Sample records for adhesive locking features

  1. Process Sensitivity, Performance, and Direct Verification Testing of Adhesive Locking Features

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.; Leatherwood, Michael D.; Montoya, Michael D.; Kato, Ken A.; Akers, Ed

    2012-01-01

    Phase I: The use of adhesive locking features or liquid locking compounds (LLCs) (e.g., Loctite) as a means of providing a secondary locking feature has been used on NASA programs since the Apollo program. In many cases Loctite was used as a last resort when (a) self-locking fasteners were no longer functioning per their respective drawing specification, (b) access was limited for removal & replacement, or (c) replacement could not be accomplished without severe impact to schedule. Long-term use of Loctite became inevitable in cases where removal and replacement of worn hardware was not cost effective and Loctite was assumed to be fully cured and working. The NASA Engineering & Safety Center (NESC) and United Space Alliance (USA) recognized the need for more extensive testing of Loctite grades to better understand their capabilities and limitations as a secondary locking feature. These tests, identified as Phase I, were designed to identify processing sensitivities, to determine proper cure time, the correct primer to use on aerospace nutplate, insert and bolt materials such as A286 and MP35N, and the minimum amount of Loctite that is required to achieve optimum breakaway torque values. The .1900-32 was the fastener size tested, due to wide usage in the aerospace industry. Three different grades of Loctite were tested. Results indicate that, with proper controls, adhesive locking features can be successfully used in the repair of locking features and should be considered for design. Phase II: Threaded fastening systems used in aerospace programs typically have a requirement for a redundant locking feature. The primary locking method is the fastener preload and the traditional redundant locking feature is a self-locking mechanical device that may include deformed threads, non-metallic inserts, split beam features, or other methods that impede movement between threaded members. The self-locking resistance of traditional locking features can be directly verified during assembly by measuring the dynamic prevailing torque. Adhesive locking features or LLCs are another method of providing redundant locking, but a direct verification method has not been used in aerospace applications to verify proper installation when using LLCs because of concern for damage to the adhesive bond. The reliability of LLCs has also been questioned due to failures observed during testing with coupons for process verification, although the coupon failures have often been attributed to a lack of proper procedures. It is highly desirable to have a direct method of verifying the LLC cure or bond integrity. The purpose of the Phase II test program was to determine if the torque applied during direct verification of an adhesive locking feature degrades that locking feature. This report documents the test program used to investigate the viability of such a direct verification method. Results of the Phase II testing were positive, and additional investigation of direct verification of adhesive locking features is merited.

  2. Prevailing Torque Locking Feature in Threaded Fasteners Using Anaerobic Adhesive

    NASA Technical Reports Server (NTRS)

    Hernandez, Alan; Hess, Daniel P.

    2016-01-01

    This paper presents results from tests to assess the use of anaerobic adhesive for providing a prevailing torque locking feature in threaded fasteners. Test procedures are developed and tests are performed on three fastener materials, four anaerobic adhesives, and both unseated assembly conditions. Five to ten samples are tested for each combination. Tests for initial use, reuse without additional adhesive, and reuse with additional adhesive are performed for all samples. A 48-hour cure time was used for all initial use and reuse tests. Test data are presented as removal torque versus removal angle with the specification required prevailing torque range added for performance assessment. Percent specification pass rates for the all combinations of fastener material, adhesive, and assembly condition are tabulated and reveal use of anaerobic adhesive as a prevailing torque locking feature is viable. Although not every possible fastener material and anaerobic adhesive combination provides prevailing torque values within specification, any combination can be assessed using the test procedures presented. Reuse without additional anaerobic adhesive generally provides some prevailing torque, and in some cases within specification. Reuse with additional adhesive often provides comparable removal torque data as in initial use.

  3. Filamentary structures that self-organize due to adhesion

    NASA Astrophysics Data System (ADS)

    Sengab, A.; Picu, R. C.

    2018-03-01

    We study the self-organization of random collections of elastic filaments that interact adhesively. The evolution from an initial fully random quasi-two-dimensional state is controlled by filament elasticity, adhesion and interfilament friction, and excluded volume. Three outcomes are possible: the system may remain locked in the initial state, may organize into isolated fiber bundles, or may form a stable, connected network of bundles. The range of system parameters leading to each of these states is identified. The network of bundles is subisostatic and is stabilized by prestressed triangular features forming at bundle-to-bundle nodes, similar to the situation in foams. Interfiber friction promotes locking and expands the parametric range of nonevolving systems.

  4. Fastener Retention Requirements and Practices in Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Dasgupta, Rajib

    2004-01-01

    This presentation reviews the requirements for safety critical fasteners in spaceflight hardware. Included in the presentation are design guidelines and information for Locking Helicoils, key locked inserts and thinwalled inserts, self locking screws and bolts. locknuts, and a locking adhesives, Loctite and Vibratite.

  5. Creation of operation algorithms for combined operation of anti-lock braking system (ABS) and electric machine included in the combined power plant

    NASA Astrophysics Data System (ADS)

    Bakhmutov, S. V.; Ivanov, V. G.; Karpukhin, K. E.; Umnitsyn, A. A.

    2018-02-01

    The paper considers the Anti-lock Braking System (ABS) operation algorithm, which enables the implementation of hybrid braking, i.e. the braking process combining friction brake mechanisms and e-machine (electric machine), which operates in the energy recovery mode. The provided materials focus only on the rectilinear motion of the vehicle. That the ABS task consists in the maintenance of the target wheel slip ratio, which depends on the tyre-road adhesion coefficient. The tyre-road adhesion coefficient was defined based on the vehicle deceleration. In the course of calculated studies, the following operation algorithm of hybrid braking was determined. At adhesion coefficient ≤0.1, driving axle braking occurs only due to the e-machine operating in the energy recovery mode. In other cases, depending on adhesion coefficient, the e-machine provides the brake torque, which changes from 35 to 100% of the maximum available brake torque. Virtual tests showed that values of the wheel slip ratio are close to the required ones. Thus, this algorithm makes it possible to implement hybrid braking by means of the two sources creating the brake torque.

  6. Lock Wall Expedient Repair Demonstration Monitoring, John T. Myers Locks and Dam, Ohio River

    DTIC Science & Technology

    2011-10-01

    original condition. Complete confinement of the concrete within the armor appears to provide good resistance to impact and abrasion (Figure 29). ERDC... resistance to impact and abrasion . Synopsis General classifications of observed damage were described and, where repairs are considered necessary or...against abrasion , fire , and environmental attacks and to improve the adhesion to other construc- tion materials. For high-weatherproof performance

  7. Hydrophobic to superhydrophobic surface modification using impacting particulate sprays

    NASA Astrophysics Data System (ADS)

    Lau, Chun Yat; Vuong, Thach; Wang, Jingming; Muradoglu, Murat; Liew, Oi Wah; Ng, Tuck Wah

    2014-08-01

    The roughening or structuring of inherently hydrophobic surfaces to possess microscopic and nanoscopic features can transform them to exhibit superhydrophobicity. The use of impacting particulate sprays here eschews specialized reagents and equipments; is simple, inexpensive, and rapid to implement; creates highly repeatable outcomes; and permits selective region transformation via simple masking. With PTFE, the contact angle transforms from 90° to 150°, in which SEM examination reveals erosive wear mechanisms that are dependent on the impingement angle. The process tends to cause the sample to bulge upwards from the treated surface due to elongation there, and can be mitigated by using lower impingement angles in the particulate spray. A finite element model created enables this characteristic to be related to the action of locked-in surface traction forces. The use of adhesive bonding to a rigid base is shown to be an alternative method to reduce the bulging. A second finite model developed allows knowledge of the right adhesive needed for this. In developing substrates for biochemical analysis, the approach offers very small possibilities for unintended synergistic interactions.

  8. Performance Characterization of Loctite (Registered Trademark) 242 and 271 Liquid Locking Compounds (LLCs) as a Secondary Locking Feature for International Space Station (ISS) Fasteners

    NASA Technical Reports Server (NTRS)

    Dube, Michael J.; Gamwell, Wayne R.

    2011-01-01

    Several International Space Station (ISS) hardware components use Loctite (and other polymer based liquid locking compounds (LLCs)) as a means of meeting the secondary (redundant) locking feature requirement for fasteners. The primary locking method is the fastener preload, with the application of the Loctite compound which when cured is intended to resist preload reduction. The reliability of these compounds has been questioned due to a number of failures during ground testing. The ISS Program Manager requested the NASA Engineering and Safety Center (NESC) to characterize and quantify sensitivities of Loctite being used as a secondary locking feature. The findings and recommendations provided in this investigation apply to the anaerobic LLCs Loctite 242 and 271. No other anaerobic LLCs were evaluated for this investigation. This document contains the findings and recommendations of the NESC investigation

  9. Broadband features of passively harmonic mode locking in dispersion-managed erbium-doped all-fiber lasers

    NASA Astrophysics Data System (ADS)

    Geng, Y.; Li, L.; Shu, C. J.; Wang, Y. F.; Tang, D. Y.; Zhao, L. M.

    2018-06-01

    Broadband features of passively harmonic mode locking (HML) in dispersion-managed erbium-doped all-fiber lasers are explored. The bandwidth of HML state is generally narrower than that of fundamental mode locking before pulse breaking occurs. There exists a broadest bandwidth versus the order of HML. HML state with bandwidth up to 61.5 nm is obtained.

  10. External Tank (ET) Bipod Fitting Bolted Attachment Locking Insert Performance

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis E.; Wilson, Tim R.; Elliott, Kenny B.; Raju, Ivatury S.; McManamen, John

    2008-01-01

    Following STS-107, the External Tank (ET) Project implemented corrective actions and configuration changes at the ET bipod fitting. Among the corrective actions, the existing bolt lock wire which provided resistance to potential bolt rotation was removed. The lock wire removal was because of concerns with creating voids during foam application and potential for lock wire to become debris. The bolts had been previously lubricated to facilitate assembly but, because of elimination of the lock wire, the ET Project wanted to enable the locking feature of the insert. Thus, the lubrication was removed from bolt threads and instead applied to the washer under the bolt head. Lubrication is necessary to maximize joint pre-load while remaining within the bolt torque specification. The locking feature is implemented by thread crimping in at four places in the insert. As the bolt is torqued into the insert the bolt threads its way past the crimped parts of the insert. This provides the locking of the bolt, as torque is required to loosen the joint after clamping.

  11. Nanoscale characterization of vesicle adhesion by normalized total internal reflection fluorescence microscopy.

    PubMed

    Cardoso Dos Santos, Marcelina; Vézy, Cyrille; Jaffiol, Rodolphe

    2016-06-01

    We recently proposed a straightforward fluorescence microscopy technique to study adhesion of Giant Unilamellar Vesicles. This technique is based on dual observations which combine epi-fluorescence microscopy and total internal reflection fluorescence (TIRF) microscopy: TIRF images are normalized by epi-fluorescence ones. By this way, it is possible to map the membrane/substrate separation distance with a nanometric resolution, typically ~20 nm, with a maximal working range of 300-400 nm. The purpose of this paper is to demonstrate that this technique is useful to quantify vesicle adhesion from ultra-weak to strong membrane-surface interactions. Thus, we have examined unspecific and specific adhesion conditions. Concerning unspecific adhesion, we have controlled the strength of electrostatic forces between negatively charged vesicles and various functionalized surfaces which exhibit a positive or a negative effective charge. Specific adhesion was highlighted with lock-and-key forces mediated by the well defined biotin/streptavidin recognition. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Royal, G. C., III

    1981-01-01

    Sixteen conceptual designs of residential photovoltaic arrays are described. Each design concept was evaluated by an industry advisory panel using a comprehensive set of technical, economic and institutional criteria. Key electrical and mechanical concerns that effect further array subsystem development are also discussed. Three integrated array design concepts were selected by the advisory panel for further optimization and development. From these concepts a single one will be selected for detailed analysis and prototype fabrication. The three concepts selected are: (1) An array of frameless panels/modules sealed in a T shaped zipper locking neoprene gasket grid pressure fitted into an extruded aluminum channel grid fastened across the rafters. (2) An array of frameless modules pressure fitted in a series of zipper locking EPDM rubber extrusions adhesively bonded to the roof. Series string voltage is developed using a set of integral tongue connectors and positioning blocks. (3) An array of frameless modules sealed by a silicone adhesive in a prefabricated grid of rigid tape and sheet metal attached to the roof.

  13. Time Pattern Locking Scheme for Secure Multimedia Contents in Human-Centric Device

    PubMed Central

    Kim, Hyun-Woo; Kim, Jun-Ho; Park, Jong Hyuk; Jeong, Young-Sik

    2014-01-01

    Among the various smart multimedia devices, multimedia smartphones have become the most widespread due to their convenient portability and real-time information sharing, as well as various other built-in features. Accordingly, since personal and business activities can be carried out using multimedia smartphones without restrictions based on time and location, people have more leisure time and convenience than ever. However, problems such as loss, theft, and information leakage because of convenient portability have also increased proportionally. As a result, most multimedia smartphones are equipped with various built-in locking features. Pattern lock, personal identification numbers, and passwords are the most used locking features on current smartphones, but these are vulnerable to shoulder surfing and smudge attacks, allowing malicious users to bypass the security feature easily. In particular, the smudge attack technique is a convenient way to unlock multimedia smartphones after they have been stolen. In this paper, we propose the secure locking screen using time pattern (SLSTP) focusing on improved security and convenience for users to support human-centric multimedia device completely. The SLSTP can provide a simple interface to users and reduce the risk factors pertaining to security leakage to malicious third parties. PMID:25202737

  14. Time pattern locking scheme for secure multimedia contents in human-centric device.

    PubMed

    Kim, Hyun-Woo; Kim, Jun-Ho; Park, Jong Hyuk; Jeong, Young-Sik

    2014-01-01

    Among the various smart multimedia devices, multimedia smartphones have become the most widespread due to their convenient portability and real-time information sharing, as well as various other built-in features. Accordingly, since personal and business activities can be carried out using multimedia smartphones without restrictions based on time and location, people have more leisure time and convenience than ever. However, problems such as loss, theft, and information leakage because of convenient portability have also increased proportionally. As a result, most multimedia smartphones are equipped with various built-in locking features. Pattern lock, personal identification numbers, and passwords are the most used locking features on current smartphones, but these are vulnerable to shoulder surfing and smudge attacks, allowing malicious users to bypass the security feature easily. In particular, the smudge attack technique is a convenient way to unlock multimedia smartphones after they have been stolen. In this paper, we propose the secure locking screen using time pattern (SLSTP) focusing on improved security and convenience for users to support human-centric multimedia device completely. The SLSTP can provide a simple interface to users and reduce the risk factors pertaining to security leakage to malicious third parties.

  15. 49 CFR 173.196 - Category A infectious substances.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... heat seal, skirted stopper, or metal crimp seal. If screw caps are used, they must be secured by positive means, such as with adhesive tape, paraffin sealing tape, or manufactured locking closure... ampoules or rubber-stoppered glass vials fitted with metal seals. (2) Infectious substances shipped...

  16. 4. Interior view shows large walkin safe in main room. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Interior view shows large walk-in safe in main room. Inscription on same reads Herring Hall Marvin Safe Co., Hamilton, Ohio. Radial markings around combination lock are stains from adhesive tape. - Pacific Creosoting Plant, Plant Office, 5350 Creosote Place, Northeast, Bremerton, Kitsap County, WA

  17. Analysis of the interphase of a polyamide bonded to chromic acid anodized Ti-6AL-4V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guinta, R.K.; Kander, R.G.

    2000-01-06

    Structural adhesive joints, when tested as made, typically fail cohesively through the centerline of the adhesive. However, in any study of adhesive joint durability, failure near the adhesive/substrate interface becomes an important consideration. In the current study, an interfacially debonding adhesive test, the notched coating adhesion (NCA) test, was applied to LaRC(trademark) PETI-5 adhesive bonded to chronic acid anodized (CAA) Ti-6Al-4V. Post-failure analysis of the interphase region included X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). Mechanical interlocking between an adhesive and a substrate occurs when the liquid adhesivemore » flows into interstices of the substrate, solidifies, and becomes locked in place. Mechanical interlocking is believed to significantly contribute to the adhesion of substrates that exhibit microroughness, such as metal surfaces treated with chromic acid anodization or sodium hydroxide anodization. Filbey and Wightman found that an epoxy penetrated the pores of CAA Ti-6Al-4V, one of the limited number of pore penetration studies that have been reported. In the current study, the penetration of PETI-5 into the pores of CAA Ti-6Al-4V is investigated through analysis of adhesive/substrate failure surfaces.« less

  18. Simulation of synthetic gecko arrays shearing on rough surfaces

    PubMed Central

    Gillies, Andrew G.; Fearing, Ronald S.

    2014-01-01

    To better understand the role of surface roughness and tip geometry in the adhesion of gecko synthetic adhesives, a model is developed that attempts to uncover the relationship between surface feature size and the adhesive terminal feature shape. This model is the first to predict the adhesive behaviour of a plurality of hairs acting in shear on simulated rough surfaces using analytically derived contact models. The models showed that the nanoscale geometry of the tip shape alters the macroscale adhesion of the array of fibres by nearly an order of magnitude, and that on sinusoidal surfaces with amplitudes much larger than the nanoscale features, spatula-shaped features can increase adhesive forces by 2.5 times on smooth surfaces and 10 times on rough surfaces. Interestingly, the summation of the fibres acting in concert shows behaviour much more complex that what could be predicted with the pull-off model of a single fibre. Both the Johnson–Kendall–Roberts and Kendall peel models can explain the experimentally observed frictional adhesion effect previously described in the literature. Similar to experimental results recently reported on the macroscale features of the gecko adhesive system, adhesion drops dramatically when surface roughness exceeds the size and spacing of the adhesive fibrillar features. PMID:24694893

  19. Two-dimensional Kinetics Regulation of αLβ2-ICAM-1 Interaction by Conformational Changes of the αL-Inserted Domain*

    PubMed Central

    Zhang, Fang; Marcus, Warren D.; Goyal, Nimita H.; Selvaraj, Periasamy; Springer, Timothy A.; Zhu, Cheng

    2006-01-01

    The leukocyte integrin αLβ2 mediates cell adhesion and migration during inflammatory and immune responses. Ligand binding of αLβ2 is regulated by or induces conformational changes in the inserted (I) domain. By using a micropipette, we measured the conformational regulation of two-dimensional (2D) binding affinity and the kinetics of cell-bound intercellular adhesion molecule-1 interacting with αLβ2 or isolated I domain expressed on K562 cells. Locking the I domain into open and intermediate conformations with a disulfide bond increased the affinities by ~8000- and ~30-fold, respectively, from the locked closed conformation, which has similar affinity as the wild-type I domain. Most surprisingly, the 2D affinity increases were due mostly to the 2D on-rate increases, as the 2D off-rates only decreased by severalfold. The wild-type αLβ2, but not its I domain in isolation, could be up-regulated by Mn2+ or Mg2+ to have high affinities and on-rates. Locking the I domain in any of the three conformations abolished the ability of divalent cations to regulate 2D affinity. These results indicate that a downward displacement of the I domain C-terminal helix, induced by conformational changes of other domains of the αLβ2, is required for affinity and on-rate up-regulation. PMID:16234238

  20. Wheel slide protection control using a command map and Smith predictor for the pneumatic brake system of a railway vehicle

    NASA Astrophysics Data System (ADS)

    Lee, Nam-Jin; Kang, Chul-Goo

    2016-10-01

    In railway vehicles, excessive sliding or wheel locking can occur while braking because of a temporarily degraded adhesion between the wheel and the rail caused by the contaminated or wet surface of the rail. It can damage the wheel tread and affect the performance of the brake system and the safety of the railway vehicle. To safeguard the wheelset from these phenomena, almost all railway vehicles are equipped with wheel slide protection (WSP) systems. In this study, a new WSP algorithm is proposed. The features of the proposed algorithm are the use of the target sliding speed, the determination of a command for WSP valves using command maps, and compensation for the time delay in pneumatic brake systems using the Smith predictor. The proposed WSP algorithm was verified using experiments with a hardware-in-the-loop simulation system including the hardware of the pneumatic brake system.

  1. Pollenkitt wetting mechanism enables species-specific tunable pollen adhesion.

    PubMed

    Lin, Haisheng; Gomez, Ismael; Meredith, J Carson

    2013-03-05

    Plant pollens are microscopic particles exhibiting a remarkable breadth of complex solid surface features. In addition, many pollen grains are coated with a viscous liquid, "pollenkitt", thought to play important roles in pollen dispersion and adhesion. However, there exist no quantitative studies of the effects of solid surface features or pollenkitt on adhesion of pollen grains, and it remains unclear what role these features play in pollen adhesion and transport. We report AFM adhesion measurements of five pollen species with a series of test surfaces in which each pollen has a unique solid surface morphology and pollenkitt volume. The results indicate that the combination of surface morphology (size and shape of echinate or reticulate features) with the pollenkitt volume provides pollens with a remarkably tunable adhesion to surfaces. With pollenkitt removed, pollen grains had relatively low adhesion strengths that were independent of surface chemistry and scalable with the tip radius of the pollen's ornamentation features, according to the Hamaker model. With the pollenkitt intact, adhesion was up to 3-6 times higher than the dry grains and exhibited strong substrate dependence. The adhesion enhancing effect of pollenkitt was driven by the formation of pollenkitt capillary bridges and was surprisingly species-dependent, with echinate insect-pollinated species (dandelion and sunflower) showing significantly stronger adhesion and higher substrate dependence than wind-pollinated species (ragweed, poplar, and olive). The combination of high pollenkitt volume and large convex, spiny surface features in echinate entomophilous varieties appears to enhance the spreading area of the liquid pollenkitt relative to varieties of pollen with less pollenkitt volume and less pronounced surface features. Measurements of pollenkitt surface energy indicate that the adhesive strength of capillary bridges is primarily dependent on nonpolar van der Waals interactions, with some contribution from the Lewis basic component of surface energy.

  2. Nondestructive Evaluation of Adhesive Bonds via Ultrasonic Phase Measurements

    NASA Technical Reports Server (NTRS)

    Haldren, Harold A.; Perey, Daniel F.; Yost, William T.; Cramer, K. Elliott; Gupta, Mool C.

    2016-01-01

    The use of advanced composites utilizing adhesively bonded structures offers advantages in weight and cost for both the aerospace and automotive industries. Conventional nondestructive evaluation (NDE) has proved unable to reliably detect weak bonds or bond deterioration during service life conditions. A new nondestructive technique for quantitatively measuring adhesive bond strength is demonstrated. In this paper, an ultrasonic technique employing constant frequency pulsed phased-locked loop (CFPPLL) circuitry to monitor the phase response of a bonded structure from change in thermal stress is discussed. Theoretical research suggests that the thermal response of a bonded interface relates well with the quality of the adhesive bond. In particular, the effective stiffness of the adhesive-adherent interface may be extracted from the thermal phase response of the structure. The sensitivity of the CFPPLL instrument allows detection of bond pathologies that have been previously difficult-to-detect. Theoretical results with this ultrasonic technique on single epoxy lap joint (SLJ) specimens are presented and discussed. This technique has the potential to advance the use of adhesive bonds - and by association, advanced composite structures - by providing a reliable method to measure adhesive bond strength, thus permitting more complex, lightweight, and safe designs.

  3. Blind-Side, High-Temperature Fastener Lock

    NASA Technical Reports Server (NTRS)

    Matza, E. C.; While, D. M.

    1985-01-01

    Formed-in-place staple provides positive mechanical lock. Post-supported, advanced carbon/carbon standoff panels, currently under consideration as alternate thermal protection system for Shuttle orbiter, locking feature applicable to temperatures of 1,600 degrees F (870 degrees C) and higher and employable after panel installed, resulting in blind application. Blind-side locking technique employs wire staple inserted into grooves in post, formed in place by ramped portion of post grooves. This splays out wire ends that move into castellated end of grommet, mechanically locking post and grommet against relative rotation. Splayed ends provide mechanical lock to prevent wire from falling out.

  4. A rhythm-based authentication scheme for smart media devices.

    PubMed

    Lee, Jae Dong; Jeong, Young-Sik; Park, Jong Hyuk

    2014-01-01

    In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience.

  5. A Rhythm-Based Authentication Scheme for Smart Media Devices

    PubMed Central

    Lee, Jae Dong; Park, Jong Hyuk

    2014-01-01

    In recent years, ubiquitous computing has been rapidly emerged in our lives and extensive studies have been conducted in a variety of areas related to smart devices, such as tablets, smartphones, smart TVs, smart refrigerators, and smart media devices, as a measure for realizing the ubiquitous computing. In particular, smartphones have significantly evolved from the traditional feature phones. Increasingly higher-end smartphone models that can perform a range of functions are now available. Smart devices have become widely popular since they provide high efficiency and great convenience for not only private daily activities but also business endeavors. Rapid advancements have been achieved in smart device technologies to improve the end users' convenience. Consequently, many people increasingly rely on smart devices to store their valuable and important data. With this increasing dependence, an important aspect that must be addressed is security issues. Leaking of private information or sensitive business data due to loss or theft of smart devices could result in exorbitant damage. To mitigate these security threats, basic embedded locking features are provided in smart devices. However, these locking features are vulnerable. In this paper, an original security-locking scheme using a rhythm-based locking system (RLS) is proposed to overcome the existing security problems of smart devices. RLS is a user-authenticated system that addresses vulnerability issues in the existing locking features and provides secure confidentiality in addition to convenience. PMID:25110743

  6. Quasi-regenerative mode locking in a compact all-polarisation-maintaining-fibre laser

    NASA Astrophysics Data System (ADS)

    Nyushkov, B. N.; Ivanenko, A. V.; Kobtsev, S. M.; Pivtsov, V. S.; Farnosov, S. A.; Pokasov, P. V.; Korel, I. I.

    2017-12-01

    A novel technique of mode locking in erbium-doped all-polarisation-maintaining-fibre laser has been developed and preliminary investigated. The proposed quasi-regenerative technique combines the advantages of conventional active mode locking (when an intracavity modulator is driven by an independent RF oscillator) and regenerative mode locking (when a modulator is driven by an intermode beat signal from the laser itself). This scheme is based on intracavity intensity modulation driven by an RF oscillator being phase-locked to the actual intermode frequency of the laser. It features also possibilities of operation at multiple frequencies and harmonic mode-locking operation.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemonds, David Preston

    A breech lock for a glove box is provided that may be used to transfer one or more items into the glove box. The breech lock can be interchangeably installed in place of a plug, glove, or other device in a port or opening of a glove box. Features are provided to aid the removal of items from the breech lock by a gloved operator. The breech lock can be reused or, if needed, can be replaced with a plug, glove, or other device at the port or opening of the glove box.

  8. Sliding tethered ligands add topological interactions to the toolbox of ligand–receptor design

    PubMed Central

    Bauer, Martin; Kékicheff, Patrick; Iss, Jean; Fajolles, Christophe; Charitat, Thierry; Daillant, Jean; Marques, Carlos M.

    2015-01-01

    Adhesion in the biological realm is mediated by specific lock-and-key interactions between ligand–receptor pairs. These complementary moieties are ubiquitously anchored to substrates by tethers that control the interaction range and the mobility of the ligands and receptors, thus tuning the kinetics and strength of the binding events. Here we add sliding anchoring to the toolbox of ligand–receptor design by developing a family of tethered ligands for which the spacer can slide at the anchoring point. Our results show that this additional sliding degree of freedom changes the nature of the adhesive contact by extending the spatial range over which binding may sustain a significant force. By introducing sliding tethered ligands with self-regulating length, this work paves the way for the development of versatile and reusable bio-adhesive substrates with potential applications for drug delivery and tissue engineering. PMID:26350224

  9. Resolving the molecular mechanism of cadherin catch bond formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manibog, Kristine; Li, Hui; Rakshit, Sabyasachi

    2014-06-02

    Classical cadherin Ca(2+)-dependent cell-cell adhesion proteins play key roles in embryogenesis and in maintaining tissue integrity. Cadherins mediate robust adhesion by binding in multiple conformations. One of these adhesive states, called an X-dimer, forms catch bonds that strengthen and become longer lived in the presence of mechanical force. Here we use single-molecule force-clamp spectroscopy with an atomic force microscope along with molecular dynamics and steered molecular dynamics simulations to resolve the molecular mechanisms underlying catch bond formation and the role of Ca(2+) ions in this process. Our data suggest that tensile force bends the cadherin extracellular region such that theymore » form long-lived, force-induced hydrogen bonds that lock X-dimers into tighter contact. When Ca(2+) concentration is decreased, fewer de novo hydrogen bonds are formed and catch bond formation is eliminated« less

  10. Nonlinear pulse shaping and polarization dynamics in mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Boscolo, Sonia; Sergeyev, Sergey V.; Mou, Chengbo; Tsatourian, Veronika; Turitsyn, Sergei; Finot, Christophe; Mikhailov, Vitaly; Rabin, Bryan; Westbrook, Paul S.

    2014-03-01

    We review our recent progress on the study of new nonlinear mechanisms of pulse shaping in passively mode-locked fiber lasers. These include a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on our recent experimental studies unveiling new types of vector solitons with processing states of polarization for multi-pulse and tightly bound-state soliton (soliton molecule) operations in a carbon nanotube (CNT) mode-locked fiber laser with anomalous dispersion cavity.

  11. Project Integration Architecture: Distributed Lock Management, Deadlock Detection, and Set Iteration

    NASA Technical Reports Server (NTRS)

    Jones, William Henry

    2005-01-01

    The migration of the Project Integration Architecture (PIA) to the distributed object environment of the Common Object Request Broker Architecture (CORBA) brings with it the nearly unavoidable requirements of multiaccessor, asynchronous operations. In order to maintain the integrity of data structures in such an environment, it is necessary to provide a locking mechanism capable of protecting the complex operations typical of the PIA architecture. This paper reports on the implementation of a locking mechanism to treat that need. Additionally, the ancillary features necessary to make the distributed lock mechanism work are discussed.

  12. Material- and feature-dependent effects on cell adhesion to micro injection moulded medical polymers.

    PubMed

    Choi, Seong Ying; Habimana, Olivier; Flood, Peter; Reynaud, Emmanuel G; Rodriguez, Brian J; Zhang, Nan; Casey, Eoin; Gilchrist, Michael D

    2016-09-01

    Two polymers, polymethylmethacrylate (PMMA) and cyclic olefin copolymer (COC), containing a range of nano- to micron- roughness surfaces (Ra 0.01, 0.1, 0.4, 1.0, 2.0, 3.2 and 5.0μm) were fabricated using electrical discharge machining (EDM) and replicated using micro injection moulding (μIM). Polymer samples were characterized using optical profilometry, atomic force microscopy (AFM) and water surface contact angle. Cell adhesion tests were carried out using bacterial Pseudomonas fluorescens and mammalian Madin-Darby Canine Kidney (MDCK) cells to determine the effect of surface hydrophobicity, surface roughness and stiffness. It is found that there are features which gave insignificant differences (feature-dependent effect) in cell adhesion, albeit a significant difference in the physicochemical properties (material-dependent effect) of substrata. In bacterial cell adhesion, the strongest feature-dependence is found at Ra 0.4μm surfaces, with material-dependent effects strongest at Ra 0.01μm. Ra 0.1μm surfaces exhibited strongest feature-dependent effects and Ra 5.0μm has strongest material-dependent effects on mammalian cell adhesion. Bacterial cell adhesion is found to be favourable to hydrophobic surfaces (COC), with the lowest adhesion at Ra 0.4μm for both materials. Mammalian cell adhesion is lowest in Ra 0.1μm and highest in Ra 1.0μm, and generally favours hydrophilic surfaces (PMMA). These findings can be used as a basis for developing medical implants or microfluidic devices using micro injection moulding for diagnostic purposes, by tuning the cell adhesion on different areas containing different surface roughnesses on the diagnostic microfluidic devices or medical implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A Ground-Based 2-Micron DIAL System to Profile Tropospheric CO2 and Aerosol Distributions for Atmospheric Studies

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Koch, Grady; Abedin, Nurul; Refaat, Tamer; Rubio, Manuel; Davis, Kenneth; Miller, Charles; Singh, Upendra

    2006-01-01

    System will operate at a temperature insensitive CO2 line (2050.967 nm) with side-line tuning and off-set locking. Demonstrated an order of magnitude improvement in laser line locking needed for high precision measurements, side-line operation, and simultaneously double pulsing and line locking. Detector testing of phototransistor has demonstrated sensitivity to aerosol features over long distances in the atmosphere and resolve features approx. 100m. Optical systems that collect light onto small area detectors work well. Receiver optical designs are being optimized and data acquisition systems developed. CO2 line parameter characterization in progress In situ sensor calibration in progress for validation of DIAL CO2 system.

  14. Digital phase-lock loop

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1991-01-01

    An improved digital phase lock loop incorporates several distinctive features that attain better performance at high loop gain and better phase accuracy. These features include: phase feedback to a number-controlled oscillator in addition to phase rate; analytical tracking of phase (both integer and fractional cycles); an amplitude-insensitive phase extractor; a more accurate method for extracting measured phase; a method for changing loop gain during a track without loss of lock; and a method for avoiding loss of sampled data during computation delay, while maintaining excellent tracking performance. The advantages of using phase and phase-rate feedback are demonstrated by comparing performance with that of rate-only feedback. Extraction of phase by the method of modeling provides accurate phase measurements even when the number-controlled oscillator phase is discontinuously updated.

  15. Biomechanics of far cortical locking.

    PubMed

    Bottlang, Michael; Feist, Florian

    2011-02-01

    The development of far cortical locking (FCL) was motivated by a conundrum: locked plating constructs provide inherently rigid stabilization, yet they should facilitate biologic fixation and secondary bone healing that relies on flexible fixation to stimulate callus formation. Recent studies have confirmed that the high stiffness of standard locked plating constructs can suppress interfragmentary motion to a level that is insufficient to reliably promote secondary fracture healing by callus formation. Furthermore, rigid locking screws cause an uneven stress distribution that may lead to stress fracture at the end screw and stress shielding under the plate. This review summarizes four key features of FCL constructs that have been shown to enhance fixation and healing of fractures: flexible fixation, load distribution, progressive stiffening, and parallel interfragmentary motion. Specifically, flexible fixation provided by FCL reduces the stiffness of a locked plating construct by 80% to 88% to actively promote callus proliferation similar to an external fixator. Load is evenly distributed between FCL screws to mitigate stress risers at the end screw. Progressive stiffening occurs by near cortex support of FCL screws and provides additional support under elevated loading. Finally, parallel interfragmentary motion by the S-shaped flexion of FCL screws promotes symmetric callus formation. In combination, these features of FCL constructs have been shown to induce more callus and to yield significantly stronger and more consistent healing compared with standard locked plating constructs. As such, FCL constructs function as true internal fixators by replicating the biomechanical behavior and biologic healing response of external fixators.

  16. Support and Development of Workflow Protocols for High Throughput Single-Lap-Joint Testing-Experimental

    DTIC Science & Technology

    2013-04-01

    preparation, and presence of an overflow fillet for a high strength epoxy and ductile methacylate adhesive. A unique feature of this study was the...of expanding adhesive joint test configurations as part of the GEMS program. 15. SUBJECT TERMS single lap joint, adhesion, aluminum, epoxy ... epoxy and ductile methacylate adhesive. A unique feature of this study was the use of untrained GEMS (Gains in the Education of Mathematics and Sci

  17. Natural and bio-inspired underwater adhesives: Current progress and new perspectives

    NASA Astrophysics Data System (ADS)

    Cui, Mengkui; Ren, Susu; Wei, Shicao; Sun, Chengjun; Zhong, Chao

    2017-11-01

    Many marine organisms harness diverse protein molecules as underwater adhesives to achieve strong and robust interfacial adhesion under dynamic and turbulent environments. Natural underwater adhesion phenomena thus provide inspiration for engineering adhesive materials that can perform in water or high-moisture settings for biomedical and industrial applications. Here we review examples of biological adhesives to show the molecular features of natural adhesives and discuss how such knowledge serves as a heuristic guideline for the rational design of biologically inspired underwater adhesives. In view of future bio-inspired research, we propose several potential opportunities, either in improving upon current L-3, 4-dihydroxyphenylalanine-based and coacervates-enabled adhesives with new features or engineering conceptually new types of adhesives that recapitulate important characteristics of biological adhesives. We underline the importance of viewing natural adhesives as dynamic materials, which owe their outstanding performance to the cellular coordination of protein expression, delivery, deposition, assembly, and curing of corresponding components with spatiotemporal control. We envision that the emerging synthetic biology techniques will provide great opportunities for advancing both fundamental and application aspects of underwater adhesives.

  18. Evaluation of Moisture-Cure Urethane Coatings for Compliance with Industry Specifications

    DTIC Science & Technology

    2011-12-01

    Upon curing, RUST GRIP provides a protective coating of superior adhesion, flexibility, abrasion - and impact- resistance . It is resistant to most...THANE 2821 is an extremely hard abrasion resistant coating. It is ideally suited for usage such as bridges, tanks, locks and dams, marine structures...extremely hard abrasion resistant coating. It makes an excellent coating for concrete floors when used directly on concrete. CHEM-THANE 2822HS

  19. Constructing Cost-Effective Crystal Structures with Table Tennis Balls and Tape That Allows Students to Assemble and Model Multiple Unit Cells

    ERIC Educational Resources Information Center

    Elsworth, Catherine; Li, Barbara T. Y.; Ten, Abilio

    2017-01-01

    In this letter we present an innovative and cost-effective method of constructing crystal structures using Dual Lock fastening adhesive tape with table tennis (ping pong) balls. The use of these fasteners allows the balls to be easily assembled into layers to model various crystal structures and unit cells and then completely disassembled again.…

  20. High performance mode locking characteristics of single section quantum dash lasers.

    PubMed

    Rosales, Ricardo; Murdoch, S G; Watts, R T; Merghem, K; Martinez, Anthony; Lelarge, Francois; Accard, Alain; Barry, L P; Ramdane, Abderrahim

    2012-04-09

    Mode locking features of single section quantum dash based lasers are investigated. Particular interest is given to the static spectral phase profile determining the shape of the mode locked pulses. The phase profile dependence on cavity length and injection current is experimentally evaluated, demonstrating the possibility of efficiently using the wide spectral bandwidth exhibited by these quantum dash structures for the generation of high peak power sub-picosecond pulses with low radio frequency linewidths.

  1. Locking hinge

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J. (Inventor)

    1988-01-01

    The space station configuration currently studied utilizes structures which require struts to be hinged in the middle in the stowed mode and locked into place in the deployed mode. Since there are hundreds of hinges involved, it is necessary that they have simple, positive locking features with a minimum of joint looseness or slack. This invention comprises two similar housings hinged together with a spring loaded locking member which assists in making as well as breaking the lock. This invention comprises a bracket hinge and bracket members with a spring biased and movable locking member. The locking or latch member has ear parts received in locking openings where wedging surfaces on the ear parts cooperate with complimentary surfaces on the bracket members for bringing the bracket members into a tight end-to-end alignment when the bracket members are in an extended position. When the locking member is moved to an unlocking position, pivoting of the hinge about a pivot pin automatically places the locking member to retain the locking member in an unlocked position. In pivoting the hinge from an extended position to a folded position, longitudinal spring members are placed under tension over annular rollers so that the spring tension in a folded position assists in return of the hinge from a folded to an extended position. Novelty lies in the creation of a locking hinge which allows compact storage and easy assembly of structural members having a minimal number of parts.

  2. Novel INTeraction of MUC4 and galectin: potential pathobiological implications for metastasis in lethal pancreatic cancer.

    PubMed

    Senapati, Shantibhusan; Chaturvedi, Pallavi; Chaney, William G; Chakraborty, Subhankar; Gnanapragassam, Vinayaga S; Sasson, Aaron R; Batra, Surinder K

    2011-01-15

    Several studies have reported aberrant expression of MUC4 in pancreatic cancer (PC), which is associated with tumorigenicity and metastasis. Mechanisms through which MUC4 promote metastasis of PC cells to distant organs are poorly defined. Identification of MUC4-galectin-3 interaction and its effect on the adhesion of cancer cells to endothelial cells were done by immunoprecipitation and cell-cell adhesion assays, respectively. Serum galectin-3 level for normal and PC patients were evaluated through ELISA. In the present study, we have provided clinical evidence that the level of galectin-3 is significantly elevated in the sera of PC patients with metastatic disease compared with patients without metastasis (P = 0.04) and healthy controls (P = 0.00001). Importantly, for the first time, we demonstrate that MUC4 present on the surface of circulating PC cells plays a significant role in the transient and reversible attachment (docking) of circulating tumor cells to the surface of endothelial cells. Further, exogenous galectin-3 at concentrations similar to that found in the sera of PC patients interacts with MUC4 via surface glycans such as T antigens, which results in the clustering of MUC4 on the cell surface and a stronger attachment (locking) of circulating tumor cells to the endothelium. Altogether, these findings suggest that PC cell-associated MUC4 helps in the docking of tumor cells on the endothelial surface. During cancer progression, MUC4-galectin-3 interaction-mediated clustering of MUC4 may expose the surface adhesion molecules, which in turn promotes a stronger attachment (locking) of tumor cells to the endothelial surface. ©2010 AACR.

  3. Properties of pressure sensitive adhesives found in paper recycling operations

    Treesearch

    Ryan F. Verhulst; Steven J. Severtson; Jihui Guo; Carl J. Houtman

    2006-01-01

    Hot melt and water-based adhesives are very different materials with similar physical properties. Their ability to act as adhesives is due to physical bonds and mechanical interlocks which form as adhesive flows into topographical features on the substrate surface. Hot-melt adhesives are based on soft, rubbery polymers while water-based adhesives are usually acrylic...

  4. Pulse shaping in mode-locked fiber lasers by in-cavity spectral filter.

    PubMed

    Boscolo, Sonia; Finot, Christophe; Karakuzu, Huseyin; Petropoulos, Periklis

    2014-02-01

    We numerically show the possibility of pulse shaping in a passively mode-locked fiber laser by inclusion of a spectral filter into the laser cavity. Depending on the amplitude transfer function of the filter, we are able to achieve various regimes of advanced temporal waveform generation, including ones featuring bright and dark parabolic-, flat-top-, triangular- and saw-tooth-profiled pulses. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for controlling the dynamics of mode-locked fiber lasers.

  5. Self-locking degree-4 vertex origami structures

    PubMed Central

    Li, Suyi; Wang, K. W.

    2016-01-01

    A generic degree-4 vertex (4-vertex) origami possesses one continuous degree-of-freedom for rigid folding, and this folding process can be stopped when two of its facets bind together. Such facet-binding will induce self-locking so that the overall structure stays at a pre-specified configuration without additional locking elements or actuators. Self-locking offers many promising properties, such as programmable deformation ranges and piecewise stiffness jumps, that could significantly advance many adaptive structural systems. However, despite its excellent potential, the origami self-locking features have not been well studied, understood, and used. To advance the state of the art, this research conducts a comprehensive investigation on the principles of achieving and harnessing self-locking in 4-vertex origami structures. Especially, for the first time, this study expands the 4-vertex structure construction from single-component to dual-component designs and investigates their self-locking behaviours. By exploiting various tessellation designs, this research discovers that the dual-component designs offer the origami structures with extraordinary attributes that the single-component structures do not have, which include the existence of flat-folded locking planes, programmable locking points and deformability. Finally, proof-of-concept experiments investigate how self-locking can effectively induce piecewise stiffness jumps. The results of this research provide new scientific knowledge and a systematic framework for the design, analysis and utilization of self-locking origami structures for many potential engineering applications. PMID:27956889

  6. Self-locking degree-4 vertex origami structures.

    PubMed

    Fang, Hongbin; Li, Suyi; Wang, K W

    2016-11-01

    A generic degree-4 vertex (4-vertex) origami possesses one continuous degree-of-freedom for rigid folding, and this folding process can be stopped when two of its facets bind together. Such facet-binding will induce self-locking so that the overall structure stays at a pre-specified configuration without additional locking elements or actuators. Self-locking offers many promising properties, such as programmable deformation ranges and piecewise stiffness jumps, that could significantly advance many adaptive structural systems. However, despite its excellent potential, the origami self-locking features have not been well studied, understood, and used. To advance the state of the art, this research conducts a comprehensive investigation on the principles of achieving and harnessing self-locking in 4-vertex origami structures. Especially, for the first time, this study expands the 4-vertex structure construction from single-component to dual-component designs and investigates their self-locking behaviours. By exploiting various tessellation designs, this research discovers that the dual-component designs offer the origami structures with extraordinary attributes that the single-component structures do not have, which include the existence of flat-folded locking planes, programmable locking points and deformability. Finally, proof-of-concept experiments investigate how self-locking can effectively induce piecewise stiffness jumps. The results of this research provide new scientific knowledge and a systematic framework for the design, analysis and utilization of self-locking origami structures for many potential engineering applications.

  7. Biomechanics of Far Cortical Locking

    PubMed Central

    Bottlang, Michael; Feist, Florian

    2011-01-01

    The development of FCL was motivated by a conundrum: locked plating constructs provide inherently rigid stabilization, yet they should facilitate biological fixation and secondary bone healing that relies on flexible fixation to stimulate callus formation. Recent studies have confirmed that the high stiffness of standard locked plating constructs can suppress interfragmentary motion to a level that is insufficient to reliably promote secondary fracture healing by callus formation. Furthermore, rigid locking screws cause an uneven stress distribution that may lead to stress fracture at the end screw and stress shielding under the plate. This review summarizes four key features of FCL constructs that have shown to enhance fixation and fracture healing: Flexible fixation, load distribution, progressive stiffening, and parallel interfragmentary motion. Specifically, flexible fixation provided by FCL reduces the stiffness of a locked plating construct by 80–88% to actively promote callus proliferation similar to an external fixator. Load distribution is evenly shared between FCL screws to mitigate stress risers at the end screw. Progressive stiffening occurs by near cortex support of FCL screws and provides additional support under elevated loading. Finally, parallel interfragmentary motion by s-shaped flexion of FCL screws has shown to induce symmetric callus formation. In combination, these features of FCL constructs have shown to induce more callus and to yield significantly stronger and more consistent healing compared to standard locked plating constructs. As such, FCL constructs function as true internal fixators by replicating the biomechanical behavior and biological healing response of external fixators. PMID:21248556

  8. Adhesion

    MedlinePlus

    ... Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Adhesion URL of this page: //medlineplus.gov/ency/article/001493.htm Adhesion To use the sharing features on this page, please enable JavaScript. Adhesions are bands of scar-like tissue that form between two ...

  9. Dual-pulses and harmonic patterns of a square-wave soliton in passively mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Zhang, Jing; Jia, Qingsong; Jiang, Huilin

    2018-06-01

    We demonstrate a square-wave soliton pulse passively mode-locked fiber laser. The mode-locked pulses are achieved by using a nonlinear amplifying loop mirror. Single-pulse operation at a fundamental repetition rate of 3.2 MHz is obtained. The optical spectrum presents the soliton feature of several sidebands. The pulse duration expands with increasing pump power, but the amplitude hardly varies. Pulse breaking occurs and a stable dual-pulse is obtained with a fixed interval of 48 ns. Harmonic mode-locked states can be achieved when the total pump power is higher than 740 mW. The harmonic pulses can also operate in both single-pulse and dual-pulse states.

  10. Stainless hooks to bond lower lingual retainer.

    PubMed

    Durgekar, Sujala G; Nagaraj, K

    2011-01-01

    We introduced a simple and economical technique for precise placement of lower lingual retainers. Two stainless steel hooks made of 0.6mm wire are placed interdentally in the embrasure area between canine and lateral incisor bilaterally to lock the retainer wire in the correct position. Etch, rinse and dry the enamel surfaces with the retainer passively in place, then bond the retainer with light-cured adhesive. Hooks are simple to fabricate and eliminate the need for a transfer tray.

  11. 3-D foam adhesive deposition

    NASA Technical Reports Server (NTRS)

    Lemons, C. R.; Salmassy, O. K.

    1976-01-01

    Bonding method, which reduces amount and weight of adhesive, is applicable to foam-filled honeycomb constructions. Novel features of process include temperature-viscosity control and removal of excess adhesive by transfer to cellophane film.

  12. Wavelength Locking to CO2 Absorption Line-Center for 2-Micron Pulsed IPDA Lidar Application

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Petros, Mulugeta; Antill, Charles W.; Singh, Upendra N.; Yu, Jirong

    2016-01-01

    An airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This IPDA lidar system targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements. Independent wavelength control of each of the transmitted laser pulses is a key feature for the success of this instrument. The wavelength control unit provides switching, tuning and locking for each pulse in reference to a 2-micron CW (Continuous Wave) laser source locked to CO2 line-center. Targeting the CO2 R30 line center, at 2050.967 nanometers, a wavelength locking unit has been integrated using semiconductor laser diode. The CO2 center-line locking unit includes a laser diode current driver, temperature controller, center-line locking controller and CO2 absorption cell. This paper presents the CO2 center-line locking unit architecture, characterization procedure and results. Assessment of wavelength jitter on the IPDA measurement error will also be addressed by comparison to the system design.

  13. Statistical-mechanics theory of active mode locking with noise.

    PubMed

    Gordon, Ariel; Fischer, Baruch

    2004-05-01

    Actively mode-locked lasers with noise are studied employing statistical mechanics. A mapping of the system to the spherical model (related to the Ising model) of ferromagnets in one dimension that has an exact solution is established. It gives basic features, such as analytical expressions for the correlation function between modes, and the widths and shapes of the pulses [different from the Kuizenga-Siegman expression; IEEE J. Quantum Electron. QE-6, 803 (1970)] and reveals the susceptibility to noise of mode ordering compared with passive mode locking.

  14. Locking mechanism for orthopedic braces

    NASA Technical Reports Server (NTRS)

    Chao, J. I.; Epps, C. H., Jr.

    1981-01-01

    An orthopedic brace locking mechanism is described which under standing or walking conditions cannot be unlocked, however under sitting conditions the mechanism can be simply unlocked so as to permit bending of the patient's knee. Other features of the device include: (1) the mechanism is rendered operable, and inoperable, dependent upon the relative inclination of the brace with respect to the ground; (2) the mechanism is automatically locked under standing or walking conditions and is manually unlocked under sitting conditions; and (3) the mechanism is light in weight and is relatively small in size.

  15. Why Do Some Employees Fall into and Fail to Exit a Job-Lock Situation?

    PubMed Central

    Groot, Wim; Pavlova, Milena

    2013-01-01

    Previous studies have paid little attention to the employees' ability to exit a job-lock situation and factors that determine this ability. It remains unclear why some employees who experience job lock are able to exit this state while others remain in job lock. We use longitudinal data to identify employees who have fallen in the state of job lock and their subsequent behavior—exiting or remaining in job lock. By use of a first-order Markov transition models, we analyze the relevance of sociodemographic features, employment, occupational, sectoral, and contextual factors, as well as personality characteristics in explaining the transition or its absence. Overall the results show that both demographic factors and work-related aspects increase the likelihood that an employee enters the long-term job lock state (especially for older, married, full-time employed, those in a craft occupation and governmental sector, and in a region with high unemployment). Mental health problems and personality characteristics (low peak-end self-esteem and decisional procrastination) have a significant effect on the probability to stay in long-term job lock. On the contrary, having a managerial, service, or associate occupation, working in the private sector, and having promotion opportunities increase the chance of an exit from the state of job lock. PMID:23737809

  16. Lesions along the upper motor neuronal pathway with locked-in features after lightning strike and cardiac arrest: a case-review analysis.

    PubMed

    Abdulla, Susanne; Conrad, Anton; Schwemm, Karl-Peter; Stienstra, Mark P; Gorsselink, Edward L; Dengler, Reinhard; Abdulla, Walied

    2014-01-01

    This study describes a case of lesions of the upper motor neuronal pathway with locked-in features after lightning strike and cardiac arrest. A case-review analysis. In a 29-year-old male who was hit by a lightning strike during farming activities, cardiopulmonary resuscitation was provided first by co-workers and continued with success by the medical rescue service. After conducting advanced life support under monitoring and therapeutic hypothermia, quadriplegia with facial diplegia was recognized. A review was undertaken detailing the clinical course. MR imaging presented signs consistent with hypoxia-induced damage and diffusion-weighted MR images revealed pronounced damages along the upper motor neuronal pathway. A reactive electroencephalogram pattern, sustained eye movement and the patient communicating via eye-blinking were interpreted as locked-in features. Two weeks after admission the patient was transferred to a neurological rehabilitation centre for further professional care. Direct damage of the upper motor neuron pathway due to the current of the lightning should be considered, albeit the relative contribution of hypoxia-induced damage cannot be separated.

  17. Mode-locking via dissipative Faraday instability

    PubMed Central

    Tarasov, Nikita; Perego, Auro M.; Churkin, Dmitry V.; Staliunas, Kestutis; Turitsyn, Sergei K.

    2016-01-01

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin–Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system—spectrally dependent losses—achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin–Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering. PMID:27503708

  18. Mode-locking via dissipative Faraday instability.

    PubMed

    Tarasov, Nikita; Perego, Auro M; Churkin, Dmitry V; Staliunas, Kestutis; Turitsyn, Sergei K

    2016-08-09

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

  19. Common and differential electrophysiological mechanisms underlying semantic object memory retrieval probed by features presented in different stimulus types.

    PubMed

    Chiang, Hsueh-Sheng; Eroh, Justin; Spence, Jeffrey S; Motes, Michael A; Maguire, Mandy J; Krawczyk, Daniel C; Brier, Matthew R; Hart, John; Kraut, Michael A

    2016-08-01

    How the brain combines the neural representations of features that comprise an object in order to activate a coherent object memory is poorly understood, especially when the features are presented in different modalities (visual vs. auditory) and domains (verbal vs. nonverbal). We examined this question using three versions of a modified Semantic Object Retrieval Test, where object memory was probed by a feature presented as a written word, a spoken word, or a picture, followed by a second feature always presented as a visual word. Participants indicated whether each feature pair elicited retrieval of the memory of a particular object. Sixteen subjects completed one of the three versions (N=48 in total) while their EEG were recorded simultaneously. We analyzed EEG data in four separate frequency bands (delta: 1-4Hz, theta: 4-7Hz; alpha: 8-12Hz; beta: 13-19Hz) using a multivariate data-driven approach. We found that alpha power time-locked to response was modulated by both cross-modality (visual vs. auditory) and cross-domain (verbal vs. nonverbal) probing of semantic object memory. In addition, retrieval trials showed greater changes in all frequency bands compared to non-retrieval trials across all stimulus types in both response-locked and stimulus-locked analyses, suggesting dissociable neural subcomponents involved in binding object features to retrieve a memory. We conclude that these findings support both modality/domain-dependent and modality/domain-independent mechanisms during semantic object memory retrieval. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Materials Safety - Not just Flammability and Toxic Offgassing

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.

    2007-01-01

    For many years, the safety community has focused on a limited subset of materials and processes requirements as key to safety: Materials flammability, Toxic offgassing, Propellant compatibility, Oxygen compatibility, and Stress-corrosion cracking. All these items are important, but the exclusive focus on these items neglects many other items that are equally important to materials safety. Examples include (but are not limited to): 1. Materials process control -- proper qualification and execution of manufacturing processes such as structural adhesive bonding, welding, and forging are crucial to materials safety. Limitation of discussions on materials process control to an arbitrary subset of processes, known as "critical processes" is a mistake, because any process where the quality of the product cannot be verified by inspection can potentially result in unsafe hardware 2 Materials structural design allowables -- development of valid design allowables when none exist in the literature requires extensive testing of multiple lots of materials and is extremely expensive. But, without valid allowables, structural analysis cannot verify structural safety 3. Corrosion control -- All forms of corrosion, not just stress corrosion, can affect structural integrity of hardware 4. Contamination control during ground processing -- contamination control is critical to manufacturing processes such as adhesive bonding and also to elimination foreign objects and debris (FOD) that are hazardous to the crew of manned spacecraft in microgravity environments. 5. Fasteners -- Fastener design, the use of verifiable secondary locking features, and proper verification of fastener torque are essential for proper structural performance This presentation discusses some of these key factors and the importance of considering them in ensuring the safety of space hardware.

  1. Numerical simulation of passively mode-locked fiber laser based on semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Yang, Jingwen; Jia, Dongfang; Zhang, Zhongyuan; Chen, Jiong; Liu, Tonghui; Wang, Zhaoying; Yang, Tianxin

    2013-03-01

    Passively mode-locked fiber laser (MLFL) has been widely used in many applications, such as optical communication system, industrial production, information processing, laser weapons and medical equipment. And many efforts have been done for obtaining lasers with small size, simple structure and shorter pulses. In recent years, nonlinear polarization rotation (NPR) in semiconductor optical amplifier (SOA) has been studied and applied as a mode-locking mechanism. This kind of passively MLFL has faster operating speed and makes it easier to realize all-optical integration. In this paper, we had a thorough analysis of NPR effect in SOA. And we explained the principle of mode-locking by SOA and set up a numerical model for this mode-locking process. Besides we conducted a Matlab simulation of the mode-locking mechanism. We also analyzed results under different working conditions and several features of this mode-locking process are presented. Our simulation shows that: Firstly, initial pulse with the peak power exceeding certain threshold may be amplified and compressed, and stable mode-locking may be established. After about 25 round-trips, stable mode-locked pulse can be obtained which has peak power of 850mW and pulse-width of 780fs.Secondly, when the initial pulse-width is greater, narrowing process of pulse is sharper and it needs more round-trips to be stable. Lastly, the bias currents of SOA affect obviously the shape of mode-locked pulse and the mode-locked pulse with high peak power and narrow width can be obtained through adjusting reasonably the bias currents of SOA.

  2. Understanding the effects of PEMFC contamination from balance of plant assembly aids materials: In situ studies

    DOE PAGES

    Opu, Md.; Bender, G.; Macomber, Clay S.; ...

    2015-06-29

    In this study, in situ performance data were measured to assess the degree of contamination from leachates of five families of balance of plant (BOP) materials (i.e., 2-part adhesive, grease, thread lock/seal, silicone adhesive/seal and urethane adhesive/seal) broadly classified as assembly aids that may be used as adhesives and lubricants in polymer electrolyte membrane fuel cell (PEMFC) systems. Leachate solutions, derived from soaking the materials in deionized (DI) water at elevated temperature, were infused into the fuel cell to determine the effect of the leachates on fuel cell performance. During the contamination phase of the experiments, leachate solution was introducedmore » through a nebulizer into the cathode feed stream of a 50 cm 2 PEMFC operating at 0.2 A/cm 2 at 80°C and 32%RH. Voltage loss and high frequency resistance (HFR) were measured as a function of time and electrochemical surface area (ECA) before and after contamination were compared. Two procedures of recovery, one self-induced recovery with DI water and one driven recovery through cyclic voltammetry (CV) were investigated. Finally, performance results measured before and after contamination and after CV recovery are compared and discussed.« less

  3. Understanding the effects of PEMFC contamination from balance of plant assembly aids materials: In situ studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opu, Md.; Bender, G.; Macomber, Clay S.

    In this study, in situ performance data were measured to assess the degree of contamination from leachates of five families of balance of plant (BOP) materials (i.e., 2-part adhesive, grease, thread lock/seal, silicone adhesive/seal and urethane adhesive/seal) broadly classified as assembly aids that may be used as adhesives and lubricants in polymer electrolyte membrane fuel cell (PEMFC) systems. Leachate solutions, derived from soaking the materials in deionized (DI) water at elevated temperature, were infused into the fuel cell to determine the effect of the leachates on fuel cell performance. During the contamination phase of the experiments, leachate solution was introducedmore » through a nebulizer into the cathode feed stream of a 50 cm 2 PEMFC operating at 0.2 A/cm 2 at 80°C and 32%RH. Voltage loss and high frequency resistance (HFR) were measured as a function of time and electrochemical surface area (ECA) before and after contamination were compared. Two procedures of recovery, one self-induced recovery with DI water and one driven recovery through cyclic voltammetry (CV) were investigated. Finally, performance results measured before and after contamination and after CV recovery are compared and discussed.« less

  4. Prosthetic elbow joint

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce C. (Inventor)

    1994-01-01

    An artificial, manually positionable elbow joint for use in an upper extremity, above-elbow, prosthetic is described. The prosthesis provides a locking feature that is easily controlled by the wearer. The instant elbow joint is very strong and durable enough to withstand the repeated heavy loadings encountered by a wearer who works in an industrial, construction, farming, or similar environment. The elbow joint of the present invention comprises a turntable, a frame, a forearm, and a locking assembly. The frame generally includes a housing for the locking assembly and two protruding ears. The forearm includes an elongated beam having a cup-shaped cylindrical member at one end and a locking wheel having a plurality of holes along a circular arc on its other end with a central bore for pivotal attachment to the protruding ears of the frame. The locking assembly includes a collar having a central opening with a plurality of internal grooves, a plurality of internal cam members each having a chamfered surface at one end and a V-shaped slot at its other end; an elongated locking pin having a crown wheel with cam surfaces and locking lugs secured thereto; two coiled compression springs; and a flexible filament attached to one end of the elongated locking pin and extending from the locking assembly for extending and retracting the locking pin into the holes in the locking wheel to permit selective adjustment of the forearm relative to the frame. In use, the turntable is affixed to the upper arm part of the prosthetic in the conventional manner, and the cup-shaped cylindrical member on one end of the forearm is affixed to the forearm piece of the prosthetic in the conventional manner. The elbow joint is easily adjusted and locked between maximum flex and extended positions.

  5. Stud hardware with self-contained stud anti-rotation feature and method of installing studs

    DOEpatents

    Kartik, John S.; Richardson, William M.

