is a benefit.

  18. Resonance-based bonding detection for piezoelectric fiber composites

    NASA Astrophysics Data System (ADS)

    Wang, Dwo-Wen; Yin, Ching-Chung

    2008-11-01

    A resonance-based method is presented to determine the bonding conditions of piezoelectric fiber composite (PFC) patches attached to host structures. The PFCs are used to be functional materials by applying voltage through the interdigital electrodes symmetrically aligned on opposite surfaces of the composite patches. Interfacial debonds usually degrade the function. Only the edge debonds are taken into account in this paper. A partially debonded patch bears an in-plane extensional vibration if the interdigital electrodes are excited by a sinusoidal voltage. Electric impedance of the PFC patch adhered on an aluminum plate was measured in a broad frequency range to seek the resonant frequencies. The modal characteristics depend on the size of debond, material properties of the PFC, and stiffness of remaining adhesive in front of the edge debond. Extensional vibration of an elastic sheet is characteristic of the resonant frequencies being inversely proportional to the debonding length. The lowest several modes are considered. Experimental results indicate that self-detecting progressive debonding between the PFC patch and the host plate is feasible.

  19. Microtensile Bond Strength of Self-Adhesive Luting Cements to Ceramics

    PubMed Central

    Abo, Tomoko; Uno, Shigeru; Yoshiyama, Masahiro; Yamada, Toshimoto; Hanada, Nobuhiro

    2012-01-01

    The purpose of this paper was to compare the bond strengths of the self-adhesive luting cements between ceramics and resin cores and examine their relation to the cement thickness. Three self-adhesive luting cements (Smartcem, Maxcem, and G-CEM) and a resin cement (Panavia F 2.0) for control were used in the paper. The thickness of the cements was controlled in approximately 25, 50, 100, or 200 μm. Each 10 specimens were made according to the manufacturers' instructions and stored in water at 37°C. After 24 hours, microtensile bond strength (μTBS) was measured. There were significant differences in cements. Three self-adhesive cements showed significantly lower μTBSs than control that required both etching and priming before cementation (Tukey, P < 0.05). The cement thickness of 50 or 100 μm tended to induce the highest μTBSs for each self-adhesive luting cements though no difference was found. PMID:22606202

  20. Sacrificial adhesive bonding: a powerful method for fabrication of glass microchips

    PubMed Central

    Lima, Renato S.; Leão, Paulo A. G. C.; Piazzetta, Maria H. O.; Monteiro, Alessandra M.; Shiroma, Leandro Y.; Gobbi, Angelo L.; Carrilho, Emanuel

    2015-01-01

    A new protocol for fabrication of glass microchips is addressed in this research paper. Initially, the method involves the use of an uncured SU-8 intermediate to seal two glass slides irreversibly as in conventional adhesive bonding-based approaches. Subsequently, an additional step removes the adhesive layer from the channels. This step relies on a selective development to remove the SU-8 only inside the microchannel, generating glass-like surface properties as demonstrated by specific tests. Named sacrificial adhesive layer (SAB), the protocol meets the requirements of an ideal microfabrication technique such as throughput, relatively low cost, feasibility for ultra large-scale integration (ULSI), and high adhesion strength, supporting pressures on the order of 5 MPa. Furthermore, SAB eliminates the use of high temperature, pressure, or potential, enabling the deposition of thin films for electrical or electrochemical experiments. Finally, the SAB protocol is an improvement on SU-8-based bondings described in the literature. Aspects such as substrate/resist adherence, formation of bubbles, and thermal stress were effectively solved by using simple and inexpensive alternatives. PMID:26293346

  1. Sacrificial adhesive bonding: a powerful method for fabrication of glass microchips

    NASA Astrophysics Data System (ADS)

    Lima, Renato S.; Leão, Paulo A. G. C.; Piazzetta, Maria H. O.; Monteiro, Alessandra M.; Shiroma, Leandro Y.; Gobbi, Angelo L.; Carrilho, Emanuel

    2015-08-01

    A new protocol for fabrication of glass microchips is addressed in this research paper. Initially, the method involves the use of an uncured SU-8 intermediate to seal two glass slides irreversibly as in conventional adhesive bonding-based approaches. Subsequently, an additional step removes the adhesive layer from the channels. This step relies on a selective development to remove the SU-8 only inside the microchannel, generating glass-like surface properties as demonstrated by specific tests. Named sacrificial adhesive layer (SAB), the protocol meets the requirements of an ideal microfabrication technique such as throughput, relatively low cost, feasibility for ultra large-scale integration (ULSI), and high adhesion strength, supporting pressures on the order of 5 MPa. Furthermore, SAB eliminates the use of high temperature, pressure, or potential, enabling the deposition of thin films for