    1986-03-04

    Disclosed herein is a method and apparatus for preventing the rotation of a stud member during preloading. The apparatus comprises a stud member having a shaft portion extending into the member to be clamped and a hex or double hex portion carrying a locking nut. Extending outward from the hex or double hex portion of the stud there is a threaded portion carrying a nut which is torqued to preload the stud. Between the locking nut and the member to be clamped is a locking ring which engages the locking nut to prevent the stud from rotating during preloading. Also disclosed is a method of preloading a stud without the use of an external restraint to prevent the stud from rotating when a torque is applied.

  6. Digital Phase-Locked Loop With Phase And Frequency Feedback

    NASA Technical Reports Server (NTRS)

    Thomas, J. Brooks

    1991-01-01

    Advanced design for digital phase-lock loop (DPLL) allows loop gains higher than those used in other designs. Divided into two major components: counterrotation processor and tracking processor. Notable features include use of both phase and rate-of-change-of-phase feedback instead of frequency feedback alone, normalized sine phase extractor, improved method for extracting measured phase, and improved method for "compressing" output rate.

  7. Virtual lock-and-key approach: the in silico revival of Fischer model by means of molecular descriptors.

    PubMed

    Lauria, Antonino; Tutone, Marco; Almerico, Anna Maria

    2011-09-01

    In the last years the application of computational methodologies in the medicinal chemistry fields has found an amazing development. All the efforts were focused on the searching of new leads featuring a close affinity on a specific biological target. Thus, different molecular modeling approaches in simulation of molecular behavior for a specific biological target were employed. In spite of the increasing reliability of computational methodologies, not always the designed lead, once synthesized and screened, are suitable for the chosen biological target. To give another chance to these compounds, this work tries to resume the old concept of Fischer lock-and-key model. The same can be done for the "re-purposing" of old drugs. In fact, it is known that drugs may have many physiological targets, therefore it may be useful to identify them. This aspect, called "polypharmacology", is known to be therapeutically essential in the different treatments. The proposed protocol, the virtual lock-and-key approach (VLKA), consists in the "virtualization" of biological targets through the respectively known inhibitors. In order to release a real lock it is necessary the key fits the pins of the lock. The molecular descriptors could be considered as pins. A tested compound can be considered a potential inhibitor of a biological target if the values of its molecular descriptors fall in the calculated range values for the set of known inhibitors. The proposed protocol permits to transform a biological target in a "lock model" starting from its known inhibitors. To release a real lock all pins must fit. In the proposed protocol, it was supposed that the higher is the number of fit pins, the higher will be the affinity to the considered biological target. Therefore, each biological target was converted in a sequence of "weighted" molecular descriptor range values (locks) by using the structural features of the known inhibitors. Each biological target lock was tested by performing a molecular descriptors "fitting" on known inhibitors not used in the model construction (keys or test set). The results showed a good predictive capability of the protocol (confidence level 80%). This method gives interesting and convenient results because of the user-defined descriptors and biological targets choice in the process of new inhibitors discovery. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  8. Adhesion of cellulose fibers in paper.

    PubMed

    Persson, Bo N J; Ganser, Christian; Schmied, Franz; Teichert, Christian; Schennach, Robert; Gilli, Eduard; Hirn, Ulrich

    2013-01-30

    The surface topography of paper fibers is studied using atomic force microscopy (AFM), and thus the surface roughness power spectrum is obtained. Using AFM we have performed indentation experiments and measured the effective elastic modulus and the penetration hardness as a function of humidity. The influence of water capillary adhesion on the fiber-fiber binding strength is studied. Cellulose fibers can absorb a significant amount of water, resulting in swelling and a strong reduction in the elastic modulus and the penetration hardness. This will lead to closer contact between the fibers during the drying process (the capillary bridges pull the fibers into closer contact without storing up a lot of elastic energy at the contacting interface). In order for the contact to remain good in the dry state, plastic flow must occur (in the wet state) so that the dry surface profiles conform to each other (forming a key-and-lock type of contact).

  9. I-domain of lymphocyte function-associated antigen-1 mediates rolling of polystyrene particles on ICAM-1 under flow.

    PubMed

    Eniola, A Omolola; Krasik, Ellen F; Smith, Lee A; Song, Gang; Hammer, Daniel A

    2005-11-01

    In their active state, beta(2)-integrins, such as LFA-1, mediate the firm arrest of leukocytes by binding intercellular adhesion molecules (ICAMs) expressed on endothelium. Although the primary function of LFA-1 is assumed to be the ability to mediate firm adhesion, recent work has shown that LFA-1 can contribute to cell tethering and rolling under hydrodynamic flow, a role previously largely attributed to the selectins. The inserted (I) domain of LFA-1 has recently been crystallized in the wild-type (wt) and locked-open conformations and has been shown to, respectively, support rolling and firm adhesion under flow when expressed in alpha(L)beta(2) heterodimers or as isolated domains on cells. Here, we report results from cell-free adhesion assays where wt I-domain-coated polystyrene particles were allowed to interact with ICAM-1-coated surfaces in shear flow. We show that wt I-domain can independently mediate the capture of particles from flow and support their rolling on ICAM-1 surfaces in a manner similar to how carbohydrate-selectin interactions mediate rolling. Adhesion is specific and blocked by appropriate antibodies. We also show that the rolling velocity of I-domain-coated particles depends on the wall shear stress in flow chamber, I-domain site density on microsphere surfaces, and ICAM-1 site density on substrate surfaces. Furthermore, we show that rolling is less sensitive to wall shear stress and ICAM-1 substrate density at high density of I-domain on the microsphere surface. Computer simulations using adhesive dynamics can recreate bead rolling dynamics and show that the mechanochemical properties of ICAM-1-I-domain interactions are similar to those of carbohydrate-selectin interactions. Understanding the biophysics of adhesion mediated by the I-domain of LFA-1 can elucidate the complex roles this integrin plays in leukocyte adhesion in inflammation.

  10. Seismotectonic segmentation along the Chilean megathrust (Invited)

    NASA Astrophysics Data System (ADS)

    Melnick, D.; Moreno, M.

    2010-12-01

    This study focuses on understanding seismotectonic segmentation of megathrusts (MT). Recent research suggests elements associated to MT segmentation include: oceanic features, such as seamounts, seismic and aseismic ridges, and fracture zones; thickness and nature of trench sediments; and upper-plate heterogeneities as changes in density, lithology, and presence of splay faults or microplates, features usually manifested in coastline morphology. The 3500-km-long Chilean MT includes all these elements with various amplitudes under fairly constant kinematics and strike. Along the Nazca-South America boundary, the dense GPS network and knowledge of MT geometry allows inverting for the degree of interplate coupling or locking rate. Here we compare locking, historical MT ruptures, and long-term structure. Along-strike changes in locking rate occur at wavelengths of ~100-500 km, and locally correlate with historical ruptures as well as with lower and/or upper plate features, but without a clear systematic pattern. The transition between the 1960 M9.5 and 2010 M8.8 earthquake segments at Arauco (38.5S) has 100 km overlap deduced from land-level changes. Coherent deformation suggest this boundary has been stationary over 4 Myr, and is associated to margin-parallel collision of a forearc microplate along a Paleozoic shear zone. Seismically-active reverse splay faults bound the Peninsula and may absorb coseismic MT slip and stall rupture propagation. To the north, rupture of the 2010 M8.8 event stopped before the prominent J.Fernandez Ridge and its boundary may be associated to the Pichilemu fault, a steep oblique structure that generated a M6.9 aftershock. The change from accretionary to erosive character across this Ridge, from variable thickness of trench sediments, is manifested in narrowing of the coupling zone northwards and a small local decrease in locking rate. This local decrease is coincident with the Maipo orocline axis and a sharp bend in the orogen, which formed at 10 Ma. A sharp decrease in locking rates appears at 32.5S, near the northern end of the 1906 M8.5 earthquake. The 1906 segment appears to be highly coupled in the pre-2010 GPS data. High locking characterizes the southern edge of the 1922 M8.5 event at the Choros Peninsulas, diffusing northward. The Mejillones Peninsula, a prominent discontinuity in the coastline that marks the transition between the 1995 M8 and 1877 M8.7 earthquakes, is associated to a regional lineament of Paleogene paleomagnetic rotation and major discontinuities in Andean structural style along the fore-, intra-, and foreland regions. Minor changes in trench sediment thickness along the erosive segment may be reflected in local variations in locking rate. Two regions with localized decrease in locking rate are spatially associated to the intersection of prominent oceanic ridges at 27.5 and 21.5S, but not to boundaries of historical earthquakes. In general terms, oceanic features seem to have minor influence on earthquake rupture, except for the southern limit of the 1960 event, but are reflected as discrete lows in locking rate. Seismotectonic segmentation along the Chile MT seems to be rather controlled by upper-plate discontinuities such as splay faults and lithological boundaries inherited from the Paleozoic pre-Andean tectonic history of the margin.

  11. Seasonal ENSO phase locking in the Kiel Climate Model: The importance of the equatorial cold sea surface temperature bias

    NASA Astrophysics Data System (ADS)

    Wengel, C.; Latif, M.; Park, W.; Harlaß, J.; Bayr, T.

    2018-02-01

    The El Niño/Southern Oscillation (ENSO) is characterized by a seasonal phase locking, with strongest eastern and central equatorial Pacific sea surface temperature (SST) anomalies during boreal winter and weakest SST anomalies during boreal spring. In this study, key feedbacks controlling seasonal ENSO phase locking in the Kiel Climate Model (KCM) are identified by employing Bjerknes index stability analysis. A large ensemble of simulations with the KCM is analyzed, where the individual runs differ in either the number of vertical atmospheric levels or coefficients used in selected atmospheric parameterizations. All integrations use the identical ocean model. The ensemble-mean features realistic seasonal ENSO phase locking. ENSO phase locking is very sensitive to changes in the mean-state realized by the modifications described above. An excessive equatorial cold tongue leads to weak phase locking by reducing the Ekman feedback and thermocline feedback in late boreal fall and early boreal winter. Seasonal ENSO phase locking also is sensitive to the shortwave feedback as part of the thermal damping in early boreal spring, which strongly depends on eastern and central equatorial Pacific SST. The results obtained from the KCM are consistent with those from models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5).

  12. A fundamental approach to adhesion: Synthesis, surface analysis, thermodynamics and mechanics

    NASA Technical Reports Server (NTRS)

    Dwight, D. W.; Wightman, J. P.

    1977-01-01

    The effects of composites as adherends was studied. Several other variables were studied by fractography: aluminum powder adhesive filler, fiber glass cloth scrim or adhesive carrier, new adhesives PPQ-413 and LARC-13, and strength-test temperature. When the new results were juxtaposed with previous work, it appeared that complex interactions between adhesive, adherend, bonding, and testing conditions govern the observed strength and fracture-surface features. The design parameters likely to have a significant effect upon strength-test results are listed.

  13. Evaluation the course of the vehicle braking process in case of hydraulic circuit malfunction

    NASA Astrophysics Data System (ADS)

    Szczypiński-Sala, W.; Lubas, J.

    2016-09-01

    In the paper, the results of the research were discussed, the aim of which was the evaluation of the vehicle braking performance efficiency and the course of this process with regard to the dysfunction which may occur in braking hydraulic circuit. As part of the research, on-road tests were conducted. During the research, the delay of the vehicle when braking was measured with the use of the set of sensors placed in the parallel and the perpendicular axis of the vehicle. All the tests were conducted on the same flat section of asphalt road with wet surface. Conditions of diminished tire-to-road adhesion were chosen in order to force the activity of anti-lock braking system. The research was conducted comparatively for the vehicle with acting anti-lock braking system and subsequently for the vehicle without the system. In both cases, there was a subsequent evaluation of the course of braking with efficient braking system and with the dysfunction of hydraulic circuit.

  14. Linking the kinematics of the interplate and the offshore morphology along the Chilean subduction margin

    NASA Astrophysics Data System (ADS)

    Urrutia, Isabel; Moreno, Marcos; Oncken, Onno

    2016-04-01

    Morphological features at subduction zones are undoubtedly influenced by the complex interplay between the subducting slab and the overriding plate. Several studies suggest that the subduction dynamics is strongly dependent on the geometry and rheology of the margin (including gravity/density anomalies, viscous mantle flow and roughness of the slab, among others). However, it is not clear how the geomorphological variation of the forearc along strike can be used as a proxy for better understanding the mechanics on the interface and seismotectonic segmentation. Here we investigate the links between the kinematics of the plate interface and the morphology of the overriding plate along the Chilean margin by combining morphometrical and statistical analysis. We constructed swath profiles subtracting the averaged topography and performed gradient analysis to characterize variations of morphological features, and we compared these results with the locking degree distribution derived from the inversion of GPS data. On the coastal area the bathymetry and topography analysis shows a planar feature, gently dipping ocean-wards and backed by a cliff, which exhibits spatial variations in its width, height and extension along-strike. This morphology suggests a quiescence process or a "stable tectonic condition", at least since the late Quaternary (over multiple seismic cycles). The results indicate that this planar feature spatially correlates with the rupture size of recent great earthquakes and locking degree areas, suggesting that earthquake cycle deformation has an imprint on the offshore morphology, which can be used to study the transfer of stresses among adjacent seismotectonic segments and the periodicity and location of large earthquakes. In addition, the longevity of this correlation between topography, earthquake rupture and geodetic locking that likely integrates over a time window of several 103 to several 105 years indicates that the instrumentally inferred locking has a long term memory across multiple seismic cycles.

  15. Tracking scanning laser ophthalmoscope (TSLO)

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Ferguson, R. Daniel; Magill, John C.; White, Michael A.; Elsner, Ann E.; Webb, Robert H.

    2003-07-01

    The effectiveness of image stabilization with a retinal tracker in a multi-function, compact scanning laser ophthalmoscope (TSLO) was demonstrated in initial human subject tests. The retinal tracking system uses a confocal reflectometer with a closed loop optical servo system to lock onto features in the fundus. The system is modular to allow configuration for many research and clinical applications, including hyperspectral imaging, multifocal electroretinography (MFERG), perimetry, quantification of macular and photo-pigmentation, imaging of neovascularization and other subretinal structures (drusen, hyper-, and hypo-pigmentation), and endogenous fluorescence imaging. Optical hardware features include dual wavelength imaging and detection, integrated monochromator, higher-order motion control, and a stimulus source. The system software consists of a real-time feedback control algorithm and a user interface. Software enhancements include automatic bias correction, asymmetric feature tracking, image averaging, automatic track re-lock, and acquisition and logging of uncompressed images and video files. Normal adult subjects were tested without mydriasis to optimize the tracking instrumentation and to characterize imaging performance. The retinal tracking system achieves a bandwidth of greater than 1 kHz, which permits tracking at rates that greatly exceed the maximum rate of motion of the human eye. The TSLO stabilized images in all test subjects during ordinary saccades up to 500 deg/sec with an inter-frame accuracy better than 0.05 deg. Feature lock was maintained for minutes despite subject eye blinking. Successful frame averaging allowed image acquisition with decreased noise in low-light applications. The retinal tracking system significantly enhances the imaging capabilities of the scanning laser ophthalmoscope.

  16. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    NASA Astrophysics Data System (ADS)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (<5 mm) synthetic vascular graft materials exhibit poor long-term patency due to thrombosis and intimal hyperplasia. Tissue engineered solutions have yielded functional vascular tissue, but some require an eight-week in vitro culture period prior to implantation—too long for immediate clinical bedside applications. Previous in vitro studies have shown that nanostructured poly(lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  17. 3D space positioning and image feature extraction for workpiece

    NASA Astrophysics Data System (ADS)

    Ye, Bing; Hu, Yi

    2008-03-01

    An optical system of 3D parameters measurement for specific area of a workpiece has been presented and discussed in this paper. A number of the CCD image sensors are employed to construct the 3D coordinate system for the measured area. The CCD image sensor of the monitoring target is used to lock the measured workpiece when it enters the field of view. The other sensors, which are placed symmetrically beam scanners, measure the appearance of the workpiece and the characteristic parameters. The paper established target image segmentation and the image feature extraction algorithm to lock the target, based on the geometric similarity of objective characteristics, rapid locking the goal can be realized. When line laser beam scan the tested workpiece, a number of images are extracted equal time interval and the overlapping images are processed to complete image reconstruction, and achieve the 3D image information. From the 3D coordinate reconstruction model, the 3D characteristic parameters of the tested workpiece are gained. The experimental results are provided in the paper.

  18. New Protein Mimetics: The Zinc Finger Motif as a Locked-In Tertiary Fold.

    PubMed

    Tuchscherer, Gabriele; Lehmann, Christian; Mathieu, Marc

    1998-11-16

    The principle of a molecular kit is used for the covalent assembly of secondary structure forming peptide blocks to predetermined packing topologies. The resulting locked-in folds (LIFs; depicted schematically) are readily accessible and bypass the intriguing folding problem of linear peptide chains. This strategy allows, for example, mimicking of the essential structural and functional features of zinc finger proteins. © 1998 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  19. Frequency locking in auditory hair cells: Distinguishing between additive and parametric forcing

    NASA Astrophysics Data System (ADS)

    Edri, Yuval; Bozovic, Dolores; Yochelis, Arik

    2016-10-01

    The auditory system displays remarkable sensitivity and frequency discrimination, attributes shown to rely on an amplification process that involves a mechanical as well as a biochemical response. Models that display proximity to an oscillatory onset (also known as Hopf bifurcation) exhibit a resonant response to distinct frequencies of incoming sound, and can explain many features of the amplification phenomenology. To understand the dynamics of this resonance, frequency locking is examined in a system near the Hopf bifurcation and subject to two types of driving forces: additive and parametric. Derivation of a universal amplitude equation that contains both forcing terms enables a study of their relative impact on the hair cell response. In the parametric case, although the resonant solutions are 1 : 1 frequency locked, they show the coexistence of solutions obeying a phase shift of π, a feature typical of the 2 : 1 resonance. Different characteristics are predicted for the transition from unlocked to locked solutions, leading to smooth or abrupt dynamics in response to different types of forcing. The theoretical framework provides a more realistic model of the auditory system, which incorporates a direct modulation of the internal control parameter by an applied drive. The results presented here can be generalized to many other media, including Faraday waves, chemical reactions, and elastically driven cardiomyocytes, which are known to exhibit resonant behavior.

  20. Carbon nanotube dry adhesives with temperature-enhanced adhesion over a large temperature range.

    PubMed

    Xu, Ming; Du, Feng; Ganguli, Sabyasachi; Roy, Ajit; Dai, Liming

    2016-11-16

    Conventional adhesives show a decrease in the adhesion force with increasing temperature due to thermally induced viscoelastic thinning and/or structural decomposition. Here, we report the counter-intuitive behaviour of carbon nanotube (CNT) dry adhesives that show a temperature-enhanced adhesion strength by over six-fold up to 143 N cm -2 (4 mm × 4 mm), among the strongest pure CNT dry adhesives, over a temperature range from -196 to 1,000 °C. This unusual adhesion behaviour leads to temperature-enhanced electrical and thermal transports, enabling the CNT dry adhesive for efficient electrical and thermal management when being used as a conductive double-sided sticky tape. With its intrinsic thermal stability, our CNT adhesive sustains many temperature transition cycles over a wide operation temperature range. We discover that a 'nano-interlock' adhesion mechanism is responsible for the adhesion behaviour, which could be applied to the development of various dry CNT adhesives with novel features.

  1. Generation and evolution of mode-locked noise-like square-wave pulses in a large-anomalous-dispersion Er-doped ring fiber laser.

    PubMed

    Liu, Jun; Chen, Yu; Tang, Pinghua; Xu, Changwen; Zhao, Chujun; Zhang, Han; Wen, Shuangchun

    2015-03-09

    In a passively mode-locked Erbium-doped fiber laser with large anomalous-dispersion, we experimentally demonstrate the formation of noise-like square-wave pulse, which shows quite different features from conventional dissipative soliton resonance (DSR). The corresponding temporal and spectral characteristics of a variety of operation states, including Q-switched mode-locking, continuous-wave mode-locking and Raman-induced noise-like pulse near the lasing threshold, are also investigated. Stable noise-like square-wave mode-locked pulses can be obtained at a fundamental repetition frequency of 195 kHz, with pulse packet duration tunable from 15 ns to 306 ns and per-pulse energy up to 200 nJ. By reducing the linear cavity loss, stable higher-order harmonic mode-locking had also been observed, with pulse duration ranging from 37 ns at the 21st order harmonic wave to 320 ns at the fundamental order. After propagating along a piece of long telecom fiber, the generated square-wave pulses do not show any obvious change, indicating that the generated noise-like square-wave pulse can be considered as high-energy pulse packet for some promising applications. These experimental results should shed some light on the further understanding of the mechanism and characteristics of noise-like square-wave pulses.

  2. Lock-in thermography, penetrant inspection, and scanning electron microscopy for quantitative evaluation of open micro-cracks at the tooth-restoration interface

    NASA Astrophysics Data System (ADS)

    Streza, M.; Hodisan, I.; Prejmerean, C.; Boue, C.; Tessier, Gilles

    2015-03-01

    The evaluation of a dental restoration in a non-invasive way is of paramount importance in clinical practice. The aim of this study was to assess the minimum detectable open crack at the cavity-restorative material interface by the lock-in thermography technique, at laser intensities which are safe for living teeth. For the analysis of the interface, 18 box-type class V standardized cavities were prepared on the facial and oral surfaces of each tooth, with coronal margins in enamel and apical margins in dentine. The preparations were restored with the Giomer Beautifil (Shofu) in combination with three different adhesive systems. Three specimens were randomly selected from each experimental group and each slice has been analysed by visible, infrared (IR), and scanning electron microscopy (SEM). Lock-in thermography showed the most promising results in detecting both marginal and internal defects. The proposed procedure leads to a diagnosis of micro-leakages having openings of 1 µm, which is close to the diffraction limit of the IR camera. Clinical use of a thermographic camera in assessing the marginal integrity of a restoration becomes possible. The method overcomes some drawbacks of standard SEM or dye penetration testing. The results support the use of an IR camera in dentistry, for the diagnosis of micro-gaps at bio-interfaces.

  3. Properties of a vector soliton laser passively mode-locked by a fiber-based semiconductor saturable absorber operating in transmission

    NASA Astrophysics Data System (ADS)

    Ouyang, Chunmei; Wang, Honghai; Shum, Ping; Fu, Songnian; Wong, Jia Haur; Wu, Kan; Lim, Desmond Rodney Chin Siong; Wong, Vincent Kwok Huei; Lee, Kenneth Eng Kian

    2011-01-01

    We experimentally demonstrate a passively mode-locked fiber laser employing a fiber-based semiconductor saturable absorber (SSA) operating in transmission. Polarization rotation locked vector solitons are observed in the laser. Due to the intrinsic dynamic feature of the laser, period-doubling of these vector solitons has also been observed. Furthermore, extra spectral sidebands are formed on the optical spectrum, caused by the energy exchange between the two orthogonal polarization components of the vector solitons. By careful reduction of the pump power together with fine adjustment to the cavity birefringence, period-one state can further be obtained. Additionally, the phase noise properties of the vector soliton fiber laser have also been characterized experimentally and analytically.

  4. Laser frequency-offset locking based on the frequency modulation spectroscopy with higher harmonic detection

    NASA Astrophysics Data System (ADS)

    Wang, Anqi; Meng, Zhixin; Feng, Yanying

    2017-10-01

    We design a fiber electro-optic modulator (FEOM)-based laser frequency-offset locking system using frequency modulation spectroscopy (FMS) with the 3F modulation. The modulation signal and the frequency-offset control signal are simultaneously loaded on the FEOM by a mixer in order to suppress the frequency and power jitter caused by internal modulation on the current or piezoelectric ceramic transducer (PZT). It is expected to accomplish a fast locking, a widely tunable frequency-offset, a sensitive and rapid detection of narrow spectral features with the 3F modulation. The laser frequency fluctuation is limited to +/-1MHz and its overlapping Allan deviation is around 10-12 in twenty minutes, which successfully meets the requirements of the cold atom interferometer.

  5. Hydrologic and land-cover features of the Caloosahatchee River Basin, Lake Okeechobee to Franklin Lock, Florida

    USGS Publications Warehouse

    LaRose, Henry R.; McPherson, Benjamin F.

    1980-01-01

    The freshwater part of the Caloosahatchee River basin, Fla., from Franklin Lock to Lake Okeechobee, is shown at a scale of 1 inch equals 1 mile on an aerial photomosaic, dated January 1979. The basin is divided into 16 subbasins, and the land cover and land use in each subbasin are given. The basin is predominantly rangeland and agricultural land. Surface-water flow in the basin is largely controlled. Some selected data on water quality are given. (USGS)

  6. Mussel-Inspired Adhesives and Coatings

    PubMed Central

    Lee, Bruce P.; Messersmith, P.B.; Israelachvili, J.N.; Waite, J.H.

    2011-01-01

    Mussels attach to solid surfaces in the sea. Their adhesion must be rapid, strong, and tough, or else they will be dislodged and dashed to pieces by the next incoming wave. Given the dearth of synthetic adhesives for wet polar surfaces, much effort has been directed to characterizing and mimicking essential features of the adhesive chemistry practiced by mussels. Studies of these organisms have uncovered important adaptive strategies that help to circumvent the high dielectric and solvation properties of water that typically frustrate adhesion. In a chemical vein, the adhesive proteins of mussels are heavily decorated with Dopa, a catecholic functionality. Various synthetic polymers have been functionalized with catechols to provide diverse adhesive, sealant, coating, and anchoring properties, particularly for critical biomedical applications. PMID:22058660

  7. Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp

    DOEpatents

    Nuzzo, Ralph G [Champaign, IL; Rogers, John A [Champaign, IL; Menard, Etienne [Urbana, IL; Lee, Keon Jae [Tokyo, JP; Khang, Dahl-Young [Urbana, IL; Sun, Yugang [Champaign, IL; Meitl, Matthew [Champaign, IL; Zhu, Zhengtao [Urbana, IL

    2011-05-17

    The present invention provides methods, systems and system components for transferring, assembling and integrating features and arrays of features having selected nanosized and/or microsized physical dimensions, shapes and spatial orientations. Methods of the present invention utilize principles of `soft adhesion` to guide the transfer, assembly and/or integration of features, such as printable semiconductor elements or other components of electronic devices. Methods of the present invention are useful for transferring features from a donor substrate to the transfer surface of an elastomeric transfer device and, optionally, from the transfer surface of an elastomeric transfer device to the receiving surface of a receiving substrate. The present methods and systems provide highly efficient, registered transfer of features and arrays of features, such as printable semiconductor element, in a concerted manner that maintains the relative spatial orientations of transferred features.

  8. Endoscopic-assisted Repair of Neglected Rupture or Rerupture After Primary Repair of Extensor Hallucis Longus Tendon.

    PubMed

    Lui, Tun Hing; Chang, Joseph Jeremy; Maffulli, Nicola

    2016-03-01

    Rerupture of the extensor hallucis longus tendon after primary repair and neglected rupture of the tendon poses surgical challenges to orthopedic surgeons. Open exploration and repair of the tendon ends usually requires large incision and extensive dissection. This may induce scarring and adhesion around the repaired tendon. Endoscopic-assisted repair has the advantage of minimally invasive surgery including less soft tissue trauma and scar formation and better cosmetic result. The use of Krackow locking suture and preservation of the extensor retinacula allow early mobilization of the great toe.

  9. Cell adhesion on nanotextured slippery superhydrophobic substrates.

    PubMed

    Di Mundo, Rosa; Nardulli, Marina; Milella, Antonella; Favia, Pietro; d'Agostino, Riccardo; Gristina, Roberto

    2011-04-19

    In this work, the response of Saos2 cells to polymeric surfaces with different roughness/density of nanometric dots produced by a tailored plasma-etching process has been studied. Topographical features have been evaluated by atomic force microscopy, while wetting behavior, in terms of water-surface adhesion energy, has been evaluated by measurements of drop sliding angle. Saos2 cytocompatibility has been investigated by scanning electron microscopy, fluorescent microscopy, and optical microscopy. The similarity in outer chemical composition has allowed isolation of the impact of the topographical features on cellular behavior. The results indicate that Saos2 cells respond differently to surfaces with different nanoscale topographical features, clearly showing a certain inhibition in cell adhesion when the nanoscale is particularly small. This effect appears to be attenuated in surfaces with relatively bigger nanofeatures, though these express a more pronounced slippery/dry wetting character. © 2011 American Chemical Society

  10. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing

    PubMed Central

    Kim, Seok; Wu, Jian; Carlson, Andrew; Jin, Sung Hun; Kovalsky, Anton; Glass, Paul; Liu, Zhuangjian; Ahmed, Numair; Elgan, Steven L.; Chen, Weiqiu; Ferreira, Placid M.; Sitti, Metin; Huang, Yonggang; Rogers, John A.

    2010-01-01

    Reversible control of adhesion is an important feature of many desired, existing, and potential systems, including climbing robots, medical tapes, and stamps for transfer printing. We present experimental and theoretical studies of pressure modulated adhesion between flat, stiff objects and elastomeric surfaces with sharp features of surface relief in optimized geometries. Here, the strength of nonspecific adhesion can be switched by more than three orders of magnitude, from strong to weak, in a reversible fashion. Implementing these concepts in advanced stamps for transfer printing enables versatile modes for deterministic assembly of solid materials in micro/nanostructured forms. Demonstrations in printed two- and three-dimensional collections of silicon platelets and membranes illustrate some capabilities. An unusual type of transistor that incorporates a printed gate electrode, an air gap dielectric, and an aligned array of single walled carbon nanotubes provides a device example. PMID:20858729

  11. Controlling direct contact force for wet adhesion with different wedged film stabilities

    NASA Astrophysics Data System (ADS)

    Li, Meng; Xie, Jun; Shi, Liping; Huang, Wei; Wang, Xiaolei

    2018-04-01

    In solid–liquid–solid adhesive systems, wedged films often feature instability at microscopic thicknesses, which can easily disrupt the adhesive strength of their remarkable direct contact force. Here, sodium dodecyl sulfate (SDS) was employed to tune the instability of adhesion in wedged glass–water–rubber films, achieving controllable direct contact. Experimental results showed that the supplement of SDS molecules significantly weakened the direct contact force for wet adhesion and eliminated it at high concentrations. The underlying reason was suggested to be the repulsive double-layer force caused by SDS molecules, which lowers the instability of the wedged film and balances the preload, disrupting the direct contact in wet adhesion.

  12. Target-locking acquisition with real-time confocal (TARC) microscopy.

    PubMed

    Lu, Peter J; Sims, Peter A; Oki, Hidekazu; Macarthur, James B; Weitz, David A

    2007-07-09

    We present a real-time target-locking confocal microscope that follows an object moving along an arbitrary path, even as it simultaneously changes its shape, size and orientation. This Target-locking Acquisition with Realtime Confocal (TARC) microscopy system integrates fast image processing and rapid image acquisition using a Nipkow spinning-disk confocal microscope. The system acquires a 3D stack of images, performs a full structural analysis to locate a feature of interest, moves the sample in response, and then collects the next 3D image stack. In this way, data collection is dynamically adjusted to keep a moving object centered in the field of view. We demonstrate the system's capabilities by target-locking freely-diffusing clusters of attractive colloidal particles, and activelytransported quantum dots (QDs) endocytosed into live cells free to move in three dimensions, for several hours. During this time, both the colloidal clusters and live cells move distances several times the length of the imaging volume.

  13. Mode-locking evolution in ring fiber lasers with tunable repetition rate.

    PubMed

    Korobko, D A; Fotiadi, A A; Zolotovskii, I O

    2017-09-04

    We have applied a simple approach to analyze behavior of the harmonically mode-locked fiber laser incorporating an adjustable Mach-Zehnder interferometer (MZI). Our model is able to describe key features of the laser outputs and explore limitations of physical mechanisms responsible for laser operation at different pulse repetition rates tuned over a whole GHz range. At low repetition rates the laser operates as a harmonically mode-locked soliton laser triggered by a fast saturable absorber. At high repetition rates the laser mode-locking occurs due to dissipative four-wave mixing seeded by MZI and gain spectrum filtering. However, the laser stability in this regime is rather low due to poor mode selectivity provided by MZI that is able to support the desired laser operation just near the lasing threshold. The use of a double MZI instead of a single MZI could improve the laser stability and extends the range of the laser tunability. The model predicts a gap between two repetitive rate ranges where pulse train generation is not supported.

  14. Storing your medicines

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000534.htm Storing your medicines To use the sharing features on this page, ... child latch or lock. Do not use Damaged Medicine Damaged medicine may make you sick. DO NOT ...

  15. Non-Cell-Adhesive Substrates for Printing of Arrayed Biomaterials

    PubMed Central

    Appel, Eric A.; Larson, Benjamin L.; Luly, Kathryn M.; Kim, Jinseong D.

    2015-01-01

    Cellular microarrays have become extremely useful in expediting the investigation of large libraries of (bio)materials for both in vitro and in vivo biomedical applications. We have developed an exceedingly simple strategy for the fabrication of non-cell-adhesive substrates supporting the immobilization of diverse (bio)material features, including both monomeric and polymeric adhesion molecules (e.g. RGD and polylysine), hydrogels, and polymers. PMID:25430948

  16. The rapid formation of Sputnik Planitia early in Pluto's history.

    PubMed

    Hamilton, Douglas P; Stern, S A; Moore, J M; Young, L A

    2016-11-30

    Pluto's Sputnik Planitia is a bright, roughly circular feature that resembles a polar ice cap. It is approximately 1,000 kilometres across and is centred on a latitude of 25 degrees north and a longitude of 175 degrees, almost directly opposite the side of Pluto that always faces Charon as a result of tidal locking. One explanation for its location includes the formation of a basin in a giant impact, with subsequent upwelling of a dense interior ocean. Once the basin was established, ice would naturally have accumulated there. Then, provided that the basin was a positive gravity anomaly (with or without the ocean), true polar wander could have moved the feature towards the Pluto-Charon tidal axis, on the far side of Pluto from Charon. Here we report modelling that shows that ice quickly accumulates on Pluto near latitudes of 30 degrees north and south, even in the absence of a basin, because, averaged over its orbital period, those are Pluto's coldest regions. Within a million years of Charon's formation, ice deposits on Pluto concentrate into a single cap centred near a latitude of 30 degrees, owing to the runaway albedo effect. This accumulation of ice causes a positive gravity signature that locks, as Pluto's rotation slows, to a longitude directly opposite Charon. Once locked, Charon raises a permanent tidal bulge on Pluto, which greatly enhances the gravity signature of the ice cap. Meanwhile, the weight of the ice in Sputnik Planitia causes the crust under it to slump, creating its own basin (as has happened on Earth in Greenland). Even if the feature is now a modest negative gravity anomaly, it remains locked in place because of the permanent tidal bulge raised by Charon. Any movement of the feature away from 30 degrees latitude is countered by the preferential recondensation of ices near the coldest extremities of the cap. Therefore, our modelling suggests that Sputnik Planitia formed shortly after Charon did and has been stable, albeit gradually losing volume, over the age of the Solar System.

  17. The rapid formation of Sputnik Planitia early in Pluto's history

    NASA Astrophysics Data System (ADS)

    Hamilton, Douglas P.; Stern, S. A.; Moore, J. M.; Young, L. A.; Binzel, R. P.; Buie, M. W.; Buratti, B. J.; Cheng, A. F.; Ennico, K.; Grundy, W. M.; Linscott, I. R.; McKinnon, W. B.; Olkin, C. B.; Reitsema, H. J.; Reuter, D. C.; Schenk, P.; Showalter, M. R.; Spencer, J. R.; Tyler, G. L.; Weaver, H. A.

    2016-12-01

    Pluto's Sputnik Planitia is a bright, roughly circular feature that resembles a polar ice cap. It is approximately 1,000 kilometres across and is centred on a latitude of 25 degrees north and a longitude of 175 degrees, almost directly opposite the side of Pluto that always faces Charon as a result of tidal locking. One explanation for its location includes the formation of a basin in a giant impact, with subsequent upwelling of a dense interior ocean. Once the basin was established, ice would naturally have accumulated there. Then, provided that the basin was a positive gravity anomaly (with or without the ocean), true polar wander could have moved the feature towards the Pluto-Charon tidal axis, on the far side of Pluto from Charon. Here we report modelling that shows that ice quickly accumulates on Pluto near latitudes of 30 degrees north and south, even in the absence of a basin, because, averaged over its orbital period, those are Pluto's coldest regions. Within a million years of Charon's formation, ice deposits on Pluto concentrate into a single cap centred near a latitude of 30 degrees, owing to the runaway albedo effect. This accumulation of ice causes a positive gravity signature that locks, as Pluto's rotation slows, to a longitude directly opposite Charon. Once locked, Charon raises a permanent tidal bulge on Pluto, which greatly enhances the gravity signature of the ice cap. Meanwhile, the weight of the ice in Sputnik Planitia causes the crust under it to slump, creating its own basin (as has happened on Earth in Greenland). Even if the feature is now a modest negative gravity anomaly, it remains locked in place because of the permanent tidal bulge raised by Charon. Any movement of the feature away from 30 degrees latitude is countered by the preferential recondensation of ices near the coldest extremities of the cap. Therefore, our modelling suggests that Sputnik Planitia formed shortly after Charon did and has been stable, albeit gradually losing volume, over the age of the Solar System.

  18. A Comparative Analysis of Master Casts Obtained using Different Surface Treatments on Impression Copings for Single Tooth Implant Replacement -An In vitro Study.

    PubMed

    Abrol, Surbhi; Nagpal, Archana; Kaur, Rupandeep; Verma, Ramit; Katna, Vishal; Gupt, Parikshit

    2017-08-01

    Minor rotation of impression coping secured in the impression is an avoidable error that needs to be minimized to ensure precise positioning of implant analog in master cast. The aim of the study was to compare the precision in obtaining master casts by improving the stability of impression copings in the impression with the use of tray adhesive along various surface treatments to increase surface area and by mechanical locking. A total of 60 samples were made (15 samples for each group). A total of 15 samples for Group I were prepared with untreated impression copings, 15 samples for Group II with impression copings treated and modified by application of tray adhesive only. Group III includes 15 samples which were fabricated with impression copings modified by making four vertical grooves on surface of impression coping and coated with adhesive. Group IV had 15 samples which were fabricated with impression copings sandblasted with 50 μm aluminum oxide powder and coated with adhesive. Profile projector was used to evaluate the rotational accuracy of the implant analogs by comparing Molar Implant Angle (MIA) and Premolar Implant Angle (PIA) of test samples with reference model. One-way ANOVA and Student t-test were used to analyze the data. One-way ANOVA didn't show any significant differences for both MIA and PIA between the Groups I, II, III and IV. Student's unpaired t-test revealed no significant difference in the mean MIA and mean PIA. Conclusion: Though results were statistically non-significant, all types of surface treatments of the impression copings showed more accurate transfer than those with no treatment. Sandblasted and adhesive coated impression copings showed minimum amount of rotation followed by those with vertical slots and adhesive coated impression copings.

  19. Isolation and biochemical characterization of underwater adhesives from diatoms.

    PubMed

    Poulsen, Nicole; Kröger, Nils; Harrington, Matthew J; Brunner, Eike; Paasch, Silvia; Buhmann, Matthias T

    2014-01-01

    Many aquatic organisms are able to colonize surfaces through the secretion of underwater adhesives. Diatoms are unicellular algae that have the capability to colonize any natural and man-made submerged surfaces. There is great technological interest in both mimicking and preventing diatom adhesion, yet the biomolecules responsible have so far remained unidentified. A new method for the isolation of diatom adhesive material is described and its amino acid and carbohydrate composition determined. The adhesive materials from two model diatoms show differences in their amino acid and carbohydrate compositions, but also share characteristic features including a high content of uronic acids, the predominance of hydrophilic amino acid residues, and the presence of 3,4-dihydroxyproline, an extremely rare amino acid. Proteins containing dihydroxyphenylalanine, which mediate underwater adhesion of mussels, are absent. The data on the composition of diatom adhesives are consistent with an adhesion mechanism based on complex coacervation of polyelectrolyte-like biomolecules.

  20. Cellular events in adhesion formation due to thermal trauma.

    PubMed

    Kaplun, A; Aronson, M; Halperin, B; Griffel, B

    1984-01-01

    Consequent to thermal traumatization of the intestinal wall of the mouse, histopathological events ensue which lead to peritoneal adhesion formation. In the first 48 h, the main pathological findings are of a necrotic and inflammatory nature, but subsequently fibroplasia is the main feature, as evidenced by the appearance of spindle-shaped cells followed by fibroblasts. Factors essential for and contributing to the formation of adhesions are described.

  1. [The application of universal adhesives in dental bonding].

    PubMed

    Guo, Jingmei; Lei, Wenlong; Yang, Hongye; Huang, Cui

    2016-03-01

    The bonding restoration has become an important clinical technique for the development of dental bonding technology. Because of its easy operation and the maximum preservation of tooth tissues, bonding repair is widely used in dental restoration. The recent multi-mode universal adhesives have brought new progress in dental bonding restoration. In this article the universal adhesives were reviewed according to its definition, development, improvement, application features and possible problems.

  2. Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation.

    PubMed

    Smirnov, Sergey; Kobtsev, Sergey; Kukarin, Sergey; Ivanenko, Aleksey

    2012-11-19

    We show experimentally and numerically new transient lasing regime between stable single-pulse generation and noise-like generation. We characterize qualitatively all three regimes of single pulse generation per round-trip of all-normal-dispersion fiber lasers mode-locked due to effect of nonlinear polarization evolution. We study spectral and temporal features of pulses produced in all three regimes as well as compressibility of such pulses. Simple criteria are proposed to identify lasing regime in experiment.

  3. Method and apparatus for close packing of nuclear fuel assemblies

    DOEpatents

    Newman, Darrell F.

    1993-01-01

    The apparatus of the present invention is a plate of neutron absorbing material. The plate may have a releasable locking feature permitting the plate to be secured within a nuclear fuel assembly between nuclear fuel rods during storage or transportation then removed for further use or destruction. The method of the present invention has the step of placing a plate of neutron absorbing material between nuclear fuel rods within a nuclear fuel assembly, preferably between the two outermost columns of nuclear fuel rods. Additionally, the plate may be releasably locked in place.

  4. Method and apparatus for close packing of nuclear fuel assemblies

    DOEpatents

    Newman, D.F.

    1993-03-30

    The apparatus of the present invention is a plate of neutron absorbing material. The plate may have a releasable locking feature permitting the plate to be secured within a nuclear fuel assembly between nuclear fuel rods during storage or transportation then removed for further use or destruction. The method of the present invention has the step of placing a plate of neutron absorbing material between nuclear fuel rods within a nuclear fuel assembly, preferably between the two outermost columns of nuclear fuel rods. Additionally, the plate may be releasably locked in place.

  5. Prevention of adhesion bands by ibuprofen-loaded PLGA nanofibers.

    PubMed

    Jamshidi-Adegani, Fatemeh; Seyedjafari, Ehsan; Gheibi, Nematollah; Soleimani, Masoud; Sahmani, Mehdi

    2016-07-08

    In this study, prevention of the adhesion bands and inflammatory features has been investigated using poly (lactic-co-glycolic acid)-ibuprofen (PLGA-IB) nanofibrous meshes in a mice model. To find the optimized membrane for prevention of postoperative adhesion bands, we have compared PLGA-IB group with PLGA, IB, and control groups in a mice adhesion model. Two scoring adhesion systems were used to represent the outcome. According to the results obtained in this study, the PLGA-IB nanofiber membrane showed a greater reduction in adhesion band than other groups. In conclusion, among FDA-approved polymers and drugs, PLGA-IB meshes could be applicable as a potential candidate for prevention of postoperative abdominal inflammation and adhesion bands formation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:990-997, 2016. © 2016 American Institute of Chemical Engineers.

  6. Visual Feature Integration Indicated by pHase-Locked Frontal-Parietal EEG Signals

    PubMed Central

    Phillips, Steven; Takeda, Yuji; Singh, Archana

    2012-01-01

    The capacity to integrate multiple sources of information is a prerequisite for complex cognitive ability, such as finding a target uniquely identifiable by the conjunction of two or more features. Recent studies identified greater frontal-parietal synchrony during conjunctive than non-conjunctive (feature) search. Whether this difference also reflects greater information integration, rather than just differences in cognitive strategy (e.g., top-down versus bottom-up control of attention), or task difficulty is uncertain. Here, we examine the first possibility by parametrically varying the number of integrated sources from one to three and measuring phase-locking values (PLV) of frontal-parietal EEG electrode signals, as indicators of synchrony. Linear regressions, under hierarchical false-discovery rate control, indicated significant positive slopes for number of sources on PLV in the 30–38 Hz, 175–250 ms post-stimulus frequency-time band for pairs in the sagittal plane (i.e., F3-P3, Fz-Pz, F4-P4), after equating conditions for behavioural performance (to exclude effects due to task difficulty). No such effects were observed for pairs in the transverse plane (i.e., F3-F4, C3-C4, P3-P4). These results provide support for the idea that anterior-posterior phase-locking in the lower gamma-band mediates integration of visual information. They also provide a potential window into cognitive development, seen as developing the capacity to integrate more sources of information. PMID:22427847

  7. Visual feature integration indicated by pHase-locked frontal-parietal EEG signals.

    PubMed

    Phillips, Steven; Takeda, Yuji; Singh, Archana

    2012-01-01

    The capacity to integrate multiple sources of information is a prerequisite for complex cognitive ability, such as finding a target uniquely identifiable by the conjunction of two or more features. Recent studies identified greater frontal-parietal synchrony during conjunctive than non-conjunctive (feature) search. Whether this difference also reflects greater information integration, rather than just differences in cognitive strategy (e.g., top-down versus bottom-up control of attention), or task difficulty is uncertain. Here, we examine the first possibility by parametrically varying the number of integrated sources from one to three and measuring phase-locking values (PLV) of frontal-parietal EEG electrode signals, as indicators of synchrony. Linear regressions, under hierarchical false-discovery rate control, indicated significant positive slopes for number of sources on PLV in the 30-38 Hz, 175-250 ms post-stimulus frequency-time band for pairs in the sagittal plane (i.e., F3-P3, Fz-Pz, F4-P4), after equating conditions for behavioural performance (to exclude effects due to task difficulty). No such effects were observed for pairs in the transverse plane (i.e., F3-F4, C3-C4, P3-P4). These results provide support for the idea that anterior-posterior phase-locking in the lower gamma-band mediates integration of visual information. They also provide a potential window into cognitive development, seen as developing the capacity to integrate more sources of information.

  8. The design of superhydrophobic stainless steel surfaces by controlling nanostructures: A key parameter to reduce the implantation of pathogenic bacteria.

    PubMed

    Bruzaud, Jérôme; Tarrade, Jeanne; Celia, Elena; Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Guittard, Frédéric; Herry, Jean-Marie; Guilbaud, Morgan; Bellon-Fontaine, Marie-Noëlle

    2017-04-01

    Reducing bacterial adhesion on substrates is fundamental for various industries. In this work, new superhydrophobic surfaces are created by electrodeposition of hydrophobic polymers (PEDOT-F 4 or PEDOT-H 8 ) on stainless steel with controlled topographical features, especially at a nano-scale. Results show that anti-bioadhesive and anti-biofilm properties require the control of the surface topographical features, and should be associated with a low adhesion of water onto the surface (Cassie-Baxter state) with limited crevice features at the scale of bacterial cells (nano-scale structures). Copyright © 2016. Published by Elsevier B.V.

  9. Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells

    PubMed Central

    Karuri, Nancy W.; Liliensiek, Sara; Teixeira, Ana I.; Abrams, George; Campbell, Sean; Nealey, Paul F.; Murphy, Christopher J.

    2006-01-01

    Summary The basement membrane possesses a rich 3-dimensional nanoscale topography that provides a physical stimulus, which may modulate cell-substratum adhesion. We have investigated the strength of cell-substratum adhesion on nanoscale topographic features of a similar scale to that of the native basement membrane. SV40 human corneal epithelial cells were challenged by well-defined fluid shear, and cell detachment was monitored. We created silicon substrata with uniform grooves and ridges having pitch dimensions of 400-4000 nm using X-ray lithography. F-actin labeling of cells that had been incubated for 24 hours revealed that the percentage of aligned and elongated cells on the patterned surfaces was the same regardless of pitch dimension. In contrast, at the highest fluid shear, a biphasic trend in cell adhesion was observed with cells being most adherent to the smaller features. The 400 nm pitch had the highest percentage of adherent cells at the end of the adhesion assay. The effect of substratum topography was lost for the largest features evaluated, the 4000 nm pitch. Qualitative and quantitative analyses of the cells during and after flow indicated that the aligned and elongated cells on the 400 nm pitch were more tightly adhered compared to aligned cells on the larger patterns. Selected experiments with primary cultured human corneal epithelial cells produced similar results to the SV40 human corneal epithelial cells. These findings have relevance to interpretation of cell-biomaterial interactions in tissue engineering and prosthetic design. PMID:15226393

  10. Minocycline Inhibits Candida albicans Budded-to-Hyphal-Form Transition and Biofilm Formation.

    PubMed

    Kurakado, Sanae; Takatori, Kazuhiko; Sugita, Takashi

    2017-09-25

    Candida albicans frequently causes bloodstream infections; its budded-to-hyphalform transition (BHT) and biofilm formation are major contributors to virulence. During an analysis of antibacterial compounds that inhibit C. albicans BHT, we found that the tetracycline derivative minocycline inhibited BHT and subsequent biofilm formation. Minocycline decreased expression of hypha-specific genes HWP1 and ECE1, and adhesion factor gene ALS3 of C. albicans. In addition, minocycline decreased cell surface hydrophobicity and the extracellular β-glucan level in biofilms. Minocycline has been widely used for catheter antibiotic lock therapy to prevent bacterial infection; this compound may also be prophylactically effective against Candida infection.

  11. Circulating vascular cell adhesion molecule-1 in pre-eclampsia, gestational hypertension, and normal pregnancy: evidence of selective dysregulation of vascular cell adhesion molecule-1 homeostasis in pre-eclampsia.

    PubMed

    Higgins, J R; Papayianni, A; Brady, H R; Darling, M R; Walshe, J J

    1998-08-01

    Our purpose was to investigate circulating levels of vascular cell adhesion molecule-1 in the peripheral and uteroplacental circulations during normotensive and hypertensive pregnancies. This prospective observational study involved 2 patient groups. Group 1 consisted of 22 women with pre-eclampsia and 30 normotensive women followed up longitudinally through pregnancy and post partum. There were an additional 13 women with established gestational hypertension. Group 2 consisted of 20 women with established pre-eclampsia and 19 normotensive control subjects undergoing cesarean delivery. Plasma levels of vascular cell adhesion molecule-1 were measured in blood drawn from the antecubital vein (group 1) and from both the antecubital and uterine veins (group 2). Data were analyzed by analysis of variance. In group 1 vascular cell adhesion molecule-1 levels did not change significantly throughout normal pregnancy and post partum. Women with established pre-eclampsia had increased vascular cell adhesion molecule-1 levels compared with the normotensive pregnancy group (P = .01). Vascular cell adhesion molecule-1 levels were not elevated in women with established gestational hypertension. In group 2 significantly higher levels of vascular cell adhesion molecule-1 were detected in the uteroplacental (P < .0001) and peripheral (P < .0001) circulations of pre-eclamptic women by comparison with normotensive women. In the pre-eclamptic group there was a tendency toward higher vascular cell adhesion molecule-1 levels in the peripheral circulation than in the uteroplacental circulation (P = .06). In contrast to vascular cell adhesion molecule-1, circulating levels of E-selectin and intercellular adhesion molecule-1, other major leukocyte adhesion molecules expressed by the endothelium, were not different in pre-eclamptic and normotensive pregnancies. Established pre-eclampsia is characterized by selective dysregulation of vascular cell adhesion molecule-1 homeostasis. This event is not an early preclinical feature of pre-eclampsia, does not persist post partum, is not a feature of nonproteinuric gestational hypertension, and is not observed with other major leukocyte adhesion molecules. Induction of vascular cell adhesion molecule-1 expression in pre-eclampsia may contribute to leukocyte-mediated tissue injury in this condition or may reflect perturbation of other, previously unrecognized, functions of this molecule in pregnancy.

  12. Compact silicon photonics-based multi laser module for sensing

    NASA Astrophysics Data System (ADS)

    Ayotte, S.; Costin, F.; Babin, A.; Paré-Olivier, G.; Morin, M.; Filion, B.; Bédard, K.; Chrétien, P.; Bilodeau, G.; Girard-Deschênes, E.; Perron, L.-P.; Davidson, C.-A.; D'Amato, D.; Laplante, M.; Blanchet-Létourneau, J.

    2018-02-01

    A compact three-laser source for optical sensing is presented. It is based on a low-noise implementation of the Pound Drever-Hall method and comprises high-bandwidth optical phase-locked loops. The outputs from three semiconductor distributed feedback lasers, mounted on thermo-electric coolers (TEC), are coupled with micro-lenses into a silicon photonics (SiP) chip that performs beat note detection and several other functions. The chip comprises phase modulators, variable optical attenuators, multi-mode-interference couplers, variable ratio tap couplers, integrated photodiodes and optical fiber butt-couplers. Electrical connections between a metallized ceramic and the TECs, lasers and SiP chip are achieved by wirebonds. All these components stand within a 35 mm by 35 mm package which is interfaced with 90 electrical pins and two fiber pigtails. One pigtail carries the signals from a master and slave lasers, while another carries that from a second slave laser. The pins are soldered to a printed circuit board featuring a micro-processor that controls and monitors the system to ensure stable operation over fluctuating environmental conditions. This highly adaptable multi-laser source can address various sensing applications requiring the tracking of up to three narrow spectral features with a high bandwidth. It is used to sense a fiber-based ring resonator emulating a resonant fiber optics gyroscope. The master laser is locked to the resonator with a loop bandwidth greater than 1 MHz. The slave lasers are offset frequency locked to the master laser with loop bandwidths greater than 100 MHz. This high performance source is compact, automated, robust, and remains locked for days.

  13. Monitoring bank erosion at the Locke Island Archaeological National Register District: Summary of 1996/1997 field activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickens, P.R.; Bjornstad, B.N.; Nickens, P.R.

    1998-08-01

    Locke Island is located in the Columbia River in south-central Washington. The US Department of Energy (DOE) owns Locke Island as part of its Hanford Site. In the 1960s and 1970s, as a result of intensive irrigation developments on the inland shoreline to the east of the island, the White Bluffs, which form the eastern boundary of the Columbia River channel in this area, began to show geological failures as excess irrigation water seeped out along the bluffs. One of the largest such failures, known as the Locke Island Landslide, is located just east of Locke Island. By the earlymore » 1980s, this landslide mass had moved westward into the river channel toward the island and was diverting the current at the island`s eastern perimeter. Erosion of the bank in the center of the island accelerated, threatening the cultural resources. By the early 1990s, the erosion had exposed cultural features and artifacts along the bank, leading to the beginning of intermittent monitoring of the cutbank. In 1994, DOE initiated more scheduled, systematic monitoring of island erosion to better understand the physical processes involved as well as mitigate ongoing loss of the archaeological record.« less

  14. Frontal-parietal synchrony in elderly EEG for visual search.

    PubMed

    Phillips, Steven; Takeda, Yuji

    2010-01-01

    Aging involves selective changes in attentional control. However, its precise effect on visual attention is difficult to discern from behavioural studies alone. In this paper, we employ a recently developed phase-locking measure of synchrony as an indicator of top-down/bottom-up control of attention to assess attentional control in the elderly. Fourteen participants (63-74 years) searched for a target item (coloured, oriented rectangular bar) among a display set of distractors. For the feature search condition, where none of the distractors shared a feature with the target, search time did not increase with display set size (two, or four items). For the conjunctive search condition, where each distractor shared either a colour or orientation feature with the target, search time increased with display size. Phase-locking analysis revealed a significant increase in high gamma-band (36-56 Hz) synchrony indicating greater bottom-up control for feature than conjunctive search. In view of our earlier study on younger (21-32 years) adults (Phillips and Takeda, 2009), these results suggest that older participants are more likely to use bottom-up control of attention, possibly triggered by their greater susceptibility to attentional capture, than younger participants. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  15. Engineering nanoscale surface features to sustain microparticle rolling in flow.

    PubMed

    Kalasin, Surachate; Santore, Maria M

    2015-05-26

    Nanoscopic features of channel walls are often engineered to facilitate microfluidic transport, for instance when surface charge enables electro-osmosis or when grooves drive mixing. The dynamic or rolling adhesion of flowing microparticles on a channel wall holds potential to accomplish particle sorting or to selectively transfer reactive species or signals between the wall and flowing particles. Inspired by cell rolling under the direction of adhesion molecules called selectins, we present an engineered platform in which the rolling of flowing microparticles is sustained through the incorporation of entirely synthetic, discrete, nanoscale, attractive features into the nonadhesive (electrostatically repulsive) surface of a flow channel. Focusing on one example or type of nanoscale feature and probing the impact of broad systematic variations in surface feature loading and processing parameters, this study demonstrates how relatively flat, weakly adhesive nanoscale features, positioned with average spacings on the order of tens of nanometers, can produce sustained microparticle rolling. We further demonstrate how the rolling velocity and travel distance depend on flow and surface design. We identify classes of related surfaces that fail to support rolling and present a state space that identifies combinations of surface and processing variables corresponding to transitions between rolling, free particle motion, and arrest. Finally we identify combinations of parameters (surface length scales, particle size, flow rates) where particles can be manipulated with size-selectivity.

  16. Force-Induced Strengthening of the Interaction between Staphylococcus aureus Clumping Factor B and Loricrin

    PubMed Central

    Vitry, Pauline; Valotteau, Claire; Feuillie, Cécile; Bernard, Simon

    2017-01-01

    ABSTRACT Bacterial pathogens that colonize host surfaces are subjected to physical stresses such as fluid flow and cell surface contacts. How bacteria respond to such mechanical cues is an important yet poorly understood issue. Staphylococcus aureus uses a repertoire of surface proteins to resist shear stress during the colonization of host tissues, but whether their adhesive functions can be modulated by physical forces is not known. Here, we show that the interaction of S. aureus clumping factor B (ClfB) with the squamous epithelial cell envelope protein loricrin is enhanced by mechanical force. We find that ClfB mediates S. aureus adhesion to loricrin through weak and strong molecular interactions both in a laboratory strain and in a clinical isolate. Strong forces (~1,500 pN), among the strongest measured for a receptor-ligand bond, are consistent with a high-affinity “dock, lock, and latch” binding mechanism involving dynamic conformational changes in the adhesin. Notably, we demonstrate that the strength of the ClfB-loricrin bond increases as mechanical force is applied. These findings favor a two-state model whereby bacterial adhesion to loricrin is enhanced through force-induced conformational changes in the ClfB molecule, from a weakly binding folded state to a strongly binding extended state. This force-sensitive mechanism may provide S. aureus with a means to finely tune its adhesive properties during the colonization of host surfaces, helping cells to attach firmly under high shear stress and to detach and spread under low shear stress. PMID:29208742

  17. Mounting ground sections of teeth: Cyanoacrylate adhesive versus Canada balsam.

    PubMed

    Vangala, Manogna Rl; Rudraraju, Amrutha; Subramanyam, R V

    2016-01-01

    Hard tissues can be studied by either decalcification or by preparing ground sections. Various mounting media have been tried and used for ground sections of teeth. However, there are very few studies on the use of cyanoacrylate adhesive as a mounting medium. The aim of our study was to evaluate the efficacy of cyanoacrylate adhesive (Fevikwik™) as a mounting medium for ground sections of teeth and to compare these ground sections with those mounted with Canada balsam. Ground sections were prepared from twenty extracted teeth. Each section was divided into two halves and mounted on one slide, one with cyanoacrylate adhesive (Fevikwik™) and the other with Canada balsam. Scoring for various features in the ground sections was done by two independent observers. Statistical analysis using Student's t-test (unpaired) of average scores was performed for each feature observed. No statistically significant difference was found between the two for most of the features. However, cyanoacrylate was found to be better than Canada balsam for observing striae of Retzius (P < 0.0205), enamel lamellae (P < 0.036), dentinal tubules (P < 0.0057), interglobular dentin (P < 0.0001), sclerotic dentin - transmitted light (P < 0.00001), sclerotic dentin - polarized light (P < 0.0002) and Sharpey's fibers (P < 0.0004). This initial study shows that cyanoacrylate is better than Canada balsam for observing certain features of ground sections of teeth. However, it remains to be seen whether it will be useful for studying undecalcified sections of carious teeth and for soft tissue sections.

  18. Echinoderm adhesive secretions: from experimental characterization to biotechnological applications.

    PubMed

    Flammang, P; Santos, R; Haesaerts, D

    2005-01-01

    Adhesion is a way of life in echinoderms. Indeed, all the species belonging to this phylum use adhesive secretions extensively for various vital functions. According to the species or to the developmental stage considered, different adhesive systems may be recognized. (1) The tube feet or podia are organs involved in attachment to the substratum, locomotion, feeding or burrowing. Their temporary adhesion relies on a duo-gland adhesive system resorting to both adhesive and de-adhesive secretions. (2) The larval adhesive organs allow temporary attachment of larvae during settlement and strong fixation during metamorphosis. (3) The Cuvierian tubules are sticky defence organs occurring in some holothuroid species. Their efficacy is based on the instantaneous release of a quick-setting adhesive. All these systems rely on different types of adhesion and therefore differ in the way they operate, in their structure and in the composition of their adhesive. In addition to fundamental interests in echinoderm bioadhesives, a substantial impetus behind understanding these adhesives are the potential technological applications that can be derived from their knowledge. These applications cover two broad fields of applied research: design of water-resistant adhesives and development of new antifouling strategies. In this context, echinoderm adhesives could offer novel features or performance characteristics for biotechnological applications. For example, the rapidly attaching adhesive of Cuvierian tubules, the releasable adhesive of tube feet or the powerful adhesive of asteroid larvae could each be useful to address particular bioadhesion problems.

  19. Ultrastructural observation of the acid-base resistant zone of all-in-one adhesives using three different acid-base challenges.

    PubMed

    Tsujimoto, Miho; Nikaido, Toru; Inoue, Go; Sadr, Alireza; Tagami, Junji

    2010-11-01

    The aim of this study was to analyze the ultrastructure of the dentin-adhesive interface using two all-in-one adhesive systems (Clearfil Tri-S Bond, TB; Tokuyama Bond Force, BF) after different acid-base challenges. Three solutions were used as acidic solutions for the acid-base challenges: a demineralizing solution (DS), a phosphoric acid solution (PA), and a hydrochloric acid solution (HCl). After the acid-base challenges, the bonded interfaces were examined by scanning electron microscopy. Thickness of the acid-base resistant zone (ABRZ) created in PA and HCl was thinner than in DS for both adhesive systems. For BF adhesive, an eroded area was observed beneath the ABRZ after immersion in PA and HCl, but not in DS. Conversely for TB adhesive, the eroded area was observed only after immersion in PA. In conclusion, although the ABRZ was observed for both all-in-one adhesive systems, its morphological features were influenced by the ingredients of both the adhesive material and acidic solution.

  20. Spectral dynamics of square pulses in passively mode-locked fiber lasers

    NASA Astrophysics Data System (ADS)

    Semaan, Georges; Komarov, Andrey; Niang, Alioune; Salhi, Mohamed; Sanchez, François

    2018-02-01

    We investigate experimentally and numerically the spectral dynamics of square pulses generated in passively mode-locked fiber lasers under the dissipative soliton resonance. The features of the transition from the single-peak spectral profile to the doublet spectrum with increasing pump power are studied. The used master equation takes into account the gain saturation, the quadratic frequency dispersion of the gain and the refractive index, and the cubic-quintic nonlinearity of the losses and refractive index. Experimental data are obtained for an Er:Yb-doped fiber ring laser. The theoretical and experimental results are in good agreement with each other.

  1. SELF-CENTERING POSITIVE LOCKING GRAPNEL

    DOEpatents

    Hopper, C.G.

    1961-07-01

    A grapnel used for remotely securing a load to be hoisted is described. The grapnel of the invention is generally conical in shape with a plurality of semi-open bores laterally disposed about the device. The bores meet at the apex of the grapnel and there provde a securing pocket for a spherical member. A load provided with a rigid support rod having a spherical member at its end can be secured by directing the spherical member down one of the bores and into the securing pocket. The major advantsges of the invention reside in the self- centering and positive locking features.

  2. Self-injection-locking linewidth narrowing in a semiconductor laser coupled to an external fiber-optic ring resonator

    NASA Astrophysics Data System (ADS)

    Korobko, Dmitry A.; Zolotovskii, Igor O.; Panajotov, Krassimir; Spirin, Vasily V.; Fotiadi, Andrei A.

    2017-12-01

    We develop a theoretical framework for modeling of semiconductor laser coupled to an external fiber-optic ring resonator. The developed approach has shown good qualitative agreement between theoretical predictions and experimental results for particular configuration of a self-injection locked DFB laser delivering narrow-band radiation. The model is capable of describing the main features of the experimentally measured laser outputs such as laser line narrowing, spectral shape of generated radiation, mode-hoping instabilities and makes possible exploring the key physical mechanisms responsible for the laser operation stability.

  3. Photoactivatable Mussel-Based Underwater Adhesive Proteins by an Expanded Genetic Code.

    PubMed

    Hauf, Matthias; Richter, Florian; Schneider, Tobias; Faidt, Thomas; Martins, Berta M; Baumann, Tobias; Durkin, Patrick; Dobbek, Holger; Jacobs, Karin; Möglich, Andreas; Budisa, Nediljko

    2017-09-19

    Marine mussels exhibit potent underwater adhesion abilities under hostile conditions by employing 3,4-dihydroxyphenylalanine (DOPA)-rich mussel adhesive proteins (MAPs). However, their recombinant production is a major biotechnological challenge. Herein, a novel strategy based on genetic code expansion has been developed by engineering efficient aminoacyl-transfer RNA synthetases (aaRSs) for the photocaged noncanonical amino acid ortho-nitrobenzyl DOPA (ONB-DOPA). The engineered ONB-DOPARS enables in vivo production of MAP type 5 site-specifically equipped with multiple instances of ONB-DOPA to yield photocaged, spatiotemporally controlled underwater adhesives. Upon exposure to UV light, these proteins feature elevated wet adhesion properties. This concept offers new perspectives for the production of recombinant bioadhesives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bifurcations: Focal Points of Particle Adhesion in Microvascular Networks

    PubMed Central

    Prabhakarpandian, Balabhaskar; Wang, Yi; Rea-Ramsey, Angela; Sundaram, Shivshankar; Kiani, Mohammad F.; Pant, Kapil

    2011-01-01

    Objective Particle adhesion in vivo is dependent on microcirculation environment which features unique anatomical (bifurcations, tortuosity, cross-sectional changes) and physiological (complex hemodynamics) characteristics. The mechanisms behind these complex phenomena are not well understood. In this study, we used a recently developed in vitro model of microvascular networks, called Synthetic Microvascular Network, for characterizing particle adhesion patterns in the microcirculation. Methods Synthetic microvascular networks were fabricated using soft lithography processes followed by particle adhesion studies using avidin and biotin-conjugated microspheres. Particle adhesion patterns were subsequently analyzed using CFD based modeling. Results Experimental and modeling studies highlighted the complex and heterogeneous fluid flow patterns encountered by particles in microvascular networks resulting in significantly higher propensity of adhesion (>1.5X) near bifurcations compared to the branches of the microvascular networks. Conclusion Bifurcations are the focal points of particle adhesion in microvascular networks. Changing flow patterns and morphology near bifurcations are the primary factors controlling the preferential adhesion of functionalized particles in microvascular networks. Synthetic microvascular networks provide an in vitro framework for understanding particle adhesion. PMID:21418388

  5. Nanomechanical Contribution of Collagen and von Willebrand Factor A in Marine Underwater Adhesion and Its Implication for Collagen Manipulation.

    PubMed

    Yoo, Hee Young; Huang, Jun; Li, Lin; Foo, Mathias; Zeng, Hongbo; Hwang, Dong Soo

    2016-03-14

    Recent works on mussel adhesion have identified a load bearing matrix protein (PTMP1) containing von Willebrand factor (vWF) with collagen binding capability that contributes to the mussel holdfast by manipulating mussel collagens. Using a surface forces apparatus, we investigate for the first time, the nanomechanical properties of vWF-collagen interaction using homologous proteins of mussel byssus, PTMP1 and preCollagens (preCols), as collagen. Mimicking conditions similar to mussel byssus secretion (pH < 5.0) and seawater condition (pH 8.0), PTMP1 and preCol interact weakly in the "positioning" phase based on vWF-collagen binding and strengthen in "locked" phase due to the combined effects of electrostatic attraction, metal binding, and mechanical shearing. The progressive enhancement of binding between PTMP1 with porcine collagen under the aforementioned conditions is also observed. The binding mechanisms of PTMP1-preCols provide insights into the molecular interaction of the mammalian collagen system and the development of an artificial extracellular matrix based on collagens.

  6. Experimental observation of different soliton types in a net-normal group-dispersion fiber laser.

    PubMed

    Feng, Zhongyao; Rong, Qiangzhou; Qiao, Xueguang; Shao, Zhihua; Su, Dan

    2014-09-20

    Different soliton types are observed in a net-normal group-dispersion fiber laser based on nonlinear polarization rotation for passive mode locking. The proposed laser can deliver a dispersion-managed soliton, typical dissipation solitons, and a quasi-harmonic mode-locked pulse, a soliton bundle, and especially a dark pulse by only appropriately adjusting the linear cavity phase delay bias using one polarization controller at the fixed pump power. These nonlinear waves show different features, including the spectral shapes and time traces. The experimental observations show that the five soliton types could exist in the same laser cavity, which implies that integrable systems, dissipative systems, and dark pulse regimes can transfer and be switched in a passively mode-locked laser. Our studies not only verify the numeral simulation of the different soliton-types formation in a net-normal group-dispersion operation but also provide insight into Ginzburg-Landau equation systems.

  7. Robust frequency stabilization of multiple spectroscopy lasers with large and tunable offset frequencies.

    PubMed

    Nevsky, A; Alighanbari, S; Chen, Q-F; Ernsting, I; Vasilyev, S; Schiller, S; Barwood, G; Gill, P; Poli, N; Tino, G M

    2013-11-15

    We have demonstrated a compact, robust device for simultaneous absolute frequency stabilization of three diode lasers whose carrier frequencies can be chosen freely relative to the reference. A rigid ULE multicavity block is employed, and, for each laser, the sideband locking technique is applied. A small lock error, computer control of frequency offset, wide range of frequency offset, simple construction, and robust operation are the useful features of the system. One concrete application is as a stabilization unit for the cooling and trapping lasers of a neutral-atom lattice clock. The device significantly supports and improves the clock's operation. The laser with the most stringent requirements imposed by this application is stabilized to a line width of 70 Hz, and a residual frequency drift less than 0.5 Hz/s. The carrier optical frequency can be tuned over 350 MHz while in lock.

  8. Dispersion engineering of mode-locked fibre lasers

    NASA Astrophysics Data System (ADS)

    Woodward, R. I.

    2018-03-01

    Mode-locked fibre lasers are important sources of ultrashort pulses, where stable pulse generation is achieved through a balance of periodic amplitude and phase evolutions. A range of distinct cavity pulse dynamics have been revealed, arising from the interplay between dispersion and nonlinearity in addition to dissipative processes such as filtering. This has led to the discovery of numerous novel operating regimes, offering significantly improved laser performance. In this Topical Review, we summarise the main steady-state pulse dynamics reported to date through cavity dispersion engineering, including average solitons, dispersion-managed solitons, dissipative solitons, giant-chirped pulses and similaritons. Characteristic features and the stabilisation mechanism of each regime are described, supported by numerical modelling, in addition to the typical performance and limitations. Opportunities for further pulse energy scaling are discussed, in addition to considering other recent advances including automated self-tuning cavities and fluoride-fibre-based mid-infrared mode-locked lasers.

  9. Movement initiation-locked activity of the anterior putamen predicts future movement instability in periodic bimanual movement.

    PubMed

    Aramaki, Yu; Haruno, Masahiko; Osu, Rieko; Sadato, Norihiro

    2011-07-06

    In periodic bimanual movements, anti-phase-coordinated patterns often change into in-phase patterns suddenly and involuntarily. Because behavior in the initial period of a sequence of cycles often does not show any obvious errors, it is difficult to predict subsequent movement errors in the later period of the cyclical sequence. Here, we evaluated performance in the later period of the cyclical sequence of bimanual periodic movements using human brain activity measured with functional magnetic resonance imaging as well as using initial movement features. Eighteen subjects performed a 30 s bimanual finger-tapping task. We calculated differences in initiation-locked transient brain activity between antiphase and in-phase tapping conditions. Correlation analysis revealed that the difference in the anterior putamen activity during antiphase compared within-phase tapping conditions was strongly correlated with future instability as measured by the mean absolute deviation of the left-hand intertap interval during antiphase movements relative to in-phase movements (r = 0.81). Among the initial movement features we measured, only the number of taps to establish the antiphase movement pattern exhibited a significant correlation. However, the correlation efficient of 0.60 was not high enough to predict the characteristics of subsequent movement. There was no significant correlation between putamen activity and initial movement features. It is likely that initiating unskilled difficult movements requires increased anterior putamen activity, and this activity increase may facilitate the initiation of movement via the basal ganglia-thalamocortical circuit. Our results suggest that initiation-locked transient activity of the anterior putamen can be used to predict future motor performance.

  10. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation.

    PubMed

    Desrousseaux, C; Sautou, V; Descamps, S; Traoré, O

    2013-10-01

    The development of devices with surfaces that have an effect against microbial adhesion or viability is a promising approach to the prevention of device-related infections. To review the strategies used to design devices with surfaces able to limit microbial adhesion and/or growth. A PubMed search of the published literature. One strategy is to design medical devices with a biocidal agent. Biocides can be incorporated into the materials or coated or covalently bonded, resulting either in release of the biocide or in contact killing without release of the biocide. The use of biocides in medical devices is debated because of the risk of bacterial resistance and potential toxicity. Another strategy is to modify the chemical or physical surface properties of the materials to prevent microbial adhesion, a complex phenomenon that also depends directly on microbial biological structure and the environment. Anti-adhesive chemical surface modifications mostly target the hydrophobicity features of the materials. Topographical modifications are focused on roughness and nanostructures, whose size and spatial organization are controlled. The most effective physical parameters to reduce bacterial adhesion remain to be determined and could depend on shape and other bacterial characteristics. A prevention strategy based on reducing microbial attachment rather than on releasing a biocide is promising. Evidence of the clinical efficacy of these surface-modified devices is lacking. Additional studies are needed to determine which physical features have the greatest potential for reducing adhesion and to assess the usefulness of antimicrobial coatings other than antibiotics. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  11. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate

    NASA Astrophysics Data System (ADS)

    Dalby, Matthew J.; Gadegaard, Nikolaj; Oreffo, Richard O. C.

    2014-06-01

    Stem cells respond to nanoscale surface features, with changes in cell growth and differentiation mediated by alterations in cell adhesion. The interaction of nanotopographical features with integrin receptors in the cells' focal adhesions alters how the cells adhere to materials surfaces, and defines cell fate through changes in both cell biochemistry and cell morphology. In this Review, we discuss how cell adhesions interact with nanotopography, and we provide insight as to how materials scientists can exploit these interactions to direct stem cell fate and to understand how the behaviour of stem cells in their niche can be controlled. We expect knowledge gained from the study of cell-nanotopography interactions to accelerate the development of next-generation stem cell culture materials and implant interfaces, and to fuel discovery of stem cell therapeutics to support regenerative therapies.

  12. Demonstration/Validation of Hazardous Air Pollutant-Free Adhesive Replacement for Federal Specification MMM-A-121 on the Stryker Infantry Carrier Vehicle

    DTIC Science & Technology

    2013-06-01

    high-performance contact adhesive (baseline) can be used to bond most rubber, cloth, metal, wood , foamed glass, paper honeycomb, decorative plastic ...and gasket adhesive (baseline) may be used to bond metal, wood , most plastics , neoprene, SBR, and butyl rubber (11). Key features are high immediate...nitrile rubber, most plastics and gasketing materials to a variety of substrates (13). This product contains 0% HAPs (14) and has been added to the

  13. Prevention of intra-abdominal adhesion by bi-layer electrospun membrane.

    PubMed

    Jiang, Shichao; Wang, Wei; Yan, Hede; Fan, Cunyi

    2013-06-04

    The aim of this study was to compare the anti-adhesion efficacy of a bi-layer electrospun fibrous membrane consisting of hyaluronic acid-loaded poly(ε-caprolactone) (PCL) fibrous membrane as the inner layer and PCL fibrous membrane as the outer layer with a single-layer PCL electrospun fibrous membrane in a rat cecum abrasion model. The rat model utilized a cecal abrasion and abdominal wall insult surgical protocol. The bi-layer and PCL membranes were applied between the cecum and the abdominal wall, respectively. Control animals did not receive any treatment. After postoperative day 14, a visual semiquantitative grading scale was used to grade the extent of adhesion. Histological analysis was performed to reveal the features of adhesion tissues. Bi-layer membrane treated animals showed significantly lower adhesion scores than control animals (p < 0.05) and a lower adhesion score compared with the PCL membrane. Histological analysis of the bi-layer membrane treated rat rarely demonstrated tissue adhesion while that of the PCL membrane treated rat and control rat showed loose and dense adhesion tissues, respectively. Bi-layer membrane can efficiently prevent adhesion formation in abdominal cavity and showed a significantly decreased adhesion tissue formation compared with the control.

  14. Nanowell-Trapped Charged Ligand-Bearing Nanoparticle Surfaces – A Novel Method of Enhancing Flow-Resistant Cell Adhesion

    PubMed Central

    Tran, Phat L.; Gamboa, Jessica R.; McCracken, Katherine E.; Riley, Mark R.

    2014-01-01

    Assuring cell adhesion to an underlying biomaterial surface is vital in implant device design and tissue engineering, particularly under circumstances where cells are subjected to potential detachment from overriding fluid flow. Cell-substrate adhesion is a highly regulated process involving the interplay of mechanical properties, surface topographic features, electrostatic charge, and biochemical mechanisms. At the nanoscale level the physical properties of the underlying substrate are of particular importance in cell adhesion. Conventionally, natural, pro-adhesive, and often thrombogenic, protein biomaterials are frequently utilized to facilitate adhesion. In the present study nanofabrication techniques are utilized to enhance the biological functionality of a synthetic polymer surface, polymethymethacrylate, with respect to cell adhesion. Specifically we examine the effect on cell adhesion of combining: 1. optimized surface texturing, 2. electrostatic charge and 3. cell adhesive ligands, uniquely assembled on the substrata surface, as an ensemble of nanoparticles trapped in nanowells. Our results reveal that the ensemble strategy leads to enhanced, more than simply additive, endothelial cell adhesion under both static and flow conditions. This strategy may be of particular utility for enhancing flow-resistant endothelialization of blood-contacting surfaces of cardiovascular devices subjected to flow-mediated shear. PMID:23225491

  15. Mounting ground sections of teeth: Cyanoacrylate adhesive versus Canada balsam

    PubMed Central

    Vangala, Manogna RL; Rudraraju, Amrutha; Subramanyam, RV

    2016-01-01

    Introduction: Hard tissues can be studied by either decalcification or by preparing ground sections. Various mounting media have been tried and used for ground sections of teeth. However, there are very few studies on the use of cyanoacrylate adhesive as a mounting medium. Aims: The aim of our study was to evaluate the efficacy of cyanoacrylate adhesive (Fevikwik™) as a mounting medium for ground sections of teeth and to compare these ground sections with those mounted with Canada balsam. Materials and Methods: Ground sections were prepared from twenty extracted teeth. Each section was divided into two halves and mounted on one slide, one with cyanoacrylate adhesive (Fevikwik™) and the other with Canada balsam. Scoring for various features in the ground sections was done by two independent observers. Statistical Analysis Used: Statistical analysis using Student's t-test (unpaired) of average scores was performed for each feature observed. Results: No statistically significant difference was found between the two for most of the features. However, cyanoacrylate was found to be better than Canada balsam for observing striae of Retzius (P < 0.0205), enamel lamellae (P < 0.036), dentinal tubules (P < 0.0057), interglobular dentin (P < 0.0001), sclerotic dentin – transmitted light (P < 0.00001), sclerotic dentin – polarized light (P < 0.0002) and Sharpey's fibers (P < 0.0004). Conclusions: This initial study shows that cyanoacrylate is better than Canada balsam for observing certain features of ground sections of teeth. However, it remains to be seen whether it will be useful for studying undecalcified sections of carious teeth and for soft tissue sections. PMID:27194857

  16. Microscale Confinement features in microfluidic devices can affect biofilm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Aloke; Karig, David K; Neethirajan, Suresh

    2013-01-01

    Biofilms are aggregations of microbes that are encased by extra-cellular polymeric substances (EPS) and adhere to surfaces and interfaces. Biofilm development on abiotic surfaces is a dynamic process, which typically proceeds through an initial phase of adhesion of plankntonic microbes to the substrate, followed by events such as growth, maturation and EPS secretion. However, the coupling of hydrodynamics, microbial adhesion and biofilm growth remain poorly understood. Here, we investigate the effect of semiconfined features on biofilm formation. Using a microfluidic device and fluorescent time-lapse microscopy, we establish that confinement features can significantly affect biofilm formation. Biofilm dynamics change not onlymore » as a function of confinement features, but also of the total fluid flow rate, and our combination of experimental results and numerical simulations reveal insights into the link between hydrodynamics and biofilm formation.« less

  17. The relationship between substance use and exit security on psychiatric wards.

    PubMed

    Simpson, Alan; Bowers, Len; Haglund, Kristina; Muir-Cochrane, Eimear; Nijman, Henk; Van der Merwe, Marie

    2011-03-01

    In this paper we report on the rates of drug/alcohol use on acute psychiatric wards in relation to levels and intensity of exit security measures. Many inpatient wards have become permanently locked, with staff concerned about the risk of patients leaving the ward and harming themselves or others, and of people bringing illicit substances into the therapeutic environment. In 2004/2005, a cross sectional survey on 136 acute psychiatric wards across three areas of England was undertaken. A comprehensive range of data including door locking and drug/alcohol use were collected over 6 months on each ward. In 2006, supplementary data on door locking and exit security were collected. Door locking, additional exit security measures and substance misuse rates of the 136 wards were analysed and the associations between these were investigated. No consistent relationships were found with exit security features, intensity of drug/alcohol monitoring procedures, or the locking of the ward door. There were indications that use of breath testing for alcohol might reduce usage and that the use of 'sniffer' dogs was associated with greater alcohol use. Greater exit security or locking of the ward door had no influence on rates of use of alcohol or illicit drugs by inpatients and thus cannot form part of any strategy to control substance use by inpatients. There are some grounds to believe that a greater use of screening might help reduce the frequency of alcohol/substance use on wards and may lead to a reduction in verbal abuse. © 2010 The Authors. Journal of Advanced Nursing © 2010 Blackwell Publishing Ltd.

  18. On the Possibility of Interseismic Creep of the Cascadia Megathrust

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wang, K.; He, J.

    2012-12-01

    Without any instrumental records of large megathrust earthquakes, our knowledge of the seismic potential of the Cascadia subduction zone depends critically on our understanding of the present state of interseismic fault locking. The traditional view of a fully and uniformly locked Cascadia megathrust, consistent with the extremely low modern interplate seismicity, is now challenged for two reasons. First, recent quantitative analyses of high-quality microfossil data indicate that fault slip in the great Cascadia earthquake of 1700 was heterogeneous, with high-slip areas separated by low-slip areas. This leads to the question whether the low-slip areas should exhibit interseismic creeping after the earthquake and even at present. Second, the most recent inversion of GPS measurements to infer simultaneously megathrust locking, permanent upper plate deformation, and block motion features large creeping (i.e., partial locking) segments along the margin. For example, in northern Cascadia offshore of Vancouver Island, the creep rate is reported to be about 40% of the plate convergence rate of ~50 mm/yr used in this inversion. Here we re-examine the locking state of the northern Cascadia megathrust by exploring the following issues. (1) The geodetically observed contemporary margin-normal shortening has a relatively low velocity gradient but extends quite far inland. In an elastic model, the near-field low strain rate can be explained by partial locking, and the broad pattern is explained by permanent shortening, e.g., across the Canadian Coast Mountains. We investigate whether a viscoelastic model can explain the geodetic strains with a fully locked megathrust without permanent upper plate shortening. (2) The new global plate motion model MORVEL predicts a lower convergence rate of only ~40 mm/yr at northern Cascadia. We investigate its implications to the interpretation of the geodetic observations. (3) Globally, afterslip following a great earthquake is generally observed to have a short duration. We investigate whether the contemporary Cascadia deformation field could still be under the influence of the 1700 event, especially that of the post-seismic behaviour of its low-slip areas. (4) We investigate to what extent land-based GPS observations can resolve partial locking vs. full locking of the offshore seismogenic zone. We develop a 3-D viscoelastic model with a fully locked plate interface but with the locking width varying along strike and test whether this model can explain GPS observations as well as does the partially locked elastic model. We also develop an alternative model with multiple slow slip events of spatiotemporally varying source regions, in order to investigate whether their integrated effect could be identified as partial locking by land-based GPS. Our work at Cascadia may also help understand the interseismic creep reported for other subduction zones.

  19. Effect of surface tension on the behavior of adhesive contact based on Lennard-Jones potential law

    NASA Astrophysics Data System (ADS)

    Zhu, Xinyao; Xu, Wei

    2018-02-01

    The present study explores the effect of surface tension on adhesive contact behavior where the adhesion is interpreted by long-range intermolecular forces. The adhesive contact is analyzed using the equivalent system of a rigid sphere and an elastic half space covered by a membrane with surface tension. The long-range intermolecular forces are modeled with the Lennard‒Jones (L‒J) potential law. The current adhesive contact issue can be represented by a nonlinear integral equation, which can be solved by Newton‒Raphson method. In contrast to previous studies which consider intermolecular forces as short-range, the present study reveals more details of the features of adhesive contact with surface tension, in terms of jump instabilities, pull-off forces, pressure distribution within the contact area, etc. The transition of the pull-off force is not only consistent with previous studies, but also presents some new interesting characteristics in the current situation.

  20. Tuning HDF5 subfiling performance on parallel file systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byna, Suren; Chaarawi, Mohamad; Koziol, Quincey

    Subfiling is a technique used on parallel file systems to reduce locking and contention issues when multiple compute nodes interact with the same storage target node. Subfiling provides a compromise between the single shared file approach that instigates the lock contention problems on parallel file systems and having one file per process, which results in generating a massive and unmanageable number of files. In this paper, we evaluate and tune the performance of recently implemented subfiling feature in HDF5. In specific, we explain the implementation strategy of subfiling feature in HDF5, provide examples of using the feature, and evaluate andmore » tune parallel I/O performance of this feature with parallel file systems of the Cray XC40 system at NERSC (Cori) that include a burst buffer storage and a Lustre disk-based storage. We also evaluate I/O performance on the Cray XC30 system, Edison, at NERSC. Our results show performance benefits of 1.2X to 6X performance advantage with subfiling compared to writing a single shared HDF5 file. We present our exploration of configurations, such as the number of subfiles and the number of Lustre storage targets to storing files, as optimization parameters to obtain superior I/O performance. Based on this exploration, we discuss recommendations for achieving good I/O performance as well as limitations with using the subfiling feature.« less

  1. Sickle red cell-endothelium interactions.

    PubMed

    Kaul, Dhananjay K; Finnegan, Eileen; Barabino, Gilda A

    2009-01-01

    Periodic recurrence of painful vaso-occlusive crisis is the defining feature of sickle cell disease. Among multiple pathologies associated with this disease, sickle red cell-endothelium interaction has been implicated as a potential initiating mechanism in vaso-occlusive events. This review focuses on various interrelated mechanisms involved in human sickle red cell adhesion. We discuss in vitro and microcirculatory findings on sickle red cell adhesion, its potential role in vaso-occlusion, and the current understanding of receptor-ligand interactions involved in this pathological phenomenon. In addition, we discuss the contribution of other cellular interactions (leukocytes recruitment and leukocyte-red cell interaction) to vaso-occlusion, as observed in transgenic sickle mouse models. Emphasis is given to recently discovered adhesion molecules that play a predominant role in mediating human sickle red cell adhesion. Finally, we analyze various therapeutic approaches for inhibiting sickle red cell adhesion by targeting adhesion molecules and also consider therapeutic strategies that target stimuli involved in endothelial activation and initiation of adhesion.

  2. A non-collinear mixing technique to measure the acoustic nonlinearity parameter of adhesive bond

    NASA Astrophysics Data System (ADS)

    Ju, Taeho; Achenbach, Jan. D.; Jacobs, Laurence J.; Qu, Jianmin

    2018-04-01

    In this work, we employed a wave mixing technique with an incident longitudinal wave and a shear wave to measure the Acoustic Nonlinearity Parameter (ANLP) of adhesive bonds. An adhesive transfer tape (F-9473PC) was used as an adhesive material: two aluminum plates are bonded together by the tape. To achieve a high signal to noise ratio, the optimal interaction angle and frequency ratio between the two incident waves were carefully selected so resonance occurs primarily in the adhesive layer, which somewhat suppressed the resonance in the aluminum plates. One of the most significant features of this method is that the measurements need only one-side access to the sample being measured. To demonstrate the effectiveness of the proposed technique, the adhesively bonded aluminum sample was placed in a temperature-controlled chamber for thermal aging. The ANLP of the thermally aged sample was compared with that of a freshly made adhesive sample. The results show that the ANLP increases with aging time and temperature.

  3. Thermal stability and adhesion of low-emissivity electroplated Au coatings.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorenby, Jeff W.; Hachman, John T., Jr.; Yang, Nancy Y. C.

    We are developing a low-emissivity thermal management coating system to minimize radiative heat losses under a high-vacuum environment. Good adhesion, low outgassing, and good thermal stability of the coating material are essential elements for a long-life, reliable thermal management device. The system of electroplated Au coating on the adhesion-enhancing Wood's Ni strike and 304L substrate was selected due to its low emissivity and low surface chemical reactivity. The physical and chemical properties, interface bonding, thermal aging, and compatibility of the above Au/Ni/304L system were examined extensively. The study shows that the as-plated electroplated Au and Ni samples contain submicron columnarmore » grains, stringers of nanopores, and/or H{sub 2} gas bubbles, as expected. The grain structure of Au and Ni are thermally stable up to 250 C for 63 days. The interface bonding is strong, which can be attributed to good mechanical locking among the Au, the 304L, and the porous Ni strike. However, thermal instability of the nanopore structure (i.e., pore coalescence and coarsening due to vacancy and/or entrapped gaseous phase diffusion) and Ni diffusion were observed. In addition, the study also found that prebaking 304L in the furnace at {ge} 1 x 10{sup -4} Torr promotes surface Cr-oxides on the 304L surface, which reduces the effectiveness of the intended H-removal. The extent of the pore coalescence and coarsening and their effect on the long-term system integrity and outgassing are yet to be understood. Mitigating system outgassing and improving Au adhesion require a further understanding of the process-structure-system performance relationships within the electroplated Au/Ni/304L system.« less

  4. The adhesion solidity, physico-mechanical and tribological properties of the coating of titanium nitride

    NASA Astrophysics Data System (ADS)

    Krivina, L. A.; Tarasenko, Yu P.; Fel, Ya A.

    2017-05-01

    Influence of variable technological factors (arch current, fractional pressure of gas in the camera) on structure, physic-mechanical and tribological features of an ion-plasma coating of titanium nitride has been investigated. The adhesion solidity has been put to the test and the mechanism of destruction of a covering has been also researched by a skretch-test method. The optimal mode of spraying at which the formation of the nanostructured bar coating of TiN has been defined. The covering offers an optimal combination of physic-mechanical, tribological and solidity features.

  5. Macroscopic Quantum Phase-Locking Model for the Quantum Hall = Effect

    NASA Astrophysics Data System (ADS)

    Wang, Te-Chun; Gou, Yih-Shun

    1997-08-01

    A macroscopic model of nonlinear dissipative phase-locking between a Josephson-like frequency and a macroscopic electron wave frequency is proposed to explain the Quantum Hall Effect. It is well known that a r.f-biased Josephson junction displays a collective phase-locking behavior which can be described by a non-autonomous second order equation or an equivalent 2+1-dimensional dynamical system. Making a direct analogy between the QHE and the Josephson system, this report proposes a computer-solving nonlinear dynamical model for the quantization of the Hall resistance. In this model, the Hall voltage is assumed to be proportional to a Josephson-like frequency and the Hall current is assumed related to a coherent electron wave frequency. The Hall resistance is shown to be quantized in units of the fine structure constant as the ratio of these two frequencies are locked into a rational winding number. To explain the sample-width dependence of the critical current, the 2DEG under large applied current is further assumed to develop a Josephson-like junction array in which all Josephson-like frequencies are synchronized. Other remarkable features of the QHE such as the resistance fluctuation and the even-denominator states are also discussed within this picture.

  6. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    PubMed

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  7. Direct link of a mid-infrared QCL to a frequency comb by optical injection.

    PubMed

    Borri, S; Galli, I; Cappelli, F; Bismuto, A; Bartalini, S; Cancio, P; Giusfredi, G; Mazzotti, D; Faist, J; De Natale, P

    2012-03-15

    A narrow-linewidth comb-linked nonlinear source is used as master radiation to injection lock a room-temperature mid-infrared quantum cascade laser (QCL). This process leads to a direct lock of the QCL to the optical frequency comb, providing the unique features of narrow linewidth, absolute frequency, higher output power, and wide mode-hop-free tunability. The QCL reproduces the injected radiation within more than 94%, with a reduction of the frequency-noise spectral density by 3 to 4 orders of magnitude up to about 100 kHz, and a linewidth narrowing from a few MHz to 20 kHz.

  8. Investigation of adhesion and mechanical properties of human glioma cells by single cell force spectroscopy and atomic force microscopy.

    PubMed

    Andolfi, Laura; Bourkoula, Eugenia; Migliorini, Elisa; Palma, Anita; Pucer, Anja; Skrap, Miran; Scoles, Giacinto; Beltrami, Antonio Paolo; Cesselli, Daniela; Lazzarino, Marco

    2014-01-01

    Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma--HG--and Gasc for low-grade glioma--LG) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.

  9. Silicon concentrator cell-assembly development

    NASA Astrophysics Data System (ADS)

    1982-08-01

    The purpose was to develop an improved cell assembly design for photovoltaic concentrator receivers. Efforts were concentrated on a study of adhesive/separator systems that might be applied between cell and substrate, because this area holds the key to improved heat transfer, electrical isolation and adhesion. It is also the area in which simpler construction methods offer the greatest benefits for economy and reliability in the manufacturing process. Of the ten most promising designs subjected to rigorous environmental testing, eight designs featuring acrylic and silicon adhesives and fiberglass and polyester separators performed very well.

  10. Shape memory-based actuators and release mechanisms therefrom

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Rajan (Inventor); Snyder, Daniel W. (Inventor); Schoenwald, David K. (Inventor); Lam, Nhin S. (Inventor); Watson, Daniel S. (Inventor); Krishnan, Vinu B. (Inventor); Noebe, Ronald D. (Inventor)

    2012-01-01

    SM-based actuators (110) and release mechanisms (100) therefrom and systems (500) including one or more release mechanisms (100). The actuators (110) comprise a SM member (118) and a deformable member (140) mechanically coupled to the SM member (118) which deforms upon a shape change of the SM member triggered by a phase transition of the SM member. A retaining element (160) is mechanically coupled to the deformable member (140), wherein the retaining element (160) moves upon the shape change. Release mechanism (100) include an actuator, a rotatable mechanism (120) including at least one restraining feature (178) for restraining rotational movement of the retaining element (160) before the shape change, and at least one spring (315) that provides at least one locked spring-loaded position when the retaining element is in the restraining feature and at least one released position that is reached when the retaining element is in a position beyond the restraining feature (178). The rotatable mechanism (120) includes at least one load-bearing protrusion (310). A hitch (400) is for mechanically coupling to the load, wherein the hitch is supported on the load bearing protrusion (310) when the rotatable mechanism is in the locked spring-loaded position.

  11. Modeling and experiments of the adhesion force distribution between particles and a surface.

    PubMed

    You, Siming; Wan, Man Pun

    2014-06-17

    Due to the existence of surface roughness in real surfaces, the adhesion force between particles and the surface where the particles are deposited exhibits certain statistical distributions. Despite the importance of adhesion force distribution in a variety of applications, the current understanding of modeling adhesion force distribution is still limited. In this work, an adhesion force distribution model based on integrating the root-mean-square (RMS) roughness distribution (i.e., the variation of RMS roughness on the surface in terms of location) into recently proposed mean adhesion force models was proposed. The integration was accomplished by statistical analysis and Monte Carlo simulation. A series of centrifuge experiments were conducted to measure the adhesion force distributions between polystyrene particles (146.1 ± 1.99 μm) and various substrates (stainless steel, aluminum and plastic, respectively). The proposed model was validated against the measured adhesion force distributions from this work and another previous study. Based on the proposed model, the effect of RMS roughness distribution on the adhesion force distribution of particles on a rough surface was explored, showing that both the median and standard deviation of adhesion force distribution could be affected by the RMS roughness distribution. The proposed model could predict both van der Waals force and capillary force distributions and consider the multiscale roughness feature, greatly extending the current capability of adhesion force distribution prediction.

  12. Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features.

    PubMed

    Modrzewska, Barbara; Kurnatowski, Piotr

    2015-01-01

    The ability of Candida sp. cells to adhere to the mucosal surfaces of various host organs as well as synthetic materials is an important pathogenicity feature of those fungi which contributes to the development of infection. This property varies depending on the species of the fungus and is the greatest for C. albicans. The process of adhesion depends on plenty of factors related to the fungal and host cells as well as environmental conditions. The main adhesins present on the fungal cell wall are: Als, Epa, Hwp1, but also Eap1, Sun41, Csh1 and probably Hyr1; for adhesion significant are also secreted aspartyl proteases Sap. Various researchers specify a range of genes which contribute to adhesion, such as: CZF1, EFG1, TUP1, TPK1, TPK2, HGC1, RAS1, RIM101, VPS11, ECM1, CKA2, BCR1, BUD2, RSR1, IRS4, CHS2, SCS7, UBI4, UME6, TEC1 and GAT2. Influence for adherence have also heat shock proteins Hsp70, Mediator Middle domain subunit Med31 and morphological transition. Among factors affecting adhesion related to host cells it is necessary to mention fibronectins and integrins (receptors for Candida sp. adhesins), type of epithelial cells, their morphology and differentiation phase. To a lesser degree influence on adhesion have non-specific factors and environmental conditions.

  13. In vivo studies of sickle red blood cells.

    PubMed

    Kaul, Dhananjay K; Fabry, Mary E

    2004-03-01

    The defining clinical feature of sickle cell anemia is periodic occurrence of painful vasoocclusive crisis. Factors that promote trapping and sickling of red cells in the microcirculation are likely to trigger vasoocclusion. The marked red cell heterogeneity in sickle blood and abnormal adhesion of sickle red cells to vascular endothelium would be major disruptive influences. Using ex vivo and in vivo models, the authors show how to dissect the relative contribution of heterogeneous sickle red cell classes to adhesive and obstructive events. These studies revealed that (1) both rheological abnormalities and adhesion of sickle red cells contribute to their abnormal hemodynamic behavior, (2) venules are the sites of sickle cell adhesion, and (3) sickle red cell deformability plays an important role in adhesive and obstructive events. Preferential adhesion of deformable sickle red cells in postcapillary venules followed by selective trapping of dense sickle red cells could result in vasoocclusion. An updated version of this 2-step model is presented. The multifactorial nature of sickle red cell adhesion needs to be considered in designing antiadhesive therapy in vivo.

  14. Influence of adhesion and friction on the geometry of packings of spherical particles

    NASA Astrophysics Data System (ADS)

    Martin, C. L.; Bordia, R. K.

    2008-03-01

    We study the effect of both adhesion and friction on the geometry of monosized packings of spheres by means of discrete element simulations. We use elastic properties that are characteristic of materials typically used for particulate processing (Young’s modulus in the range 20-200 GPa). The geometrical features, both global and local, of the packings are studied using a variety of approaches in order to investigate their ability to quantify the effect of adhesion and/or friction. We show that both adhesion and friction interaction decrease the packing fraction. The very localized ordering that adhesion triggers is particularly investigated by use of the radial distribution function, the ordering parameter Q6 , and four triclinic cells that allow a description of the microstructure at the local level. We show that the probability of occurrence of these triclinic cells is approximately proportional to their degree of freedom when neither adhesion nor friction plays a role. We find that the introduction of adhesive interactions increases the probability of occurrence of those cells that have the lowest degree of freedom.

  15. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers.

    PubMed

    Consolino, L; Taschin, A; Bartolini, P; Bartalini, S; Cancio, P; Tredicucci, A; Beere, H E; Ritchie, D A; Torre, R; Vitiello, M S; De Natale, P

    2012-01-01

    Optical frequency comb synthesizers have represented a revolutionary approach to frequency metrology, providing a grid of frequency references for any laser emitting within their spectral coverage. Extending the metrological features of optical frequency comb synthesizers to the terahertz domain would be a major breakthrough, due to the widespread range of accessible strategic applications and the availability of stable, high-power and widely tunable sources such as quantum cascade lasers. Here we demonstrate phase-locking of a 2.5 THz quantum cascade laser to a free-space comb, generated in a LiNbO(3) waveguide and covering the 0.1-6 THz frequency range. We show that even a small fraction (<100 nW) of the radiation emitted from the quantum cascade laser is sufficient to generate a beat note suitable for phase-locking to the comb, paving the way to novel metrological-grade terahertz applications, including high-resolution spectroscopy, manipulation of cold molecules, astronomy and telecommunications.

  16. Rayleigh-enhanced attosecond sum-frequency polarization beats via twin color-locking noisy lights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yanpeng; Li Long; Ma Ruiqiong

    2005-07-15

    Based on color-locking noisy field correlation, a time-delayed method is proposed to suppress the thermal effect, and the ultrafast longitudinal relaxation time can be measured even in an absorbing medium. One interesting feature in field-correlation effects is that Rayleigh-enhanced four-wave mixing (RFWM) with color-locking noisy light exhibits spectral symmetry and temporal asymmetry with no coherence spike at {tau}=0. Due to the interference between the Rayleigh-resonant signal and the nonresonant background, RFWM exhibits hybrid radiation-matter detuning with terahertz damping oscillations. The subtle Markovian high-order correlation effects have been investigated in the homodyne- or heterodyne-detected Rayleigh-enhanced attosecond sum-frequency polarization beats (RASPBs). Analyticmore » closed forms of fourth-order Markovian stochastic correlations are characterized for homodyne (quadratic) and heterodyne (linear) detection, respectively. Based on the polarization interference between two four-wave mixing processes, the phase-sensitive detection of RASPBs has also been used to obtain the real and imaginary parts of the Rayleigh resonance.« less

  17. Multiplexing using synchrony in the zebrafish olfactory bulb.

    PubMed

    Friedrich, Rainer W; Habermann, Christopher J; Laurent, Gilles

    2004-08-01

    In the olfactory bulb (OB) of zebrafish and other species, odors evoke fast oscillatory population activity and specific firing rate patterns across mitral cells (MCs). This activity evolves over a few hundred milliseconds from the onset of the odor stimulus. Action potentials of odor-specific MC subsets phase-lock to the oscillation, defining small and distributed ensembles within the MC population output. We found that oscillatory field potentials in the zebrafish OB propagate across the OB in waves. Phase-locked MC action potentials, however, were synchronized without a time lag. Firing rate patterns across MCs analyzed with low temporal resolution were informative about odor identity. When the sensitivity for phase-locked spiking was increased, activity patterns became progressively more informative about odor category. Hence, information about complementary stimulus features is conveyed simultaneously by the same population of neurons and can be retrieved selectively by biologically plausible mechanisms, indicating that seemingly alternative coding strategies operating on different time scales may coexist.

  18. Pressure sensitive microparticle adhesion through biomimicry of the pollen-stigma interaction.

    PubMed

    Lin, Haisheng; Qu, Zihao; Meredith, J Carson

    2016-03-21

    Many soft biomimetic synthetic adhesives, optimized to support macroscopic masses (∼kg), have been inspired by geckos, insects and other animals. Far less work has investigated bioinspired adhesion that is tuned to micro- and nano-scale sizes and forces. However, such adhesive forces are extremely important in the adhesion of micro- and nanoparticles to surfaces, relevant to a wide range of industrial and biological systems. Pollens, whose adhesion is critical to plant reproduction, are an evolutionary-optimized system for biomimicry to engineer tunable adhesion between particles and micro-patterned soft matter surfaces. In addition, the adhesion of pollen particles is relevant to topics as varied as pollinator ecology, transport of allergens, and atmospheric phenomena. We report the first observation of structurally-derived pressure-sensitive adhesion of a microparticle by using the sunflower pollen and stigma surfaces as a model. This strong, pressure-sensitive adhesion results from interlocking between the pollen's conical spines and the stigma's receptive papillae. Inspired by this behavior, we fabricated synthetic polymeric patterned surfaces that mimic the stigma surface's receptivity to pollen. These soft mimics allow the magnitude of the pressure-sensitive response to be tuned by adjusting the size and spacing of surface features. These results provide an important new insight for soft material adhesion based on bio-inspired principles, namely that ornamented microparticles and micro-patterned surfaces can be designed with complementarity that enable a tunable, pressure-sensitive adhesion on the microparticle size and length scale.

  19. Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies

    NASA Astrophysics Data System (ADS)

    Skoog, Shelby A.; Kumar, Girish; Goering, Peter L.; Williams, Brian; Stiglich, Jack; Narayan, Roger J.

    2016-06-01

    Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.

  20. A novel injectable tissue adhesive based on oxidized dextran and chitosan.

    PubMed

    Balakrishnan, Biji; Soman, Dawlee; Payanam, Umashanker; Laurent, Alexandre; Labarre, Denis; Jayakrishnan, Athipettah

    2017-04-15

    A surgical adhesive that can be used in different surgical situations with or without sutures is a surgeons' dream and yet none has been able to fulfill many such demanding requirements. It was therefore a major challenge to develop an adhesive biomaterial that stops bleeding and bond tissues well, which at the same time is non-toxic, biocompatible and yet biodegradable, economically viable and appealing to the surgeon in terms of the simplicity of application in complex surgical situations. With this aim, we developed an in situ setting adhesive based on biopolymers such as chitosan and dextran. Dextran was oxidized using periodate to generate aldehyde functions on the biopolymer and then reacted with chitosan hydrochloride. Gelation occurred instantaneously upon mixing these components and the resulting gel showed good tissue adhesive properties with negligible cytotoxicity and minimal swelling in phosphate buffered saline (PBS). Rheology analysis confirmed the gelation process by demonstrating storage modulus having value higher than loss modulus. Adhesive strength was in the range 200-400gf/cm 2 which is about 4-5 times more than that of fibrin glue at comparable setting times. The adhesive showed burst strength in the range of 400-410mm of Hg which should make the same suitable as a sealant for controlling bleeding in many surgical situations even at high blood pressure. Efficacy of the adhesive as a hemostat was demonstrated in a rabbit liver injury model. Histological features after two weeks were comparable to that of commercially available BioGlue®. The adhesive also demonstrated its efficacy as a drug delivery vehicle. The present adhesive could function without the many toxicity and biocompatibility issues associated with such products. Though there are many tissue adhesives available in market, none are free of shortcomings. The newly developed surgical adhesive is a 2-component adhesive system based on time-tested, naturally occurring polysaccharides such as chitosan and dextran which are both biocompatible and biodegradable. Simple polymer modification has been carried out on both polysaccharides so that when aqueous solutions of both are mixed, the solutions gel in less than 10s and forms an adhesive that seals a variety of incisions. The strength of the adhesive is over 5-times the strength of commercially available Fibrin glue and is more tissue compliant than BioGlue®. This adhesive biomaterial showed excellent tissue bonding, was hemostatic, biocompatible and biodegradable. The significance of this work lies on the features of the developed tissue adhesive that it stops bleeding, bond the tissues well, can act as a drug delivery vehicle and would appeal to the surgeon in terms of the simplicity of application in complex surgical situations. There is no need for special delivery systems for application of this adhesive. The two-component adhesive can be applied one over the other using syringes. There is also no need for light curing with UV or visible light and the gelation between the two components spontaneously takes place on application leading to excellent tissue bonding. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Placento-Cranial Adhesions in Amniotic Band Syndrome and the Role of Surgery in Their Management: An Unusual Case Presentation and Systematic Literature Review.

    PubMed

    Menekse, Guner; Mert, Mustafa Kurthan; Olmaz, Burak; Celik, Tamer; Celik, Umit Sizmaz; Okten, Ali Ihsan

    2015-01-01

    Amniotic band syndrome is a group of sporadic congenital anomalies that involve the limbs, craniofacial regions and trunk, ranging from simple digital band constriction to complex craniofacial and central nervous system abnormalities. Placento-cranial adhesions in amniotic band syndrome are extremely rare, and severe conditions are associated with high morbidity and mortality rates. In this study, we pooled placento-cranial adhesion case reports that were published in the medical literature and added an unpublished case from our institution. The purpose of this article was to review and discuss the clinical features and outcomes of placento-cranial adhesions in amniotic band syndrome. © 2015 S. Karger AG, Basel.

  2. 30 CFR 77.1602 - Use of aerial tramways to transport persons.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... other than maintenance men shall not ride empty buckets on aerial tramways unless the following features... communication between terminals. (c) Power drives with emergency power available in case of primary power failure. (d) Buckets equipped with positive locks to prevent accidental tripping or dumping. ...

  3. 30 CFR 77.1602 - Use of aerial tramways to transport persons.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... other than maintenance men shall not ride empty buckets on aerial tramways unless the following features... communication between terminals. (c) Power drives with emergency power available in case of primary power failure. (d) Buckets equipped with positive locks to prevent accidental tripping or dumping. ...

  4. 30 CFR 77.1602 - Use of aerial tramways to transport persons.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... other than maintenance men shall not ride empty buckets on aerial tramways unless the following features... communication between terminals. (c) Power drives with emergency power available in case of primary power failure. (d) Buckets equipped with positive locks to prevent accidental tripping or dumping. ...

  5. The application of impedance measurement to assess biofilm development on technical materials used for water supply system construction

    NASA Astrophysics Data System (ADS)

    Wolf, Mirela; Traczewska, Teodora; Grzebyk, Tomasz

    2017-11-01

    The lack of biological stability of water which is introduced into the network, leads primarily to its secondary contamination during transport to the consumer. The water that is biologically unstable creates ideal conditions for colonization of the inner surface of pipelines by microorganisms and adhesion of their products (biocorrosion). The studies was conducted using the identified microorganisms isolated from the water supply network which accounted inocula in continuous culture of biofilm in CDC reactor. As a result of studies it was revealed the presence of biofilm formed on different materials polyethylene, polypropylene, polyvinyl chloride, polybutylene. Microbiological biodiversity of organisms inhabiting a biofilm of the diversity of nucleic acids was used. It was observed the amount of the psychrophilic bacteria oscillation in the effluent from the reactor. It was also determined the affinity of various bacteria to the plastic through adhesion measurement using impedance spectroscopy. For impedance measurements apparatus SIGNAL RECOVERY 7280 DSP LOCK-IN AMPLIFIER was used, recording impedance components (real and imaginary). The results will allow for the creation of biosensor systems that can be used in predicting health risks in connection with drinking water and taking corrective actions.

  6. Laboratory test for ice adhesion strength using commercial instrumentation.

    PubMed

    Wang, Chenyu; Zhang, Wei; Siva, Adarsh; Tiea, Daniel; Wynne, Kenneth J

    2014-01-21

    A laboratory test method for evaluating ice adhesion has been developed employing a commercially available instrument normally used for dynamic mechanical analysis (TA RSA-III). This is the first laboratory ice adhesion test that does not require a custom-built apparatus. The upper grip range of ∼10 mm is an enabling feature that is essential for the test. The method involves removal of an ice cylinder from a polymer coating with a probe and the determination of peak removal force (Ps). To validate the test method, the strength of ice adhesion was determined for a prototypical glassy polymer, poly(methyl methacrylate). The distance of the probe from the PMMA surface has been identified as a critical variable for Ps. The new test provides a readily available platform for investigating fundamental surface characteristics affecting ice adhesion. In addition to the ice release test, PMMA coatings were characterized using DSC, DCA, and TM-AFM.

  7. Linear and non-linear interdependence of EEG and HRV frequency bands in human sleep.

    PubMed

    Chaparro-Vargas, Ramiro; Dissanayaka, P Chamila; Patti, Chanakya Reddy; Schilling, Claudia; Schredl, Michael; Cvetkovic, Dean

    2014-01-01

    The characterisation of functional interdependencies of the autonomic nervous system (ANS) stands an evergrowing interest to unveil electroencephalographic (EEG) and Heart Rate Variability (HRV) interactions. This paper presents a biosignal processing approach as a supportive computational resource in the estimation of sleep dynamics. The application of linear, non-linear methods and statistical tests upon 10 overnight polysomnographic (PSG) recordings, allowed the computation of wavelet coherence and phase locking values, in order to identify discerning features amongst the clinical healthy subjects. Our findings showed that neuronal oscillations θ, α and σ interact with cardiac power bands at mid-to-high rank of coherence and phase locking, particularly during NREM sleep stages.

  8. Deep in vivo two-photon microscopy with a low cost custom built mode-locked 1060 nm fiber laser

    PubMed Central

    Perillo, Evan P.; McCracken, Justin E.; Fernée, Daniel C.; Goldak, John R.; Medina, Flor A.; Miller, David R.; Yeh, Hsin-Chih; Dunn, Andrew K.

    2016-01-01

    Here we demonstrate that a mode-locked ytterbium fiber laser for two-photon fluorescence microscopy can be built for $13,000. The laser emits at a wavelength of 1060 nm with a usable average power of 1 W at a repetition rate of 40 MHz and a compressed pulse width of 81 fs at the sample. The laser is used to obtain deep in vivo two-color images of layer-V pyramidal neurons expressing YFP and vasculature labelled with Texas Red at depths up to 900 µm. The sub-1 µm features of dendritic spines can be resolved at a 200 µm depth. PMID:26977343

  9. View southeast of weldment assembly floor in structures shop, building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View southeast of weldment assembly floor in structures shop, building 57; the floor is fabricated of cast iron and features a grillwork of 1 1/2 square holes which are used as sockets for gripping positioning or lock down pins; a lock down pin is shown left and below the center of the photograph; the vertical section of the pin is placed into a hole in the cast steel floor while the angles section of the pin rests on the piece under construction; the pin is hammered into the hole and spring tension in the pin holds the work piece in position. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structure Shop, League Island, Philadelphia, Philadelphia County, PA

  10. Single molecule force spectroscopy reveals the adhesion mechanism of hydrophobins

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Li, Bing; Qin, Meng; Wang, Wei

    Hydrophobins are a special class of amphiphilic proteins produced by filamentous fungi. They show outstanding interfacial self-assembly and adhesion properties, which are critical to their biological function. Such feature also inspires their broad applications in bio-engineering, surface modification, and nanotechnology. However, the biophysical properties of hydrophobins are not well understood. We combined atomic force microscopy based single molecule force spectroscopy and protein engineering to directly quantify the adhesion strength of a hydorphobin (HFB1) to various surfaces in both the monomer and oligomer states to reveal the molecular determinant of the adhesion strength of hydrophobins. We found that the monomer HFB1 showed distinct adhesion properties towards hydrophobic and hydrophilic surfaces. The adhesion to hydrophobic surfaces (i.e. graphite and gold) was significantly higher than that to the hydrophilic ones (e.g. mica and silicon). However, when self-assembled monolayers were formed, the adhesion strengths to various surfaces were similar and were ubiquitously stronger than the monomer cases. We hypothesized that the interactions among hydrophobins in the monolayer played significant roles for the enhance adhesion strengths. Extracting any single hydrophobin monomers from the surface required the break of interactions not only with the surface but also with the neighboring units. We proposed that such a mechanism may be widely explored in nature for many biofilms for surface adhesion. May also inspire the design of novel adhesives.

  11. Diversified pulse generation from frequency shifted feedback Tm-doped fibre lasers.

    PubMed

    Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing

    2016-05-19

    Pulsed fibre lasers operating in the eye-safe 2 μm spectral region have numerous potential applications in areas such as remote sensing, medicine, mid-infrared frequency conversion, and free-space communication. Here, for the first time, we demonstrate versatile 2 μm ps-ns pulses generation from Tm-based fibre lasers based on frequency shifted feedback and provide a comprehensive report of their special behaviors. The lasers are featured with elegant construction and the unparalleled capacity of generating versatile pulses. The self-starting mode-locking is initiated by an intra-cavity acousto-optical frequency shifter. Diversified mode-locked pulse dynamics were observed by altering the pump power, intra-cavity polarization state and cavity structure, including as short as 8 ps single pulse sequence, pulse bundle state and up to 12 nJ, 3 ns nanosecond rectangular pulse. A reflective nonlinear optical loop mirror was introduced to successfully shorten the pulses from 24 ps to 8 ps. Beside the mode-locking operation, flexible Q-switching and Q-switched mode-locking operation can also be readily achieved in the same cavity. Up to 78 μJ high energy nanosecond pulse can be generated in this regime. Several intriguing pulse dynamics are characterized and discussed.

  12. Handbook of Adhesion, 2nd Edition

    NASA Astrophysics Data System (ADS)

    Packham, D. E.

    2005-06-01

    This second edition of the successful Handbook of Adhesion provides concise and authoritative articles covering many aspects of the science and technology associated with adhesion and adhesives. It is intended to fill a gap between the necessarily simplified treatment of the student textbook and the full and thorough treatment of the research monograph and review article. The articles are structured in such a way, with internal cross-referencing and external literature references, that the reader can build up a broader and deeper understanding, as their needs require. This second edition includes many new articles covering developments which have risen in prominence in the intervening years, such as scanning probe techniques, the surface forces apparatus and the relation between adhesion and fractal surfaces. Advances in understanding polymer - polymer interdiffusion are reflected in articles drawing out the implications for adhesive bonding. In addition, articles derived from the earlier edition have been revised and updated where needed. Throughout the book there is a renewed emphasis on environmental implications of the use of adhesives and sealants. The scope of the Handbook, which features nearly 250 articles from over 60 authors, includes the background science - physics, chemistry and material science - and engineering, and also aspects of adhesion relevant to the use of adhesives, including topics such as: Sealants and mastics Paints and coatings Printing and composite materials Welding and autohesion Engineering design The Handbook of Adhesion is intended for scientists and engineers in both academia and industry, requiring an understanding of the various facets of adhesion.

  13. Tunable denture adhesives using biomimetic principles for enhanced tissue adhesion in moist environments.

    PubMed

    Gill, Simrone K; Roohpour, Nima; Topham, Paul D; Tighe, Brian J

    2017-11-01

    Nature provides many interesting examples of adhesive strategies. Of particular note, the protein glue secreted by marine mussels delivers high adhesion in wet and dynamic environments owing to existence of catechol moieties. As such, this study focuses on denture fixatives, where a non-zinc-containing commercial-based formulation has been judiciously modified by a biomimetic catechol-inspired polymer, poly(3,4-dihydroxystyrene/styrene-alt-maleic acid) in a quest to modulate adhesive performance. In vitro studies, in a lap-shear configuration, revealed that the catechol-modified components were able to enhance adhesion to both the denture base and hydrated, functional oral tissue mimic, with the resulting mode of failure prominently being adhesive rather than cohesive. These characteristics are desirable in prosthodontic fixative applications, for which temporary adhesion must be maintained, with ultimately an adhesive failure from the mucosal tissue surface preferred. These insights provide an experimental platform in the design of future biomimetic adhesive systems. Mussel adhesive proteins have proven to be promising biomimetic adhesive candidates for soft tissues and here for the first time we have adapted marine adhesive technology into a denture fixative application. Importantly, we have incorporated a soft tissue mimic in our in vitro adhesion technique that more closely resembles the oral mucosa than previously studied substrates. The novel biomimetic-modified adhesives showed the ability to score the highest adhesive bonding out of all the formulations included in this study, across all moisture levels. This paper will be of major interest to the Acta Biomaterialia readership since the study has illustrated the potential of biomimetic principles in the design of effective prosthodontic tissue adhesives in a series of purpose-designed in vitro experiments in the context of the challenging features of the oral environment. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. The effects of titanium nitride-coating on the topographic and biological features of TPS implant surfaces.

    PubMed

    Annunziata, Marco; Oliva, Adriana; Basile, Maria Assunta; Giordano, Michele; Mazzola, Nello; Rizzo, Antonietta; Lanza, Alessandro; Guida, Luigi

    2011-11-01

    Titanium nitride (TiN) coating has been proposed as an adjunctive surface treatment aimed to increase the physico-mechanical and aesthetic properties of dental implants. In this study we investigated the surface characteristics of TiN-coated titanium plasma sprayed (TiN-TPS) and uncoated titanium plasma sprayed (TPS) surfaces and their biological features towards both primary human bone marrow mesenchymal stem cells (BM-MSC) and bacterial cultures. 15 mm×1 mm TPS and TiN-TPS disks (P.H.I. s.r.l., San Vittore Olona, Milano, Italy) were topographically analysed by confocal optical profilometry. Primary human BM-MSC were obtained from healthy donors, isolated and expanded. Cells were seeded on the titanium disks and cell adhesion, proliferation, protein synthesis and osteoblastic differentiation in terms of alkaline phosphatase activity, osteocalcin synthesis and extracellular mineralization, were evaluated. Furthermore, adhesion and proliferation of Streptococcus pyogenes and Streptococcus sanguinis on both surfaces were also analysed. TiN-TPS disks showed a decreased roughness (about 50%, p < 0.05) and a decreased bacterial adhesion and proliferation compared to TPS ones. No difference (p > 0.05) in terms of BM-MSC adhesion, proliferation and osteoblastic differentiation between TPS and TiN-TPS surfaces was found. TiN coating showed to modify the topographical characteristics of TPS titanium surfaces and to significantly reduce bacterial adhesion and proliferation, although maintaining their biological affinity towards bone cell precursors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Filaggrin 2 deficiency results in abnormal cell-cell adhesion in the cornified cell layers and causes peeling skin syndrome type A.

    PubMed

    Mohamad, Janan; Sarig, Ofer; Godsel, Lisa M; Peled, Alon; Malchin, Natalia; Bochner, Ron; Vodo, Dan; Rabinowitz, Tom; Pavlovsky, Mor; Taiber, Shahar; Fried, Maya; Eskin-Schwartz, Marina; Assi, Siwar; Shomron, Noam; Uitto, Jouni; Koetsier, Jennifer L; Bergman, Reuven; Green, Kathleen J; Sprecher, Eli

    2018-05-11

    Peeling skin syndromes form a large and heterogeneous group of inherited disorders characterized by superficial detachment of the epidermal cornified cell layers, often associated with inflammatory features. Here we report on a consanguineous family featuring non-inflammatory peeling of the skin exacerbated by exposure to heat and mechanical stress. Whole exome sequencing revealed a homozygous nonsense mutation in FLG2, encoding filaggrin 2, which co-segregated with the disease phenotype in the family. The mutation was found to result in decreased FLG2 RNA levels as well almost total absence of filaggrin 2 in the patient epidermis. Filaggrin 2 was found to be expressed throughout the cornified cell layers and to co-localize with corneodesmosin which plays a crucial role in maintaining cell-cell adhesion in this region of the epidermis. Absence of filaggrin 2 in the patient skin was associated with markedly decreased corneodesmosin expression, which may contribute to the peeling phenotype displayed by the patients. Accordingly, using the dispase dissociation assay, we showed that FLG2 down-regulation interferes with keratinocyte cell-cell adhesion. Of particular interest, this effect was aggravated by temperature elevation, consistent with the clinical phenotype. Restoration of CDSN levels by ectopic expression rescued cell-cell adhesion.Taken together, the present data suggest that filaggrin 2 is essential for normal cell-cell adhesion in the cornified cell layers. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Nanotopographical Modulation of Cell Function through Nuclear Deformation

    PubMed Central

    Wang, Kai; Bruce, Allison; Mezan, Ryan; Kadiyala, Anand; Wang, Liying; Dawson, Jeremy; Rojanasakul, Yon; Yang, Yong

    2016-01-01

    Although nanotopography has been shown to be a potent modulator of cell behavior, it is unclear how the nanotopographical cue, through focal adhesions, affects the nucleus, eventually influencing cell phenotype and function. Thus, current methods to apply nanotopography to regulate cell behavior are basically empirical. We, herein, engineered nanotopographies of various shapes (gratings and pillars) and dimensions (feature size, spacing and height), and thoroughly investigated cell spreading, focal adhesion organization and nuclear deformation of human primary fibroblasts as the model cell grown on the nanotopographies. We examined the correlation between nuclear deformation and cell functions such as cell proliferation, transfection and extracellular matrix protein type I collagen production. It was found that the nanoscale gratings and pillars could facilitate focal adhesion elongation by providing anchoring sites, and the nanogratings could orient focal adhesions and nuclei along the nanograting direction, depending on not only the feature size but also the spacing of the nanogratings. Compared with continuous nanogratings, discrete nanopillars tended to disrupt the formation and growth of focal adhesions and thus had less profound effects on nuclear deformation. Notably, nuclear volume could be effectively modulated by the height of nanotopography. Further, we demonstrated that cell proliferation, transfection, and type I collagen production were strongly associated with the nuclear volume, indicating that the nucleus serves as a critical mechanosensor for cell regulation. Our study delineated the relationships between focal adhesions, nucleus and cell function and highlighted that the nanotopography could regulate cell phenotype and function by modulating nuclear deformation. This study provides insight into the rational design of nanotopography for new biomaterials and the cell–substrate interfaces of implants and medical devices. PMID:26844365

  17. The Load-Bearing Capacity of Timber-Glass Composite I-Beams Made with Polyurethane Adhesives

    NASA Astrophysics Data System (ADS)

    Rodacki, Konrad

    2017-12-01

    This article discusses the issue of composite timber-glass I-beams, which are an interesting alternative for load-bearing beams of ceilings and roofs. The reasoning behind the use of timber-glass I-beams is the combination of the best features of both materials - this enables the creation of particularly safe beams with regard to structural stability and post-breakage load capacity. Due to the significant differences between the bonding surfaces of timber and glass, a study on the adhesion of various adhesives to both surfaces is presented at the beginning of the paper. After examination, two adhesives were selected for offering the best performance when used with composite beams. The beams were investigated using a four-point bending test under quasi-static loading.

  18. Review of methyl methacrylate (MMA)/tributylborane (TBB)-initiated resin adhesive to dentin.

    PubMed

    Taira, Yohsuke; Imai, Yohji

    2014-01-01

    This review, focusing mainly on research related to methyl methacrylate/tributylborane (MMA/TBB) resin, presents the early history of dentin bonding and MMA/TBB adhesive resin, followed by characteristics of resin bonding to dentin. Bond strengths of MMA/TBB adhesive resin to different adherends were discussed and compared with other bonding systems. Factors affecting bond strength (such as conditioners, primers, and medicaments used for dental treatment), bonding mechanism, and polymerization characteristics of MMA/TBB resin were also discussed. This review further reveals the unique adhesion features between MMA/TBB resin and dentin: in addition to monomer diffusion into the demineralized dentin surface, graft polymerization of MMA onto dentin collagen and interfacial initiation of polymerization at the resin-dentin interface provide the key bonding mechanisms.

  19. Effects of adhesive dressings on stratum corneum conductance.

    PubMed

    Cavallini, Maurizio; Gazzola, Riccardo; Vaienti, Luca

    2012-05-01

    Stratum corneum is a fundamental layer of epidermis. It acts as a barrier, with antimicrobial features, regulating skin permeability and integrity as well. Adhesive dressings and their removal could alter this layer, affecting cutaneous water balance and lipid composition of stratum corneum. These changes could be monitored by measurement of cutaneous hydration. Ninety-two patients affected by wounds dressed with adhesive tapes or plasters have been studied. Measurement of skin conductance under tape/plaster and in the surrounding healthy skin, immediately after removal of dressing has been performed. Dressing age, wound localization, and characteristics were also considered. Adhesive dressings alter significantly stratum corneum conductance. Although healthy skin hydration has significant variations throughout the body, cutaneous conductance under adhesive dressing in different areas displays no significative changes. Moreover, the increase in hydration due to adhesive tapes/plasters showed no association with wound dehiscence. Adhesive dressings cause a significative increase in stratum corneum conductance, acting as a barrier to apocrine secretions. Although different hydration levels have been observed in healthy skin throughout the body, no difference exists under adhesive dressing among different regions, suggesting no contraindications in their employment throughout the body. Increase in cutaneous hydration showed no correlations with wound dehiscence, thus confirming safety and practicality of these dressings. © 2011 John Wiley & Sons A/S.

  20. Advanced gecko-foot-mimetic dry adhesives based on carbon nanotubes.

    PubMed

    Hu, Shihao; Xia, Zhenhai; Dai, Liming

    2013-01-21

    Geckos can run freely on vertical walls and even ceilings. Recent studies have discovered that gecko's extraordinary climbing ability comes from a remarkable design of nature with nanoscale beta-keratin elastic hairs on their feet and toes, which collectively generate sufficiently strong van der Waals force to hold the animal onto an opposing surface while at the same time disengaging at will. Vertically aligned carbon nanotube (VA-CNT) arrays, resembling gecko's adhesive foot hairs with additional superior mechanical, chemical and electrical properties, have been demonstrated to be a promising candidate for advanced fibrillar dry adhesives. The VA-CNT arrays with tailor-made hierarchical structures can be patterned and/or transferred onto various flexible substrates, including responsive polymers. This, together with recent advances in nanofabrication techniques, could offer 'smart' dry adhesives for various potential applications, even where traditional adhesives cannot be used. A detailed understanding of the underlying mechanisms governing the material properties and adhesion performances is critical to the design and fabrication of gecko inspired CNT dry adhesives of practical significance. In this feature article, we present an overview of recent progress in both fundamental and applied frontiers for the development of CNT-based adhesives by summarizing important studies in this exciting field, including our own work.

  1. Advanced gecko-foot-mimetic dry adhesives based on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hu, Shihao; Xia, Zhenhai; Dai, Liming

    2012-12-01

    Geckos can run freely on vertical walls and even ceilings. Recent studies have discovered that gecko's extraordinary climbing ability comes from a remarkable design of nature with nanoscale beta-keratin elastic hairs on their feet and toes, which collectively generate sufficiently strong van der Waals force to hold the animal onto an opposing surface while at the same time disengaging at will. Vertically aligned carbon nanotube (VA-CNT) arrays, resembling gecko's adhesive foot hairs with additional superior mechanical, chemical and electrical properties, have been demonstrated to be a promising candidate for advanced fibrillar dry adhesives. The VA-CNT arrays with tailor-made hierarchical structures can be patterned and/or transferred onto various flexible substrates, including responsive polymers. This, together with recent advances in nanofabrication techniques, could offer `smart' dry adhesives for various potential applications, even where traditional adhesives cannot be used. A detailed understanding of the underlying mechanisms governing the material properties and adhesion performances is critical to the design and fabrication of gecko inspired CNT dry adhesives of practical significance. In this feature article, we present an overview of recent progress in both fundamental and applied frontiers for the development of CNT-based adhesives by summarizing important studies in this exciting field, including our own work.

  2. Adhesion control by inflation: implications from biology to artificial attachment device

    NASA Astrophysics Data System (ADS)

    Dening, Kirstin; Heepe, Lars; Afferrante, Luciano; Carbone, Giuseppe; Gorb, Stanislav N.

    2014-08-01

    There is an increasing demand for materials that incorporate advanced adhesion properties, such as an ability to adhere in a reversible and controllable manner. In biological systems, these features are known from adhesive pads of the tree frog, Litoria caerulea, and the bush-cricket, Tettigonia viridissima. These species have convergently developed soft, hemispherically shaped pads that might be able to control their adhesion through active changing the curvature of the pad. Inspired by these biological systems, an artificial model system is developed here. It consists of an inflatable membrane clamped to the metallic cylinder and filled with air. Pull-off force measurements of the membrane surface were conducted in contact with the membrane at five different radii of curvature r c with (1) a smooth polyvinylsiloxane membrane and (2) mushroom-shaped adhesive microstructured membrane made of the same polymer. The hypothesis that an increased internal pressure, acting on the membrane, reduces the radius of the membrane curvature, resulting in turn in a lower pull-off force, is verified. Such an active control of adhesion, inspired by biological models, will lead to the development of industrial pick-and-drop devices with controllable adhesive properties.

  3. Rectangle-capped and tilted micropillar array for enhanced anisotropic anti-shearing in biomimetic adhesion

    PubMed Central

    Wang, Yue; Li, Xiangming; Tian, Hongmiao; Hu, Hong; Tian, Yu; Shao, Jinyou; Ding, Yucheng

    2015-01-01

    Dry adhesion observed in the feet of various small creatures has attracted considerable attention owing to the unique advantages such as self-cleaning, adaptability to rough surfaces along with repeatable and reversible adhesiveness. Among these advantages, for practical applications, proper detachability is critical for dry adhesives with artificial microstructures. In this study, we present a microstructured array consisting of both asymmetric rectangle-capped tip and tilted shafts, which produce an orthogonal anisotropy of the shearing strength along the long and short dimensions of the tip, with a maximum anti-shearing in the two directions along the longer dimension. Meanwhile, the tilt feature can enhance anisotropic shearing adhesion by increasing shearing strength in the forward shearing direction and decreasing strength in the reverse shearing direction along the short dimension of the tip, leading to a minimum anti-shearing in only one of the two directions along the shorter dimension of the rectangular tip. Such a microstructured adhesive with only one weak shearing direction, leading to well-controlled attachment and detachment of the adhesive, is created in our experiment by conventional double-sided exposure of a photoresist followed by a moulding process. PMID:25808338

  4. Reducing Ice Adhesion on Nonsmooth Metallic Surfaces: Wettability and Topography Effects.

    PubMed

    Ling, Edwin Jee Yang; Uong, Victor; Renault-Crispo, Jean-Sébastien; Kietzig, Anne-Marie; Servio, Phillip

    2016-04-06

    The effects of ice formation and accretion on external surfaces range from being mildly annoying to potentially life-threatening. Ice-shedding materials, which lower the adhesion strength of ice to its surface, have recently received renewed research attention as a means to circumvent the problem of icing. In this work, we investigate how surface wettability and surface topography influence the ice adhesion strength on three different surfaces: (i) superhydrophobic laser-inscribed square pillars on copper, (ii) stainless steel 316 Dutch-weave meshes, and (iii) multiwalled carbon nanotube-covered steel meshes. The finest stainless steel mesh displayed the best performance with a 93% decrease in ice adhesion relative to polished stainless steel, while the superhydrophobic square pillars exhibited an increase in ice adhesion by up to 67% relative to polished copper. Comparisons of dynamic contact angles revealed little correlation between surface wettability and ice adhesion. On the other hand, by considering the ice formation process and the fracture mechanics at the ice-substrate interface, we found that two competing mechanisms governing ice adhesion strength arise on nonplanar surfaces: (i) mechanical interlocking of the ice within the surface features that enhances adhesion, and (ii) formation of microcracks that act as interfacial stress concentrators, which reduce adhesion. Our analysis provides insight toward new approaches for the design of ice-releasing materials through the use of surface topographies that promote interfacial crack propagation.

  5. Use of phase-locking value in sensorimotor rhythm-based brain-computer interface: zero-phase coupling and effects of spatial filters.

    PubMed

    Jian, Wenjuan; Chen, Minyou; McFarland, Dennis J

    2017-11-01

    Phase-locking value (PLV) is a potentially useful feature in sensorimotor rhythm-based brain-computer interface (BCI). However, volume conduction may cause spurious zero-phase coupling between two EEG signals and it is not clear whether PLV effects are independent of spectral amplitude. Volume conduction might be reduced by spatial filtering, but it is uncertain what impact this might have on PLV. Therefore, the goal of this study was to explore whether zero-phase PLV is meaningful and how it is affected by spatial filtering. Both amplitude and PLV feature were extracted in the frequency band of 10-15 Hz by classical methods using archival EEG data of 18 subjects trained on a two-target BCI task. The results show that with right ear-referenced data, there is meaningful long-range zero-phase synchronization likely involving the primary motor area and the supplementary motor area that cannot be explained by volume conduction. Another novel finding is that the large Laplacian spatial filter enhances the amplitude feature but eliminates most of the phase information seen in ear-referenced data. A bipolar channel using phase-coupled areas also includes both phase and amplitude information and has a significant practical advantage since fewer channels required.

  6. Sulfur Impurities and the Microstructure of Alumina Scales

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1997-01-01

    The relationship between the microstructure of alumina scales, adhesion, and sulfur content was examined through a series of nickel alloys oxidized in 1100 to 1200 deg. C cyclic or isothermal exposures in air. In cyclic tests of undoped NiCrAl, adhesion was produced when the sulfur content was reduced, without any change in scale microstructure. Although interfacial voids were not observed in cyclic tests of NiCrAl, they were promoted by long-term isothermal exposures, by sulfur doping, and in most exposures of NiAl. Two single crystal superalloys, PWA 1480 and Rene' N5, were also tested, either in the as-received condition or after the sulfur content had been reduced to less than 1 ppmw by hydrogen annealing. The unannealed alloys always exhibited spalling to bare metal, but interfacial voids were not observed consistently. Desulfurized PWA 1480 and Rene' N5 exhibited remarkable adhesion and no voidage for either isothermal or cyclic exposures. The most consistent microstructural feature was that, for the cases where voids did form, the scale undersides exhibited corresponding areas with ridged oxide grain boundaries. Voids were not required for spallation nor were other microstructural features essential for adhesion. These observations are consistent with the model whereby scale spallation is controlled primarily by interfacial sulfur segregation and the consequent degradation of oxide-metal bonding.

  7. The surface protease ompT serves as Escherichia coli K1 adhesin in binding to human brain micro vascular endothelial cells.

    PubMed

    Wan, Lei; Guo, Yan; Hui, Chang-Ye; Liu, Xiao-Lu; Zhang, Wen-Bing; Cao, Hong; Cao, Hong

    2014-05-01

    Escherichia coli (E. coli) K1 is the most common bacteria that cause meningitis in the neonatal period. But it's not entirely clear about how E. coli crosses the blood-brain barrier. The features of the ompT deletion in meningitic E. coli infection were texted in vitro. In comparison with the parent strain, the isogenic ompT deletion mutant was significantly less adhesive to human brain microvascular endothelial cells (HBMEC). The adhesion-deficient phenotype of the mutant was restored to the level of the wild-type by complementing with low-level OmpT expression plasmid. Interestingly, the adhesion was enhanced by point mutation at the OmpT proposed catalytic residue D85. Compared with the poor adhesive activity of bovine serum albumin-coated fluorescent beads, recombinant OmpT or catalytically inactive variant of OmpT-coated beads bound to HBMEC monolayer effectively. Our study suggests that OmpT is important for bacterial adhesion while entering into central nervous system, and the adhesion does not involve in the proteolytic activity of OmpT.

  8. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S.; Set, Sze Y.

    2007-01-01

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  9. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers.

    PubMed

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S; Set, Sze Y

    2007-01-15

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  10. Instantaneous lineshape analysis of Fourier domain mode-locked lasers.

    PubMed

    Todor, Sebastian; Biedermann, Benjamin; Wieser, Wolfgang; Huber, Robert; Jirauschek, Christian

    2011-04-25

    We present a theoretical and experimental analysis of the instantaneous lineshape of Fourier domain mode-locked (FDML) lasers, yielding good agreement. The simulations are performed employing a recently introduced model for FDML operation. Linewidths around 10 GHz are found, which is significantly below the sweep filter bandwidth. The effect of detuning between the sweep filter drive frequency and cavity roundtrip time is studied revealing features that cannot be resolved in the experiment, and shifting of the instantaneous power spectrum against the sweep filter center frequency is analyzed. We show that, in contrast to most other semiconductor based lasers, the instantaneous linewidth is governed neither by external noise sources nor by amplified spontaneous emission, but it is directly determined by the complex FDML dynamics.

  11. Photocurrent characteristics of metal–AlGaN/GaN Schottky-on-heterojunction diodes induced by GaN interband excitation

    NASA Astrophysics Data System (ADS)

    Tang, Xi; Li, Baikui; Chen, Kevin J.; Wang, Jiannong

    2018-05-01

    The photocurrent characteristics of metal–AlGaN/GaN Schottky-on-heterojunction diodes were investigated. When the photon energy of incident light was larger than the bandgap of GaN but smaller than that of AlGaN, the alternating-current (ac) photocurrent measured using lock-in techniques increased with the chopper frequency. Analyzing the generation and flow processes of photocarriers revealed that the photocurrent induced by GaN interband excitation featured a transient behavior, and its direction reversed when the light excitation was removed. The abnormal dependence of the measured ac photocurrent magnitude on the chopper frequency was explained considering the detection principles of a lock-in amplifier.

  12. Archaeological Evaluation of Proposed Dredge Disposal Site, Lock and Dam Number 20, Adams County, Illinois.

    DTIC Science & Technology

    1987-03-01

    7 by William Green and J. Joseph Alford ARCHAEOLOGICAL AND HISTORICAL CONTEXT ................................................... 9 by...14 7 . Test trenching with paddlewbeel scraper ............................................................. 18 8. Feature...line); archaeological site boundaries (dotted lines) Numbers ore piece plot locations See figure 10 for Piece plots in enclosed ores 7 The field then

  13. Phase stability analysis of chirp evoked auditory brainstem responses by Gabor frame operators.

    PubMed

    Corona-Strauss, Farah I; Delb, Wolfgang; Schick, Bernhard; Strauss, Daniel J

    2009-12-01

    We have recently shown that click evoked auditory brainstem responses (ABRs) can be efficiently processed using a novelty detection paradigm. Here, ABRs as a large-scale reflection of a stimulus locked neuronal group synchronization at the brainstem level are detected as novel instance-novel as compared to the spontaneous activity which does not exhibit a regular stimulus locked synchronization. In this paper we propose for the first time Gabor frame operators as an efficient feature extraction technique for ABR single sweep sequences that is in line with this paradigm. In particular, we use this decomposition technique to derive the Gabor frame phase stability (GFPS) of sweep sequences of click and chirp evoked ABRs. We show that the GFPS of chirp evoked ABRs provides a stable discrimination of the spontaneous activity from stimulations above the hearing threshold with a small number of sweeps, even at low stimulation intensities. It is concluded that the GFPS analysis represents a robust feature extraction method for ABR single sweep sequences. Further studies are necessary to evaluate the value of the presented approach for clinical applications.

  14. WS2 mode-locked ultrafast fiber laser

    PubMed Central

    Mao, Dong; Wang, Yadong; Ma, Chaojie; Han, Lei; Jiang, Biqiang; Gan, Xuetao; Hua, Shijia; Zhang, Wending; Mei, Ting; Zhao, Jianlin

    2015-01-01

    Graphene-like two dimensional materials, such as WS2 and MoS2, are highly anisotropic layered compounds that have attracted growing interest from basic research to practical applications. Similar with MoS2, few-layer WS2 has remarkable physical properties. Here, we demonstrate for the first time that WS2 nanosheets exhibit ultrafast nonlinear saturable absorption property and high optical damage threshold. Soliton mode-locking operations are achieved separately in an erbium-doped fiber laser using two types of WS2-based saturable absorbers, one of which is fabricated by depositing WS2 nanosheets on a D-shaped fiber, while the other is synthesized by mixing WS2 solution with polyvinyl alcohol, and then evaporating them on a substrate. At the maximum pump power of 600 mW, two saturable absorbers can work stably at mode-locking state without damage, indicating that few-layer WS2 is a promising high-power flexible saturable absorber for ultrafast optics. Numerous applications may benefit from the ultrafast nonlinear features of WS2 nanosheets, such as high-power pulsed laser, materials processing, and frequency comb spectroscopy. PMID:25608729

  15. Evaluation of automated sample preparation, retention time locked gas chromatography-mass spectrometry and data analysis methods for the metabolomic study of Arabidopsis species.

    PubMed

    Gu, Qun; David, Frank; Lynen, Frédéric; Rumpel, Klaus; Dugardeyn, Jasper; Van Der Straeten, Dominique; Xu, Guowang; Sandra, Pat

    2011-05-27

    In this paper, automated sample preparation, retention time locked gas chromatography-mass spectrometry (GC-MS) and data analysis methods for the metabolomics study were evaluated. A miniaturized and automated derivatisation method using sequential oximation and silylation was applied to a polar extract of 4 types (2 types×2 ages) of Arabidopsis thaliana, a popular model organism often used in plant sciences and genetics. Automation of the derivatisation process offers excellent repeatability, and the time between sample preparation and analysis was short and constant, reducing artifact formation. Retention time locked (RTL) gas chromatography-mass spectrometry was used, resulting in reproducible retention times and GC-MS profiles. Two approaches were used for data analysis. XCMS followed by principal component analysis (approach 1) and AMDIS deconvolution combined with a commercially available program (Mass Profiler Professional) followed by principal component analysis (approach 2) were compared. Several features that were up- or down-regulated in the different types were detected. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars

    PubMed Central

    Hu, Yongyun; Yang, Jun

    2014-01-01

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere–ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an “eyeball.” For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs’ habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets. PMID:24379386

  17. Ratchet Effects, Negative Mobility, and Phase Locking for Skyrmions on Periodic Substrates

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles; Ray, Dipanjan; Olson Reichhardt, Cynthia

    We examine the dynamics of skyrmions interacting with 1D and 2D periodic substrates in the presence of dc and ac drives. We find that the Magnus term strongly affects the skyrmion dynamics and that new kinds of phenomena can occur which are absent for overdamped ac and dc driven particles interacting with similar substrates. We show that it is possible to realize a Magnus induced ratchet for skyrmions interacting with an asymmetric potential, where the application of an ac drive can produce quantized dc motion of the skyrmions even when the ac force is perpendicular to the substrate asymmetry direction. For symmetric substrates it is also possible to achieve a negative mobility effect where the net skyrmion motion runs counter to an applied dc drive. Here, as a function of increasing dc drive, the velocity-force curves show a series of locking phases that have different features from the classic Shapiro steps found in overdamped systems. In the phase locking and ratcheting states, the skyrmions undergo intricate 2D orbits induced by the Magnus term.

  18. Dynamics of a broad-band quantum cascade laser: from chaos to coherent dynamics and mode-locking

    NASA Astrophysics Data System (ADS)

    Columbo, L. L.; Barbieri, S.; Sirtori, C.; Brambilla, M.

    2018-02-01

    The dynamics of a multimode Quantum Cascade Laser, is studied in a model based on effective semiconductor Maxwell-Bloch equations, encompassing key features for the radiationmedium interaction such as an asymmetric, frequency dependent, gain and refractive index as well as the phase-amplitude coupling provided by the Henry factor. By considering the role of the free spectral range and Henry factor, we develop criteria suitable to identify the conditions which allow to destabilize, close to threshold, the traveling wave emitted by the laser and lead to chaotic or regular multimode dynamics. In the latter case our simulations show that the field oscillations are associated to self-confined structures which travel along the laser cavity, bridging mode-locking and solitary wave propagation. In addition, we show how a RF modulation of the bias current leads to active mode-locking yielding high-contrast, picosecond pulses. Our results compare well with recent experiments on broad-band THz-QCLs and may help understanding the conditions for the generation of ultrashort pulses and comb operation in Mid-IR and THz spectral regions

  19. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars.

    PubMed

    Hu, Yongyun; Yang, Jun

    2014-01-14

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere-ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an "eyeball." For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs' habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets.

  20. Fixation of osteoporotic fractures in the upper limb with a locking compression plate.

    PubMed

    Neuhaus, V; King, J D; Jupiter, J B

    2012-01-01

    Locking Compression Plate (LCP) has the advantageous feature that screws can be locked in the plate leaving an angular stable construct. There is no need to have contact between the plate and the bone to achieve stability resulting from friction of the plate-bone-construct. Therefore the plate does not need to be contoured exactly to the bone and the healing bone's periosteal blood supply is not affected. The LCP is used as a bridging plate to gain relative stability in multi-fragmentary, diaphyseal or metaphyseal fractures. Depending on the fracture, the combination hole can also allow the LCP to achieve absolute stability similar to conventional fixation techniques. Osteoporotic fractures have significant impact on morbidity and mortality. Proximal humeral and distal radius fractures are typical examples. These osteoporotic and often comminuted fractures are ideal settings/indications for LCP utilization in the upper extremity. However, the data quality is due to mostly small study populations not so powerful. Unquestionably there has been a clear and fashionable trend to choose operative treatment for these fractures, because the angular stability allows stable fixation and early functional mobilization.

  1. Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking

    PubMed Central

    Wang, Cheng; Schires, Kevin; Osiński, Marek; Poole, Philip J.; Grillot, Frédéric

    2016-01-01

    In semiconductor lasers, current injection not only provides the optical gain, but also induces variation of the refractive index, as governed by the Kramers-Krönig relation. The linear coupling between the changes of the effective refractive index and the modal gain is described by the linewidth broadening factor, which is responsible for many static and dynamic features of semiconductor lasers. Intensive efforts have been made to characterize this factor in the past three decades. In this paper, we propose a simple, flexible technique for measuring the linewidth broadening factor of semiconductor lasers. It relies on the stable optical injection locking of semiconductor lasers, and the linewidth broadening factor is extracted from the residual side-modes, which are supported by the amplified spontaneous emission. This new technique has great advantages of insensitivity to thermal effects, the bias current, and the choice of injection-locked mode. In addition, it does not require the explicit knowledge of optical injection conditions, including the injection strength and the frequency detuning. The standard deviation of the measurements is less than 15%. PMID:27302301

  2. Beneficial characteristics of mechanically functional amyloid fibrils evolutionarily preserved in natural adhesives

    NASA Astrophysics Data System (ADS)

    Mostaert, Anika S.; Jarvis, Suzanne P.

    2007-01-01

    While biological systems are notorious for their complexity, nature sometimes displays mechanisms that are elegant in their simplicity. We have recently identified such a mechanism at work to enhance the mechanical properties of certain natural adhesives. The mechanism is simple because it utilizes a non-specific protein folding and subsequent aggregation process, now thought to be generic for any polypeptide under appropriate conditions. This non-specific folding forms proteinaceous crossed β-sheet amyloid fibrils, which are usually associated with neurodegenerative diseases. Here we show evidence for the beneficial mechanical characteristics of these fibrils discovered in natural adhesives. We suggest that amyloid protein quaternary structures should be considered as a possible generic mechanism for mechanical strength in a range of natural adhesives and other natural materials due to their many beneficial mechanical features and apparent ease of self-assembly.

  3. The Hydrophobicity and Adhesion of Heterogeneous Surfaces of Dual Nanometer and Micron Scale Structures

    DTIC Science & Technology

    2011-04-11

    scale post geometry. superhydrophobic , surface modification, adhesion, contact angle, Cassie, Wenzel, PDMS, CYTOP, Teflon AF, roll-off angle U U U U SAR...width > 1, the micro-scale features dominated the wetting state regardless of the nano-scale post geometry., KEYWORDS superhydrophobic , surface... superhydrophobicity can be routinely found in nature. Fo~ example, many plant leaves1.2, bird feathers3, insect wings and insect legs4 take advantage of

  4. Crack growth monitoring at CFRP bond lines

    NASA Astrophysics Data System (ADS)

    Rahammer, M.; Adebahr, W.; Sachse, R.; Gröninger, S.; Kreutzbruck, M.

    2016-02-01

    With the growing need for lightweight technologies in aerospace and automotive industries, fibre-reinforced plastics, especially carbon-fibre (CFRP), are used with a continuously increasing annual growth rate. A promising joining technique for composites is adhesive bonding. While rivet holes destroy the fibres and cause stress concentration, adhesive bond lines distribute the load evenly. Today bonding is only used in secondary structures due to a lack of knowledge with regard to long-term predictability. In all industries, numerical simulation plays a critical part in the development process of new materials and structures, while it plays a vital role when it comes to CFRP adhesive bondings conducing the predictability of life time and damage tolerance. The critical issue with adhesive bondings is crack growth. In a dynamic tensile stress testing machine we dynamically load bonded CFRP coupon specimen and measure the growth rate of an artificially started crack in order to feed the models with the results. We also investigate the effect of mechanical crack stopping features. For observation of the bond line, we apply two non-contact NDT techniques: Air-coupled ultrasound in slanted transmission mode and active lockin-thermography evaluated at load frequencies. Both methods give promising results for detecting the current crack front location. While the ultrasonic technique provides a slightly higher accuracy, thermography has the advantage of true online monitoring, because the measurements are made while the cyclic load is being applied. The NDT methods are compared to visual inspection of the crack front at the specimen flanks and show high congruence. Furthermore, the effect of crack stopping features within the specimen on the crack growth is investigated. The results show, that not all crack fronts are perfectly horizontal, but all of them eventually come to a halt in the crack stopping feature vicinity.

  5. Adhesive and morphological characteristics of surface chemically modified polytetrafluoroethylene films

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Kresz, N.; Kokavecz, J.; Smausz, T.; Schieferdecker, H.; Döring, A.; Marti, O.; Bor, Z.

    2004-01-01

    In the present paper, we report an experimental determination of adhesive and topographic characteristics of chemically modified surface of polytetrafluoroethylene (PTFE) films. The surface chemistry was modified by ArF excimer laser irradiation in presence of triethylene-tetramine photoreagent. The applied laser fluence was varied in the range of 0.4-9 mJ/cm 2, and the number of laser pulses incident on the same area was 1500. To detect the changes in the adhesive features of the treated Teflon samples, we measured receding contact angle for distilled water and adhesion strength, respectively. It was found that the receding contact angle decreased from 96° to 30-37° and the adhesion strength of two-component epoxy glue to the treated sample surface increased from 0.03 to 9 MPa in the applied laser fluence range. Additionally, it was demonstrated that the adhesion of human cells to the modified Teflon samples is far better than to the untreated ones. The contact mode and pulsed force mode atomic force microscopic investigations of the treated samples demonstrated that the measured effective contact area of the irradiated films does not differ significantly from that of the original films, but the derived adhesion force is stronger on the modified samples than on the untreated ones. Hence, the increased adhesion of the treated Teflon films is caused by the higher surface energy.

  6. Old and sticky—adhesive mechanisms in the living fossil Nautilus pompilius (Mollusca, Cephalopoda)

    PubMed Central

    von Byern, Janek; Wani, Ryoji; Schwaha, Thomas; Grunwald, Ingo; Cyran, Norbert

    2012-01-01

    Nautiloidea is the oldest group within the cephalopoda, and modern Nautilus differs much in its outer morphology from all other recent species; its external shell and pinhole camera eye are the most prominent distinguishing characters. A further unique feature of Nautilus within the cephalopods is the lack of suckers or hooks on the tentacles. Instead, the animals use adhesive structures present on the digital tentacles. Earlier studies focused on the general tentacle morphology and put little attention on the adhesive gland system. Our results show that the epithelial parts on the oral adhesive ridge contain three secretory cell types (columnar, goblet, and cell type 1) that differ in shape and granule size. In the non-adhesive aboral epithelium, two glandular cell types (cell types 2 and 3) are present; these were not mentioned in any earlier study and differ from the cells in the adhesive area. The secretory material of all glandular cell types consists mainly of neutral mucopolysaccharide units, whereas one cell type in the non-adhesive epithelium also reacts positive for acidic mucopolysaccharides. The present data indicate that the glue in Nautilus consists mainly of neutral mucopolysaccharides. The glue seems to be a viscous carbohydrate gel, as known from another cephalopod species. De-attachment is apparently effectuated mechanically, i.e., by muscle contraction of the adhesive ridges and tentacle retraction. PMID:22221553

  7. Design and characterization of diclofenac diethylamine transdermal patch using silicone and acrylic adhesives combination.

    PubMed

    Panchaxari, Dandigi M; Pampana, Sowjanya; Pal, Tapas; Devabhaktuni, Bhavana; Aravapalli, Anil Kumar

    2013-01-07

    The objective of the study was to develop and characterize Diclofenac Diethylamine (DDEA) transdermal patch using Silicone and acrylic adhesives combination. Modified solvent evaporation method was employed for casting of film over Fluoropolymer coated polyester release liner. Initial studies included solubilization of drug in the polymers using solubilizers. The formulations with combination of adhesives were attempted to combine the desirable features of both the adhesives. The effect of the permeation enhancers on the drug permeation were studied using pig ear skin. All the optimized patches were subjected to adhesion, dissolution and stability studies. A 7-day skin irritancy test on albino rabbits and an in vivo anti-inflammatory study on wistar rats by carrageenan induced paw edema method were also performed. The results indicated the high percent drug permeation (% CDP-23.582) and low solubility nature (1%) of Silicone adhesive and high solubility (20%) and low% CDP (10.72%) of acrylic adhesive. The combination of adhesives showed desirable characteristics for DDEA permeation with adequate % CDP and sufficient solubility. Release profiles were found to be dependent on proportion of polymer and type of permeation enhancer. The anti-inflammatory study revealed the sustaining effect and high percentage inhibition of edema of C4/OLA (99.68%). The acute skin irritancy studies advocated the non-irritant nature of the adhesives used. It was concluded that an ideal of combination of adhesives would serve as the best choice, for fabrication of DDEA patches, for sustained effect of DDEA with better enhancement in permeation characteristics and robustness.

  8. Design and characterization of diclofenac diethylamine transdermal patch using silicone and acrylic adhesives combination

    PubMed Central

    2013-01-01

    Background and purpose of the study The objective of the study was to develop and characterize Diclofenac Diethylamine (DDEA) transdermal patch using Silicone and acrylic adhesives combination. Methods Modified solvent evaporation method was employed for casting of film over Fluoropolymer coated polyester release liner. Initial studies included solubilization of drug in the polymers using solubilizers. The formulations with combination of adhesives were attempted to combine the desirable features of both the adhesives. The effect of the permeation enhancers on the drug permeation were studied using pig ear skin. All the optimized patches were subjected to adhesion, dissolution and stability studies. A 7-day skin irritancy test on albino rabbits and an in vivo anti-inflammatory study on wistar rats by carrageenan induced paw edema method were also performed. Results The results indicated the high percent drug permeation (% CDP-23.582) and low solubility nature (1%) of Silicone adhesive and high solubility (20%) and low% CDP (10.72%) of acrylic adhesive. The combination of adhesives showed desirable characteristics for DDEA permeation with adequate % CDP and sufficient solubility. Release profiles were found to be dependent on proportion of polymer and type of permeation enhancer. The anti-inflammatory study revealed the sustaining effect and high percentage inhibition of edema of C4/OLA (99.68%). The acute skin irritancy studies advocated the non-irritant nature of the adhesives used. Conclusion It was concluded that an ideal of combination of adhesives would serve as the best choice, for fabrication of DDEA patches, for sustained effect of DDEA with better enhancement in permeation characteristics and robustness. PMID:23351568

  9. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy.

    PubMed

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis.

  10. Shapiro steps for skyrmion motion on a washboard potential with longitudinal and transverse ac drives

    DOE PAGES

    Reichhardt, Charles; Reichhardt, Cynthia Jane

    2015-12-28

    In this work, we numerically study the behavior of two-dimensional skyrmions in the presence of a quasi-one-dimensional sinusoidal substrate under the influence of externally applied dc and ac drives. In the overdamped limit, when both dc and ac drives are aligned in the longitudinal direction parallel to the direction of the substrate modulation, the velocity-force curves exhibit classic Shapiro step features when the frequency of the ac drive matches the washboard frequency that is dynamically generated by the motion of the skyrmions over the substrate, similar to previous observations in superconducting vortex systems. In the case of skyrmions, the additionalmore » contribution to the skyrmion motion from a nondissipative Magnus force shifts the location of the locking steps to higher dc drives, and we find that the skyrmions move at an angle with respect to the direction of the dc drive. For a longitudinal dc drive and a perpendicular or transverse ac drive, the overdamped system exhibits no Shapiro steps; however, when a finite Magnus force is present, we find pronounced transverse Shapiro steps along with complex two-dimensional periodic orbits of the skyrmions in the phase-locked regimes. Both the longitudinal and transverse ac drives produce locking steps whose widths oscillate with increasing ac drive amplitude. We examine the role of collective skyrmion interactions and find that additional fractional locking steps occur for both longitudinal and transverse ac drives. Finally, at higher skyrmion densities, the system undergoes a series of dynamical order-disorder transitions, with the skyrmions forming a moving solid on the phase locking steps and a fluctuating dynamical liquid in regimes between the steps.« less

  11. A bifurcation study to guide the design of a landing gear with a combined uplock/downlock mechanism.

    PubMed

    Knowles, James A C; Lowenberg, Mark H; Neild, Simon A; Krauskopf, Bernd

    2014-12-08

    This paper discusses the insights that a bifurcation analysis can provide when designing mechanisms. A model, in the form of a set of coupled steady-state equations, can be derived to describe the mechanism. Solutions to this model can be traced through the mechanism's state versus parameter space via numerical continuation, under the simultaneous variation of one or more parameters. With this approach, crucial features in the response surface, such as bifurcation points, can be identified. By numerically continuing these points in the appropriate parameter space, the resulting bifurcation diagram can be used to guide parameter selection and optimization. In this paper, we demonstrate the potential of this technique by considering an aircraft nose landing gear, with a novel locking strategy that uses a combined uplock/downlock mechanism. The landing gear is locked when in the retracted or deployed states. Transitions between these locked states and the unlocked state (where the landing gear is a mechanism) are shown to depend upon the positions of two fold point bifurcations. By performing a two-parameter continuation, the critical points are traced to identify operational boundaries. Following the variation of the fold points through parameter space, a minimum spring stiffness is identified that enables the landing gear to be locked in the retracted state. The bifurcation analysis also shows that the unlocking of a retracted landing gear should use an unlock force measure, rather than a position indicator, to de-couple the effects of the retraction and locking actuators. Overall, the study demonstrates that bifurcation analysis can enhance the understanding of the influence of design choices over a wide operating range where nonlinearity is significant.

  12. A bifurcation study to guide the design of a landing gear with a combined uplock/downlock mechanism

    PubMed Central

    Knowles, James A. C.; Lowenberg, Mark H.; Neild, Simon A.; Krauskopf, Bernd

    2014-01-01

    This paper discusses the insights that a bifurcation analysis can provide when designing mechanisms. A model, in the form of a set of coupled steady-state equations, can be derived to describe the mechanism. Solutions to this model can be traced through the mechanism's state versus parameter space via numerical continuation, under the simultaneous variation of one or more parameters. With this approach, crucial features in the response surface, such as bifurcation points, can be identified. By numerically continuing these points in the appropriate parameter space, the resulting bifurcation diagram can be used to guide parameter selection and optimization. In this paper, we demonstrate the potential of this technique by considering an aircraft nose landing gear, with a novel locking strategy that uses a combined uplock/downlock mechanism. The landing gear is locked when in the retracted or deployed states. Transitions between these locked states and the unlocked state (where the landing gear is a mechanism) are shown to depend upon the positions of two fold point bifurcations. By performing a two-parameter continuation, the critical points are traced to identify operational boundaries. Following the variation of the fold points through parameter space, a minimum spring stiffness is identified that enables the landing gear to be locked in the retracted state. The bifurcation analysis also shows that the unlocking of a retracted landing gear should use an unlock force measure, rather than a position indicator, to de-couple the effects of the retraction and locking actuators. Overall, the study demonstrates that bifurcation analysis can enhance the understanding of the influence of design choices over a wide operating range where nonlinearity is significant. PMID:25484601

  13. Fabrication of Titanium Bonded Joint Specimens for High Temperature Testing

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Kovach, Michael P.; Hudson, Wanda

    2005-01-01

    Four sets of adhesively bonded, titanium lap-shear coupon specimens were fabricated for ultimate strength testing according to the ASTM D1002 and D3165 standards. Important features of the fabrication methods, processing details, and lap-shear test results are presented for specimens fabricated using a modified bismaleimide adhesive, EA 9673, on titanium. Surface treatment of the titanium was performed using surface abrasion followed by one of two separate chemical etching processes. Although cure cycle requirements are different among most adhesives, a single surface preparation method was sought as the preferred method for conditioning the titanium specimens prior to bonding and curing. A fabrication process using a combination of low-pressure grit-blasting of the titanium surface followed by anodization with a sodium hydroxide solution applied to the D1002 specimen geometry provided the highest lapshear strengths in the study. Additionally, difficulties documented during the fabrication process of the D3165 specimens along with features of the D3165 geometry were identified as factors that contributed to lower lap-shear strength results for the D3165 specimens as compared to the results for the D1002 specimens.

  14. Dynamic pattern of endothelial cell adhesion molecule expression in muscle and perineural vessels from patients with classic polyarteritis nodosa.

    PubMed

    Coll-Vinent, B; Cebrián, M; Cid, M C; Font, C; Esparza, J; Juan, M; Yagüe, J; Urbano-Márquez, A; Grau, J M

    1998-03-01

    To investigate endothelial cell adhesion molecule expression in vessels from patients with classic polyarteritis nodosa (PAN). Frozen sections of 21 muscle and 16 nerve samples from 30 patients with biopsy-proven PAN and 12 histologically normal muscle and 2 histologically normal nerve samples from 12 controls were studied immunohistochemically, using specific monoclonal antibodies (MAb) that recognize adhesion molecules. Adhesion molecules identified were intercellular adhesion molecule 1 (ICAM-1), ICAM-2, ICAM-3, vascular cell adhesion molecule 1 (VCAM-1), platelet endothelial cell adhesion molecule 1 (PECAM-1), E-selectin, P-selectin, L-selectin, lymphocyte function-associated antigen 1 (LFA-1), and very late activation antigen 4 (VLA-4). Neutrophils were identified with a MAb recognizing neutrophil elastase. Endothelial cells were identified with the lectin ulex europaeus. In early lesions, expression of PECAM-1, ICAM-1, ICAM-2, and P-selectin was similar to that in control samples, and VCAM-1 and E-selectin were induced in vascular endothelium. In advanced lesions, immunostaining for adhesion molecules diminished or disappeared in luminal endothelium, whereas these molecules were clearly expressed in microvessels within and surrounding inflamed vessels. Staining in endothelia from vessels in a healing stage tended to be negative. A high proportion of infiltrating leukocytes expressed LFA-1 and VLA-4, and only a minority expressed L-selectin. No relationship between the expression pattern of adhesion molecules and clinical features, disease duration, or previous corticosteroid treatment was observed. Endothelial adhesion molecule expression in PAN is a dynamic process that varies according to the histopathologic stage of the vascular lesions. The preferential expression of constitutive and inducible adhesion molecules in microvessels suggests that angiogenesis contributes to the persistence of inflammatory infiltration in PAN.

  15. Design and performance of the LCLS cavity BPM system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lill, R.; Norum, E.; Morrison, L.

    2008-01-01

    In this paper we present the design of the beam position monitor (BPM) system for the LCLS undulator, which features a high-resolution X-band cavity BPM. Each BPM has a TM{sub 010} monopole reference cavity and a TM{sub 110} dipole cavity designed to operate at a center frequency of 11.384 GHz. The signal processing electronics features a low- noise single-stage three-channel heterodyne receiver that has selectable gain and a phase locking local oscillator. We will discuss the system specifications, design, and prototype test results.

  16. Design and Performance of the LCLS Cavity BPM System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lill, R.M.; Morrison, L.H.; Norum, W.E.

    2008-01-23

    In this paper we present the design of the beam position monitor (BPM) system for the LCLS undulator, which features a high-resolution X-band cavity BPM. Each BPM has a TM{sub 010} monopole reference cavity and a TM{sub 110} dipole cavity designed to operate at a center frequency of 11.384 GHz. The signal processing electronics features a low noise single-stage three-channel heterodyne receiver that has selectable gain and a phase locking local oscillator. We will discuss the system specifications, design, and prototype test results.

  17. Highly Anisotropic Adhesive Film Made from Upside-Down, Flat, and Uniform Vertically Aligned CNTs.

    PubMed

    Hong, Sanghyun; Lundstrom, Troy; Ghosh, Ranajay; Abdi, Hamed; Hao, Ji; Jeoung, Sun Kyoung; Su, Paul; Suhr, Jonghwan; Vaziri, Ashkan; Jalili, Nader; Jung, Yung Joon

    2016-12-14

    We have created a multifunctional dry adhesive film with transferred vertically aligned carbon nanotubes (VA-CNTs). This unique VA-CNT film was fabricated by a multistep transfer process, converting the flat and uniform bottom of VA-CNTs grown on atomically flat silicon wafer substrates into the top surface of an adhesive layer. Unlike as-grown VA-CNTs, which have a nonuniform surface, randomly entangled CNT arrays, and a weak interface between the CNTs and substrates, this transferred VA-CNT film shows an extremely high coefficient of static friction (COF) of up to 60 and a shear adhesion force 30 times higher (12 N/cm 2 ) than that of the as-grown VA-CNTs under a very small preloading of 0.2 N/cm 2 . Moreover, a near-zero normal adhesion force was observed with 20 mN/cm 2 preloading and a maximum 100-μm displacement in a piezo scanner, demonstrating ideal properties for an artificial gecko foot. Using this unique structural feature and anisotropic adhesion properties, we also demonstrate effective removal and assembly of nanoparticles into organized micrometer-scale circular and line patterns by a single brushing of this flat and uniform VA-CNT film.

  18. Influence of Surface Properties on the Adhesion of Staphylococcus epidermidis to Acrylic and Silicone

    PubMed Central

    Sousa, Cláudia; Teixeira, Pilar; Oliveira, Rosário

    2009-01-01

    The aim of the present study was to compare the ability of eight Staphylococcus epidermidis strains to adhere to acrylic and silicone, two polymers normally used in medical devices manufacture. Furthermore, it was tried to correlate that with the surface properties of substrata and cells. Therefore, hydrophobicity and surface tension components were calculated through contact angle measurements. Surface roughness of substrata was also assessed by atomic force microscopy (AFM). No relationship was found between microbial surface hydrophobicity and adhesion capability. Nevertheless, Staphylococcus epidermidis IE214 showed very unique adhesion behaviour, with cells highly aggregated between them, which is a consequence of their specific surface features. All strains, determined as being hydrophilic, adhered at a higher extent to silicone than to acrylic, most likely due to its more hydrophobic character and higher roughness. This demonstrates the importance of biomaterial surface characteristics for bacterial adhesion. PMID:20126579

  19. Coherent radio-frequency detection for narrowband direct comb spectroscopy.

    PubMed

    Anstie, James D; Perrella, Christopher; Light, Philip S; Luiten, Andre N

    2016-02-22

    We demonstrate a scheme for coherent narrowband direct optical frequency comb spectroscopy. An extended cavity diode laser is injection locked to a single mode of an optical frequency comb, frequency shifted, and used as a local oscillator to optically down-mix the interrogating comb on a fast photodetector. The high spectral coherence of the injection lock generates a microwave frequency comb at the output of the photodiode with very narrow features, enabling spectral information to be further down-mixed to RF frequencies, allowing optical transmittance and phase to be obtained using electronics commonly found in the lab. We demonstrate two methods for achieving this step: a serial mode-by-mode approach and a parallel dual-comb approach, with the Cs D1 transition at 894 nm as a test case.

  20. Identifying seizure onset zone from electrocorticographic recordings: A machine learning approach based on phase locking value.

    PubMed

    Elahian, Bahareh; Yeasin, Mohammed; Mudigoudar, Basanagoud; Wheless, James W; Babajani-Feremi, Abbas

    2017-10-01

    Using a novel technique based on phase locking value (PLV), we investigated the potential for features extracted from electrocorticographic (ECoG) recordings to serve as biomarkers to identify the seizure onset zone (SOZ). We computed the PLV between the phase of the amplitude of high gamma activity (80-150Hz) and the phase of lower frequency rhythms (4-30Hz) from ECoG recordings obtained from 10 patients with epilepsy (21 seizures). We extracted five features from the PLV and used a machine learning approach based on logistic regression to build a model that classifies electrodes as SOZ or non-SOZ. More than 96% of electrodes identified as the SOZ by our algorithm were within the resected area in six seizure-free patients. In four non-seizure-free patients, more than 31% of the identified SOZ electrodes by our algorithm were outside the resected area. In addition, we observed that the seizure outcome in non-seizure-free patients correlated with the number of non-resected SOZ electrodes identified by our algorithm. This machine learning approach, based on features extracted from the PLV, effectively identified electrodes within the SOZ. The approach has the potential to assist clinicians in surgical decision-making when pre-surgical intracranial recordings are utilized. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  1. EEG based zero-phase phase-locking value (PLV) and effects of spatial filtering during actual movement.

    PubMed

    Jian, Wenjuan; Chen, Minyou; McFarland, Dennis J

    2017-04-01

    Phase-locking value (PLV) is a well-known feature in sensorimotor rhythm (SMR) based BCI. Zero-phase PLV has not been explored because it is generally regarded as the result of volume conduction. Because spatial filters are often used to enhance the amplitude (square root of band power (BP)) feature and attenuate volume conduction, they are frequently applied as pre-processing methods when computing PLV. However, the effects of spatial filtering on PLV are ambiguous. Therefore, this article aims to explore whether zero-phase PLV is meaningful and how this is influenced by spatial filtering. Based on archival EEG data of left and right hand movement tasks for 32 subjects, we compared BP and PLV feature using data with and without pre-processing by a large Laplacian. Results showed that using ear-referenced data, zero-phase PLV provided unique information independent of BP for task prediction which was not explained by volume conduction and was significantly decreased when a large Laplacian was applied. In other words, the large Laplacian eliminated the useful information in zero-phase PLV for task prediction suggesting that it contains effects of both amplitude and phase. Therefore, zero-phase PLV may have functional significance beyond volume conduction. The interpretation of spatial filtering may be complicated by effects of phase. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A postoperative anti-adhesion barrier based on photoinduced imine-crosslinking hydrogel with tissue-adhesive ability.

    PubMed

    Yang, Yunlong; Liu, Xiaolin; Li, Yan; Wang, Yang; Bao, Chunyan; Chen, Yunfeng; Lin, Qiuning; Zhu, Linyong

    2017-10-15

    Postoperative adhesion is a serious complication that can further lead to morbidity and/or mortality. Polymer anti-adhesion barrier material provides an effective precaution to reduce the probability of postoperative adhesion. Clinical application requires these materials to be easily handled, biocompatible, biodegradable, and most importantly tissue adherent to provide target sites with reliable isolation. However, currently there is nearly no polymer barrier material that can fully satisfy these requirements. In this study, based on the photoinduced imine-crosslinking (PIC) reaction, we had developed a photo-crosslinking hydrogel (CNG hydrogel) that composed of o-nitrobenzyl alcohol (NB) modified carboxymethyl cellulose (CMC-NB) and glycol chitosan (GC) as an anti-adhesion barrier material. Under light irradiation, CMC-NB generated aldehyde groups which subsequently reacted with amino groups distributed on GC or tissue surface to form a hydrogel barrier that covalently attached to tissue surface. Rheological analysis demonstrated that CNG hydrogel (30mg/mL polymer content) could be formed in 30s upon light irradiation. Tissue adhesive tests showed that the tissue adhesive strength of CNG hydrogel (30mg/mL) was about 8.32kPa-24.65kPa which increased with increasing CMC-NB content in CNG hydrogel. Toxicity evaluation by L929 cells demonstrated that CNG hydrogel was cytocompatible. Furthermore, sidewall defect-cecum abrasion model of rat was employed to evaluate the postoperative anti-adhesion efficacy of CNG hydrogel. And a significantly reduction of tissue adhesion (20% samples with low score adhesion) was found in CNG hydrogel treated group, compared with control group (100% samples with high score adhesion). In addition, CNG hydrogel could be degraded in nearly 14days and showed no side effect on wound healing. These findings indicated that CNG hydrogel can effectively expanded the clinical treatments of postoperative tissue adhesion. In this study, a tissue adhesive photo-crosslinking hydrogel (CNG) was developed based on photo-induced imine crosslinking reaction (PIC) for postoperative anti-adhesion. CNG hydrogel showed the features of easy and convenient operation, fast and controllable gelation, suitable gel strength, good biocompatibility, and most importantly strong tissue adhesiveness. Therefore, it shows very high performance to prevent postoperative tissue adhesion. Overall, our study provides a more suitable hydrogel barrier material that can overcome the shortcomings of current barriers for clinical postoperative anti-adhesion. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Wavelet Imaging on Multiple Scales (WIMS) reveals focal adhesion distributions, dynamics and coupling between actomyosin bundle stability

    PubMed Central

    Toplak, Tim; Palmieri, Benoit; Juanes-García, Alba; Vicente-Manzanares, Miguel; Grant, Martin; Wiseman, Paul W.

    2017-01-01

    We introduce and use Wavelet Imaging on Multiple Scales (WIMS) as an improvement to fluorescence correlation spectroscopy to measure physical processes and features that occur across multiple length scales. In this study, wavelet transforms of cell images are used to characterize molecular dynamics at the cellular and subcellular levels (i.e. focal adhesions). We show the usefulness of the technique by applying WIMS to an image time series of a migrating osteosarcoma cell expressing fluorescently labelled adhesion proteins, which allows us to characterize different components of the cell ranging from optical resolution scale through to focal adhesion and whole cell size scales. Using WIMS we measured focal adhesion numbers, orientation and cell boundary velocities for retraction and protrusion. We also determine the internal dynamics of individual focal adhesions undergoing assembly, disassembly or elongation. Thus confirming as previously shown, WIMS reveals that the number of adhesions and the area of the protruding region of the cell are strongly correlated, establishing a correlation between protrusion size and adhesion dynamics. We also apply this technique to characterize the behavior of adhesions, actin and myosin in Chinese hamster ovary cells expressing a mutant form of myosin IIB (1935D) that displays decreased filament stability and impairs front-back cell polarity. We find separate populations of actin and myosin at each adhesion pole for both the mutant and wild type form. However, we find these populations move rapidly inwards toward one another in the mutant case in contrast to the cells that express wild type myosin IIB where those populations remain stationary. Results obtained with these two systems demonstrate how WIMS has the potential to reveal novel correlations between chosen parameters that belong to different scales. PMID:29049414

  4. Effect of EDTA and phosphoric Acid pretreatment on the bonding effectiveness of self-etch adhesives to ground enamel.

    PubMed

    Ibrahim, Ihab M; Elkassas, Dina W; Yousry, Mai M

    2010-10-01

    This in vitro study determined the effect of enamel pretreatment with phosphoric acid and ethylenediaminetetraacetic acid (EDTA) on the bond strength of strong, intermediary strong, and mild self-etching adhesive systems. Ninety sound human premolars were used. Resin composite cylinders were bonded to flat ground enamel surfaces using three self-etching adhesive systems: strong Adper Prompt L-Pop (pH=0.9-1.0), intermediary strong AdheSE (pH=1.6-1.7), and mild Frog (pH=2). Adhesive systems were applied either according to manufacturer instructions (control) or after pretreatment with either phosphoric acid or EDTA (n=10). After 24 hours, shear bond strength was tested using a universal testing machine at a cross-head speed of 0.5 mm/minute. Ultra-morphological characterization of the surface topography and resin/enamel interfaces as well as representative fractured enamel specimens were examined using scanning electron microscopy (SEM). Neither surface pretreatment statistically increased the mean shear bond strength values of either the strong or the intermediary strong self-etching adhesive systems. However, phosphoric acid pretreatment significantly increased the mean shear bond strength values of the mild self-etching adhesive system. SEM examination of enamel surface topography showed that phosphoric acid pretreatment deepened the same etching pattern of the strong and intermediary strong adhesive systems but converted the irregular etching pattern of the mild self-etching adhesive system to a regular etching pattern. SEM examination of the resin/enamel interface revealed that deepening of the etching pattern was consistent with increase in the length of resin tags. EDTA pretreatment had a negligible effect on ultra-morphological features. Use of phosphoric acid pretreatment can be beneficial with mild self-etching adhesive systems for bonding to enamel.

  5. Effect of EDTA and Phosphoric Acid Pretreatment on the Bonding Effectiveness of Self-Etch Adhesives to Ground Enamel

    PubMed Central

    Ibrahim, Ihab M.; Elkassas, Dina W.; Yousry, Mai M.

    2010-01-01

    Objectives: This in vitro study determined the effect of enamel pretreatment with phosphoric acid and ethylenediaminetetraacetic acid (EDTA) on the bond strength of strong, intermediary strong, and mild self-etching adhesive systems. Methods: Ninety sound human premolars were used. Resin composite cylinders were bonded to flat ground enamel surfaces using three self-etching adhesive systems: strong Adper Prompt L-Pop (pH=0.9–1.0), intermediary strong AdheSE (pH=1.6–1.7), and mild Frog (pH=2). Adhesive systems were applied either according to manufacturer instructions (control) or after pretreatment with either phosphoric acid or EDTA (n=10). After 24 hours, shear bond strength was tested using a universal testing machine at a cross-head speed of 0.5 mm/minute. Ultra-morphological characterization of the surface topography and resin/enamel interfaces as well as representative fractured enamel specimens were examined using scanning electron microscopy (SEM). Results: Neither surface pretreatment statistically increased the mean shear bond strength values of either the strong or the intermediary strong self-etching adhesive systems. However, phosphoric acid pretreatment significantly increased the mean shear bond strength values of the mild self-etching adhesive system. SEM examination of enamel surface topography showed that phosphoric acid pretreatment deepened the same etching pattern of the strong and intermediary strong adhesive systems but converted the irregular etching pattern of the mild self-etching adhesive system to a regular etching pattern. SEM examination of the resin/enamel interface revealed that deepening of the etching pattern was consistent with increase in the length of resin tags. EDTA pretreatment had a negligible effect on ultra-morphological features. Conclusions: Use of phosphoric acid pretreatment can be beneficial with mild self-etching adhesive systems for bonding to enamel. PMID:20922162

  6. Emergence of the interplay between hierarchy and contact splitting in biological adhesion highlighted through a hierarchical shear lag model.

    PubMed

    Brely, Lucas; Bosia, Federico; Pugno, Nicola M

    2018-06-20

    Contact unit size reduction is a widely studied mechanism as a means to improve adhesion in natural fibrillar systems, such as those observed in beetles or geckos. However, these animals also display complex structural features in the way the contact is subdivided in a hierarchical manner. Here, we study the influence of hierarchical fibrillar architectures on the load distribution over the contact elements of the adhesive system, and the corresponding delamination behaviour. We present an analytical model to derive the load distribution in a fibrillar system loaded in shear, including hierarchical splitting of contacts, i.e. a "hierarchical shear-lag" model that generalizes the well-known shear-lag model used in mechanics. The influence on the detachment process is investigated introducing a numerical procedure that allows the derivation of the maximum delamination force as a function of the considered geometry, including statistical variability of local adhesive energy. Our study suggests that contact splitting generates improved adhesion only in the ideal case of extremely compliant contacts. In real cases, to produce efficient adhesive performance, contact splitting needs to be coupled with hierarchical architectures to counterbalance high load concentrations resulting from contact unit size reduction, generating multiple delamination fronts and helping to avoid detrimental non-uniform load distributions. We show that these results can be summarized in a generalized adhesion scaling scheme for hierarchical structures, proving the beneficial effect of multiple hierarchical levels. The model can thus be used to predict the adhesive performance of hierarchical adhesive structures, as well as the mechanical behaviour of composite materials with hierarchical reinforcements.

  7. Effect of various features on the life cycle cost of the timing/synchronization subsystem of the DCS digital communications network

    NASA Technical Reports Server (NTRS)

    Kimsey, D. B.

    1978-01-01

    The effect on the life cycle cost of the timing subsystem was examined, when these optional features were included in various combinations. The features included mutual control, directed control, double-ended reference links, independence of clock error measurement and correction, phase reference combining, self-organization, smoothing for link and nodal dropouts, unequal reference weightings, and a master in a mutual control network. An overall design of a microprocessor-based timing subsystem was formulated. The microprocessor (8080) implements the digital filter portion of a digital phase locked loop, as well as other control functions such as organization of the network through communication with processors at neighboring nodes.

  8. Does active application of universal adhesives to enamel in self-etch mode improve their performance?

    PubMed

    Loguercio, Alessandro D; Muñoz, Miguel Angel; Luque-Martinez, Issis; Hass, Viviane; Reis, Alessandra; Perdigão, Jorge

    2015-09-01

    To evaluate the effect of adhesion strategy on the enamel microshear bond strengths (μSBS), etching pattern, and in situ degree of conversion (DC) of seven universal adhesives. 84 extracted third molars were sectioned in four parts (buccal, lingual, proximal) and divided into 21 groups, according to the combination of the main factors adhesive (AdheSE Universal [ADU], All-Bond Universal [ABU], Clearfil Universal [CFU], Futurabond U [FBU], G-Bond Plus [GBP], Prime&Bond Elect (PBE), and Scotchbond Universal Adhesive [SBU]), and adhesion strategy (etch-and-rinse, active self-etch, and passive self-etch). Specimens were stored in water (37°C/24h) and tested at 1.0mm/min (μSBS). Enamel-resin interfaces were evaluated for DC using micro-Raman spectroscopy. The enamel-etching pattern was evaluated under a field-emission scanning electron microscope (direct and replica techniques). Data were analyzed with two-way ANOVA and Tukey's test (α=0.05). Active self-etch application increased μSBS and DC for five out of the seven universal adhesives when compared to passive application (p<0.001). A deeper enamel-etching pattern was observed for all universal adhesives in the etch-and-rinse strategy. A slight improvement in etching ability was observed in active self-etch application compared to that of passive self-etch application. Replicas of GBP and PBE applied in active self-etch mode displayed morphological features compatible with water droplets. The DC of GBP and PBE were not affected by the application/strategy mode. In light of the improved performance of universal adhesives when applied actively in SE mode, selective enamel etching with phosphoric acid may not be crucial for their adhesion to enamel. The active application of universal adhesives in self-etch mode may be a practical alternative to enamel etching in specific clinical situations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Tuning Wettability and Adhesion of Structured Surfaces

    NASA Astrophysics Data System (ADS)

    Badge, Ila

    Structured surfaces with feature size ranging from a few micrometers down to nanometers are of great interest in the applications such as design of anti-wetting surfaces, tissue engineering, microfluidics, filtration, microelectronic devices, anti-reflective coatings and reversible adhesives. A specific surface property demands particular roughness geometry along with suitable surface chemistry. Plasma Enhanced Chemical Vapor Deposition (PECVD) is a technique that offers control over surface chemistry without significantly affecting the roughness and thus, provides a flexibility to alter surface chemistry selectively for a given structured surface. In this study, we have used PECVD to fine tune wetting and adhesion properties. The research presented focuses on material design aspects as well as the fundamental understanding of wetting and adhesion phenomena of structured surfaces. In order to study the effect of surface roughness and surface chemistry on the surface wettability independently, we developed a model surface by combination of colloidal lithography and PECVD. A systematically controlled hierarchical roughness using spherical colloidal particles and surface chemistry allowed for quantitative prediction of contact angles corresponding to metastable and stable wetting states. A well-defined roughness and chemical composition of the surface enabled establishing a correlation between theory predictions and experimental measurements. We developed an extremely robust superhydrophobic surface based on Carbon-Nanotubes (CNT) mats. The surface of CNTs forming a nano-porous mesh was modified using PECVD to deposit a layer of hydrophobic coating (PCNT). The PCNT surface thus formed is superhydrophobic with almost zero contact angle hysteresis. We demonstrated that the PCNT surface is not wetted under steam condensation even after prolonged exposure and also continues to retain its superhydrophobicity after multiple frosting-defrosting cycles. The anti-wetting behavior of PCNT surface is consistent with our model predictions, derived based on thermodynamic theory of wetting. The surface of gecko feet is a very unique natural structured surface. The hierarchical surface structure of a Gecko toe pad is responsible for its reversible adhesive properties and superhydrophobicity. van der Waals interactions is known to be the key mechanism behind Gecko adhesion. However, we found that the wettability, thus the surface chemistry plays a significant role in Gecko adhesion mechanism, especially in the case of underwater adhesion. We used PECVD process to deposit a layer of coating with known chemistry on the surface of sheds of gecko toes to study the effect that wettability of the toe surface has on its adhesion. In summary, we demonstrated that PECVD can be effectively used as means of surface chemistry control for tunable structure-property relationship of three types of structured surfaces; each having unique surface features.

  10. Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces.

    PubMed

    Brun, Paola; Scorzeto, Michele; Vassanelli, Stefano; Castagliuolo, Ignazio; Palù, Giorgio; Ghezzo, Francesca; Messina, Grazia M L; Iucci, Giovanna; Battaglia, Valentina; Sivolella, Stefano; Bagno, Andrea; Polzonetti, Giovanni; Marletta, Giovanni; Dettin, Monica

    2013-04-01

    The features of implant devices and the reactions of bone-derived cells to foreign surfaces determine implant success during osseointegration. In an attempt to better understand the mechanisms underlying osteoblasts attachment and spreading, in this study adhesive peptides containing the fibronectin sequence motif for integrin binding (Arg-Gly-Asp, RGD) or mapping the human vitronectin protein (HVP) were grafted on glass and titanium surfaces with or without chemically induced controlled immobilization. As shown by total internal reflection fluorescence microscopy, human osteoblasts develop adhesion patches only on specifically immobilized peptides. Indeed, cells quickly develop focal adhesions on RGD-grafted surfaces, while HVP peptide promotes filopodia, structures involved in cellular spreading. As indicated by immunocytochemistry and quantitative polymerase chain reaction, focal adhesions kinase activation is delayed on HVP peptides with respect to RGD while an osteogenic phenotypic response appears within 24h on osteoblasts cultured on both peptides. Cellular pathways underlying osteoblasts attachment are, however, different. As demonstrated by adhesion blocking assays, integrins are mainly involved in osteoblast adhesion to RGD peptide, while HVP selects osteoblasts for attachment through proteoglycan-mediated interactions. Thus an interfacial layer of an endosseous device grafted with specifically immobilized HVP peptide not only selects the attachment and supports differentiation of osteoblasts but also promotes cellular migration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Adhesion mechanisms on solar glass: Effects of relative humidity, surface roughness, and particle shape and size

    DOE PAGES

    Moutinho, Helio R.; Jiang, Cun -Sheng; To, Bobby; ...

    2017-07-27

    To better understand and quantify soiling rates on solar panels, we are investigating the adhesion mechanisms between dust particles and solar glass. In this work, we report on two of the fundamental adhesion mechanisms: van der Waals and capillary adhesion forces. The adhesion was determined using force versus distance (F-z) measurements performed with an atomic force microscope (AFM). To emulate dust interacting with the front surface of a solar panel, we measured how oxidized AFM tips, SiO 2 glass spheres, and real dust particles adhered to actual solar glass. The van der Waals forces were evaluated by measurements performed withmore » zero relative humidity in a glove box, and the capillary forces were measured in a stable environment created inside the AFM enclosure with relative humidity values ranging from 18% to 80%. To simulate topographic features of the solar panels caused by factors such as cleaning and abrasion, we induced different degrees of surface roughness in the solar glass. As a result, we were able to 1) identify and quantify both the van der Waals and capillary forces, 2) establish the effects of surface roughness, relative humidity, and particle size on the adhesion mechanisms, and 3) compare adhesion forces between well-controlled particles (AFM tips and glass spheres) and real dust particles.« less

  12. Chemical characterization and immunomodulatory properties of polysaccharides isolated from probiotic Lactobacillus casei LOCK 0919

    PubMed Central

    Górska, Sabina; Hermanova, Petra; Ciekot, Jarosław; Schwarzer, Martin; Srutkova, Dagmar; Brzozowska, Ewa; Kozakova, Hana; Gamian, Andrzej

    2016-01-01

    The Lactobacillus casei strain, LOCK 0919, is intended for the dietary management of food allergies and atopic dermatitis (LATOPIC® BIOMED). The use of a probiotic to modulate immune responses is an interesting strategy for solving imbalance problems of gut microflora that may lead to various disorders. However, the exact bacterial signaling mechanisms underlying such modulations are still far from being understood. Here, we investigated variations in the chemical compositions and immunomodulatory properties of the polysaccharides (PS), L919/A and L919/B, which are produced by L. casei LOCK 0919. By virtue of their chemical features, such PS can modulate the immune responses to third-party antigens. Our results revealed that L919/A and L919/B could both modulate the immune response to Lactobacillus planatarum WCFS1, but only L919/B could alter the response of THP-1 cells (in terms of tumor necrosis factor alpha production) to L. planatarum WCFS1 and Escherichia coli Nissle 1917. The comprehensive immunochemical characterization is crucial for the understanding of the biological function as well as of the bacteria–host and bacteria–bacteria cross-talk. PMID:27102285

  13. Dynamics of a broad-band quantum cascade laser: from chaos to coherent dynamics and mode-locking.

    PubMed

    Columbo, L L; Barbieri, S; Sirtori, C; Brambilla, M

    2018-02-05

    The dynamics of a multimode quantum cascade laser, are studied in a model based on effective semiconductor Maxwell-Bloch equations, encompassing key features for the radiation-medium interaction such as an asymmetric frequency dependent gain and refractive index as well as the phase-amplitude coupling provided by the linewidth enhancement factor. By considering its role and that of the free spectral range, we find the conditions in which the traveling wave emitted by the laser at the threshold can be destabilized by adjacent modes, thus leading the laser emission towards chaotic or regular multimode dynamics. In the latter case our simulations show that the field oscillations are associated to self-confined structures which travel along the laser cavity, bridging mode-locking and solitary wave propagation. In addition, we show how a RF modulation of the bias current leads to active mode-locking yielding high-contrast, picosecond pulses. Our results compare well with recent experiments on broad-band THz-QCLs and may help in the understanding of the conditions for the generation of ultrashort pulses and comb operation in mid-IR and THz spectral regions.

  14. A real-time visual inspection method of fastening bolts in freight car operation

    NASA Astrophysics Data System (ADS)

    Nan, Guo; Yao, JunEn

    2015-10-01

    A real-time inspection of the key components is necessary for ensuring safe operation of freight car. While traditional inspection depends on the trained human inspectors, which is time-consuming and lower efficient. With the development of machine vision, vision-based inspection methods get more railway on-spot applications. The cross rod end fastening bolts are important components on both sides of the train body that fixing locking plates together with the freight car main structure. In our experiment, we get the images containing fastening bolt components, and accurately locate the locking plate position using a linear Support Vector Machine (SVM) locating model trained with Histograms of Oriented Gradients (HOG) features. Then we extract the straight line segment using the Line Segment Detector (LSD) and encoding them in a range, which constitute a straight line segment dataset. Lastly we determine the locking plate's working state by the linear pattern. The experiment result shows that the localization accurate rate is over 99%, the fault detection rate is over 95%, and the module implementation time is 2f/s. The overall performance can completely meet the practical railway safety assurance application.

  15. Third-year medical students' knowledge of privacy and security issues concerning mobile devices.

    PubMed

    Whipple, Elizabeth C; Allgood, Kacy L; Larue, Elizabeth M

    2012-01-01

    The use of mobile devices are ubiquitous in medical-care professional settings, but information on privacy and security concerns of mobile devices for medical students is scarce. To gain baseline information about third-year medical students' mobile device use and knowledge of privacy and security issues concerning mobile devices. We surveyed 67 third-year medical students at a Midwestern university on their use of mobile devices and knowledge of how to protect information available through mobile devices. Students were also presented with clinical scenarios to rate their level of concern in regards to privacy and security of information. The most used features of mobile devices were: voice-to-voice (100%), text messaging (SMS) (94%), Internet (76.9%), and email (69.3%). For locking of one's personal mobile phone, 54.1% never physically lock their phone, and 58% never electronically lock their personal PDA. Scenarios considering definitely privacy concerns include emailing patient information intact (66.7%), and posting de-identified information on YouTube (45.2%) or Facebook (42.2%). As the ease of sharing data increases with the use of mobile devices, students need more education and training on possible privacy and security risks posed with mobile devices.

  16. Motivation, Satisfaction, and Morale in Army Careers: A Review of Theory and Measurement

    DTIC Science & Technology

    1976-12-01

    subjective goali on performance. Their model of "task motivation" has the following key features (Locke, Cartledge, & Knerr, 1968, p. 135): I. The... pulling himself up in the world and should work hard with the hope of being promoted to a higher level job. "* A man should choose the Job which pays the

  17. Tool post modification allows easy turret lathe cutting-tool alignment

    NASA Technical Reports Server (NTRS)

    Fouts, L.

    1966-01-01

    Modified tool holder and tool post permit alignment of turret lathe cutting tools on the center of the spindle. The tool is aligned with the spindle by the holder which is kept in position by a hydraulic lock in feature of the tool post. The tool post is used on horizontal and vertical turret lathes and other engine lathes.

  18. Assembly of Colloidal Materials Using Bioadhesive Interactions

    NASA Technical Reports Server (NTRS)

    Hammer, Daniel A.; Hiddessen, Amy L.; Tohver, Valeria; Crocker, John C.; Weitz, David A.

    2002-01-01

    We have pursued the use of biological crosslinking molecules of several types to make colloidal materials at relatively low volume fraction of colloidal particles. The objective is to make binary alloys of colloidal particles, made of two different colloidal particles coated with complementary biological lock-and-key binding molecules, which assemble due to the biological specificity. The long-term goal is to use low affinity lock-and-key biological interactions, so that the can anneal to form crystalline states. We have used a variety of different surface chemistries in order to make colloidal materials. Our first system involved using selectin-carbohydrate (sialyl-Lewis) interactions; this chemistry is derived from immune system. This chemical interaction is of relatively low affinity, with timescales for dissociation of several seconds. Furthermore, the adhesion mediated by these molecules can be reversed by the chelation of calcium atoms; thus assembled structures can be disassembled reversibly. Our second system employed avidin-biotin chemistry. This well-studied system is of high affinity, and is generally irreversible on a laboratory time-scale. Thus, we would expect selectin-carbohydrate interactions at high molecular density and avidin-biotin interactions to give kinetically-trapped structures; however, at low densities, we would expect significant differences in the structure and dynamics of the two materials, owing to their very different release rates. We have also begun to use a third chemistry - DNA hybridization. By attaching single stranded DNA oligonucleotide chains to beads, we can drive the assembly of colloidal materials by hybridization of complementary DNA chains. It is well known that DNA adenosine-thymine (A-T) and guanine-cytosine (G-C) bases hybridize pairwise with a Gibbs free energy change of 1.7 kcal/mol per base; thus, the energy of the assembly can be modulated by altering the number of complementary bases in the DNA chains. Using these different crosslinking molecules, we have assembled colloidal materials from different-sized colloidal particles, A and B. In the first sets of experiment, we used high densities of adhesion molecules, and 0.96 micron (A) and 5.5 micron (B) diameter particles. The high density of adhesion molecules means that the structures are kinetically trapped in nonequilibrium configurations. The structure of the suspension can be varied by changing the number ratio of the two types of colloidal particles, NA and NB, where A is the smaller particle. With carbohydrate-selectin or avidin-biotin interactions, large NA/NB leads to the formation of colloidal micelles, with the large center B particle surrounded by many smaller A particles. As the ratio NA/NB decreases, the structures become more extended, approaching the formation of macro-Rouse polymers - extended linear chains where A beads are connected with intervening small B linkers.

  19. Research on metallic material defect detection based on bionic sensing of human visual properties

    NASA Astrophysics Data System (ADS)

    Zhang, Pei Jiang; Cheng, Tao

    2018-05-01

    Due to the fact that human visual system can quickly lock the areas of interest in complex natural environment and focus on it, this paper proposes an eye-based visual attention mechanism by simulating human visual imaging features based on human visual attention mechanism Bionic Sensing Visual Inspection Model Method to Detect Defects of Metallic Materials in the Mechanical Field. First of all, according to the biologically visually significant low-level features, the mark of defect experience marking is used as the intermediate feature of simulated visual perception. Afterwards, SVM method was used to train the advanced features of visual defects of metal material. According to the weight of each party, the biometrics detection model of metal material defect, which simulates human visual characteristics, is obtained.

  20. Artificial bee colony algorithm for single-trial electroencephalogram analysis.

    PubMed

    Hsu, Wei-Yen; Hu, Ya-Ping

    2015-04-01

    In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise removal, feature extraction, feature selection, and feature classification. First, the artifacts and background noise are removed automatically by means of independent component analysis and surface Laplacian filter, respectively. Several potential features, such as band power, autoregressive model, and coherence and phase-locking value, are then extracted for subsequent classification. Next, artificial bee colony (ABC) algorithm is used to select features from the aforementioned feature combination. Finally, selected subfeatures are classified by support vector machine. Comparing with and without artifact removal and feature selection, using a genetic algorithm on single-trial EEG data for 6 subjects, the results indicate that the proposed system is promising and suitable for brain-computer interface applications. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  1. Self-Cleaning Synthetic Adhesive Surfaces Mimicking Tokay Geckos.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branson, Eric D.; Singh, Seema; Burckel, David Bruce

    2006-11-01

    A gecko's extraordinary ability to suspend itself from walls and ceilings of varied surface roughness has interested humans for hundreds of years. Many theories and possible explanations describing this phenomenon have been proposed including sticky secretions, microsuckers, and electrostatic forces; however, today it is widely accepted that van der Waals forces play the most important role in this type of dry adhesion. Inarguably, the vital feature that allows a gecko's suspension is the presence of billions 3 of tiny hairs on the pad of its foot called spatula. These features are small enough to reach within van der Waals distancesmore » of any surface (spatula radius %7E100 nm); thus, the combined effect of billions of van der Waals interactions is more than sufficient to hold a gecko's weight to surfaces such as smooth ceilings or wet glass. Two lithographic approaches were used to make hierarchal structures with dimensions similar to the gecko foot dimensions noted above. One approach combined photo-lithography with soft lithography (micro-molding). In this fabrication scheme the fiber feature size, defined by the alumina micromold was 0.2 um in diameter and 60 um in height. The second approach followed more conventional photolithography-based patterning. Patterned features with dimensions %7E0.3 mm in diameter by 0.5 mm tall were produced. We used interfacial force microscopy employing a parabolic diamond tip with a diameter of 200 nm to measure the surface adhesion of these structures. The measured adhesive forces ranged from 0.3 uN - 0.6 uN, yielding an average bonding stress between 50 N/cm2 to 100 N/cm2. By comparison the reported literature value for the average stress of a Tokay gecko foot is 10 N/cm2. Acknowledgements This work was funded by Sandia National Laboratory's Laboratory Directed Research & Development program (LDRD). All coating processes were conducted in the cleanroom facility located at the University of New Mexico's Center for High Technology Materials (CHTM). SEM images were performed at UNM's Center for Micro-Engineering on equipment funded by a NSF New Mexico EPSCoR grant. 4« less

  2. Bedforms induced by solitary waves: laboratory studies on generation and migration rate

    NASA Astrophysics Data System (ADS)

    la Forgia, Giovanni; Adduce, Claudia; Falcini, Federico; Paola, Chris

    2017-04-01

    This study presents experiments on the formation of sandy bedforms, produced by surface solitary waves (SSWs) in shallow water conditions. The experiments were carried out in a 12.0 m long, 0.15 m wide and 0.5 m high flume, at Saint Anthony Falls Laboratory in Minneapolis. The tank is filled by fresh water and a removable gate, placed at the left hand-side of the tank, divides the flume in two regions: the lock region and the ambient fluid region. The standard lock-release method generates SSWs by producing a displacement between the free surfaces that are divided by the gate. Wave amplitude, wavelength, and celerity depend on the lock length and on the water level difference between the two regions. Natural sand particles (D50=0.64) are arranged on the bottom in order to form a horizontal flat layer with a thickness of 2 cm. A digital pressure gauge and a high-resolution acoustic velocimeter allowed us to measure, locally, both pressure and 3D water velocity induced on the bottom by each wave. Image analysis technique is then used to obtain the main wave features: amplitude, wavelength, and celerity. Dye is finally used as vertical tracer to mark the horizontal speed induced by the wave. For each experiment we generated 400 waves, having the same features and we analyzed their action on sand particles placed on the bottom. The stroke, induced by each wave, entails a shear stress on the sand particles, causing sediment transport in the direction of wave propagation. Immediately after the wave passage, a back flow occurs near the bottom. The horizontal pressure gradient and the velocity field induced by the wave cause the boundary layer separation and the consequent reverse flow. Depending on the wave features and on the water depth, the boundary shear stress induced by the reverse flow can exceed the critical value inducing the back motion of the sand particles. The experiments show that the particle back motion is localized at particular cross sections along the tank, where the wave steepening occur. For this reason, the pressure and velocity measures were collected in several cross sections along the tank. The propagation of consecutive waves with the same features induces the generation of erosion and accumulation zones, which slowly evolve in isometric bedforms.

  3. Metabolic physiology in age related macular degeneration.

    PubMed

    Stefánsson, Einar; Geirsdóttir, Asbjörg; Sigurdsson, Haraldur

    2011-01-01

    Ischemia and hypoxia have been implicated in the pathophysiology of age related macular degeneration (AMD). This has mostly been based on studies on choroidal perfusion, which is not the only contributor to retinal hypoxia found in AMD eyes. Other features of AMD may also interfere with retinal oxygen metabolism including confluent drusen, serous or hemorrhagic retinal detachment, retinal edema and vitreoretinal adhesion. Each of these features contributes to retinal hypoxia: the drusen and retinal elevation by increasing the distance between the choriocapillaris and retina; vitreoretinal adhesion by reducing diffusion and convection of oxygen towards and vascular endothelial growth factor (VEGF) away from hypoxic retinal areas. Hypoxia-inducible-factor is known to exist in subretinal neovascularization and hypoxia is the main stimulus for the production of VEGF. Each feature may not by itself create enough hypoxia and VEGF accumulation to stimulate wet AMD, but they may combine to do so. Choroidal ischemia in AMD has been demonstrated by many researchers, using different technologies. Choroidal ischemia obviously decreases oxygen delivery to the outer retina. Confluent drusen, thickening of Bruch's membrane and any detachment of retina or retinal pigment epithelium, increases the distance between the choriocapillaris and the retina and thereby reduces the oxygen flux from the choroid to the outer retina according to Fick's law of diffusion. Retinal elevation and choroidal ischemia may combine forces to reduce choroidal oxygen delivery to the outer retina, produce retinal hypoxia. Hypoxia leads to production of VEGF leading to neovascularization and tissue edema. A vicious cycle may develop, where VEGF production increases effusion, retinal detachment and edema, further increasing hypoxia and VEGF production. Adhesion of the viscous posterior vitreous cortex to the retina maintains a barrier to diffusion and convection currents in the vitreous cavity according to the laws of Fick's, Stokes-Einstein and Hagen-Poiseuille. If the vitreous is detached from the surface of the retina, the low viscosity fluid transports oxygen and nutrients towards an ischemic area of the retina, and cytokines away from the retina, at a faster rate than through attached vitreous gel. Vitreoretinal adhesion can exacerbate retinal hypoxia and accumulation of cytokines, such as VEGF. Vitreoretinal traction can also cause hypoxia by retinal elevation. Conceivably, the basic features of AMD, drusen, choroidal ischemia, and vitreoretinal adhesion are independently determined by genetics and environment and may combine in variable proportions. If the resulting hypoxia and consequent VEGF accumulation crosses a threshold, this will trigger effusion and neovascularization. 2010 Elsevier Ltd. All rights reserved.

  4. Generation of “gigantic” ultra-short microwave pulses based on passive mode-locking effect in electron oscillators with saturable absorber in the feedback loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Denisov, G. G.; Vilkov, M. N.

    2016-05-15

    A periodic train of powerful ultrashort microwave pulses can be generated in electron oscillators with a non-linear saturable absorber installed in the feedback loop. This method of pulse formation resembles the passive mode-locking widely used in laser physics. Nevertheless, there is a specific feature in the mechanism of pulse amplification when consecutive energy extraction from different fractions of a stationary electron beam takes place due to pulse slippage over the beam caused by the difference between the wave group velocity and the electron axial velocity. As a result, the peak power of generated “gigantic” pulses can exceed not only themore » level of steady-state generation but also, in the optimal case, the power of the driving electron beam.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moutinho, Helio R.; Jiang, Cun -Sheng; To, Bobby

    To better understand and quantify soiling rates on solar panels, we are investigating the adhesion mechanisms between dust particles and solar glass. In this work, we report on two of the fundamental adhesion mechanisms: van der Waals and capillary adhesion forces. The adhesion was determined using force versus distance (F-z) measurements performed with an atomic force microscope (AFM). To emulate dust interacting with the front surface of a solar panel, we measured how oxidized AFM tips, SiO 2 glass spheres, and real dust particles adhered to actual solar glass. The van der Waals forces were evaluated by measurements performed withmore » zero relative humidity in a glove box, and the capillary forces were measured in a stable environment created inside the AFM enclosure with relative humidity values ranging from 18% to 80%. To simulate topographic features of the solar panels caused by factors such as cleaning and abrasion, we induced different degrees of surface roughness in the solar glass. As a result, we were able to 1) identify and quantify both the van der Waals and capillary forces, 2) establish the effects of surface roughness, relative humidity, and particle size on the adhesion mechanisms, and 3) compare adhesion forces between well-controlled particles (AFM tips and glass spheres) and real dust particles.« less

  6. [Features of adhesion of anaerobic periodontopathogenic bacteria and Candida albicans fungi to experimental samples of basis dental plastic depending on surface roughness and polishing method].

    PubMed

    Tsarev, V N; Ippolitov, E V; Trefilov, A G; Arutiunov, S D; Pivovarov, A A

    2014-01-01

    Study the main surface parameters of milled polyacrylic materials using atomic force microscopy and primary microbial adhesion of periodontopathogenic group bacteria and Candida albicans fungi taking into consideration the method of sample polishing. Studied samples: mill-treated without polishing (control); ergobox polished; polished in dental laboratory conditions; polished by a rubber brush in dentists' office. Microbial strains belonging to periodontopathogenic species (clinical isolates) that had been isolated from periodontal pockets of periodontitis patients: Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus sanguis, C. albicans fungi were used for modelling experiments of primary adhesion of microbes to the material samples. S. sanguis had the highest degree of adhesion to polymer after milling, P. gingivalis, C. albicans--medium, F. nucleatum--low. A significant reduction of adhesion is observed during polishing in dental laboratory conditions or ergobox, less significant--during polishing in dental office. The data obtained allow to make a conclusion that the samples from polymer materials for preparation of prosthesis basis have varying degree of intensity of microbial adhesion of members of periodontopathogenic microflora and C. albicans fungi that depends on the polishing method, that accordingly determined the differences in colonization resistance against formation of microbial biofilm during polymer use in clinical conditions. . ,

  7. Evidences of adaptive traits to rocky substrates undermine paradigm of habitat preference of the Mediterranean seagrass Posidonia oceanica

    NASA Astrophysics Data System (ADS)

    Badalamenti, Fabio; Alagna, Adriana; Fici, Silvio

    2015-03-01

    Posidonia oceanica meadows are acknowledged as one of the most valuable ecosystems of the Mediterranean Sea. P. oceanica has been historically described as a species typically growing on mobile substrates whose development requires precursor communities. Here we document for the first time the extensive presence of sticky hairs covering P. oceanica seedling roots. Adhesive root hairs allow the seedlings to firmly anchor to rocky substrates with anchorage strength values up to 5.23 N, regardless of the presence of algal cover and to colonise bare rock without the need for precursor assemblages to facilitate settlement. Adhesive root hairs are a morphological trait common on plants living on rocks in high-energy habitats, such as the riverweed Podostemaceae and the seagrass Phyllospadix scouleri. The presence of adhesive root hairs in P. oceanica juveniles suggests a preference of this species for hard substrates. Such an adaptation leads to hypothesize a new microsite driven bottleneck in P. oceanica seedling survival linked to substrate features. The mechanism described can favour plant establishment on rocky substrates, in contrast with traditional paradigms. This feature may have strongly influenced P. oceanica pattern of colonisation through sexual propagules in both the past and present.

  8. 47 CFR 15.19 - Labelling requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... material fastened to the equipment by welding, riveting, or a permanent adhesive. The label must be... intended for use with cable service or the quality of such features are acceptable so long as such...

  9. 47 CFR 15.19 - Labelling requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... material fastened to the equipment by welding, riveting, or a permanent adhesive. The label must be... intended for use with cable service or the quality of such features are acceptable so long as such...

  10. 47 CFR 15.19 - Labelling requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... material fastened to the equipment by welding, riveting, or a permanent adhesive. The label must be... intended for use with cable service or the quality of such features are acceptable so long as such...

  11. Defying ageing: An expectation for dentine bonding with universal adhesives?

    PubMed

    Zhang, Zheng-yi; Tian, Fu-cong; Niu, Li-na; Ochala, Kirsten; Chen, Chen; Fu, Bai-ping; Wang, Xiao-yan; Pashley, David H; Tay, Franklin R

    2016-02-01

    The present study evaluated the long-term dentine bonding effectiveness of five universal adhesives in etch-and-rinse or self-etch mode after 12 months of water-ageing. The adhesives evaluated included All-Bond Universal, Clearfil Universal Bond, Futurabond U Prime&Bond Elect and Scotchbond Universal. Microtensile bond strength and transmission electron microscopy of the resin-dentine interfaces created in human coronal dentine were examined after 24h or 12 months. Microtensile bond strength were significantly affected by bonding strategy (etch-and-rinse vs self-etch) and ageing (24h vs 12 months). All subgroups showed significantly decreased bond strength after ageing except for Prime&Bond Elect and Scotchbond Universal used in self-etch mode. All five adhesives employed in etch-and-rinse mode exhibited ultrastructural features characteristic of collagen degradation and resin hydrolysis. A previously-unobserved inside-out collagen degradation pattern was identified in hybrid layers created by 10-MDP containing adhesives (All-Bond Universal, Scotchbond Universal and Clearfil Universal Bond) in the etch-and-rinse mode, producing partially degraded collagen fibrils with intact periphery and a hollow core. In the self-etch mode, all adhesives except for Prime&Bond Elect exhibited degradation of the collagen fibrils along the thin hybrid layers. The three 10-MDP containing universal adhesives did not protect surface collagen fibrils from degradation when bonding was performed in the self-etch mode. Despite the adjunctive conclusion that bonds created by universal adhesives in the self-etch bonding mode are more resistant to decline in bond strength when compared with those bonds created using the etch-and-rinse mode, bonds created by universal adhesives are generally incapable of defying ageing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Quantitative assessment of cancer cell morphology and motility using telecentric digital holographic microscopy and machine learning.

    PubMed

    Lam, Van K; Nguyen, Thanh C; Chung, Byung M; Nehmetallah, George; Raub, Christopher B

    2018-03-01

    The noninvasive, fast acquisition of quantitative phase maps using digital holographic microscopy (DHM) allows tracking of rapid cellular motility on transparent substrates. On two-dimensional surfaces in vitro, MDA-MB-231 cancer cells assume several morphologies related to the mode of migration and substrate stiffness, relevant to mechanisms of cancer invasiveness in vivo. The quantitative phase information from DHM may accurately classify adhesive cancer cell subpopulations with clinical relevance. To test this, cells from the invasive breast cancer MDA-MB-231 cell line were cultured on glass, tissue-culture treated polystyrene, and collagen hydrogels, and imaged with DHM followed by epifluorescence microscopy after staining F-actin and nuclei. Trends in cell phase parameters were tracked on the different substrates, during cell division, and during matrix adhesion, relating them to F-actin features. Support vector machine learning algorithms were trained and tested using parameters from holographic phase reconstructions and cell geometric features from conventional phase images, and used to distinguish between elongated and rounded cell morphologies. DHM was able to distinguish between elongated and rounded morphologies of MDA-MB-231 cells with 94% accuracy, compared to 83% accuracy using cell geometric features from conventional brightfield microscopy. This finding indicates the potential of DHM to detect and monitor cancer cell morphologies relevant to cell cycle phase status, substrate adhesion, and motility. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  13. Zones of Adhesion of the Abdomen: Implications for Abdominoplasty.

    PubMed

    Taylor, D Alastair

    2017-02-01

    The elucidation of the superficial fascial system (SFS) by Lockwood in 1991 has been the cornerstone of our understanding of abdominal excisional dynamics for the last 25 years. The SFS can be used for closure and, appropriately mobilized, for tension transmission in abdominoplasty, and lower body lifts. The pattern of SFS adhesion to muscle fascia and the zones of adhesion was also described but there are inconsistencies between the description and clinical experience. This study was performed to better describe the pattern of subcutaneous tissue adhesion to the trunk. Twenty pre-abdominoplasty patients were studied. A series of points were marked around the trunk and the skin moved in four opposing directions. The excursions were measured and the median plotted on a diagram. Two fresh cadavers were also dissected, removing all subcutaneous tissue circumferentially from the trunk muscle fascia and marking the strength of the adhesion with a colored pin. Three grades of adhesion were mapped. In the current study, maximal laxity was shown in the mid-lower abdomen and the anterior and lateral chest. Laxity was limited in the anterior and posterior midlines, over the lower back, and the lateral upper thigh. The cadaver dissection mapped adhesion which correlated with the skin laxity diagram. The detailed skin adhesion map better explains features of surface anatomy. Incorporating this understanding a tension vector of abdominoplasty closure obliquely inwards is proposed to maximally harvest the laxity of the anterior and lateral chest and to create further lowering and narrowing of the waist. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  14. 49 CFR 236.337 - Locking faces of mechanical locking; fit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Locking faces of mechanical locking; fit. 236.337... Rules and Instructions § 236.337 Locking faces of mechanical locking; fit. Locking faces shall fit... face. ...

  15. 49 CFR 236.337 - Locking faces of mechanical locking; fit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Locking faces of mechanical locking; fit. 236.337... Rules and Instructions § 236.337 Locking faces of mechanical locking; fit. Locking faces shall fit... face. ...

  16. 49 CFR 236.337 - Locking faces of mechanical locking; fit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Locking faces of mechanical locking; fit. 236.337... Rules and Instructions § 236.337 Locking faces of mechanical locking; fit. Locking faces shall fit... face. ...

  17. 49 CFR 236.337 - Locking faces of mechanical locking; fit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Locking faces of mechanical locking; fit. 236.337... Rules and Instructions § 236.337 Locking faces of mechanical locking; fit. Locking faces shall fit... face. ...

  18. Nano-micro structured superhydrophobic zinc coating on steel for prevention of corrosion and ice adhesion.

    PubMed

    Brassard, J D; Sarkar, D K; Perron, J; Audibert-Hayet, A; Melot, D

    2015-06-01

    Thin films of zinc have been deposited on steel substrates by electrodeposition process and further functionalized with ultra-thin films of commercial silicone rubber, in order to obtain superhydrophobic properties. Morphological feature, by scanning electron microscope (SEM), shows that the electrodeposited zinc films are composed of micro-nano rough patterns. Furthermore, chemical compositions of these films have been analyzed by X-ray diffraction (XRD) and infra-red (IRRAS). An optimum electrodeposition condition, based on electrical potential and deposition time, has been obtained which provides superhydrophobic properties with a water contact angle of 155±1°. The corrosion resistance properties, in artificial seawater, of the superhydrophobic zinc coated steel are found to be superior to bare steel. Similarly, the measured ice adhesion strength on superhydrophobic surfaces, using the centrifugal adhesion test (CAT), is found to be 6.3 times lower as compared to bare steel. This coating has promising applications in offshore environment, to mitigate corrosion and reduce ice adhesion. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. 49 CFR 236.330 - Locking dog of switch-and-lock movement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Locking dog of switch-and-lock movement. 236.330 Section 236.330 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Rules and Instructions § 236.330 Locking dog of switch-and-lock movement. Locking dog of switch-and-lock...

  20. 49 CFR 236.330 - Locking dog of switch-and-lock movement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Locking dog of switch-and-lock movement. 236.330 Section 236.330 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Rules and Instructions § 236.330 Locking dog of switch-and-lock movement. Locking dog of switch-and-lock...

  1. 49 CFR 236.330 - Locking dog of switch-and-lock movement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Locking dog of switch-and-lock movement. 236.330 Section 236.330 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Rules and Instructions § 236.330 Locking dog of switch-and-lock movement. Locking dog of switch-and-lock...

  2. 49 CFR 236.330 - Locking dog of switch-and-lock movement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Locking dog of switch-and-lock movement. 236.330 Section 236.330 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Rules and Instructions § 236.330 Locking dog of switch-and-lock movement. Locking dog of switch-and-lock...

  3. 49 CFR 236.330 - Locking dog of switch-and-lock movement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking dog of switch-and-lock movement. 236.330 Section 236.330 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Rules and Instructions § 236.330 Locking dog of switch-and-lock movement. Locking dog of switch-and-lock...

  4. 41. LOCK AND DAM NO. 26 (REPLACEMENT). LOCK LOCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. LOCK AND DAM NO. 26 (REPLACEMENT). LOCK -- LOCK GATES -- LIFT GATE, GATE LEAVES -- GENERAL ASSEMBLY. M-L 26(R) 21/28 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  5. 49 CFR 236.766 - Locking, movable bridge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Locking, movable bridge. 236.766 Section 236.766... Locking, movable bridge. The rail locks, bridge locks, bolt locks, circuit controllers, and electric locks used in providing interlocking protection at a movable bridge. ...

  6. 49 CFR 236.766 - Locking, movable bridge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking, movable bridge. 236.766 Section 236.766... Locking, movable bridge. The rail locks, bridge locks, bolt locks, circuit controllers, and electric locks used in providing interlocking protection at a movable bridge. ...

  7. 49 CFR 236.306 - Facing point lock or switch-and-lock movement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Facing point lock or switch-and-lock movement. 236... Interlocking Standards § 236.306 Facing point lock or switch-and-lock movement. Facing point lock or switch-and-lock movement shall be provided for mechanically operated switch, movable-point frog, or split-point...

  8. 49 CFR 236.306 - Facing point lock or switch-and-lock movement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Facing point lock or switch-and-lock movement. 236... Interlocking Standards § 236.306 Facing point lock or switch-and-lock movement. Facing point lock or switch-and-lock movement shall be provided for mechanically operated switch, movable-point frog, or split-point...

  9. 49 CFR 236.306 - Facing point lock or switch-and-lock movement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Facing point lock or switch-and-lock movement. 236... Interlocking Standards § 236.306 Facing point lock or switch-and-lock movement. Facing point lock or switch-and-lock movement shall be provided for mechanically operated switch, movable-point frog, or split-point...

  10. 49 CFR 236.306 - Facing point lock or switch-and-lock movement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Facing point lock or switch-and-lock movement. 236... Interlocking Standards § 236.306 Facing point lock or switch-and-lock movement. Facing point lock or switch-and-lock movement shall be provided for mechanically operated switch, movable-point frog, or split-point...

  11. 49 CFR 236.306 - Facing point lock or switch-and-lock movement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Facing point lock or switch-and-lock movement. 236... Interlocking Standards § 236.306 Facing point lock or switch-and-lock movement. Facing point lock or switch-and-lock movement shall be provided for mechanically operated switch, movable-point frog, or split-point...

  12. [Research progress of bonding strength between porcelain veneer and enamel].

    PubMed

    Cheng, Hong; Zhang, Fu-qiang

    2014-02-01

    Porcelain veneer had gained more and more attention in dental clinical applications due to its advantages such as good esthetic effects and minor invasiveness. The reliable and consistent adhesive bonding were the key to success. The enamel which featured high mineralization and low moisture would be the ideal bonding part for porcelain veneer. This article was aimed to summarize the research progress regarding to those factors that might had effect on the bonding strength between the porcelain veneer and the enamel including the restoration types of resin adhesives and bonding surface preparations.

  13. Control of bacterial adhesion and growth on honeycomb-like patterned surfaces.

    PubMed

    Yang, Meng; Ding, Yonghui; Ge, Xiang; Leng, Yang

    2015-11-01

    It is a great challenge to construct a persistent bacteria-resistant surface even though it has been demonstrated that several surface features might be used to control bacterial behavior, including surface topography. In this study, we develop micro-scale honeycomb-like patterns of different sizes (0.5-10 μm) as well as a flat area as the control on a single platform to evaluate the bacterial adhesion and growth. Bacteria strains, Escherichia coli and Staphylococcus aureus with two distinct shapes (rod and sphere) are cultured on the platforms, with the patterned surface-up and surface-down in the culture medium. The results demonstrate that the 1 μm patterns remarkably reduce bacterial adhesion and growth while suppressing bacterial colonization when compared to the flat surface. The selective adhesion of the bacterial cells on the patterns reveals that the bacterial adhesion is cooperatively mediated by maximizing the cell-substrate contact area and minimizing the cell deformation, from a thermodynamic point of view. Moreover, study of bacterial behaviors on the surface-up vs. surface-down samples shows that gravity does not apparently affect the spatial distribution of the adherent cells although it indeed facilitates bacterial adhesion. Furthermore, the experimental results suggest that two major factors, i.e. the availability of energetically favorable adhesion sites and the physical confinements, contribute to the anti-bacterial nature of the honeycomb-like patterns. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Cytokine and adhesion molecule expression evolves between the neutrophilic and lymphocytic phases of viral meningitis.

    PubMed

    Makis, Alexandros; Shipway, David; Hatzimichael, Eleftheria; Galanakis, Emmanouil; Pshezhetskiy, Dmitry; Chaliasos, Nikolaos; Stebbing, Justin; Siamopoulou, Antigone

    2010-09-01

    Viral meningitis is characterized by cerebrospinal fluid (CSF) lymphocyte pleocytosis, although neutrophils may predominate in the early phase. The T helper 1 (Th1)/Th2 cytokine balance and expression of adhesion molecules seem to be involved in the CSF chemotaxis. We aimed to determine expression of cytokines and adhesion molecules in enteroviral meningitis. We investigated the serum and CSF levels of adhesion molecules (E-selectin, L-selectin, vascular cell adhesion molecule-1 [VCAM-1], and intracellular adhesion molecule-1 [ICAM-1]) and cytokines (interleukin-12 [IL-12] and IL-4) in 105 children during an outbreak of enteroviral meningitis. Diagnosis was confirmed with positive polymerase chain reaction (PCR) and/or serology for echovirus or Coxsackie virus, and matched with control subjects for clinical features but with negative PCR and/or serology. Apart from VCAM-1, the CSF levels of all investigated inflammatory molecules were significantly increased. In serum, sL-selectin and ICAM-1 levels were significantly higher than control subjects. Serum and CSF L-selectin, serum VCAM-1, and CSF IL-12 were all observed to be expressed in significantly higher levels in the neutrophil-dominant subgroup (72% had duration of symptoms <24 h) than in the lymphocyte-dominant group (87.5% had duration of symptoms >24 h). Serum and CSF ICAM-1 was found at significantly higher levels in the latter group. Evolving expression of adhesion molecules and cytokines indicates a shift from Th1 to Th2 immune responses as infection progresses.

  15. Medium-chain, triglyceride-containing lipid emulsions increase human neutrophil beta2 integrin expression, adhesion, and degranulation.

    PubMed

    Wanten, G J; Geijtenbeek, T B; Raymakers, R A; van Kooyk, Y; Roos, D; Jansen, J B; Naber, A H

    2000-01-01

    To test the hypothesis that lipid emulsions with different triglyceride structures have distinct immunomodulatory properties, we analyzed human neutrophil adhesion and degranulation after lipid incubation. Neutrophils, isolated from the blood of 10 healthy volunteers, were incubated in medium or physiologic (2.5 mmol/L) emulsions containing long-chain (LCT), medium-chain (MCT), mixed LCT/MCT, or structured (SL) triglycerides. Expression of adhesion molecules and degranulation markers was evaluated by flow cytometry. Also, functional adhesion was investigated by means of a flow cytometric assay using fluorescent beads coated with the integrin ligand intercellular adhesion molecule (ICAM)-1. Although LCT and SL had no effect, LCT/MCT significantly increased expression of the beta2 integrins lymphocyte-function-associated antigen 1 (+18%), macrophage antigen 1 (+387%), p150,95 (+82%), and (alphaDbeta2 (+230%). Degranulation marker expression for azurophilic (CD63, +210%) and specific granules (CD66b, +370%) also significantly increased, whereas L-selectin (CD62L, -70%) decreased. The effects of LCT/MCT were mimicked by the MCT emulsion. ICAM-1 adhesion (% beads bound) was increased by LCT/MCT (34% +/- 4%), whereas LCT (19% +/-3%) and SL (20% +/- 2%) had no effect compared with medium (17% +/- 3%). LCT/MCT and MCT, contrary to LCT and SL emulsions, increased neutrophil beta2 integrin expression, adhesion, and degranulation. Apart from other emulsion constituents, triglyceride chain length might therefore be a key feature in the interaction of lipid emulsions and the phagocyte immune system.

  16. Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells.

    PubMed

    Susloparova, A; Koppenhöfer, D; Vu, X T; Weil, M; Ingebrandt, S

    2013-02-15

    In this study, impedance spectroscopy measurements of silicon-based open-gate field-effect transistor (FET) devices were utilized to study the adhesion status of cancer cells at a single cell level. We developed a trans-impedance amplifier circuit for the FETs with a higher bandwidth compared to a previously described system. The new system was characterized with a fast lock-in amplifier, which enabled measuring of impedance spectra up to 50 MHz. We studied cellular activities, including cell adhesion and anti-cancer drug induced apoptosis of human embryonic kidney (HEK293) and human lung adenocarcinoma epithelial (H441) cells. A well-known chemotherapeutic drug, topotecan hydrochloride, was used to investigate the effect of this drug to tumor cells cultured on the FET devices. The presence of the drug resulted in a 20% change in the amplitude of the impedance spectra at 200 kHz as a result of the induced apoptosis process. Real-time impedance measurements were performed inside an incubator at a constant frequency. The experimental results can be interpreted with an equivalent electronic circuit to resolve the influence of the system parameters. The developed method could be applied for the analysis of the specificity and efficacy of novel anti-cancer drugs in cancer therapy research on a single cell level in parallelized measurements. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Glycosylation of the Escherichia coli TibA self-associating autotransporter influences the conformation and the functionality of the protein.

    PubMed

    Côté, Jean-Philippe; Charbonneau, Marie-Ève; Mourez, Michael

    2013-01-01

    The self-associating autotransporters (SAATs) are multifunctional secreted proteins of Escherichia coli, comprising the AIDA-I, TibA and Ag43 proteins. One of their characteristics is that they can be glycosylated. Glycosylation of AIDA-I and Ag43 have been investigated, but not that of TibA. It is still not clear whether glycosylation of the SAATs affect their structure or their functionality. Therefore, we have looked at the effects of glycosylation on the TibA adhesin/invasin. TibA is glycosylated by TibC, a specific glycosyltransferase, and the two genes are encoded in an operon. In this study, we have found that the glycosylation of TibA is not limited to the extracellular functional domain, as previously observed with AIDA-I and Ag43. We have determined that unglycosylated TibA is not able to promote the adhesion of bacteria on cultured epithelial cell, even though it is still able to promote invasion, biofilm formation and autoaggregation of bacteria. We have purified the glycosylated and unglycosylated forms of TibA, and determined that TibA is less stable when not glycosylated. We finally observed that glycosylation affects the oligomerisation of TibA and that unglycosylated TibA is locked in a conformation that is not suited for adhesion. Our results suggest that the effect of glycosylation on the functionality of TibA is indirect.

  18. The inhibitory effect of a Lactobacillus acidophilus derived biosurfactant on biofilm producer Serratia marcescens

    PubMed Central

    Shokouhfard, Maliheh; Kermanshahi, Rouha Kasra; Shahandashti, Roya Vahedi; Feizabadi, Mohammad Mehdi; Teimourian, Shahram

    2015-01-01

    Objective(s): Serratia marcescens is one of the nosocomial pathogen with the ability to form biofilm which is an important feature in the pathogenesis of S. marcescens. The aim of this study was to determine the anti-adhesive properties of a biosurfactant isolated from Lactobacillus acidophilus ATCC 4356, on S. marcescens strains. Materials and Methods: Lactobacillus acidophilus ATCC 4356 was selected as a probiotic strain for biosurfactant production. Anti-adhesive activities was determined by pre-coating and co- incubating methods in 96-well culture plates. Results: The FTIR analysis of derived biosurfactant revealed the composition as protein component. Due to the release of such biosurfactants, L. acidophilus was able to interfere with the adhesion and biofilm formation of the S. marcescens strains. In co-incubation method, this biosurfactant in 2.5 mg/ml concentration showed anti-adhesive activity against all tested strains of S. marcescens (P<0.05). Conclusion: Our results show that the anti-adhesive properties of L. acidophilus biosurfactant has the potential to be used against microorganisms responsible for infections in the urinary, vaginal and gastrointestinal tracts, as well as skin, making it a suitable alternative to conventional antibiotics. PMID:26730335

  19. Nuclear reactor fuel assembly duct-tube-to-handling-socket attachment system

    DOEpatents

    Christiansen, David W.; Smith, Bob G.

    1982-01-01

    A reusable system for removably attaching the upper end 10of a nuclear reactor duct tube to the lower end 30 of a nuclear reactor fuel assembly handling socket. A transition ring 20, fixed to the duct tube's upper end 10, has an interior-threaded section 22 with a first locking hole segment 24. An adaptor ring 40, fixed to the handling socket's lower end 30 has an outside-threaded section 42 with a second locking hole segment 44. The inside 22 and outside 42 threaded sections match and can be joined so that the first 24 and second 44 locking hole segments can be aligned to form a locking hole. A locking ring 50, with a locking pin 52, slides over the adaptor ring 40 so that the locking pin 52 fits in the locking hole. A swage lock 60 or a cantilever finger lock 70 is formed from the locking cup collar 26 to fit in a matching groove 54 or 56 in the locking ring 50 to prevent the locking ring's locking pin 52 from backing out of the locking hole.

  20. 3D calcite heterostructures for dynamic and deformable mineralized matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Jaeseok; Wang, Yucai; Jiang, Yuanwen

    Scales are rooted in soft tissues, and are regenerated by specialized cells. The realization of dynamic synthetic analogues with inorganic materials has been a significant challenge, because the abiological regeneration sites that could yield deterministic growth behavior are hard to form. Here we overcome this fundamental hurdle by constructing a mutable and deformable array of three-dimensional calcite heterostructures that are partially locked in silicone. Individual calcite crystals exhibit asymmetrical dumbbell shapes and are prepared by a parallel tectonic approach under ambient conditions. Furthermore, the silicone matrix immobilizes the epitaxial nucleation sites through self-templated cavities, which enables symmetry breaking in reactionmore » dynamics and scalable manipulation of the mineral ensembles. With this platform, we devise several mineral-enabled dynamic surfaces and interfaces. For example, we show that the induced growth of minerals yields localized inorganic adhesion for biological tissue and reversible focal encapsulation for sensitive components in flexible electronics.« less

  1. In situ industrial applications of optics; Proceedings of the Meeting, Brussels, Belgium, June 25-27, 1986

    NASA Astrophysics Data System (ADS)

    Ebbeni, Jean

    Included in this volume are papers on real-time image enhancement by simple video systems, automatic identification and data collection via barcode laser scanning, the optimization of the cutting up of a strip of float glass, optical sensors for factory automation, and the use of a digital theodolite with infrared radiation. Attention is also given to ISIS (integrated shape imaging system), a new system for follow-up of scoliosis; optical diffraction extensometers; a cross-spectrum technique for high-sensitivity remote vibration analysis by optical interferometry; the compensation and measurement of any motion of three-dimensional objects in holographic interferometry; and stereoscreen. Additional papers are on holographic double pulse YAG lasers, miniature optic connectors, stress-field analysis in an adhesively bonded joint with laser photoelasticimetry, and the locking of the light pulse delay in externally triggered gas lasers.

  2. 3D calcite heterostructures for dynamic and deformable mineralized matrices

    DOE PAGES

    Yi, Jaeseok; Wang, Yucai; Jiang, Yuanwen; ...

    2017-09-11

    Scales are rooted in soft tissues, and are regenerated by specialized cells. The realization of dynamic synthetic analogues with inorganic materials has been a significant challenge, because the abiological regeneration sites that could yield deterministic growth behavior are hard to form. Here we overcome this fundamental hurdle by constructing a mutable and deformable array of three-dimensional calcite heterostructures that are partially locked in silicone. Individual calcite crystals exhibit asymmetrical dumbbell shapes and are prepared by a parallel tectonic approach under ambient conditions. Furthermore, the silicone matrix immobilizes the epitaxial nucleation sites through self-templated cavities, which enables symmetry breaking in reactionmore » dynamics and scalable manipulation of the mineral ensembles. With this platform, we devise several mineral-enabled dynamic surfaces and interfaces. For example, we show that the induced growth of minerals yields localized inorganic adhesion for biological tissue and reversible focal encapsulation for sensitive components in flexible electronics.« less

  3. 49 CFR 236.337 - Locking faces of mechanical locking; fit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking faces of mechanical locking; fit. 236.337 Section 236.337 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Rules and Instructions § 236.337 Locking faces of mechanical locking; fit. Locking faces shall fit...

  4. Adhesive permeability affects coupling of resin cements that utilise self-etching primers to dentine.

    PubMed

    Carvalho, R M; Pegoraro, T A; Tay, F R; Pegoraro, L F; Silva, N R F A; Pashley, D H

    2004-01-01

    To examine the effects of an experimental bonding technique that reduces the permeability of the adhesive layer on the coupling of resin cements to dentine. Extracted human third molars had their mid to deep dentin surface exposed flat by transversally sectioning the crowns. Resin composite overlays were constructed and cemented to the surfaces using either Panavia F (Kuraray) or Bistite II DC (Tokuyama) resin cements mediated by their respective one-step or two-step self-etch adhesives. Experimental groups were prepared in the same way, except that the additional layer of a low-viscosity bonding resin (LVBR, Scotchbond Multi-Purpose Plus, 3M ESPE) was placed on the bonded dentine surface before luting the overlays with the respective resin cements. The bonded assemblies were stored for 24 h in water at 37 degrees C and subsequently prepared for microtensile bond strength testing. Beams of approximately 0.8 mm(2) were tested in tension at 0.5 mm/min in a universal tester. Fractured surfaces were examined under scanning electron microscopy (SEM). Additional specimens were prepared and examined with TEM using a silver nitrate-staining technique. Two-way ANOVA showed significant interactions between materials and bonding protocols (p<0.05). When bonded according to manufacturer's directions, Panavia F produced bond strengths that were significantly lower than Bistite II DC (p<0.05). The placement of an additional layer of a LVBR improved significantly the bond strengths of Panavia F (p<0.05), but not of Bistite II DC (p>0.05). SEM observation of the fractured surfaces in Panavia F showed rosette-like features that were exclusive for specimens bonded according to manufacturer's directions. Such features corresponded well with the ultrastructure of the interfaces that showed more nanoleakage associated with the more permeable adhesive interface. The application of the additional layer of the LVBR reduced the amount of silver impregnation for both adhesives suggesting that reduced permeability of the adhesives resulted in improved coupling of the resin cements to dentin. Placement of an intermediate layer of a LVBR between the bonded dentine surface and the resin cements resulted in improved coupling of Panavia F to dentine.

  5. Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Wei, Yuan; Li, Bowen; Wei, Xiaoming; Yu, Ying; Wong, Kenneth K. Y.

    2018-02-01

    The single-shot spectral dynamics of dual-color-soliton collisions inside a mode-locked laser is experimentally and numerically investigated. By using the all-optically dispersive Fourier transform, we spectrally unveil the collision-induced soliton self-reshaping process, which features dynamic spectral fringes over the soliton main lobe, and the rebuilding of Kelly sidebands with wavelength drifting. Meanwhile, the numerical simulations validate the experimental observation and provide additional insights into the physical mechanism of the collision-induced spectral dynamics from the temporal domain perspective. It is verified that the dynamic interference between the soliton and the dispersive waves is responsible for the observed collision-induced spectral evolution. These dynamic phenomena not only demonstrate the role of dispersive waves in the sophisticated soliton interaction inside the laser cavity, but also facilitate a deeper understanding of the soliton's inherent stability.

  6. Vortex-slip transitions in superconducting a-NbGe mesoscopic channels

    NASA Astrophysics Data System (ADS)

    Kokubo, N.; Sorop, T. G.; Besseling, R.; Kes, P. H.

    2006-06-01

    Intriguing and novel physical aspects related to the vortex flow dynamics have been recently observed in mesoscopic channel devices of a-NbGe with NbN channel edges. In this work we have systematically studied the flow properties of vortices confined in such mesoscopic channels as a function of the magnetic field history, using dc-transport and mode-locking (ML) measurements. As opposed to the field-down situation, in the field-up case a kink anomaly in the dc I-V curves is detected. The mode-locking measurements reveal that this anomaly is, in fact, a flow induced vortex slip transition: by increasing the external drive (either dc or ac) a sudden change occurs from n to n+2 moving vortex rows in the channel. The observed features can be explained in terms of an interplay between field focusing due to screening currents and a change in the predominant pinning mechanism.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, Ellen Y.T.; Liu, Wei; Zhao, Qiang

    Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein-coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differsmore » between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.« less

  8. Apparatuses for interaction with a subterranean formation, and methods of use thereof

    DOEpatents

    Clark, Don T.; Jones, Richard L.; Turner, Terry D.; Hubbell, Joel M.; Sisson, James B.

    2007-12-25

    An access casing assembly structured for placement at least partially within a subterranean formation by forcing the access casing assembly thereinto, comprising a plurality of casing sections operably coupled to form a central elongated cavity for providing access to the subterranean region is disclosed. Further, a tip portion of the access casing assembly may include a porous filter through which liquid or gas may communicate with the central elongated cavity. Also, a receiving member or at least one engagement hub may form a portion of the central elongated cavity and may include an engagement feature configured for selectively and lockingly engaging a locking structure of a device to be positioned within the access casing assembly. Methods of use are disclosed. A tensiometer is disclosed including a chamber structured for allowing at least partially filling with a fluid subsequent to contact therewith.

  9. generation of picosecond pulses in solid-state lasers using new active media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisitsyn, V.N.; Matrosov, V.N.; Pestryakov, E.V.

    Results are reported of investigations aimed at generating nanosecond radiation pulses in solid-state lasers using new active media having broad gain lines. Passive mode locking is accomplished for the first time in a BeLa:Nd/sup 3/ laser at a wavelength 1.354 microm, and in a YAG:Nd/sup 3/ laser on a 1.32-microm transition. The free lasing and mode-locking regimes were investigated in an alexandrite (BeA1/sub 2/O/sub 4/:Cr/sup 3/) laser in the 0.72-0.78-microm range and in a synchronously pumped laser on F/sub 2//sup -/ centers in LiF in the 1.12-1.24-microm region. The features of nonlinear perception of IR radiation by the eye, usingmore » a developed picosecond laser on F/sub 2//sup -/ centers, are investigated for the first time.« less

  10. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers

    PubMed Central

    Li, Jianfeng; Luo, Hongyu; Zhai, Bo; Lu, Rongguo; Guo, Zhinan; Zhang, Han; Liu, Yong

    2016-01-01

    Black phosphorus (BP) as a novel class of two-dimension (2D) materials has recently attracted enormous attention as a result of its unique physical and chemical features. The remarkably strong light-matter interaction and tunable direct band-gap at a wide range make it an ideal candidate especially in the mid-infrared wavelength region as the saturable absorber (SA). In this paper, the simple and effective liquid phase exfoliation (LPE) method was used to fabricate BP. By introducing the same BP SA into two specifically designed rare earth ions doped fluoride fiber lasers at mid-infrared wavebands, Q-switching with the pulse energy of 4.93 μJ and mode-locking with the pulse duration of 8.6 ps were obtained, respectively. The operation wavelength of ~2970 nm for generated pulse is the reported longest wavelength for BP SA based fiber lasers. PMID:27457338

  11. 12. LOCK GATES AT THE SWAMP LOCKS, SEPARATING THE UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. LOCK GATES AT THE SWAMP LOCKS, SEPARATING THE UPPER AND LOWER LOCK CHAMBERS, SHOWING PADDLE VALVES, LOOKING WEST: 1976 - Pawtucket Canal, Swamp Locks, Pawtucket & Merrimack Canals, Lowell, Middlesex County, MA

  12. Circuit breaker lockout device

    DOEpatents

    Kozlowski, Lawrence J.; Shirey, Lawrence A.

    1992-01-01

    An improved lockout assembly for locking a circuit breaker in a selected off or on position is provided. The lockout assembly includes a lock block and a lock pin. The lock block has a hollow interior which fits over the free end of a switch handle of the circuit breaker. The lock block includes at least one hole that is placed in registration with a hole in the free end of the switch handle. A lock tab on the lock block serves to align and register the respective holes on the lock block and switch handle. A lock pin is inserted through the registered holes and serves to connect the lock block to the switch handle. Once the lock block and the switch handle are connected, the position of the switch handle is prevented from being changed by the lock tab bumping up against a stationary housing portion of the circuit breaker. When the lock pin installed, an apertured-end portion of the lock pin is in registration with another hole on the lock block. Then a special scissors conforming to O.S.H.A. regulations can be installed, with one or more padlocks, on the lockout assembly to prevent removal of the lock pin from the lockout assembly, thereby preventing removal of the lockout assembly from the circuit breaker.

  13. Circuit breaker lockout device

    DOEpatents

    Kozlowski, L.J.; Shirey, L.A.

    1992-11-24

    An improved lockout assembly for locking a circuit breaker in a selected off or on position is provided. The lockout assembly includes a lock block and a lock pin. The lock block has a hollow interior which fits over the free end of a switch handle of the circuit breaker. The lock block includes at least one hole that is placed in registration with a hole in the free end of the switch handle. A lock tab on the lock block serves to align and register the respective holes on the lock block and switch handle. A lock pin is inserted through the registered holes and serves to connect the lock block to the switch handle. Once the lock block and the switch handle are connected, the position of the switch handle is prevented from being changed by the lock tab bumping up against a stationary housing portion of the circuit breaker. When the lock pin installed, an apertured-end portion of the lock pin is in registration with another hole on the lock block. Then a special scissors conforming to O.S.H.A. regulations can be installed, with one or more padlocks, on the lockout assembly to prevent removal of the lock pin from the lockout assembly, thereby preventing removal of the lockout assembly from the circuit breaker. 2 figs.

  14. Harvesting geographic features from heterogeneous raster maps

    NASA Astrophysics Data System (ADS)

    Chiang, Yao-Yi

    2010-11-01

    Raster maps offer a great deal of geospatial information and are easily accessible compared to other geospatial data. However, harvesting geographic features locked in heterogeneous raster maps to obtain the geospatial information is challenging. This is because of the varying image quality of raster maps (e.g., scanned maps with poor image quality and computer-generated maps with good image quality), the overlapping geographic features in maps, and the typical lack of metadata (e.g., map geocoordinates, map source, and original vector data). Previous work on map processing is typically limited to a specific type of map and often relies on intensive manual work. In contrast, this thesis investigates a general approach that does not rely on any prior knowledge and requires minimal user effort to process heterogeneous raster maps. This approach includes automatic and supervised techniques to process raster maps for separating individual layers of geographic features from the maps and recognizing geographic features in the separated layers (i.e., detecting road intersections, generating and vectorizing road geometry, and recognizing text labels). The automatic technique eliminates user intervention by exploiting common map properties of how road lines and text labels are drawn in raster maps. For example, the road lines are elongated linear objects and the characters are small connected-objects. The supervised technique utilizes labels of road and text areas to handle complex raster maps, or maps with poor image quality, and can process a variety of raster maps with minimal user input. The results show that the general approach can handle raster maps with varying map complexity, color usage, and image quality. By matching extracted road intersections to another geospatial dataset, we can identify the geocoordinates of a raster map and further align the raster map, separated feature layers from the map, and recognized features from the layers with the geospatial dataset. The road vectorization and text recognition results outperform state-of-art commercial products, and with considerably less user input. The approach in this thesis allows us to make use of the geospatial information of heterogeneous maps locked in raster format.

  15. Biomimetic wall-shaped hierarchical microstructure for gecko-like attachment.

    PubMed

    Kasem, Haytam; Tsipenyuk, Alexey; Varenberg, Michael

    2015-04-21

    Most biological hairy adhesive systems involved in locomotion rely on spatula-shaped terminal elements, whose operation has been actively studied during the last decade. However, though functional principles underlying their amazing performance are now well understood, due to technical difficulties in manufacturing the complex structure of hierarchical spatulate systems, a biomimetic surface structure featuring true shear-induced dynamic attachment still remains elusive. To try bridging this gap, a novel method of manufacturing gecko-like attachment surfaces is devised based on a laser-micromachining technology. This method overcomes the inherent disadvantages of photolithography techniques and opens wide perspectives for future production of gecko-like attachment systems. Advanced smart-performance surfaces featuring thin-film-based hierarchical shear-activated elements are fabricated and found capable of generating friction force of several tens of times the contact load, which makes a significant step forward towards a true gecko-like adhesive.

  16. The MRI features of placental adhesion disorder—a pictorial review

    PubMed Central

    Teixidor Vinas, Mireia; Whitby, Elspeth

    2016-01-01

    Placental adhesion disorder (PAD) comprises placenta accreta, increta and percreta lesions; these are classified according to the depth of uterine invasion. Although PAD is considered a rare condition, its incidence has increased 10-fold in the last 50 years. Ultrasound is the primary imaging modality for the assessment of the placenta and in the majority of cases, it is sufficient for diagnosis; however, when ultrasound findings are suspicious or inconclusive, MRI is recommended as an adjunct imaging technique. Numerous MRI features of PAD have been described, including dark intraplacental bands, disorganized intraplacental vascularity and abnormal uterine bulging. This pictorial review describes and illustrates these characteristics and discusses their implications in planning delivery. In addition, we present a series of “pitfall” cases to aid the interpreting radiologist and discuss management of PAD. PAD is a clinical and diagnostic challenge that is encountered with increasing frequency, requiring a cohesive multidisciplinary approach to its management. PMID:27355318

  17. Z-2 Threaded Insert Design and Testing Abstract

    NASA Technical Reports Server (NTRS)

    Rhodes, RIchard; Graziosi, Dave; Jones, Bobby; Ferl, Jinny; Scarborough, Steve; Sweeney, Mitch

    2016-01-01

    The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z series of spacesuits. The Z-2 is another step in the NASA's technology development roadmap leading to human exploration of the Martian surface. To meet a more challenging set of requirements than previous suit systems standard design features, such as threaded inserts, have been re-analyzed and improved. NASA's Z-2 prototype space suit contains several components fabricated from an advanced hybrid composite laminate consisting of IM10 carbon fiber and fiber glass. One requirement NASA levied on the suit composites was the ability to have removable, replaceable helicoil inserts to which other suit components would be fastened. An approach utilizing bonded in inserts with helicoils inside of them was implemented. The design of the interface flanges of the composites allowed some of the inserts to be a "T" style insert that was installed through the entire thickness of the laminate. The flange portion of the insert provides a mechanical lock as a redundancy to the adhesive aiding in the pullout load that the insert can withstand. In some locations it was not possible to utilize at "T" style insert and a blind insert was used instead. These inserts rely completely on the bond strength of the adhesive to resist pullout. It was determined during the design of the suit that the inserts did not need to withstand loads induced from pressure cycling but instead tension induced from torqueing the screws to bolt on hardware which creates a much higher stress on them. Bolt tension is determined by dividing the torque on the screw by a k value multiplied by the thread diameter of the bolt. The k value is a factor that accounts for friction in the system. A common value used for k for a non-lubricated screw is 0.2. The k value can go down by as much as 0.1 if the screw is lubricated which means for the same torque, a much larger tension could be placed on the bolt and insert. This paper summarizes testing that was performed to determine a k value for helicoil inserts in the Z2 suit and how the insert design was modified to resist a higher pull out tension.

  18. Computationally assisted screening and design of cell-interactive peptides by a cell-based assay using peptide arrays and a fuzzy neural network algorithm.

    PubMed

    Kaga, Chiaki; Okochi, Mina; Tomita, Yasuyuki; Kato, Ryuji; Honda, Hiroyuki

    2008-03-01

    We developed a method of effective peptide screening that combines experiments and computational analysis. The method is based on the concept that screening efficiency can be enhanced from even limited data by use of a model derived from computational analysis that serves as a guide to screening and combining the model with subsequent repeated experiments. Here we focus on cell-adhesion peptides as a model application of this peptide-screening strategy. Cell-adhesion peptides were screened by use of a cell-based assay of a peptide array. Starting with the screening data obtained from a limited, random 5-mer library (643 sequences), a rule regarding structural characteristics of cell-adhesion peptides was extracted by fuzzy neural network (FNN) analysis. According to this rule, peptides with unfavored residues in certain positions that led to inefficient binding were eliminated from the random sequences. In the restricted, second random library (273 sequences), the yield of cell-adhesion peptides having an adhesion rate more than 1.5-fold to that of the basal array support was significantly high (31%) compared with the unrestricted random library (20%). In the restricted third library (50 sequences), the yield of cell-adhesion peptides increased to 84%. We conclude that a repeated cycle of experiments screening limited numbers of peptides can be assisted by the rule-extracting feature of FNN.

  19. A 2-to-48-MHz Phase-Locked Loop

    NASA Technical Reports Server (NTRS)

    Koudelka, Robert D.

    2004-01-01

    A 2-to-48-MHz phase-locked loop (PLL), developed for the U.S. space program, meets or exceeds all space shuttle clock electrical interface requirements by taking as its reference a 2-to-48-MHz clock signal and outputting a phaselocked clock signal set at the same frequency as the reference clock with transistor- transistor logic (TTL) voltage levels. Because it is more adaptable than other PLLs, the new PLL can be used in industries that employ signaling devices and as a tool in future space missions. A conventional PLL consists of a phase/frequency detector, loop filter, and voltage-controlled oscillator in which each component exists individually and is integrated into a single device. PLL components phase-lock to a single frequency or to a narrow bandwidth of frequencies. It is this design, however, that prohibits them from maintaining phase lock to a dynamically changing reference clock when a large bandwidth is required a deficiency the new PLL overcomes. Since most PLL components require their voltage-controlled oscillators to operate at greater than 2-MHz frequencies, conventional PLLs often cannot achieve the low-frequency phase lock allowed by the new PLL. The 2-to-48-MHz PLL is built on a wire-wrap board with pins wired to three position jumpers; this makes changing configurations easy. It responds to variations in voltage-controlled oscillator (VCO) ranges, duty cycle, signal-to-noise ratio (SNR), amplitude, and jitter, exceeding design specifications. A consensus state machine, implemented in a VCO range detector which assures the PLL continues to operate in the correct range, is the primary control state machine for the 2-to-48-MHz PLL circuit. By using seven overlapping frequency ranges with hysteresis, the PLL output sets the resulting phase-locked clock signal at a frequency that agrees with the reference clock with TTL voltage levels. As a space-shuttle tool, the new PLL circuit takes the noisy, degraded reference clock signals as input and outputs phase-locked clock signals of the same frequency but with a corrected wave shape. Since its configuration circuit can be easily changed, the new PLL can do the following: readily respond to variations in VCO ranges, duty cycle, SNR, amplitude, and jitter; continuously operate in the correct VCO range because of its consensus state machine; and use its range detector implements to overlap seven frequency ranges with hysteresis, thus giving the current design a flexibility that exceeds anything available at the time of this development. These features will benefit any industry in which safe and timely clock signals are vital to operation.

  20. The effectiveness of multi-component goal setting interventions for changing physical activity behaviour: a systematic review and meta-analysis.

    PubMed

    McEwan, Desmond; Harden, Samantha M; Zumbo, Bruno D; Sylvester, Benjamin D; Kaulius, Megan; Ruissen, Geralyn R; Dowd, A Justine; Beauchamp, Mark R

    2016-01-01

    Drawing from goal setting theory (Latham & Locke, 1991; Locke & Latham, 2002; Locke et al., 1981), the purpose of this study was to conduct a systematic review and meta-analysis of multi-component goal setting interventions for changing physical activity (PA) behaviour. A literature search returned 41,038 potential articles. Included studies consisted of controlled experimental trials wherein participants in the intervention conditions set PA goals and their PA behaviour was compared to participants in a control group who did not set goals. A meta-analysis was ultimately carried out across 45 articles (comprising 52 interventions, 126 effect sizes, n = 5912) that met eligibility criteria using a random-effects model. Overall, a medium, positive effect (Cohen's d(SE) = .552(.06), 95% CI = .43-.67, Z = 9.03, p < .001) of goal setting interventions in relation to PA behaviour was found. Moderator analyses across 20 variables revealed several noteworthy results with regard to features of the study, sample characteristics, PA goal content, and additional goal-related behaviour change techniques. In conclusion, multi-component goal setting interventions represent an effective method of fostering PA across a diverse range of populations and settings. Implications for effective goal setting interventions are discussed.

  1. Laser active thermography for non-destructive testing

    NASA Astrophysics Data System (ADS)

    Semerok, A.; Grisolia, C.; Fomichev, S. V.; Thro, P.-Y.

    2013-11-01

    Thermography methods have found their applications in different fields of human activity. The non-destructive feature of these methods along with the additional advantage by automated remote control and tests of nuclear installations without personnel attendance in the contaminated zone are of particular interest. Laser active pyrometry and laser lock-in thermography for in situ non-destructive characterization of micrometric layers on graphite substrates from European tokamaks were under extensive experimental and theoretical studies in CEA (France). The studies were aimed to obtain layer characterization with cross-checking the layer thermal contact coefficients determined by active laser pyrometry and lock-in thermography. The experimental installation comprised a Nd-YAG pulsed repetition rate laser (1 Hz - 10 kHz repetition rate frequency, homogeneous spot) and a home-made pyrometer system based on two pyrometers for the temperature measurements in 500 - 2600 K range. For both methods, the layer characterization was provided by the best fit of the experimental results and simulations. The layer thermal contact coefficients determined by both methods were quite comparable. Though there was no gain in the measurements accuracy, lock-in measurements have proved their advantage as being much more rapid. The obtained experimental and theoretical results are presented. Some practical applications and possible improvements of the methods are discussed.

  2. Nanostructured calcium phosphate coatings on magnesium alloys: characterization and cytocompatibility with mesenchymal stem cells

    PubMed Central

    Iskandar, Maria Emil; Aslani, Arash; Tian, Qiaomu

    2016-01-01

    This article reports the deposition and characterization of nanostructured calcium phosphate (nCaP) on magnesium–yttrium alloy substrates and their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The nCaP coatings were deposited on magnesium and magnesium–yttrium alloy substrates using proprietary transonic particle acceleration process for the dual purposes of modulating substrate degradation and BMSC adhesion. Surface morphology and feature size were analyzed using scanning electron microscopy and quantitative image analysis tools. Surface elemental compositions and phases were analyzed using energy dispersive X-ray spectroscopy and X-ray diffraction, respectively. The deposited nCaP coatings showed a homogeneous particulate surface with the dominant feature size of 200–500 nm in the long axis and 100–300 nm in the short axis, and a Ca/P atomic ratio of 1.5–1.6. Hydroxyapatite was the major phase identified in the nCaP coatings. The modulatory effects of nCaP coatings on the sample degradation and BMSC behaviors were dependent on the substrate composition and surface conditions. The direct culture of BMSCs in vitro indicated that multiple factors, including surface composition and topography, and the degradation-induced changes in media composition, influenced cell adhesion directly on the sample surface, and indirect adhesion surrounding the sample in the same culture. The alkaline pH, the indicator of Mg degradation, played a role in BMSC adhesion and morphology, but not the sole factor. Additional studies are necessary to elucidate BMSC responses to each contributing factor. PMID:25917827

  3. Nanostructured calcium phosphate coatings on magnesium alloys: characterization and cytocompatibility with mesenchymal stem cells.

    PubMed

    Iskandar, Maria Emil; Aslani, Arash; Tian, Qiaomu; Liu, Huinan

    2015-05-01

    This article reports the deposition and characterization of nanostructured calcium phosphate (nCaP) on magnesium-yttrium alloy substrates and their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The nCaP coatings were deposited on magnesium and magnesium-yttrium alloy substrates using proprietary transonic particle acceleration process for the dual purposes of modulating substrate degradation and BMSC adhesion. Surface morphology and feature size were analyzed using scanning electron microscopy and quantitative image analysis tools. Surface elemental compositions and phases were analyzed using energy dispersive X-ray spectroscopy and X-ray diffraction, respectively. The deposited nCaP coatings showed a homogeneous particulate surface with the dominant feature size of 200-500 nm in the long axis and 100-300 nm in the short axis, and a Ca/P atomic ratio of 1.5-1.6. Hydroxyapatite was the major phase identified in the nCaP coatings. The modulatory effects of nCaP coatings on the sample degradation and BMSC behaviors were dependent on the substrate composition and surface conditions. The direct culture of BMSCs in vitro indicated that multiple factors, including surface composition and topography, and the degradation-induced changes in media composition, influenced cell adhesion directly on the sample surface, and indirect adhesion surrounding the sample in the same culture. The alkaline pH, the indicator of Mg degradation, played a role in BMSC adhesion and morphology, but not the sole factor. Additional studies are necessary to elucidate BMSC responses to each contributing factor.

  4. 4. LOOKING NORTHEAST TOWARDS LOCKS. 19TH CENTURY GRAVITY LOCKS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. LOOKING NORTHEAST TOWARDS LOCKS. 19TH CENTURY GRAVITY LOCKS ON RIGHT. 20TH CENTURY ELECTRIC LIFT LOCKS ON LEFT. - New York State Barge Canal, Lockport Locks, Richmond Avenue, Lockport, Niagara County, NY

  5. Designing a Binding Interface for Control of Cancer Cell Adhesion via 3D Topography and Metabolic Oligosaccharide Engineering

    PubMed Central

    Du, Jian; Che, Pao-Lin; Wang, Zhi-Yun; Aich, Udayanath; Yarema, Kevin J.

    2011-01-01

    This study combines metabolic oligosaccharide engineering (MOE), a technology where the glycocalyx of living cells is endowed with chemical features not normally found in sugars, with custom-designed three dimensional biomaterial substrates to enhance the adhesion of cancer cells and control their morphology and gene expression. Specifically, Ac5ManNTGc, a thiol-bearing analogue of N-acetyl-d-mannosamine (ManNAc) was used to introduce thiolated sialic acids into the glycocalyx of human Jurkat T-lymphoma derived cells. In parallel 2D films and 3D electrospun nanofibrous scaffolds were prepared from polyethersulfone (PES) and (as controls) left unmodified or aminated. Alternately, the materials were malemided or gold-coated to provide bioorthogonal binding partners for the thiol groups newly expressed on the cell surface. Cell attachment was modulated by both the topography of the substrate surface and by the chemical compatibility of the binding interface between the cell and the substrate; a substantial increase in binding for normally non-adhesive Jurkat line for 3D scaffold compared to 2D surfaces with an added degree of adhesion resulting from chemoselective binding to malemidede-derivatived or gold-coated surfaces. In addition, the morphology of the cells attached to the 3D scaffolds via MOE-mediated adhesion was dramatically altered and the expression of genes involved in cell adhesion changed in a time-dependent manner. This study showed that cell adhesion could be enhanced, gene expression modulated, and cell fate controlled by introducing the 3D topograhical cues into the growth substrate and by creating a glycoengineered binding interface where the chemistry of both the cell surface and biomaterials scaffold was controlled to facilitate a new mode of carbohydrate-mediated adhesion. PMID:21549424

  6. CD44 in cancer progression: adhesion, migration and growth regulation.

    PubMed

    Marhaba, R; Zöller, M

    2004-03-01

    It is well established that the large array of functions that a tumour cell has to fulfil to settle as a metastasis in a distant organ requires cooperative activities between the tumour and the surrounding tissue and that several classes of molecules are involved, such as cell-cell and cell-matrix adhesion molecules and matrix degrading enzymes, to name only a few. Furthermore, metastasis formation requires concerted activities between tumour cells and surrounding cells as well as matrix elements and possibly concerted activities between individual molecules of the tumour cell itself. Adhesion molecules have originally been thought to be essential for the formation of multicellular organisms and to tether cells to the extracellular matrix or to neighbouring cells. CD44 transmembrane glycoproteins belong to the families of adhesion molecules and have originally been described to mediate lymphocyte homing to peripheral lymphoid tissues. It was soon recognized that the molecules, under selective conditions, may suffice to initiate metastatic spread of tumour cells. The question remained as to how a single adhesion molecule can fulfil that task. This review outlines that adhesion is by no means a passive task. Rather, ligand binding, as exemplified for CD44 and other similar adhesion molecules, initiates a cascade of events that can be started by adherence to the extracellular matrix. This leads to activation of the molecule itself, binding to additional ligands, such as growth factors and matrix degrading enzymes, complex formation with additional transmembrane molecules and association with cytoskeletal elements and signal transducing molecules. Thus, through the interplay of CD44 with its ligands and associating molecules CD44 modulates adhesiveness, motility, matrix degradation, proliferation and cell survival, features that together may well allow a tumour cell to proceed through all steps of the metastatic cascade.

  7. Field-induced coexistence of s++ and s± superconducting states in dirty multiband superconductors

    NASA Astrophysics Data System (ADS)

    Garaud, Julien; Corticelli, Alberto; Silaev, Mihail; Babaev, Egor

    2018-02-01

    In multiband systems, such as iron-based superconductors, the superconducting states with locking and antilocking of the interband phase differences are usually considered as mutually exclusive. For example, a dirty two-band system with interband impurity scattering undergoes a sharp crossover between the s± state (which favors phase antilocking) and the s++ state (which favors phase locking). We discuss here that the situation can be much more complex in the presence of an external field or superconducting currents. In an external applied magnetic field, dirty two-band superconductors do not feature a sharp s±→s++ crossover but rather a washed-out crossover to a finite region in the parameter space where both s± and s++ states can coexist for example as a lattice or a microemulsion of inclusions of different states. The current-carrying regions such as the regions near vortex cores can exhibit an s± state while it is the s++ state that is favored in the bulk. This coexistence of both states can even be realized in the Meissner state at the domain's boundaries featuring Meissner currents. We demonstrate that there is a magnetic-field-driven crossover between the pure s± and the s++ states.

  8. Evidences of adaptive traits to rocky substrates undermine paradigm of habitat preference of the Mediterranean seagrass Posidonia oceanica

    PubMed Central

    Badalamenti, Fabio; Alagna, Adriana; Fici, Silvio

    2015-01-01

    Posidonia oceanica meadows are acknowledged as one of the most valuable ecosystems of the Mediterranean Sea. P. oceanica has been historically described as a species typically growing on mobile substrates whose development requires precursor communities. Here we document for the first time the extensive presence of sticky hairs covering P. oceanica seedling roots. Adhesive root hairs allow the seedlings to firmly anchor to rocky substrates with anchorage strength values up to 5.23 N, regardless of the presence of algal cover and to colonise bare rock without the need for precursor assemblages to facilitate settlement. Adhesive root hairs are a morphological trait common on plants living on rocks in high-energy habitats, such as the riverweed Podostemaceae and the seagrass Phyllospadix scouleri. The presence of adhesive root hairs in P. oceanica juveniles suggests a preference of this species for hard substrates. Such an adaptation leads to hypothesize a new microsite driven bottleneck in P. oceanica seedling survival linked to substrate features. The mechanism described can favour plant establishment on rocky substrates, in contrast with traditional paradigms. This feature may have strongly influenced P. oceanica pattern of colonisation through sexual propagules in both the past and present. PMID:25740176

  9. Laser-induced patterns on metals and polymers for biomimetic surface engineering

    NASA Astrophysics Data System (ADS)

    Kietzig, Anne-Marie; Lehr, Jorge; Matus, Luke; Liang, Fang

    2014-03-01

    One common feature of many functional surfaces found in nature is their modular composition often exhibiting several length scales. Prominent natural examples for extreme behaviors can be named in various plant leaf (rose, peanut, lotus) or animal toe surfaces (Gecko, tree frog). Influence factors of interest are the surface's chemical composition, its microstructure, its organized or random roughness and hence the resulting surface wetting and adhesion character. Femtosecond (fs) laser micromachining offers a possibility to render all these factors in one single processing step on metallic and polymeric surfaces. Exemplarily, studies on Titanium and PTFE are shown, where the dependence of the resulting feature sizes on lasing intensity is investigated. While Ti surfaces show rigid surface patterns of micrometer scaled features with superimposed nanostructures, PTFE exhibits elastic hairy structures of nanometric diameter, which upon a certain threshold tend to bundle to larger features. Both surface patterns can be adjusted to mimic specific wetting and flow behaviour as seen on natural examples. Therefore, fs-laser micromachining is suggested as an interesting industrially scalable technique to pattern and fine-tune the surface wettability of a surface to the desired extends in one process step. Possible applications can be seen with surfaces, which require specific wetting, fouling, icing, friction or cell adhesion behaviour.

  10. 49 CFR 236.745 - Face, locking.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Face, locking. 236.745 Section 236.745 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Face, locking. The locking surface of a locking dog, tappet or cross locking of an interlocking machine. ...

  11. 49 CFR 236.745 - Face, locking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Face, locking. 236.745 Section 236.745 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Face, locking. The locking surface of a locking dog, tappet or cross locking of an interlocking machine. ...

  12. 49 CFR 236.745 - Face, locking.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Face, locking. 236.745 Section 236.745 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Face, locking. The locking surface of a locking dog, tappet or cross locking of an interlocking machine. ...

  13. 49 CFR 236.745 - Face, locking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Face, locking. 236.745 Section 236.745 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Face, locking. The locking surface of a locking dog, tappet or cross locking of an interlocking machine. ...

  14. 49 CFR 236.745 - Face, locking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Face, locking. 236.745 Section 236.745 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Face, locking. The locking surface of a locking dog, tappet or cross locking of an interlocking machine. ...

  15. 35. INTERIOR VIEW OF THE GUARD LOCKS LOCK HOUSE: CLOSED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. INTERIOR VIEW OF THE GUARD LOCKS LOCK HOUSE: CLOSED LOCK GATES AND TWO SETS OF MACHINERY TO ASSIST IN OPERATING THEM. VIEW FROM THE FAST END OF THE BUILDING LOOKING WEST 1976 - Pawtucket Canal, Guard Locks, Lowell, Middlesex County, MA

  16. Adhesive phase separation at the dentin interface under wet bonding conditions.

    PubMed

    Spencer, Paulette; Wang, Yong

    2002-12-05

    Under in vivo conditions, there is little control over the amount of water left on the tooth and, thus, there is the danger of leaving the dentin surface so wet that the bonding resin undergoes physical separation into hydrophobic and hydrophilic-rich phases. The purpose of this study was to investigate phase separation in 2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane (BisGMA)-based adhesive using molecular microanalysis and to examine the effect of phase separation on the structural characteristics of the hybrid layer. Model BisGMA/HEMA (hydroxyethl methacrylate) mixtures with/without ethanol and commercial BisGMA-based adhesive (Single Bond) were combined with water at concentrations from 0 to 50 vol%. Macrophase separation in the BisGMA/HEMA/water mixtures was detected using cloud point measurements. In parallel with these measurements, the BisGMA/HEMA and adhesive/water mixtures were cast as films and polymerized. Molecular structure was recorded from the distinct features in the phase-separated adhesive using confocal Raman microspectroscopy (CRM). Human dentin specimens treated with Single Bond were analyzed with scanning electron microscopy (SEM) and CRM mapping across the dentin/adhesive interface. The model BisGMA/HEMA mixtures with ethanol and the commercial BisGMA-based adhesive experienced phase separation at approximately 25 vol% water. Raman spectra collected from the phase-separated adhesive indicated that the composition of the particles and surrounding matrix material was primarily BisGMA and HEMA, respectively. Based on SEM analysis, there was substantial porosity at the adhesive interface with dentin. Micro-Raman spectral analysis of the dentin/adhesive interface indicates that the contribution from the BisGMA component decreases by nearly 50% within the first micrometer. The morphologic results in corroboration with the spectroscopic data suggest that as a result of adhesive phase separation the hybrid layer is not an impervious 3-dimensional collagen/polymer network but a porous web characterized by hydrophobic BisGMA-rich particles distributed in a hydrophilic HEMA-rich matrix. Copyright 2002 Wiley Periodicals, Inc.

  17. Effect of small peptide (P-15) on HJMSCs adhesion to hydroxyap-atite

    NASA Astrophysics Data System (ADS)

    Cheng, Wei; Tong, Xin; Hu, QinGang; Mou, YongBin; Qin, HaiYan

    2016-02-01

    P-15, a synthetic peptide of 15-amino acids, has been tested in clinical trials to enhance cell adhesion and promote osseointe- gration. This feature of P-15 has also inspired the development of designing new bone substitute materials. Despite the increasing applications of P-15 in bone graft alternatives, few studies focus on the mechanism of cell adhesion promoted by P-15 and the mechanical property changes of the cells interacting with P-15. In this article, we used atomic force microscope (AFM) based single cell indentation force spectroscopy to study the impact of P-15 on the stiffness and the adhesion ability of human jaw bone mesenchymal stem cells (HJMSCs) to hydroxyapatite (HA). We found that the stiffness of HJMSCs increases as the concentration of P-15 grows in short culture intervals and that the adhesion forces between HJMSCs and HA particles in both the presence and absence of P-15 are all around 30pN. Moreover, by calculating the binding energy of HJMSCs to HA particles mixed with and without P-15, we proved that P-15 could increase the adhesion energy by nearly four times. Scanning electron microscope (SEM) was also exploited to study the morphology of HJMSCs cultured in the presence and absence of P-15 on HA disc surface for a short term. Apparent morphological differences were observed between the cells cultured with and without P-15. These results explain the probable underlying adhesion mechanism of HJMSC promoted by P-15 and can serve as the bases for the design of bone graft substitute materials.

  18. Natural Underwater Adhesives

    PubMed Central

    Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

    2011-01-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent curing. PMID:21643511

  19. 49 CFR 236.338 - Mechanical locking required in accordance with locking sheet and dog chart.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... locking sheet and dog chart. 236.338 Section 236.338 Transportation Other Regulations Relating to... in accordance with locking sheet and dog chart. Mechanical locking shall be in accordance with locking sheet and dog chart currently in effect. ...

  20. 49 CFR 236.338 - Mechanical locking required in accordance with locking sheet and dog chart.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... locking sheet and dog chart. 236.338 Section 236.338 Transportation Other Regulations Relating to... in accordance with locking sheet and dog chart. Mechanical locking shall be in accordance with locking sheet and dog chart currently in effect. ...

  1. 49 CFR 236.338 - Mechanical locking required in accordance with locking sheet and dog chart.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... locking sheet and dog chart. 236.338 Section 236.338 Transportation Other Regulations Relating to... in accordance with locking sheet and dog chart. Mechanical locking shall be in accordance with locking sheet and dog chart currently in effect. ...

  2. 49 CFR 236.338 - Mechanical locking required in accordance with locking sheet and dog chart.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... locking sheet and dog chart. 236.338 Section 236.338 Transportation Other Regulations Relating to... in accordance with locking sheet and dog chart. Mechanical locking shall be in accordance with locking sheet and dog chart currently in effect. ...

  3. 49 CFR 236.338 - Mechanical locking required in accordance with locking sheet and dog chart.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... locking sheet and dog chart. 236.338 Section 236.338 Transportation Other Regulations Relating to... in accordance with locking sheet and dog chart. Mechanical locking shall be in accordance with locking sheet and dog chart currently in effect. ...

  4. Frequency-Locked Detector Threshold Setting Criteria Based on Mean-Time-To-Lose-Lock (MTLL) for GPS Receivers

    PubMed Central

    Zhao, Na; Qin, Honglei; Sun, Kewen; Ji, Yuanfa

    2017-01-01

    Frequency-locked detector (FLD) has been widely utilized in tracking loops of Global Positioning System (GPS) receivers to indicate their locking status. The relation between FLD and lock status has been seldom discussed. The traditional PLL experience is not suitable for FLL. In this paper, the threshold setting criteria for frequency-locked detector in the GPS receiver has been proposed by analyzing statistical characteristic of FLD output. The approximate probability distribution of frequency-locked detector is theoretically derived by using a statistical approach, which reveals the relationship between probabilities of frequency-locked detector and the carrier-to-noise ratio (C/N0) of the received GPS signal. The relationship among mean-time-to-lose-lock (MTLL), detection threshold and lock probability related to C/N0 can be further discovered by utilizing this probability. Therefore, a theoretical basis for threshold setting criteria in frequency locked loops for GPS receivers is provided based on mean-time-to-lose-lock analysis. PMID:29207546

  5. Frequency-Locked Detector Threshold Setting Criteria Based on Mean-Time-To-Lose-Lock (MTLL) for GPS Receivers.

    PubMed

    Jin, Tian; Yuan, Heliang; Zhao, Na; Qin, Honglei; Sun, Kewen; Ji, Yuanfa

    2017-12-04

    Frequency-locked detector (FLD) has been widely utilized in tracking loops of Global Positioning System (GPS) receivers to indicate their locking status. The relation between FLD and lock status has been seldom discussed. The traditional PLL experience is not suitable for FLL. In this paper, the threshold setting criteria for frequency-locked detector in the GPS receiver has been proposed by analyzing statistical characteristic of FLD output. The approximate probability distribution of frequency-locked detector is theoretically derived by using a statistical approach, which reveals the relationship between probabilities of frequency-locked detector and the carrier-to-noise ratio ( C / N ₀) of the received GPS signal. The relationship among mean-time-to-lose-lock (MTLL), detection threshold and lock probability related to C / N ₀ can be further discovered by utilizing this probability. Therefore, a theoretical basis for threshold setting criteria in frequency locked loops for GPS receivers is provided based on mean-time-to-lose-lock analysis.

  6. Stuck in a job: being “locked-in” or at risk of becoming locked-in at the workplace and well-being over time

    PubMed Central

    Stengård, Johanna; Bernhard-Oettel, Claudia; Berntson, Erik; Leineweber, Constanze; Aronsson, Gunnar

    2016-01-01

    ABSTRACT In this study, being “locked-in” at the workplace is conceptualized as being in a non-preferred workplace while at the same time perceiving low employability. The aim of the study was to investigate how being locked-in or at risk of becoming locked-in (being in a non-preferred workplace yet currently satisfied, combined with perceiving low employability) relates to well-being (subjective health and depressive symptoms). The hypotheses were tested in a Swedish longitudinal sample (T1 in 2010 and T2 in 2012) of permanent employees (N = 3491). The results showed that stability with regard to locked-in-related status (being non-locked-in, at risk of becoming locked-in, or locked-in at both T1 and T2) was related to significant and stable differences in well-being. The non-locked-in status was associated with better well-being than being at risk of becoming locked-in. Moreover, those at risk of becoming locked-in showed better well-being than those with stable locked-in status. Changes towards non-locked-in were accompanied by significant improvements in well-being, and changes towards locked-in were associated with impairments in well-being. The relationships that were found could not be attributed to differences in demographic variables and occupational preference. The findings indicate that being locked-in is detrimental to well-being. This has implications for preventative interventions. PMID:27226678

  7. Phase-lock loop frequency control and the dropout problem

    NASA Technical Reports Server (NTRS)

    Attwood, S.; Kline, A. J.

    1968-01-01

    Technique automatically sets the frequency of narrow band phase-lock loops within automatic lock-in-range. It presets a phase-lock loop to a desired center frequency with a closed loop electronic frequency discriminator and holds the phase-lock loop to that center frequency until lock is achieved.

  8. Cavity-locked ring down spectroscopy

    DOEpatents

    Zare, Richard N.; Paldus, Barbara A.; Harb, Charles C.; Spence, Thomas

    2000-01-01

    Distinct locking and sampling light beams are used in a cavity ring-down spectroscopy (CRDS) system to perform multiple ring-down measurements while the laser and ring-down cavity are continuously locked. The sampling and locking light beams have different frequencies, to ensure that the sampling and locking light are decoupled within the cavity. Preferably, the ring-down cavity is ring-shaped, the sampling light is s-polarized, and the locking light is p-polarized. Transmitted sampling light is used for ring-down measurements, while reflected locking light is used for locking in a Pound-Drever scheme.

  9. Evaluation of the adhesive properties of the cornea by means of optical coherence tomography in patients with meibomian gland dysfunction and lacrimal tear deficiency.

    PubMed

    Napoli, Pietro Emanuele; Coronella, Franco; Satta, Giovanni Maria; Galantuomo, Maria Silvana; Fossarello, Maurizio

    2014-01-01

    The aim was to determine the influence of meibomian gland dysfunction (MGD) and aqueous tear deficiency dry eye (ADDE) on the adhesive properties of the central cornea by means of optical coherence tomography (OCT), and to investigate the relationship between corneal adhesiveness and classical tear tests, as well as the reliability of results, in these lacrimal functional unit disorders. Prospective, case-control study. Twenty-eight patients with MGD and 27 patients with ADDE were studied. A group of 32 healthy subjects of similar age and gender distribution served as a control group. The adhesive properties of the anterior corneal surface were measured by OCT, based on the retention time of adhesion marker above it, in all participants. An excellent (≥5 minutes), borderline (within 3-5 minutes), fair (within 1-3 minutes) and poor (<1 minute) values of corneal adhesiveness were found, respectively, in 0%, 7.1%, 64.3% and 28.6% of MGD, in 0%, 7.4%, 63% and 29.6% of ADDE, and in 31.3%, 65.6%, 3.1% and 0% of healthy patients. The differences in time of corneal adhesiveness between MGD and healthy patients, as well as between ADDE and healthy patients, were found to be statistically significant (p<0.001; p<0.001; respectively). Conversely, no statistical significant differences between MGD and ADDE were found (p = 0.952). Data analysis revealed a statistically significant correlation between corneal adhesiveness and clinical tests of dry eye, as well as an excellent degree of inter-rater reliability and reproducibility for OCT measurements (p<0.001). ADDE and MGD share similar abnormalities on OCT imaging. Decreased adhesive properties of the anterior cornea were identified as a common feature of MGD and ADDE. This simple OCT approach may provide new clues into the mechanism and evaluation of dry eye syndrome.

  10. Digital holography of intracellular dynamics to probe tissue physiology.

    PubMed

    Merrill, Daniel; An, Ran; Turek, John; Nolte, David D

    2015-01-01

    Digital holography provides improved capabilities for imaging through dense tissue. Using a short-coherence source, the digital hologram recorded from backscattered light performs laser ranging that maintains fidelity of information acquired from depths much greater than possible by traditional imaging techniques. Biodynamic imaging (BDI) is a developing technology for live-tissue imaging of up to a millimeter in depth that uses the hologram intensity fluctuations as label-free image contrast and can study tissue behavior in native microenvironments. In this paper BDI is used to investigate the change in adhesion-dependent tissue response in 3D cultures. The results show that increasing density of cellular adhesions slows motion inside tissue and alters the response to cytoskeletal drugs. A clear signature of membrane fluctuations was observed in mid-frequencies (0.1-1 Hz) and was enhanced by the application of cytochalasin-D that degrades the actin cortex inside the cell membrane. This enhancement feature is only observed in tissues that have formed adhesions, because cell pellets initially do not show this signature, but develop this signature only after incubation enables adhesions to form.

  11. Initial test of a T9-like P300-based speller by an ALS patient

    NASA Astrophysics Data System (ADS)

    Ron-Angevin, R.; Varona-Moya, S.; da Silva-Sauer, L.

    2015-08-01

    Objective. Visual P300-based brain-computer interface spellers offer a useful communication channel for locked-in patients, who are completely dependent in their daily lives. One of the research goals for these systems is to achieve greater communication rates by means of modifying some features of their interfaces, e.g., reducing the matrix size. However, such modifications may not work well with disabled end-users, such as patients of amyotrophic lateral sclerosis (ALS), due to a supposed reduction of their cognitive resources. The purpose of the present study was to provide a proof of concept that ALS patients could efficiently use a P300-based speller with a 4 × 3 symbol matrix based on the T9 interface developed for mobile phones. Approach. We conducted an experiment with a sample of 11 able-bodied participants and one locked-in patient with ALS. All participants tested our T9-like visual P300-based speller and also two different 7 × 6 matrix spellers based on Farwell and Donchin’s classic proposal—one of them included a word predictor system like the T9-like speller did. Main results. The performance analyses indicated that the locked-in patient benefited from using a reduced matrix size as much as healthy users did, spelling words almost 1.6 times faster and equally accurately when using the T9-like speller than when using the alternative spellers. Significance. Due to counting on only one locked-in patient, the current work constitutes a feasibility study. The actual usability of systems such as the one proposed in this paper should be determined by means of studies with a greater number of end-users in real-life conditions.

  12. Characterization of Interfacial Chemistry of Adhesive/Dentin Bond Using FTIR Chemical Imaging With Univariate and Multivariate Data Processing

    PubMed Central

    Wang, Yong; Yao, Xiaomei; Parthasarathy, Ranganathan

    2008-01-01

    Fourier transform infrared (FTIR) chemical imaging can be used to investigate molecular chemical features of the adhesive/dentin interfaces. However, the information is not straightforward, and is not easily extracted. The objective of this study was to use multivariate analysis methods, principal component analysis and fuzzy c-means clustering, to analyze spectral data in comparison with univariate analysis. The spectral imaging data collected from both the adhesive/healthy dentin and adhesive/caries-affected dentin specimens were used and compared. The univariate statistical methods such as mapping of intensities of specific functional group do not always accurately identify functional group locations and concentrations due to more or less band overlapping in adhesive and dentin. Apart from the ease with which information can be extracted, multivariate methods highlight subtle and often important changes in the spectra that are difficult to observe using univariate methods. The results showed that the multivariate methods gave more satisfactory, interpretable results than univariate methods and were conclusive in showing that they can discriminate and classify differences between healthy dentin and caries-affected dentin within the interfacial regions. It is demonstrated that the multivariate FTIR imaging approaches can be used in the rapid characterization of heterogeneous, complex structure. PMID:18980198

  13. Angle-stable and compressed angle-stable locking for tibiotalocalcaneal arthrodesis with retrograde intramedullary nails. Biomechanical evaluation.

    PubMed

    Mückley, Thomas; Hoffmeier, Konrad; Klos, Kajetan; Petrovitch, Alexander; von Oldenburg, Geert; Hofmann, Gunther O

    2008-03-01

    Retrograde intramedullary nailing is an established procedure for tibiotalocalcaneal arthrodesis. The goal of this study was to evaluate the effects of angle-stable locking or compressed angle-stable locking on the initial stability of the nails and on the behavior of the constructs under cyclic loading conditions. Tibiotalocalcaneal arthrodesis was performed in fifteen third-generation synthetic bones and twenty-four fresh-frozen cadaver legs with use of retrograde intramedullary nailing with three different locking modes: a Stryker nail with compressed angle-stable locking, a Stryker nail with angle-stable locking, and a statically locked Biomet nail. Analyses were performed of the initial stability of the specimens (range of motion) and the laxity of the constructs (neutral zone) in dorsiflexion/plantar flexion, varus/valgus, and external rotation/internal rotation. Cyclic testing up to 100,000 cycles was also performed. The range of motion and the neutral zone in dorsiflexion/plantar flexion at specific cycle increments were determined. In both bone models, the intramedullary nails with compressed angle-stable locking and those with angle-stable locking were significantly superior, in terms of a smaller range of motion and neutral zone, to the statically locked nails. The compressed angle-stable nails were superior to the angle-stable nails only in the synthetic bone model, in external/internal rotation. Cyclic testing showed the nails with angle-stable locking and those with compressed angle-stable locking to have greater stability in both models. In the synthetic bone model, compressed angle-stable locking was significantly better than angle-stable locking; in the cadaver bone model, there was no significant difference between these two locking modes. During cyclic testing, five statically locked nails in the cadaver bone model failed, whereas one nail with angle-stable locking and one with compressed angle-stable locking failed. Regardless of the bone model, the nails with angle-stable or compressed angle-stable locking had better initial stability and better stability following cycling than did the nails with static locking.

  14. VIEW LOOKING NORTHEAST, LOCK 35 IS ON THE RIGHT. CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING NORTHEAST, LOCK 35 IS ON THE RIGHT. CANAL WORKERS ARE CLEANING TRASH GRATES TO LOCK 35 WATER INLET. ENTRANCE TO OLD LOCK 71 ON LEFT. NOTE THE SEDIMENT BUILD UP IN THE ENTRANCE CHANNEL TO OLD LOCK 71. - New York State Barge Canal, Lockport Locks, Richmond Avenue, Lockport, Niagara County, NY

  15. Small Business Innovations (MISER)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Lightwave Electronics Corporation, Mountain View, CA, developed the Series 120 and 122 non-planner diode pumped ring lasers based on a low noise ring laser with voltage tuning that they delivered to Jet Propulsion Laboratory under a Small Business Innovation Research (SBIR) contract. The voltage tuning feature allows "phase-locking" the lasers, making them "electronic," similar to radio and microwave electronic oscillators. The Series 120 and 122 can be applied to fiber sensing, coherent communications and laser radar.

  16. Disruptive and Sustaining Technology Development Approaches in Defense Acquisition

    DTIC Science & Technology

    2014-04-30

    feature for the emerging personal computer market. Disruptive innovation also operates on the scale of an entire market. The story of Eastman Kodak ...quality pictures, it was only available to those with expertise in, and desire to, chemically process the film. The Kodak box camera took lower quality...into a niche market. A century later the scenario repeated itself in amateur photography. Kodak had become locked into their century-old business

  17. DRAGON - 8U Nanosatellite Orbital Deployer

    NASA Technical Reports Server (NTRS)

    Dobrowolski, Marcin; Grygorczuk, Jerzy; Kedziora, Bartosz; Tokarz, Marta; Borys, Maciej

    2014-01-01

    The Space Research Centre of the Polish Academy of Sciences (SRC PAS) together with Astronika company have developed an Orbital Deployer called DRAGON for ejection of the Polish scientific nanosatellite BRITE-PL Heweliusz (Fig. 1). The device has three unique mechanisms including an adopted and scaled lock and release mechanism from the ESA Rosetta mission MUPUS instrument. This paper discusses major design restrictions of the deployer, unique design features, and lessons learned from development through testing.

  18. Scalable bonding of nanofibrous polytetrafluoroethylene (PTFE) membranes on microstructures

    NASA Astrophysics Data System (ADS)

    Mortazavi, Mehdi; Fazeli, Abdolreza; Moghaddam, Saeed

    2018-01-01

    Expanded polytetrafluoroethylene (ePTFE) nanofibrous membranes exhibit high porosity (80%-90%), high gas permeability, chemical inertness, and superhydrophobicity, which makes them a suitable choice in many demanding fields including industrial filtration, medical implants, bio-/nano- sensors/actuators and microanalysis (i.e. lab-on-a-chip). However, one of the major challenges that inhibit implementation of such membranes is their inability to bond to other materials due to their intrinsic low surface energy and chemical inertness. Prior attempts to improve adhesion of ePTFE membranes to other surfaces involved surface chemical treatments which have not been successful due to degradation of the mechanical integrity and the breakthrough pressure of the membrane. Here, we report a simple and scalable method of bonding ePTFE membranes to different surfaces via the introduction of an intermediate adhesive layer. While a variety of adhesives can be used with this technique, the highest bonding performance is obtained for adhesives that have moderate contact angles with the substrate and low contact angles with the membrane. A thin layer of an adhesive can be uniformly applied onto micro-patterned substrates with feature sizes down to 5 µm using a roll-coating process. Membrane-based microchannel and micropillar devices with burst pressures of up to 200 kPa have been successfully fabricated and tested. A thin layer of the membrane remains attached to the substrate after debonding, suggesting that mechanical interlocking through nanofiber engagement is the main mechanism of adhesion.

  19. Distinct Chemical Contrast in Adhesion Force Images of Hydrophobic-Hydrophilic Patterned Surfaces Using Multiwalled Carbon Nanotube Probe Tips

    NASA Astrophysics Data System (ADS)

    Azehara, Hiroaki; Kasanuma, Yuka; Ide, Koichiro; Hidaka, Kishio; Tokumoto, Hiroshi

    2008-05-01

    In this paper, we describe a fabrication procedure for large-diameter carbon nanotube probe tips (CNT tips) for atomic force microscopy, the tip-end chemistry of the CNT tips, and their advantage drawn from the study of adhesion force imaging in an ambient atmosphere on a patterned hydrophobic and hydrophilic self-assembled monolayer, which has been prepared by a microcontact printing method. Force titration measurements in phosphate buffer solutions reveal that the CNT tip has retained carboxyl groups at its end. In adhesion force imaging, a distinct chemical contrast is obtained for the patterned surfaces as compared to a case using a silicon nitride tip. The origin of the distinct contrast is discussed in terms of the tip-end chemistry featured by carboxyl groups and a possible weakening of capillary forces of water caused at around the tip-sample interface because of the intrinsically hydrophobic nature of CNTs.

  20. Selective modulation of cell response on engineered fractal silicon substrates

    PubMed Central

    Gentile, Francesco; Medda, Rebecca; Cheng, Ling; Battista, Edmondo; Scopelliti, Pasquale E.; Milani, Paolo; Cavalcanti-Adam, Elisabetta A.; Decuzzi, Paolo

    2013-01-01

    A plethora of work has been dedicated to the analysis of cell behavior on substrates with ordered topographical features. However, the natural cell microenvironment is characterized by biomechanical cues organized over multiple scales. Here, randomly rough, self-affinefractal surfaces are generated out of silicon,where roughness Ra and fractal dimension Df are independently controlled. The proliferation rates, the formation of adhesion structures, and the morphology of 3T3 murine fibroblasts are monitored over six different substrates. The proliferation rate is maximized on surfaces with moderate roughness (Ra ~ 40 nm) and large fractal dimension (Df ~ 2.4); whereas adhesion structures are wider and more stable on substrates with higher roughness (Ra ~ 50 nm) and lower fractal dimension (Df ~ 2.2). Higher proliferation occurson substrates exhibiting densely packed and sharp peaks, whereas more regular ridges favor adhesion. These results suggest that randomly roughtopographies can selectively modulate cell behavior. PMID:23492898

  1. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation

    PubMed Central

    Díaz-Gómez, Luis; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Silva, Maite; Dominguez, Fernando; Sheikh, Faheem A.; Cantu, Travis; Desai, Raj; Garcia, Vanessa L.; Macossay, Javier

    2014-01-01

    Biodegradable electrospun poly(ε-caprolactone) (PCL) scaffolds were coated with platelet-rich plasma (PRP) to improve cell adhesion and proliferation. PRP was obtained from human buffy coat, and tested on human adipose-derived mesenchymal stem cells (MSC) to confirm cell proliferation and cytocompatibility. Then, PRP was adsorbed on the PCL scaffolds via lyophilization, which resulted in uniform sponge-like coating of 2.85 (s.d. 0.14) mg/mg. The scaffolds were evaluated regarding mechanical properties (Young’s modulus, tensile stress and tensile strain), sustained release of total protein and growth factors (PDGF-BB, TGF-β1 and VEGF), and hemocompatibility. MSC seeded on the PRP-PCL nanofibers showed an increased adhesion and proliferation compared to pristine PCL fibers. Moreover, the adsorbed PRP enabled angiogenesis features observed as neovascularization in a chicken chorioallantoic membrane (CAM) model. Overall, these results suggest that PRP-PCL scaffolds hold promise for tissue regeneration applications. PMID:24857481

  2. Synthesis, Characterization, Topographical Modification, and Surface Properties of Copoly(Imide Siloxane)s

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Atkins, Brad M.; Belcher, Marcus A.; Connell, John W.

    2012-01-01

    Novel copoly(imide siloxane)s were synthesized from commercially available aminopropyl terminated siloxane oligomers, aromatic dianhydrides, and diamines. This synthetic approach produced copolymers with well-defined siloxane blocks linked with imide units in a random fashion. The copoly(amide acid)s were characterized by solution viscosity and subsequently used to cast thin films followed by thermal imidization in an inert atmosphere. Thin films were characterized using contact angle goniometry, attenuated total reflection Fourier transform infrared spectroscopy, confocal and optical microscopy, and tensile testing. Adhesion of micronsized particles was determined quantitatively using a sonication device. The polydimethylsiloxane (PDMS) moieties lowered the copolymer surface energy due to migration of siloxane moieties to the film s surface, resulting in a notable reduction in particle adhesion. A further reduction in particle adhesion was achieved by introducing topographical features on a scale of several to tens of microns by a laser ablation technique.

  3. Characterization of Incorporation the Glass Waste in Adhesive Mortar

    NASA Astrophysics Data System (ADS)

    Santos, D. P.; Azevedo, A. R. G.; Hespanhol, R. L.; Alexandre, J.

    Ehe search for reuse generated waste in urban centers, intending to preserve natural resources, has remained fairly constant, both in context of preventing exploitation of resources as the emplacement of waste on the environment. Glass waste glass created a serious environmental problem, mainly because of inconsistency of its flows. Ehe use of this product as a mineral additive, finely ground, cement replacement and aggregate is a promising direction for recycling. This work aims to study the influence of glass waste from cutting process in adhesive mortar, replacing part of cement. Ehe glass powder is used replacing Portland cement at 10, 15 and 20% by mass. Ehe produced mortars will be evaluated its performance in fresh and hardened states through tests performed in laboratory. Ehe selected feature is indicated by producers of additive and researchers to present good results when used as adhesive mortar.

  4. An investigation of adhesive/adherend and fiber/matrix interactions. Part B: SEM/ESCA analysis of fracture surfaces

    NASA Technical Reports Server (NTRS)

    Beck, B.; Widyani, E.; Wightman, J. P.

    1983-01-01

    Adhesion was studied with emphasis on the characterization of surface oxide layers, the analysis of fracture surfaces, and the interaction of matrices and fibers. A number of surface features of the fractured lap shear samples were noted in the SEM photomicrographs including the beta phase alloy of the Ti 6-4 adherend, the imprint of the adherend on the adhesive failure surface, increased void density for high temperature samples, and the alumina filler particles. Interfacial failure of some of the fractured lap shear samples is invariably characterized by the appearance of an ESCA oxygen photopeak at 530.3 eV assigned to the surface oxide layer of Ti 6-4 adherend. The effect of grit blasting on carbon fiber composites is evident in the SEM analysis. A high surface fluorine concentration on the composite surface is reduced some ten fold by grit blasting.

  5. Analysis of torque transmitting behavior and wheel slip prevention control during regenerative braking for high speed EMU trains

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Xu, Guo-Qing; Zheng, Chun-Hua

    2016-04-01

    The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability, improving the adhesion utilization, and achieving deep energy recovery. There remain technical challenges mainly because of the nonlinear, uncertain, and varying features of wheel-rail contact conditions. This research analyzes the torque transmitting behavior during regenerative braking, and proposes a novel methodology to detect the wheel-rail adhesion stability. Then, applications to the wheel slip prevention during braking are investigated, and the optimal slip ratio control scheme is proposed, which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control. The proposed methodology achieves the optimal braking performance without the wheel-rail contact information. Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.

  6. The cell adhesion molecules Echinoid and Friend of Echinoid coordinate cell adhesion and cell signaling to regulate the fidelity of ommatidial rotation in the Drosophila eye.

    PubMed

    Fetting, Jennifer L; Spencer, Susan A; Wolff, Tanya

    2009-10-01

    Directed cellular movements are a universal feature of morphogenesis in multicellular organisms. Differential adhesion between the stationary and motile cells promotes these cellular movements to effect spatial patterning of cells. A prominent feature of Drosophila eye development is the 90 degrees rotational movement of the multicellular ommatidial precursors within a matrix of stationary cells. We demonstrate that the cell adhesion molecules Echinoid (Ed) and Friend of Echinoid (Fred) act throughout ommatidial rotation to modulate the degree of ommatidial precursor movement. We propose that differential levels of Ed and Fred between stationary and rotating cells at the initiation of rotation create a permissive environment for cell movement, and that uniform levels in these two populations later contribute to stopping the movement. Based on genetic data, we propose that ed and fred impart a second, independent, ;brake-like' contribution to this process via Egfr signaling. Ed and Fred are localized in largely distinct and dynamic patterns throughout rotation. However, ed and fred are required in only a subset of cells - photoreceptors R1, R7 and R6 - for normal rotation, cells that have only recently been linked to a role in planar cell polarity (PCP). This work also provides the first demonstration of a requirement for cone cells in the ommatidial rotation aspect of PCP. ed and fred also genetically interact with the PCP genes, but affect only the degree-of-rotation aspect of the PCP phenotype. Significantly, we demonstrate that at least one PCP protein, Stbm, is required in R7 to control the degree of ommatidial rotation.

  7. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2.

    PubMed

    Colon, Gabriel; Ward, Brian C; Webster, Thomas J

    2006-09-01

    Many engineers and surgeons trace implant failure to poor osseointegration (or the bonding of an orthopedic implant to juxtaposed bone) and/or bacteria infection. By using novel nanotopographies, researchers have shown that nanostructured ceramics, carbon fibers, polymers, metals, and composites enhance osteoblast adhesion and calcium/phosphate mineral deposition. However, the function of bacteria on materials with nanostructured surfaces remains largely uninvestigated. This is despite the fact that during normal surgical insertion of an orthopedic implant, bacteria from the patient's own skin and/or mucosa enters the wound site. These bacteria (namely, Staphylococcus epidermidis) irreversibly adhere to an implant surface while various physiological stresses induce alterations in the bacterial growth rate leading to biofilm formation. Because of their integral role in determining the success of orthopedic implants, the objective of this in vitro study was to examine the functions of (i) S. epidermidis and (ii) osteoblasts (or bone-forming cells) on ZnO and titania (TiO(2)), which possess nanostructured compared to microstructured surface features. ZnO is a well-known antimicrobial agent and TiO(2) readily forms on titanium once implanted. Results of this study provided the first evidence of decreased S. epidermidis adhesion on ZnO and TiO(2) with nanostructured when compared with microstructured surface features. Moreover, compared with microphase formulations, results of this study showed increased osteoblast adhesion, alkaline phosphatase activity, and calcium mineral deposition on nanophase ZnO and TiO(2). In this manner, this study suggests that nanophase ZnO and TiO(2) may reduce S. epidermidis adhesion and increase osteoblast functions necessary to promote the efficacy of orthopedic implants.

  8. 12. VIEW OF TYPICAL CELL LOCKING MECHANISM, BUILDING 220 CELL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF TYPICAL CELL LOCKING MECHANISM, BUILDING 220 CELL BLOCK 'A'. THE FACE PLATE OF THE CELL LOCK IS SHOWN REMOVED, EXPOSING THE ELECTROMAGNETIC LOCKING MECHANISM COMPRISING OF 2 MICROSWITCHES FOR LOCK POSITION INDICATION (FRONT LEFT CENTER AND REAR RIGHT CENTER OF PANEL); KEY SLOT MECHANICAL LOCK; LOCK SPRING (UPPER RIGHT OF PANEL); ELECTRIC SOLENOID (BOTTOM RIGHT CORNER OF PANEL); AND MISCELLANEOUS MECHANICAL LINKAGES. - U.S. Naval Base, Pearl Harbor, Brig, Neville Way near Ninth Street at Marine Barracks, Pearl City, Honolulu County, HI

  9. Autoimmune and infectious skin diseases that target desmogleins

    PubMed Central

    AMAGAI, Masayuki

    2010-01-01

    Desmosomes are intercellular adhesive junctions of epithelial cells that contain two major transmembrane components, the desmogleins (Dsg) and desmocollins (Dsc), which are cadherin-type cell–cell adhesion molecules and are anchored to intermediate filaments of keratin through interactions with plakoglobin and desmoplakin. Desmosomes play an important role in maintaining the proper structure and barrier function of the epidermis and mucous epithelia. Four Dsg isoforms have been identified to date, Dsg1–Dsg4, and are involved in several skin and heart diseases. Dsg1 and Dsg3 are the two major Dsg isoforms in the skin and mucous membranes, and are targeted by IgG autoantibodies in pemphigus, an autoimmune disease of the skin and mucous membranes. Dsg1 is also targeted by exfoliative toxin (ET) released by Staphylococcus aureus in the infectious skin diseases bullous impetigo and staphylococcal scalded skin syndrome (SSSS). ET is a unique serine protease that shows lock and key specificity to Dsg1. Dsg2 is expressed in all tissues possessing desmosomes, including simple epithelia and myocardia, and mutations in this gene are responsible for arrhythmogenic right ventricular cardiomyopathy/dysplasia. Dsg4 plays an important adhesive role mainly in hair follicles, and Dsg4 mutations cause abnormal hair development. Recently, an active disease model for pemphigus was generated by a unique approach using autoantigen-deficient mice that do not acquire tolerance against the defective autoantigen. Adoptive transfer of Dsg3−/− lymphocytes into mice expressing Dsg3 induces stable anti-Dsg3 IgG production with development of the pemphigus phenotype. This mouse model is a valuable tool with which to investigate immunological mechanisms of harmful IgG autoantibody production in pemphigus. Further investigation of desmoglein molecules will continue to provide insight into the unsolved pathophysiological mechanisms of diseases and aid in the development of novel therapeutic strategies with minimal side effects. PMID:20467217

  10. West Branch Pennsylvania Canal, Lock No. 34 Lock Keeper's House, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    West Branch Pennsylvania Canal, Lock No. 34 Lock Keeper's House, South of State Route 664 along North bank of West Branch of Susquehanna River, 2,000 feet East of Jay Street Bridge, Lock Haven, Clinton County, PA

  11. Euchromatin islands in large heterochromatin domains are enriched for CTCF binding and differentially DNA-methylated regions

    PubMed Central

    2012-01-01

    Background The organization of higher order chromatin is an emerging epigenetic mechanism for understanding development and disease. We and others have previously observed dynamic changes during differentiation and oncogenesis in large heterochromatin domains such as Large Organized Chromatin K (lysine) modifications (LOCKs), of histone H3 lysine-9 dimethylation (H3K9me2) or other repressive histone posttranslational modifications. The microstructure of these regions has not previously been explored. Results We analyzed the genome-wide distribution of H3K9me2 in two human pluripotent stem cell lines and three differentiated cells lines. We identified > 2,500 small regions with very low H3K9me2 signals in the body of LOCKs, which were termed as euchromatin islands (EIs). EIs are 6.5-fold enriched for DNase I Hypersensitive Sites and 8-fold enriched for the binding of CTCF, the major organizer of higher-order chromatin. Furthermore, EIs are 2–6 fold enriched for differentially DNA-methylated regions associated with tissue types (T-DMRs), reprogramming (R-DMRs) and cancer (C-DMRs). Gene ontology (GO) analysis suggests that EI-associated genes are functionally related to organ system development, cell adhesion and cell differentiation. Conclusions We identify the existence of EIs as a finer layer of epigenomic architecture within large heterochromatin domains. Their enrichment for CTCF sites and DNAse hypersensitive sites, as well as association with DMRs, suggest that EIs play an important role in normal epigenomic architecture and its disruption in disease. PMID:23102236

  12. Time-dependent observation of individual cellular binding events to field-effect transistors.

    PubMed

    Schäfer, S; Eick, S; Hofmann, B; Dufaux, T; Stockmann, R; Wrobel, G; Offenhäusser, A; Ingebrandt, S

    2009-01-01

    Electrolyte-gate field-effect transistors (EG-FETs) gained continuously more importance in the field of bioelectronics. The reasons for this are the intrinsic properties of these FETs. Binding of analysts or changes in the electrolyte composition are leading to variations of the drain-source current. Furthermore, due to the signal amplification upon voltage-to-current conversion even small extracellular signals can be detected. Here we report about impedance spectroscopy with an FET array to characterize passive components of a cell attached to the transistor gate. We developed a 16-channel readout system, which provides a simultaneous, lock-in based readout. A test signal of known amplitude and phase was applied via the reference electrode. We monitored the electronic transfer function of the FETs with the attached cell. The resulting frequency spectrum was used to investigate the surface adhesion of individual HEK293 cells. We applied different chemical treatments with either the serinpeptidase trypsin or the ionophor amphotericin B (AmpB). Binding studies can be realized by a time-dependent readout of the lock-in amplifier at a constant frequency. We observed cell detachment upon trypsin activity as well as membrane decomposition induced by AmpB. The results were interpreted in terms of an equivalent electrical circuit model of the complete system. The presented method could in future be applied to monitor more relevant biomedical manipulations of individual cells. Due to the utilization of the silicon technology, our method could be easily up-scaled to many output channels for high throughput pharmacological screening.

  13. Screw-locking wrench

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2007-01-01

    A tool comprises a first handle and a second handle, each handle extending from a gripping end portion to a working end portion, the first handle having first screw threads disposed circumferentially about an inner portion of a first through-hole at the working end portion thereof, the second handle having second screw threads disposed circumferentially about an inner portion of a second through-hole at the working end portion thereof, the first and second respective through-holes being disposed concentrically about a common axis of the working end portions. First and second screw locks preferably are disposed concentrically with the first and second respective through-holes, the first screw lock having a plurality of locking/unlocking screw threads for engaging the first screw threads of the first handle, the second screw lock having a plurality of locking/unlocking screw threads for engaging the second screw threads of the second handle. A locking clutch drive, disposed concentrically with the first and second respective through-holes, engages the first screw lock and the second screw lock. The first handle and the second handle are selectively operable at their gripping end portions by a user using a single hand to activate the first and second screw locks to lock the locking clutch drive for either clockwise rotation about the common axis, or counter-clockwise rotation about the common axis, or to release the locking clutch drive so that the handles can be rotated together about the common axis either the clockwise or counter-clockwise direction without rotation of the locking clutch drive.

  14. Time series analysis of tool wear in sheet metal stamping using acoustic emission

    NASA Astrophysics Data System (ADS)

    Vignesh Shanbhag, V.; Pereira, P. Michael; Rolfe, F. Bernard; Arunachalam, N.

    2017-09-01

    Galling is an adhesive wear mode that often affects the lifespan of stamping tools. Since stamping tools represent significant economic cost, even a slight improvement in maintenance cost is of high importance for the stamping industry. In other manufacturing industries, online tool condition monitoring has been used to prevent tool wear-related failure. However, monitoring the acoustic emission signal from a stamping process is a non-trivial task since the acoustic emission signal is non-stationary and non-transient. There have been numerous studies examining acoustic emissions in sheet metal stamping. However, very few have focused in detail on how the signals change as wear on the tool surface progresses prior to failure. In this study, time domain analysis was applied to the acoustic emission signals to extract features related to tool wear. To understand the wear progression, accelerated stamping tests were performed using a semi-industrial stamping setup which can perform clamping, piercing, stamping in a single cycle. The time domain features related to stamping were computed for the acoustic emissions signal of each part. The sidewalls of the stamped parts were scanned using an optical profilometer to obtain profiles of the worn part, and they were qualitatively correlated to that of the acoustic emissions signal. Based on the wear behaviour, the wear data can be divided into three stages: - In the first stage, no wear is observed, in the second stage, adhesive wear is likely to occur, and in the third stage severe abrasive plus adhesive wear is likely to occur. Scanning electron microscopy showed the formation of lumps on the stamping tool, which represents galling behavior. Correlation between the time domain features of the acoustic emissions signal and the wear progression identified in this study lays the basis for tool diagnostics in stamping industry.

  15. 49 CFR 236.765 - Locking, mechanical.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking, mechanical. 236.765 Section 236.765 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Locking, mechanical. An arrangement of locking bars, dogs, tappets, cross locking and other apparatus by...

  16. 49 CFR 236.7 - Circuit controller operated by switch-and-lock movement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Circuit controller operated by switch-and-lock... switch-and-lock movement. Circuit controller operated by switch-and-lock movement shall be maintained so... switch is locked. ...

  17. 49 CFR 236.7 - Circuit controller operated by switch-and-lock movement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Circuit controller operated by switch-and-lock... switch-and-lock movement. Circuit controller operated by switch-and-lock movement shall be maintained so... switch is locked. ...

  18. 49 CFR 236.7 - Circuit controller operated by switch-and-lock movement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Circuit controller operated by switch-and-lock... switch-and-lock movement. Circuit controller operated by switch-and-lock movement shall be maintained so... switch is locked. ...

  19. 49 CFR 236.7 - Circuit controller operated by switch-and-lock movement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Circuit controller operated by switch-and-lock... switch-and-lock movement. Circuit controller operated by switch-and-lock movement shall be maintained so... switch is locked. ...

  20. 49 CFR 236.7 - Circuit controller operated by switch-and-lock movement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit controller operated by switch-and-lock... switch-and-lock movement. Circuit controller operated by switch-and-lock movement shall be maintained so... switch is locked. ...

  1. Passive Optical Locking Techniques for Diode Lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Quan

    1995-01-01

    Most current diode-based nonlinear frequency converters utilize electronic frequency locking techniques. However, this type of locking technique typically involves very complex electronics, and suffers the 'power-drop' problem. This dissertation is devoted to the development of an all-optical passive locking technique that locks the diode laser frequency to the external cavity resonance stably without using any kind of electronic servo. The amplitude noise problem associated with the strong optical locking has been studied. Single-mode operation of a passively locked single-stripe diode with an amplitude stability better than 1% has been achieved. This passive optical locking technique applies to broad-area diodes as well as single-stripe diodes, and can be easily used to generate blue light. A schematic of a milliwatt level blue laser based on the single-stripe diode locking technique has been proposed. A 120 mW 467 nm blue laser has been built using the tapered amplifier locking technique. In addition to diode-based blue lasers, this passive locking technique has applications in nonlinear frequency conversions, resonant spectroscopy, particle counter devices, telecommunications, and medical devices.

  2. Interband optical pulse injection locking of quantum dot mode-locked semiconductor laser.

    PubMed

    Kim, Jimyung; Delfyett, Peter J

    2008-07-21

    We experimentally demonstrate optical clock recovery from quantum dot mode-locked semiconductor lasers by interband optical pulse injection locking. The passively mode-locked slave laser oscillating on the ground state or the first excited state transition is locked through the injection of optical pulses generated via the opposite transition bands, i.e. the first excited state or the ground state transition from the hybridly mode-locked master laser, respectively. When an optical pulse train generated via the first excited state from the master laser is injected to the slave laser oscillating via ground state, the slave laser shows an asymmetric locking bandwidth around the nominal repetition rate of the slave laser. In the reverse injection case of, i.e. the ground state (master laser) to the first excited state (slave laser), the slave laser does not lock even though both lasers oscillate at the same cavity frequency. In this case, the slave laser only locks to higher injection rates as compared to its own nominal repetition rate, and also shows a large locking bandwidth of 6.7 MHz.

  3. Microresonator soliton dual-comb spectroscopy

    NASA Astrophysics Data System (ADS)

    Suh, Myoung-Gyun; Yang, Qi-Fan; Yang, Ki Youl; Yi, Xu; Vahala, Kerry J.

    2016-11-01

    Measurement of optical and vibrational spectra with high resolution provides a way to identify chemical species in cluttered environments and is of general importance in many fields. Dual-comb spectroscopy has emerged as a powerful approach for acquiring nearly instantaneous Raman and optical spectra with unprecedented resolution. Spectra are generated directly in the electrical domain, without the need for bulky mechanical spectrometers. We demonstrate a miniature soliton-based dual-comb system that can potentially transfer the approach to a chip platform. These devices achieve high-coherence pulsed mode locking. They also feature broad, reproducible spectral envelopes, an essential feature for dual-comb spectroscopy. Our work shows the potential for integrated spectroscopy with high signal-to-noise ratios and fast acquisition rates.

  4. Controls on the Climates of Tidally Locked Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Yang, J.; Cowan, N. B.; Abbot, D. S.

    2013-12-01

    Earth-size planets in the habitable zone of M-dwarf stars may be very common. Due to strong tidal forces, these planets in circulate orbits are expected to be tidally locked, with one hemisphere experiencing perpetual day and the other permanent night. Previous studies on the climates of tidally locked planets were primarily based on complex 3D general circulation models (GCMs). The central question to be answered in this work is: what is the minimum necessary physics needed to understand the climates simulated by GCMs? A two-column model, primarily based on the weak temperature gradient (WTG) approximation (Sobel et al. 2001) and the fixed anvil temperature (FAT) hypothesis (Hartmann and Larson 2002) for the tropical climate of Earth, is developed for understanding the climates of tidally locked planets. This highly idealized model well reproduces fundamental features of the climates obtained in complicated GCMs (Yang et al. 2013), including planetary albedo, longwave cloud forcing, outgoing longwave radiation (OLR), and atmospheric energy transport. This suggests that the WTG approximation and the FAT hypothesis may be good approximations for tidally locked habitable planets, which provides strong constraints on the large-scale circulations, diabatic processes, and cloud behaviour on these planets. Both the simple model and the GCMs predict that (i) convection and planetary albedo on the dayside increase as stellar flux is increased; (ii) longwave cloud radiative forcing increases as stellar flux is increased, due to the cloud top temperature remains nearly constant as the climate changes (FAT hypothesis); (iii) for planets at the inner regions of the habitable zone, the dayside--nightside OLR contrast becomes very weak or even reverses, due to the strong longwave absorption by water vapor and clouds on the dayside; (iv) the dayside--to--nightside atmospheric energy transport (AET) increases as stellar flux is increased, and decreases as oceanic energy transport (OET) is included, although the compensation between AET and OET is incomplete. To summarize, we are able to construct a realistic low-order model for the climate of tidally locked terrestrial planets, including the cloud behavior, using only the two constraints. This bodes well for the interpretation of complex GCMs and future observations of such planets using, for example, the James Webb Space Telescope. Cited papers: [1]. Sobel, A. H., J. Nilsson and L. M. Polvani: The weak temperature gradient approximation and balanced tropical moisture waves, J. Atmos. Sci., 58, 3650-65, 2001. [2]. Hartmann, D. L. and K. Larson, An important constraint on tropical cloud-climate feedback, Geophys. Res. Lett., 29, 1951-54, 2002. [3]. Yang, J., N. B. Cowan and D. S. Abbot: Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets, ApJ. Lett., 771, L45, 2013.

  5. C-fiber-related EEG-oscillations induced by laser radiant heat stimulation of capsaicin-treated skin

    PubMed Central

    Domnick, Claudia; Hauck, Michael; Casey, Kenneth L; Engel, Andreas K; Lorenz, Jürgen

    2009-01-01

    Nociceptive input reaches the brain via two different types of nerve fibers, moderately fast A-delta and slowly conducting C-fibers, respectively. To explore their distinct roles in normal and inflammatory pain we used laser stimulation of normal and capsaicin treated skin at proximal and distal arm sites in combination with time frequency transformation of electroencephalography (EEG) data. Comparison of phase-locked (evoked) and non-phase-locked (total) EEG to laser stimuli revealed three significant pain-related oscillatory responses. First, an evoked response in the delta-theta band, mediated by A-fibers, was reduced by topical capsaicin treatment. Second, a decrease of total power in the alpha-to-gamma band reflected both an A- and C-nociceptor-mediated response with only the latter being reduced by capsaicin treatment. Finally, an enhancement of total power in the upper beta band was mediated exclusively by C-nociceptors and appeared strongly augmented by capsaicin treatment. These findings suggest that phase-locking of brain activity to stimulus onset is a critical feature of A-delta nociceptive input, allowing rapid orientation to salient and potentially threatening events. In contrast, the subsequent C-nociceptive input exhibits clearly less phase coupling to the stimulus. It may primarily signal the tissue status allowing more long-term behavioral adaptations during ongoing inflammatory events that accompany tissue damage. PMID:21197293

  6. Lock-up control system for an automatic transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashi, H.; Yashiki, S.; Waki, K.

    A lock-up control system is described for an automatic transmission including a torque converter coupled with the output portion on an engine, and a power transmitting gear arrangement coupled with the output portion of the torque converter and controlled to vary the transmitting gear ratio therein by gear ratio control means in accordance with a shifting up or down command supplied to the latter. A lock-up clutch is provided for locking up the output portion of the torque converter to the output portion of the engine. The lock-up control system comprises: lock-up operation control means for controlling the lock-up clutchmore » to be in its operative state and in its inoperative state selectively, and for causing the lock-up clutch to be in the inoperative state thereof when the gear ratio control means performs the control with the shifting up or down command, and lock-up command means for preventing the lock-up operation control means from causing the lock-up clutch to be in the inoperative state thereof until a predetermined reductive variation in the speed of the output portion of the torque converter arises after the shifting up command is supplied to the gear ratio control means under the condition in which the lock-up clutch is in operation to hold a lock-up state.« less

  7. 49 CFR 236.339 - Mechanical locking, maintenance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Mechanical locking, maintenance requirements. 236... Interlocking Rules and Instructions § 236.339 Mechanical locking, maintenance requirements. Locking and... prevented: (a) Mechanical machine—(1) Latch-operated locking. Raising lever latch block so that bottom...

  8. Structuring of composite hydrogel bioadhesives and its effect on properties and bonding mechanism.

    PubMed

    Pinkas, Oded; Goder, Daniella; Noyvirt, Roni; Peleg, Sivan; Kahlon, Maayan; Zilberman, Meital

    2017-03-15

    Bioadhesives are polymeric hydrogels that can adhere to a tissue after crosslinking and are an essential element in nearly all surgeries worldwide. Several bioadhesives are commercially available. However, none of them are ideal. The main limitation of current tissue adhesives is the tradeoff between biocompatibility and mechanical strength, especially in wet hemorrhagic environments. Our novel bioadhesives are based on the natural polymers gelatin (coldwater fish) and alginate, crosslinked by carbodiimide (EDC). Two types of hemostatic agents with a layered silicate structure, montmorillonite (MMT) and kaolin, were loaded in order to improve the sealing ability in a hemorrhagic environment. The effect of the adhesive's components on its mechanical strength was studied by three different methods - burst strength, lap shear and compression. The viscosity, gelation time and structural features of the adhesive were also studied. A qualitative model that describes the effect of the bioadhesive's parameters on the cohesive and adhesive strength was developed. A formulation based on 400mg/mL gelatin, 10mg/mL alginate and 20mg/mL EDC was found as optimal, enabling a burst strength of 387mmHg. Incorporation of kaolin increased the burst strength by 25% due to microcomposite structuring, whereas MMT increased the burst strength by 50% although loaded in a smaller concentration, due to nano-structuring effects. This research clearly shows that the incorporation of kaolin and MMT in gelatin-alginate surgical sealants is a very promising novel approach for improving the bonding strength and physical properties of surgical sealants for use in hemorrhagic environments. The current manuscript focuses on novel bioadhesives, based on natural polymers and loaded with hemostatic agents with a layered silicate structure, in order to improve the sealing ability in hemorrhagic environment. Such composite bioadhesives have not been developed and studied before. The effect of the adhesive's components on its mechanical strength was studied by three different methods, as well as the physical properties and structural features. Thorough understanding of these unique biomaterials resulted in a qualitative model which describes the effect of the bioadhesive's parameters on the cohesive and adhesive strength. Thus, structure-property-function relationships are presented. Structuring of the composite bioadhesives and its effect of the properties and bonding mechanism, are expected to be of high interest to Acta readership. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. A fast-locking PLL with all-digital locked-aid circuit

    NASA Astrophysics Data System (ADS)

    Kao, Shao-Ku; Hsieh, Fu-Jen

    2013-02-01

    In this article, a fast-locking phase-locked loop (PLL) with an all-digital locked-aid circuit is proposed and analysed. The proposed topology is based on two tuning loops: frequency and phase detections. A frequency detection loop is used to accelerate frequency locking time, and a phase detection loop is used to adjust fine phase errors between the reference and feedback clocks. The proposed PLL circuit is designed based on the 0.35 µm CMOS process with a 3.3 V supply voltage. Experimental results show that the locking time of the proposed PLL achieves a 87.5% reduction from that of a PLL without the locked-aid circuit.

  10. Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation.

    PubMed

    Gellie, Pierre; Barbieri, Stefano; Lampin, Jean-François; Filloux, Pascal; Manquest, Christophe; Sirtori, Carlo; Sagnes, Isabelle; Khanna, Suraj P; Linfield, Edmund H; Davies, A Giles; Beere, Harvey; Ritchie, David

    2010-09-27

    We demonstrate that the cavity resonance frequency - the round-trip frequency - of Terahertz quantum cascade lasers can be injection-locked by direct modulation of the bias current using an RF source. Metal-metal and single-plasmon waveguide devices with roundtrip frequencies up to 35GHz have been studied, and show locking ranges above 200MHz. Inside this locking range the laser round-trip frequency is phase-locked, with a phase noise determined by the RF-synthesizer. We find a square-root dependence of the locking range with RF-power in agreement with classical injection-locking theory. These results are discussed in the context of mode-locking operation.

  11. PWR integral tie plate and locking mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flora, B.S.; Osborne, J.L.

    1980-08-26

    A locking mechanism for securing an upper tie plate to the tie rods of a nuclear fuel bundle is described. The mechanism includes an upper tie plate assembly and locking sleeves fixed to the ends of the tie rods. The tie plate is part of the upper tie plate assembly and is secured to the fuel bundle by securing the entire upper tie plate assembly to the locking sleeves fixed to the tie rods. The assembly includes, in addition to the tie plate, locking nuts for engaging the locking sleeves, retaining sleeves to operably connect the locking nuts to themore » assembly, a spring biased reaction plate to restrain the locking nuts in the locked position and a means to facilitate the removal of the entire assembly as a unit from the fuel bundle.« less

  12. 49 CFR 236.758 - Lock, electric, forced drop.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Lock, electric, forced drop. 236.758 Section 236.758 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.758 Lock, electric, forced drop. An electric lock in which the locking member is mechanically...

  13. 49 CFR 236.758 - Lock, electric, forced drop.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Lock, electric, forced drop. 236.758 Section 236.758 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.758 Lock, electric, forced drop. An electric lock in which the locking member is mechanically...

  14. 49 CFR 236.758 - Lock, electric, forced drop.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Lock, electric, forced drop. 236.758 Section 236.758 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.758 Lock, electric, forced drop. An electric lock in which the locking member is mechanically...

  15. 49 CFR 236.758 - Lock, electric, forced drop.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lock, electric, forced drop. 236.758 Section 236.758 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.758 Lock, electric, forced drop. An electric lock in which the locking member is mechanically...

  16. 27 CFR 19.282 - Breaking Government locks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Breaking Government locks... Breaking Government locks. Where affixed, Government locks shall not be removed without the authorization... obtain authorization from an appropriate TTB officer, Government locks may be removed, by the proprietor...

  17. 33 CFR 207.476 - The Inland Route-lock in Crooked River, Alanson, Mich.; use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... management of the lock, and of the area set aside as the lock area, including the lock approach channels. He..., both to the employees of the Government and to any and every person within the limits of the lock area... object in the lock or approaches except by or under the direction of the lockmaster or his assistants. (c...

  18. 33 CFR 207.476 - The Inland Route-lock in Crooked River, Alanson, Mich.; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... management of the lock, and of the area set aside as the lock area, including the lock approach channels. He..., both to the employees of the Government and to any and every person within the limits of the lock area... object in the lock or approaches except by or under the direction of the lockmaster or his assistants. (c...

  19. Fabrication of planarised conductively patterned diamond for bio-applications.

    PubMed

    Tong, Wei; Fox, Kate; Ganesan, Kumaravelu; Turnley, Ann M; Shimoni, Olga; Tran, Phong A; Lohrmann, Alexander; McFarlane, Thomas; Ahnood, Arman; Garrett, David J; Meffin, Hamish; O'Brien-Simpson, Neil M; Reynolds, Eric C; Prawer, Steven

    2014-10-01

    The development of smooth, featureless surfaces for biomedical microelectronics is a challenging feat. Other than the traditional electronic materials like silicon, few microelectronic circuits can be produced with conductive features without compromising the surface topography and/or biocompatibility. Diamond is fast becoming a highly sought after biomaterial for electrical stimulation, however, its inherent surface roughness introduced by the growth process limits its applications in electronic circuitry. In this study, we introduce a fabrication method for developing conductive features in an insulating diamond substrate whilst maintaining a planar topography. Using a combination of microwave plasma enhanced chemical vapour deposition, inductively coupled plasma reactive ion etching, secondary diamond growth and silicon wet-etching, we have produced a patterned substrate in which the surface roughness at the interface between the conducting and insulating diamond is approximately 3 nm. We also show that the patterned smooth topography is capable of neuronal cell adhesion and growth whilst restricting bacterial adhesion. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Matrigel immobilization on the shish-kebab structured poly(ɛ-caprolactone) nanofibers for skin tissue engineering

    NASA Astrophysics Data System (ADS)

    Jing, Xin; Mi, Hao-Yang; Peng, Xiang-Fang; Turng, Lih-Sheng

    2016-03-01

    Surface properties of tissue engineering scaffolds such as topography, hydrophilicity, and functional groups play a vital role in cell adhesion, migration, proliferation, and apoptosis. First, poly(ɛ-caprolactone) (PCL) shish-kebab scaffolds (PCL-SK), which feature a three-dimensional structure comprised of electrospun PCL nanofibers covered by periodic, self-induced PCL crystal lamellae on the surface, was created to mimic the nanotopography of native collagen fibrils in the extracellular matrix (ECM). Second, matrigel was covalently immobilized on the surface of alkaline hydrolyzed PCL-SK scaffolds to enhance their hydrophilicity. This combined approach not only mimics the nanotopography of native collagen fibrils, but also simulates the surface features of collagen fibrils for cell growth. To investigate the viability of such scaffolds, HEF1 fibroblast cell assays were conducted and the results revealed that the nanotopography of the PCL-SK scaffolds facilitated cell adhesion and proliferation. The matrigel functionalization on PCL-SK scaffolds further enhanced cellular response, which suggested elevated biocompatibility and greater potential for skin tissue engineering applications.

  1. High-Performance Piezoresistive MEMS Strain Sensor with Low Thermal Sensitivity

    PubMed Central

    Mohammed, Ahmed A. S.; Moussa, Walied A.; Lou, Edmond

    2011-01-01

    This paper presents the experimental evaluation of a new piezoresistive MEMS strain sensor. Geometric characteristics of the sensor silicon carrier have been employed to improve the sensor sensitivity. Surface features or trenches have been introduced in the vicinity of the sensing elements. These features create stress concentration regions (SCRs) and as a result, the strain/stress field was altered. The improved sensing sensitivity compensated for the signal loss. The feasibility of this methodology was proved in a previous work using Finite Element Analysis (FEA). This paper provides the experimental part of the previous study. The experiments covered a temperature range from −50 °C to +50 °C. The MEMS sensors are fabricated using five different doping concentrations. FEA is also utilized to investigate the effect of material properties and layer thickness of the bonding adhesive on the sensor response. The experimental findings are compared to the simulation results to guide selection of bonding adhesive and installation procedure. Finally, FEA was used to analyze the effect of rotational/alignment errors. PMID:22319384

  2. Low-cost, digital lock-in module with external reference for coating glass transmission/reflection spectrophotometer

    NASA Astrophysics Data System (ADS)

    Alonso, R.; Villuendas, F.; Borja, J.; Barragán, L. A.; Salinas, I.

    2003-05-01

    A versatile, low-cost, digital signal processor (DSP) based lock-in module with external reference is described. This module is used to implement an industrial spectrophotometer for measuring spectral transmission and reflection of automotive and architectonic coating glasses over the ultraviolet, visible and near-infrared wavelength range. The light beams are modulated with an optical chopper. A digital phase-locked loop (DPLL) is used to lock the lock-in to the chop frequency. The lock-in rejects the ambient radiation and permits the spectrophotometer to work in the presence of ambient light. The algorithm that implements the dual lock-in and the DPLL in the DSP56002 evaluation module from Motorola is described. The use of a DSP allows implementation of the lock-in and DPLL by software, which gives flexibility and programmability to the system. Lock-in module cost, under 300 euro, is an important parameter taking into account that two modules are used in the system. Besides, the algorithms implemented in this DSP can be directly implemented in the latest DSP generations. The DPLL performance and the spectrophotometer are characterized. Capture and lock DPLL ranges have been measured and checked to be greater than the chop frequency drifts. The lock-in measured frequency response shows that the lock-in performs as theoretically predicted.

  3. Comparative evaluation of 2.3 mm locking plate system vs conventional 2.0 mm non locking plate system for mandibular condyle fracture fixation: a seven year retrospective study.

    PubMed

    Zhang, J; Wang, X; Wu, R-H; Zhuang, Q-W; Gu, Q P; Meng, J

    2015-01-01

    This retrospective study evaluated the efficacy of a 2.3 mm locking plate/screw system compared with a 2.0-mm non-locking plate/screw system in fixation of isolated non comminuted mandibular condyle fractures. Surgical records of 101 patients who received either a 2.3 mm locking plate (group A, n = 51) or 2.0 mm non locking plate (group B, n = 50) were analyzed. All patients were followed up to a minimum of 6 months postoperatively and evaluated for hardware related complications, occlusal stability, need for and duration of MMF and mandibular functional results. Four complications occurred in the locking group and eighteen in the non locking group with complication rates equalling 8% and 36% respectively. When comparing the overall results according to plates used, the χ2 test showed a statistically significant difference between the locking and non locking plates (p < 0.001). Fewer patients required postoperative MMF in group A. Mandibular condyle fractures treated with a 2.3 mm locking plate exhibited stable osteosynthesis, were associated with minimal complications and resulted in acceptable mandibular range of motion compared with a 2.0 mm non locking plate.

  4. A recurrence network approach to analyzing forced synchronization in hydrodynamic systems

    NASA Astrophysics Data System (ADS)

    Murugesan, Meenatchidevi; Zhu, Yuanhang; Li, Larry K. B.

    2016-11-01

    Hydrodynamically self-excited systems can lock into external forcing, but their lock-in boundaries and the specific bifurcations through which they lock in can be difficult to detect. We propose using recurrence networks to analyze forced synchronization in a hydrodynamic system: a low-density jet. We find that as the jet bifurcates from periodicity (unforced) to quasiperiodicity (weak forcing) and then to lock-in (strong forcing), its recurrence network changes from a regular distribution of links between nodes (unforced) to a disordered topology (weak forcing) and then to a regular distribution again at lock-in (strong forcing). The emergence of order at lock-in can be either smooth or abrupt depending on the specific lock-in route taken. Furthermore, we find that before lock-in, the probability distribution of links in the network is a function of the characteristic scales of the system, which can be quantified with network measures and used to estimate the proximity to the lock-in boundaries. This study shows that recurrence networks can be used (i) to detect lock-in, (ii) to distinguish between different routes to lock-in, and (iii) as an early warning indicator of the proximity of a system to its lock-in boundaries. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  5. MRI of placental adhesive disorder

    PubMed Central

    Prapaisilp, P; Bangchokdee, S

    2014-01-01

    Placental adhesive disorder (PAD) is a serious pregnancy complication that occurs when the chorionic villi invade the myometrium. Placenta praevia and prior caesarean section are the two important risk factors. PAD is classified on the basis of the depth of myometrial invasion (placenta accreta, placenta increta and placenta percreta). MRI is the preferred image modality for pre-natal diagnosis of PAD and as complementary technique when ultrasonography is inconclusive. Imaging findings that are helpful for the diagnosis include dark intraplacental bands, direct invasion of adjacent structures by placental tissue, interruption of normal trilayered myometrium and uterine bulging. Clinicians should be aware of imaging features of PAD to facilitate optimal patient management. PMID:25060799

  6. Distal tibia fractures: locked or non-locked plating? A systematic review of outcomes.

    PubMed

    Khalsa, Amrit S; Toossi, Nader; Tabb, Loni P; Amin, Nirav H; Donohue, Kenneth W; Cerynik, Douglas L

    2014-06-01

    Although plating is considered to be the treatment of choice in distal tibia fractures, controversies abound regarding the type of plating for optimal fixation. We conducted a systematic review to evaluate and compare the outcomes of locked plating and non-locked plating in treatment of distal tibia fractures. A systematic review was conducted using PubMed to identify articles on the outcomes of plating in distal tibia fractures that were published up to June 2012. We included English language articles involving a minimum of 10 adult cases with acute fractures treated using single-plate, minimally invasive techniques. Study-level binomial regression on the pooled data was conducted to determine the effect of locking status on different outcomes, adjusted for age, sex, and other independent variables. 27 studies met the inclusion criteria and were included in the final analysis of 764 cases (499 locking, 265 non-locking). Based on descriptive analysis only, delayed union was reported in 6% of cases with locked plating and in 4% of cases with non-locked plating. Non-union was reported in 2% of cases with locked plating and 3% of cases with non-locked plating. Comparing locked and non-locked plating, the odds ratio (OR) for reoperation was 0.13 (95% CI: 0.03-0.57) and for malalignment it was 0.10 (95% CI: 0.02-0.42). Both values were statistically significant. This study showed that locked plating reduces the odds of reoperation and malalignment after treatment for acute distal tibia fracture. Future studies should accurately assess causality and the clinical and economic impact of these findings.

  7. Biomechanical comparison of locked versus non-locked symphyseal plating of unstable pelvic ring injuries.

    PubMed

    Godinsky, R J; Vrabec, G A; Guseila, L M; Filipkowski, D E; Elias, J J

    2018-04-01

    Locked symphyseal plates are utilized to provide higher levels of construct stiffness than non-locked plates. The current biomechanical study was performed to compare stiffness at the pubic symphysis between locked and non-locked plating systems. Synthetic models were utilized to represent injury to the pelvis and symphyseal plating combined with a sacro-iliac screw. Seven models were evaluated with plates and locking screws, and seven were evaluated with non-locking screws. Single limb stance was simulated, with all models loaded for 1000 cycles with 350 N applied at the sacrum. Two pairs of markers crossing the symphysis were tracked with a video-based tracking system. A coordinate system was developed to quantify motion between the pairs in three directions: medial-lateral gap, anterior-posterior shear translation, and superior-inferior shear translation. Significant differences between the plating systems were identified with t tests (p < 0.05). Anterior-posterior shear translation varied significantly between the two plating systems. From cycles 100 to 1000, average shear translation for the non-locked and locked systems was ~0.7 and 0.3 mm, respectively, at the markers closest to the plate and 2.2 and 1.4 mm, respectively, at the markers further from the plate. Motion in the other two directions did not differ significantly between locked and non-locked models. Locked symphyseal plating systems can provide better stability than non-locked systems for anterior-posterior shear translation. More stability could potentially reduce the risk of failure of the plate or screws.

  8. Feasibility Report for Hydropower, St. Anthony Falls Locks and Dams, Mississippi River, Minneapolis, Minnesota.

    DTIC Science & Technology

    1984-02-01

    Added Generators and Breakers 116 * ix I~ Table of Contents (cont.) Item Pace Excitation System 117 Connection to Load 117 Bridge Crane 117 Lower St...118 Added Generator and Breaker 119 Excitation System 120 Connection to Load 120 Mobile Crane 120 Civil Features - Upper Falls 120 Powerhouse 121...intermediate plants fully integrated with the base loaded thermal plants in the area. Gavins Point is generally base- loaded to provide steady flows for

  9. Erectable/deployable concepts for large space system technology

    NASA Technical Reports Server (NTRS)

    Agan, W. E.

    1980-01-01

    Erectable/deployable space structure concepts particularly relating to the development of a science and applications space platform are presented. Design and operating features for an automatic coupler clevis joint, a side latching detent joint, and a module-to-module auto lock coupler are given. An analysis of the packaging characteristics of stacked subassembly, single fold, hybrid, and double fold concepts is given for various platform structure configurations. Payload carrier systems and assembly techniques are also discussed.

  10. Aggressiveness of contemporary self-etching adhesives. Part II: etching effects on unground enamel.

    PubMed

    Pashley, D H; Tay, F R

    2001-09-01

    The aggressiveness of three self-etching adhesives on unground enamel was investigated. Ultrastructural features and microtensile bond strength were examined, first using these adhesives as both the etching and resin-infiltration components, and then examining their etching efficacy alone through substitution of the proprietary resins with the same control resins. For SEM examination, buccal, mid-coronal, unground enamel from human extracted bicuspids were etched with either Clearfil Mega Bond (Kuraray), Non-Rinse Conditioner (NRC; Dentsply DeTrey) or Prompt L-Pop (ESPE). Those in the control group were etched with 32% phosphoric acid (Bisco) for 15s. They were all rinsed off prior to examination of the etching efficacy. For TEM examination, the self-etching adhesives were used as recommended. Unground enamel treated with NRC were further bonded using Prime&Bond NT (Dentsply), while those in the etched, control group were bonded using All-Bond 2 (Bisco). Completely demineralized, resin replicas were embedded in epoxy resin for examination of the extent of resin infiltration. For microtensile bond strength evaluation, specimens were first etched and bonded using the self-etching adhesives. A second group of specimens were etched with the self-etching adhesives, rinsed but bonded using a control adhesive. Following restoration with Z100 (3M Dental Products), they were sectioned into beams of uniform cross-sectional areas and stressed to failure. Etching patterns of aprismatic enamel, as revealed by SEM, and the subsurface hybrid layer morphology, as revealed by TEM, varied according to the aggressiveness of the self-etching adhesives. Clearfil Mega Bond exhibited the mildest etching patterns, while Prompt L-Pop produced an etching effect that approached that of the total-etch control group. Microtensile bond strength of the three experimental groups were all significantly lower than the control group, but not different from one another. When the self-etching adhesives were replaced with the control adhesive after etching, bond strengths of NRC/Prime&Bond NT and Prompt L-Pop were not significantly different from that of the control group, but were significantly higher than that of Clearfil Mega Bond. Both etching efficacy and strength of the resins are important contributing factors in bonding of self-etching adhesives to unground enamel.

  11. Self-actuating and locking control for nuclear reactor

    DOEpatents

    Chung, Dong K.

    1982-01-01

    A self-actuating, self-locking flow cutoff valve particularly suited for use in a nuclear reactor of the type which utilizes a plurality of fluid support neutron absorber elements to provide for the safe shutdown of the reactor. The valve comprises a substantially vertical elongated housing and an aperture plate located in the housing for the flow of fluid therethrough, a substantially vertical elongated nozzle member located in the housing and affixed to the housing with an opening in the bottom for receiving fluid and apertures adjacent a top end for discharging fluid. The nozzle further includes two sealing means, one located above and the other below the apertures. Also located in the housing and having walls surrounding the nozzle is a flow cutoff sleeve having a fluid opening adjacent an upper end of the sleeve, the sleeve being moveable between an upper open position wherein the nozzle apertures are substantially unobstructed and a closed position wherein the sleeve and nozzle sealing surfaces are mated such that the flow of fluid through the apertures is obstructed. It is a particular feature of the present invention that the valve further includes a means for utilizing any increase in fluid pressure to maintain the cutoff sleeve in a closed position. It is another feature of the invention that there is provided a means for automatically closing the valve whenever the flow of fluid drops below a predetermined level.

  12. Digitized locksmith forensics: automated detection and segmentation of toolmarks on highly structured surfaces

    NASA Astrophysics Data System (ADS)

    Clausing, Eric; Vielhauer, Claus

    2014-02-01

    Locksmith forensics is an important area in crime scene forensics. Due to new optical, contactless, nanometer range sensing technology, such traces can be captured, digitized and analyzed more easily allowing a complete digital forensic investigation. In this paper we present a significantly improved approach for the detection and segmentation of toolmarks on surfaces of locking cylinder components (using the example of the locking cylinder component 'key pin') acquired by a 3D Confocal Laser Scanning Microscope. This improved approach is based on our prior work1 using a block-based classification approach with textural features. In this prior work1 we achieve a solid detection rate of 75-85% for the detection of toolmarks originating from illegal opening methods. Here, in this paper we improve, expand and fuse this prior approach with additional features from acquired surface topography data, color data and an image processing approach using adapted Gabor filters. In particular we are able of raising the detection and segmentation rates above 90% with our test set of 20 key pins with approximately 700 single toolmark traces of four different opening methods. We can provide a precise pixel- based segmentation as opposed to the rather imprecise segmentation of our prior block-based approach and as the use of the two additional data types (color and especially topography) require a specific pre-processing, we furthermore propose an adequate approach for this purpose.

  13. Position-dependent effects of locked nucleic acid (LNA) on DNA sequencing and PCR primers

    PubMed Central

    Levin, Joshua D.; Fiala, Dean; Samala, Meinrado F.; Kahn, Jason D.; Peterson, Raymond J.

    2006-01-01

    Genomes are becoming heavily annotated with important features. Analysis of these features often employs oligonucleotides that hybridize at defined locations. When the defined location lies in a poor sequence context, traditional design strategies may fail. Locked Nucleic Acid (LNA) can enhance oligonucleotide affinity and specificity. Though LNA has been used in many applications, formal design rules are still being defined. To further this effort we have investigated the effect of LNA on the performance of sequencing and PCR primers in AT-rich regions, where short primers yield poor sequencing reads or PCR yields. LNA was used in three positional patterns: near the 5′ end (LNA-5′), near the 3′ end (LNA-3′) and distributed throughout (LNA-Even). Quantitative measures of sequencing read length (Phred Q30 count) and real-time PCR signal (cycle threshold, CT) were characterized using two-way ANOVA. LNA-5′ increased the average Phred Q30 score by 60% and it was never observed to decrease performance. LNA-5′ generated cycle thresholds in quantitative PCR that were comparable to high-yielding conventional primers. In contrast, LNA-3′ and LNA-Even did not improve read lengths or CT. ANOVA demonstrated the statistical significance of these results and identified significant interaction between the positional design rule and primer sequence. PMID:17071964

  14. High-power actively Q-switched single-mode 1342 nm Nd:YVO4 ring laser, injection-locked by a cw single-frequency microchip laser.

    PubMed

    Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-30

    In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 < 1.05). By frequency doubling of the fundamental 1342 nm laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.

  15. Signal enhancement, not active suppression, follows the contingent capture of visual attention.

    PubMed

    Livingstone, Ashley C; Christie, Gregory J; Wright, Richard D; McDonald, John J

    2017-02-01

    Irrelevant visual cues capture attention when they possess a task-relevant feature. Electrophysiologically, this contingent capture of attention is evidenced by the N2pc component of the visual event-related potential (ERP) and an enlarged ERP positivity over the occipital hemisphere contralateral to the cued location. The N2pc reflects an early stage of attentional selection, but presently it is unclear what the contralateral ERP positivity reflects. One hypothesis is that it reflects the perceptual enhancement of the cued search-array item; another hypothesis is that it is time-locked to the preceding cue display and reflects active suppression of the cue itself. Here, we varied the time interval between a cue display and a subsequent target display to evaluate these competing hypotheses. The results demonstrated that the contralateral ERP positivity is tightly time-locked to the appearance of the search display rather than the cue display, thereby supporting the perceptual enhancement hypothesis and disconfirming the cue-suppression hypothesis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Loose-Lipped Mobile Device Intelligent Personal Assistants: A Discussion of Information Gleaned from Siri on Locked iOS Devices.

    PubMed

    Horsman, Graeme

    2018-04-23

    The forensic analysis of mobile handsets is becoming a more prominent factor in many criminal investigations. Despite such devices frequently storing relevant evidential content to support an investigation, accessing this information is becoming an increasingly difficult task due to enhanced effective security features. Where access to a device's resident data is not possible via traditional mobile forensic methods, in some cases it may still be possible to extract user information via queries made to an installed intelligent personal assistant. This article presents an evaluation of the information which is retrievable from Apple's Siri when interacted with on a locked iOS device running iOS 11.2.5 (the latest at the time of testing). The testing of verbal commands designed to elicit a response from Siri demonstrate the ability to recover call log, SMS, Contacts, Apple Maps, Calendar, and device information which may support any further investigation. © 2018 American Academy of Forensic Sciences.

  17. Prostate biopsies assisted by comanipulated probe-holder: first in man.

    PubMed

    Vitrani, Marie-Aude; Baumann, Michael; Reversat, David; Morel, Guillaume; Moreau-Gaudry, Alexandre; Mozer, Pierre

    2016-06-01

    A comanipulator for assisting endorectal prostate biopsies is evaluated through a first-in-man clinical trial. This lightweight system, based on conventional robotic components, possesses six degrees of freedom. It uses three electric motors and three brakes. It features a free mode, where its low friction and inertia allow for natural manipulation of the probe and a locked mode, exhibiting both a very low stiffness and a high steady-state precision. Clinical trials focusing on the free mode and the locked mode of the robot are presented. The objective was to evaluate the practical usability and performance of the robot during clinical procedures. A research protocol for a prospective randomized clinical trial has been designed. Its specific goal was to compare the accuracy of biopsies performed with and without the assistance of the comanipulator. The accuracy is compared between biopsies performed with and without the assistance of the comanipulator, across the 10 first patients included in the trial. Results show a statistically significant increase in the precision.

  18. Optimal space communications techniques. [all digital phase locked loop for FM demodulation

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1973-01-01

    The design, development, and analysis are reported of a digital phase-locked loop (DPLL) for FM demodulation and threshold extension. One of the features of the developed DPLL is its synchronous, real time operation. The sampling frequency is constant and all the required arithmetic and logic operations are performed within one sampling period, generating an output sequence which is converted to analog form and filtered. An equation relating the sampling frequency to the carrier frequency must be satisfied to guarantee proper DPLL operation. The synchronous operation enables a time-shared operation of one DPLL to demodulate several FM signals simultaneously. In order to obtain information about the DPLL performance at low input signal-to-noise ratios, a model of an input noise spike was introduced, and the DPLL equation was solved using a digital computer. The spike model was successful in finding a second order DPLL which yielded a five db threshold extension beyond that of a first order DPLL.

  19. Research on phase locked loop in optical memory servo system

    NASA Astrophysics Data System (ADS)

    Qin, Liqin; Ma, Jianshe; Zhang, Jianyong; Pan, Longfa; Deng, Ming

    2005-09-01

    Phase locked loop (PLL) is a closed loop automatic control system, which can track the phase of input signal. It widely applies in each area of electronic technology. This paper research the phase locked loop in optical memory servo area. This paper introduces the configuration of digital phase locked loop (PLL) and phase locked servo system, the control theory, and analyses system's stability. It constructs the phase locked loop experiment system of optical disk spindle servo, which based on special chip. DC motor is main object, this system adopted phase locked servo technique and digital signal processor (DSP) to achieve constant linear velocity (CLV) in controlling optical spindle motor. This paper analyses the factors that affect the stability of phase locked loop in spindle servo system, and discusses the affection to the optical disk readout signal and jitter due to the stability of phase locked loop.

  20. Robust tilt and lock mechanism for hopping actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salton, Jonathan R.; Buerger, Stephen; Dullea, Kevin J.

    A tilt and lock apparatus that includes a tilt servomechanism, a spiral torsion spring, a lock wheel, and a lock hook is described herein. The spiral torsion spring is mechanically coupled to the tilt servomechanism and the lock wheel (which includes an opening). When a shaft is positioned through the opening, rotation of the lock wheel is in unison with rotation of the shaft. An external surface of the lock wheel includes one or more grooves. The lock hook includes a head that engages and disengages the grooves. The lock wheel is stationary when the head engages one of themore » grooves and is rotatable when the head disengages the grooves. The head and the grooves are geometrically aligned when engaged to prevent creation of a force that acts to disengage the head responsive to an applied force acting on the shaft.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Kevin

    The software provides a simple web api to allow users to request a time window where a file will not be removed from cache. HPSS provides the concept of a "purge lock". When a purge lock is set on a file, the file will not be removed from disk, entering tape only state. A lot of network file protocols assume a file is on disk so it is good to purge lock a file before transferring using one of those protocols. HPSS's purge lock system is very coarse grained though. A file is either purge locked or not. Nothing enforcesmore » quotas, timely unlocking of purge locks, or managing the races inherent with multiple users wanting to lock/unlock the same file. The Purge Lock Server lets you, through a simple REST API, specify a list of files to purge lock and an expire time, and the system will ensure things happen properly.« less

  2. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haimou; Qin, Gangjian; Liang, Gang

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanismmore » of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.« less

  3. Biomechanical strength of the Peri-Loc proximal tibial plate: a comparison of all-locked versus hybrid locked/nonlocked screw configurations.

    PubMed

    Estes, Chris; Rhee, Peter; Shrader, M Wade; Csavina, Kristine; Jacofsky, Marc C; Jacofsky, David J

    2008-01-01

    The purpose of this study was to compare the biomechanical properties of a contoured locking plate instrumented with either an all-locked or hybrid locked/nonlocked screw construct in a proximal metaphyseal fracture of the tibia (AO 41-A3.2). A standardized proximal metaphyseal wedge osteotomy (AO 41-A3.2) was created in five pairs of cadaveric tibia. Each pair was randomly instrumented with either an all-locked or combination locked/nonlocked screw construct using a locked contoured periarticular plate (Peri-Loc periarticular locked plating system, Smith & Nephew, Memphis, TN). Vertical subsidence (irreversible deformation) and deflection (reversible deformation) in each pair were analyzed and compared. Load to failure, defined by complete fracture gap closure, was also determined. There was no statistically significant difference in vertical subsidence (P = 0.19) or deflection (P = 0.19) of the proximal tibia between the all-locked and combination locked/nonlocked screw construct with increasing levels of cyclical axial load from 200 to 1200 N. Failure occurred at a mean value of 2160 N in the locked group and 1760 N in the hybrid group (P = 0.19); the failure mode was plate bending in all specimens. The results indicate that the use of compression screws with locked screws in this particular construct allows a similar amount of irreversible and reversible deformation in response to an axial load when compared to an all-locked screw construct. This suggests that there is no statistically significant difference in the stability in fixation between the two methods, allowing the surgeon the freedom to choose the appropriate screw combination unique to each fracture.

  4. Distal tibia fractures: locked or non-locked plating?

    PubMed Central

    Khalsa, Amrit S; Toossi, Nader; Tabb, Loni P; Amin, Nirav H; Donohue, Kenneth W; Cerynik, Douglas L

    2014-01-01

    Background and purpose Although plating is considered to be the treatment of choice in distal tibia fractures, controversies abound regarding the type of plating for optimal fixation. We conducted a systematic review to evaluate and compare the outcomes of locked plating and non-locked plating in treatment of distal tibia fractures. Patients and methods A systematic review was conducted using PubMed to identify articles on the outcomes of plating in distal tibia fractures that were published up to June 2012. We included English language articles involving a minimum of 10 adult cases with acute fractures treated using single-plate, minimally invasive techniques. Study-level binomial regression on the pooled data was conducted to determine the effect of locking status on different outcomes, adjusted for age, sex, and other independent variables. Results 27 studies met the inclusion criteria and were included in the final analysis of 764 cases (499 locking, 265 non-locking). Based on descriptive analysis only, delayed union was reported in 6% of cases with locked plating and in 4% of cases with non-locked plating. Non-union was reported in 2% of cases with locked plating and 3% of cases with non-locked plating. Comparing locked and non-locked plating, the odds ratio (OR) for reoperation was 0.13 (95% CI: 0.03–0.57) and for malalignment it was 0.10 (95% CI: 0.02–0.42). Both values were statistically significant. Interpretation This study showed that locked plating reduces the odds of reoperation and malalignment after treatment for acute distal tibia fracture. Future studies should accurately assess causality and the clinical and economic impact of these findings. PMID:24758325

  5. Locking design affects the jamming of screws in locking plates.

    PubMed

    Sandriesser, Sabrina; Rupp, Markus; Greinwald, Markus; Heiss, Christian; Augat, Peter; Alt, Volker

    2018-06-01

    The seizing of locking screws is a frequently encountered clinical problem during implant removal of locking compression plates (LCP) after completion of fracture healing. The aim of this study was to investigate the effect of two different locking mechanisms on the seizing of locking screws. Specifically, the removal torques before and after cyclic dynamic loading were assessed for screws inserted at the manufacturer-recommended torque or at an increased insertion torque. The seizing of 3.5-mm angular stable screws was assessed as a function of insertion torque for two different locking mechanisms (Thread & Conus and Thread Only). Locking screws (n=10 for each configuration) were inserted either according to the manufacturer-recommended torque or at an increased torque of 150% to simulate an over-insertion of the screw. Half of the screws were removed directly after insertion and the remaining half was removed after a dynamic load protocol of 100,000 cycles. The removal torques of locking screws exceeded the insertion torques for all tested conditions confirming the adequacy of the test setup in mimicking screw seizing in locked plating. Screw seizing was more pronounced for Thread Only design (+37%) compared to Thread & Conus design (+14%; P<0.0001). Cyclic loading of the locking construct consistently resulted in an increased seizing of the locking screws (P<0.0001). Clinical observations from patients treated with the Thread & Conus locking design confirm the biomechanical findings of reduction in seizing effect by using a Thread & Conus design. In conclusion, both over-tightening and cyclic loading are potential causes for screw seizing in locking plate implants. Both effects were found to be less pronounced in the Thread & Conus design as compared to the traditional Thread Only design. © 2018 Elsevier Ltd. All rights reserved.

  6. Efficient optical injection locking of electronic oscillators

    NASA Astrophysics Data System (ADS)

    Cochran, S. R.; Wang, S. Y.

    1989-05-01

    The paper presents techniques for direct optical injection locking of electronic oscillators and analyzes the problem of direct optical injection locking of a common-source FET oscillator using a high impedance optoelectronic transducer. A figure-of-merit for optically injection locked oscillators is defined, and an experimental oscillator based on the design criteria was fabricated. The oscillator achieved efficient, high power operation and moderate locking bandwidth with small locking signal magnitude. The experimental results are consistent with the theoretical model.

  7. X-rays effects on cytoskeleton mechanics of healthy and tumor cells.

    PubMed

    Panzetta, Valeria; De Menna, Marta; Musella, Ida; Pugliese, Mariagabriella; Quarto, Maria; Netti, Paolo A; Fusco, Sabato

    2017-01-01

    Alterations in the cytoskeleton structure are frequently found in several diseases and particularly in cancer cells. It is also through the alterations of the cytoskeleton structure that cancer cells acquire most of their common features such as uncontrolled cell proliferation, cell death evasion, and the gaining of migratory and invasive characteristics. Although radiation therapies currently represent one of the most effective treatments for patients, the effects of X-irradiation on the cytoskeleton architecture are still poorly understood. In this case we investigated the effects, over time of two different doses of X-ray irradiation, on cell cytoskeletons of BALB/c3T3 and Sv40-transformed BALB/c 3T3 cells (SVT2). Biophysical parameters - focal adhesion size, actin bundles organization, and cell mechanical properties - were measured before and after irradiations (1 and 2 Gy) at 24 and 72 h, comparing the cytoskeleton properties of normal and transformed cells. The differences, before and after X-irradiation, were revealed in terms of cell morphology and deformability. Finally, such parameters were correlated to the alterations of cytoskeleton dynamics by evaluating cell adhesion at the level of focal adhesion and cytoskeleton mechanics. X-irradiation modifies the structure and the activity of cell cytoskeleton in a dose-dependent manner. For transformed cells, radiation sensitively increased cell adhesion, as indicated by paxillin-rich focal adhesion, flat morphology, a well-organized actin cytoskeleton, and intracellular mechanics. On the other hand, for normal fibroblasts IR had negligible effects on cytoskeletal and adhesive protein organization. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Specificity of cell–cell adhesion by classical cadherins: Critical role for low-affinity dimerization through β-strand swapping

    PubMed Central

    Chen, Chien Peter; Posy, Shoshana; Ben-Shaul, Avinoam; Shapiro, Lawrence; Honig, Barry H.

    2005-01-01

    Cadherins constitute a family of cell-surface proteins that mediate intercellular adhesion through the association of protomers presented from juxtaposed cells. Differential cadherin expression leads to highly specific intercellular interactions in vivo. This cell–cell specificity is difficult to understand at the molecular level because individual cadherins within a given subfamily are highly similar to each other both in sequence and structure, and they dimerize with remarkably low binding affinities. Here, we provide a molecular model that accounts for these apparently contradictory observations. The model is based in part on the fact that cadherins bind to one another by “swapping” the N-terminal β-strands of their adhesive domains. An inherent feature of strand swapping (or, more generally, the domain swapping phenomenon) is that “closed” monomeric conformations act as competitive inhibitors of dimer formation, thus lowering affinities even when the dimer interface has the characteristics of high-affinity complexes. The model describes quantitatively how small affinity differences between low-affinity cadherin dimers are amplified by multiple cadherin interactions to establish large specificity effects at the cellular level. It is shown that cellular specificity would not be observed if cadherins bound with high affinities, thus emphasizing the crucial role of strand swapping in cell–cell adhesion. Numerical estimates demonstrate that the strength of cellular adhesion is extremely sensitive to the concentration of cadherins expressed at the cell surface. We suggest that the domain swapping mechanism is used by a variety of cell-adhesion proteins and that related mechanisms to control affinity and specificity are exploited in other systems. PMID:15937105

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, Seonghwan, E-mail: Seonghwan.Yee@Beaumont.edu; Gao, Jia-Hong

    Purpose: To investigate whether the direction of spin-lock field, either parallel or antiparallel to the rotating magnetization, has any effect on the spin-lock MRI signal and further on the quantitative measurement of T1ρ, in a clinical 3 T MRI system. Methods: The effects of inverted spin-lock field direction were investigated by acquiring a series of spin-lock MRI signals for an American College of Radiology MRI phantom, while the spin-lock field direction was switched between the parallel and antiparallel directions. The acquisition was performed for different spin-locking methods (i.e., for the single- and dual-field spin-locking methods) and for different levels ofmore » clinically feasible spin-lock field strength, ranging from 100 to 500 Hz, while the spin-lock duration was varied in the range from 0 to 100 ms. Results: When the spin-lock field was inverted into the antiparallel direction, the rate of MRI signal decay was altered and the T1ρ value, when compared to the value for the parallel field, was clearly different. Different degrees of such direction-dependency were observed for different spin-lock field strengths. In addition, the dependency was much smaller when the parallel and the antiparallel fields are mixed together in the dual-field method. Conclusions: The spin-lock field direction could impact the MRI signal and further the T1ρ measurement in a clinical MRI system.« less

  10. Mechanics of Fluid-Filled Interstitial Gaps. I. Modeling Gaps in a Compact Tissue.

    PubMed

    Parent, Serge E; Barua, Debanjan; Winklbauer, Rudolf

    2017-08-22

    Fluid-filled interstitial gaps are a common feature of compact tissues held together by cell-cell adhesion. Although such gaps can in principle be the result of weak, incomplete cell attachment, adhesion is usually too strong for this to occur. Using a mechanical model of tissue cohesion, we show that, instead, a combination of local prevention of cell adhesion at three-cell junctions by fluidlike extracellular material and a reduction of cortical tension at the gap surface are sufficient to generate stable gaps. The size and shape of these interstitial gaps depends on the mechanical tensions between cells and at gap surfaces, and on the difference between intracellular and interstitial pressures that is related to the volume of the interstitial fluid. As a consequence of the dependence on tension/tension ratios, the presence of gaps does not depend on the absolute strength of cell adhesion, and similar gaps are predicted to occur in tissues of widely differing cohesion. Tissue mechanical parameters can also vary within and between cells of a given tissue, generating asymmetrical gaps. Within limits, these can be approximated by symmetrical gaps. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Protein-releasing conductive anodized alumina membranes for nerve-interface materials.

    PubMed

    Altuntas, Sevde; Buyukserin, Fatih; Haider, Ali; Altinok, Buket; Biyikli, Necmi; Aslim, Belma

    2016-10-01

    Nanoporous anodized alumina membranes (AAMs) have numerous biomedical applications spanning from biosensors to controlled drug delivery and implant coatings. Although the use of AAM as an alternative bone implant surface has been successful, its potential as a neural implant coating remains unclear. Here, we introduce conductive and nerve growth factor-releasing AAM substrates that not only provide the native nanoporous morphology for cell adhesion, but also induce neural differentiation. We recently reported the fabrication of such conductive membranes by coating AAMs with a thin C layer. In this study, we investigated the influence of electrical stimulus, surface topography, and chemistry on cell adhesion, neurite extension, and density by using PC 12 pheochromocytoma cells in a custom-made glass microwell setup. The conductive AAMs showed enhanced neurite extension and generation with the electrical stimulus, but cell adhesion on these substrates was poorer compared to the naked AAMs. The latter nanoporous material presents chemical and topographical features for superior neuronal cell adhesion, but, more importantly, when loaded with nerve growth factor, it can provide neurite extension similar to an electrically stimulated CAAM counterpart. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Polymerization of Quinone-Crosslinked Marine Bioadhesive Protein

    DTIC Science & Technology

    1988-10-05

    T. (1988) Adhesive protein of ribbed mussels: a natural glue with some features of collagen . To: J. Biol. Chem. Rzepecki, L., Nagafuchi, T. and...protein as inducing agent in the settlement of Mytilus edulis larvae", and "Hemolytic toxins of two marine jellyfish ", respectively. Tatsuhiko

  13. Molecular neurobiology in neurology and psychiatry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandel, E.R.

    1987-01-01

    This book contains 14 selections. Some of the titles are: An Introduction to Ion Channels; Molecular Neurobiology of the Myelinated Nerve Fiber: Ion-Channel Distributions and Their Implications for Demyelinating Diseases; A Molecular Genetic Approach to Huntington's Disease; and Molecular Features of Cell Adhesion Molecules Involved in Neural Development.

  14. VIEW LOOKING NORTHEAST INTO LOCK 71. NOTE THE SEDIMENT BUILD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING NORTHEAST INTO LOCK 71. NOTE THE SEDIMENT BUILD UP. THIS IS BY DESIGN, NOT ONLY ARE THE OLDER LOCKS USED AS AN OVERFLOW SPILLWAY FOR THE CURRENT LOCKS, THEY ARE ALSO USED FOR SEDIMENT AND DEBRIS CONTROL. - New York State Barge Canal, Lockport Locks, Richmond Avenue, Lockport, Niagara County, NY

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKenzie, Kirk; Spero, Robert E.; Shaddock, Daniel A.

    For the Laser Interferometer Space Antenna (LISA) to reach its design sensitivity, the coupling of the free-running laser frequency noise to the signal readout must be reduced by more than 14 orders of magnitude. One technique employed to reduce the laser frequency noise will be arm locking, where the laser frequency is locked to the LISA arm length. In this paper we detail an implementation of arm locking. We investigate orbital effects (changing arm lengths and Doppler frequencies), the impact of errors in the Doppler knowledge that can cause pulling of the laser frequency, and the noise limit of armmore » locking. Laser frequency pulling is examined in two regimes: at lock acquisition and in steady state. The noise performance of arm locking is calculated with the inclusion of the dominant expected noise sources: ultrastable oscillator (clock) noise, spacecraft motion, and shot noise. We find that clock noise and spacecraft motion limit the performance of dual arm locking in the LISA science band. Studying these issues reveals that although dual arm locking [A. Sutton and D. A. Shaddock, Phys. Rev. D 78, 082001 (2008)] has advantages over single (or common) arm locking in terms of allowing high gain, it has disadvantages in both laser frequency pulling and noise performance. We address this by proposing a modification to the dual arm-locking sensor, a hybrid of common and dual arm-locking sensors. This modified dual arm-locking sensor has the laser frequency pulling characteristics and low-frequency noise coupling of common arm locking, but retains the control system advantages of dual arm locking. We present a detailed design of an arm-locking controller and perform an analysis of the expected performance when used with and without laser prestabilization. We observe that the sensor phase changes beneficially near unity-gain frequencies of the arm-locking controller, allowing a factor of 10 more gain than previously believed, without degrading stability. With a time-delay error of 3 ns (equivalent of 1 m interspacecraft ranging error), time-delay interferometry (TDI) is capable of suppressing 300 Hz/{radical}(Hz) of laser frequency noise to the required level. We show that if no interspacecraft laser links fail, arm locking alone surpasses this noise performance for the entire mission. If one interspacecraft laser link fails, arm locking alone will achieve this performance for all but approximately 1 h per year, when the arm length mismatch of the two remaining arms passes through zero. Therefore, the LISA sensitivity can be realized with arm locking and time-delay interferometry only, without any form of prestabilization.« less

  16. Bicuspid Axial Wall Height Effect on CAD/CAM Crown Fracture Mode on Preparations Containing Advanced Total Occlusal Convergence.

    PubMed

    Miller, Matthew; DuVall, Nicholas; Brewster, John; Wajdowicz, Michael N; Harris, Ashley; Roberts, Howard W

    2018-02-18

    To evaluate bicuspid axial wall height effect on the fracture mode of adhesively luted, all-ceramic CAD/CAM crowns with a 20° total occlusal convergence (TOC). Recently extracted premolars were randomly divided into 4 groups (n = 12) with all-ceramic crown preparations accomplished using a high-speed handpiece inserted into a milling device. Specimens were prepared containing occlusogingival axial wall heights of 3, 2, and 1 mm as well as a group containing a flat preparation surface with no axial wall height. All preparations contained a 20° TOC. Completed preparation surface area was determined, and preparation features confirmed using a digital measuring microscope. Scanned preparations (CEREC) were fitted with milled and crystallized lithium disilicate full coverage restorations and luted with a self-etching adhesive resin cement after hydrofluoric acid etching and silanation. All manufacturer recommendations were followed. Specimens were stored at 37°C/98% humidity for 24 hours. Specimens were tested to failure at a 45° angle to the long axis of the tooth root on a universal testing machine. Failure load was converted to MPa using the available bonding surface area with mean data analyzed using Kruskal-Wallis/Dunn's (p = 0.05) RESULTS: The 3 mm preparation height specimens were similar to the 2 mm specimens, and both demonstrated significantly stronger failure load than the 1 mm axial wall height and flat preparation specimens. The flat preparation and 1 mm axial wall height specimens all failed adhesively, while the 2 mm and 3 mm specimens failed largely due to tooth fracture. Further evidence is provided that CAD/CAM adhesive techniques may compensate for less than ideal preparation features. Under the conditions of this study, bicuspid preparations with a 20° TOC restored with adhesively luted, CAD/CAM e.max CAD crowns require at least 2 mm of axial wall height, but further planned fatigue studies are necessary before definitive recommendations can be made. © 2018 by the American College of Prosthodontists.

  17. Co-immobilization of adhesive peptides and VEGF within a dextran-based coating for vascular applications.

    PubMed

    Noel, Samantha; Fortier, Charles; Murschel, Frederic; Belzil, Antoine; Gaudet, Guillaume; Jolicoeur, Mario; De Crescenzo, Gregory

    2016-06-01

    Multifunctional constructs providing a proper environment for adhesion and growth of selected cell types are needed for most tissue engineering and regenerative medicine applications. In this context, vinylsulfone (VS)-modified dextran was proposed as a matrix featuring low-fouling properties as well as multiple versatile moieties. The displayed VS groups could indeed react with thiol, amine or hydroxyl groups, be it for surface grafting, crosslinking or subsequent tethering of biomolecules. In the present study, a library of dextran-VS was produced, grafted to aminated substrates and characterized in terms of degree of VS modification (%VS), cell-repelling properties and potential for the oriented grafting of cysteine-tagged peptides. As a bioactive coating of vascular implants, ECM peptides (e.g. RGD) as well as vascular endothelial growth factor (VEGF) were co-immobilized on one of the most suitable dextran-VS coating (%VS=ca. 50% of saccharides units). Both RGD and VEGF were efficiently tethered at high densities (ca. 1nmol/cm(2) and 50fmol/cm(2), respectively), and were able to promote endothelial cell adhesion as well as proliferation. The latter was enhanced to the same extent as with soluble VEGF and proved selective to endothelial cells over smooth muscle cells. Altogether, multiple biomolecules could be efficiently incorporated into a dextran-VS construct, while maintaining their respective biological activity. This work addresses the need for multifunctional coatings and selective cell response inherent to many tissue engineering and regenerative medicine applications, for instance, vascular graft. More specifically, a library of dextrans was first generated through vinylsulfone (VS) modification. Thoroughly selected dextran-VS provided an ideal platform for unbiased study of cell response to covalently grafted biomolecules. Considering that processes such as healing and angiogenesis require multiple factors acting synergistically, vascular endothelial growth factor (VEGF) was then co-immobilized with the cell adhesive RGD peptide within our dextran coating through a relevant strategy featuring orientation and specificity. Altogether, both adhesive and proliferative cues could be incorporated into our construct with additive, if not synergetic, effects. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. A Digital Phase Lock Loop for an External Cavity Diode Laser

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Long; Tao, Tian-Jiong; Cheng, Bing; Wu, Bin; Xu, Yun-Fei; Wang, Zhao-Ying; Lin, Qiang

    2011-08-01

    A digital optical phase lock loop (OPLL) is implemented to synchronize the frequency and phase between two external cavity diode lasers (ECDL), generating Raman pulses for atom interferometry. The setup involves all-digital phase detection and a programmable digital proportional-integral-derivative (PID) loop in locking. The lock generates a narrow beat-note linewidth below 1 Hz and low phase-noise of 0.03rad2 between the master and slave ECDLs. The lock proves to be stable and robust, and all the locking parameters can be set and optimized on a computer interface with convenience, making the lock adaptable to various setups of laser systems.

  19. Nuclear reactor fuel rod attachment system

    DOEpatents

    Not Available

    1980-09-17

    A reusable system is described for removably attaching a nuclear reactor fuel rod to a support member. A locking cap is secured to the fuel rod and a locking strip is fastened to the support member. The locking cap has two opposing fingers shaped to form a socket having a body portion. The locking strip has an extension shaped to rigidly attach to the socket's body portion. The locking cap's fingers are resiliently deflectable. For attachment, the locking cap is longitudinally pushed onto the locking strip causing the extension to temporarily deflect open the fingers to engage the socket's body portion. For removal, the process is reversed.

  20. Bonding resin thixotropy and viscosity influence on dentine bond strength.

    PubMed

    Niem, Thomas; Schmidt, Alexander; Wöstmann, Bernd

    2016-08-01

    To investigate the influence of bonding resin thixotropy and viscosity on dentine tubule penetration, blister formation and consequently on dentine bond strength as a function of air-blowing pressure (air-bp) intensity. Two HEMA-free, acetone-based, one-bottle self-etch adhesives with similar composition except disparate silica filler contents and different bonding resin viscosities were investigated. The high-filler-containing adhesive (G-Bond) featured a lower viscous bonding resin with inherent thixotropic resin (TR) properties compared to the low-filler-containing adhesive (iBond) exhibiting a higher viscous bonding resin with non-thixotropic resin (NTR) properties. Shear bond strength tests for each adhesive with low (1.5bar; 0.15MPa; n=16) and high (3.0bar; 0.30MPa; n=16) air-bp application were performed after specimen storage in distilled water (24h; 37.0±1.0°C). Results were analysed using a Student's t-test to identify statistically significant differences (p<0.05). Fracture surfaces of TR adhesive specimens were morphologically characterised by SEM. Statistically significant bond strength differences were obtained for the thixotropic resin adhesive (high-pressure: 24.6MPa, low-pressure: 9.6MPa). While high air-bp specimens provided SEM images revealing resin-plugged dentine tubules, resin tags and only marginally blister structures, low air-bp left copious droplets and open dentine tubules. In contrast, the non-thixotropic resin adhesive showed no significant bond strength differences (high-pressure: 9.3MPa, low-pressure: 7.6MPa). A pressure-dependent distinct influence of bonding resin thixotropy and viscosity on dentine bond strength has been demonstrated. Stronger adhesion with high air-bp application is explained by improved resin fluidity and facilitated resin penetration into dentine tubules. Filler particles used in adhesive systems may induce thixotropic effects in bonding resin layers, accounting for improved free-flowing resin properties. In combination with high air-bp this effect allows an easy plugging of dentine tubules and elimination of blister structures, both resulting in superior dentine bond strength. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Localization of adhesins on the surface of a pathogenic bacterial envelope through atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Arnal, L.; Longo, G.; Stupar, P.; Castez, M. F.; Cattelan, N.; Salvarezza, R. C.; Yantorno, O. M.; Kasas, S.; Vela, M. E.

    2015-10-01

    Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract infection, an important protein participating in the adhesion process is a 220 kDa adhesin named filamentous haemagglutinin (FHA), an outer membrane and also secreted protein that contains recognition domains to adhere to ciliated respiratory epithelial cells and macrophages. In this work, we obtained information on the cell-surface localization and distribution of the B. pertussis adhesin FHA using an antibody-functionalized AFM tip. Through the analysis of specific molecular recognition events we built a map of the spatial distribution of the adhesin which revealed a non-homogeneous pattern. Moreover, our experiments showed a force induced reorganization of the adhesin on the surface of the cells, which could explain a reinforced adhesive response under external forces. This single-molecule information contributes to the understanding of basic molecular mechanisms used by bacterial pathogens to cause infectious disease and to gain insights into the structural features by which adhesins can act as force sensors under mechanical shear conditions.Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract infection, an important protein participating in the adhesion process is a 220 kDa adhesin named filamentous haemagglutinin (FHA), an outer membrane and also secreted protein that contains recognition domains to adhere to ciliated respiratory epithelial cells and macrophages. In this work, we obtained information on the cell-surface localization and distribution of the B. pertussis adhesin FHA using an antibody-functionalized AFM tip. Through the analysis of specific molecular recognition events we built a map of the spatial distribution of the adhesin which revealed a non-homogeneous pattern. Moreover, our experiments showed a force induced reorganization of the adhesin on the surface of the cells, which could explain a reinforced adhesive response under external forces. This single-molecule information contributes to the understanding of basic molecular mechanisms used by bacterial pathogens to cause infectious disease and to gain insights into the structural features by which adhesins can act as force sensors under mechanical shear conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04644k

  2. Fuel transfer tube quick opening hatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meuschke, R. E.; Sherwood, D. G.; Silverblatt, B. L.

    1985-05-28

    A quick opening hatch for use on a transfer tube of a nuclear reactor plant that is adapted to replace the conventional hatch on the transfer tube. A locking ring is provided with a plurality of screw openings that is adapted for connection to the transfer tube, and a hatch cover fitably received within the locking ring for closing-off the transfer tube. To lock the cover to the ring, latches are movably connected with the cover for locking engagement with the locking ring, and a sprocket with a plurality of crank arms is movably connected with the cover and themore » latches for movement thereof into locking engagement with a latch housing on the locking ring for locking the cover to the ring and out of engagement with the latch housing for releasing the cover from the locking ring so as to permit removal of the hatch cover from the locking ring to provide access to the transfer tube. A davit assembly is provided which is connected with the transfer tube and the hatch cover to move the cover away and to provide guidance for closing-off the transfer tube. The locking ring and hatch cover also include cooperating keys and keyways for alignment when closing the transfer tube. The cover is provided with sealing rings and the latch housing and latches include cooperating cam surfaces to provide a tight locking engagement by compressing the sealing rings between the transfer tube and the hatch cover.« less

  3. Coherent energy exchange between components of a vector soliton in fiber lasers.

    PubMed

    Zhang, H; Tang, D Y; Zhao, L M; Xiang, N

    2008-08-18

    We report on the experimental evidence of four wave mixing (FWM) between the two polarization components of a vector soliton formed in a passively mode-locked fiber laser. Extra spectral sidebands with out-of-phase intensity variation between the polarization resolved soliton spectra was firstly observed, which was identified to be caused by the energy exchange between the two soliton polarization components. Other features of the FWM spectral sidebands and the soliton internal FWM were also experimentally investigated and numerically confirmed.

  4. Digital PCM bit synchronizer and detector

    NASA Astrophysics Data System (ADS)

    Moghazy, A. E.; Maral, G.; Blanchard, A.

    1980-08-01

    A theoretical analysis of a digital self-bit synchronizer and detector is presented and supported by the implementation of an experimental model that utilizes standard TTL logic circuits. This synchronizer is based on the generation of spectral line components by nonlinear filtering of the received bit stream, and extracting the line by a digital phase-locked loop (DPLL). The extracted reference signal instructs a digital matched filter (DMF) data detector. This realization features a short acquisition time and an all-digital structure.

  5. A Fixed-Point Phase Lock Loop in a Software Defined Radio

    DTIC Science & Technology

    2002-09-01

    code from a simulation model. This feature will allow easy implementation on an FPGA as C can be easily converted to VHDL , the language required...this is equivalent to the MATLAB code implementation in Appendix A. The PD takes the input signal 40 and multiplies it by the in-phase and...stop to 60 mph in 3.1 seconds (the fastest production car ever built is the Porsche Carrera twin turbo which was tested at 0-60 mph in 3.1 seconds

  6. Quiet Clean Short-haul Experimental Engine (QCSEE) over-the-wing control system design report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A control system incorporating a digital electronic control was designed for the over-the-wing engine. The digital electronic control serves as the primary controlling element for engine fuel flow and core compressor stator position. It also includes data monitoring capability, a unique failure indication and corrective action feature, and optional provisions for operating with a new type of servovalve designed to operate in response to a digital-type signal and to fail with its output device hydraulically locked into position.

  7. Resin characterization

    Treesearch

    Robert L. Geimer; Robert A. Follensbee; Alfred W. Christiansen; James A. Koutsky; George E. Myers

    1990-01-01

    Currently, thermosetting adhesives are characterized by physical andchemical features such as viscosity, solids content, pH, and molecular distribution, and their reaction in simple gel tests. Synthesis of a new resin for a particular application is usually accompanied by a series of empirical laboratory and plant trials. The purpose of the research outlined in this...

  8. An analytical and experimental study of injection-locked two-port oscillators

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.; Downey, Alan N.

    1987-01-01

    A Ku-band IMPATT oscillator with two distinct output power ports was injection-locked alternately at both ports. The transmission locking bandwidth was nearly the same for either port. The lower free running power port had a reflection locking bandwidth that was narrower than its transmission locking one. Just the opposite was found at the other port. A detailed analytical model for two-port injection-locked oscillators is presented, and its results agree quite well with the experiments. A critique of the literature on this topic is included to clear up misconceptions and errors. It is concluded that two-port injection-locked oscillators may prove useful in certain communication systems.

  9. Influences of misalignment of control mirror of axisymmetric-structural CO2 laser on phase locking.

    PubMed

    Xu, Yonggen; Li, Yude; Qiu, Yi; Feng, Ting; Fu, Fuxing; Guo, Wei

    2008-11-20

    Based on the principle of phase locking of an axisymmetric-fold combination CO2 laser under the normal state condition, the mechanisms of phase locking are analyzed when the control mirror is misaligned. Then the overlapping rate (OR) of the mode volume is introduced: the main influences on phase locking are the OR, the average life of the light wave, the root mean square phase error, and the mode coupling coefficient; these influences on phase locking are studied. The distribution of the light intensity reflects the effect of phase locking. It is shown that the misaligned angle has little influence on the phase locking if it is within tolerance.

  10. Expandable and reconfigurable instrument node arrays

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence M. (Inventor); Deshpande, Manohar (Inventor)

    2012-01-01

    An expandable and reconfigurable instrument node includes a feature detection means and a data processing portion in communication with the feature detection means, the data processing portion configured and disposed to process feature information. The instrument node further includes a phase locked loop (PLL) oscillator in communication with the data processing portion, the PLL oscillator configured and disposed to provide PLL information to the processing portion. The instrument node further includes a single tone transceiver and a pulse transceiver in communication with the PLL oscillator, the single tone transceiver configured and disposed to transmit or receive a single tone for phase correction of the PLL oscillator and the pulse transceiver configured and disposed to transmit and receive signals for phase correction of the PLL oscillator. The instrument node further includes a global positioning (GPA) receiver in communication with the processing portion, the GPS receiver configured and disposed to establish a global position of the instrument node.

  11. The fast detection of rare auditory feature conjunctions in the human brain as revealed by cortical gamma-band electroencephalogram.

    PubMed

    Ruusuvirta, T; Huotilainen, M

    2005-01-01

    Natural environments typically contain temporal scatters of sounds emitted from multiple sources. The sounds may often physically stand out from one another in their conjoined rather than simple features. This poses a particular challenge for the brain to detect which of these sounds are rare and, therefore, potentially important for survival. We recorded gamma-band (32-40 Hz) electroencephalographic (EEG) oscillations from the scalp of adult humans who passively listened to a repeated tone carrying frequent and rare conjunctions of its frequency and intensity. EEG oscillations that this tone induced, rather than evoked, differed in amplitude between the two conjunction types within the 56-ms analysis window from tone onset. Our finding suggests that, perhaps with the support of its non-phase-locked synchrony in the gamma band, the human brain is able to detect rare sounds as feature conjunctions very rapidly.

  12. Mode Locking of Lasers with Atomic Layer Graphene

    DTIC Science & Technology

    2012-07-01

    polarization components. As in order to obtain the vector soliton operation in a mode locked fiber laser no any polarization ...oscilloscope traces of a polarization locked vector soliton operation state. Figure 21: Oscilloscope traces of pulse train in a phase locked vector ... locked vector solitons , where the polarization of the solitons emitted by the laser is fixed, the polarization of the

  13. 46 CFR 154.345 - Air locks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Air locks. 154.345 Section 154.345 Shipping COAST GUARD....345 Air locks. (a) An air lock may be used for access from a gas-dangerous zone on the weather deck to a gas-safe space. (b) Each air lock must: (1) Consist of two steel doors, at least 1.5 m (4.9 ft...

  14. 46 CFR 154.345 - Air locks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Air locks. 154.345 Section 154.345 Shipping COAST GUARD....345 Air locks. (a) An air lock may be used for access from a gas-dangerous zone on the weather deck to a gas-safe space. (b) Each air lock must: (1) Consist of two steel doors, at least 1.5 m (4.9 ft...

  15. 46 CFR 154.345 - Air locks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Air locks. 154.345 Section 154.345 Shipping COAST GUARD....345 Air locks. (a) An air lock may be used for access from a gas-dangerous zone on the weather deck to a gas-safe space. (b) Each air lock must: (1) Consist of two steel doors, at least 1.5 m (4.9 ft...

  16. 46 CFR 154.345 - Air locks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Air locks. 154.345 Section 154.345 Shipping COAST GUARD....345 Air locks. (a) An air lock may be used for access from a gas-dangerous zone on the weather deck to a gas-safe space. (b) Each air lock must: (1) Consist of two steel doors, at least 1.5 m (4.9 ft...

  17. 46 CFR 154.345 - Air locks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Air locks. 154.345 Section 154.345 Shipping COAST GUARD....345 Air locks. (a) An air lock may be used for access from a gas-dangerous zone on the weather deck to a gas-safe space. (b) Each air lock must: (1) Consist of two steel doors, at least 1.5 m (4.9 ft...

  18. 75 FR 71104 - Lock Hydro Friends Fund XXXV; FFP Missouri 7, LLC; Dashields Hydro, LLC; Notice of Competing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    .... 13735-000; Project No. 13756-000; Project No. 13779-000] Lock Hydro Friends Fund XXXV; FFP Missouri 7... Soliciting Comments, and Motions To Intervene November 15, 2010. On May 18, 2010, Lock Hydro Friends Fund.... Descriptions of the proposed Dashields Lock and Dam Projects: Lock Hydro Friends Fund XXXV's project (Project...

  19. 75 FR 75999 - Lock + Hydro Friends Fund XlVI; FFP Missouri 17, LLC; Solia 3 Hydroelectric, LLC; Three Rivers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    .... 13754-000; Project No. 13765-000; Project No. 13783-000; Project No. 13790-000] Lock + Hydro Friends..., and Motions To Intervene NOVEMBER 30, 2010. On May 18, 2010, Lock + Hydro Friends Fund XLVI, FFP... proposed Hildebrand Lock & Dam Projects: Lock+ Hydro Friends Fund XLVI's project (Project No. 13734-000...

  20. Evaluation of fish sampling using rotenone in a navigation lock

    USGS Publications Warehouse

    Margraf, F.J.; Knight, C.T.

    2002-01-01

    Annual sampling in locks with rotenone has been a principal means of assessing fish populations in the commercially navigable portions of the Ohio River. Despite extensive use, sampling in locks with rotenone and interpretation of the data obtained have not been adequately evaluated. The purpose of our study was to determine the degree of inter- and intraseasonal variation in lock samples, estimate correction factors (CFs) for fish recovery rates, and compare lock samples to other fish collections from the navigational pools above and below the lock. Lock samples from all seasons had a greater proportion of pelagic and demersal fish than samples from the navigational pools, which contained greater proportions of littoral species. CF for non-recovery of fish were determined. Spring and summer lock collections yielded several more species and estimates of overall fish biomass were an order of magnitude higher than fall collections. Within season variation between lock samples was relatively low; however, variation in lock samples among seasons was high, equivalent to that seen among the annual samples from the 1980s. Thus, single-season sampling may not be adequate, and fall may be the least preferred season.

  1. The strength of polyaxial locking interfaces of distal radius plates.

    PubMed

    Hoffmeier, Konrad L; Hofmann, Gunther O; Mückley, Thomas

    2009-10-01

    Currently available polyaxial locking plates represent the consequent enhancement of fixed-angle, first-generation locking plates. In contrast to fixed-angle locking plates which are sufficiently investigated, the strength of the new polyaxial locking options has not yet been evaluated biomechanically. This study investigates the mechanical strength of single polyaxial interfaces of different volar radius plates. Single screw-plate interfaces of the implants Palmar 2.7 (Königsee Implantate und Instrumente zur Osteosynthese GmbH, Allendorf, Germany), VariAx (Stryker Leibinger GmbH & Co. KG, Freiburg, Germany) und Viper (Integra LifeSciences Corporation, Plainsboro, NJ, USA) were tested by cantilever bending. The strength of 0 degrees, 10 degrees and 20 degrees screw locking angle was obtained during static and dynamic loading. The Palmar 2.7 interfaces showed greater ultimate strength and fatigue strength than the interfaces of the other implants. The strength of the VariAx interfaces was about 60% of Palmar 2.7 in both, static and dynamic loading. No dynamic testing was applied to the Viper plate because of its low ultimate strength. By static loading, an increase in screw locking angle caused a reduction of strength for the Palmar 2.7 and Viper locking interfaces. No influence was observed for the VariAx locking interfaces. During dynamic loading; angulation had no influence on the locking strength of Palmar 2.7. However, reduction of locking strength with increasing screw angulation was observed for VariAx. The strength of the polyaxial locking interfaces differs remarkably between the examined implants. Depending on the implant an increase of the screw locking angle causes a reduction of ultimate or fatigue strength, but not in all cases a significant impact was observed.

  2. UPSTREAM LOCK GATE DETAIL AND DOG HOUSE. NOTE ARM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    UPSTREAM LOCK GATE DETAIL AND DOG HOUSE. NOTE ARM AND GEARING FOR CONTROLLING LOCK GATE. LOOKING WEST SOUTHWEST. - Illinois Waterway, Brandon Road Lock and Dam , 1100 Brandon Road, Joliet, Will County, IL

  3. DOWNSTREAM LOCK GATE DETAIL VIEW WITH DOG HOUSE. NOTE CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DOWNSTREAM LOCK GATE DETAIL VIEW WITH DOG HOUSE. NOTE CONTROL ARM AND GEAR FOR GATE. LOOKING NORTHWEST. - Illinois Waterway, Dresden Island Lock and Dam , 7521 North Lock Road, Channahon, Will County, IL

  4. 49 CFR 236.780 - Plunger, facing point lock.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.780 Plunger, facing point lock. That part of a facing point lock which secures the lock rod to the...

  5. 49 CFR 236.780 - Plunger, facing point lock.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.780 Plunger, facing point lock. That part of a facing point lock which secures the lock rod to the...

  6. 49 CFR 236.780 - Plunger, facing point lock.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.780 Plunger, facing point lock. That part of a facing point lock which secures the lock rod to the...

  7. 49 CFR 236.780 - Plunger, facing point lock.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.780 Plunger, facing point lock. That part of a facing point lock which secures the lock rod to the...

  8. 49 CFR 236.780 - Plunger, facing point lock.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.780 Plunger, facing point lock. That part of a facing point lock which secures the lock rod to the...

  9. Acquisition and Tracking Behavior of Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Viterbi, A. J.

    1958-01-01

    Phase-locked or APC loops have found increasing applications in recent years as tracking filters, synchronizing devices, and narrowband FM discriminators. Considerable work has been performed to determine the noise-squelching properties of the loop when it is operating in or near phase lock and is functioning as a linear coherent detector. However, insufficient consideration has been devoted to the non-linear behavior of the loop when it is out of lock and in the process of pulling in. Experimental evidence has indicated that there is a strong tendency for phase-locked loops to achieve lock under most circumstances. However, the analysis which has appeared in the literature iis limited to the acquisition of a constant frequency reference signal with only one phase-locked loop filter configuration. This work represents an investigation of frequency acquisition properties of phase-locked loops for a variety of reference-signal behavior and loop configurations

  10. Multiple conserved cell adhesion protein interactions mediate neural wiring of a sensory circuit in C. elegans.

    PubMed

    Kim, Byunghyuk; Emmons, Scott W

    2017-09-13

    Nervous system function relies on precise synaptic connections. A number of widely-conserved cell adhesion proteins are implicated in cell recognition between synaptic partners, but how these proteins act as a group to specify a complex neural network is poorly understood. Taking advantage of known connectivity in C. elegans , we identified and studied cell adhesion genes expressed in three interacting neurons in the mating circuits of the adult male. Two interacting pairs of cell surface proteins independently promote fasciculation between sensory neuron HOA and its postsynaptic target interneuron AVG: BAM-2/neurexin-related in HOA binds to CASY-1/calsyntenin in AVG; SAX-7/L1CAM in sensory neuron PHC binds to RIG-6/contactin in AVG. A third, basal pathway results in considerable HOA-AVG fasciculation and synapse formation in the absence of the other two. The features of this multiplexed mechanism help to explain how complex connectivity is encoded and robustly established during nervous system development.

  11. Actin retrograde flow actively aligns and orients ligand-engaged integrins in focal adhesions

    PubMed Central

    Swaminathan, Vinay; Kalappurakkal, Joseph Mathew; Moore, Travis I.; Koga, Nobuyasu; Baker, David A.; Oldenbourg, Rudolf; Tani, Tomomi; Springer, Timothy A.; Waterman, Clare M.

    2017-01-01

    Integrins are transmembrane receptors that, upon activation, bind extracellular ligands and link them to the actin filament (F-actin) cytoskeleton to mediate cell adhesion and migration. Cytoskeletal forces in migrating cells generated by polymerization- or contractility-driven “retrograde flow” of F-actin from the cell leading edge have been hypothesized to mediate integrin activation for ligand binding. This predicts that these forces should align and orient activated, ligand-bound integrins at the leading edge. Here, polarization-sensitive fluorescence microscopy of GFP-αVβ3 integrins in fibroblasts shows that integrins are coaligned in a specific orientation within focal adhesions (FAs) in a manner dependent on binding immobilized ligand and a talin-mediated linkage to the F-actin cytoskeleton. These findings, together with Rosetta modeling, suggest that integrins in FA are coaligned and may be highly tilted by cytoskeletal forces. Thus, the F-actin cytoskeleton sculpts an anisotropic molecular scaffold in FAs, and this feature may underlie the ability of migrating cells to sense directional extracellular cues. PMID:29073038

  12. Staphylococcus epidermidis adhesion on surface-treated open-cell Ti6Al4V foams.

    PubMed

    Türkan, Uğur; Güden, Mustafa; Sudağıdan, Mert

    2016-06-01

    The effect of alkali and nitric acid surface treatments on the adhesion of Staphylococcus epidermidis to the surface of 60% porous open-cell Ti6Al4V foam was investigated. The resultant surface roughness of foam particles was determined from the ground flat surfaces of thin foam specimens. Alkali treatment formed a porous, rough Na2Ti5O11 surface layer on Ti6Al4V particles, while nitric acid treatment increased the number of undulations on foam flat and particle surfaces, leading to the development of finer surface topographical features. Both surface treatments increased the nanometric-scale surface roughness of particles and the number of bacteria adhering to the surface, while the adhesion was found to be significantly higher in alkali-treated foam sample. The significant increase in the number of bacterial attachment on the alkali-treated sample was attributed to the formation of a highly porous and nanorough Na2Ti5O11 surface layer.

  13. The cancer glycocalyx mechanically primes integrin-mediated growth and survival

    PubMed Central

    Paszek, Matthew J.; DuFort, Christopher C.; Rossier, Olivier; Bainer, Russell; Mouw, Janna K.; Godula, Kamil; Hudak, Jason E.; Lakins, Jonathon N.; Wijekoon, Amanda C.; Cassereau, Luke; Rubashkin, Matthew G.; Magbanua, Mark J.; Thorn, Kurt S.; Davidson, Michael W.; Rugo, Hope S.; Park, John W.; Hammer, Daniel A.; Giannone, Grégory; Bertozzi, Carolyn R.; Weaver, Valerie M.

    2015-01-01

    Malignancy is associated with altered expression of glycans and glycoproteins that contribute to the cellular glycocalyx. We constructed a glycoprotein expression signature, which revealed that metastatic tumours upregulate expression of bulky glycoproteins. A computational model predicted that these glycoproteins would influence transmembrane receptor spatial organization and function. We tested this prediction by investigating whether bulky glycoproteins in the glycocalyx promote a tumour phenotype in human cells by increasing integrin adhesion and signalling. Our data revealed that a bulky glycocalyx facilitates integrin clustering by funnelling active integrins into adhesions and altering integrin state by applying tension to matrix-bound integrins, independent of actomyosin contractility. Expression of large tumour-associated glycoproteins in non-transformed mammary cells promoted focal adhesion assembly and facilitated integrin-dependent growth factor signalling to support cell growth and survival. Clinical studies revealed that large glycoproteins are abundantly expressed on circulating tumour cells from patients with advanced disease. Thus, a bulky glycocalyx is a feature of tumour cells that could foster metastasis by mechanically enhancing cell-surface receptor function. PMID:25030168

  14. CW injection locking for long-term stability of frequency combs

    NASA Astrophysics Data System (ADS)

    Williams, Charles; Quinlan, Franklyn; Delfyett, Peter J.

    2009-05-01

    Harmonically mode-locked semiconductor lasers with external ring cavities offer high repetition rate pulse trains while maintaining low optical linewidth via long cavity storage times. Continuous wave (CW) injection locking further reduces linewidth and stabilizes the optical frequencies. The output can be stabilized long-term with the help of a modified Pound-Drever-Hall feedback loop. Optical sidemode suppression of 36 dB has been shown, as well as RF supermode noise suppression of 14 dB for longer than 1 hour. In addition to the injection locking of harmonically mode-locked lasers requiring an external frequency source, recent work shows the viability of the injection locking technique for regeneratively mode-locked lasers, or Coupled Opto-Electronic Oscillators (COEO).

  15. Nuclear reactor fuel rod attachment system

    DOEpatents

    Christiansen, David W.

    1982-01-01

    A reusable system for removably attaching a nuclear reactor fuel rod (12) to a support member (14). A locking cap (22) is secured to the fuel rod (12) and a locking strip (24) is fastened to the support member (14). The locking cap (22) has two opposing fingers (24a and 24b) shaped to form a socket having a body portion (26). The locking strip has an extension (36) shaped to rigidly attach to the socket's body portion (26). The locking cap's fingers are resiliently deflectable. For attachment, the locking cap (22) is longitudinally pushed onto the locking strip (24) causing the extension (36) to temporarily deflect open the fingers (24a and 24b) to engage the socket's body portion (26). For removal, the process is reversed.

  16. Vane segment support and alignment device

    DOEpatents

    McLaurin, L.D.; Sizemore, J.D.

    1999-07-13

    A support and alignment assembly for supporting and aligning a vane segment is provided. The support and alignment assembly comprises a torque plate which defines an opening for receiving an eccentric pin and a locking end member for receiving a lock socket member. An eccentric pin adjustably supported by the torque plate opening for supporting and aligning a vane segment is provided. A lock socket member adapted to securely receive the eccentric pin and rotated therewith, and adjustably engage the torque plate locking end is provided. The lock socket member receives the eccentric pin, such that when the eccentric pin is adjusted to align the vane segment, the lock socket member engages the torque plate locking end to secure the vane segment in the desired position. 5 figs.

  17. Vane segment support and alignment device

    DOEpatents

    McLaurin, Leroy Dixon; Sizemore, John Derek

    1999-01-01

    A support and alignment assembly for supporting and aligning a vane segment is provided. The support and alignment assembly comprises a torque plate which defines an opening for receiving an eccentric pin and a locking end member for receiving a lock socket member. An eccentric pin adjustably supported by the torque plate opening for supporting and aligning a vane segment is provided. A lock socket member adapted to securely receive the eccentric pin and rotated therewith, and adjustably engage the torque plate locking end is provided. The lock socket member receives the eccentric pin, such that when the eccentric pin is adjusted to align the vane segment, the lock socket member engages the torque plate locking end to secure the vane segment in the desired position.

  18. 75 FR 5071 - Mississippi L&D 21, LLC, Mississippi River No. 21 Hydropower Company Lock + TM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... Lock + \\TM\\ Hydro Friends Fund XXXII, LLC; Notice of Preliminary Permit Applications Accepted for..., Lock + TM Hydro Friends Fund XXXII, LLC (Lock + Hydro) filed an application for a preliminary permit...

  19. Phase-locked bifrequency Raman lasing in a double-Λ system

    NASA Astrophysics Data System (ADS)

    Alaeian, Hadiseh; Shahriar, M. S.

    2018-05-01

    We show that it is possible to realize simultaneous Raman lasing at two different frequencies using a double-Λ system pumped by a bifrequency field. The bifrequency Raman lasers are phase-locked to one another and the beat-frequency matches the energy difference between the two metastable ground states. Akin to a conventional Raman laser, the bifrequency Raman lasers are expected to be subluminal. As such, these are expected to be highly stable against perturbations in cavity length and have quantum noise limited linewidths that are far below that of a conventional laser. Because of these properties, the bifrequency Raman lasers may find important applications in precision metrology, including atomic interferometry and magnetometry. The phase-locked Raman laser pair also represent a manifestation of lasing without inversion, albeit in a configuration that produces a pair of nondegenerate lasers simultaneously. This feature may enable lasing without inversion in frequency regimes not accessible using previous techniques of lasing without inversion. To elucidate the behavior of this laser pair, we develop an analytical model that describes the stimulated Raman interaction in a double-Λ system using an effective two-level transition. The approximation is valid as long as the excited states adiabatically follow the ground states, as verified by numerical simulations. The effective model is used to identify the optimal operating conditions for the bifrequency Raman lasing process. This model may also prove useful in other potential applications of the double-Λ system, including generation of squeezed light and spatial solitons.

  20. Seismicity near a Highly-Coupled Patch in the Central Ecuador Subduction Zone

    NASA Astrophysics Data System (ADS)

    Regnier, M. M.; Segovia, M.; Font, Y.; Charvis, P.; Galve, A.; Jarrin, P.; Hello, Y.; Ruiz, M. C.; Pazmino, A.

    2017-12-01

    The temporary onshore-offshore seismic network deployed during the 2-years period of the OSISEC project provides an unprecedented, detailed and well-focused image of the seismicity for magnitudes as low as 2.0 in the Central Ecuadorian subduction zone. Facing the southern border of the Carnegie Ridge, a shallow and discrete highly-coupled patch is correlated to the subduction of a large oceanic relief. No large earthquake is known in this area that is experiencing recurrent seismic swarms and slow slip events. The shallow and locked subduction interface shows no evidence of background seismicity that instead occurred down dip of the coupled patch where it is possibly controlled by structural features of the overriding plate. We show a clear spatial correlation between the background microseismicity, the down dip extension of the locked patch at 20 km depth and the geology of the upper plate. The dip angle of the interplate contact zone, defined by a smooth interpolation through the hypocenters of thrust events, is consistent with a progressive increase from 6° to 25° from the trench to 20 km depth. Offshore, a seismic swarm, concomitant with a slow slip event rupturing the locked area, highlights the reactivation of secondary active faults that developed within the thickened crust of the subducting Carnegie Ridge, at the leading edge of a large oceanic seamount. No seismicity was detected near the plate interface suggesting that stress still accumulates at small and isolated asperities

  1. Relationship between the Cascadia fore-arc mantle wedge, nonvolcanic tremor, and the downdip limit of seismogenic rupture

    USGS Publications Warehouse

    McCrory, Patricia A.; Hyndman, Roy D.; Blair, James Luke

    2014-01-01

    Great earthquakes anticipated on the Cascadia subduction fault can potentially rupture beyond the geodetically and thermally inferred locked zone to the depths of episodic tremor and slip (ETS) or to the even deeper fore-arc mantle corner (FMC). To evaluate these extreme rupture limits, we map the FMC from southern Vancouver Island to central Oregon by combining published seismic velocity structures with a model of the Juan de Fuca plate. These data indicate that the FMC is somewhat shallower beneath Vancouver Island (36–38 km) and Oregon (35–40 km) and deeper beneath Washington (41–43 km). The updip edge of tremor follows the same general pattern, overlying a slightly shallower Juan de Fuca plate beneath Vancouver Island and Oregon (∼30 km) and a deeper plate beneath Washington (∼35 km). Similar to the Nankai subduction zone, the best constrained FMC depths correlate with the center of the tremor band suggesting that ETS is controlled by conditions near the FMC rather than directly by temperature or pressure. Unlike Nankai, a gap as wide as 70 km exists between the downdip limit of the inferred locked zone and the FMC. This gap also encompasses a ∼50 km wide gap between the inferred locked zones and the updip limit of tremor. The separation of these features offers a natural laboratory for determining the key controls on downdip rupture limits.

  2. A Review of Interface Electronic Systems for AT-cut Quartz Crystal Microbalance Applications in Liquids

    PubMed Central

    Arnau, Antonio

    2008-01-01

    From the first applications of AT-cut quartz crystals as sensors in solutions more than 20 years ago, the so-called quartz crystal microbalance (QCM) sensor is becoming into a good alternative analytical method in a great deal of applications such as biosensors, analysis of biomolecular interactions, study of bacterial adhesion at specific interfaces, pathogen and microorganism detection, study of polymer film-biomolecule or cell-substrate interactions, immunosensors and an extensive use in fluids and polymer characterization and electrochemical applications among others. The appropriate evaluation of this analytical method requires recognizing the different steps involved and to be conscious of their importance and limitations. The first step involved in a QCM system is the accurate and appropriate characterization of the sensor in relation to the specific application. The use of the piezoelectric sensor in contact with solutions strongly affects its behavior and appropriate electronic interfaces must be used for an adequate sensor characterization. Systems based on different principles and techniques have been implemented during the last 25 years. The interface selection for the specific application is important and its limitations must be known to be conscious of its suitability, and for avoiding the possible error propagation in the interpretation of results. This article presents a comprehensive overview of the different techniques used for AT-cut quartz crystal microbalance in in-solution applications, which are based on the following principles: network or impedance analyzers, decay methods, oscillators and lock-in techniques. The electronic interfaces based on oscillators and phase-locked techniques are treated in detail, with the description of different configurations, since these techniques are the most used in applications for detection of analytes in solutions, and in those where a fast sensor response is necessary. PMID:27879713

  3. Anthrax Toxin Receptor 1 / Tumor Endothelial Marker 8: Mutation of Conserved Inserted Domain Residues Overrides Cytosolic Control of Protective Antigen Binding†

    PubMed Central

    Ramey, Jordan D.; Villareal, Valerie A.; Ng, Charles; Ward, Sabrina; Xiong, Jian-Ping; Clubb, Robert T.; Bradley, Kenneth A.

    2010-01-01

    Anthrax toxin receptor 1 (ANTXR1) / tumor endothelial marker 8 (TEM8) is one of two known proteinaceous cell surface anthrax toxin receptors. A metal ion dependent adhesion site (MIDAS) present in the integrin-like inserted (I) domain of ANTXR1 mediates the binding of the anthrax toxin subunit, protective antigen (PA). Here we provide evidence that single point mutations in the I domain can override regulation of ANTXR1 ligand-binding activity mediated by intracellular signals. A previously reported MIDAS-mutant of ANTXR1 (T118A) was found to retain normal metal ion binding and secondary structure but failed to bind PA, consistent with a locked inactive state. Conversely, mutation of a conserved I domain phenylalanine residue to a tryptophan (F205W) increased the proportion of cell-surface ANTXR1 that bound PA, consistent with a locked active state. Interestingly, the KD and total amount of PA bound by the isolated ANTXR1 I domain was not affected by the F205W mutation, indicating that ANTXR1 is preferentially found in the active state in the absence of inside-out signaling. Circular dichroism (CD) spectroscopy and 1H-15N heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) revealed that structural changes between T118A, F205W and WT I domains were minor despite a greater than 103-fold difference in their abilities to bind toxin. Regulation of toxin binding has important implications for the design of toxin inhibitors and for the targeting of ANTXR1 for anti-tumor therapies. PMID:20690680

  4. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California

    USGS Publications Warehouse

    Moore, Diane E.; Byerlee, J.

    1992-01-01

    Moore, D.E. and Byerlee, J., 1992. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 305-316. In order to relate fault geometries to sliding behavior, maps of recently active breaks within the Hayward fault of central California, which is characterized by fault creep, have been examined and compared to maps of the San Andreas fault. The patterns of recent breaks of the Hayward fault are consistent with those found within the creeping section of the San Andreas, and they appear to have plausible physical explanations in the findings of laboratory experiments. The distinguishing geometric features of the examined locked and creeping faults are: (1) P-type second-order traces predominate over R(Riedel)-type traces in creeping sections; and (2) R-type second-order traces make smaller angles to the local fault strike in creeping sections than they do in locked sections. Two different maps of the Hayward fault gave similar results, supporting the inference that the patterns identified are basic characteristics of the fault rather than artifacts of a particular mapping procedure. P shears predominate over R shears under laboratory conditions that allow dilation within the fault zone. In our own experiments, P-shear development was favored by the generation of excess pore-fluid pressures. We propose that creep in California faults also is the result of fluid overpressures that are maintained in a low-permeability gouge zone and that significantly lower effective stresses, thus helping to stabilize slip and producing high values of the ratio P/R. Small R-trace angles may also be an indicator of low effective stresses, but the evidence for this is not conclusive because other factors can also affect the size of the angles. ?? 1992.

  5. A first approach for digital representation and automated classification of toolmarks on locking cylinders using confocal laser microscopy

    NASA Astrophysics Data System (ADS)

    Clausing, Eric; Kraetzer, Christian; Dittmann, Jana; Vielhauer, Claus

    2012-10-01

    An important part of criminalistic forensics is the analysis of toolmarks. Such toolmarks often consist of plenty of single striations, scratches and dents which can allow for conclusions in regards to the sequence of events or used tools. To receive qualified results with an automated analysis and contactless acquisition of such toolmarks, a detailed digital representation of these and their orientation as well as placing to each other is required. For marks of firearms and tools the desired result of an analysis is a conclusion whether or not a mark has been generated by a tool under suspicion. For toolmark analysis on locking cylinders, the aim is not an identification of the used tool but rather an identification of the opening method. The challenge of such an identification is that a one-to-one comparison of two images is not sufficient - although two marked objects look completely different in regards to the specific location and shape of found marks they still can represent a sample for the identical opening method. This paper provides the first approach for modelling toolmarks on lock pins and takes into consideration the different requirements necessary to generate a detailed and interpretable digital representation of these traces. These requirements are 'detail', i.e. adequate features which allow for a suitable representation and interpretation of single marks, 'meta detail', i.e. adequate representation of the context and connection between all marks and 'distinctiveness', i.e. the possibility to reliably distinguish different sample types by the according model. The model is evaluated with a set of 15 physical samples (resulting in 675 digital scans) of lock pins from cylinders opened with different opening methods, contactlessly scanned with a confocal laser microscope. The presented results suggest a high suitability for the aspired purpose of opening method determination.

  6. Deep Seismic Reflection Images of the Sumatra Seismic and Aseismic Gaps

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Hananto, N. D.; Chauhan, A.; Carton, H. D.; Midenet, S.; Djajadihardja, Y.

    2009-12-01

    The Sumatra subduction zone is seismically most active region on the Earth, and has been the site of three great earthquakes only in the last four years. The first of the series, the 2004 Boxing Day earthquake, broke 1300 km of the plate boundary and produced the devastating tsunami around the Indian Ocean. The second great earthquake occurred three months later in March 2005, about 150 km SE of the 2004 event. The Earth waited for three years, and then broke again in September 2007 at 1300 km SE of the 2004 event producing a twin earthquake of magnitudes of 8.5 and 7.9 at an interval of 12 hours, leaving a seismic gap of about 600 km between the second and third earthquake, the Sumatra Seismic Gap. Seismological and geodetic studies suggest that this gap is fully locked and may break any time. In order to study the seismic and tsunami risk in this locked region, a deep seismic reflection survey (Tsunami Investigation Deep Evaluation Seismic -TIDES) was carried out in May 2009 using the CGGVeritas vessel Geowave Champion towing a 15 long streamer, the longest ever used during a seismic survey, to image the nature of the subducting plate and associated features, including the seismogenic zone, from seafloor down to 50 km depth. A total of 1700 km of deep seismic reflection data were acquired. Three dip lines traverse the Sumatra subduction zone; one going through the Sumatra Seismic Gap, one crossing the region that broke during the 2007 great earthquake, and one going through the aseismic zone. These three dip profiles should provide insight about the locking mechanism and help us to understand why an earthquake occurs in one zone and not in aseismic zone. A strike-line was shot in the forearc basin connecting the locked zone with broken zone profiles, which should provide insight about barriers that might have stopped propagation of 2007 earthquake rupture further northward.

  7. Multi-channel photon counting DOT system based on digital lock-in detection technique

    NASA Astrophysics Data System (ADS)

    Wang, Tingting; Zhao, Huijuan; Wang, Zhichao; Hou, Shaohua; Gao, Feng

    2011-02-01

    Relying on deeper penetration of light in the tissue, Diffuse Optical Tomography (DOT) achieves organ-level tomography diagnosis, which can provide information on anatomical and physiological features. DOT has been widely used in imaging of breast, neonatal cerebral oxygen status and blood oxygen kinetics observed by its non-invasive, security and other advantages. Continuous wave DOT image reconstruction algorithms need the measurement of the surface distribution of the output photon flow inspired by more than one driving source, which means that source coding is necessary. The most currently used source coding in DOT is time-division multiplexing (TDM) technology, which utilizes the optical switch to switch light into optical fiber of different locations. However, in case of large amounts of the source locations or using the multi-wavelength, the measurement time with TDM and the measurement interval between different locations within the same measurement period will therefore become too long to capture the dynamic changes in real-time. In this paper, a frequency division multiplexing source coding technology is developed, which uses light sources modulated by sine waves with different frequencies incident to the imaging chamber simultaneously. Signal corresponding to an individual source is obtained from the mixed output light using digital phase-locked detection technology at the detection end. A digital lock-in detection circuit for photon counting measurement system is implemented on a FPGA development platform. A dual-channel DOT photon counting experimental system is preliminary established, including the two continuous lasers, photon counting detectors, digital lock-in detection control circuit, and codes to control the hardware and display the results. A series of experimental measurements are taken to validate the feasibility of the system. This method developed in this paper greatly accelerates the DOT system measurement, and can also obtain the multiple measurements in different source-detector locations.

  8. Outcomes of Pin and Plaster Versus Locking Plate in Distal Radius Intraarticular Fractures

    PubMed Central

    Bahari-Kashani, Mahmoud; Taraz-Jamshidy, Mohammad Hosein; Rahimi, Hassan; Ashraf, Hami; Mirkazemy, Masoud; Fatehi, Amirreza; Asadian, Mariam; Rezazade, Jafar

    2013-01-01

    Background Distal radius fractures are among the most prevalent fractures predictive of probable occurrence of other osteoporotic fractures. They are treated via a variety of methods, but the best treatment has not been defined yet. Objectives This study was performed to compare the results of open reduction and internal fixation with locking plates versus the pin and plaster method. Materials and Methods In this prospective study, 114 patients aged 40 to 60 years with Fernandez type III fracture referring to Imam-Reza and Mehr hospitals of Mashhad from 2009 to 2011, were selected randomly; after obtaining informed consent, they were treated with pin and plaster fixation (n = 57) or internal fixation with the volar locking plate (n = 57). They were compared at the one year follow up. Demographic features and standard radiographic indices were recorded and MAYO, DASH and SF - 36 tests were performed. Data was analyzed by SPSS software version 13, with descriptive indices, Mann-Whitney and Chi-square tests. Results SF-36 test demonstrated a better general health (P < 0.001), mental health (P = 0.006), physical functioning (P < 0.001), social functioning (P < 0.001) and energy/fatigue (P < 0.001) in LCP group. However, pain (P = 0.647) was not significantly different between the groups. Physical limitation (P < 0.001) and emotional limitation (P < 0.001) were greater in the pin and plaster group. Also, in the LCP group mean MAYO score (P < 0.001) was more than pin and plaster group. Mean DASH score was not different between the groups (P = 0.218). The rate of acceptable results of radiographic indices (P < 0.001), grip strength (P < 0.001) and range of motion in supination-pronation (P < 0.001) in LCP method were better than the pin and plaster method. Conclusions In treatment of intra-articular distal radius fractures in middle-aged patients internal fixation with locking plates may be prefered to pin and plaster as the treatment of choice. PMID:24350132

  9. 49 CFR 236.376 - Mechanical locking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Mechanical locking. 236.376 Section 236.376 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... and Tests § 236.376 Mechanical locking. Mechanical locking in interlocking machine shall be tested...

  10. 49 CFR 236.761 - Locking, electric.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking, electric. 236.761 Section 236.761 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Locking, electric. The combination of one or more electric locks and controlling circuits by means of...

  11. 49 CFR 236.761 - Locking, electric.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Locking, electric. 236.761 Section 236.761 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Locking, electric. The combination of one or more electric locks and controlling circuits by means of...

  12. 49 CFR 236.105 - Electric lock.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Electric lock. 236.105 Section 236.105 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...: All Systems Inspections and Tests; All Systems § 236.105 Electric lock. Electric lock, except forced...

  13. 49 CFR 236.105 - Electric lock.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Electric lock. 236.105 Section 236.105 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...: All Systems Inspections and Tests; All Systems § 236.105 Electric lock. Electric lock, except forced...

  14. 49 CFR 236.761 - Locking, electric.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Locking, electric. 236.761 Section 236.761 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Locking, electric. The combination of one or more electric locks and controlling circuits by means of...

  15. 49 CFR 236.761 - Locking, electric.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Locking, electric. 236.761 Section 236.761 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Locking, electric. The combination of one or more electric locks and controlling circuits by means of...

  16. 49 CFR 236.761 - Locking, electric.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Locking, electric. 236.761 Section 236.761 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Locking, electric. The combination of one or more electric locks and controlling circuits by means of...

  17. 49 CFR 236.105 - Electric lock.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Electric lock. 236.105 Section 236.105 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...: All Systems Inspections and Tests; All Systems § 236.105 Electric lock. Electric lock, except forced...

  18. 49 CFR 236.105 - Electric lock.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Electric lock. 236.105 Section 236.105 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...: All Systems Inspections and Tests; All Systems § 236.105 Electric lock. Electric lock, except forced...

  19. 49 CFR 236.105 - Electric lock.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Electric lock. 236.105 Section 236.105 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...: All Systems Inspections and Tests; All Systems § 236.105 Electric lock. Electric lock, except forced...

  20. Lock For Valve Stem

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.; Guirguis, Kamal S.

    1991-01-01

    Simple, cheap device locks valve stem so its setting cannot be changed by unauthorized people. Device covers valve stem; cover locked in place with standard padlock. Valve lock made of PVC pipe and packing band. Shears, drill or punch, and forming rod only tools needed.

  1. 49 CFR 236.762 - Locking, indication.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking, indication. 236.762 Section 236.762 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Locking, indication. Electric locking which prevents manipulation of levers that would result in an unsafe...

  2. 49 CFR 236.760 - Locking, approach.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking, approach. 236.760 Section 236.760 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Locking, approach. Electric locking effective while a train is approaching, within a specified distance, a...

  3. 49 CFR 236.769 - Locking, traffic.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locking, traffic. 236.769 Section 236.769 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Locking, traffic. Electric locking which prevents the manipulation of levers or other devices for changing...

  4. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  5. Observation of High-Order Polarization-Locked Vector Solitons in a Fiber Laser

    NASA Astrophysics Data System (ADS)

    Tang, D. Y.; Zhang, H.; Zhao, L. M.; Wu, X.

    2008-10-01

    We report on the experimental observation of a new type of polarization-locked vector soliton in a passively mode-locked fiber laser. The vector soliton is characterized by the fact that not only are the two orthogonally polarized soliton components phase-locked, but also one of the components has a double-humped intensity profile. Multiple phase-locked high-order vector solitons with identical soliton parameters and harmonic mode locking of the vector solitons were also obtained in the laser. Numerical simulations confirmed the existence of stable high-order vector solitons in the fiber laser.

  6. Observation of high-order polarization-locked vector solitons in a fiber laser.

    PubMed

    Tang, D Y; Zhang, H; Zhao, L M; Wu, X

    2008-10-10

    We report on the experimental observation of a new type of polarization-locked vector soliton in a passively mode-locked fiber laser. The vector soliton is characterized by the fact that not only are the two orthogonally polarized soliton components phase-locked, but also one of the components has a double-humped intensity profile. Multiple phase-locked high-order vector solitons with identical soliton parameters and harmonic mode locking of the vector solitons were also obtained in the laser. Numerical simulations confirmed the existence of stable high-order vector solitons in the fiber laser.

  7. A racetrack mode-locked silicon evanescent laser.

    PubMed

    Fang, Alexander W; Koch, Brian R; Gan, Kian-Giap; Park, Hyundai; Jones, Richard; Cohen, Oded; Paniccia, Mario J; Blumenthal, Daniel J; Bowers, John E

    2008-01-21

    By utilizing a racetrack resonator topography, an on-chip mode locked silicon evanescent laser (ML-SEL) is realized that is independent of facet polishing. This enables integration with other devices on silicon and precise control of the ML-SEL's repetition rate through lithographic definition of the cavity length. Both passive and hybrid mode-locking have been achieved with transform limited, 7 ps pulses emitted at a repetition rate of 30 GHz. Jitter and locking range are measured under hybrid mode locking with a minimum absolute jitter and maximum locking range of 364 fs, and 50 MHz, respectively.

  8. Effect of treatment with the antioxidant alpha-lipoic (thioctic) acid on heart and kidney microvasculature in spontaneously hypertensive rats.

    PubMed

    Tayebati, Seyed Khosrow; Tomassoni, Daniele; Di Cesare Mannelli, Lorenzo; Amenta, Francesco

    2016-01-01

    Endothelial cells represent an important vascular site of signaling and development of damage during ischemia, inflammation and other pathological conditions. Excessive reactive oxygen species production causes pathological activation of endothelium including exposure of cell to adhesion molecules. Intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1) are members of the immunoglobulin super-family which are present on the surface of endothelial cells. These molecules represent important markers of endothelial inflammation. The present study was designed to investigate, with immunochemical and immunohistochemical techniques, the effect of treatment with (+/-)-alpha lipoic (thioctic) acid and its enantiomers on heart and kidney endothelium in spontaneously hypertensive rats (SHR). Arterial hypertension is accompanied by an increased oxidative stress status in the heart characterized by thiobarbituric acid reactive substances (TBARS) and nucleic acid oxidation increase. The higher oxidative stress also modifies adhesion molecules expression. In the heart VCAM-1, which was higher than ICAM-1 and PECAM-1, was increased in SHR. ICAM-1, VCAM-1 and PECAM-1 expression was significantly greater in the renal endothelium of SHR. (+/-)-Alpha lipoic acid and (+)-alpha lipoic acid treatment significantly decreased TBARS levels, the nucleic acid oxidation and prevented adhesion molecules expression in cardiac and renal vascular endothelium. These data suggest that endothelial molecules may be used for studying the mechanisms of vascular injury on target organs of hypertension. The effects observed after treatment with (+)-alpha lipoic acid could open new perspectives for countering heart and kidney microvascular injury which represent a common feature in hypertensive end-organs damage.

  9. Effects of two hospital bed design features on physical demands and usability during brake engagement and patient transportation: a repeated measures experimental study.

    PubMed

    Kim, Sunwook; Barker, Linsey M; Jia, Bochen; Agnew, Michael J; Nussbaum, Maury A

    2009-03-01

    Work-related musculoskeletal disorders (WMSDs) are prevalent among healthcare workers worldwide. While existing research has focused on patient-handling techniques during activities which require direct patient contact (e.g., patient transfer), nursing tasks also involve other patient-handling activities, such as engaging bed brakes and transporting patients in beds, which could render healthcare workers at risk of developing WMSDs. Effectiveness of hospital bed design features (brake pedal location and steering-assistance) was evaluated in terms of physical demands and usability during brake engagement and patient transportation tasks. Two laboratory-based studies were conducted. In simulated brake engagement tasks, three brake pedal locations (head-end vs. foot-end vs. side of a bed) and two hands conditions (hands-free vs. hands-occupied) were manipulated. Additionally, both in-room and corridor patient transportation tasks were simulated, in which activation of steering-assistance features (5th wheel and/or front wheel caster lock) and two patient masses were manipulated. Nine novice participants were recruited from the local student population and community for each study. During brake engagement, trunk flexion angle, task completion time, and questionnaires were used to quantify postural comfort and usability. For patient transportation, dependent measures were hand forces and questionnaire responses. Brake pedal locations and steering-assistance features in hospital beds had significant effects on physical demands and usability during brake engagement and patient transportation tasks. Specifically, a brake pedal at the head-end of a bed increased trunk flexion by 74-224% and completion time by 53-74%, compared to other pedal locations. Participants reported greater overall perceived difficulty and less postural comfort with the brake pedal at the head-end. During in-room transportation, participants generally reported "Neither Low nor High" physical demands with the 5th wheel activated, compared to "Moderately High" physical demands when the 5th wheel was deactivated. Corridor transportation was similarly reported to be easier when a steering-assistance feature (the 5th wheel or front caster lock) was activated. Braking and steering-assistance features of hospital beds can have important effects on task efficiency and physical demands placed on healthcare workers. Selection of specific designs may thus be able to improve productivity and contribute to a reduction in WMSDs risk among healthcare workers.

  10. Structure and function of ameloblastin as an extracellular matrix protein: adhesion, calcium binding, and CD63 interaction in human and mouse.

    PubMed

    Zhang, Xu; Diekwisch, Thomas G H; Luan, Xianghong

    2011-12-01

    The functional significance of extracellular matrix proteins in the life of vertebrates is underscored by a high level of sequence variability in tandem with a substantial degree of conservation in terms of cell-cell and cell-matrix adhesion interactions. Many extracellular matrix proteins feature multiple adhesion domains for successful attachment to substrates, such as integrin, CD63, and heparin. Here we have used homology and ab initio modeling algorithms to compare mouse ameloblastin (mAMBN) and human ameloblastin (hABMN) isoforms and to analyze their potential for cell adhesion and interaction with other matrix molecules as well as calcium binding. Sequence comparison between mAMBN and hAMBN revealed a 26-amino-acid deletion in mAMBN, corresponding to a helix-loop-helix frameshift. The human AMBN domain (174Q-201G), homologous to the mAMBN 157E-178I helix-loop-helix region, formed a helix-loop motif with an extended loop, suggesting a higher degree of flexibility of hAMBN compared with mAMBN, as confirmed by molecular dynamics simulation. Heparin-binding domains, CD63-interaction domains, and calcium-binding sites in both hAMBN and mAMBN support the concept of AMBN as an extracellular matrix protein. The high level of conservation between AMBN functional domains related to adhesion and differentiation was remarkable when compared with only 61% amino acid sequence homology. © 2011 Eur J Oral Sci.

  11. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.

    PubMed

    Kim, Philseok; Wong, Tak-Sing; Alvarenga, Jack; Kreder, Michael J; Adorno-Martinez, Wilmer E; Aizenberg, Joanna

    2012-08-28

    Ice-repellent coatings can have significant impact on global energy savings and improving safety in many infrastructures, transportation, and cooling systems. Recent efforts for developing ice-phobic surfaces have been mostly devoted to utilizing lotus-leaf-inspired superhydrophobic surfaces, yet these surfaces fail in high-humidity conditions due to water condensation and frost formation and even lead to increased ice adhesion due to a large surface area. We report a radically different type of ice-repellent material based on slippery, liquid-infused porous surfaces (SLIPS), where a stable, ultrasmooth, low-hysteresis lubricant overlayer is maintained by infusing a water-immiscible liquid into a nanostructured surface chemically functionalized to have a high affinity to the infiltrated liquid and lock it in place. We develop a direct fabrication method of SLIPS on industrially relevant metals, particularly aluminum, one of the most widely used lightweight structural materials. We demonstrate that SLIPS-coated Al surfaces not only suppress ice/frost accretion by effectively removing condensed moisture but also exhibit at least an order of magnitude lower ice adhesion than state-of-the-art materials. On the basis of a theoretical analysis followed by extensive icing/deicing experiments, we discuss special advantages of SLIPS as ice-repellent surfaces: highly reduced sliding droplet sizes resulting from the extremely low contact angle hysteresis. We show that our surfaces remain essentially frost-free in which any conventional materials accumulate ice. These results indicate that SLIPS is a promising candidate for developing robust anti-icing materials for broad applications, such as refrigeration, aviation, roofs, wires, outdoor signs, railings, and wind turbines.

  12. Population responses in primary auditory cortex simultaneously represent the temporal envelope and periodicity features in natural speech.

    PubMed

    Abrams, Daniel A; Nicol, Trent; White-Schwoch, Travis; Zecker, Steven; Kraus, Nina

    2017-05-01

    Speech perception relies on a listener's ability to simultaneously resolve multiple temporal features in the speech signal. Little is known regarding neural mechanisms that enable the simultaneous coding of concurrent temporal features in speech. Here we show that two categories of temporal features in speech, the low-frequency speech envelope and periodicity cues, are processed by distinct neural mechanisms within the same population of cortical neurons. We measured population activity in primary auditory cortex of anesthetized guinea pig in response to three variants of a naturally produced sentence. Results show that the envelope of population responses closely tracks the speech envelope, and this cortical activity more closely reflects wider bandwidths of the speech envelope compared to narrow bands. Additionally, neuronal populations represent the fundamental frequency of speech robustly with phase-locked responses. Importantly, these two temporal features of speech are simultaneously observed within neuronal ensembles in auditory cortex in response to clear, conversation, and compressed speech exemplars. Results show that auditory cortical neurons are adept at simultaneously resolving multiple temporal features in extended speech sentences using discrete coding mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. 30 CFR 56.12068 - Locking transformer enclosures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Locking transformer enclosures. 56.12068 Section 56.12068 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... § 56.12068 Locking transformer enclosures. Transformer enclosures shall be kept locked against...

  14. 30 CFR 56.12068 - Locking transformer enclosures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Locking transformer enclosures. 56.12068 Section 56.12068 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... § 56.12068 Locking transformer enclosures. Transformer enclosures shall be kept locked against...

  15. 30 CFR 56.12068 - Locking transformer enclosures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Locking transformer enclosures. 56.12068 Section 56.12068 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... § 56.12068 Locking transformer enclosures. Transformer enclosures shall be kept locked against...

  16. 30 CFR 56.12068 - Locking transformer enclosures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Locking transformer enclosures. 56.12068 Section 56.12068 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... § 56.12068 Locking transformer enclosures. Transformer enclosures shall be kept locked against...

  17. 30 CFR 56.12068 - Locking transformer enclosures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Locking transformer enclosures. 56.12068 Section 56.12068 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... § 56.12068 Locking transformer enclosures. Transformer enclosures shall be kept locked against...

  18. 49 CFR 236.378 - Time locking.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Time locking. 236.378 Section 236.378 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... and Tests § 236.378 Time locking. Time locking shall be tested when placed in service and thereafter...

  19. 49 CFR 236.378 - Time locking.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Time locking. 236.378 Section 236.378 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... and Tests § 236.378 Time locking. Time locking shall be tested when placed in service and thereafter...

  20. 12. Wayne Chandler, Photographer, July 2000 View to northwest. Poe ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Wayne Chandler, Photographer, July 2000 View to northwest. Poe Lock at center. Davis Lock at center right and Sabin Lock at far right - St. Mary's Falls Canal, Soo Locks, St. Mary's River at Falls, Sault Ste. Marie, Chippewa County, MI

Top